
Numeracy Numeracy 
Advancing Education in Quantitative Literacy Advancing Education in Quantitative Literacy 

Volume 14 Issue 1 Article 7 

2021 

Using COVID-19 Vaccine Efficacy Data to Teach One-Sample Using COVID-19 Vaccine Efficacy Data to Teach One-Sample 

Hypothesis Testing Hypothesis Testing 

Frank Wang 
LaGuardia Community College, CUNY, fwang@lagcc.cuny.edu 

Follow this and additional works at: https://scholarcommons.usf.edu/numeracy 

 Part of the Clinical Trials Commons, and the Higher Education and Teaching Commons 

Recommended Citation Recommended Citation 
Wang, Frank. "Using COVID-19 Vaccine Efficacy Data to Teach One-Sample Hypothesis Testing." 
Numeracy 14, Iss. 1 (2021): Article 7. DOI: https://doi.org/10.5038/1936-4660.14.1.1383 

Authors retain copyright of their material under a Creative Commons Non-Commercial Attribution 4.0 License. 

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/numeracy
https://scholarcommons.usf.edu/numeracy/vol14
https://scholarcommons.usf.edu/numeracy/vol14/iss1
https://scholarcommons.usf.edu/numeracy/vol14/iss1/art7
https://scholarcommons.usf.edu/numeracy?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol14%2Fiss1%2Fart7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/820?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol14%2Fiss1%2Fart7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/806?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol14%2Fiss1%2Fart7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc/4.0/


Using COVID-19 Vaccine Efficacy Data to Teach One-Sample Hypothesis Testing Using COVID-19 Vaccine Efficacy Data to Teach One-Sample Hypothesis Testing 

Abstract Abstract 
In late November 2020, there was a flurry of media coverage of two companies’ claims of 95% efficacy 
rates of newly developed COVID-19 vaccines, but information about the confidence interval was not 
reported. This paper presents a way of teaching the concept of hypothesis testing and the construction of 
confidence intervals using numbers announced by the drug makers Pfizer and Moderna publicized by the 
media. Instead of a two-sample test or more complicated statistical models, we use the elementary one-
proportion z-test to analyze the data. The method is designed to be accessible for students who have only 
taken a one-semester elementary statistics course. We will justify the use of a z-distribution as an 
approximation for the confidence interval of the efficacy rate. Bayes’s rule will be applied to relate the 
probability of being in the vaccine group among the volunteers who were infected by COVID-19 to the 
more consequential probability of being infected by COVID-19 given that the person is vaccinated. 
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Introduction 
On November 21, 2020, the New York Times featured the article “What Does It 
Mean if 2 Companies Report 95% Efficacy Rates?” Carl Zimmer wrote, “In the 
case of Pfizer, for example, the company recruited 43,661 volunteers and waited 
for 170 people to come down with symptoms of COVID-19 and then get a positive 
test. Out of these 170, 162 had received a placebo shot, and just eight had received 
the real vaccine” (2020). 

On November 30, 2020, the drug maker Moderna issued a press release 
containing the following statement: 

 

Today’s primary analysis was based on 196 cases, of which 185 cases of COVID-19 were 
observed in the placebo group versus 11 cases observed in the mRNA-1273 group, 
resulting in a point estimate of vaccine efficacy of 94.1%. . . . The Phase 3 COVE trial is a 
randomized, 1:1 placebo-controlled study testing mRNA-1273 at the 100 µg dose level in 
30,000 participants in the U.S., ages 18 and older (Moderna 2020).  

 

The COVID-19 pandemic has produced a deluge of news coverage of 
quantitative concepts (Ancker 2020).  Madison et al. (2012) have written a textbook 
to illustrate the value of using media articles for quantitative reasoning. COVID 
vaccine efficacy is arguably the most important statistical news in students’ 
lifetimes, and information given in the above quotes offers a uniquely powerful 
teaching opportunity to demonstrate how numbers are used in shaping public 
policy. The objective of this paper is to elucidate the meaning of these numbers in 
the context of hypothesis testing and confidence intervals for the efficacy rate.  
Without the confidence interval, a crucial piece of information is missing.  

Because the vaccine development typically involves an experimental group 
and a placebo-controlled group, a two-sample hypothesis testing is a suitable 
statistical procedure to analyze data. Such a topic is usually presented in a second 
statistics course. For example, at the author’s institution, an urban public university, 
MAT 120 Elementary Statistics I covers up to one-sample z- and t-tests, and two-
sample methods are taught in MAT 121 Elementary Statistics II.  Currently, there 
are 39 sections of MAT 120, but only 1 section of MAT 121, and our situation is 
quite common, meaning that most students do not have the mathematical tools to 
analyze news stories concerning vaccine trials.  The impetus behind this note is to 
provide a path forward for educators of first-semester statistics through reframing 
the data in the news as a one-sample hypothesis test.  

In the next section we introduce the principle of hypothesis testing by 
comparing vaccine trials with coin flipping to make the concept comprehensible 
for a lay person. Then we use both the p-value and confidence-interval approaches 
to test hypotheses for one parameter presented in standard textbooks. The following 
section is concerned with the efficacy rate, its dependence on the number of sick 
people who are vaccinated, and its linear approximation. The rest of the sections 

1

Wang: Using COVID-19 Vaccine Efficacy Data to Teach One-Sample Testing

Published by Scholar Commons, 2021



are mathematical justification of our approximation to allow practitioners to verify 
our methodology. Further technical details, including a simulation for the 
confidence interval, are presented in the Appendix. 
 
Principle of Hypothesis Testing  
 
To transform the two-sample problem into a single-sample problem appropriate for 
many introductory courses, assume that half of the 43,661 volunteers in the Pfizer 
trial mentioned in the New York Times article received the real vaccine, and the 
other half received a placebo shot. (The Moderna press release explicitly states a 
1:1 ratio in their trial.) Out of the 170 people who later became COVID-positive, if 
the vaccine is ineffective, which is always the null hypothesis in a medical 
experiment (Ancker and Begg 2017), we expect 0.5×170 = 85 people to be in the 
placebo group and 85 people in the vaccine group. But common sense informs us 
that the actual outcome may not be 85 exactly. It is analogous to tossing a fair coin 
170 times and counting the number of heads. One should not be surprised to see 86 
or 83 heads. 

Figure 1 shows the theoretical probability of getting x heads after tossing a fair 
coin 170 times, and it is the same probability of observing x volunteers in the 
placebo group among the 170 people who were infected by the coronavirus, under 
the null hypothesis that the vaccine is doing nothing.  The figure is produced using 
the open-source software R, and the command is shown in the figure caption so that 
educators can change the numbers to produce a new plot for a different situation.  
We see that the probability attains a maximum when x = 85 and decreases as x 
deviates from 85. 

 

 
Figure 1. The figure is produced using R with the command plot(dbinom(0:170, 170, 0.5)).  
For the Moderna trial, we replace 170 with 196.  
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Let us imagine an outcome that among the 170 people who were COVID 

positive, 80 were in the vaccine group, and 90 in the placebo group. Although it 
appears that the infection rate is smaller for the vaccine group, we cannot be sure 
whether this outcome occurs by chance or is due to the vaccine. Examining Figure 
1, there is a noticeable probability for x = 90, so it could be by luck that more people 
in the placebo group and fewer people in the vaccine group got infected.  However, 
Pfizer’s actual data show x = 162, and from Figure 1 we see that the probability is 
visually indistinguishable from zero for x > 105 or x < 65. It will be unreasonable 
to claim that Pfizer’s number, x = 162, happens by chance, and this leads scientists 
to conclude that the vaccine is making a difference. Such a probabilistic 
consideration is the essence of hypothesis testing. 

According to a New York Times report (LaFraniere et al. 2020), on November 
8, 2020, Pfizer’s chief executive, Dr. Albert Bourla, was told that 90 out of 94 
people who had gotten sick were in the placebo group. The CEO demanded the 
scientist to “repeat it, did you say 19 or 90?” It appeared that the CEO was 
astonished by the unexpected high efficacy. Statisticians use a number called the p-
value to measure how surprising the data are, given the null hypothesis. We will 
find the p-value shortly.  

Students might want to know how the probabilities in Figure 1 are obtained.  
Returning to the coin-tossing example, if we toss a coin twice, there is one way of 
getting two tails, two ways of getting one heads and one tails, and one way of 
getting two heads, so the probability of getting 0, 1, and 2 heads is proportional to 
1:2:1. Applying the same consideration, if we toss a coin three times, the probability 
of getting 0, 1, 2, and 3 heads is proportional to 1:3:3:1. Mathematicians recognized 
a pattern, and proved that the probability for x heads in n coin tosses is proportional 
to the nth line of Pascal’s triangle.  It goes without saying that writing 170 lines of 
Pascal’s triangle will be at least tedious if at all practical, and the need to enumerate 
efficiently is the driving force for developing mathematical theorems to simplify 
the calculation for a large number.  

While statisticians reject the null hypothesis that Pfizer’s result occurs purely 
by chance, there are still unanswered questions. We need to recognize that no 
vaccine offers 100% protection. It is possible that a person in the vaccine group 
gets infected with COVID-19, and it is also possible that a person in the placebo 
group avoids the virus. We need to quantify such occurrences when developing 
public policy. The estimation of the vaccine efficacy rate requires further statistical 
techniques, which will be discussed in the subsequent sections.  

Although some students find the topic of hypothesis testing alien, we have 
shown that the underlying idea is just counting and evaluating plausibility. We 
remark that psychologists have found evidence that it is easier for the human mind 
to consider the count instead of percentage (Gigerenzer and Hoffrage 1995; 
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Cosmides and Tooby 1996). For example, instead of saying 8%, when the same 
information is presented as 8 out of 100 people, research subjects vastly improved 
their estimation of probability. The author has replicated some psychological 
studies with community college students and reached a similar conclusion (Wang 
2015). Our demonstration of hypothesis testing using the count instead of 
percentage is guided by psychological principles. 
 
One-Proportion z-Test  
 
Textbooks usually present two ways of answering the question about the null 
hypothesis: confidence intervals and hypothesis tests. They look at the same 
problem from two perspectives. The confidence interval is data-centric, and a 
hypothesis test is model-centric (De Veaux et al. 2020). We use both approaches to 
analyze the Pfizer data.  

We have seen that the probability of getting x heads after tossing a fair coin n 
times is proportional to the nth line of Pascal’s triangle. More formally, the 
probability follows a binomial distribution, and the probability of observing x heads 
is written as  
 

𝑃(𝑥) = 𝐶𝑥
𝑛 𝑝𝑥 (1 − 𝑝)𝑛−𝑥 

 
where p = 1/2 for a fair coin but can be other values between 0 and 1, and  
 

𝐶𝑥
𝑛 =

𝑛!

𝑥! (𝑛 − 𝑥)!
 

 
is the binomial coefficient. The algorithm of Pascal’s triangle reflects the 
recurrence relation 𝐶𝑥

𝑛 = 𝐶𝑥
𝑛−1 + 𝐶𝑥−1

𝑛−1.  
Abraham de Moivre (1667–1754), a mathematician and consultant to 

gamblers, noted that the shape of the binomial distribution approaches a very 
smooth curve if n is large.  Students might have already noted this in Figure 1.  The 
bell-shaped curve is the probability density function of a normal distribution.  For 
a normal distribution with mean 0 and standard deviation 1, it is called the z-
distribution.  While many students are intimidated by the formulas, we emphasize 
that the z-distribution is rooted in elementary counting.  If students understand the 
principle, they can use computer programs such as R to implement calculations.  

Instead of counting the number of heads, in statistics literature the proportion 
is used. (The change from counts to proportions is perhaps one reason that students 
find statistics hard, based on the psychological studies mentioned earlier.)  Let the 
true probability of getting heads when flipping a coin be p, the sampling distribution 
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for the proportion of heads after n tosses is a normal distribution with mean p and 
standard deviation 

 

𝜎𝑝 = √
𝑝(1 − 𝑝)

𝑛
 . 

 
We point out that the inverse square-root dependence of the standard deviation 

on n is the most important result in statistics. Howard Wainer’s 2007 essay “The 
Most Dangerous Equation” refers to this equation’s critical importance, and he cites 
past havoc because of ignorance of how sample size affects statistical variation. 
This equation explains the need for drug makers to wait for a certain number of 
volunteers to be COVID-positive before their result becomes statistically 
significant. Rebecca Robbins (2020) reported in the New York Times that the surge 
in coronavirus cases worldwide is actually helping researchers measure more 
quickly how well their vaccines protect against COVID-19. Specifically,  

 

In late-stage vaccine trials, the faster that participants get sick, the faster that drug 
developers gain enough data to know whether their vaccines are effective. . . . The trial 
ends after a certain number of cases—around 150 to 170—have accrued. That number is 
chosen to make sure the results have sufficient statistical power to tell how well the vaccine 
works.  

For a hypothesized ineffective vaccine, the proportion of volunteers who 
received a placebo shot among sick people is p = 1/2, based on the assumption that 
the number of people in the vaccine and placebo groups is the same, just like 
flipping a fair coin. In the Pfizer trial, n = 170 and 𝜎𝑝 = √0.5 (0.5)/170 = 0.038.  
We expect the distribution of sample proportions to be the bell-shaped curve in 
Figure 2.  

The observed sample proportion in the Pfizer trial is  
 

𝑝̂ =
162

170
= 0.953. 

 
It is apparent that the observed sample proportion is very far from the null 
hypothesis p = 0.5. The test statistic measures the deviation in terms of standard 
deviation,  
 

𝑧 =
𝑝̂ − 𝑝

√𝑝 (1 − 𝑝)
𝑛

=
0.953 − 0.5

0.038
= 11.81. 
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Figure 2. We use a normal distribution to approximate the binomial distribution in Figure 1, and 
the horizontal axis here is the proportion x/n = x/170.  The vertical line indicates the observed 
sample proportion measured in the Pfizer vaccine trial.  

 

The probability for an observation to have z ≥ 11.81, or the area under the bell-
shaped curve to the right of the vertical line, is 1.73 × 10−32 (using R’s pnorm(-
11.81)). This is the p-value, and in this case it means the probability of observing 𝑝̂ 
≥ 0.953, if the null hypothesis is true. Because the p-value is essentially zero, we 
reject the null hypothesis that the vaccine is ineffective. Comparing Figures 1 and 
2, it should be clear that this formal approach also reaches the same conclusion. 
The main difference is that we use a normal distribution as an approximation of 
probability, and we use the proportion x/n as the variable instead of the count x.  

There have been prevalent misconceptions about statistical significance, and 
all students should be encouraged to read the statement on p-values by the 
American Statistical Association (Wasserstein and Lazar 2016). Principle 3 says 
“scientific conclusions and business or policy decisions should not be based only 
on whether a p-value passes a specific threshold.”  

We introduce the confidence-interval approach to go beyond the p-value. To 
estimate the confidence interval for the proportion of people in the placebo group 
among the 170 COVID-positive cases, we use  

 

𝑝̂ ± 𝑧𝛼/2 √
𝑝̂ (1 − 𝑝̂)

𝑛
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where zα/2 is the critical value. For the most commonly used 95% confidence level, 
zα/2 = 1.96. One should pay attention to the use of the estimated sample proportion 
𝑝̂ for the standard error, instead of the hypothesized population parameter p. The 
numbers provided by Pfizer give 
 

[0.953 ± 1.96 √
0.953 (1 − 0.953)

170
 ] = [0.921,0.985]. 

 
Because p = 0.5 is outside the 95% confidence interval, we reject the null 
hypothesis, the same conclusion as before. In canned language, students are 
typically instructed by textbooks to say, “I am 95% confident that the true 
proportion of people who did not get the vaccine, among people who are COVID-
positive, is between 92.1% and 98.5%.”  While the statement captures some aspects 
of the idea, we remind the readers that the interpretation of confidence intervals is 
subtle. Further insight on this important topic is provided by Gelman and Nolan 
(2011).  

In the next section we will show that Pfizer’s confidence interval, 92.1% to 
98.5%, serves as an approximation for the vaccine efficacy rate. In the Moderna 
trial, the efficacy rate is approximated by 185/196 = 94.4% based on the company’s 
press release, and the 95% confidence interval is estimated to be 

 

[0.944 ± 1.96 √
0.944 (1 − 0.944)

196
 ] = [0.926, 0.962]. 

 
The confidence interval provides much more information than a single number, 

and the above calculations serve as an example that we can extract such crucial 
information from news articles if we scrutinize the press releases. 
 
Vaccine Efficacy Rate and Its Linear Approximation 
 
While news reports of “statistical significance” can be discussed without the 
addition of new terminology, the concept of vaccine “efficacy” lies outside 
traditional introductions to statistics. But with a little additional work, this too is 
fertile ground for instruction.  The definition of efficacy can be found in Zimmer’s 
New York Times article: 
 

From these numbers, Pfizer’s researchers calculated the fraction of volunteers in each 
group who got sick. Both fractions were small, but the fraction of unvaccinated volunteers 
who got sick was much bigger than the fraction of vaccinated ones. The scientists then 
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determined the relative difference between those two fractions. Scientists express that 
difference with a value they call efficacy. If there’s no difference between the vaccine and 
placebo groups, the efficacy is zero. If none of the sick people had been vaccinated, the 
efficacy is 100 percent (2020).  
 

Let the number of volunteers 43,661 be N, and let the number of COVID-19 
cases in the control group among the 170 sick people be x. Pfizer reported x = 162, 
but we keep x as a variable. The sample proportion for people who got sick in the 
vaccine group is  

 

𝑝̂𝑣 =
170 − 𝑥

𝑁/2
 , 

 
and that in the control group is  

 

𝑝̂𝑐 =
𝑥

𝑁/2
 . 

 
The efficacy rate is  
 

𝑒 = −
𝑝̂𝑣 − 𝑝̂𝑐

𝑝̂𝑐
= 1 −

170 − 𝑥

𝑥
 . 

 
We plot the efficacy rate as a function of x in Figure 3.  As stated in the above 

quote, if there is no difference between the vaccine and placebo group, or x = 170/2 
= 85, the efficacy is zero. If none of the sick people had been vaccinated, or x = 
170, the efficacy is 100 percent. For Pfizer’s trial, x = 162, and e = 1−8/162 = 0.951, 
which is the basis of the company’s claim of 95% efficacy rate. For Moderna, the 
efficacy rate is 1 − 11/185 = 94.1% from the numbers given in the press release.  

To help the general public understand the meaning of Pfizer’s 95% efficacy 
rate, let us imagine two otherwise identical communities, but one is vaccinated and 
the other is not. For every 100 people who become COVID-positive in the 
unvaccinated community, there will only be 5 infections in the vaccinated 
community. Consider an inferior vaccine, say with an efficacy rate of 75%, the 
number of cases in a vaccinated community will be 25, compared with 100 in an 
unvaccinated community. Because any medical system has a limited capacity, the 
efficacy rate clearly plays a crucial role in public health planning.  

Although it is a calculus topic, it is not difficult to understand that one can 
approximate a curve by a straight line within a small interval (see the dashed line 
in Figure 3). If x is near 170, we can put 170 in the denominator of e and obtain a 
linear approximation:  
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𝑒 ≈ 1 −
170 − 𝑥

170
=

𝑥

170
 . 

 
This linear relation between e and x is the reason that we could use the z-distribution 
to construct the confidence interval for the efficacy rate (when it is greater than 
90%) in the preceding section.  
 

 
Figure 3. The curve is the efficacy rate as a function of number of x volunteers in the 
control group who got infected among the 170 people who got infected. The dashed line 
is a linear approximation of the function near x = 170.  

 

Dr. Anthony Fauci, director of the National Institute of Allergy and Infectious 
Diseases, said before trial results were published that he would be satisfied with a 
75% effective vaccine (Grady 2020). At such a rate, we can solve the equation  

 

1 −
170 − 𝑥

𝑥
= 0.75 

 
to find x = 136.  The Food and Drug Administration even said it would consider 
granting emergency approval for vaccines that showed just 50 percent efficacy 
(Zimmer 2020), and in this case 𝑥 ≈ 113.  (Instructors can ask students to find x 
for other efficacy rates.) As seen in Figure 3, the discrepancy between e and its 
linear approximation is noticeable when x is less than about 150. In the Appendix 
we will show how to obtain the confidence interval for any x value using a 
simulation method.  
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Two-Proportion z-Test  
 
As mentioned in the Introduction, it is natural to perform a hypothesis test for two-
sample proportions for a medical experiment. For courses that teach a two-sample 
test, the vaccine trials offer relevant applications. Referring to the notation in the 
preceding section, we want to determine whether the infection rates for the placebo 
group and the vaccine group are different, in other words, whether pc − pv differs 
from zero. The test statistic is  
 

𝑧 =
𝑝̂𝑐 − 𝑝̂𝑣

√𝑝̂ (1 − 𝑝̂) (
1
𝑁
2

+
1
𝑁
2

)

 , 

 
where 𝑝̂ = 170/𝑁 in Pfizer’s trial. Simplifying it, we have 
 

𝑧 =
2𝑥 − 170

√170
 

√𝑁

√𝑁 − 170
≈

2𝑥 − 170

√170
    for  𝑁 ≫ 170. 

 
The approximation is based on the fact that lim

𝑁→∞

√𝑁

√𝑁−170
= 1. In Pfizer’s trial, N = 

43,661, and the factor √43661

√43661−170
= 1.002 plays a minor role in calculating z. As N 

tends to infinity, it gets canceled out. As stated previously, the sample size is the 
most important consideration in inferential statistics.  We see that the number of 
volunteers N = 43,661 is less important, but the number of sick people (170) plays 
the role of the sample size because of z’s inverse square-root dependence on it. 
With x = 162, 𝑧 =

2×162−170

√170
 1.02 = 11.83 for the two-sample test, not too 

different from the one-sample z-test, 11.81. If we drop the factor of 1.02, the test 
statistics for the one-sample and two-sample tests are exactly the same. We will use 
R to double check these numbers in the Appendix. 
 
Bayes’s Rule  
 
Finally, publicly reported data from vaccine trials can reinforce lessons from 
Bayes’s Rule. The ratio x/170 we have been using estimates the probability that a 
person is in the placebo group, given that the person is COVID-positive. In 
conditional probability notation, we write it as P(placebo|COVID+). Similarly, 
(170 − x)/170 is the probability that a person is in the vaccine group, given that the 
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person is COVID-positive denoted by P(vaccine|COVID+). However, the more 
relevant conditional probability is the inverse: P(COVID+|vaccine), the probability 
of getting infected by coronavirus, given that the person is vaccinated. The 
confusion between conditional probability and its inverse is part of Daniel 
Kahneman’s Nobel Prize-winning research summarized in his popular book 
Thinking, Fast and Slow (Kahneman 2011). Lewis (2021) discusses probabilities 
in the context of the pandemic in this Journal.  

As seen in previous sections, we have been using numbers from newspapers, 
so what we had was P(vaccine|COVID+).  To obtain the inverse probability, we 
need Bayes’s rule.  The simplest form of Bayes’s rule is in odds form, posterior 
odds = prior odds × likelihood ratio (Kahneman 2011; Gelman et al. 2013).  
Textbooks usually present Bayes’s rule in probabilistic form, and in the present 
case  

 

𝑃(vaccine|COVID+) =
𝑃(COVID+|vaccine) 𝑃(vaccine)

𝑃(COVID+)
 

 
and 
 

𝑃(placebo|COVID+) =
𝑃(COVID+|placebo) 𝑃(placebo)

𝑃(COVID+)
 . 

 
The odds form is the ratio of these two probabilities, 
 

𝑃(vaccine|COVID+)

𝑃(placebo|COVID+)
=

𝑃(vaccine)

𝑃(placebo)
×

𝑃(COVID+|vaccine)

𝑃(COVID+|placebo)
 . 

 
The description “posterior odds = prior odds × likelihood ratio” mentioned earlier 
is more explicit now.  

Kahneman and other psychologists found that people tend to neglect the prior 
odds, and such an oversight leads them to confuse between conditional probability 
and its inverse.  However, for a 1:1 placebo-controlled study, 

 
𝑃(vaccine) = 𝑃(placebo) 

 
and the prior odds can be neglected.  We obtain 
 

𝑃(vaccine|COVID+)

𝑃(placebo|COVID+)
=

𝑃(COVID+|vaccine)

𝑃(COVID+|placebo)
 . 
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Our inference of the probability of getting coronavirus among people who receive 
the vaccine, based on the inverse conditional probability from the newspaper 
articles, is justified.  
 
Conclusion  
 
COVID-19 presents a major challenge to citizenship, and it is important that people 
understand the meaning of numbers so that they can use that knowledge to guide 
their behavior (Best 2020). We have demonstrated that much information can be 
obtained from numbers related to vaccine trials reported in the media with great 
effect in courses that teach introductory statistics. With the fortuitous high vaccine 
efficacy rate, we have simplified the hypothesis testing so that students with basic 
statistical training can understand the results and undertake the analysis by 
themselves. In an era of misinformation and disinformation, numeracy skills 
empower citizens and help them make better personal and public decisions. 
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Appendix 
 
Most practitioners use software to perform statistical analysis. Below is the R 
command and output for a two-sample proportion test based on Carl Zimmer’s 
article (2020).  

prop.test(c(162, 8), c(43661/2, 43661/2)) 
 
 2-sample test for equality of proportions  
 
data:  c(162, 8) out of c(43661/2, 43661/2) 
X-squared = 138.24, df = 1, p-value < 2.2e-16 
alternative hypothesis: two.sided 
95 percent confidence interval: 
 0.005842099 0.008266602 
sample estimates: 
      prop 1       prop 2  
0.0074208103 0.0003664598  
 

 
To conduct a one-sample proportion test, we have the following. The 

continuity correction is turned off so that we can compare χ2 with z2. 
 

prop.test(162, 170, correct = FALSE) 
 
 1-sample proportions test without continuity correction 
 
data:  162 out of 170, null probability 0.5 
X-squared = 139.51, df = 1, p-value < 2.2e-16 
alternative hypothesis: true p is not equal to 0.5 
95 percent confidence interval: 
 0.9099002 0.9759645 
sample estimates: 
        p  
0.9529412  

 
 

The χ2 values for the two-sample and one-sample tests are 138.24 and 139.51, 
respectively, and they are not too different from each other. The χ2 value for the 
one-sample test should be the square of the test statistic, and indeed the test statistic 
in the main text is the same as the software’s output: 11.812 = 139.51. We confirm 
that our one-sample approximation is satisfactory.  

Without relying on the linear approximation, we generate 1,000,000 random 
numbers from a binomial distribution with size 170 and probabilities 8/170 and 
162/170, and calculate 1,000,000 efficacy rates; see the R output shown Figure A.1.  
The 95% confidence interval for the Pfizer trial based on our simulation is [0.914, 
0.981]. The z-distribution confidence interval [0.921, 0.985] in the main text is up 
to the mark with the simulation. The discrepancy can be explained by the use of the 
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normal distribution to approximate the binomial distribution, and the linear 
approximation of the efficacy rate discussed in the section on efficacy. We conclude 
that for a high efficacy rate (> 90%), the method of using the one-proportion z-test 
gives a reasonable estimate. If the efficacy is less than 90%, we need to use other 
methods such as the simulation introduced here to obtain the confidence interval.  

 
Figure A.1.  The histogram of simulated 1,000,000 vaccine efficacy rates produced by R.   

 

set.seed(2) 
y <- rbinom(1e6, 170, 8/170) 
x <- rbinom(1e6, 170, 162/170) 
e <- 1 - y/x 
hist(e, probability = TRUE) 
quantile(e, c(.025, .975)) 
     2.5%     97.5%  
0.9141104 0.9814815  
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