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Abstract (150 words maximum)

Cooperativity is a hallmark of protein folding, but the thermodynamic origins of
cooperativity are difficult to quantify. Tandem repeat proteins provide a unique
experimental system to quantify cooperativity, due to their internal symmetry and their
tolerance to deletion, extension, and in some cases fragmentation into single repeats.
Analysis of repeat proteins of different lengths with nearest-neighbor "Ising" models
provides values for repeat folding (AGi) and inter-repeat coupling (AGi-1,). Here we
review the architecture of repeat proteins, and classify them in terms of AGi and AGi-1,j;
this classification scheme groups repeat proteins according to their degree of
cooperativity. We then present various statistical thermodynamic models, based on the
one-dimensional Ising model, for analysis of different classes repeat proteins. We use
these models to analyze data for highly and moderately cooperative and non-
cooperative repeat proteins, and relate their fitted parameters to overall structural

features.



Cooperativity is a defining feature of protein folding. Although the native states of
proteins are structurally complex, many single-domain proteins, especially those less
than 150 residues, fold in a concerted reaction in which distant regions of the
polypeptide are coupled. If one segment of polypeptide chain is folded, a second
segment is likely to be folded regardless of whether the two segments of the protein
chain are close together or far apart. This cooperativity is likely to be an important
property for biology, because it suppresses partly folded states which are prone to
aggregation and may lead to pathological states. Cooperativity is also important for
experimental biophysicists as it allows very simple two-state models to be used to
analyze equilibrium protein folding data and extract energetic features of folding such as
free energies, enthalpies, and heat capacities of folding.

However, this two-state folding mechanism makes it challenging to quantify
folding cooperativity (and protein energy landscapes in general) in energetic terms. A
quantitative molecular description of cooperativity would include relative free energies of
partly folded states and the interaction or "coupling" energies between elements of
structure. If partly folded states are not populated, these free energies cannot be
experimentally quantified!. By its nature, cooperativity hides itself from view.

In the past few decades, protein families have been identified with architectures
that facilitate quantification of cooperativity. These "tandem repeat proteins" are
composed of two or (usually) more of the same sequence motif (or "repeat") repeated in
close proximity. Different families of repeat proteins show a broad range of repeat
sizes, structures, and extent of long-range ordering. Many (but not all) of these proteins
exhibit cooperativity as a result of thermodynamic coupling between repeats. Even
when these repeats are very strongly coupled (i.e., when cooperativity is very high),
cooperativity can be quantified as long as the number of repeats in the array can be

varied.

! Amide hydrogen exchange methods provide an experimental route to determine the energies of partly folded states,
though local stabilities and coupling energies are hard to resolve in this method.
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This review will describe tandem repeat proteins and how they can be used to
quantify cooperativity in protein folding. After introducing a useful thermodynamic
classification scheme for tandem repeat proteins based on repeat stabilities and
interaction energies, we will highlight sequence and structural features of various
tandem repeat proteins. We will then introduce different nearest-neighbor models for
quantifying cooperativity in repeat protein folding. These models are variations of the
one-dimensional Ising model, which was developed a century ago to analyze the
statistical thermodynamics of magnetization (19, 8). We will then present results from
the literature, applying nearest-neighbor modeling to analyze the unfolding of different
types of tandem repeat proteins to quantify intrinsic and nearest-neighbor coupling

energies, and will compare cooperativities for different types of tandem repeat arrays.

1. TANDEM REPEAT PROTEINS

Proteins have long been known to contain direct sequence repeats. Two
decades ago, a survey of genomes revealed that 14 percent of protein coding
sequences contained a repeated sequence motif, and that repeats are enriched in
eukaryotes (26). A more recent survey extended this study, and showed correlations
between tandem sequence repeats, protein length, and intrinsic disorder (11).

Although structure determination of tandemly repeated protein domains can be
challenging, especially when repeats are connected by flexible linkers, a large number
of crystal structures of tandem repeat proteins have been determined in the last two
decades. These structures have been surveyed by Kajava (21, 22), who developed a
system for categorizing tandem repeat proteins based on repeat length, sequence, and
structural features. Of particular interest to this review are the two classes of repeat
proteins (classes Ill and V) that are unimolecular and have roughly linear (i.e., not
circular or closed) structures. These two classes are distinguished by whether or not
the repeats fold independently —a distinction that is not always easy to make from

structural (rather than thermodynamic) analysis.

1.1 A thermodynamic classification of linear repeat proteins



Here we will expand this definition, focusing not only on whether repeats can fold
independently, but also whether adjacent repeats stabilize (or in principle, destabilize)
one another. We will use AGi to represent the free energy of folding of an individual
repeat (for autonomously stable repeats, AGi < 0)?, and AGi-1,i to represent the free
energy of coupling with its immediate N-terminal neighbor (for stabilizing interfaces, AGi-
1< 0). From this bipartite definition, three useful classes emerge (Figure 1). On one
end of the spectrum are tandem repeat proteins where the repeats fold autonomously
(AGi < 0) and are uncoupled from their neighbors (AGi-1,i > 0). Proteins in this class,
which we refer to as "fully-autonomous repeat proteins" (FARPs), should adopt "beads
on a string" structures, corresponding to Kajava's class V. On the other end of the
spectrum are proteins where the repeats cannot fold autonomously (AGi > 0), requiring
favorable coupling with their neighbors (AGi-1,i < 0) to drive their folding. Proteins in this
class, which we refer to as "nonautonomous repeat proteins" (NARPs), should adopt
rigid elongated structures (rods, arcs, or superhelices), corresponding to Kajava's class
Il

The bipartite definition in Figure 1 generates two additional classes of linear
repeat proteins. In one, repeats do not fold autonomously, and they are uncoupled from
their neighbors (AGi > 0, AGi-1,i 2 0). This combination of free energies describes an
intrinsically disordered polypeptide, but does not provide a means to study folding and
cooperativity. However, the fourth class, where repeats fold autonomously and are
favorably coupled to their neighbors (AGi < 0, AGi-1,i < 0), provides a rich opportunity to
explore cooperativity in folding, as will be discussed below. These proteins, which we
refer to as "semiautonomous repeat proteins" (SARPSs), should also adopt rigid
elongated structures. In a sense, SARPs are part way in between Kajava's class Il
(exhibiting coupling between repeats) and class V (where Kajava classified them since

individual spectrin repeats can fold in isolation).

2 Here, the subscript i denotes the position of a repeat within the array, and the i- /" repeat is the nearest-neighbor
toward the N-terminus. When we discuss specific types of repeats, (N, R, C, ... X), the position index i will be
replaced by an index that denotes repeat type.



1.2. Examples of proteins composed of tandem folded repeats.

Here we will describe the general properties of tandem repeat proteins that are
amenable to nearest-neighbor analysis. These proteins are composed of folded
repeats and have no obvious non-nearest neighbor interactions (which excludes
globular and closed structures like TIM barrels). Some repeat proteins that match these
criteria compiled in Table 1, along with some relevant features extracted from the Pfam
database (12). Lengths of repeats selected in Table 1 range from around 20 to 100
residues. Most of these repeat protein families are represented by a large number of
sequences (often in the tens of thousands), permitting precise bioinformatics analysis
and sequence-based protein engineering. Within each type of repeat protein,
sequences of repeats are quite variable, with pairwise identities typically in the low 20
percent range. This variability provides a rich source of variation to connect sequence
and structural features to nearest-neighbor energy terms, yet conservation is adequate
to create sequences with identical repeats if required for analysis (see section 3.2).

Some structures of repeat proteins are given in Figure 2. Ankyrin repeats are
rather small helical repeats that form extensive interfaces with their neighbors (16, 30),
placing them in Kajava's class Ill. Spectrin repeats are much larger helical repeats that
form comparatively small interfaces with their neighbors (38, 18), placing them in
Kajava's class V; as has been noted extensively, adjacent spectrin repeats share a
single continuous a-helix, which may couple adjacent repeats. Immunoglobulin repeats
of some monomeric proteins such as titin are globular -sheet domains that form
elongated structures with limited nearest-neighbor contacts, suggesting largely
autonomous and independent folding (10). Like spectrin repeats, the IgG binding
repeats (E-, D-, A-, B-, and C-domains) of protein A fold into three-helix bundles (35);
SAXS studies indicate that tandem B-domain (BdpA) repeats are structurally

uncorrelated, and are best described by an excluded volume pearl necklace model (9).

2. THERMODYNAMIC MODELS FOR COUPLING



In this section, models are presented for analysis of the thermodynamics of
folding of tandem repeat proteins. Most of these are "nearest-neighbor" models?, where
repeats are directly coupled to their two adjacent neighbors (or one, if they are a
terminal repeat), but not to more distant repeats. These models are codified in
molecular partition functions (4). Before constructing partition functions, which
represent the probabilities of all conformational states included in the model, we will

define the energy terms that make up nearest-neighbor models.

2.1. Nearest-neighbor models and their energy terms

The energy terms that are used to make up nearest-neighbor models for repeat
protein folding are the intrinsic folding (AGi) and interfacial coupling free energies (AGi-
1,i) introduced above (Figure 3). When repeat i folds and its nearest-neighbors (i-7 and
i+1) are not folded (reactions i. and ii. Figure 3), the equilibrium constant and free
energy for folding are x and AGi. Equilibrium constants and free energies are related

through the standard expression

Here we will typically omit the standard state symbol, but all free energies here are at
standard state concentrations (one molar reactant and product).

When repeat i folds and one of its nearest-neighbors is folded (for example,
repeat i-1), an interface can be formed (reaction iii., Figure 3). The equilibrium constant
for this coupled folding and interface formation is «iz-1,, where «iis as defined above.
Expressed in this way, z-1,iis an equilibrium constant for forming an interface between
folded repeats i-1 and i.

Alternatively, it is possible that repeat i can fold next to a folded repeat but not

form an interface (reaction iv. above); this is likely when the interface is weakly

3 Although there are no nearest-neighbor interactions for FARPs, it is sometimes useful to analyze their folding
transitions with a nearest-neighbor model, since as described below, full autonomy requires experimental
verification.



stabilizing or destabilizing, as is the case for FARPs. In such cases, the equilibrium
constant for folding is «i, the same as for folding with unfolded neighbors. In addition to
providing a means to analyze FARP unfolding, reaction iv. provides a clear definition of
the equilibrium constant for interface formation, z.1,i (vertical transitions, Figure 3).
Because interfaces have contributions from two repeats, representing the type of
interface requires two repeat types be specified. For example, for repeat types R and
X, four types of interfaces can be formed: homopolymeric interfaces between R repeats
and between X repeats (with equilibrium constants trr and txx), and heteropolymeric
interfaces between R and X repeats (with equilibrium constants trx and txr, depending
on the order of the repeats). When relevant, the type of interfacial free energy will be

specified using labels such as AGg_1 x , which indicates an interface between an X

repeat at position j and an R repeat at position /-1 (Figure 3B).

These equilibrium constants and free energies can be used to construct a
partition function for a given repeat array. Here, the partition function is a sum of
statistical weights for the fully folded state, each of the different partly folded states, and
the unfolded state (which we use as a reference and assign a statistical weight of one).
For each state, the statistical weight is simply the product of all the equilibrium
constants that are needed to get from the reference state to that state (Figure 3, right-
most column). The number of intrinsic x constants in the product is equal to the number
j of folded repeats (i.e., ). However, the number of interfacial r constants depends on

the model and on the arrangement of the folded repeats.

2.2. Partition functions for different nearest-neighbor models

Here we will present several partition functions that model repeat protein folding
and can be used to fit equilibrium folding data (Table 3). The models for these partition
functions differ in the types of partly folded states they admit (see Appendix 1), and
represent different levels of cooperativity. As such, some partition functions are more

appropriate for FARPs, and others are more appropriate for NARPs (Table 3).



For the nearest-neighbor models presented here, partition functions are best
represented as the product of a series of two-by-two correlation matrices W, with one
matrix for each repeat. For a protein with / repeats, the partition function p can be

written

p=nxWyxW, x..xW,xc (2)

where n=[ 0 1]and c=[ 1 1] arerow and column vectors that convert the matrix

product to a scalar and select the appropriate terms of the partition function. If the
repeat array is homopolymeric (that is, if is composed of identical repeats), the partition

function becomes

p=nxW'xc (3)

Details of this approach are presented elsewhere (32, 1).

The structure of the correlation matrix is shown in Table 2. The rows of matrix Wi
represent whether or not repeat /-1 is folded, and the columns represent whether or not
repeat i is folded. Thus, each matrix captures four i-1, i configurations, and the four
elements are expressed as equilibrium constants for repeat i/ relative to the unfolded

reference:

Because the left column represents repeat i in the folded state, both entries include the
equilibrium constant «i. In the top row, the i-1 repeat is folded; although this does not
modify the stability of the unfolded state of repeat i (right entry), it likely modifies the

stability of the folded state of repeat i (left entry). This modidfication is represented in



equation 4 by a general factor ¢i-1,i. The form of ¢ varies for different models, as

described below.

2.2.1. The noncooperative or binomial model. When there is no coupling between
adjacent repeats—that is, repeats fold as if they are independent of each other, folding
can be modeled with a binomial model. In this situation ¢ from equation (4) is equal to
unity. For a homopolymeric repeat array, the partition function is given in Table 3; when
the matrix product is multiplied out, the resulting terms can be factored into a single

binomial:

p=(1+x)’ (5)

This can be understood by recognizing that the partition function represents all
combinations of folded and unfolded repeats, i.e., 1 + k, and since each of the /repeats
is independent and identical, the / (1 + x) terms multiply.

For a heteropolymeric repeat array, the noncooperative (binomial) partition
function factors into a product of sub-partition functions for each type of repeat, each
with a binomial form (4). For the binomial model, there are a total of 2* states,

regardless of whether the repeat array is homo- or heteropolymeric (see Appendix 1).

2.2.2. The 1D-Ising model. When adjacent repeats are coupled through strongly
stabilizing interfaces (that is, when r>>1 and AGi-1,i <<0), folding can be treated with a
1D-Ising model. In this model, the ¢ parameter in the correlation matrix (equation 4)
takes the value t. For a homopolymeric array of / repeats, the partition function

becomes
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In the 1D-Ising model, when adjacent repeats are folded, they are required to form an
interface —folded but unpaired adjacent repeats are not allowed. Unlike the binomial
model, p, does not factor into a simple form.

For a heteropolymeric repeat array, different repeats have different correlation
matrices. The partition function is generated by multiplying these correlation matrices
(equation 2), and they must be multiplied in the same order as they are found in the
protein sequence. For example, for a repeat array composed of an N-terminal capping
repeat, an internal R-type repeat, and internal X-type repeat, and a C-terminal capping

repeat,

py = nW\WelWyW.c

[O 1} KnTon 1 KpTnp 1 KxTrx 1 Ketxe 1 {1] (7)

Kn 1 Kp 1 Ky 1 K¢ 1

As with the binomial model, there are a total of 2" states in the 1D-ising model of an /
repeat array, regardless of whether the repeat array is homo- or heteropolymeric (see

Appendix 1).

2.2.3. The fractured 1D-Ising model. When interfaces between repeats are either
weak (7=1,i.e, AG;4; =0) orunfavorable (7=0 ,i.e, AG, ; >0), the requirement of
the 1D-ising model that interfaces form between adjacent folded repeats is not satisfied.
Thus, p, is a poor representation of weakly coupled (or uncoupled) arrays. The missing
states in which adjacent repeats are folded but their interfaces are not formed can be
included by assigning the ¢ = k7 + xin each correlation matrix. For a homopolymer, the

fractured Ising model has the form

PF/=[ 0 1} ez +x) 1 1 (8)
K
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Recall that the upper left-hand element of the " correlation matrix represents the
situation in which both repeats /i and i-1 are folded; the two terms xzand zrepresent
configurations where the i-1, i interface is formed and broken, respectively, in relative
proportions controlled by the value of z. When ris very large, the paired term
dominates, and the fractured-lsing model converges to the simpler Ising model. When ¢
approaches zero, the model converges to the binomial model. For values of 7 near
unity the paired and fractured states have equal statistical weights, contributing equally
within the ensemble of states.

As with the Ising model, the fractured Ising partition function for heteropolymeric
sequences can be obtained by ordered multiplication of correlation matrices containing
the additional fractured states. Owing to these extra terms in the partition function,
there are more states represented by the fractured Ising model than the binomial and
1D-Ising models. As described in Appendix 1, the number of states for an / repeat

array is given by the Fibonacci number, F,,,,.

3. ANALYSIS OF REPEAT PROTEIN FOLDING TRANSITIONS USING NEAREST-
NEIGHBOR MODELS

In this section, the partition functions developed above are used to fit folding
transitions to determine AGi and AGi-1,i values. To do so, we must derive equations that
model equilibrium folding transitions. Fits of these equations to folding transitions for a
series of NARPs, SARPs, and a FARP will be presented. Fitting is performed with a
nonlinear least squares package that we have developed in python (27), which is freely

available at https://qithub.com/barricklab-at-jhu/lsing programs.

3.1. Expressions to fit repeat-protein folding transitions using nearest-neighbor
models
The partition functions above describe the relative populations of all of the partly

folded states along with the fully folded and fully unfolded states for a particular repeat
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protein array, given a set of nearest-neighbor (intrinsic and interfacial) free energies.
However, these free energies are unknowns, and must be determined by analyzing
experimental folding data. This requires an expression that gives the value of the
observable used to monitor unfolding (Yobs below, often a spectroscopic observable
such as far-UV circular dichroism or tryptophan fluorescence) as a function of the repeat
protein conformations in solution. Typically, the populations of folded and unfolded
conformations are modulated by a solution variable such as denaturant concentration or
temperature, resulting in an equilibrium folding transition (colloquially, a "melt"). Thus,

the equation used to fit a melt has the form

Yos = X, YoPe(AG(X), AG_y,(x)) (9)
ce{s}

where the sum is over each of the ¢ conformations in the set {s} of allowed states. Ycis
the spectroscopic signal from conformation ¢, and pc is its population; pc depends on the
intrinsic and interfacial free energies, which in turn depends on the solution variable x.
When x represents denaturant concentration, the free energy terms are linearly
dependent on denaturant concentration (see Greene & Pace, 1974; Marold et al.,
2020).

To use equation 9 to analyze unfolding transitions, the populations pc must be
given explicitly in terms of AGi and AGi-1,. From statistical thermodynamics, the
population of a particular configuration is given by the statistical weight divided by the
partition function, such that

2 Yce—AGc(x)/RT (10)

1
Yobs =
P s}

Because the partition function p is the same for all terms, it can be taken outside the

sum. AGc is the free energy difference between conformation ¢ and the unfolded
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reference state,* and can be written as the sum of AGi and AGi-1,i values, weighted by

the number of repeats folded (ns) and interfaces (ninz) formed:

AGC = anG,' + n,-n,AG,-_L,- (1 1)

When Ycis proportional to the number of repeats that are folded, which is usually
the case due to the high degree of structural similarity among repeats, a form of

equation 9 can derived that depends on the fraction of repeats that are folded (f):

Yoos =Y + (1= £y (1 2)
where Ynr and Ya are the spectroscopic signals from the fully-folded and fully-unfolded,
arrays, and
1 ; ap

LI . 13
lp& Ly (13)

f

In equation 13, the index j represents the different types of repeats (e.g., N, R, X, C). In
the analyses below, data are fitted with equations 12 and 13, using whichever partition
function (1D-Ising, fractured Ising, or binomial) is most appropriate. Because, as
described in the next section, multiple folding transitions of different constructs are
required, a global fit is performed in which different versions of equations 12 and 13,
containing shared thermodynamic parameters, are fitted to transitions of different

constructs.

3.2. Constructs required for determination of nearest-neighbor thermodynamic
parameters

In its simplest form, nearest-neighbor analysis involves only two free energies:
AGi and AGi-,i. This occurs when all repeats are identical, as is sometimes the case

with NARPS composed of consensus repeats. To extract values of these two

4 For the fully unfolded state, AGc=0, giving the statistical weight of 1, as is expected for the reference state.
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parameters from experimental data, a minimum of two constructs that differ in repeat
number are needed. However, homopolymeric consensus NARP arrays are often
insoluble, and must be capped with N- and C-terminal repeats containing polar
substitutions. This sequence heterogeneity increases the number of thermodynamic
parameters that must be determined, and as a result, the number and types of
constructs that need to be included in analysis (see (27).

Because individual repeats from NARPs are unstable, there are limits to the
amount of heterogeneity that can be accommodated using nearest-neighbor analysis.
However, the individual repeats of SARPS and FARPS are stable, allowing fully
heterogeneous repeat arrays to be analyzed. In one approach, folding transitions of
each individual repeat in an array is analyzed, along with transitions of overlapping pairs
of adjacent repeats. For example, for a SARP composed of three repeats ABC,
analysis of folding transitions of single-repeat constructs A, B, and C and two-repeat
constructs AB and BC is sufficient to determine the five Ising parameters (AGa, AGs,

AGc, AGa-1,8, AGB-1,¢).

3.3. An example of a non-autonomous repeat protein: consensus ankyrin arrays
One of the first nearest-neighbor studies of a tandem repeat protein was that of
an ankyrin repeat protein. Deletion studies using an ankyrin domain from the
Drosophila Notch receptor demonstrated that at least three or four repeats were
required for folding (29), indicating that ankyrin repeat proteins are NARPs. Thus, a 1D
Ising model is appropriate for modeling ankyrin repeat protein unfolding. Though the
Notch deletion study was not able to generate enough constructs to determine the Ising
parameters for each repeat and interface as a result of the sequence variation among

repeats, it did demonstrate that repeats were intrinsically unstable (AG; = +7 kcal/mol )

and that interfaces were strongly stabilizing (AG;_4; = -9 kcal/mol ; (29).

Elegant studies using consensus ankyrin repeats confirmed and extended this
thermodynamic partitioning (37, 2). An example of a global fit of folding transitions of

consensus ankyrin repeat proteins with a 1D-Ising model is shown in Figure 4A. The
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data set includes eighteen melts for nine constructs that differ in repeat number and
capping structure (see Aksel et al., 2011; Marold et al., 2020). The model contains four
free energies (the intrinsic folding energies of the N-and C-terminal caps and the
internal R repeats, AGn, AGr, and AGc, and an interfacial coupling energy, AGi-1,) along
with a shared denaturant dependence (m) for the three intrinsic free energy terms.
Overall, the 1D-Ising model fits the folding transitions of these nine constructs very well,

and determines the fitted Ising parameters with tight confidence intervals (2, 27).

3.4 An example of a semiautonomous repeat protein: naturally occurring spectrin
arrays

Spectrin repeats are significantly larger (105 residues) than ankyrin repeats, and
are known to fold autonomously. Therefore, depending on whether adjacent spectrin
repeats interact thermodynamically, spectrin repeat proteins should either be classified
as SARPs or FARPs. Jane Clarke's laboratory has analyzed the folding of single
spectrin repeats along with pairs of adjacent repeats and found the pairs to be more
stable than the single-repeat constructs, demonstrating that spectrin arrays behave as
SARPs (5, 6).

The folding transitions of three adjacent spectrin repeats, R15, R16, and R17,
along with the two-repeat pairs, R15R16 and R16R17, are reproduced in Figure 4B.
The three constructs involving R16, R17, and the tandem pair R16R17 are well-fitted by
a 1D-Ising model, with a reduced sum of square residuals (RSSR)® of 2.5x104. A fitted
interfacial AG1e,17 value of -3.32 kcal mol' is consistent with the classification of this
repeat pair as a SARP, as is the goodness of fit. However, the transitions of R15, R16,
and R15R16 are not as well-fitted by a 1D-ising model, with an RSSR of 4.8x104 and a
nonrandom distribution of residuals (Figure S1A). Although the folding transition of the

R15R16 tandem is centered at higher denaturant concentrations, indicating a favorable

5 The reduced sum of square of residuals (RSSR) is the sum of square residuals divided by the number of degrees of
freedom (the total number of data points in the unfolding transitions minus the number of fitted parameters.
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interfacial interaction, the transition is broad, which is inconsistent with a coupled two-
repeat unfolding transition, and thus, inconsistent with a 1D-Ising model.

Although a variety of more complicated models can be fitted to the R15, R16,
and R15R16 melts, a particularly good fit is obtained with a model that includes an
interaction in which folded repeat R15 is stabilized by unfolded R16. This interaction
can be introduced to the partition function for R15R16 using an equilibrium constant

w1sf.16u s follows:

(14)

k157045 1 || K1671516 @15f16u 1
PF{15R16:[ 0 1 }

K15 1 K16 1 1

Using this model, the fit of R15, R16, and R15R16 melts gives a significantly improved
RSSR of 2.2x104, and the resulting residuals appear more random (Figure S1B). A
global fit of the five spectrin folding transitions in Figure 4B using the 1D Ising partition
functions to fit R15, R16, R17, and R16R17, along with equation 14 to fit R15R16, gives
alow RSSR (2.5x10#; Table 4). The fitted free energy of stabilization of folded R15 by
unfolded R168 is -2.0 kcal mol-'. This value is consistent with the observation by Batey
and Clarke that the rate constant for unfolding of R15 is decreased by a factor of 28 in
the context of unfolded R16 (5). Combined with a modest decrease in the folding rate
constant, the analogous free energy deduced from the rate constants is -1.9 kcal mol,
nearly the same as the value determined from the modified Ising fit. It should be noted
that although it seems like the inclusion of the additional parameter might lead to an
under-parameterization problem (six free energies are extracted from five curves), this
problem is made less severe by the fact that an intermediate is populated in the

unfolding transition of R15R16, directly constraining w1st,16u.

6 _
Here, AGﬂS,u16 = —RTlncuflS’u16 .
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3.5 An example of a fully autonomous repeat protein: BdpA arrays

In full-length Staphylococcus aureus protein A, BdpA is one of five repeated
domains with high sequence identity, sharing ~90% sequence identity with its nearest
neighbors. Oas and coworkers have studied the folding of a single BdpA repeat and a
tandem construct with two adjacent BdpA repeats (3). The equilibrium folding
transitions of BdpA and BdpA:z are reproduced in Figure 4C. The two folding transitions
are nearly identical, suggesting that BdpA2z behaves as a FARP. A 1D-lIsing model fits
well to the BdpA/BdpA: folding transitions, and the fitted interfacial free energy is very
close to zero (Table 4).

While a AGsdpa,Bdpa Value of zero is consistent with an interfacial interaction that
is neither stabilizing nor destabilizing, it is inconsistent with the number of states in the
1D Ising model . An interfacial free energy of zero (equilibrium constant of one) would
mean that when both repeats are folded, half of the population has an interface formed,
and half has does not. However, the 1D Ising model does not allow for fractured
interfaces. To account for this missing state, we fitted the BdpA curves using the
fractured 1D-ising model. This model fits about as well as the standard 1D Ising model,
and give a nearly identical AGeapa (Table 4). However, AGgdpa Bdpa is poorly defined;
though it has a lower bound of around +1 kcal/mol, it is essentially unbounded from
above. This reflects the fact that unstable interfaces are not formed and thus have no
influence on the folding transitions, regardless of whether interfacial stability is +1 or
+10 kcal/mol. This is a manifestation of the thermodynamic maxim that things that are
energetically unfavorable do not happen.

Although the fractured Ising partition function is a more appropriate description of
the states of BdpA than the simpler 1D-Ising model, its poorly determined interfacial free
energy is rather ungainly. The binomial model, which has the same form as the 1D-
Ising model but treats adjacent folded repeats as unpaired, fits with about the same
RSSR as the fractured 1D-Ising model, and gives identical AGedpa and m-values to
three significant figures (Table 4). The goodness-of-fit of the binomial model further

supports the assignment of BdpA arrays to FARPs.
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4. VALUES OF INTRINSIC AND INTERFACIAL COUPLING ENERGIES AND THEIR
RELATIONSHIP TO COOPERATIVITY AND REPEAT PROTEIN STRUCTURE.

Using the nearest-neighbor models above, we and other groups have determined
AGi and AGi-1,i values for a variety of repeat proteins. These values are displayed on
the number lines in Figure 5. Values are color coded to indicate whether they are best
described as NARPs, SARPs, or FARPs based on features of their folding transitions,
fits from the different models, and the resulting AGi and AGi-1,i values.

NARPs show a minimum number of repeats required for folding—individual
repeats are not structured. Above this minimum, folding transitions of NARPs shift to
higher denaturant and become steeper as repeats are added. NARP arrays are well-
fitted with the classic 1D-Ising model, and have positive AGi values and negative AGi-1,
values. Because the stabilities of individual (and usually pairs of) NARP repeats cannot
be quantified, analysis of NARP arrays typically requires that most or all repeats have
the same sequence. Thus, the five NARP families in Figure 5 (black circles) are all
based on identical consensus repeats.

In contrast to NARPs, isolated repeats from SARPs are structured and display
cooperative folding transitions. As with NARPS, as repeats are added to a SARP array,
the folding transition shifts to higher denaturant and typically become steeper. The
interfacial coupling energies of SARPs are generally lower than those of NARPs,
indicating decreased cooperativity for the former. The fact that individual repeats are
intrinsically stable isolation might also suggest decreased cooperativity; however,
because denaturants destabilize intrinsic repeat folding, this stability is lost at the
denaturant concentrations needed to bring about unfolding transitions. As described
above, the ability to quantify stability of individual SARP repeats and pairs facilitates
analysis of heteropolymeric repeat arrays.

Like SARPs, the individual repeats of FARPs are structured and display
cooperative folding transitions. However, the folding transitions of FARPs are
unperturbed by adding repeats (Figure 4C). Though the fractured 1D-Ising model
includes all the populated states in FARP folding, AGi-1,i is poorly determined. Since the

binomial partition function also includes all the populated states but lacks AGi-1,j, it
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seems best suited for describing FARPs. For the FARPs in Figure 5 (blue circles),
those for BdpA are fitted using the binomial model, whereas those for the titin Ig
domains 128e — I30e are obtained from two-state fits and kinetin measurements in Scott
et al. (2002).

As with SARPs, the intrinsic stabilities of individual FARP repeats permits
analysis of heteropolymeric arrays. This heterogeneity may be expected to lead to
considerable variation in AGi and AGi-1,i along a repeat array; thus, some repeat arrays
may be best modeled using a hybrid of the classic and fractured 1D-Ising models and
the binomial model. The titin Ig repeats from Scott et al. (2002) show this type of hybrid
behavior: repeats 28, 29 and 30 behave as FARPs, whereas repeats 31 and 32 are
favorably coupled, thus behaving as a SARP (Figure 5). This hybrid thermodynamic
behavior is consistent with a structural analysis of a different set of titin Ig repeats,
which shows considerable variation in rigidity and flexibility between repeats, depending
on their sequences and linkers (10). We have observed similar hybrid behavior in Ising
parameters from a series of helix-hairpin-helix repeats (MP and DB, unpublished).

On the whole, there is considerable variation in the values of AGi and AGi-1,;,
especially for the NARPs. These variations are somewhat anticorrelated: NARPs that
have the most stable interfaces tend to have the least stable repeats. As a result, the
sum of AGi and AGi-1,i, which reflects the stability change for adding a repeat to an
already folded array, tends to show less variation (Figure 5).

Structurally, there are two features that distinguish NARPs from S/FARPs
(SARPs and FARPs). First NARPs have large interfaces between adjacent repeats
(Figure 1); these interfaces often bury a large number of hydrophobic side chains (2),
but can also involve polar interactions that are important for stability (33, 23, 27). These
large interfaces are a likely source of the favorable coupling energies needed to drive
the folding of intrinsically unstable NARP repeats. Interfaces between spectrin and Ig
repeats are considerably smaller. Second, the number of residues per repeat is lower
for NARPs than for S/FARPs. For the naturally occurring repeat proteins in Figure 5,
the NARPs are 42 residues or shorter, whereas the S/FARPs are 58 residues or longer.

Presumably longer repeats are required to form autonomously folding domains.
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One notable exception to these general trends comes from analysis of a series
de novo designed helical repeat proteins referred to as DHRs (7). Ising analysis of four
of these proteins reveals negative AGi values for all proteins, putting them in the
S/FARP category (14). However, these Rosetta-designed DHR proteins also have
strongly stabilizing interfaces comparable to NARPs (grey circles, Figure 5). Thus the
free energy of propagation of DHR repeats (AGi + AGi-1,i) is unusually negative,
reflecting the effectiveness of Rosetta in generating folded proteins with unusually high
stability. Structurally the DHR proteins have large hydrophobic interfaces like those of
naturally occurring NARPSs; in terms of number of residues per repeat, they span the
range between NARPs and S/FARPs, perhaps consistent with their chimeric

thermodynamic behavior.

5. CONCLUSIONS AND FUTURE DIRECTIONS

Analysis of tandem repeat protein folding with nearest-neighbor models provides
a unique way to quantify cooperativity. A range of intrinsic and interfacial stabilities are
seen, giving rise to highly cooperative (NARP), moderately cooperative (SARP), and
noncooperative (FARP) behavior. The ability of heterogeneous SARP arrays to be
analyzed using classic and fractured 1D-Ising models gives access to complex energy
landscapes, and provides a way to connect details of sequence and structure to folding
cooperativity.

Linear nearest-neighbor models can also be extended to more complex
geometries. One simple extension would be to analyze repeat proteins that are
"closed", that is, they have circular architectures in which terminal repeats interact with
an interface equivalent to those of internal repeats. Examples of proteins with such
archtectures are TIM barrels, -trefoil domains, and WD-40 repeat proteins. A
challlenge to such a study is that a circular protein would need to be composed of
identical repeats, and non-circular fragments would need to be stable and soluble.
Further extension to non-repeating (i.e., globular) proteins would provide tremendous
insight into folding cooperativity, but would require a precise experimental approach to

measure local stabilities and coupling energies.
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APPENDIX 1. THE NUMBER OF STATES FOR VARIOUS TANDEM REPEAT
PROTEIN FOLDING MODELS

The number of conformational states available to a repeat protein array grows
geometrically with the number of repeats’. For the binomial distribution, it is fairly easy
to see that the relationship between the number of states s and the number of repeats is
s=2". This is because each repeat has two states that are independent of its
neighbors. Thus, the number of configurations per repeat (two) should multiply for each
repeat in an array.

For the Ising model, although the values of the statistical weights depend on the
conformational states of other repeats, the number of states per repeat do not—the fact
that each repeat can either be folded or unfolded is not changed by interaction with
neighboring repeats that shift the population to the folded state. Thus, there are s=2"
states available in the 1D-Ising model, as with the binomial model.

For the fractured Ising model, there must be more than 2 states available, since
the model introduces additional (fractured) configurations. It is tempting to think that
this additional third state would result in the relation s =3’; this would be obtained if
there were three states for each repeat. However, this number independence is lost in
the fractured Ising model—the additional fractured state is only available when the
neighboring repeat is folded. Thus, for the fractured Ising model, 2’ <s<3‘. The
question is, what is the analytical expression s(/)? Here, we will derive this expression
by inspection of the number of states for a series of / values.

The partition function provides an easy way to generate the number of states. In
general, the numerical value of the partition function gives the average number of states

populated. This value ranges from 1 to /, depending on the values of xand z. By

7 Note that the number of states is not the same as the number of states populated. The latter, which is given by the
value of the partition function, depends on the values of the statistical weights (and ultimately on the values of x and
7), whereas the number of states does not.
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setting x and rto one, the statistical weight of each configuration is one, and the

partition function becomes a count of the number of states.? In this limit,

11 1
sst,z[O 1} 2 (A1A)
/
2 1 1
sF,:[O 1} ] (A.1B)

{1 2 3 4 5 6 7 8 9 10
ol | 2 4 8 16 32 64 129 256 512 1024
pe=p; |2 4 8 16 32 64 129 256 512 1024
Pe | 2 5 13 34 89 233 610 1597 4181 10946
Forq | 2 5 13 34 89 233 610 1597 4181 10946
3¢ |3 9 27 81 243 729 2187 6561 19683 | 59049

Indeed, the number of states for the fractured Ising model is in between 2 and 3', as
expected. The pattern of the number of states for the fractured Ising model follows
alternating terms in the Fibonacci series, starting with term 3 (F3=2). This is generalized

by the formula

)—(2,€+1)

¢2£’+1 _ (_¢
SH = F =
FlI 2/+1 \/g

(A.1C)

where ¢ is the golden ratio and has the numerical value (1++/5)/2 (25).

8 Alternatively, the temperature can be set to infinity.
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Table 1. Tandem repeat protein families with large available alignments?

- Median # Unique Percent
Repeat name Pfam families® . i Taxonomy
lengthb. ¢ sequencesb: ¢ identityb. ¢
. Ank*, Ank_2, Ank_3, Mostly eukarya, but also found in
Ankyrin repeat Ank_4, Ank_5 33 >10,990 23.9 bacteria
Armadillo repeat Arm’, Arm_2 41 = 23,055 22.0 Eukarya
Cysteine rich Cys. rich_FGFR 58 3588 19.5 Meta.lzoa, \{iridiplantae, and_
repeat bacteria, mainly proteobacteria
HEAT*, HEAT_2,
HEAT repeat HEAT_EZ, 31 > 2972 24.3 Eukarya and Bacteria
HEAT_PDF
C1-set, C2-set, C2-
. set_2,ig,1g_2,1g_3,
Immunoglobulin "7 Ig?C$7orf999, I- 89 > 95,473 18.0 Metazoa
domaind
set*, Izumo-Ig,
Titin_Ig-rpts, V-set
LRR, LRR_2,
Leucine-Rich LRR_S, LRR_4,
LRR_5, LRR_6%, Mostly eukarya, but also found in
Repeats 24 > 57,589 25.0 .
(LRR) LRR_8, LRR_9, bacteria
LRR_10, LRR_11,
LRR_12, LRV
Membrane
Occupatio.r? and MORN* 23 > 41,151 28.9 Mostly eukarya, but §|SO found in
Recognition MORN_2 bacteria and viruses
repeat (MORN)
Nebulin repeat Nebulin 28 5545 28.2 Metazoa
Pentatricopeptide PPR*, PPR_1,
repeat PPR_2, PPR_3 30 =127,520 27.8 Streptophyta and fungi
(PPR) PPR_long
Pumilio-famil
repeat (PUF)y PUF 34 21,881 18.2 Eukarya
Spectrin Spectrin 105 27,021 14.9 Metazoa
Sushi Sushi 56 38,166 215 Metazoa
TA(LTifoE():tor TAL_effector 34 308 57.3 Proteobacteria
Tetratricopeptide TPR_1-TPR_12, )
repeth TPR_14 - TPR_22, 33 >50,318 16.4 Mostly eukarya and bacteria, and
(TPR) TPR_8* some archaea

aData are from Pfam version 33.1 (May 2020). Analysis is restricted to families with only one repeat per motif; families two or more
repeats per motif, e.g., Ank_2, were excluded from analysis. *For repeat types with multiple different Pfam families, the numbers
of sequences and percent identities were calculated using the family with the largest number of sequences (marked with an
asterisk). cCopies of sequences that were 100% identical were removed. ¢Only immunoglobulin domain families that contain
tandem Ig repeats are included in this analysis.
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Table 2. Correlation matrix
between repeat i-7 and i.

i fi Ui
-1
fi-1 K¢ 1
Ui-1 K 1
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Table 3. Partition functions for tandem repeat protein folding

Correlation Two-repeat partition
" functi { -repeat partition function # states
matrix unction
KT 1 w11
NARP Ising ; p =1+2k+x%7 p/:|: 0 1 } 2!
K ko1 || 1
+¢
o 1 Kkt 1 1
py=1+2k +K°1 p,—[ } 1 1
Isi kT 1 p ,
sing 1 _ c 1 1 2
2 lim p, :[ 0 1 }
limp, =1+2x +x 51 © 1 1
71
=(1+x)
r 0
0 1 KT+x 1
FARP PFi :1+2K‘+K‘2+K2T PFI _|: :| K 1 ¢2f+1_(_¢)—(2f+1)
Fractured KT+K 1 - P J5
Ising k1 . K 1 1
. lim PFI :|: 01 :| : _ol
‘!-ILY(])pF/ :1+2K'+K'2 7—0 © 1 1 TILnOpF/ 2
=(1+x)'
- _[ - -
k1 [ 0 1 ] K1 1
Binomial K1 pp =142k +x? P8 o 1 1 of
=(1+x)"
_[ — -
KT 1 KT 1
Ising py=1+2k+x°1 p,:[ 01 } ol
KA K 1 1
SARP
Y4
Fractured KT+Kk 1 P =14 25+ K2 + K20 PFI:[ 0 1 } KT+Kk 1 1 ¢2f+17(7¢)—(2ﬂ+1)
Ising ko1 1] 1 5

The number ¢ is the golden ratio, with numeric value (1++v5)/2 .
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Table 4. Global thermodynamic parameters from Ising fits=

Bootstrap parameters

Best fit
Modelb Parameter value Mean Lower 95% Cld  Upper 95% Cld
Consensus ankyrin (NARP)
1D-Ising AGnN 5.38 5.38 5.26 5.51
(1.92x104) AGR 4.50 4.50 4.38 4.62
AGc 6.94 6.94 6.79 7.09
AGR-1,R -11.43 -11.44 -11.68 -11.20
mgR 0.76 0.76 0.75 0.78
Spectrin (SARP)
1D-Ising AGRis -6.07 -6.08 -6.48 -5.73
with AGRis -5.43 -5.44 -5.78 -5.11
stabilized AGRi7 -5.22 -5.22 -5.56 -4.88
intermediate AGRis,R16 -4.27 -4.28 -4.51 -4.06
(2.48x104) AGRrisR17 -3.23 -3.23 -3.37 -3.10
AGis.u16 -2.02 -2.02 -2.20 -1.83
MRi5 1.60 1.60 1.51 1.70
MR16 1.65 1.66 1.55 1.76
MR17 1.74 1.56 1.64 1.85
BdpA (FARP)
1D-Ising AGggpa -3.98 -3.98 -4.03 -3.94
(4.25x109) AGBdpA BdpA 0.05 0.05 0.03 0.07
MBdpA 1.35 1.35 1.33 1.36
Fractured AGggpa -3.92 -3.92 -3.96 -3.87
1D-Ising AGgdpA BdpA 20.62 8.74 1.84 22.06
(5.13x10) MBdpA 1.33 1.33 1.32 1.34
Binomial AGggpa -3.92 -3.92 -3.96 -3.88
(5.06x109) MBdpA 1.33 1.33 1.32 1.34

2AG values in kcal mol-'; m values in kcal mol' M denaturant’. 5Values in parentheses are
reduced sum of square residuals (RSSR=SSR/DOF) from the fit. cValues are from 2000
bootstrap iterations. dCl, confidence intervals. ¢The model for spectrin includes a stabilizing
interaction between folded repeat 15 and unfolded repeat 16.
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Figure 1. A thermodynamic classification of linear repeat proteins. Using the sign
of the two Ising energy terms as classifiers, four groups of tandem repeat proteins are
generated. Non-autonomous repeat proteins have unstable repeats (AGi > 0) but stable
interfaces (AGi-1,i < 0). Fully-autonomous repeat proteins have stable repeats (AGi < 0)
but unstable interfaces (AGi-1,i > 0). Semi-autonomous repeat proteins have stable
repeats and interfaces (AGi, AGi-1,;< 0). A fourth group, with unstable repeats and

interfaces (AGi, AGi-1,i> 0) would not adopt a folded structure for any number of repeats.
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Figure 2. Tandem repeat proteins structures. Ribbon diagrams of a 12-repeat
ankyrin array (Michaely et al., 2002), a single repeat from protein A (36), a 3-repeat

spectrin array (24), and a six-repeat Ig array from titin (10).
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Figure 3. Nearest-neighbor model energy terms and statistical weights. Unfolded

and folded repeats are represented by lines and boxes, respectively. The left-hand

column shows folding reactions for individual repeats for a two-repeat homopolymer (A;

both repeats are labelled R) and a two-repeat heteropolymer (B; repeats are labelled R

and X). The equilibrium constant for folding in the context of unfolded neighbors

(reactions i and ii) is kr or xx. In the Ising model, the equilibrium constant for folding

next to a folded neighbor (reaction iii) is xz, where ris the equilibrium constant for

interface formation (illustrated by the two vertical transitions). The fractured Ising model
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permits additional states where adjacent repeats are folded but the interface is not
formed (reaction iv). The right-hand column shows statistical weights relative to the

reference (unfolded) state.
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® R15R16 @ R16R17
® RRC RRRC RRRRC

Figure 4. Folding transitions of tandem repeat proteins fitted with nearest-
neighbor folding models. Fitted parameters for all data sets are given in Table 4. (A)
Consensus ankyrin repeat arrays (a NARP) fitted with a 1D-Ising model. Data are from
Aksel et al. (2011). (B) Spectrin repeats R15-R17 (a SARP) fitted with a 1D-ising model
modified to include a stabilizing interaction between folded repeat R15 and unfolded
repeat R16. Data are from (5). (C) B-domains of Staph. aureus protein A (a FARP)

fitted with a fractured Ising model. Data are from (3).
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Figure 5. Nearest-neighbor free energies of tandem repeat proteins. Negative
values are stabilizing. Naturally occurring and consensus NARPs, SARPs, and FARPs
are black, red, and blue, respectively. Rosetta-designed helical repeat proteins (DHRs)
are grey. For cANK, values are for the internal (R) repeats. For spectrin, AGi and AGi-1,i
values are from the model that includes a stabilizing interaction between folded repeat
15 and unfolded repeat 16. For BdpA, AGiis from the binomial model. For TALEs, AGi
and AGi-1,i values are from Geiger-Schuller & Barrick (2016). For cTPR and 42PR , AGi
and AGi-1,i values are from (20) and (28). For the titin 128e — 132e repeats, AGi (and for
the 131/132e pair, AGi-1,i) are from Scott et al. (2002). For the four DHR series, AGi and

AGi-1,i values are from Geiger-Schuller et al. (2018). The number line on the right shows

average repeat lengths.
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Figure S1. Comparison of 1D- and modified 1D-Ising models for fitting folding
transitions of spectrin repeats R15-R16. Data are from (5). (A) Spectrin repeats R15-
R16 fitted with a 1D-Ising model. (B) Spectrin repeats R15-R16 fitted with a 1D-Ising
model modified to include a stabilizing interaction between folded repeat R15 and
unfolded repeat R16. Bottom panels show fitted residuals from panel A and panel B
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