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Abstract (150 words maximum) 

 Cooperativity is a hallmark of protein folding, but the thermodynamic origins of 

cooperativity are difficult to quantify.  Tandem repeat proteins provide a unique 

experimental system to quantify cooperativity, due to their internal symmetry and their 

tolerance to deletion, extension, and in some cases fragmentation into single repeats.  

Analysis of repeat proteins of different lengths with nearest-neighbor "Ising" models 

provides values for repeat folding (DGi) and inter-repeat coupling (DGi-1,i).  Here we 

review the architecture of repeat proteins, and classify them in terms of DGi and DGi-1,i; 

this classification scheme groups repeat proteins according to their degree of 

cooperativity.  We then present various statistical thermodynamic models, based on the 

one-dimensional Ising model, for analysis of different classes repeat proteins.  We use 

these models to analyze data for highly and moderately cooperative and non-

cooperative repeat proteins, and relate their fitted parameters to overall structural 

features. 
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 Cooperativity is a defining feature of protein folding.  Although the native states of 

proteins are structurally complex, many single-domain proteins, especially those less 

than 150 residues, fold in a concerted reaction in which distant regions of the 

polypeptide are coupled.  If one segment of polypeptide chain is folded, a second 

segment is likely to be folded regardless of whether the two segments of the protein 

chain are close together or far apart.  This cooperativity is likely to be an important 

property for biology, because it suppresses partly folded states which are prone to 

aggregation and may lead to pathological states.  Cooperativity is also important for 

experimental biophysicists as it allows very simple two-state models to be used to 

analyze equilibrium protein folding data and extract energetic features of folding such as 

free energies, enthalpies, and heat capacities of folding. 

 However, this two-state folding mechanism makes it challenging to quantify 

folding cooperativity (and protein energy landscapes in general) in energetic terms.  A 

quantitative molecular description of cooperativity would include relative free energies of 

partly folded states and the interaction or "coupling" energies between elements of 

structure.  If partly folded states are not populated, these free energies cannot be 

experimentally quantified1.  By its nature, cooperativity hides itself from view. 

 In the past few decades, protein families have been identified with architectures 

that facilitate quantification of cooperativity.  These "tandem repeat proteins" are 

composed of two or (usually) more of the same sequence motif (or "repeat") repeated in 

close proximity.  Different families of repeat proteins show a broad range of repeat 

sizes, structures, and extent of long-range ordering.  Many (but not all) of these proteins 

exhibit cooperativity as a result of thermodynamic coupling between repeats.  Even 

when these repeats are very strongly coupled (i.e., when cooperativity is very high), 

cooperativity can be quantified as long as the number of repeats in the array can be 

varied. 

 
1 Amide hydrogen exchange methods provide an experimental route to determine the energies of partly folded states, 
though local stabilities and coupling energies are hard to resolve in this method. 
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 This review will describe tandem repeat proteins and how they can be used to 

quantify cooperativity in protein folding.  After introducing a useful thermodynamic 

classification scheme for tandem repeat proteins based on repeat stabilities and 

interaction energies, we will highlight sequence and structural features of various 

tandem repeat proteins.  We will then introduce different nearest-neighbor models for 

quantifying cooperativity in repeat protein folding.  These models are variations of the 

one-dimensional Ising model, which was developed a century ago to analyze the 

statistical thermodynamics of magnetization (19, 8).  We will then present results from 

the literature, applying nearest-neighbor modeling to analyze the unfolding of different 

types of tandem repeat proteins to quantify intrinsic and nearest-neighbor coupling 

energies, and will compare cooperativities for different types of tandem repeat arrays. 

 

1.  TANDEM REPEAT PROTEINS 

 Proteins have long been known to contain direct sequence repeats.  Two 

decades ago, a survey of genomes revealed that 14 percent of protein coding 

sequences contained a repeated sequence motif, and that repeats are enriched in 

eukaryotes (26).  A more recent survey extended this study, and showed correlations 

between tandem sequence repeats, protein length, and intrinsic disorder (11). 

Although structure determination of tandemly repeated protein domains can be 

challenging, especially when repeats are connected by flexible linkers, a large number 

of crystal structures of tandem repeat proteins have been determined in the last two 

decades.  These structures have been surveyed by Kajava (21, 22), who developed a 

system for categorizing tandem repeat proteins based on repeat length, sequence, and 

structural features.  Of particular interest to this review are the two classes of repeat 

proteins (classes III and V) that are unimolecular and have roughly linear (i.e., not 

circular or closed) structures.  These two classes are distinguished by whether or not 

the repeats fold independently—a distinction that is not always easy to make from 

structural (rather than thermodynamic) analysis. 

 

1.1 A thermodynamic classification of linear repeat proteins 
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Here we will expand this definition, focusing not only on whether repeats can fold 

independently, but also whether adjacent repeats stabilize (or in principle, destabilize) 

one another.  We will use DGi to represent the free energy of folding of an individual 

repeat (for autonomously stable repeats, DGi < 0)2, and DGi-1,i to represent the free 

energy of coupling with its immediate N-terminal neighbor (for stabilizing interfaces, DGi-

1,i < 0).  From this bipartite definition, three useful classes emerge (Figure 1).  On one 

end of the spectrum are tandem repeat proteins where the repeats fold autonomously 

(DGi < 0) and are uncoupled from their neighbors (DGi-1,i > 0).  Proteins in this class, 

which we refer to as "fully-autonomous repeat proteins" (FARPs), should adopt "beads 

on a string" structures, corresponding to Kajava's class V.  On the other end of the 

spectrum are proteins where the repeats cannot fold autonomously (DGi > 0), requiring 

favorable coupling with their neighbors (DGi-1,i < 0) to drive their folding.  Proteins in this 

class, which we refer to as "nonautonomous repeat proteins" (NARPs), should adopt 

rigid elongated structures (rods, arcs, or superhelices), corresponding to Kajava's class 

III. 

The bipartite definition in Figure 1 generates two additional classes of linear 

repeat proteins.  In one, repeats do not fold autonomously, and they are uncoupled from 

their neighbors (DGi > 0, DGi-1,i  0).  This combination of free energies describes an 

intrinsically disordered polypeptide, but does not provide a means to study folding and 

cooperativity.  However, the fourth class, where repeats fold autonomously and are 

favorably coupled to their neighbors (DGi < 0, DGi-1,i < 0), provides a rich opportunity to 

explore cooperativity in folding, as will be discussed below.  These proteins, which we 

refer to as "semiautonomous repeat proteins" (SARPs), should also adopt rigid 

elongated structures.  In a sense, SARPs are part way in between Kajava's class III 

(exhibiting coupling between repeats) and class V (where Kajava classified them since 

individual spectrin repeats can fold in isolation). 

 

 
2 Here, the subscript i denotes the position of a repeat within the array, and the i-1th repeat is the nearest-neighbor 
toward the N-terminus.  When we discuss specific types of repeats, (N, R, C, … X), the position index i will be 
replaced by an index that denotes repeat type. 

≥
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1.2. Examples of proteins composed of tandem folded repeats. 
 Here we will describe the general properties of tandem repeat proteins that are 

amenable to nearest-neighbor analysis.  These proteins are composed of folded 

repeats and have no obvious non-nearest neighbor interactions (which excludes 

globular and closed structures like TIM barrels).  Some repeat proteins that match these 

criteria compiled in Table 1, along with some relevant features extracted from the Pfam 

database (12).  Lengths of repeats selected in Table 1 range from around 20 to 100 

residues.  Most of these repeat protein families are represented by a large number of 

sequences (often in the tens of thousands), permitting precise bioinformatics analysis 

and sequence-based protein engineering.  Within each type of repeat protein, 

sequences of repeats are quite variable, with pairwise identities typically in the low 20 

percent range.  This variability provides a rich source of variation to connect sequence 

and structural features to nearest-neighbor energy terms, yet conservation is adequate 

to create sequences with identical repeats if required for analysis (see section 3.2). 

 Some structures of repeat proteins are given in Figure 2.  Ankyrin repeats are 

rather small helical repeats that form extensive interfaces with their neighbors (16, 30), 

placing them in Kajava's class III.  Spectrin repeats are much larger helical repeats that 

form comparatively small interfaces with their neighbors (38, 18), placing them in 

Kajava's class V; as has been noted extensively, adjacent spectrin repeats share a 

single continuous a-helix, which may couple adjacent repeats.  Immunoglobulin repeats 

of some monomeric proteins such as titin are globular b-sheet domains that form 

elongated structures with limited nearest-neighbor contacts, suggesting largely 

autonomous and independent folding (10).  Like spectrin repeats, the IgG binding 

repeats (E-, D-, A-, B-, and C-domains) of protein A fold into three-helix bundles (35); 

SAXS studies indicate that tandem B-domain (BdpA) repeats are structurally 

uncorrelated, and are best described by an excluded volume pearl necklace model (9). 

 

2.  THERMODYNAMIC MODELS FOR COUPLING 
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 In this section, models are presented for analysis of the thermodynamics of 

folding of tandem repeat proteins.  Most of these are "nearest-neighbor" models3, where 

repeats are directly coupled to their two adjacent neighbors (or one, if they are a 

terminal repeat), but not to more distant repeats.  These models are codified in 

molecular partition functions (4).  Before constructing partition functions, which 

represent the probabilities of all conformational states included in the model, we will 

define the energy terms that make up nearest-neighbor models. 

 

2.1.  Nearest-neighbor models and their energy terms 
 The energy terms that are used to make up nearest-neighbor models for repeat 

protein folding are the intrinsic folding (DGi) and interfacial coupling free energies (DGi-

1,i) introduced above (Figure 3).  When repeat i folds and its nearest-neighbors (i-1 and 

i+1) are not folded (reactions i. and ii. Figure 3), the equilibrium constant and free 

energy for folding are k and DGi.  Equilibrium constants and free energies are related 

through the standard expression 

 

       (1) 

 

Here we will typically omit the standard state symbol, but all free energies here are at 

standard state concentrations (one molar reactant and product). 

When repeat i folds and one of its nearest-neighbors is folded (for example, 

repeat i-1), an interface can be formed (reaction iii., Figure 3).  The equilibrium constant 

for this coupled folding and interface formation is kiti-1,i, where ki is as defined above.  

Expressed in this way, ti-1,i is an equilibrium constant for forming an interface between 

folded repeats i-1 and i. 

 Alternatively, it is possible that repeat i can fold next to a folded repeat but not 

form an interface (reaction iv. above); this is likely when the interface is weakly 

 
3 Although there are no nearest-neighbor interactions for FARPs, it is sometimes useful to analyze their folding 
transitions with a nearest-neighbor model, since as described below, full autonomy requires experimental 
verification. 

ΔG°R = −RT lnκR
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stabilizing or destabilizing, as is the case for FARPs.  In such cases, the equilibrium 

constant for folding is ki, the same as for folding with unfolded neighbors.  In addition to 

providing a means to analyze FARP unfolding, reaction iv. provides a clear definition of 

the equilibrium constant for interface formation, ti-1,i (vertical transitions, Figure 3).  

Because interfaces have contributions from two repeats, representing the type of 

interface requires two repeat types be specified.  For example, for repeat types R and 

X, four types of interfaces can be formed: homopolymeric interfaces between R repeats 

and between X repeats (with equilibrium constants tRR and tXX), and heteropolymeric 

interfaces between R and X repeats (with equilibrium constants tRX and tXR, depending 

on the order of the repeats).  When relevant, the type of interfacial free energy will be 

specified using labels such as , which indicates an interface between an X 

repeat at position i and an R repeat at position i-1 (Figure 3B). 

 These equilibrium constants and free energies can be used to construct a 

partition function for a given repeat array.  Here, the partition function is a sum of 

statistical weights for the fully folded state, each of the different partly folded states, and 

the unfolded state (which we use as a reference and assign a statistical weight of one).  

For each state, the statistical weight is simply the product of all the equilibrium 

constants that are needed to get from the reference state to that state (Figure 3, right-

most column).  The number of intrinsic k constants in the product is equal to the number 

j of folded repeats (i.e., kj).  However, the number of interfacial t constants depends on 

the model and on the arrangement of the folded repeats. 

 

2.2.  Partition functions for different nearest-neighbor models 

 Here we will present several partition functions that model repeat protein folding 

and can be used to fit equilibrium folding data (Table 3).  The models for these partition 

functions differ in the types of partly folded states they admit (see Appendix 1), and 

represent different levels of cooperativity.  As such, some partition functions are more 

appropriate for FARPs, and others are more appropriate for NARPs (Table 3). 

ΔGR−1,X
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 For the nearest-neighbor models presented here, partition functions are best 

represented as the product of a series of two-by-two correlation matrices W, with one 

matrix for each repeat.  For a protein with  repeats, the partition function r can be 

written 

 

     (2) 

 

where  and  are row and column vectors that convert the matrix 

product to a scalar and select the appropriate terms of the partition function.  If the 

repeat array is homopolymeric (that is, if is composed of identical repeats), the partition 

function becomes 

 

      (3) 

 

Details of this approach are presented elsewhere (32, 1). 

The structure of the correlation matrix is shown in Table 2.  The rows of matrix Wi 

represent whether or not repeat i-1 is folded, and the columns represent whether or not 

repeat i is folded.  Thus, each matrix captures four i-1, i configurations, and the four 

elements are expressed as equilibrium constants for repeat i relative to the unfolded 

reference: 

 

      (4) 

 

Because the left column represents repeat i in the folded state, both entries include the 

equilibrium constant ki.  In the top row, the i-1 repeat is folded; although this does not 

modify the stability of the unfolded state of repeat i (right entry), it likely modifies the 

stability of the folded state of repeat i (left entry).  This modidfication is represented in 

ℓ

ρ = n ×W1×W2 × ...×Wℓ × c

n = [ 0 1 ] c = [ 1 1 ]T

ρ = n ×W ℓ × c

Wi =
κ iφi −1,i 1

κ i 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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equation 4 by a general factor fi-1,i.  The form of f varies for different models, as 

described below. 

 

2.2.1.  The noncooperative or binomial model.  When there is no coupling between 

adjacent repeats—that is, repeats fold as if they are independent of each other, folding 

can be modeled with a binomial model.  In this situation f from equation (4) is equal to 

unity.  For a homopolymeric repeat array, the partition function is given in Table 3; when 

the matrix product is multiplied out, the resulting terms can be factored into a single 

binomial: 
 

      (5) 

 

This can be understood by recognizing that the partition function represents all 

combinations of folded and unfolded repeats, i.e., 1 + k, and since each of the repeats 

is independent and identical, the  (1 + k) terms multiply. 

For a heteropolymeric repeat array, the noncooperative (binomial) partition 

function factors into a product of sub-partition functions for each type of repeat, each 

with a binomial form (4).  For the binomial model, there are a total of  states, 

regardless of whether the repeat array is homo- or heteropolymeric (see Appendix 1). 

 

2.2.2.  The 1D-Ising model.  When adjacent repeats are coupled through strongly 

stabilizing interfaces (that is, when t >>1 and DGi-1,i <<0), folding can be treated with a 

1D-Ising model.  In this model, the f parameter in the correlation matrix (equation 4) 

takes the value t.  For a homopolymeric array of  repeats, the partition function 

becomes 
 

    (6) 

 

ρ = 1+κ( )ℓ

ℓ

ℓ

2ℓ

ℓ

ρI = 0 1⎡
⎣⎢

⎤
⎦⎥

κτ 1

κ 1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ℓ

1

1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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In the 1D-Ising model, when adjacent repeats are folded, they are required to form an 

interface—folded but unpaired adjacent repeats are not allowed.  Unlike the binomial 

model,  does not factor into a simple form. 

 For a heteropolymeric repeat array, different repeats have different correlation 

matrices.  The partition function is generated by multiplying these correlation matrices 

(equation 2), and they must be multiplied in the same order as they are found in the 

protein sequence.  For example, for a repeat array composed of an N-terminal capping 

repeat, an internal R-type repeat, and internal X-type repeat, and a C-terminal capping 

repeat, 

 

  (7) 

 

As with the binomial model, there are a total of  states in the 1D-ising model of an  
repeat array, regardless of whether the repeat array is homo- or heteropolymeric (see 

Appendix 1). 

 

2.2.3.  The fractured 1D-Ising model.  When interfaces between repeats are either 

weak (  , i.e, ) or unfavorable (  , i.e, ), the requirement of 

the 1D-ising model that interfaces form between adjacent folded repeats is not satisfied.  

Thus,  is a poor representation of weakly coupled (or uncoupled) arrays.  The missing 

states in which adjacent repeats are folded but their interfaces are not formed can be 

included by assigning the f = kt + k in each correlation matrix.  For a homopolymer, the 

fractured Ising model has the form 

 

     (8) 

ρI

ρI = nWNWRWXWcc

= 0 1⎡
⎣⎢

⎤
⎦⎥

κNτ0N 1

κN 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

κRτNR 1

κR 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

κXτRX 1

κX 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

κCτXC 1

κC 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2ℓ ℓ

τ ≈1 ΔGi −1,i ≈ 0 τ ≈ 0 ΔGi −1,i > 0

ρI

ρFI = 0 1⎡
⎣⎢

⎤
⎦⎥

κτ +κ( ) 1

κ 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ℓ

1

1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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Recall that the upper left-hand element of the ith correlation matrix represents the 

situation in which both repeats i and i-1 are folded; the two terms kt and t represent 

configurations where the i-1, i interface is formed and broken, respectively, in relative 

proportions controlled by the value of t.  When t is very large, the paired term 

dominates, and the fractured-Ising model converges to the simpler Ising model.  When t 

approaches zero, the model converges to the binomial model.  For values of t near 

unity the paired and fractured states have equal statistical weights, contributing equally 

within the ensemble of states. 

 As with the Ising model, the fractured Ising partition function for heteropolymeric 

sequences can be obtained by ordered multiplication of correlation matrices containing 

the additional fractured states.  Owing to these extra terms in the partition function, 

there are more states represented by the fractured Ising model than the binomial and 

1D-Ising models.  As described in Appendix 1, the number of states for an  repeat 

array is given by the Fibonacci number, . 

 

3.  ANALYSIS OF REPEAT PROTEIN FOLDING TRANSITIONS USING NEAREST-

NEIGHBOR MODELS 

 

In this section, the partition functions developed above are used to fit folding 

transitions to determine DGi and DGi-1,i values.  To do so, we must derive equations that 

model equilibrium folding transitions.  Fits of these equations to folding transitions for a 

series of NARPs, SARPs, and a FARP will be presented.  Fitting is performed with a 

nonlinear least squares package that we have developed in python (27), which is freely 

available at https://github.com/barricklab-at-jhu/Ising_programs. 

 

3.1. Expressions to fit repeat-protein folding transitions using nearest-neighbor 
models 

The partition functions above describe the relative populations of all of the partly 

folded states along with the fully folded and fully unfolded states for a particular repeat 

ℓ

F2ℓ+1
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protein array, given a set of nearest-neighbor (intrinsic and interfacial) free energies.  

However, these free energies are unknowns, and must be determined by analyzing 

experimental folding data.  This requires an expression that gives the value of the 

observable used to monitor unfolding (Yobs below, often a spectroscopic observable 

such as far-UV circular dichroism or tryptophan fluorescence) as a function of the repeat 

protein conformations in solution.  Typically, the populations of folded and unfolded 

conformations are modulated by a solution variable such as denaturant concentration or 

temperature, resulting in an equilibrium folding transition (colloquially, a "melt").  Thus, 

the equation used to fit a melt has the form 

 

    (9) 

 

where the sum is over each of the c conformations in the set {s} of allowed states.  Yc is 

the spectroscopic signal from conformation c, and pc is its population; pc depends on the 

intrinsic and interfacial free energies, which in turn depends on the solution variable x.  

When x represents denaturant concentration, the free energy terms are linearly 

dependent on denaturant concentration (see Greene & Pace, 1974; Marold et al., 

2020). 

To use equation 9 to analyze unfolding transitions, the populations pc must be 

given explicitly in terms of DGi and DGi-1,i.  From statistical thermodynamics, the 

population of a particular configuration is given by the statistical weight divided by the 

partition function, such that 

     (10) 

 

Because the partition function r is the same for all terms, it can be taken outside the 

sum. DGc is the free energy difference between conformation c and the unfolded 

Yobs = Ycpc ΔGi (x ), ΔGi −1,i (x )( )
c∈ s{ }
∑

Yobs =
1
ρ

Yce−ΔGc (x ) RT

c∈ s{ }
∑
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reference state,4 and can be written as the sum of DGi and DGi-1,i values, weighted by 

the number of repeats folded (nf) and interfaces (nint) formed: 

 

     (11) 

 

When Yc is proportional to the number of repeats that are folded, which is usually 

the case due to the high degree of structural similarity among repeats, a form of 

equation 9 can derived that depends on the fraction of repeats that are folded (ff): 

 

      (12) 

where Yn and Yd are the spectroscopic signals from the fully-folded and fully-unfolded, 

arrays, and 

      (13) 

 

In equation 13, the index j represents the different types of repeats (e.g., N, R, X, C).  In 

the analyses below, data are fitted with equations 12 and 13, using whichever partition 

function (1D-Ising, fractured Ising, or binomial) is most appropriate.  Because, as 

described in the next section, multiple folding transitions of different constructs are 

required, a global fit is performed in which different versions of equations 12 and 13, 

containing shared thermodynamic parameters, are fitted to transitions of different 

constructs. 

 

3.2. Constructs required for determination of nearest-neighbor thermodynamic 

parameters 

 In its simplest form, nearest-neighbor analysis involves only two free energies:  

DGi and DGi-1,i.  This occurs when all repeats are identical, as is sometimes the case 

with NARPS composed of consensus repeats.  To extract values of these two 

 
4 For the fully unfolded state, DGc=0, giving the statistical weight of 1, as is expected for the reference state. 

ΔGc = nf ΔGi + nint ΔGi −1,i

Yobs = ffYn + (1− ff )Yd

ff =
1
ℓρ

κ j
∂ρ
∂κ jj

∑
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parameters from experimental data, a minimum of two constructs that differ in repeat 

number are needed. However, homopolymeric consensus NARP arrays are often 

insoluble, and must be capped with N- and C-terminal repeats containing polar 

substitutions.  This sequence heterogeneity increases the number of thermodynamic 

parameters that must be determined, and as a result, the number and types of 

constructs that need to be included in analysis (see (27). 

 Because individual repeats from NARPs are unstable, there are limits to the 

amount of heterogeneity that can be accommodated using nearest-neighbor analysis.  

However, the individual repeats of SARPS and FARPS are stable, allowing fully 

heterogeneous repeat arrays to be analyzed.  In one approach, folding transitions of 

each individual repeat in an array is analyzed, along with transitions of overlapping pairs 

of adjacent repeats.  For example, for a SARP composed of three repeats ABC, 

analysis of folding transitions of single-repeat constructs A, B, and C and two-repeat 

constructs AB and BC is sufficient to determine the five Ising parameters (DGA, DGB, 

DGC, DGA-1,B, DGB-1,C). 

 

3.3. An example of a non-autonomous repeat protein: consensus ankyrin arrays 

 One of the first nearest-neighbor studies of a tandem repeat protein was that of 

an ankyrin repeat protein.  Deletion studies using an ankyrin domain from the 

Drosophila Notch receptor demonstrated that at least three or four repeats were 

required for folding (29), indicating that ankyrin repeat proteins are NARPs.  Thus, a 1D 

Ising model is appropriate for modeling ankyrin repeat protein unfolding.  Though the 

Notch deletion study was not able to generate enough constructs to determine the Ising 

parameters for each repeat and interface as a result of the sequence variation among 

repeats, it did demonstrate that repeats were intrinsically unstable (  ) 

and that interfaces were strongly stabilizing ( ; (29). 

Elegant studies using consensus ankyrin repeats confirmed and extended this 

thermodynamic partitioning (37, 2).  An example of a global fit of folding transitions of 

consensus ankyrin repeat proteins with a 1D-Ising model is shown in Figure 4A.  The 

ΔGi ≈ +7 kcal/mol

ΔGi −1,i ≈ −9 kcal/mol
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data set includes eighteen melts for nine constructs that differ in repeat number and 

capping structure (see Aksel et al., 2011; Marold et al., 2020).  The model contains four 

free energies (the intrinsic folding energies of the N-and C-terminal caps and the 

internal R repeats, DGN, DGR, and DGC, and an interfacial coupling energy, DGi-1,i) along 

with a shared denaturant dependence (m) for the three intrinsic free energy terms.  

Overall, the 1D-Ising model fits the folding transitions of these nine constructs very well, 

and determines the fitted Ising parameters with tight confidence intervals (2, 27). 

 

3.4 An example of a semiautonomous repeat protein: naturally occurring spectrin 
arrays 

 Spectrin repeats are significantly larger (105 residues) than ankyrin repeats, and 

are known to fold autonomously.  Therefore, depending on whether adjacent spectrin 

repeats interact thermodynamically, spectrin repeat proteins should either be classified 

as SARPs or FARPs.  Jane Clarke's laboratory has analyzed the folding of single 

spectrin repeats along with pairs of adjacent repeats and found the pairs to be more 

stable than the single-repeat constructs, demonstrating that spectrin arrays behave as 

SARPs (5, 6). 

 The folding transitions of three adjacent spectrin repeats, R15, R16, and R17, 

along with the two-repeat pairs, R15R16 and R16R17, are reproduced in Figure 4B.  

The three constructs involving R16, R17, and the tandem pair R16R17 are well-fitted by 

a 1D-Ising model, with a reduced sum of square residuals (RSSR)5 of 2.5x10-4.  A fitted 

interfacial DG16,17 value of -3.32 kcal mol-1 is consistent with the classification of this 

repeat pair as a SARP, as is the goodness of fit.  However, the transitions of R15, R16, 

and R15R16 are not as well-fitted by a 1D-ising model, with an RSSR of 4.8x10-4 and a 

nonrandom distribution of residuals (Figure S1A).  Although the folding transition of the 

R15R16 tandem is centered at higher denaturant concentrations, indicating a favorable 

 
5 The reduced sum of square of residuals (RSSR) is the sum of square residuals divided by the number of degrees of 
freedom (the total number of data points in the unfolding transitions minus the number of fitted parameters. 
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interfacial interaction, the transition is broad, which is inconsistent with a coupled two-

repeat unfolding transition, and thus, inconsistent with a 1D-Ising model. 

Although a variety of more complicated models can be fitted to the R15, R16, 

and R15R16 melts, a particularly good fit is obtained with a model that includes an 

interaction in which folded repeat R15 is stabilized by unfolded R16.  This interaction 

can be introduced to the partition function for R15R16 using an equilibrium constant 

w15f,16u as follows: 

 

   (14) 

 

Using this model, the fit of R15, R16, and R15R16 melts gives a significantly improved 

RSSR of 2.2x10-4, and the resulting residuals appear more random (Figure S1B). A 

global fit of the five spectrin folding transitions in Figure 4B using the 1D Ising partition 

functions to fit R15, R16, R17, and R16R17, along with equation 14 to fit R15R16, gives 

a low RSSR (2.5x10-4; Table 4).  The fitted free energy of stabilization of folded R15 by 

unfolded R166 is -2.0 kcal mol-1.  This value is consistent with the observation by Batey 

and Clarke that the rate constant for unfolding of R15 is decreased by a factor of 28 in 

the context of unfolded R16 (5).  Combined with a modest decrease in the folding rate 

constant, the analogous free energy deduced from the rate constants is -1.9 kcal mol-1, 

nearly the same as the value determined from the modified Ising fit.  It should be noted 

that although it seems like the inclusion of the additional parameter might lead to an 

under-parameterization problem (six free energies are extracted from five curves), this 

problem is made less severe by the fact that an intermediate is populated in the 

unfolding transition of R15R16, directly constraining w15f,16u. 

 

 
6 Here, . 
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3.5 An example of a fully autonomous repeat protein: BdpA arrays 
 In full-length Staphylococcus aureus protein A, BdpA is one of five repeated 

domains with high sequence identity, sharing ~90% sequence identity with its nearest 

neighbors.  Oas and coworkers have studied the folding of a single BdpA repeat and a 

tandem construct with two adjacent BdpA repeats (3).  The equilibrium folding 

transitions of BdpA and BdpA2 are reproduced in Figure 4C.  The two folding transitions 

are nearly identical, suggesting that BdpA2 behaves as a FARP.  A 1D-Ising model fits 

well to the BdpA/BdpA2 folding transitions, and the fitted interfacial free energy is very 

close to zero (Table 4). 

While a DGBdpA,BdpA value of zero is consistent with an interfacial interaction that 

is neither stabilizing nor destabilizing, it is inconsistent with the number of states in the 

1D Ising model .  An interfacial free energy of zero (equilibrium constant of one) would 

mean that when both repeats are folded, half of the population has an interface formed, 

and half has does not.  However, the 1D Ising model does not allow for fractured 

interfaces.  To account for this missing state, we fitted the BdpA curves using the 

fractured 1D-ising model.  This model fits about as well as the standard 1D Ising model, 

and give a nearly identical DGBdpA (Table 4).  However, DGBdpA,BdpA is poorly defined; 

though it has a lower bound of around +1 kcal/mol, it is essentially unbounded from 

above.  This reflects the fact that unstable interfaces are not formed and thus have no 

influence on the folding transitions, regardless of whether interfacial stability is +1 or 

+10 kcal/mol.  This is a manifestation of the thermodynamic maxim that things that are 

energetically unfavorable do not happen. 

Although the fractured Ising partition function is a more appropriate description of 

the states of BdpA than the simpler 1D-Ising model, its poorly determined interfacial free 

energy is rather ungainly.  The binomial model, which has the same form as the 1D-

Ising model but treats adjacent folded repeats as unpaired, fits with about the same 

RSSR as the fractured 1D-Ising model, and gives identical DGBdpA and m-values to 

three significant figures (Table 4).  The goodness-of-fit of the binomial model further 

supports the assignment of BdpA arrays to FARPs. 
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4.  VALUES OF INTRINSIC AND INTERFACIAL COUPLING ENERGIES AND THEIR 
RELATIONSHIP TO COOPERATIVITY AND REPEAT PROTEIN STRUCTURE. 
 Using the nearest-neighbor models above, we and other groups have determined 

DGi and DGi-1,i values for a variety of repeat proteins.  These values are displayed on 

the number lines in Figure 5.  Values are color coded to indicate whether they are best 

described as NARPs, SARPs, or FARPs based on features of their folding transitions, 

fits from the different models, and the resulting DGi and DGi-1,i values. 

NARPs show a minimum number of repeats required for folding—individual 

repeats are not structured.  Above this minimum, folding transitions of NARPs shift to 

higher denaturant and become steeper as repeats are added.  NARP arrays are well-

fitted with the classic 1D-Ising model, and have positive DGi values and negative DGi-1,i 

values.  Because the stabilities of individual (and usually pairs of) NARP repeats cannot 

be quantified, analysis of NARP arrays typically requires that most or all repeats have 

the same sequence.  Thus, the five NARP families in Figure 5 (black circles) are all 

based on identical consensus repeats. 

In contrast to NARPs, isolated repeats from SARPs are structured and display 

cooperative folding transitions.  As with NARPS, as repeats are added to a SARP array, 

the folding transition shifts to higher denaturant and typically become steeper.  The 

interfacial coupling energies of SARPs are generally lower than those of NARPs, 

indicating decreased cooperativity for the former.  The fact that individual repeats are 

intrinsically stable isolation might also suggest decreased cooperativity; however, 

because denaturants destabilize intrinsic repeat folding, this stability is lost at the 

denaturant concentrations needed to bring about unfolding transitions.  As described 

above, the ability to quantify stability of individual SARP repeats and pairs facilitates 

analysis of heteropolymeric repeat arrays. 

Like SARPs, the individual repeats of FARPs are structured and display 

cooperative folding transitions.  However, the folding transitions of FARPs are 

unperturbed by adding repeats (Figure 4C).  Though the fractured 1D-Ising model 

includes all the populated states in FARP folding, DGi-1,i is poorly determined.  Since the 

binomial partition function also includes all the populated states but lacks DGi-1,i, it 
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seems best suited for describing FARPs.  For the FARPs in Figure 5 (blue circles), 

those for BdpA are fitted using the binomial model, whereas those for the titin Ig 

domains I28e – I30e are obtained from two-state fits and kinetin measurements in Scott 

et al. (2002). 

As with SARPs, the intrinsic stabilities of individual FARP repeats permits 

analysis of heteropolymeric arrays.  This heterogeneity may be expected to lead to 

considerable variation in DGi and DGi-1,i along a repeat array; thus, some repeat arrays 

may be best modeled using a hybrid of the classic and fractured 1D-Ising models and 

the binomial model.  The titin Ig repeats from Scott et al. (2002) show this type of hybrid 

behavior: repeats 28, 29 and 30 behave as FARPs, whereas repeats 31 and 32 are 

favorably coupled, thus behaving as a SARP (Figure 5).  This hybrid thermodynamic 

behavior is consistent with a structural analysis of a different set of titin Ig repeats, 

which shows considerable variation in rigidity and flexibility between repeats, depending 

on their sequences and linkers (10).  We have observed similar hybrid behavior in Ising 

parameters from a series of helix-hairpin-helix repeats (MP and DB, unpublished). 

On the whole, there is considerable variation in the values of DGi and DGi-1,i, 

especially for the NARPs.  These variations are somewhat anticorrelated: NARPs that 

have the most stable interfaces tend to have the least stable repeats.  As a result, the 

sum of DGi and DGi-1,i, which reflects the stability change for adding a repeat to an 

already folded array, tends to show less variation (Figure 5). 

Structurally, there are two features that distinguish NARPs from S/FARPs 

(SARPs and FARPs).  First NARPs have large interfaces between adjacent repeats 

(Figure 1); these interfaces often bury a large number of hydrophobic side chains (2), 

but can also involve polar interactions that are important for stability (33, 23, 27).  These 

large interfaces are a likely source of the favorable coupling energies needed to drive 

the folding of intrinsically unstable NARP repeats.  Interfaces between spectrin and Ig 

repeats are considerably smaller.  Second, the number of residues per repeat is lower 

for NARPs than for S/FARPs.  For the naturally occurring repeat proteins in Figure 5, 

the NARPs are 42 residues or shorter, whereas the S/FARPs are 58 residues or longer.  

Presumably longer repeats are required to form autonomously folding domains. 
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One notable exception to these general trends comes from analysis of a series 

de novo designed helical repeat proteins referred to as DHRs (7).  Ising analysis of four 

of these proteins reveals negative DGi values for all proteins, putting them in the 

S/FARP category (14).  However, these Rosetta-designed DHR proteins also have 

strongly stabilizing interfaces comparable to NARPs (grey circles, Figure 5).  Thus the 

free energy of propagation of DHR repeats (DGi + DGi-1,i) is unusually negative, 

reflecting the effectiveness of Rosetta in generating folded proteins with unusually high 

stability.  Structurally the DHR proteins have large hydrophobic interfaces like those of 

naturally occurring NARPs; in terms of number of residues per repeat, they span the 

range between NARPs and S/FARPs, perhaps consistent with their chimeric 

thermodynamic behavior.  

 

5.  CONCLUSIONS AND FUTURE DIRECTIONS 

Analysis of tandem repeat protein folding with nearest-neighbor models provides 

a unique way to quantify cooperativity.  A range of intrinsic and interfacial stabilities are 

seen, giving rise to highly cooperative (NARP), moderately cooperative (SARP), and 

noncooperative (FARP) behavior.  The ability of heterogeneous SARP arrays to be 

analyzed using classic and fractured 1D-Ising models gives access to complex energy 

landscapes, and provides a way to connect details of sequence and structure to folding 

cooperativity. 

Linear nearest-neighbor models can also be extended to more complex 

geometries.  One simple extension would be to analyze repeat proteins that are 

"closed", that is, they have circular architectures in which terminal repeats interact with 

an interface equivalent to those of internal repeats.  Examples of proteins with such 

archtectures are TIM barrels, b-trefoil domains, and WD-40 repeat proteins.  A 

challlenge to such a study is that a circular protein would need to be composed of 

identical repeats, and non-circular fragments would need to be stable and soluble.  

Further extension to non-repeating (i.e., globular) proteins would provide tremendous 

insight into folding cooperativity, but would require a precise experimental approach to 

measure local stabilities and coupling energies. 
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APPENDIX 1.  THE NUMBER OF STATES FOR VARIOUS TANDEM REPEAT 
PROTEIN FOLDING MODELS 
 

 The number of conformational states available to a repeat protein array grows 

geometrically with the number of repeats7.  For the binomial distribution, it is fairly easy 

to see that the relationship between the number of states s and the number of repeats is 

.  This is because each repeat has two states that are independent of its 

neighbors.  Thus, the number of configurations per repeat (two) should multiply for each 

repeat in an array. 

 For the Ising model, although the values of the statistical weights depend on the 

conformational states of other repeats, the number of states per repeat do not—the fact 

that each repeat can either be folded or unfolded is not changed by interaction with 

neighboring repeats that shift the population to the folded state.  Thus, there are  

states available in the 1D-Ising model, as with the binomial model. 

 For the fractured Ising model, there must be more than  states available, since 

the model introduces additional (fractured) configurations.  It is tempting to think that 

this additional third state would result in the relation ; this would be obtained if 

there were three states for each repeat.  However, this number independence is lost in 

the fractured Ising model—the additional fractured state is only available when the 

neighboring repeat is folded. Thus, for the fractured Ising model, .  The 

question is, what is the analytical expression s( )?  Here, we will derive this expression 

by inspection of the number of states for a series of  values. 

The partition function provides an easy way to generate the number of states.  In 

general, the numerical value of the partition function gives the average number of states 

populated.  This value ranges from 1 to , depending on the values of k and t.  By 

 
7 Note that the number of states is not the same as the number of states populated.  The latter, which is given by the 
value of the partition function, depends on the values of the statistical weights (and ultimately on the values of k and 
t), whereas the number of states does not. 

s = 2ℓ

s = 2ℓ

2ℓ

s = 3ℓ

2ℓ < s < 3ℓ

ℓ

ℓ
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setting k and t to one, the statistical weight of each configuration is one, and the 

partition function becomes a count of the number of states.8  In this limit,  

 

    (A.1A) 

     (A.1B) 

 

The first ten values of these matrix products are given below: 

 

 1 2 3 4 5 6 7 8 9 10 

 2 4 8 16 32 64 129 256 512 1024 

 2 4 8 16 32 64 129 256 512 1024 

 2 5 13 34 89 233 610 1597 4181 10946 

 2 5 13 34 89 233 610 1597 4181 10946 

 3 9 27 81 243 729 2187 6561 19683 59049 

 

Indeed, the number of states for the fractured Ising model is in between  and , as 

expected.  The pattern of the number of states for the fractured Ising model follows 

alternating terms in the Fibonacci series, starting with term 3 (F3=2).  This is generalized 

by the formula 

     (A.1C) 

 

where f is the golden ratio and has the numerical value  (25). 

 

 
8 Alternatively, the temperature can be set to infinity.   
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Table 1.  Tandem repeat protein families with large available alignmentsa 

Repeat name Pfam familiesb Median 
lengthb, c 

# Unique 
sequencesb, c 

Percent 
identityb, c Taxonomy 

Ankyrin repeat Ank*, Ank_2, Ank_3, 
Ank_4, Ank_5 33 ≥ 10,990 23.9 Mostly eukarya, but also found in 

bacteria 
Armadillo repeat Arm*, Arm_2 41 ≥ 23,055 22.0 Eukarya 

Cysteine rich 
repeat Cys_rich_FGFR 58 3588 19.5 Metazoa, viridiplantae, and 

bacteria, mainly proteobacteria  

HEAT repeat 
HEAT*, HEAT_2, 

HEAT_EZ, 
HEAT_PDF 

31 ≥ 2972 24.3 Eukarya and Bacteria 

Immunoglobulin 
domaind 

C1-set, C2-set, C2-
set_2, ig, Ig_2, Ig_3, 
Ig_7, Ig_C17orf99, I-

set*, Izumo-Ig, 
Titin_Ig-rpts, V-set 

89 ≥ 95,473 18.0 Metazoa 

Leucine-Rich 
Repeats  
(LRR) 

LRR, LRR_2, 
LRR_3, LRR_4, 
LRR_5, LRR_6*, 
LRR_8, LRR_9, 

LRR_10, LRR_11, 
LRR_12, LRV 

24 ≥ 57,589 25.0 
Mostly eukarya, but also found in 

bacteria 

Membrane 
Occupation and 

Recognition 
repeat (MORN) 

MORN* 

MORN_2 23 ≥ 41,151 28.9 Mostly eukarya, but also found in 
bacteria and viruses 

Nebulin repeat Nebulin 28 5545 28.2 Metazoa 
Pentatricopeptide 

repeat 
(PPR) 

PPR*, PPR_1, 
PPR_2, PPR_3 

PPR_long 
30 ≥ 127,520 27.8 Streptophyta and fungi  

Pumilio-family 
repeat (PUF) PUF  

34 21,881 18.2 Eukarya 

Spectrin  Spectrin 105 27,021 14.9 Metazoa 
Sushi Sushi 56 38,166 21.5 Metazoa 

TAL Effector 
(TALE) TAL_effector 34 308 57.3 Proteobacteria 

Tetratricopeptide 
repeat 
(TPR) 

TPR_1 - TPR_12, 
TPR_14 - TPR_22, 

TPR_8* 
33 ≥ 50,318 16.4 Mostly eukarya and bacteria, and 

some archaea 

aData are from Pfam version 33.1 (May 2020).  Analysis is restricted to families with only one repeat per motif; families two or more 
repeats per motif, e.g., Ank_2, were excluded from analysis. bFor repeat types with multiple different Pfam families, the numbers 
of sequences and percent identities were calculated using the family with the largest number of sequences (marked with an 
asterisk).  cCopies of sequences that were 100% identical were removed. dOnly immunoglobulin domain families that contain 
tandem Ig repeats are included in this analysis. 
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Table 2. Correlation matrix 
between repeat i-1 and i. 

i 

i-1 

fi ui 

fi-1 kf 1 

ui-1 k 1 
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Table 3.  Partition functions for tandem repeat protein folding 
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Table 4. Global thermodynamic parameters from Ising fitsa 
   Bootstrap parameters 

Modelb Parameter 
Best fit 
value Mean Lower 95% CId Upper 95% CId 

Consensus ankyrin (NARP) 
1D-Ising 

(1.92x10-4) 
DGN 5.38 5.38 5.26 5.51 
DGR 4.50 4.50 4.38 4.62 
DGC 6.94 6.94 6.79 7.09 
DGR-1,R -11.43 -11.44 -11.68 -11.20 

mR 0.76 0.76 0.75 0.78 

Spectrin (SARP) 
1D-Ising 

with 
stabilized 

intermediate 
(2.48x10-4) 

DGR15 -6.07 -6.08 -6.48 -5.73 
DGR16 -5.43 -5.44 -5.78 -5.11 
DGR17 -5.22 -5.22 -5.56 -4.88 

DGR15,R16 -4.27 -4.28 -4.51 -4.06 
DGR16,R17 -3.23 -3.23 -3.37 -3.10 
DGf15,u16 -2.02 -2.02 -2.20 -1.83 

mR15 1.60 1.60 1.51 1.70 
mR16 1.65 1.66 1.55 1.76 
mR17 1.74 1.56 1.64 1.85 

BdpA (FARP) 
1D-Ising 

(4.25x10-6) 
DGBdpA -3.98 -3.98 -4.03 -3.94 

DGBdpA,BdpA 0.05 0.05 0.03 0.07 
mBdpA 1.35 1.35 1.33 1.36 

Fractured 
1D-Ising 

(5.13x10-6) 

DGBdpA -3.92 -3.92 -3.96 -3.87 
DGBdpA,BdpA 20.62 8.74 1.84 22.06 

mBdpA 1.33 1.33 1.32 1.34 
Binomial 

(5.06x10-6) 
DGBdpA -3.92 -3.92 -3.96 -3.88 
mBdpA 1.33 1.33 1.32 1.34 

aDG values in kcal mol-1; m values in kcal mol-1 M denaturant-1.  bValues in parentheses are 
reduced sum of square residuals (RSSR=SSR/DOF) from the fit.  cValues are from 2000 
bootstrap iterations.  dCI, confidence intervals.  eThe model for spectrin includes a stabilizing 
interaction between folded repeat 15 and unfolded repeat 16. 
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Figure 1.  A thermodynamic classification of linear repeat proteins.  Using the sign 

of the two Ising energy terms as classifiers, four groups of tandem repeat proteins are 

generated.  Non-autonomous repeat proteins have unstable repeats (DGi > 0) but stable 

interfaces (DGi-1,i < 0).  Fully-autonomous repeat proteins have stable repeats (DGi < 0) 

but unstable interfaces (DGi-1,i > 0).  Semi-autonomous repeat proteins have stable 

repeats and interfaces (DGi, DGi-1,i < 0).  A fourth group, with unstable repeats and 

interfaces (DGi, DGi-1,i > 0) would not adopt a folded structure for any number of repeats. 
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Figure 2.  Tandem repeat proteins structures.  Ribbon diagrams of a 12-repeat 

ankyrin array (Michaely et al., 2002), a single repeat from protein A (36), a 3-repeat 

spectrin array (24), and a six-repeat Ig array from titin (10). 
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Figure 3.  Nearest-neighbor model energy terms and statistical weights.  Unfolded 

and folded repeats are represented by lines and boxes, respectively.  The left-hand 

column shows folding reactions for individual repeats for a two-repeat homopolymer (A; 

both repeats are labelled R) and a two-repeat heteropolymer (B; repeats are labelled R 

and X).  The equilibrium constant for folding in the context of unfolded neighbors 

(reactions i and ii) is kR or kX.  In the Ising model, the equilibrium constant for folding 

next to a folded neighbor (reaction iii) is kt, where t is the equilibrium constant for 

interface formation (illustrated by the two vertical transitions).  The fractured Ising model 
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permits additional states where adjacent repeats are folded but the interface is not 

formed (reaction iv).  The right-hand column shows statistical weights relative to the 

reference (unfolded) state. 
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Figure 4.  Folding transitions of tandem repeat proteins fitted with nearest-

neighbor folding models.  Fitted parameters for all data sets are given in Table 4.  (A) 

Consensus ankyrin repeat arrays (a NARP) fitted with a 1D-Ising model.  Data are from 

Aksel et al. (2011).  (B) Spectrin repeats R15-R17 (a SARP) fitted with a 1D-ising model 

modified to include a stabilizing interaction between folded repeat R15 and unfolded 

repeat R16.  Data are from (5).  (C) B-domains of Staph. aureus protein A (a FARP) 

fitted with a fractured Ising model.  Data are from (3). 
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Figure 5.  Nearest-neighbor free energies of tandem repeat proteins.  Negative 

values are stabilizing.   Naturally occurring and consensus NARPs, SARPs, and FARPs 

are black, red, and blue, respectively. Rosetta-designed helical repeat proteins (DHRs) 

are grey. For cANK, values are for the internal (R) repeats.  For spectrin, DGi and DGi-1,i 

values are from the model that includes a stabilizing interaction between folded repeat 

15 and unfolded repeat 16.  For BdpA, DGi is from the binomial model. For TALEs, DGi 

and DGi-1,i values are from Geiger-Schuller & Barrick (2016).  For cTPR and 42PR , DGi 

and DGi-1,i values are from (20) and (28).  For the titin I28e – I32e repeats, DGi (and for 

the I31/I32e pair, DGi-1,i) are from Scott et al. (2002).  For the four DHR series, DGi and 

DGi-1,i values are from Geiger-Schuller et al. (2018).  The number line on the right shows 

average repeat lengths. 



 

 
Figure S1.  Comparison of 1D- and modified 1D-Ising models for fitting folding 
transitions of spectrin repeats R15-R16.  Data are from (5). (A) Spectrin repeats R15-
R16 fitted with a 1D-Ising model.  (B) Spectrin repeats R15-R16 fitted with a 1D-Ising 
model modified to include a stabilizing interaction between folded repeat R15 and 
unfolded repeat R16. Bottom panels show fitted residuals from panel A and panel B  
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