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Abstract—In opportunistic mobile crowdsensing, the objective
of service requesters is to have as many of their sensing tasks
completed as possible within their budget constraints, whereas
that of participants (workers) is to collect the highest monetary
reward possible on their trajectories. However, these objectives
can conflict and may result in unhappy service requesters or
workers if the matching between them is not handled carefully.
In this paper, we study the problem of finding task assign-
ments that fulfill both coverage-aware preferences of service
requesters and profit-based preferences of workers in a budget-
constrained, opportunistic mobile crowdsensing system. Since
this is a matching problem with bilateral preferences, we aim
to find a matching in which everyone is satisfied with their
assignment based on their preference profile. We first propose
a polynomial-time approximation algorithm for general settings,
and then show that a slightly modified version of this algorithm
has a constant approximation ratio when the rewards offered to
workers by service requesters are proportional to the coverage
capability of workers for corresponding tasks. Through extensive
simulations, we evaluate the performance of our algorithms in
different settings, and show that they mostly provide substantially
better task assignments in terms of user happiness and coverage
quality while having a few orders of magnitude lower running
times compared to the benchmark algorithms.

Index Terms—Mobile crowdsensing, task assignment, budgeted
coverage maximization, stable matching.

I. INTRODUCTION

Mobile Crowdsensing (MCS) is a social business model
[1] that enables people to complete their sensing tasks in an
efficient manner by recruiting mobile, interested users. It does
not only serve the needs of task requesters, but also provides
interested users with alternative means to make a profit by
carrying out the requested sensing tasks, which generally take
a very small amount of time and do not require any expertise,
such as taking pictures of buildings for place naming systems
[2]. The three main entities in a typical MCS system are
a crowdsensing center/platform, task requesters, and workers
(i.e., users that are interested in performing tasks voluntarily or
in exchange for a reward). The key roles of the crowdsensing
center are to make the information of the requested sensing
tasks and active workers public (i.e., their spatiotemporal and
financial constraints), and to assist in finding an efficient task
assignment by either directly producing a matching between
the tasks and workers based on the given constraints or by
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providing a platform for the task requesters and workers to
decide on a matching in a distributed fashion.

The tasks in an MCS system can be performed in a partic-
ipatory [3] or opportunistic [4] manner (i.e., explicit/implicit
user participation, respectively). In the former, workers are
required to interrupt their daily schedules and carry out the
assigned tasks at the specified time by traveling to the task
regions. Hence, this approach comes with a travel cost, which
tends to dominate the other costs to be incurred by a worker
such as communication/storage cost and energy consumption
on the sensing device. On the other hand, in the latter,
workers maintain their schedules and perform the assigned
tasks opportunistically when they happen to be in the task
regions. Therefore, in this type of sensing, the task assignments
should be made in a way that ensures the workers that are
assigned to a task are likely to visit the task region within
an acceptable time frame. Besides, although there is no travel
cost associated with the tasks in the opportunistic sensing, it
usually takes longer for a worker to complete the assigned
tasks compared to the participatory sensing.

Regardless of the adopted sensing strategy (participatory
or opportunistic), the key factor that defines the performance
of the overall MCS campaign is the efficiency of the task
assignments. Yet, the definition of efficiency (i.e., optimization
criteria) varies widely across different studies. Some of the
objectives considered in the MCS literature are minimizing
the travel costs of workers [3], [5], completing the tasks
in the shortest time possible [6], maximizing the quality of
service received by task requesters [7], minimizing the energy
consumption [8], and maximizing the number of completed
tasks [9].

A particularly important objective in the opportunistic MCS
systems is to maximize the sensing coverage over a set of
points of interest (POIs), which has recently been studied
in [10]-[13]. However, these studies either do not consider
budget constraints of task requesters or assume that there is
only a single task requester (i.e., a single budget constraint) in
the system. This may not be a practical assumption as there can
be multiple task requesters with a unique set of goals and an
individual budget constraint. Moreover, some task requesters
may prefer to allocate a separate budget for different sets of
POls.

Another issue with the existing task assignment frameworks
is that they disregard individual user preferences in the assign-
ment process in order to optimize the task assignment based on
the aforementioned system-level utility metrics. Consequently,
they are likely to produce dissatisfying assignments for the
users, which may be detrimental for the long-term operational
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well-being of the system as the users that repeatedly get
such assignments may stop using the system altogether. For
instance, it has been shown in [14] that a task assignment
algorithm that maximizes the number of assigned tasks ends up
making up to 35% of all worker-task requester pairs unhappy
with their assignments.

Given a two-sided matching, an unhappy pair is defined
as a pair of individuals who are not assigned to each other,
but would prefer each other to their current assignments. A
matching with no unhappy pairs is said to be stable [15],
because absence of unhappy pairs indicates that there is no
pair who would reject their assignments to get matched with
each other. Besides this equilibrium state, considering user
preferences in a matching problem also has the advantage
of enabling each individual to specify her own interests and
constraints in the matching process via a preference profile/list
(e.g., preference for tasks that are close to their home or work).

There are recent studies [14], [16]-[18] that integrate the
concept of stability in the task assignment process. However,
these studies fail to consider some crucial aspects of task
assignments. For example, [14] assumes simple tasks that
can always be completed by a single worker, and [18] does
not consider budget constraints. Moreover, they all assume
participatory MCS systems and only consider additive utility
functions (i.e., the total utility of a set of workers for a
task is equal to the sum of their individual utilities). Yet the
coverage over a set of POIs is inherently non-additive because
of the potential overlaps among the POIs covered by different
workers.

We can summarize the key issues that need to be taken into
consideration in task assignments in opportunistic MCS and
the studies that partly addressed them as follows:

o Task requester preferences [10]-[13]: Each task requester
desires to have a matching that maximizes the coverage
over the POIs that her task needs.

o Budget feasibility [11]-[13], [16], [17]: Each task re-
quester has a budget constraint which should not be
violated.

o Worker preferences [14], [16]-[18]: Each worker desires
to maximize his net profit from the system in each task
assignment period.

o Stability [14], [16]-[18]: Since the objectives above are
likely to be in conflict with each other, they should be
achieved in a fair way that results in as few unhappy users
as possible.

In this paper, we address all of these issues together and
make the following contributions:

o We formally define the stability conditions for task as-
signments in coverage-aware, opportunistic MCS systems
with budget constraints.

« We prove that a fully stable task assignment may not exist
in some MCS instances, and it is NP-hard even to check
whether one exists in a given instance.

o We present a polynomial-time approximation algorithm
for the stable task assignment problem, and prove that it

always produces 1%“pfstable matchings, where p is the

largest reward to budget ratio (normalized between 0 and
1) in the system.

« We show that a variant of our algorithm has an approx-
imation ratio of 5 in MCS systems with proportional
reward schemes, where the rewards offered to the workers
are proportional to the utility they provide for the tasks.

e We compare the performance of our algorithms with
two benchmark algorithms proposed in [11] and [12] via
real-data based, extensive simulations, and show that our
algorithms produce significantly better task assignments
in terms of both user happiness (up to 25%) and achieved
coverage (up to 18%), and run up to four orders of
magnitude faster compared to the benchmark algorithms
in most settings.

The rest of the paper is structured as follows. In Section II,
we present a summary of the related work. In Section III, we
introduce the system model. In Section IV, we first present
a formal problem definition and discuss the hardness of the
problem. We also show that a stable matching may not exist
in some MCS instances. Then, we describe our approximation
algorithms and derive their approximation ratios. In Section V,
we evaluate the performance of our algorithms through simu-
lations. Finally, in Section VI, we provide our conclusions.

II. RELATED WORK

In MCS systems, the two key problems are to incentivize
the users to take part in the MCS campaign and to assign
registered users in the system to the available tasks. In the
MCS literature, these problems have been addressed by incen-
tive mechanisms [19], [20] and task assignment or allocation
algorithms [21], [22], respectively.

Incentive mechanisms: In [23], an auction-based incentive
mechanism is proposed, where the users whose submissions
for the available tasks are accepted by the corresponding task
requesters are paid a reward based on the quality of their
submission (i.e., the sensed data). [24] and [25] also propose
quality-aware incentive mechanisms. Specifically, [24] focuses
on the scenario where workers arrive in an online manner,
while [25] considers the temporal changes in the quality of
workers for the crowdsourcing campaign in each run of the
task allocation (based on their performance in previous runs).
[26] presents incentive mechanisms for cooperative mobile
crowdsensing in online social networks, where tasks require
multiple workers for successful completion, and each worker
is able to specify a set of workers that he wants to cooperate
with on performing tasks (e.g., friends in social networks). [27]
proposes an incentive mechanism that exploits the concepts of
reference effect and loss aversion from behavioral economics,
and addresses the problem of completing tasks in regions that
are not visited frequently by participants.

Task assignment: [28]-[31] investigate the task assign-
ment (or worker recruitment) problem. [28] transforms the
assignment problem into a scheduling problem based on the
expiration time of tasks, and aims to minimize the total delay
in completion of tasks. The goal in [29] is to maximize the
number of completed tasks while keeping the total travel
distance of workers as low as possible. [30] and [31] study
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the problem in an online setting. [30] utilizes the branch-
and-bound method [32] to find an assignment that maximizes
the total profit of workers, while [31] proposes four different
online algorithms to maximize the sensing quality received by
task requesters. There are some recent studies that explore the
privacy and reliability issues in task assignments, as well. For
instance, [33] and [34] both address the privacy-preserving
task assignment problem. Particularly, [33] focuses on the
worker privacy and assumes a system model, in which the
quality scores of workers are not disclosed to the platform,
while [34] considers the privacy of task requesters as well
as that of workers. On the other hand, [35] investigates the
reliability issue in task assignments, and proposes a person-
alized recommendation system that takes users’ reliability for
each task into account in estimating their suitability for the
tasks. Our work differs from these prior efforts by considering
coverage-awareness as part of the design.

Coverage-awareness: There are also a number of studies
that address the issue of coverage-aware sensing. For instance,
[4] aims to find a minimum-cost user set that will cover all
Pols requested by campaign organizer (who does not have
a budget constraint), and assumes that both the sensing and
delivery of the sensed data are realized in an opportunistic
manner. [10] adopts the same objective, but assumes a partici-
patory MCS system and proposes a reverse auction framework
instead of a worker selection algorithm. However, this study
does not consider a budget constraint either.

[11], [12] and [13] study the problem of finding a worker
set with maximum weighted coverage over a set of Pols in a
budget-constrained MCS system. In particular, [11] considers
an opportunistic MCS system with static reward profile for
workers, and proposes a polynomial-time approximation algo-
rithm for worker selection. [12] assumes the same system
model and presents a greedy algorithm that is shown to
perform better than the algorithm in [11] in synthetically
generated instances. However, no theoretical performance
guarantee has been shown for this algorithm (unlike [11]).
On the other hand, [13] proposes a strategy-proof incentive
mechanism, in which the reward profile of the recruited
workers is dynamically determined based on their bids. A
different type of coverage problem is studied in [36], where
the goal is to find a small subset of a huge number of photos
uploaded by workers, which fully covers a set of targets (i.e.,
each aspect of a target appears in at least one selected photo).

Preference-awareness: An important issue in the studies
mentioned thus far is that they aim to optimize task assign-
ments solely based on a system-level utility metric (e.g., travel
cost, QoS, coverage), and neglect to take user (i.e., workers
and task requesters) preferences into consideration in the task
assignment process. An introductory work to the matching
problems with user preferences is [15], which proposes a
polynomial-time algorithm, namely the deferred-acceptance
mechanism, that finds a stable matching (i.e., a matching
with no unhappy pairs) between two groups of objects with
bilateral preferences. This algorithm is designed for one-to-
one matching and many-to-one matching with capacity or
quota constraints, and unfortunately cannot be used in the
presence of budget constraints. A considerable number of

TABLE I: A summary of the related work (* denotes this
paper).

[ | Coverage-aware | Budget-constrained | Preference-aware |

* v v v
[4] v/ X X
[10] v X X
[11] v v X
[12] v v X
[13] v v X
[14] X v/ V4
[16] X v/ V4
[17] X v/ V4
[18] X X v
[23] X v/ X
[24] X v/ X
[25] X v X
[26] X X x
[27] v X X
[28] X X x
[29] X X x
[30] X X x
[31] X X x
[33] X v/ X
[34] X v X
[35] X X 7

studies have adapted this algorithm to find stable matchings
for real-world matching problems in different contexts such
as driver-passenger matching in taxi dispatching systems [37],
[38] and supply-demand matching for charging of electric
vehicles [39], [40].

Moreover, a few studies consider user preferences and
stable matchings in task assignments in MCS. [14] studies
the problem of finding a maximum size one-to-one matching
between workers and tasks with minimum instability (i.e., with
as few unhappy pairs as possible). The problem turns out to be
NP-hard, thus the authors propose two different polynomial-
time heuristic algorithms. [16]-[18] focus on the many-to-
one stable task assignments with additive utility functions.
[17] considers a budget-constrained MCS system where the
quality of a worker is identical for all tasks, and presents an
exponential-time algorithm to find weakly-stable matchings.

[16] provides the nonexistence and hardness results for
the generalized version of the problem studied in [17], and
presents pseudo-polynomial time approximation and heuristic
algorithms for different settings. Differently, [18] assumes that
task requesters have a quota constraint, and uses a variant of
the deferred-acceptance mechanism to find stable task assign-
ments. Note that none of these studies addresses the issue of
coverage-aware sensing. Similar to [17], some studies in the
stable matching literature [41], [42] investigate the many-to-
one, budget-constrained stable matching problem with additive
utility functions. However, to the best of our knowledge, there
is no study that considers coverage-based or non-additive
utility functions in that literature, either. Hence, this study is
the first to address the problem of both coverage and user
preference-aware task assignment in MCS. A summary of the
related work with respect to the three most relevant design
parameters is presented in Table I.
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III. SYSTEM MODEL

We assume a system model with a matching platform that
receives sensing task requests 7 = {t1,to,...,t,} over a set
of Pols P = {p1,ps, ..., pr}, and determines the assignments
between these tasks and workers (data contributors). Each task
t needs a type of sensed data from a certain subset of Pols,
denoted by P(t) C P. For a task, some of the Pols might
be more important than the others due to their spatial features
(e.g., being close to a production plant for an air pollution
sensing task), thus we also let each task ¢ assign a weight
v¢(p) to each Pol p in P(t).

Let W = {wy, wa, ..., wy,} be the set of registered workers
in the system. We assume that workers are not willing to
interrupt their daily schedule, but they accept to perform
the tasks on their trajectories, i.e., opportunistic sensing.
According to the frequency of task assignments and the nature
and time sensitivity of tasks in the system, a different portion
and timescale of their future trajectories (e.g., daily, hourly)
can be considered in the task assignment process. Let X, be
the set of all locations that will be visited by worker w during
the considered time frame. Similar to the previous work [11],
we assume that a Pol is covered by worker w if it falls in the
sensing range d,, of the worker. Then, the set of Pols that are
covered by worker w is given by

Cw)={peP :dp,x) <dy, Iz Xy}, (D

where d(p, x) is the Euclidean distance between the Pol p and
x € X,,. The coverage set of worker w for task ¢ can then be
defined as:

Cr = C(w) N P(t) 2)

If the requester of task ¢ needs to have some of the POIs
sensed by a deadline that is earlier than the end of the
current assignment cycle, and worker w will not arrive at the
corresponding locations in time according to his trajectory,
then we can simply remove these POIs from C}’. The total
utility of a set S of workers for task ¢ is equal to their total
weighted coverage over P(t), which can be calculated by

Z vi(p), where C = UesC}° (3)
peCy

Ui(S) =

Consider the instance illustrated in Fig. 1, and let ¢ be a task
in this instance with the following properties:

P(t) = {p17p27p31p4},
Ut(pi) = Ut(pj) = 1,\72,] € {1327374}

Then, the individual utilities of workers w; and ws for task
t would be Uy(wy) = 3 and Uy(ws) = 2, since they cover
3 and 2 of the Pols requested in task ¢, respectively. Their
joint utility for task ¢ would be U;({ws,ws}) = 4, which is
evidently less than the sum of their individual utilities. This
demonstrates the non-additiveness of the utility function given
in Eq. 3.

Moreover, we assume a budget-constrained system model
with monetary incentives, where the requester of task ¢ has
a budget b; that limits the amount of monetary incentives to
be spent for the completion of task ¢, and offers each eligible

Fig. 1: An MCS instance with 2 workers (w;, w2) and 4 Pols
(p1, p2, p3, p4). The trajectories of workers are shown with
solid lines.

worker w a reward r4(w) (< b;) to cover the Pols in C}”. Let
r+(S) be the total rewards offered to the worker set S (i.e.,
7¢(S) = > ,es Tt(w)). Besides, for each worker w, there is
a cost ¢;(w) associated with each task ¢, which worker w can
estimate considering the factors such as cost of delivering the
sensed data to the task requester via cellular networks, energy
consumption due to sensing, and privacy risks.

Let M be a matching between the tasks and the workers in
the system. Also, let M (u) denote the assigned task (worker
set) to worker (task) u in M. In order for M to be a
feasible and individually rational matching, it should satisfy
the following conditions:

e a worker w is either unmatched or matched with a task,

ie.,

Mw) =0 or M(w) €T, 4)

« a task is matched with a subset of workers (which may
be 0), i.e.,

M(t) S W, e

o if worker w is matched with task ¢, the worker set of task
t also includes worker w, and vice versa, i.e.,

M(w) =t iff w e M(t), (6)

e no worker w is matched with a task that is not econom-
ically beneficial for him, i.e.,

ri(w) > e (w) if M(w) = t, ()

e and, no task ¢ is matched with a set of workers that she
cannot afford, i.e.,

Z Tt(w) < b;. 8

weM(t)

The worker-task pair (w,t) is said to be a qualified pair if
there exists a feasible and individually rational matching, in
which worker w is matched with task ¢. A summary of the
key notations is presented in Table II.

IV. COVERAGE-AWARE STABLE TASK ASSIGNMENT

In this section, we first formally describe the task assign-
ment problem studied in this paper, and then provide the
details of the proposed approximation algorithms.
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TABLE II: Key notations.

l Notation [ Description ‘

W, T, P | Set of workers, tasks and Pols, respectively
m, n, k Number of workers, tasks and Pols, respectively
M A feasible & individually rational task assignment
M(u) Assigned task (worker set) to worker (task) v in M
ct(w) Cost of performing task ¢ for worker w
re(w) Reward offered to worker w to perform task ¢
gt (w) Profit of worker w from task ¢ (r¢(w) — c¢(w))
re(S) | 2iwesTt(w)
P(t) Pol set of task ¢
vt (p) Weight of Pol p € P(t) for task ¢
C(w) Set of Pols covered by worker w
[oF C(w) N P(t)
U (S) Utility of S C W for task ¢
bt Budget of task ¢
b{\” Remaining budget of task ¢ in M
Ot Dissatisfaction ratio of task ¢
Loy Preference list of worker w
dw Sensing range of worker w
P maxyew,te7 Te(w)/be

A. Problem Statement

Stability is an important concept in matching problems with
selfish and rational individuals. It defines the satisfaction of
users with their assignments [14] and promotes long-term
user participation by making certain that users are not upset
by being forced into less favorable assignments whilst there
are better options available. Thus, considering stability in the
matching process is not only beneficial for task requesters and
workers, but also for the platform. Below, we formally define
the stability conditions for our settings.

Definition 1 (Unhappy coalition). Given a matching M, a
task t and a subset S of workers form an unhappy coalition
(denoted by (S, t)) if the following conditions hold for a subset
S’ of the workers assigned to task t in M:

e task t would be better off with S than with S, i.e.,

U(SU M)\ ) > Uy (M(1)), ©)

o task t can replace S’ with S without violating her budget
constraint, i.e.,

re(S) — () < oM, (10)

where bM is the remaining budget of task t in M (i.e.,
b{\/l = bt - Zwe,/\/l(t) Tt(’lU)),

o every worker w in S prefers task t to task t' to whom he
is currently assigned in M, ie.,

Vw € S, gi(w) > gr(w), (11

where g:(w) = ry(w) — ci(w) is the net profit of
performing task t for worker w, and gy (w) = 0 if worker
w is currently unmatched (i.e., M(w) =t = 0).

Given a worker-task pair (w, t), if there exists an unhappy
coalition (S, ¢) such that w € S, we call this pair a coalition-
ally unhappy pair.

Definition 2 (Stable matching). A matching M is (coalition-
ally) stable if it does not contain any unhappy coalitions.

Note that this is the strongest stability definition in many-
to-one matching problems (see [41] for weaker stability

TABLE III: An MCS instance where no fully optimal or stable
task assignment exists. The weights of the Pols are identical
for both tasks, and ¢, (t) = 0 for all (w,t) pairs.

Rewards
w C(w) t1 to T P(t) bt
w1 | P1,P2,P3,P4 4 0 t1 | pi—9 5
w2 | p5,P6,P7,P10,P11 | 3 2 to | pro—12 | 3
w3 | P8, P9, P12 2 3

TABLE IV: All feasible matchings that can be defined on the
instance given in Table III along with one of the unhappy
coalitions they contain and the dissatisfaction ratios of tasks.

M Unhappy coalition | d¢, | 0¢,
t1 = 0;ta =0 <{w1 ,t1> 9] )
t1 — 0;t2 = wa w1}, t1) co |1
t1 — 0; to — w3 <w1 ,t1> 9] 2
t1 — w1, ta — 0 < w2 ,t2> 5/4 )
t1 — wa; t2 — 0 ({ws}, t2) 53 | oo
t1 — wz; ta — 0 < w2 ,t2> 572 )
t1 — wa,ws; ta — [1] < W3},t2> 1 )
t1 = wi, g = wa ({wa, w3}, t1) 514 11
t1 — w1, t2 = w3 < ’wz},tg> 1 2
t1 — wa, t2 — w3 < wl},t1> 4/3 1
t1 — ws, t2 — wa < wg},t1> 572 1

definitions). Therefore, if a matching is stable, no one in
the matching has even a small incentive to deviate from
their current assignment. However, even with additive utilities
where the total utility of a set of workers for a task is simply
the sum of their individual utilities, a stable matching may
not exist, and checking the existence (and finding one if
exists) is NP-hard [41]. Since non-additive utilities are a more
generalized form of additive utilities (i.e., a problem instance
with additive utilities can easily be converted to one with non-
additive utilities, but not vice versa), we conclude that the
same existence and hardness results also apply to the problem
of finding stable matchings in our settings where the utilities
of workers for tasks are non-additive as we have

Ur({wi, wi}) < Ui({wi}) + Up({w;}). (12)

when Cy(w;) N Cy(w;) # 0. The following theorem formally
proves nonexistence of optimal solutions in some cases.

Theorem 1. There exist MCS instances that do not allow for
a stable matching.

Proof. We prove by giving an example, which is described
in Table III. All of the feasible and individually rational
matchings that can be defined on this instance is also provided
in Table IV. Since each matching contains at least one unhappy
coalition, we conclude that no stable matching exists in this
instance. O

Due to the nonexistence and hardness results for stable
matchings, we consider the following relaxation. First, let S;
be the set of all worker sets that form an unhappy coalition
with task ¢ in a given matching M. Formally,

S ={G C W : (G,t) is an unhappy coalition}. (13)
Also, VS € &;, let
Es ={E CM(t) : 1(S) <M + i (E)}, (14)
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and

ST = argmin U (E \ (S UM(2))).
E€e&s

15)

That is, S® C M(¢t) is the minimum loss worker set that
can be replaced by S within the budget constraint of task t.
Then, we can calculate the dissatisfaction ratio of task ¢ in
this matching by:

1, ifS; =10

max{ Ue(SUMD\S™)) } , otherwise.

o0,

Oy
Hlax T, (M(1))

Note that the minimum value that é; can have is 1, which
indicates that task ¢ is perfectly happy in the matching. Finally,
we can formally define our objective function as:

. 1
maximize min —.
teT 6t

A7)
Consider the instance given in Table III. Based on the dissatis-
faction ratios of tasks in different feasible matchings provided
in Table IV, the optimal matching with respect to (17) is
t1 — wi, ta — wo where the value of (17) is 0.8. The
following definition will be used hereafter to signify how
optimal a matching is in terms of stability.

Definition 3 (a-stable matching). A matching M is a-stable
(a>1)if

maxd; < .
teT

(18)

Reward schemes. We consider two different reward
schemes: general and proportional. In the general scheme,
there is not any assumed relation between the rewards a task
requester offers to workers and the utility they provide for the
relevant task. However, based on the common practice seen
in most of the real-world applications (e.g., Amazon MTurk
[43]), it is natural to see a correlation between the two. Hence,
in the proportional scheme, we assume that for each task t,
the amount of rewards offered to the workers are proportional
to their utility. That is

Tt(U}) = 0,5 X Ut(w), (19)

where 6; denotes the reward per utility value for task ¢. It
should be noted that a different task ¢ may have a different
reward per utility value (i.e., 0y # 0y/).

B. Approximation Algorithm

The outline of our polynomial-time approximation algo-
rithm is presented in Algorithm 2. The main idea behind it is
to check the potential assignments between the qualified pairs
following the order in the preference lists of the workers, and
make matching decisions by converting the worker selection
problem to an online optimization problem. It begins by
calling Algorithm 1, which forms the preference list L,, of
each worker w'! (i.e., tasks in non-increasing order of profits

'A worker can also form his preference list himself and submit only this
list to the platform, if he does not like to disclose his cost (or profit) for each
task.

Algorithm 1: Initialize W, T), M
Input: W: Set of workers
T Set of tasks
M: Matching between W and T

1 foreach w € W do

2 L., + order T by non-increasing value of g;(w)
3 Ly < Ly \ {t € Ly | g¢(w) <0}
4 index,, = 1

5 | Mw)=10

¢ end

7 foreach ¢ € T do

8 foreach w € WV do

9 ze(w) =0, ne(w) =0

10 foreach p € P(t) do

1 | z(p,w) =0

12 end

13 end

14 H, =0

15 | M(t)=10

16 Ay = false

17 end

Algorithm 2: StableTaskAssignment (W, T, o)
Input: W: Set of workers
T: Set of tasks
o: Reward scheme (general or proportional)
1 Let M be a matching between VW and R
2 Initialize(W, T, M)
3 Stack.push(WV)
4 while Stack is not empty do

5 w <— Stack.pop()

6 if index,, < |L,,| then

7 t < (index,,)th task in L,,

8 index,, = index,, + 1

9 M(w) = t, M(t) = M(t) U{w}

10 if o is general then

u | R «WorkerSelection(t, w, M)
12 else

13 | R «WorkerSelectionProportional(t, w, M)
14 end

15 foreach v’ € R do

16 M(t) «— M)\ w', Mw') =10
17 Stack.push(w’)

18 end

19 end
20 end

21 return M

they will provide to worker w), and initializes the matching
and the other required variables. Throughout its execution,
our algorithm maintains a stack that consists of the workers
that are unmatched and whose preference lists have not been
entirely traversed by the algorithm (i.e., index,, < |L,|). In
each iteration of the while loop, it pops one (w) of these
workers from the stack and attempts to assign him to the
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next task (¢) in his preference list. Although the matching is
temporarily updated by assigning worker w to task ¢ (line 9),
the actual decision of acceptance is made by calling Algorithm
3 or Algorithm 4 (which are described later in this section)
according to the adopted reward scheme. These algorithms
return the workers (R) that are removed from the current
assignment set of task £. Then, the algorithm sets these workers
free again and pushes them back onto the stack (lines 15-18).

Below, we present the performance guarantees of the al-
gorithm with both general and proportional reward schemes
by leveraging the analogy between the worker selection step
of the algorithm (lines 11 and 13) and the online budgeted
maximum coverage (OBMC) problem. To this end, we first
give a brief description of this problem.

OBMC problem: Assume that a predefined budget B and
a universal set U = {u1,us,...,us} with associated weights
{0; : i =1,...,p} are given. In each iteration i, a set S; C
U with a cost of ¢; is introduced in an online manner, and
the objective is to maximize the weighted coverage over U
within the budget constraint by keeping a certain subset of the
introduced sets S = {S1,52,...,5,}. However, the budget
limit cannot be exceeded at any time (i.e., the total cost of the
retained sets should always be less than B), and a set that has
been rejected/preempted at some point cannot be included in
the solution later.

Theorem 2. (Rawitz and Rosen [44]) There is a 4

1—r"
competitive online deterministic algorithm for the OBMC

problem, where r = maxg,es 4.

1) General Reward Scheme: We first describe the task
selection mechanism for the general reward scheme by giving
a pseudo-code description in Algorithm 3. This algorithm is
adapted from the OBMC algorithm mentioned in Theorem 2 to
our setting (also optimized for running time, which was not a
primary concern in [44])). It accepts a new set if the ratio of the
additional utility (i.e., weighted coverage) the set will provide
to its cost is larger than 2 times the ratio of the total utility
to the total cost in the current solution (line 7). If accepting
the set violates the budget constraint, the sets in the current
solution are discarded one by one in non-decreasing order of
efficiency (utility provided per cost) until the budget constraint
is satisfied. Another unique aspect of this algorithm is that
when it calculates the total utility in the current solution, it also
accounts for the distinct utility that was provided by the set that
was discarded the latest as if it had been partially kept in the
solution. For each task ¢, the workers in this imaginary solution
are stored in H;, the fraction of C}” used in the imaginary
solution is stored in z;(w), the efficiency of a worker w in
H; is stored in 7:(w), and the fraction of a Pol p covered by

1 is stored in z;(p, w). Interested readers are referred to [44]
for more detailed descriptions of these variables.

4
1-p
), in an MCS system with

Theorem 3. Algorithm 2 always produces -stable match-

. T (W
ings, where p = max,ew +e7( t;ft )

a general reward scheme.

Proof. We prove this by contradiction. Assume that there is
an unhappy coalition (S,#) that prevents the final matching

Algorithm 3: WorkerSelection (¢, w, M)
Input: ¢: Task evaluating worker w

w: Candidate worker

M: Current matching
xi(w) =1
foreach p € C}’ do

zi(p,w) =1=3 ey, 2t(p,w')
ne(w) = ne(w) + 2¢(p, w)ve (p)
end
ne(w) = ne(w) X by /re(w)
if 7 (w) <2 x ZpEP(t) Zw,th z¢(p, w")ve(p) then
| return {w}
end
insert w to H; by maintaining the order, i.e.,
H, = {12}1,12}2, ..,ﬁ)q} S.t. nt(ﬁ)i) > Ut(lf),q_l), Vi < q

n k+ max{k’ <|Hy|:v= Zf:_ll ri(w) < by}
12 WM =b —
13 w’' « kth worker in H;
14 3 =min{bM /ri(w'), 1}
15 foreach p € th/ do
16 ‘ zi(p,w') = %zt(p, w’)
17 end
18 R=10
19 if z;(w') =1 and 8 < 1 then
0 | R+ {w}
21 end
2 zy(w') =p
23 for i + |Hy| down to k + 1 do

o e N M B W N =

—
=4

24 w < ith worker in Hy
25 H;.remove(w)

26 if z;(w) = 1 then

27 | R+ RUwD

28 end

29 end

30 return R

produced by the algorithm from being a %p—stable matching.

Thus, based on Definition 3, there must be a set S’ C ./\/l(f)

such that

4 % U(M(D))
L—p

and Tf(é’) < bt{vl + T{(S/).

U(SUM(#)\ S)) > (20)

Let W = {w;,Ws, ..., w;} be the set of workers that have
been matched to task ¢ at some point during the course of the
execution of Algorithm 2. The corresponding coverage sets of
these workers are 55 = {C?f : 1 < i <}, and the rewards
offered to these workers by task # are given as R; = {r(w;) :
1<i<li}.

Note also that the algorithm attempts to match a single
worker-task pair at a time, and if a worker w is first matched
with a task ¢ (line 9) and then removed from M(¢) at some
point (lines 15-18), the algorithm will never attempt to match
him with task ¢ afterwards, instead it will try to match him
with other tasks which come after task ¢ in his preference list

0018-9545 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 14,2021 at 00:41:20 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3065688, IEEE

Transactions on Vehicular Technology

L,,. Thus, from a task’s perspective, say task 7, this is exactly
the same problem with the OBMC problem, as we have a
collection C; of sets with associated costs R; that arrive one
at a time, and that cannot be later included to the solution
M(t) after they are discarded, and the goal of task # is also
to maximize the weighted coverage within the budget. In fact,
we can map the two problems to each other as follows:

U <+ P(1),
S +— C;,

Si +— CF,
¢ «— (W),
B +—b;.

For this reason, Algorithm 2 runs the adapted version of the
OBMC algorithm (i.e., Algorithm 3) as a subroutine (line 11)
to decide which workers to keep in the worker set of a task
after the algorithm attempts to assign another worker to her.
Then, by Theorem 2, we have that

4 x Us(M (1)

21
s @1

U{ (Shest) <
where Sj; € W is the best set that could be assigned to
task ¢ providing the highest total weighted coverage within
the budget constraint (i.e., an optimal solution of the corre-
sponding online budgeted maximum coverage problem), and
P = ma‘XwEAW 7{[52”)

Note that S cannot include a worker that is not in W, thus
we have

(SU M)\ S)) CW. (22)

That is because, by Definition 1, all workers in S must be
preferring task t to the tasks they are currently assigned.
However, if a worker w is currently matched with task ¢/,
the algorithm should have attempted to assign him all the
other tasks that precede task ¢’ in his preference list. Then,
if worker w prefers task { to task ¢, which means that task
t also precedes task ¢’ in his preference list, we must have
weEW.

Due to (22) and the fact that Sy, is the best feasible set in
W for task ¢, we have

Up(Spest) > Up(SU(M(D)\ ). (23)
Then, combining the inequalities (20), (21) and (23), we get
4 x Up(M()) 54X Up(M(1))

L —p; IL=p
which is a contradiction as p > p;. O

(24)

2) Proportional Reward Scheme: We propose Algorithm 4
for the proportional reward scheme. It directly runs Algorithm
3 (line 18) for task ¢ until the main algorithm attempts to
assign her a worker w that satisfies r¢(w) > 0.2 x b,. When
this happens, the algorithm finalizes the assignment of worker
w to task ¢ (i.e., in the end, they will be matched to each other),
and updates the budget of task ¢ (line 5) and coverage sets of

8

Algorithm 4: WorkerSelectionProportional (¢,w, M)
Input: ¢: Task evaluating worker w
w: Candidate worker
M: Current matching
if A; is false and ry(w) > 0.2 X b; then
A; < true
p = M(1)
M(t) + {w}

1
2
3
4
5 bt = bt — T‘t(U))
6
7
8
9

foreach v’ € W\ {w} do
| oY o\ oy

end
Ht <— @
10 R« 0
11 foreach v’ € i do
12 M(t) = M) U{w'}
3 n(w') =0
14 R < R U WorkerSelection(t, w’, M)
15 end
16 return R
17 else
18 ‘ return WorkerSelection(t, w, M)
19 end

workers (lines 6-8) to reflect the fact that a certain proportion
of task ¢’s budget is not available anymore, and that the utility
of the other workers should be computed considering only the
Pols that are not covered by worker w. It also attempts to
re-assign the previous worker set of task ¢ to her considering
the modified budget and coverage sets (lines 11-15). In the
subsequent iterations in which the main algorithm attempts to
assign another worker to task ¢, since A; is previously set to
true (line 2), the algorithm continues to run Algorithm 3 with
the modified budget of task ¢ and coverage sets of workers
(line 18).

Theorem 4. Algorithm 2 always produces 5-stable matchings
in the presence of a proportional reward scheme.

Proof. We prove it by contradiction. Let M be the returned
matching by the algorithm, and (S, t) be an unhappy coalition
in M that, for some S’ C M(t), satisfies

Us(S U (M(E)\ ) > 5 x Us(M(D))
and 7;(S) < bM +r(S").

(25)

Thus, (S,%) prevents M from being a 5-stable matching
according to Definition 3.
If A; is true in the end, then M(%) includes a worker w
such that
ri(w) > 0.2 X b;. (26)
Since the utility U;(w) of worker w is proportional to his
reward r;(w), we have

Up(M(1)) > Ug(w) = 0y x 7(w) 27)
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Also, given the budget limit of task #, the total weighted
coverage that the best feasible worker set can provide for task
t is at most

Unax = 0¢ ¥ b;. (28)
Then, by (26), (27) and (28), we get
5 % Us(M(D) > Upar
> Uy(SU(M(D)\ 5") (29)

which contradicts (25).

On the other hand, if A; is false in the end, then only
Algorithm 3 has been run for task ¢, similar to the case with
the general reward scheme, thus the inequality (21) must hold
here, as well. Since the inside of the if block in Algorithm
4 is never executed, we have that rg(w) < 0.2 x b, for all
w € W. Then, (21) becomes

Us(Spest) < 5 x Us(M(1)) (30)

Following the same steps ((22) and (23)) in the proof of
Theorem 3, we obtain

5 x Up(M()) > 5 x Up(M(1)) (31)

which is also false and completes the proof. O

C. Feasibility, Rationality and Efficiency

We lastly show that the proposed algorithms always produce
individually rational and feasible matchings, and analyze their
asymptotic running times.

Theorem 5. Algorithm 2 always produces individually ratio-
nal and feasible matchings.

Proof. Note that a worker can only get matched with a task in
his preference list (line 7), and matching with any of the tasks
in his preference list is profitable for him since those that are
not so are removed from his preference list in Algorithm 1
(line 3). Thus, we conclude that the produced matchings are
individually rational. It is clear from lines 9 & 16 of Algorithm
2 that the produced matchings are feasible in terms of mutual
partnership. As for the budget feasibility, when the reward
scheme is general, Algorithm 3 returns (line 11) the set of the
least efficient workers that need to be removed from the worker
set of task ¢ to stay within the budget constraint b;, which are
then actually removed from the worker set of task ¢ in lines 15-
18 of Algorithm 2. When the reward scheme is proportional,
Algorithm 4 either only runs Algorithm 3 (line 18), or executes
the inside of the if block beginning in line 1 at most once for
each task ¢, where the budget of task ¢ is decreased (line 5) by
the reward amount that will be paid to the accepted worker w.
After that, it always runs Algorithm 3 for task ¢. Therefore,
the produced matchings are also feasible. O

Running time. The initialization (i.e., running Algorithm 1)
takes O(knm + mnlog(n)), where the latter term is due to
sorting 7 for each worker. In Algorithm 2, each worker w
is pushed onto the stack at most |L,| < T times, thus the
while loop iterates at most nm times. The costliest operations

9

Fig. 2: Trajectories of the workers in the KAIST data set
(circles denote the Pols).

Fig. 3: Trajectories of the workers in the NYC data set (circles
denote the Pols).

in the while loop for the general and proportional reward
schemes are running Algorithm 3 (line 11) and Algorithm 4
(line 13), respectively. Algorithm 3 runs in O(km) time. Since
the inside of the if block in Algorithm 4 will be run at most
once and hence Algorithm 3 will be called at most 2 times
for each worker-task pair (from lines 14 and 18 in Algorithm
4), the amortized cost of Algorithm 4 also becomes O(km).
Therefore, the worst-case running time of our approximation
algorithm is O(knm? + mnlog(n)) regardless of the reward
scheme.

V. SIMULATION RESULTS

In this section, we present an extensive evaluation of the
proposed algorithms in MCS systems with both general and
proportional reward schemes.

A. Settings

Similar to [11], we utilize two real data sets [45], [46] that
consist of the trajectories of 39 and 92 participants from New
York City (NYC) and the campus of the Korea Advanced
Institute of Science and Technology (KAIST), respectively. We
create 300 Pols at random locations that are on the trajectory
(i.e., within 50 meters) of at least one participant. Fig. 2 and
3 show the trajectories in the data sets and an example of Pol
distribution.

We let the trajectories in the data sets to be the trajectories of
the workers in our system. To look at the impact of the number
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of workers, we use random-sampling to obtain a worker set
of certain size. According to the experiment requirements, we
create n tasks whose budgets are assigned randomly from [10,
100]. In order to determine the Pol list of a task ¢, we first
select a random number s from [1, 25]. Then, we randomly
insert s of the all Pols to P(t) after assigning a random weight
value from (0, 1]. Since we utilize deterministic trajectories,
the lists of Pols to be visited by workers and the tasks they
can complete are known in advance. The assignment of the
rewards for different reward schemes is made as follows:

o General reward scheme: For each worker-task pair
(w,t), we assign the reward r(w) randomly from the
range [0.05 x by, 0.95x b,]. If C}* = 0, we set r(w) = 0.

« Proportional reward scheme: For each worker-task pair
(w, t), the reward is set as

Y pecy vi(p)
Zpep(t) ve(p)”

Since the rewards are already determined based on the ran-
domly assigned budget values, we let ¢;(w) = 0 for all worker-
task pairs (w,t)>.

In the simulations, we let CSTAs and CSTAp denote
the execution of the proposed Coverage-aware Stable Task
Assignment algorithm with general and proportional reward
schemes, respectively. We compare the performance of these
algorithms with that of Maximum Coverage Quality Assign-
ment (or MCQA) algorithm proposed in [11] and Greedy
algorithm proposed in [12] for the problem of finding the
worker set with the maximum total weighted coverage over
a given set of Pols. They both are originally proposed for the
MCS systems with only a single task requester, m workers,
and k Pols. The MCQA algorithm has an approximation ratio
of (1—1/e) for the aforementioned optimization problem and
a time complexity of O(kn®). On the other hand, the Greedy
algorithm does not have a theoretical performance guarantee
and runs in O(knm?). We adapt them to our settings with
multiple task requesters as follows. For each task ¢ in the
system, we first find the set S of workers that, among all the
tasks in the system, prefer task ¢ the most. Then, we separately
run the MCQA/Greedy algorithm for each such (¢, S) pair with
P(t) being the set of Pols, and finalize the assignments made
in each run. Lastly, for each worker w that is still unmatched,
we traverse his preference list L,, from the beginning, and
match him with the first task that benefits from hiring him
(i.e., worker w increases the coverage quality of task ¢) and has
sufficient budget to do so. These adapted versions are denoted
by MCQA* and Greedy* in the simulations.

ry(w) = by X (32)

B. Performance Metrics

Here, we introduce the performance metrics that will be
used in the evaluation of the results.

o Stability success ratio (%). This metric shows how of-
ten an algorithm achieves the best known upper-bound
in terms of stability in different settings. Specifically, let

2Introducing extra, random cost values naturally reduces the number of
qualified pairs and consequently the average coverage quality, but it does not
have a notable effect on the relative performance of the algorithms.

10

My, Ma, ..., Mjgo be the matchings produced by an algo-
rithm A in 100 consecutive runs on different MCS instances.
Also let

s(M;,a) = {

1, if M; is an a-stable matching, (33)
0, otherwise.

Then, the stability success ratio of 4 is calculated by
(34)

for the MCS systems with a general reward scheme, and by

100

Z S(Mia 5)

i=1

(35)

for the MCS systems with a proportional reward scheme.

e User happiness (%): This quantifies the user happiness
based on the stability of the matching as follows:

100 % [1— # of coalitionallly unhaPpy pairs 36)
# of qualified pairs

o Stability (o): This is the value of the objective function
defined in (17), and indicates that the produced matching
is (1/0)-stable. If there is not any unhappy coalition in the
matching, then ¢ = 1 (by definition of &;).

o Average coverage quality (%): This is the average weighted
coverage that the produced matching, M, provides for the
tasks, or formally:

100~ _UM()

. 37
teT Zpep(t) Ut (p)

o Running time: In order to show the scalability of the algo-
rithms, we also present their running times with increasing
number of workers/tasks/Pols on an Intel core i7 processor
with 16 GB memory and 2.5 GHz speed.

Lastly, we note that all results provided in this section are
the average of the results obtained in 100 runs (each with a
different MCS instance).

C. Results

We first analyze the results for the KAIST data set. Fig.
4 & 5 show the impact of the number of tasks n on the
performance of the algorithms with general and proportional
reward schemes, respectively. First, note that the performances
of the MCQA* and Greedy* algorithms in terms of stability
(Fig. 4b and Fig. 5b) deteriorate significantly as n increases.
This is due to the fact that these algorithms do not consider the
system as a whole, and aim to maximize the coverage for each
task separately. However, since they optimize the assignments
for individual tasks extensively (which, in turn, increases their
running time significantly as can be seen in Fig. 12), they
outperform the other algorithms when n is small in terms of
user happiness (Fig. 4c and Fig. 5c) and average coverage
quality (Fig. 5d).

0018-9545 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 14,2021 at 00:41:20 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3065688, IEEE

Transactions on Vehicular Technology

11

100 50
9
Y 240
< E
@ o
8 60 © 30
2 I3
| o
Q [
2 w0 220
i 3
] 5
S g [—e—csta, S 10|—e—CsTA,
——MCQA* g ——MCQA
—+—Greedy" —+— Greedy"
0
0 5 10 15 20 25 0 5 10 15 20 25
# of tasks (n) # of tasks (n)
() (d)

Fig. 4: General setting: performance comparison against varying number of tasks in the KAIST data set (m = 92).
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Fig. 7: Proportional setting: performance comparison against varying number of workers in the KAIST data set (n = 15).

In terms of stability success ratio, the CSTAs and CSTAp
algorithms produce perfect task assignments in the general
and proportional settings, respectively, as expected (due to
Theorem 3 & 4), and vastly outperform the other algorithms.
We see that the CSTA algorithm occasionally fails to produce
perfect assignments in terms of stability success ratio in the
proportional setting, which indicates that assigning a task ¢
with the first worker w such that r;(w) > 0.2 x b; (lines
1-17 in the CSTAp algorithm) is required to achieve 5-
stable matchings. Yet, this comes with a trade-off as the
CSTAp algorithm yields significantly lower stability scores
(o) compared to the CSTAy algorithm as seen in Fig. 5b.

Since the Greedy* algorithm selects workers according to the
ratio of how much utility they will bring for the tasks to the
reward they will be paid, its performance is much better than
the MCQA* algorithm in the proportional setting where the
value of the proposed reward per utility is constant for all
workers.

In the average coverage quality graphs (Fig. 4d and 5d), we
see that the average coverage decreases for all algorithms with
increasing n as there will be fewer workers assigned to each
task. We also see that the coverage scores in the proportional
setting are remarkably larger than those in the general setting
mainly because of the discrepancy between reward and utility
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Fig. 11: Proportional setting: performance comparison against

values in the latter setting (i.e., a high reward does not indicate
a high utility for tasks, unlike the proportional setting). It
is also noteworthy that in terms of coverage, the proposed
algorithms mostly outperform the MCQA* and Greedy* al-
gorithms, whose sole objective is to maximize the coverage.
This demonstrates that taking user preferences into account
does not necessarily yield less efficient assignments in terms
of system-level utility metrics such as coverage.

Next, we look at the performance of the algorithms with
varying number of workers in Fig. 6 & 7. Except for the
user happiness results, we observe that increasing the number
of workers m has a similar impact on the performance of

varying number of workers in the NYC data set (n = 10).

the MCQA* algorithm with decreasing the number of tasks
n. This is because both changes result in a smaller ratio of
n to m (i.e., task scarcity), which alleviates the deficiency
of the MCQA* algorithm in handling multi-task assignments.
This is also mostly true for the Greedy* algorithm, however
its performance in terms of stability success ratio in the
proportional setting is more stable. We note that the changes
in the number of tasks or workers do not have a significant
impact on the stability and stability success ratio scores of
the proposed algorithms in the proportional setting as seen
in Fig. 5a-b and 7a-b. Another remarkable point is that
the MCQA* and Greedy* algorithms have almost identical

0018-9545 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 14,2021 at 00:41:20 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3065688, IEEE

Transactions on Vehicular Technology

performance in the general setting with varying n and m
values, yet their performance in the proportional setting is
quite different. Specifically, in terms of stability success ratio
and user happiness, the Greedy* algorithm mostly outperforms
the MCQA¥* algorithm, while it is the opposite in terms of
stability and average coverage quality.

Fig. 6 & 7 show that the CSTAs algorithm always out-
performs the MCQA* algorithm in terms of user happiness
(by up to 25%) regardless of the number of workers, but
it is slightly outperformed by the Greedy* algorithm when
m is larger than 70 in the proportional setting, and that the
performance of the proposed algorithms mostly degrades as
m increases. We observe that all algorithms achieve higher
coverage scores with increasing m values, which is naturally
the opposite of what we see with increasing n values. This is
because if there are more workers per task in the system, the
competition between tasks will be less severe, and each task
will be assigned to a higher number of workers, on average.
However, the budget constraints of the tasks limit the number
of workers that can be assigned to them, hence we start to
see a smaller or no increase in coverage after some point,
especially in the proportional setting. We also note that the
stability of the matchings produced by the proposed algorithms
is significantly higher than the theoretical upper-bound (0.2)
in the proportional settings (Fig. 5b & 7b). Besides, Fig. 6b
& 7b demonstrate that our algorithms always significantly
outperform the MCQA* and Greedy* algorithm in terms of
o. The difference in o is especially big (up to 0.6) when the
ratio of n to m is larger.

In order to demonstrate that the results provided above are
not specific to a data set, we also examine the performance
of the algorithms in the NYC data set in Fig. 8, 9, 10 & 11.
The proposed algorithms in general perform better than the
benchmark algorithm as in the KAIST data set. The results in
both data sets are similar, thus the majority of our comments
above for the KAIST data set also apply to the results for the
NYC data set. However, there are some differences in results
we see in the NYC data set. The first significant difference
can be seen between Fig. 7c and Fig. 1lc. Here, we see
that increasing the number of workers continues to improve
the achieved coverage in the NYC data set, while there is
mostly little to no improvement in the KAIST data set. This
is primarily because of the limited number of workers (39)
available in the NYC data set. That is, since the tasks still
have budget for more workers, adding new workers to the
system simply expands the coverage. This can also be partially
observed in Fig. 7 up until m = 60. Another noteworthy
difference is in the user happiness results in proportional
setting. All algorithms accomplish better user happiness scores
(up to 20%) in the NYC data set compared to those in KAIST
data set (i.e., Fig. 5b vs. Fig. 9b and Fig. 7b vs. Fig. 11b).
This might be because the trajectories of the workers in the
NYC data set are more dispersed than those in the KAIST
data set (see Fig. 2 & 3), which, in turn, reduces the overall
competition between the tasks as such a difference in the
trajectories implies that the Pols covered by the workers differ
more in the NYC data set, and the workers are hence favored
by different tasks.
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Lastly, we compare the running times of the algorithms in
Fig. 12. In order to show the scalability of the algorithms
for large numbers of tasks, workers and Pols, we generated
a synthetic data set in a 3,000 m x 3,000 m area with
k randomly located Pols, m workers whose trajectories are
created using the random-walk mobility model (as in [11]) for
2,000 meters (with a direction change at every 200 meters),
and n tasks whose Pol sets and budgets are determined
exactly as in the real data sets. Since the proportional setting
allows us to compare the running times of all algorithms, the
rewards are assigned using the proportional reward mechanism
(the running times of the MCQA*, Greedy* and CSTAg
algorithms in proportional setting are similar to their running
times in the general setting).

Recall that in the MCQA* algorithm, the original MCQA
algorithm is run separately for each task ¢ and the set (); of
workers that prefer task ¢ the most, and the time complexity
of each such run is O(ki®), where k = |P(t)| and 1 = |Qy|.
Since fewer tasks in the system means that for each task ¢,
there will be more workers that prefer ¢ the most (i.e., a larger
|Q¢]), the running time of the MCQA* algorithm increases
when n decreases (Fig. 12a) or m increases (Fig. 12b). The
time complexity of the original Greedy algorithm is O(knm?),
and its running time decreases with increasing n values up
until n = 25 due to the same reason (i.e., fewer workers
per task). After this point, the second phase of the Greedy*
algorithm, which also has a time complexity of O(knm?) and
is where the algorithm tries to match the workers that could not
get matched with any tasks during the first phase as proposed
in our adaptation, starts to dominate the running time and we
begin to see a linear growth. In these figures, we also see
that the running times of the CSTAs and CSTAp algorithms
are mostly a few orders of magnitude smaller than that of
the MCQA* algorithm. This is simply because of the superior
time complexity of these algorithms: O(knm? + mnlog(n)).
They also run significantly faster than the Greedy* algorithm.
Note that while the complexity of proposed algorithms will
be the same as the Greedy* algorithm, because log(n) < km
for most values used in practice, their actual running times
are less than that of the Greedy* algorithm. This is because
the preference list of each worker in the proposed algorithms
contains only a limited number of tasks as a rational worker
will accept only the tasks that request data from some of the
POIs on his trajectory (line 3 of Algorithm 1). So, the number
of times workers are pushed onto the stack is generally much
smaller than n x m, making O(knm?) not tight. Finally, we
note that the running times of all algorithms increase linearly
with the increasing number of Pols & as seen in Fig. 12¢, which
is in accordance with the influence of k in their asymptotic
running times.

VI. CONCLUSION

In this paper, we study the problem of finding stable
multi-task assignments with weighted coverage-based utility
functions in a budget-constrained and opportunistic mobile
crowdsensing scenario. We first define the stability (or user
happiness) conditions within this scenario, and point out the
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hardness of the problem and nonexistence of optimal solutions
in some cases. We then present two approximation algorithms
and derive their approximation ratios in different settings.
Finally, we provide an extensive evaluation of the proposed
algorithms, which demonstrates that they largely outperform
the considered benchmark algorithms in terms of both user
happiness and coverage quality while having significantly
smaller running times (up to 4 orders of magnitude). In our
future work, we will address the coverage-aware stable task
assignment problem in an online scenario where both workers
and tasks can arrive and leave at any time, and when worker
trajectories thus the POIs that will be visited by workers are
uncertain.
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