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Abstract—Energy is a scarce resource in mobile networks
consisting of devices running on batteries. Thus, many studies
have looked at the energy management issue in these networks
from different aspects. Thanks to the recent advances in wireless
power transfer (WPT) technology, the wireless charging of
the mobile devices has been considered for their continuous
operation. While most of the research efforts have focused on
the scheduling of mobile chargers for charging of the devices
(e.g., sensor) in the field, interesting research problems such as
energy balancing among a population of nodes have also emerged
with the consideration of bidirectional wireless charging among
nodes. Energy balancing aims to balance the energy among
nodes towards prolonging the network lifetime especially when
external energy sources are not available. Previous studies target
an energy balance among the devices as fast as possible but
they waste energy in the network during this process due to
the excessive interactions between nodes. Moreover, they do not
take into account the heterogeneous contact relations between
the nodes in the network. In this paper, we address these
issues and present efficient and loss-aware energy balancing
protocols considering the contact graph heterogeneity between
nodes and a time threshold for completing the energy balancing.
Simulation results show that the proposed algorithms outperform
the previous work by reaching a better energy balance with a
lower energy loss within the restricted relations among nodes in
the network.

Index Terms—Energy balancing, wireless energy transfer,
mobile opportunistic network.

I. INTRODUCTION

The most critical resource for mobile networks consisting

of battery-powered devices is the energy. Thus, efficient

utilization and management of energy is vital for collaborative

network operations. There have been many research efforts

performed to provide solutions based on different methods

(e.g., harvesting [1], battery replacement [2]) to this problem

so that network lifetime can be prolonged.

With the recent advances in wireless power transfer (WPT)

technology and increasing efforts from both the academia

and industry, numerous studies have considered WPT based

energy replenishment of nodes in mobile networks. Most

of these studies have been performed for wireless sensor

networks [3]–[5], but there are some recent studies for smart-

phones [6]–[8], electric vehicles [9]–[11] and Internet-of-

Things (IoT) devices [12], [13]. For example, in the sensor

networks domain, most of the time mobile chargers, which are

special vehicles (e.g., robot, Unmanned Aerial Vehicle (UAV))

with high energy supplies are employed to periodically charge

the sensors in the field.

The one-way charging of mobile devices from chargers

has recently been extended to bidirectional energy sharing

between the regular nodes in the network and several applica-

tion specific problems have been studied benefiting from this.

For example, in mobile social networks domain, thanks to the

recent products (e.g., Samsung Galaxy S10, Huawei Mate 20

Pro) in the market and also some prototypes developed by

research community [8], [14] bidirectional wireless charging

between smartphones has been considered for crowdcharging

of smartphones by other users [15]–[19]. While current form

of wireless charging used in these products only happen in

very close distances (i.e., almost touching), it provides a

convenient process without the hassle of cables. On the other

hand, peer-to-peer energy sharing has triggered a new set

of research studies in different mobile network applications.

For example, for an opportunistic content delivery, energy

has been considered as an incentive [20]–[22] to the devices

to carry the message. Similarly, an interesting problem of

energy balancing [23]–[25] among nodes has been studied

towards prolonging the lifetime of the network, which could

be vital especially when there is no access to external energy

sources. In this paper, we study the energy balancing problem

utilizing the peer-to-peer energy sharing among the nodes in

the network during their opportunistic encounters. Our goal is

to address the deficiencies in the state-of-the-art solutions and

provide loss-aware and efficient energy balancing protocols

considering the heterogeneous relations between nodes.

A. Energy Balancing and Motivating Example

Energy balancing is the process of equalizing the energy

at each node or minimizing the sum of the differences of

their energy from the average energy (i.e., variation distance

as will be detailed in the next section) in the network as

much as possible. As the nodes interact and exchange energy

between each other, there will be an energy loss due to the

wireless charging inefficiency. Thus, the energy balancing

process should consider not only the balancing of energy

among nodes but also the minimization of the loss during

this process.

In the very few studies [23]–[25] that look at this problem,

it has been shown that the variation distance among the target

energy levels of nodes and current energy levels will decrease
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Fig. 1: (a) Energy balancing in a fully connected contact

graph. (b) Energy balancing in a partially connected contact

graph. (c) Energy Balancing with time limit of 50. Edges

represent that the nodes meet each other opportunistically with

an average intermeeting time shown as edge weight.

only if the nodes in the opposite sides of the average energy in

the network interact and exchange energy. While this is true

and help reach an energy balance among the devices as fast as

possible, the presented results and conclusion rely on a very

restrictive scenario on node interactions. It is assumed that

each pair of nodes interact with equal probability, however,

this is not always true in mobile opportunistic networks. In

a realistic scenario, some pairs of nodes might not have any

interaction opportunity with other nodes and some pairs of

nodes might have large intermeeting times incurring huge

waiting times for some possible interactions to occur. Another

major problem with the current approaches is that they do

not consider the final optimal target that can be reached after

the interactions between nodes and the resulting energy loss.

Instead, they rely on the initial distribution of energy and

target the initial average energy in the network. Thus, a perfect

energy balance (i.e., all nodes having energy equal to the

average energy in the network) can not be achieved since the

average energy in the network will change after some energy

exchanges between nodes. In our previous work [26], we have

addressed this problem for homogeneous networks, however,

for heterogeneous networks a more comprehensive solution

should be provided.

Consider the example in Fig. 1 with six nodes in the

network and with corresponding energy levels. If each node

on the negative side (i.e., having energy less than the average

energy) has an opportunity to meet with each node on the

positive side as in Fig. 1a, the energy sharing process will

be relatively easy. The initial average energy in the network

is 53.5%, however, this cannot be reached by all nodes as

due to the imperfect transfer efficiency there will be a loss

during energy transfers between nodes. For example, for an

energy loss rate of β = 0.2 (i.e., 80% transfer efficiency),

the optimal average energy reachable by all nodes will be

50%, which happens when node 5 transfers 35% to node 1

(which only gets 28% due to loss), node 4 transfers 50%

to node 2 (which only gets 40%) and node 6 transfers 20%

to node 3 (which only gets 16%). When there is no energy

exchange opportunity (i.e., meeting) between some negative

and positive side node pairs, the optimal energy achievable

can be less than this. For example, for the case in Fig. 1b,

the most achievable average energy is 48.94%, which happens

when node 5 transfers 48.68% to node 2, making its energy

10 + 48.68× (1− 0.2) = 48.94%. Similarly, node 6 transfers

21.05% to node 3 which gets 16.84%, node 4 transfers 51.05%

to node 1 which gets 40.84%. Then, node 1 and node 3

transfer 13.89% and 1.89% to node 5 respectively, making

node 5’s and their own energy levels reach 48.94%. So, in this

case, reaching a perfect balance was also possible but due to

the incomplete contact graph between nodes, it was less than

the complete contact graph case. Finally, there can be a time

threshold for reaching an energy balance. In that case, we

can simply ignore the edges with average intermeeting time

higher than this threshold and recalculate the optimal energy

balance. Fig. 1c shows the situation where the deadline for

energy balance is set to 50. The dotted edges shown in the

figure are ignored; hence, nodes cannot use these edges for

energy exchanges. In this case, the optimal target reachable

is 49.09%. However, due to the lack of meeting opportunities

before the deadline, all the nodes cannot reach 49.09%. This

happens when node 5 transfers 35.90% to node 2 which only

gets 28.72% making node 2’s energy level 38.72%. Also, node

1 transfers 13.63% to node 6, node 4 transfers 50.90% to node

1 and node 6 transfers 31.81% to node 3 which gets 25.45%

and reaches an energy level of 59.45%. Overall, all nodes

except 2 and 3 reach a final energy level of 49.09%, which is

the average energy in the network. This example shows that

with sparse contact graphs, the optimal energy balance can

change and not all nodes may reach that.

B. Contributions

In this paper, we study the energy balancing problem among

a population of mobile nodes that interact opportunistically.

We aim to minimize both the energy difference between

nodes and the energy loss during this process. However, in

some cases obtaining the energy balance among all nodes in

the network may not be feasible due to the limited energy

exchange opportunities (i.e., meeting). Thus, we first target

energy balancing as much as possible and later minimize

the energy loss. The main contributions of this paper can be

summarized as follows:

• We analytically find the optimal energy level in a large

scale network with uniform energy distribution for a

given energy transfer efficiency or loss rate.

• For a given network of any size with energy distributions

at nodes, contact graph and intermeeting times between

nodes, we find the optimal energy balance achievable by

Mixed Integer Linear Programming (MILP).

• We propose two different energy balancing protocols

based on optimal energy exchange schedules found by

MILP results and based on opportunistic energy ex-

changes towards optimal energy balance in MILP results.

• We perform extensive simulations using meeting patterns

from synthetic and real traces and show that the proposed

approaches perform better than the state-of-the-art.
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Notation Description

m Number of nodes in the network.
P Interaction protocol between nodes for energy exchange.
β Energy loss rate.
τ Time threshold to finish energy balancing.
Et(u) Energy of user u’s device at time t.
λi,j Average intermeeting time between nodes i and j.

Et Average energy in the network at time t.
Eopt Optimal average energy achievable in the network with

minimum variation distance possible.
δ(P,Q) Total variation distance between two distributions, P , Q.
Et(u) Ratio of node u’s energy to the total energy in the

network at time t.
Et Energy distribution at time t on a sample space M.
εu,u′ The amount of energy exchanged from u to u′.
L The total energy loss in the network due to the energy

exchanges.
Ef (u) The final energy level of node u at the end of energy

balancing process.

TABLE I: Notations

The rest of the paper is structured as follows. In Section II,

we provide our assumptions on the system model and the

problem statement. In Section III we elaborate on the analysis,

MILP solution and the proposed energy balancing algorithms.

In Section IV, we present the simulation settings and compare

the proposed algorithms with the state-of-the-art solution.

Finally, we conclude the paper and outline the future work

in Section V.

II. SYSTEM MODEL

A. Assumptions

We assume a set of m nodes denoted by M =
{u1, u2, ..., um} in a mobile network. Each node is assumed

to have equal battery capacity and necessary hardware for

energy sending and receiving. We assume that each node

knows the energy levels of other nodes, which could be simply

achieved via cellular communication over a centralized server.

As in previous work [23]–[25], for simplicity, we also do not

consider energy loss due to mobility or other activities of the

nodes. The nodes just need to send update about their energy

level only after they interact and exchange energy with other

nodes in the network. Thus, such updates rarely happen in

mobile opportunistic networks.

When two nodes meet, they exchange energy according to

an interaction protocol P . The energy level of a node u at

time t is denoted by Et(u). We assume each pair of nodes,

(ui, uj), meets in an exponentially distributed manner with an

average mean of λuiuj
. We also assume an energy loss rate,

β ∈ [0, 1), which is assumed a constant and depends on the

technology and the equipment used. When two nodes u and

u′ interact at time t and node u transfers ε energy to node

u′, node u′ will receive (1−β)ε energy and their new energy

levels will be:

(Et(u), Et(u
′)) = P(Et−1(u), Et−1(u

′))
= (Et−1(u)− ε, Et−1(u

′) + (1− β)ε)

As the interaction between u, and u′ doesn’t affect the energy

levels of any other nodes, the energy levels of all other nodes

remain unchanged. The notations used throughout the paper

are summarized in Table I.

B. Problem Description

The goal is to achieve an energy balance among a popu-

lation of nodes with a very low variation while minimizing

the energy loss due to the energy transfers among nodes.

We define the energy difference among nodes using the total

variation distance from probability theory as in [23]–[25].

Let P, Q be two probability distributions defined on a

sample space M. The total variation distance is calculated

as:

δ(P,Q) =
∑
x∈M

|P (x)−Q(x)| (1)

Note that for the sake of keeping the actual differences,

we do not divide the sum by two as in standard definition

of variation distance. In our context, we consider the total

variation distance between the current energy distribution of

nodes and the target energy distribution, where ideally all

nodes have the same energy. The target energy level will

not be equal to the initial average energy in the network, as

there will be some energy loss during the energy exchanges

performed to balance energy among nodes. Moreover, it may

not be possible to have all nodes reach the same energy level.

The goal in those cases will be to minimize the variation

distance between the final energy levels and the average

energy in the network. We denote the energy distribution at

time t on a sample space M by Et where

Et(u) = Et(u)

Et(M)
,where, Et(M) =

∑
x∈M

Et(x)

for any u ∈ M. We also define the average energy in the

network at time t by

Et =
Et(M)

m
. (2)

III. MOBILE ENERGY BALANCING

In this section, we give the details of the proposed energy

balancing protocols. We first find the optimal energy level

in a large scale network with many nodes for a given loss

rate. Then, we discuss a Mixed Integer Linear Programming

(MILP) solution to find the optimal energy level for a given

network of any size and limits on node relations. Utilizing

MILP results, we then propose two different energy balancing

protocols.

A. Ideal Energy Balance with Minimum Loss

Previous work [23]–[25] have shown that the energy vari-

ation distance in the network will decrease if and only if the

nodes in the opposite sides of the average energy level interact

and exchange energy. That is, if a node u with Et(u) < Et and

a node u′ with Et(u
′) > Et interact at time t and balance their

energy, δ(Et,U) < δ(Et−1,U), where U denotes the uniform

distribution on M (i.e., Et(u) = Et ∀u).
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In order to reduce the variation distance at every opportu-

nity, the best algorithm in previous work (i.e., POA standing

for online average protocol [23]–[25]) suggested that when-

ever a pair of nodes from opposite sides meet, they should split

their total energy equally. While this will help reduce variation

distance, it is assumed that the opposite sides are determined

by the current average energy level in the network. However,

as nodes interact and there occurs energy loss, the average

energy level, Et, in the network decreases. Thus, this may

cause nodes move between the negative and positive side of

the current average energy level in the network, resulting in

unnecessary energy loss in the network. In order to prevent

this, the decision of opposite sides should be made based on

the final average energy level that will reached at the end.

When each of the nodes in the network has a contact

opportunity with all other nodes in the network, all nodes

in the network can make their energy converge to the same

average energy level in the network. To achieve this, the

energy provided by the nodes with excessive energy should

be sufficient to increase the energy levels of nodes in the

negative side after loss. Consider a large scale network with

many nodes. Also assume that the energy levels of nodes

(denoted by y below) are uniformly distributed in [0,1]. The

final optimal energy balance, Eopt (denoted by x) can be

calculated as follows:∫ x

y=0

(x− y)dy =

∫ 1

x

(y − x)(1− β)dy

x2 = (x2 − 2x+ 1)(1− β)

f(x) = βx2 + 2(1− β)x− (1− β) = 0

This function, f(x) is strictly increasing function when x ∈
[0,1] and β ∈ [0,1], as f ′(x) > 0. The solution is equal to

the positive root at,

Eopt =
−(1− β) +

√
(1− β)

β

As (1 − β) ≤ √
(1− β) when β ∈ [0,1], Eopt will always

be a positive number in [0,1]. For example, when the energy

loss rate β is 20% (or transfer efficiency is 80%), the optimal

energy balance with minimum loss and zero variation distance

is 47.21%, while it is 41.42% for β = 50%.

In an ideal scenario, the energy of all nodes can reach a

perfect balance at Eopt with a minimum of m/2 interactions

between nodes. This happens when the energy need of a node

in the negative side is perfectly provided by a node in the

positive side during a single interaction and they both reach

the target. This requires equal number of nodes in the opposite

sides of the target energy level as well as a perfect meeting

schedule between corresponding pairs that can complement

each other. However, this may not be the case in practice

most of the time. The energy distribution among nodes as

well as the heterogeneous contact relations (i.e., meeting or

not meeting, and meeting with different average intermeeting

times) between nodes may result in different number of nodes

in the opposite sides of the optimal average energy and affect

the energy balancing process.

B. Optimal Energy Balance

In a real setting, the ideal scenario will not be the case as

opportunistic interactions will be limited to only some pairs of

nodes and the distribution of energy levels of nodes may not

be uniform. However, in a given mobile opportunistic network

contact graph1 and the initial energy levels of nodes, we can

find the optimal energy balance achievable among nodes by

Mixed Integer Linear Programming (MILP).

In this paper, we target an energy balance with minimum

possible energy variation distance first. Then, we target min-

imum loss without sacrificing the variation distance. Espe-

cially, when there are multiple ways (i.e., energy exchange

schedules between nodes) of reaching a zero variation dis-

tance, utilizing the one that will result in the minimum energy

loss is important. Note that depending on the application re-

quirements, it is possible to consider other objective functions

with weighted combinations of variation distance and loss in

a similar way.

Let εu,u′ denote the amount of energy exchanged from u
to u′ and Ef (u) denote the final energy level of node u at

the end of energy balancing process. Then,

Ef (u) = E0(u)−
∑
∀u′

εu,u′ +
∑
∀u′

εu′,u(1− β)

Let also L denote the total energy loss in the network due

to the energy exchanges between nodes during the balancing

process. Then,

L =
∑

∀u,u′,s.t.u�=u′
εu,u′β

The objective is to minimize to the variation distance

between the final energy distribution of nodes, Ef , and the

final uniform energy distribution, Uf , where all nodes have

energy equal to the average energy in the final network (i.e.,

Ef (u) = Ef ∀u), as much as possible and then minimize the

total loss in the network. More formally:

min δ(Ef ,Uf )m+ L (3)

s.t. 0 ≤ εu,u′ ≤ Et(u)lu,u′ (4)

kuu′ + ku′u ≤ 1 (5)

where εu,u′ is a decimal in [0, 1] (6)

kuu′ =

{
1, if εu,u′ > 0

0, otherwise
(7)

luu′ =

{
1, if λuu′ ≤ τ

0, otherwise
(8)

In objective function (3), as we give priority to the mini-

mization of variation distance over minimization of loss, we

multiply the former with a constant (i.e., m) that is larger than

the maximum possible value for L. Thus, the optimization

prefers a decrease in variation distance over any decrease in

1This can be obtained from historical meeting patterns of nodes and thanks
to the long-term regularities [27]–[29] in node relations, it can be used for
predicting future meetings.
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loss. (4) allows energy sharing between the nodes with average

intermeeting times less than the time threshold (τ ) and limits

the energy sharing from each node up to its available energy.

Note that energy levels of nodes are assumed to be between

0 and 1. Also, we do not allow unnecessary two way energy

exchanges between nodes via (5).

Note that the optimal average energy level in this case will

be equal to the average energy in the final network. That is,

Eopt =

∑
x∈M Ef (x)

m
. (9)

C. Energy Balancing Protocols

Once the optimal energy balance as well as the required

energy exchanges between nodes to reach that target balance

is found, we propose two different energy balancing protocols

to define the actual energy exchanges during the opportunistic

meetings between pairs of nodes.

In the first protocol, we urge each node to follow the

exact energy exchange schedule found by the MILP solution

(hence named Linear Exact or PLE in short). That is, each

node waits for meeting with the nodes that it is supposed to

perform an energy exchange with and exchanges energy only

in the amount it is allowed to do so with them. This protocol

will let the nodes reach the optimal variation distance in the

network eventually but due to the non-deterministic nature of

opportunistic meeting patterns, it may cause nodes wait longer

than expected as well as cause them miss the advantage of any

earlier meeting opportunity with some unexpected nodes.

In the second protocol, we aim to benefit from the non-

deterministic meetings between nodes and let the nodes reach

target energy level as soon as possible without following the

suggested energy exchange schedule. Optimal target average

energy level, Eopt is found by MILP (using (9)) as in the case

of first protocol, however, the nodes do not wait specifically

for the nodes that they are supposed to exchange energy with.

Instead, whenever two nodes from opposite sides of Eopt

meet, they utilize this opportunity and update their energy

towards the target. Here, in order to prevent nodes from

switching their sides as in the case of previous work and

causing unnecessary additional energy loss, we give priority

to the node whose energy is closer to the target and let it

reach that target by receiving or sharing energy with the other

node. We name this protocol Opportunistic Closer or POC

in short. Note that while this protocol takes the benefit of

any opportunistic meeting for energy exchange besides the

scheduled ones, it can cause nodes not reach to the optimal

energy levels due to the divergence from the schedule that

will make them reach the optimal energy balance. This may

especially adversely affect the performance when the contact

graph in the network is sparse.

Algorithm 1 shows the details of energy balancing process

based on these two protocols. For POC protocol (lines 10-

17), if the node in the negative side, u−, needs less than the

energy that the node in the positive side, u+, can give after

loss, u− is given priority to reach the target. The amount

of energy that u+ has to transfer should consider the loss;

Algorithm 1: Energy Balancing (P , u, u′, t)
Input: (u, u′): Interacting nodes

t: Time of interaction

Eopt: Optimal average energy from MILP

1 (u+, u−) ← (null, null)
2 if (Et−1(u) > Eopt and Et−1(u

′) < Eopt) then
3 (u+, u−) ← (u, u′)
4 else
5 if (Et−1(u) < Eopt and Et−1(u

′) > Eopt) then
6 (u+, u−) ← (u′, u)

7 end
8 end
9 if (u+, u−) is not null then

10 if P = POC then
11 δt−1(u

+) = Et−1(u
+)− Eopt

12 δt−1(u
−) = Eopt − Et−1(u

−)
13 if δt−1(u

+)(1− β) > δt−1(u
−) then

14 POC(Et−1(u
+), Et−1(u

−)) = (Et−1(u
+) -

δt−1(u
−)

(1−β) , Eopt)

15 else
16 POC(Et−1(u

+), Et−1(u
−)) = (Eopt,

Et−1(u
−) + (1− β)δt−1(u

+))
17 end
18 else
19 if εu+,u− > 0 then
20 PLE(Et−1(u

+), Et−1(u
−)) = (Et−1(u

+) -

εu+,u− , Et−1(u
−) + (1− β)εu+,u− )

21 else
22 if εu−,u+ > 0 then
23 PLE(Et−1(u

+), Et−1(u
−)) =

(Et−1(u
+) + (1− β)εu−,u+ ,

Et−1(u
−) - εu−,u+ )

24 end
25 end
26 end
27 end

thus, it should be more than what u− will actually need (lines

13-14). Otherwise, u+ is given priority to reach the target

and the energy of u− is increased accordingly (line 16). For

PLE protocol (lines 18-26), the energy of nodes are simply

updated based on the scheduled energy exchanges between

nodes. Note that by MILP formulation design either εu+,u−

or εu−,u+ will be more than zero at the same time, however,

it is possible that both could be zero as the optimal schedule

may not recommend an interaction between them even though

they are in opposite sides of the average energy level.

IV. SIMULATIONS

In this section, we evaluate the performance of the proposed

energy balancing protocols. Next, we list the algorithms

compared, performance metrics used, and describe how the

simulations are set. Then, we provide the simulation results

and analyze the impact of several parameters on results.
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A. Algorithms in Comparison

We compare the proposed two algorithms with the best

protocol claimed in [23]–[25]. Below are the key points in

these protocols:

• P∗
OA: This Online Average protocol is updated version

of the state-of-the-art protocol POA proposed in [23]–

[25]. In the original POA, each node locally estimates the

average energy level in the network using the ratio of the

total energy seen in the encountered nodes to the number

of encountered nodes, which may not be accurate. As we

assume each node has the information about the energy

levels of other nodes, for a fair comparison we assume

the same for POA and name it as P∗
OA. The protocol

simply lets the nodes in opposite sides of the current

average energy in the network interact and equally split

their energies. For fair comparison, we also use Eopt here

to decide the boundary between opposite sides.

• PLE : In the Linear Exact protocol, when the nodes meet,

they only share the exact amount of energy that MILP

solution (obtained by IBM CPLEX solver [30]) finds to

reach the Eopt with minimum possible variation and loss

after that.

• POC : In the Opportunistic Closer protocol, Eopt is

obtained via MILP similar to PLE , but the nodes op-

portunistically try to reach that target. That is, they do

not wait for the other nodes that they are supposed

to exchange energy found by MILP, but utilize every

meeting opportunity with the nodes in the opposite side.

The one with the closer energy level to the target is given

priority to reach the target first.

B. Performance Metrics

We use the following metrics in the performance compari-

son of the aforementioned algorithms:

• Total variation distance: This is calculated by δ(Et,Ut).
That is, we find the ratio of the energy levels of nodes

to the total energy in the network at each time, take the

absolute difference from uniform distribution at that time

and sum it for all nodes.

• Total energy in the network: This is the sum of energies at

all nodes. Note that as the nodes interact and lose energy,

the total available energy in the network decreases.

• Number of interactions: This shows the number of inter-

actions between nodes during which an energy exchange

happened towards reaching a balance.

• Total variation distance at a given total energy: As the

performance of the protocols may vary based on total

variation distance and total energy in the network, we use

this combined metric as an indicator of true performance.

• Total variation distance at a given number of interac-
tions: Similarly, we use this metric to understand the

impact of necessary interactions towards reaching the

minimum possible total variation distance.

C. Datasets

We use both real and synthetic traces to define the meeting

relations between the nodes in the network. Real traces are

obtained from one of the commonly used datasets in DTN

literature [31] for performance analysis of routing algorithms.

With synthetic traces, we aim to generate different contact

graphs with various sparsity levels.

• Cambridge dataset: These are the Bluetooth recordings

between the iMotes carried by 36 students from Cam-

bridge University for a duration of almost two months.

• Synthetic dataset: This is a dataset generated randomly

among 30 nodes with a mean intermeeting time (λi,j) of

a random value between [1000, 15000] minutes. We use

different time thresholds to generate graphs with different

average neighbor counts in the contact graph as well.

Note that depending on the energy sharing technology used

between nodes, the proximity requirements and corresponding

energy transfer efficiency might be different. For example, for

wireless energy sharing between smartphones, they need to

be very close to each other as if they are touching. On the

other hand, for example in the real traces we used above,

the interactions between nodes happen through Bluetooth

communication which has a range in the order of several

meters. However, we assume that such interactions can still

be considered as an indication of nodes in close proximity of

each other so that they can communicate and come closer to

perform energy exchange operation if needed. We also assume

that when nodes meet, they stay close enough to each other

until they can achieve the required energy transfer under the

energy balancing protocol in use. We look at the impact of

transfer efficiency in our results, which can be considered as

the relaxation of this assumption to some extent. Enhancing

the proposed protocols considering the partial energy transfers

between nodes during meetings with limited duration will also

be the subject of our future work.

D. Performance Results

In this section, we present the results of our evaluation

through simulations. First of all, we assign an initial energy

level to each node between 0 and 100. From the beginning

of the simulation, we let the devices interact following their

exponentially distributed intermeeting times and exchange

energy based on the characteristics of each energy balancing

protocol compared. Each simulation is repeated 100 times for

statistical smoothness. For main simulations we use an energy

loss rate, β, of 0.2. But we also show the impact of β on

results.

In Fig. 2, we first show the optimal energy balance in

graphs with different sparsity. To this end, we use the synthetic

dataset and contact graph and for different time thresholds (τ )

and loss rates (β) we calculate the optimal average energy

reachable (Eopt) and corresponding variation distance and

total loss at Eopt. Note that τ simply causes removal of

edges between pairs with intermeeting time higher than τ ,

yielding a sparser contact graph. As the results show, optimal
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Fig. 2: Impact of time threshold (τ ) and loss rate (β) on optimal average energy achievable (Eopt) and corresponding variation

distance and total loss at Eopt.
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Fig. 3: Comparison of all algorithms in terms of (a) variation distance, (b) total energy remaining in the network, (c) total

number of interactions, (d) variation distance at each total energy level and (e) variation distance at each total number of

interactions (when β=0.2, τ=4000) using synthetic dataset.

variation distance gets lower as τ increases and hits zero

around τ = 4000 min. The loss associated with this optimal

variation distance on the other hand increases initially and

gets smaller later. This is because with smaller τ values, the

existing pairwise relations is trimmed further and some nodes

either have very small contacts or are totally isolated from

others. Thus, perfect energy balancing giving zero variation

distance was not possible. However, once this threshold is

exceeded, the loss could be lowered by finding better energy

exchange schedules. Note that Eopt results also are inline

with this reasoning. Moreover, we see that as β increases,

the optimal average energy achievable with different time

thresholds decreases but it follows a similar pattern at different

loss rates.

In Fig. 3, we show the performance comparison of all

algorithms using the aforementioned performance metrics in

synthetic traces. In Fig. 3a, we see that PLE can achieve the

lowest variation distance among others. P ∗
OA and POC have

a similar variation distance which is slightly higher than the

variation distance of PLE . However, when we look at the total

energy levels in the network shown in Fig. 3b, we observe that

P ∗
OA sacrifices a lot of energy during the energy balancing

process. On the other hand, POC keeps more energy in the

network even more than PLE . This is because as it also uses

some unscheduled energy exchange opportunities towards

the optimal average energy level, it diverges from optimal

variation distance but this does not cause losing energy in the

network unnecessarily. Moreover, the number of interactions

between nodes in P ∗
OA is the highest among all compared

algorithms, as shown in Fig. 3c, while proposed algorithms

limit the interactions. When we compare the variation distance

at the same total energy in the network in Fig. 3d, we observe

that P ∗
OA indeed has the worst performance. On the other

hand, PLE reaches the optimal energy level and decreases
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Fig. 4: Comparison of all algorithms in terms of (a) total energy remaining in the network, (b) variation distance at each total

energy level and (c) variation distance at each total number of interactions (when β=0.2, τ=10000) using synthetic dataset.
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Fig. 5: Comparison of all algorithms in terms of (a) variation distance, (b) total energy remaining in the network, (c) total

number of interactions, (d) variation distance at each total energy level and (e) variation distance at each total number of

interactions (when β=0.2, τ=4000) using Cambridge dataset.

the total variation distance gradually. Here, POC shows an

interesting behavior as it achieves a better variation distance

at a given total energy in the network but it cannot reach

the smallest possible variation distance as PLE does. Thus, if

some variation distance is tolerable, POC can be considered

performing better than PLE . Moreover, POC achieves this

with smaller variation distance at a given interaction count

than other algorithms, as it is shown in Fig. 3e. P ∗
OA again

performs the worst due to its design.
In the results shown in Fig. 4, we relaxed the time threshold

and set it to 10000 min in order to increase the contact

graph density and the energy exchange opportunities. Here,

results for only three metrics are shown for the sake of

brevity. We observe that with this increased time threshold, the

total energy that could be kept in the network has increased

(i.e., loss decreased). POC has also caused more loss initially

which was not the case in earlier results. Another significant

change is that the performances of POC and PLE get closer

in terms of total variation distance at a given total energy

and number of interactions. These can be explained by the

increased energy exchange opportunities.
In Fig. 5, we show the performance comparison of all

algorithms in Cambridge traces. In Fig. 5a, we see that even

PLE cannot reach a variation distance of zero, but it is

still the best compared to others. Interestingly, P ∗
OA achieves

better variation distance than POC , which was not the case in

synthetic data. However, as it is shown in Fig. 5b, P ∗
OA causes

more loss in the network compared to POC . PLE reaches

the optimal energy in the network with the smallest possible

variation distance. In terms of total variation distance at a

given total energy level, POC performs better than others for

earlier energy levels, but it cannot reach the variation distance

others can do, as shown in Fig. 5d. The interactions for P ∗
OA

is the highest again among all algorithms while POC has
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the smallest interactions that is also considerably less than

the interactions of PLE which was not the case in synthetic

data. This is because in Cambridge dataset, the contact graph

density is smaller than it is in synthetic traces and POC stops

interacting further when nodes greedily reaches the target.

V. CONCLUSION

In this paper, we study the energy balancing problem among

the nodes in a mobile opportunistic network. We aim to

both balance the energy levels of nodes and minimize the

energy loss during this process considering the heterogeneous

relations among nodes as well as a time threshold to finish the

balancing. We first find the optimal average energy achievable

using a MILP based formulation then propose two different

energy balancing protocols utilizing its results. In the former,

we use the exact energy exchanges suggested by the MILP

solution to reach the optimal target while we opportunistically

try to reach that target in the latter. Simulation results in both

synthetic and real traces show that the proposed algorithms

perform better than the previous work and they have advan-

tages to one another in different performance metrics and

contact graph densities. In our future work, we will relax the

availability of energy level information at nodes and consider

the impact of limited meeting duration during energy sharing.

We will also integrate the energy consumption of nodes due

to other activities and the social network relations between

users [32] to the proposed energy balancing protocols.
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