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Abstract—One of the key problems in mobile crowdsensing (MCS) systems is the assignment of tasks to users. Most of the existing

work aim to maximize a predefined system utility (e.g., quality of service or sensing), however, users (i.e., task requesters and

performers/workers) may value different parameters and hence find an assignment unsatisfying if it is produced disregarding these

parameters that define their preferences. While several studies utilize incentive mechanisms to motivate user participation in different

ways, they do not take individual user preferences into account either. To address this issue, we leverage Stable Matching Theory

which can help obtain a satisfying matching between two groups of entities based on their preferences. However, the existing

approaches to find stable matchings do not work in MCS systems due to the many-to-one nature of task assignments and the budget

constraints of task requesters. Thus, we first define two different stability conditions for user happiness in MCS systems. Then, we

propose three efficient stable task assignment algorithms and discuss their stability guarantees in four different MCS scenarios. Finally,

we evaluate the performance of the proposed algorithms through extensive simulations using a real dataset, and show that they

outperform the state-of-the-art solutions.

Index Terms—Mobile crowdsensing, many-to-one task assignment, stable matching.

✦

1 INTRODUCTION

Mobile Crowdsensing (MCS) is a relatively new paradigm
empowered by the growing sensing capabilities of mobile
devices (e.g., GPS, microphone, camera) and has been uti-
lized as a means to accomplish the requested sensing tasks
much more quickly by taking advantage of the power of
crowd [1]. An MCS system consists of a platform, requesters,
tasks and workers. Task requesters post their tasks together
with their requirements (e.g., deadline, budget limits) and
the rewards they provide. The workers register to the system
and indicate their qualifications and possible restrictions
(e.g., regional and temporal availability, minimum reward
requirement). The platform then defines eligibility of each
worker for the available tasks and either assigns them based
on a predefined system utility (e.g., minimization of rewards
provided) or lets the workers and task requesters interact
and agree on the task allocation in a distributed fashion
based on their own criteria and preferences.

A pivotal problem in MCS is the assignment of sensing
tasks to workers. In fact, the utility of an MCS system is
generally quantified by the quality of the assignments made
by the adopted task assignment algorithm. However, the
quality of assignments has been measured differently in
the literature. For example, some studies [2], [3] favor the
assignments that minimize the travel distance of workers,
while others [4], [5] prefer those that maximize the total
quality of service (QoS) received by task requesters. Despite
the variety of existing task assignment algorithms [6], the
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ultimate goal of the assignment is mostly defined as the
maximization of a system utility without considering the
individual user needs and preferences. However, such solu-
tions may result in dissatisfied users and impair their future
participation, as users in practice may not want to sacrifice
their individual convenience for the system utility.

To address this problem, in this paper, we leverage Stable
Matching (SM) Theory, which integrates user preferences in
a matching problem [7], to develop stable task assignments
specific to MCS systems while considering the budget/QoS
requirements of tasks and the relation between the QoS
provided by workers and the rewards they gain. Next, we
first discuss the benefits of such a stable matching based
task assignment for MCS systems, and summarize our con-
tributions.

First of all, a stable matching solution based on individ-
ual user preferences allows incorporating various metrics
that are appraised uniquely by each user. For example, the
priority of a worker might be the proximity to the task
location, so he would form his preference list in a way
that the closer tasks precede the others. On the other hand,
another worker who does not mind traveling long distances
can form his preference list solely based on the rewards
he will be paid. Moreover, they can even reflect their own
personal interests in their preference lists such as location
of tasks being close to their home or work, and pleasure of
performing the tasks (e.g., preference for taking pictures of
a scene of interest over recording noise pollution).

The goal with the stability is to ensure that no user u
(i.e., a worker or a requester) can lay claim to have deserved
a better assignment. That is, all the possible assignments
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that user u prefers1 more than his current assignment in the
stable matching are matched with someone they prefer to
user u; thus, they would not like to break up with their cur-
rent assignments to get matched with user u. This ensures
that workers will be satisfied with their assignments and
will be motivated to carry out their tasks, which will in turn
improve their performance [8] and the quality of results.
Moreover, this also ensures that task requesters will obtain
the most benefit while respecting the workers’ preferences.

In MCS systems where each task can recruit multiple
workers within her budget constraints, the stability can be
defined in two different ways: pairwise and coalitional (the
formal stability definitions are given in Section 3). Due to
the many-to-one nature of task assignments and budget
constraints, the conditions of both pairwise and coalitional
stability differ from the classic stability conditions specified
in [7], thus existing stable matching solutions cannot be
used to find pairwise or coalitional stable matchings in
such systems. Moreover, depending on the relation (i.e.,
proportional or not) between the QoS provided by workers
and the reward they gain, the hardness of the problem and
the corresponding solution approach completely change.

In order to develop stable task assignments in MCS sys-
tems, we first define the stability conditions and categorize
MCS scenarios based on two different criteria. Then, we
present our three solutions and discuss their stability guar-
antees in different MCS scenarios. Our key contributions can
be summarized as follows:

• We present QoS-based stability conditions under budget
constraints in many-to-one MCS systems, and discuss
existence and hardness results for stable matchings in
different types of MCS systems.

• We propose a polynomial time algorithm to find pairwise
stable matchings in MCS systems in which the preference
profiles of tasks are identical (i.e., uniform MCS system),
which is a significant improvement from the exponential
time algorithm proposed in [9]. Also, our algorithm does
not require the rewards that workers will be paid to be
proportional with the corresponding QoS they provide
(i.e., proportional MCS system), while [9] does.

• Despite the nonexistence results for pairwise stable
matchings in general settings, we prove that there al-
ways exists a pairwise stable matching in a proportional
MCS system by providing a pseudo-polynomial time al-
gorithm that always finds pairwise stable matchings in
these systems. Furthermore, this algorithm outperforms
all the benchmark algorithms in terms of pairwise stability
regardless of the type of the MCS system.

• We propose a heuristic algorithm that also runs in pseudo-
polynomial time and produces considerably higher qual-
ity assignments in terms of overall stability and user hap-
piness compared to the benchmark algorithms especially
in proportional MCS systems.

• In addition to the theoretical analysis of the proposed al-
gorithms, we provide extensive simulation results where

1. When we use the active voice for a task (e.g., prefers, pays a
reward), we mean the person/entity that corresponds to it, i.e., the
task requester/owner. Also, we use male and female subject pronouns
for workers and tasks respectively as a reference to the original stable
marriage problem [7].

we compare the performance of our algorithms with three
benchmark algorithms in different types of MCS systems.

The rest of the paper is organized as follows. We present
an overview of related work in Section 2. In Section 3, we
provide the system model together with stability definitions
and discuss the existence and hardness of stable matchings
in different MCS categories. In Section 4, we elaborate on the
proposed solutions and discuss their stability guarantees.
In Section 5, we present an extensive evaluation of the
proposed algorithms in various settings via simulations.
Finally, we end up with conclusion in Section 6.

2 RELATED WORK

2.1 Mobile Crowdsensing

Mobile crowdsensing has attracted a lot of attention recently
and numerous studies exploring different aspects have been
performed. One of the key problems investigated is the
task assignment (or worker recruitment) problem since the
overall performance of an MCS system and the satisfaction
of its users are highly dependent on the efficiency of the
assignments. Different objectives have been considered such
as maximizing the number of completed tasks [10], minimiz-
ing the completion times of tasks [11], incentives provided
to the users [12], energy consumption [4], and traveling
distance of workers [3]. The heterogeneity of tasks [13], [14],
security [15], privacy [16], and trustfulness [17] of workers
have also been addressed in some studies.

Besides, similar to this paper, a number of studies [5],
[18], [19], [20], [21], [22] have adopted quality-based util-
ity functions, and proposed incentive mechanisms or task
assignment methods that maximize the total quality of ser-
vice/sensing. Particularly, [18] and [19] study the problem
of finding and recruiting the worker set that will provide
the largest weighted coverage quality over a set of points
of interest that the service provider aims to cover with a
fixed budget. On the other hand, [20], [21], [22] propose
incentive mechanisms, where the utilities of workers for the
tasks of requesters are determined based on the quality of
the data they can provide for those tasks, which is estimated
by various factors such as their reputation and the quality of
sensor devices that they use to carry out the tasks. Moreover,
[21] also considers the temporal changes in the quality of
workers for the crowdsourcing campaign, and proposes a
framework to estimate these changes for each run of the
task allocation scheme based on historical performance of
workers.

Despite such extensive work, the problem is mostly
studied from the system’s perspective without consider-
ing individual preferences of users (i.e., workers and re-
questers). However, users may not be willing to sacrifice
their individual convenience for the system utility (e.g.,
QoS), thus resulting task assignments may not be appealing
to users and undermine future participation. Note that in the
studies that examine the mechanisms incentivizing users to
participate in crowdsensing, such as auctions and reputation
systems, this problem is not solved either, as they still aim
to maintain system goals by promoting participation. Some
very recent studies [9], [23] address this issue, and consider
user preferences and stability in the assignment process.
[9] studies the many-to-one stable task assignment problem
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under budget constraints and proposes an ILP-based ex-
ponential time algorithm to find pairwise stable matchings
in MCS systems that are both uniform and proportional.
[23] studies the same problem, but assumes each task has a
capacity (instead of a budget) that specifies the maximum
number of workers she can hire. Hence, these solutions are
either computationally expensive or only applicable to a
certain type of MCS systems.

2.2 Stable Matching

Stable Matching (or Stable Marriages) (SM) problem has
been introduced by Gale and Shapley [7], and can be defined
as the problem of matching two groups of objects such
that no pair or set of users has a mutual or collective
desire (based on their preferences) to deviate from their
assigned partners in order to match with each other. SM has
been utilized to model various problems such as spectrum
sharing [24], driver-rider matching in ride-sharing systems
[25], assignment of medical school students to hospitals
for residency training program [26], and matching electric
vehicles for power transfer [27]. There are also variations of
stable matching problem where the stability is considered
together with another utility metric. For example, [28] stud-
ies the maximum weighted stable matching problem (i.e.,
the stability is the primary objective) and proposes a polyno-
mial time exact algorithm to solve it. On the other hand, [10]
studies the problem of finding a matching with minimum
instability among all maximum cardinality matchings (i.e.,
the stability is the secondary objective). As this problem is
NP-hard, the authors propose two different polynomial time
heuristic algorithms.

The most relevant studies to this paper in the stable
matching literature are [29] and [30], which study the many-
to-one stable matching of students-colleges and doctors-
hospitals, respectively. In [29], all colleges define a utility
and a wage value for students, and aim to hire the best set
of students (i.e., with the highest total utility) within their
budget constraints. Each student also forms a preference
list over colleges. The authors prove that there may not
exist a stable matching in this setting and even checking
the existence is NP-hard. However, they provide a polyno-
mial time algorithm that finds pairwise stable matchings
in the so called typed weighted model where students are
categorized into groups (e.g., Master’s and PhD students)
and colleges are restricted to define a set of possible wages
for each group (i.e., they cannot define a particular wage
for each student). [30] studies the same problem and pro-
poses two different fully polynomial-time approximation
algorithms with some performance guarantee in terms of
coalitional stability for general and proportional (i.e., the
wage of doctors are proportional to their utility for hos-
pitals) settings. However, the study does not provide an
experimental analysis of the algorithms or discuss their
actual/expected performance in these settings. Moreover,
the proposed solutions can only be applied to a limited
set of scenarios. In this paper, we provide solutions for
different types of MCS systems, compare them with the
existing many-to-one stable matching algorithms [9], [30],
and show that our solutions outperform them most of the
time in terms of different stability conditions.

The concept of stability in the fairness problems, which
are commonly studied in the wireless communication liter-
ature [31], [32], is different than the one considered in this
paper. This is because in the fairness problems there is a set
of resources (e.g., bandwidth) that need to be distributed
among a group of users in a fair manner [33]. This is a
one-sided allocation problem with no preference relation
between the resources and users, and the stability refers to
the equilibrium state of the allocation in terms of fairness
(e.g., Lyapunov stability [34], flow-level stability [35]). How-
ever, in our problem, each node (i.e., worker/task) in the
both side of the matching problem is a distinct individual
with personal preferences (i.e., two-sided matching), and the
stability concerns with the happiness of all nodes with their
assignments based on their bilateral preferences.

3 SYSTEM MODEL

3.1 Assumptions

We assume a system model with a set of workers
W = {w1, w2, . . . , wn} and a set of sensing tasks T =
{t1, t2, . . . , tm}. Let ct(w) denote the cost of performing task
t for worker w, which may be calculated by taking into
account various factors such as the time and cost required
to travel to the task location and perform the task, energy
consumption on the worker’s device due to sensing, and
privacy risks to the worker. Also, let rt(w) denote the
reward that worker w is offered to carry out task t. Since
a rational worker will aim to maximize his profit and will
not accept to perform the tasks that cost higher than the
corresponding rewards he will be paid, we can define the
preference list of worker w as

Pw = ti1 , ti2 , . . . , tik (1)

where Pw ⊆ T , ∀t ∈ Pw, rt(w) > ct(w), and ∀t′ = tij , t
′′ =

tij+1
, rt′(w)− ct′(w) > rt′′(w)− ct′′(w). We denote the jth

task (tij ) in Pw by Pw(j) and utilize t′ ≻w t′′ notation to
express that t′ precedes t′′ in Pw. For each worker w, ≻w is
a strict relation, so even if two tasks provide the same gain
to worker w, we assume that he prefers one over another
(i.e., no ties are allowed). Note that in our system model, we
only need the preference profiles of workers, so a worker
can form his preference list himself by estimating his profit
from each task using the announced rewards for the tasks on
the platform and then submit only the list to the platform.
Alternatively, he can submit an estimated cost value for each
task to the platform, which can then form his preference list
based on this information.

On the other hand, a rational task requester will try to
maximize the total quality of service (QoS) she gets from the
workers she hires within her budget constraint. Let qt(w)
denote the QoS that worker w can provide for task t and
bt denote the budget of task t. Then, we can define the
preference list of task t as

Pt = S1, S2, . . . , Sk (2)

where ∀S ∈ Pt, S ⊆ W and
∑

w∈S rt(w) ≤ bt, and
∀Si, Si+1 ∈ Pt,

∑

w∈Si
qt(w) ≥

∑

w∈Si+1
qt(w). Note that

we allow ties in preference lists of tasks as it is very likely
for tasks to have multiple sets with an equal total quality
value in their preference list. Thus, a task is said to prefer a
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TABLE 1: Notations.

Notation Description

W , T Set of workers and tasks, respectively
n, m Number of workers and tasks, respectively
M Many-to-one task assignment

ct(w) Cost of performing task t for worker w
qt(w) QoS that worker w can provide for task t

qt(S) Total QoS that S ⊆ W can provide for task t

Qt(S) List of QoS that workers in S can provide for task t

rt(w) Reward offered to worker w by task t

rt(S) Total reward offered to S ⊆ W by task t

Rt(S) List of rewards offered to workers in S by task t

bt Budget of task t

β maxt∈T bt
bM
t

Remaining budget of task t in M
Pu Preference list of user (worker/task) u

Pw(x) xth task in Pw

bx = 7

x

1

by = 5
y

2

3

Fig. 1: A uniform and proportional MCS instance with
3 workers (1, 2, 3) and 2 tasks (x, y). [crqt(w) =
ct(w), rt(w), qt(w)]

set S′ of workers to another set S′′ of workers only if S′ has
a greater total quality value than S′′. For ease of reading,
we let rt(S) =

∑

w∈S rt(w), qt(S) =
∑

w∈S qt(w) and use
S′ ≻t S

′′ notation to indicate qt(S
′) > qt(S

′′).
Given a worker-task pair (w, t), we assume that ∄S ∈

Pt : w ∈ S if worker w finds task t unacceptable (i.e.,
rt(w) <= ct(w)). Also, in MCS systems where the rewards
are determined by the server instead of the task requesters,
we might have rt(w) > bt for a worker-task pair (w, t).
In this case, if t ∈ Pw, we remove task t from Pw as the
budget of task t is insufficient to recruit worker w. Lastly,
we assume that for each task t, bt and rt(w) values for all
w ∈ W are either defined as integers or scaled into integers
with the smallest scaling factor (different tasks might have
different scaling factors).

3.2 Matching Stability Definitions

To make a formal development and evaluation of our
matching algorithms, we make the following definitions and
observations:

Definition 1 (Feasible matching). A mapping

M : (W 7→ T ∪ {∅}) ∪ (T 7→ 2W)

TABLE 2: Preference lists of the users in Fig. 1.

User Preference list
x {2, 3}, {1}, {2}, {3}, ∅
y {2}, {3}, ∅
1 x
2 x, y
3 y, x

is a feasible many-to-one matching if it satisfies the following:

• ∀(w, t) ∈ W × T , M(w) = t iff w ∈ M(t),
• ∀w ∈ W , t ∈ Pw if M(w) = t,
• rt(M(t)) ≤ bt.

Here, given a matching M and w ∈ W, t ∈ T , the
partner2 of worker w is denoted by M(w) and the partner
set of task t is denoted by M(t). If M(u) = ∅ for user
u ∈ W ∪ T , it means user u is unmatched in M. Note that
the last set in the preference list of each task t is ∅, so we
have S ≻t ∅, ∀S ∈ (Pt\∅). Also, even though the preference
lists of workers do not include ∅, since we assume that the
workers in our system are rational, we have t ≻w ∅, for all
w ∈ W and t ∈ Pw. We denote the remaining budget of task
t in M by bMt = bt − rt(M(t)).

Definition 2 (Unhappy pair). Given a matching M, a worker
w and a task t form an unhappy (blocking) pair 〈w, t〉 if t ≻w

M(w) and there is a subset S ⊆ M(t) such that {w} ≻t S and
rt(w) ≤ bMt + rt(S).

Definition 3 (Pairwise stable matching). A matching M is
said to be pairwise stable if it does not admit any unhappy pairs.

Definition 4 (Unhappy coalition). Given a matching M, a
subset of workers S ⊆ W and a task t form an unhappy (blocking)
coalition 〈S, t〉 if ∀w ∈ S, t ≻w M(w) and there is a subset
S′ ⊆ M(t) such that S ≻t S

′ and rt(S) ≤ bMt + rt(S
′).

The reason such a coalition 〈S, t〉 is said to block the
stability of the matching is that the users in the coalition can
communicate with each other and decide to jointly update
their partners to have a better assignment.

Definition 5 (Coalitionally stable matching). A matching M
is said to be coalitionally stable if it does not admit any unhappy
coalitions.

Note that the coalitional stability is a stronger require-
ment compared with the pairwise stability. In fact, since
every unhappy pair 〈w, t〉 corresponds to an unhappy coali-
tion 〈{w}, t〉, coalitionally stable matchings are also pairwise
stable, but not the other way around. For example, on the
MCS instance shown in Fig 1 (with preference lists given
in Table 2), the matching in which task x is matched with
the worker 1 and task y is matched with the worker 2 is a
pairwise stable matching, yet it has an unhappy coalition
(〈{2, 3}, x〉), and hence is not coalitionally stable. This is
because worker set {2, 3} provides a higher QoS (i.e., 7) to x
than what her current assignment, worker 1, provides (i.e.,
5) and both worker 2 and worker 3 prefer task x to their
currently assigned tasks as their net income (i.e., reward -
cost) with task x are larger.

2. The partner of a worker refers to the task that the worker is
assigned to perform, while the partner set of a task refers to the set
of all workers assigned with the task.
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Algorithm 1: Check Pair (w, t,M, CheckIf )

Input: (w, t): Worker, task pair to check
M: The current many-to-one matching
CheckIf = CoalitionallyUnhappyPair or

UnhappyPair
1 if M(w) = t or M(w) ≻w t then
2 return false
3 end
4 S ← M(t)
5 if CheckIf = CoalitionallyUnhappyPair then
6 foreach w′ ∈ W do
7 if t ∈ Pw and t ≻w′ M(w′) then
8 S ← S ∪ {w′}
9 end

10 end
11 S ← S \ {w}
12 end
13 Smax ← solve01Knapsack(bt − rt(w), Rt(S), Qt(S))
14 if qt(Smax) + qt(w) > qt(M(t)) then
15 return true
16 else
17 return false
18 end

Definition 6 (Coalitionally unhappy pair). Given a matching
M, a worker w and a task t form a coalitionally unhappy pair if
there is an unhappy coalition 〈S, t〉 such that w ∈ S.

When the objective is to achieve pairwise stability, the
number of unhappy pairs can be used as the degree of
instability of the resulting matching. On the other hand, it
is not feasible to use the number of unhappy coalitions to
measure the coalitional stability for two reasons. First, since
the number of unhappy coalitions in a matching can be as
large as m(2n − 1), even just enumerating them would take
exponential time. Second, given a worker-task pair (w, t),
knowing all the unhappy coalitions 〈S, t〉 : w ∈ S does
not provide any useful information to either party, whereas
knowing that there is at least one makes them aware that
there is a matching in which they are matched to each other
and are both better off. For these reasons, we propose to use
the number of coalitionally unhappy pairs to measure the
coalitional instability of a matching. Note that we can check
whether a certain worker-task pair (w, t) is a coalitionally
unhappy pair as described in Algorithm 1. This algorithm
uses a sub-procedure named solve01Knapsack(c,W, V ) in
line 13, which denotes the dynamic-programming based
algorithm [36] to find the optimal solution for an instance
of 0-1 knapsack problem with a knapsack capacity of c, and
k items (k = |W | = |V |) whose weights and values are
given in order in W and V , respectively. It returns the item
set that has the largest total value among the sets that have
a total weight less than c. Since solving the 0-1 knapsack
problem is the most costly operation in Algorithm 1 and
has a time complexity of O(nbt), we can find and count the
unhappy and coalitionally unhappy pairs in a matching in
pseudo-polynomial time O(mn2β), where β = maxt∈T bt.
Lastly, it should be noted that every unhappy pair is also a
coalitionally unhappy pair.

3.3 Classification of MCS Systems

We classify MCS systems according to the variability
in the QoS provided by the workers for different tasks
(uniform/non-uniform), and the relationship between the
QoS provided by the workers and the rewards they are
offered (proportional/non-proportional). Note that these
classifications are exclusive; thus, it is possible to have
four different MCS systems, namely, (i) proportional and
non-uniform, (ii) non-proportional and non-uniform, (iii)
proportional and uniform, and (iv) non-proportional and
uniform.

Definition 7 (Uniform MCS system). An MCS system is called
uniform if the QoS provided by each worker is the same for all
tasks.

That is, for all (w, t, t′) ∈ W × T 2, qt(w) = qt′(w). This
indicates that all tasks have the same preference ordering
for all S, S′ ⊆ W since we have qt(S) = qt′(S) and
qt(S

′) = qt′(S
′), ∀t, t′ ∈ T . However, they may not have

the same preference list because of the difference in their
budgets (i.e., a task will not include a certain worker set
in her preference list if the total reward to be paid to that
worker set exceeds her budget) and being unacceptable to
different workers. Despite their simplicity, uniform MCS
systems are actually quite common. For example, all MCS
systems in which the QoS of workers are determined solely
based on trustworthiness or seniority scores of workers (e.g.,
Waze [37] in which users are ranked according to what is
called Waze points that they collect by performing different
tasks such as editing the map), or that only contain very
basic tasks (e.g., taking a picture of a scene, measuring noise
pollution) that do not demand any expertise and can be
performed as effectively by all workers can be viewed as
uniform MCS systems. An MCS system that is not uniform
is called a non-uniform MCS system.

Definition 8 (Proportional MCS system). An MCS system is
called proportional if, for each task, the rewards that are offered to
the workers are proportional to the QoS they provide.

That is,
rt(w)
qt(w) = θt for all (w, t) ∈ W × T , where θt is a

constant defined by task t. Thus, different tasks might have
a different reward per QoS ratio. Note that in proportional
MCS systems, the objective of tasks can be expressed as
maximizing the total reward paid to workers within the
budget constraints as it also maximizes the total QoS they
get. Hence, we will use rt(w) in place of qt(w) in the relevant
sections. Also, if an MCS system is not proportional, we
simply call it a non-proportional MCS system.

3.4 Existence of Stable Matchings

In the following theorems, we give the existence results
for pairwise and coalitionally stable matchings in different
types of MCS systems.

Theorem 1. There exists a non-proportional MCS instance, in
which none of the feasible matchings is pairwise stable.

Proof. We prove by giving a counterexample. Let qx(3) = 6
in the instance given in Fig. 1. This adjustment results in
rx(2)
qx(2)

6= rx(3)
qx(3)

, hence makes the instance non-proportional.

It also changes the preference list of task x, which becomes
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Px = {2, 3}, {3}, {1}, {2}, ∅. The preference list of the other
users remain the same as given in Table 2. Let us analyze all
possible task assignments in this modified instance.

• Assume M(y) 6= {3}. Then, for (3, y) to not be an
unhappy pair, we must have M(y) = {2}. In this
case, if M(x) 6= {3}, then (3, x) is an unhappy pair.
If M(x) = {3}, then (2, x) is an unhappy pair.

• Assume M(y) = {3}. If M(x) 6= {1}, then (1, x) is
an unhappy pair, and if M(x) = {1}, then (2, y) is an
unhappy pair.

Therefore, we conclude that no pairwise stable matching
exists in the given non-proportional MCS instance.

Since every unhappy pair is also an unhappy coalition,
the following corollary is an immediate result of Theorem 1.

Corollary 1.1. There exists a non-proportional MCS instance, in
which none of the feasible matchings is coalitionally stable.

Theorem 2. There exists a uniform and/or proportional MCS
instance, in which none of the feasible matchings is coalitionally
stable.

Proof. We prove by giving a counterexample. Note that the
MCS instance given in Fig. 1 is both uniform and propor-
tional. Then, it suffices to show that all feasible matchings
that can be defined on this instance have at least one
unhappy coalition.

• Assume M(x) 6= {1}. Then, the worker set {1} and
task x do not form an unhappy coalition only if
M(x) = {2, 3}. However, if M(x) = {2, 3}, then the
worker set {3} and task y form an unhappy coalition.

• Assume M(x) = {1}. If M(y) 6= {2}, then ({2}, y) is
an unhappy coalition. If M(y) = {2}, then ({2, 3}, x)
is an unhappy coalition.

We will show in the next section that there always exists
a pairwise stable matching in uniform and proportional
MCS systems.

3.5 Hardness of Finding Stable Matchings

Consider an MCS instance with n workers (w1, w2, . . . , wn)
and a single task (t). Note that, by definition, finding a
coalitionally stable matching in this instance is exactly the
same problem with finding an optimal solution for a 0-
1 knapsack instance with a knapsack that has a weight
capacity of bt and n items such that the weight and value of
ith item are, respectively, the reward (rt(wi)) and the QoS
(qt(wi)) of ith worker (wi) for task t. Since the 0-1 knapsack
problem is NP-hard, we can conclude that the problem of
finding a coalitionally stable matching (even for an MCS
system that has only one task) is NP-hard, as well.

In fact, as proved in [29], given a many-to-one matching
instance with budget constraints, both checking the exis-
tence of a coalitionally stable matching and finding one
if exists are NP-hard. Also, since even checking whether
a particular worker-task pair form an unhappy pair in
a given matching is NP-hard (as it requires to solve the
corresponding 0-1 knapsack problem shown in Algorithm
1), it is highly likely that the same hardness results apply to
the pairwise stable matchings, as well.

3.6 Problem Formulation

Given the definitions as well as the nonexistence and hard-
ness results provided above, we can formally define our
objective function as

minimize
∑

i

∑

j

uij (3)

such that
∑

j

xij ≤ 1 ∀i

∑

i

xij × rtj (wi) ≤ btj ∀j

xij ≤ eij ∀i, j

where

uij =

{

1, if 〈wi, tj〉 is a (coalitionally) unhappy pair

0, otherwise

xij =

{

1, if wi is assigned to tj
0, otherwise

eij =

{

1, if tj ∈ Pwi
(eligibility)

0, otherwise.

That is, we would like to produce feasible matchings with as
few (coalitionally) unhappy pairs as possible. When the goal
is to minimize the number of coalitionally unhappy pairs (i.e.,
uij = 1 for coalitionally unhappy pairs), the optimization
objective in (3) attains the strongest stability conditions, but
becomes intractable in all types of MCS systems. On the
other hand, minimizing the number of unhappy pairs is a
more practical objective and generally adequate to virtually
satisfy the users for two reasons. First, it is much harder
for a pair of users to find out that they are a coalitionally
unhappy pair than that they are simply an unhappy pair,
since the former requires them to know the preferences
and the current partners of all workers in the platform.
Second, unlike unhappy pairs, modifying the matching to
make a coalitionally unhappy pair happy necessitates that
all the workers in the corresponding unhappy coalition (see
Definition 6) cooperate and break up with their current
partners simultaneously, which might be hard to attain.

It is also desirable to minimize the degree of user unhap-
piness in general rather than the number of unhappy users.
In this case, an alternative objective would be to minimize
the highest dissatisfaction ratio in the matching from the
perspective of tasks, since they, unlike workers who are
simply either happy or not with their assignments, have a
degree of unhappiness based on the total QoS service they
receive (i.e., non-binary utility) in the many-to-one matching
scenario described earlier. Formally, let

St = {S : 〈S, t〉 is an unhappy coalition},

and ∀S ∈ St, let SR ⊆ M(t) be the set with the lowest total
quality such that its removal from the partner set of task t
suffices to accept S (i.e., rt(S) ≤ bMt + rt(S

R)). Then, the
dissatisfaction ratio of task t can be computed by:

δt =















1, if St = ∅

∞, if St 6= ∅ and M(t) = ∅

max
S∈St

qt(S)+qt(M(t)\SR)
qt(M(t)) , otherwise.
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Algorithm 2: Uniform Task Assignment (W , T , PT )

Input: W : The set of workers
T : The set of tasks
PT : The common preference profile of tasks

1 for i ← 1 to n do
2 w ← ith worker in PT

3 for j ← 1 to |Pw| do
4 t ← Pw(j) ; ⊲ w proposes to t

5 if bMt ≥ rt(w) then
6 M(w) ← t
7 M(t) ← M(t) ∪ {w}
8 bMt ← bMt − rt(w)
9 break

10 end
11 end
12 end
13 return M

Thus, for a task t the optimal (minimum) value of δt is 1.
Finally, the objective function can formally be defined as:

minimize max
t∈T

δt (4)

We will address this version of the problem using the
following definition.

Definition 9 (Coalitionally α-stable matching). A matching
M is said to be coalitionally α-stable if ∀t ∈ T

δt ≤ α. (5)

4 STABLE TASK ASSIGNMENT

In this section, we provide the details of the proposed task
assignment algorithms.

4.1 Uniform Task Assignment (UTA) Algorithm

The stable task assignment problem in uniform MCS sys-
tems has recently been investigated in [38], and an ILP-
based algorithm with a O(nm2n) time complexity was
proposed to find pairwise stable matchings in MCS systems
that are both uniform and proportional. Here, we propose
UTA algorithm that finds pairwise stable matchings in all
uniform MCS systems (i.e., proportional/non-proportional)
in only O(n log n+ nm) time.

A pseudo-code description of UTA algorithm is given in
Algorithm 2. First, apart from the set of workers and tasks,
UTA algorithm takes the common preference profile of tasks
(PT ) as input, which is simply a sorted version of the worker
set W , in which workers with higher QoS values precede the
others. Formally, it can be defined as

PT = wi1 , wi2 , . . . , win

where ∀w′ = wij , w
′′ = wij+1

, qt(w
′) ≥ qt(w

′′), ∀t ∈ T .
Since we assume that the system is uniform, hence the QoS
value of a worker is same for all tasks, it is in fact possible to
create such a list. Then, the algorithm begins to seek the best
available assignment for the workers (w) in order of their
appearance in PT (i.e., in decreasing order of their QoS).
To this end, it iterates through the tasks in their preference
lists (Pw) in order to find the first task in their preference

lists (i.e., the most preferred) that has sufficient amount of
remaining budget to hire them. If it finds such a task t
for worker w, it updates the matching and the remaining
budget of task t, otherwise it leaves worker w unassigned
and continues the assignment process with the next worker
in PT . We now show that the resulting matching will always
be pairwise stable.

Theorem 3. In uniform MCS systems, UTA algorithm always
produces a pairwise stable matching.

Proof. We will prove it by contradiction. Assume that the
matching M returned by UTA algorithm contains at least
one unhappy pair, say 〈w, t〉. Since worker w and task t
form an unhappy pair, we know that they are not matched
to each other and worker w prefers task t to his current
partner in M. This means when the algorithm was iterating
the preference list of worker w in line 3, it has attempted to
match him with task t, but could not do it due to the limited
budget of task t, so that it either matched worker w with a
task that come after t in Pw or left him unmatched. Let A be
the partner set of task t and ρ be her remaining budget when
the algorithm tried, but failed to assign worker w to her.
Then, (i) ρ < rt(w). Since the algorithm matches the workers
in order of their appearance in the common preference list
of the tasks, we have {w} ≻t {w}, ∀w ∈ A. Also, note that
once the algorithm matches a worker and a task, it never
unmatches them again. Thus, we have A ⊆ M(t). However,
for (w, t) to be an unhappy pair, there should exist a subset
S′ ⊆ M(t) such that (ii) rt(w) ≤ rt(S

′) + bMt and (iii)
{w} ≻t S

′. From (iii), we have {w} ≻t {w}, ∀w ∈ S′, which
means all workers in S′ got matched with task t after the
algorithm failed to match worker w and task t, hence we
have

ρ ≥ rt(S
′) + bMt

ρ ≥ rt(w) (by (ii))

ρ > ρ (by (i))

which is a contradiction.

The following corollary is a direct result of Theorem 3.

Corollary 3.1. In uniform MCS systems, there always exists a
pairwise stable matching.

Note that even if an MCS system is not uniform (i.e.,
∃(w, t, t′) ∈ W × T 2, qt(w) 6= qt′(w)), UTA algorithm can
still produce pairwise stable matchings if it is possible to cre-
ate a common preference list (PT ) for tasks. In other words,
if ∄(w,w′, t, t′) ∈ W2×T 2, qt(w) > qt(w

′), qt′(w) < qt′(w
′),

UTA algorithm can still be used to find pairwise stable
matchings.

Example: The instance given in Fig. 1 is a uniform MCS
system, so UTA algorithm can be used to find a pairwise
stable matching in this instance as follows. First, we create
the common preference list of tasks as PT = 1, 2, 3 since
qx,y(1) > qx,y(2) > qx,y(3). The first worker in PT is worker
1, so the algorithm starts the matching process with him.
Since the first and only task in his preference list, task x, has
enough budget to hire him (the preference lists of users are
given in Table 2), it assigns worker 1 to task x, and updates
the remaining budget of task x as 7−5 = 2. The next worker
in PT is worker 2, who also prefers task x to task y, but task
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x does not have enough budget to hire him (2 < 4), so
the algorithm tries to match him with task y. Task y has
enough budget to hire worker 2, so they get matched and
the remaining budget of task y becomes 5 − 4 = 1. Worker
3 is the last worker in PT . However, neither task x nor task
y has sufficient remaining budget to hire him, so he will be
left unmatched. Thus, the final matching will be (x ↔ 1,
y ↔ 2), and it can easily be checked that it does not contain
any unhappy pairs and hence it is pairwise stable.

Running time. Forming the common preference profile of
tasks (PT ) requires to sort the workers according to their
QoS values and thus takes O(n log n). Then, since the first
for loop will iterate n times and the second will iterate at
most m times (i.e., |Pw| ≤ m, ∀w ∈ W), it is straightforward
to see that the worst-case running time of UTA algorithm is
O(n log n+ nm).

4.2 Pairwise Stable Task Assignment (PSTA) Algorithm

PSTA algorithm is a pseudo-polynomial time algorithm
that, unlike UTA algorithm, can be run in any type of
MCS system, and aims to produce matchings with as little
pairwise instability as possible (which is why it is named
as Pairwise-STA). In fact, in Theorem 4, we will show that it
always produces pairwise stable matchings in proportional
MCS systems. Besides, in non-proportional MCS systems
where a pairwise stable matching may not exist, it manages
to produce matchings with almost optimal pairwise stability
as it will be shown in Section 5.

The details of PSTA algorithm are given in Algorithm
3. It follows the classic deferred acceptance mechanism [7]
but updates the set of workers assigned to a task optimally
from the set of current workers and the newly proposing
worker. It keeps a stack of unmatched workers that still
have tasks to propose to, pops them one by one (line 3)
and lets them (worker w) propose to the next task (task t) in
their preference list (line 5). If task t has enough remaining
budget, the algorithm directly matches them (lines 8-10).
Otherwise, it finds the most favorable worker set (Smax)
for task t among the workers in her current partner set and
worker w within her budget constraint (lines 12-13), assigns
that worker set as the new partner set of task t (lines 14-
17) and pushes the remaining workers back onto the stack
after setting them free (lines 18-20). If the partner set of task
t has not changed, worker w will be the only worker to
be pushed onto the stack, in which case we say that task t
rejected the proposal of worker w. This continues until there
is no unmatched worker that still has a task that he can
propose to in his preference list. In the following theorem,
we prove that the resulting matching is guaranteed to be
pairwise stable if the MCS system is proportional.

Theorem 4. In proportional MCS systems, PSTA algorithm
always produces a pairwise stable matching.

Proof. We will prove it by contradiction. Assume that in
a proportional MCS system (without loss of generality, let
qt(w) = rt(w), ∀w, t), PSTA algorithm produces a matching
M that contains at least one unhappy pair, say 〈w, t〉, which
either means that task t rejected worker w’s proposal and
they never got matched, or that task t accepted worker w’s
proposal, but then discarded him (possibly along with a set

Algorithm 3: PairwiseStableTaskAssignment(W ,T )

Input: W : The set of workers
T : The set of tasks

1 Stack.push(W)
2 while Stack is not empty do
3 w ← Stack.pop()
4 if Pw is not empty then
5 t ← Pw(1) ; ⊲ w proposes to t

6 Pw ← Pw \ {t}
7 if bMt ≥ rt(w) then
8 M(w) ← t
9 M(t) ← M(t) ∪ {w}

10 bMt ← bMt − rt(w)
11 else
12 S ← M(t) ∪ w
13 Smax ← solve01Knapsack(bt, Rt(S), Qt(S))
14 M(t) ← Smax, bMt ← bt − rt(Smax)
15 if w ∈ Smax then
16 M(w) ← t
17 end
18 foreach w′ ∈ S \ Smax do
19 M(w′) ← ∅, Stack.push(w′)
20 end
21 end
22 end
23 end
24 return M

of workers) from her partner set to accept the proposal of
another worker with a higher QoS. Let A and ρ denote task
t’s partner set and remaining budget at the time task t and
worker w broke up by one of these two cases (i.e., rejected
or discarded), respectively. Then, we have

∄S ⊆ A : rt(S) < rt(w), rt(w) ≤ rt(S) + ρ (6)

because if there were such a subset S, the 0-1 knapsack
solution would include worker w instead of S, and w would
not get rejected/discarded.

We define a node as a tuple (x, y), where x and y are
the label and length of the node, respectively. Let A0 =
{(w′, rt(w

′)) : w′ ∈ A}, so each node in A0 corresponds
to a worker in A. Also, let l(S) be the total length of the
nodes in S. Then, from (6), we have

∄S ⊆ A0 : l(S) < rt(w), rt(w)− l(S) ≤ ρ (7)

Note that task t will discard a group G of workers from
her partner set only when she is proposed by a worker w′

who has a higher total reward than G and will not violate
her budget constraint when replaced by G. After the break
up of worker w and task t, whenever such a change (say ith
change) occurs in the partner set of task t, we create Ai from
Ai−1 as follows:

1) Ai ← Ai−1.
2) Let K be the set of nodes in Ai that have the same label

with any worker in G.
3) Change the labels of all nodes in K as w′.
4) Create a new node (w′, rt(w

′) − rt(G)) (note that
rt(G) = l(K)) and add it to Ai.
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w2w3 w5 w7

rt(w3) rt(w2) rt(w5) rt(w7)

w6

rt(w6) - rt(G)

w4

rt(w4) - rt(G’)

A0

A1

A2

length

label

w2w3 w6 w7

w4w4w3 w4 w7

Fig. 2: An example illustrating the process used in the proof
of Theorem 4. A0 is created right after task t and worker w
broke up, so the partner set of task t is {w3, w2, w5, w7} at
that time. A1 is created after the first change in the partner
set of task t, which is the substitution of G = {w5} with
w6, and A2 is created after the second change in the partner
set of task t, which is the substitution of G′ = {w2, w6}
with w4. Note that the length of the nodes in A0 are always
preserved throughout the process.

In other words, we add the new worker to Ai by dividing
it into several nodes so that the node lengths in Ai−1 are
preserved. An example is provided in Fig. 2 to illustrate this
process.

Let c be the number of changes occurred in the partner
set of task t since her break up with worker w until the end.
Then, the last node set created, Ac, can be partitioned into
two sets A′

0 and B, where A′
0 contains |A0| nodes that have

exactly the same lengths with the nodes in A0, but possibly
have different labels, and B is the set of newly created nodes
such that (i) l(B) + bMt = ρ. Since we assumed that (w, t)
form an unhappy pair in the final matching M, there should
exist a subset S′ ⊆ M(t) such that rt(w) > rt(S

′) and
rt(w) ≤ rt(S

′)+bMt . As Ac has a distinct set P of nodes that
jointly correspond to each worker w′ in M(t) (i.e., l(P ) =
rt(w

′)), there should also exist a subset S ⊆ A′
0 ∪ B such

that (ii) rt(w) > l(S) and (iii) rt(w) ≤ l(S) + bMt . Then, we
have

rt(w)− l(S ∩A′
0) ≤ l(S ∩B) + bMt (by (iii))

ρ < l(S ∩B) + bMt (by (7) and (ii))

ρ < ρ (by (i))

which is a contradiction.

A significant result of Theorem 4 is the following corol-
lary.

Corollary 4.1. In proportional MCS systems, there always exists
a pairwise stable matching.

In the following theorem, we show that pairwise stability
ensures a certain degree of coalitional stability in propor-
tional MCS systems.

Theorem 5. In proportional MCS systems, a pairwise stable
matching is coalitionally 2-stable.

Proof. We prove by contradiction. Let M be a pairwise
stable matching in a proportional MCS system and 〈S, t〉
be an unhappy coalition in M such that

rt(S ∪ (M(t) \ S′)) > 2rt(M(t)) (8)

where S′ ⊆ M(t) satisfies rt(S) > rt(S
′) and (i) rt(S) ≤

bMt + rt(S
′). Thus, 〈S, t〉 breaks the coalitional 2-stability of

M according to (5). First, note that if (ii) rt(M(t)) ≥ bt/2,
we would have

rt(S) + rt(M(t))− rt(S
′) > 2rt(M(t)) (by (8))

rt(M(t)) + bMt > 2rt(M(t)) (by (i))

rt(M(t)) + bMt > bt (by (ii))

bt > bt

which is false. So, we have rt(M(t)) < bt/2. Let w be any
worker in S. If rt(w) ≤ rt(M(t)), then M is not pairwise
stable because task t can add worker w to her partner list
without removing anyone as rt(w) + rt(M(t)) < bt. Thus,
we have rt(w) > rt(M(t)), which also implies that M is
not a pairwise stable matching as task t can simply replace
M(t) with worker w to obtain a better partner set within
her budget constraint (i.e., rt(w) ≤ rt(S) ≤ bMt + rt(S

′) ≤
bt).

From Theorem 3, Theorem 4 and Theorem 5, we obtain
the following corollaries.

Corollary 5.1. In MCS systems that are both proportional and
uniform, UTA algorithm always returns coalitionally 2-stable
matchings.

Corollary 5.2. In proportional MCS systems, PSTA algorithm
always returns coalitionally 2-stable matchings.

Example: We run PSTA algorithm on the same MCS in-
stance illustrated in Fig. 1. To make things slightly different,
we assume that the workers are pushed onto the stack in
line 1 in increasing order of their identifiers so that the first
worker that is popped in line 3 is worker 3. As shown in
Table 2, the first task in the preference list (P3) of worker 3
is task y, so he first proposes to her (task y gets removed
from P3). Task y has enough budget, so worker 3 and task
y get matched to each other and the remaining budget of
task y becomes 2 (line 8-10). The next worker popped from
the stack is worker 2, whose first preference is task x. Thus,
worker 2 proposes to task x (task x gets removed from P2).
Since task x also has enough budget, she gets matched with
worker 2, which reduces her remaining budget to 3. Next,
worker 1 gets popped and proposes to the only task in his
preference list: task x (task x gets removed from P1, so
P1 = ∅). Task x does not have enough remaining budget
to hire worker 1, so the algorithm finds the best set of
workers among the workers in M(x) ∪ {1} = {1, 2} that
does not exceed the budget limit of task x by solving the
corresponding 0-1 knapsack problem (line 13). The subset
{1} provides the highest QoS without violating the budget
constraints, so worker 1 and task x will get matched to
each other, and worker 2 will be set free and pushed onto
the stack. In the next step, worker 2 will be popped and
propose to task y (task y gets removed from P2, so P2 = ∅).
Task y does not have sufficient remaining budget, but the
algorithm, after solving the knapsack problem, will replace
her current partner, worker 3, with worker 2 as this will
increase the total QoS task y gets. Consequently, it will set
worker 3 free and push him onto the stack. Then, it will pop
him from the stack and let him propose to task x (task x gets
removed from P3, so P3 = ∅). The budget of task x is not
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adequate to hire worker 3, and replacing his current partner
is also not beneficial, hence worker 3 will be pushed onto
the stack, again. When popped next time, since there does
not remain any other task for worker 3 to propose to in his
preference list, he will not be pushed onto the stack again.
This will leave the stack empty, so the matching (x ↔ 1,
y ↔ 2) will be returned by the algorithm, which is the same
pairwise stable matching found by UTA algorithm.

Running time. Note that since the preference list of a
worker (w) shrinks in size by 1 every time he is popped
from the stack (line 6) until his preference list becomes
empty (after which he will not be pushed onto the stack
ever again), he can be pushed onto the stack at most O(m)
times as |Pw| ≤ m. Thus, the while loop in line 2 will iterate
at most O(nm) times. Since the most costly operation in
each iteration is solving the 0-1 knapsack problem, which
takes O(nβ) where β = maxt∈T bt, the time complexity of
PSTA algorithm is O(n2mβ).

4.3 Heuristic Algorithm

Heuristic algorithm is a task-oriented, pseudo-polynomial
time algorithm that can also be run in any type of MCS
system and is designed in a way that the tasks in the
system take turns at modifying the matching according to
their preferences. That is, each task t, in her turn, changes
her partner set to the best feasible set of workers among
all the workers that are already in her partner set, or that
prefer herself to their current assignments. Thus, Heuristic
algorithm ensures that there is no unhappy coalition 〈S, t〉
for any S ⊆ W immediately after the turns of task t. It
can, hence, be expected that as we increase the number
of iterations/turns, there will be fewer unhappy coalitions,
which will improve the coalitional stability of the matching.

The outline of Heuristic algorithm is provided in Al-
gorithm 4. In each of the k iterations, the algorithm goes
through all tasks (t) in the system (line 2) and first finds
all workers that are either already matched with task t or
would be better off with task t compared to their current
partners (lines 3-8). Then, among these workers, it identifies
the set Smax of workers that require a total reward of
less than bt and provide as large total QoS as possible for
task t by solving the corresponding knapsack problem (line
9). Finally, it sets the workers that are presently matched
with task t, but are not in Smax free (lines 10-12), and
matches task t and the workers in Smax with each other
after removing these workers from the partner sets of the
tasks with whom they were previously matched (lines 13-
18).

The fact that a task is perfectly happy (i.e., has a dissat-
isfaction ratio of 1) right after her turns indicates that the
task that is considered the latest in the for loop in line 2 will
be perfectly happy in the end, as well. This nice property
of Heuristic algorithm can be used to make a different
task requester happy at each (e.g., hourly, daily) assignment
cycle, and to ensure that all task requesters become perfectly
happy with their assignments periodically. Another useful
property of Heuristic algorithm is that it allows to explore
different feasible matchings that are shaped by the prefer-
ence profile of a different task, which will become clearer in
the toy example provided below.

Algorithm 4: Heuristic Approach(W , T )

Input: W : The set of workers
T : The set of tasks
k: The number of iterations

1 for i ← 1 to k do
2 foreach t ∈ T do
3 S ← M(t)
4 foreach w ∈ W do
5 if t ∈ Pw and t ≻w M(w) then
6 S ← S ∪ {w}
7 end
8 end
9 Smax ← solve01Knapsack(bt, Rt(S), Qt(S))

10 foreach w′ ∈ M(t) \ Smax do
11 M(w′) ← ∅
12 end
13 foreach w′ ∈ Smax do
14 let t′ denote M(w′)
15 M(t′) ← M(t′) \ w′

16 M(w′) ← t
17 end

18 M(t) ← Smax, bMt ← bt − rt(Smax)
19 end
20 end
21 return M

Example: We once again utilize the MCS instance given in
Fig. 1 to show how Heuristic algorithm functions. Assume
that the for loop in line 2 iterates through the tasks in order
of task x and task y. In the first iteration, since all workers
are unmatched, task x will be assigned to the best (i.e., with
the highest total QoS) subset of workers in {1, 2, 3} with a
total reward of less than 7, which is {2, 3}:

M : x ↔ {2, 3}, y ↔ ∅

In this matching. worker 3 is the only one that prefers task
y to task x, so when it is task y’s turn, she will directly be
matched with worker 3:

M : x ↔ {2}, y ↔ {3}

In the next iteration, task x will be assigned to the best
worker set from {1, 2}, which are the workers that are either
matched with task x (i.e., worker 2) or prefer task x to their
current partners (i.e., worker 1). Since her budget does not
allow to hire both, worker 2 will be replaced by worker 1
who provides a higher QoS:

M : x ↔ {1}, y ↔ {3}

At this point, since worker 2 prefers task y to being unas-
signed, task y will be assigned to the best feasible worker
set from {2, 3} in her turn, which is {2}:

M : x ↔ {1}, y ↔ {2}

In this matching, both worker 2 and worker 3 prefers task x
to their current partners, so the algorithm will assign task x
the best feasible worker set from {1, 2, 3}, which is {2,3}:

M : x ↔ {2, 3}, y ↔ ∅
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Note that this is exactly the same as the first matching
we obtained above. In fact, after this point, the algorithm
will repeatedly generate the same matchings, and return
the matching (x ↔ {2}, y ↔ {3}) if k is odd, and the
matching (x ↔ {1}, y ↔ {2}), otherwise. The former is
the optimal matching in terms of coalitional stability, as
there does not exist any coalitionally stable matching in this
instance (Theorem 2) and this matching contains only one
coalitionally unhappy pair (worker 1 and task x). On the
other hand, the latter is the same matching as the one found
by UTA and PSTA algorithms and is the optimal matching
in terms of pairwise stability.

Running time. The two outermost loops in line 1 and 2
will iterate k and m times, respectively. Similar to PSTA
algorithm, solving the 0-1 knapsack instance in line 9 takes
O(nβ) where β = maxt∈T bt, and is the most costly op-
eration within the for loop in line 2. This makes the total
running time of Heuristic algorithm O(knmβ).

5 SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithms in different types of MCS systems.

5.1 Settings

Similar to previous work [14], [39], we utilize a taxi trip
dataset [40] in a city (i.e., New York City (NYC)) to have
a rather realistic geographic distribution of workers and
tasks. Specifically, we randomly select a day in 2015 and
then create a worker at the most recent drop-off location
of each taxi that has become available between 1-2 pm on
the selected day, and a task at the pick-up location of each
passenger that has demanded a taxi in the next hour of
the same day. Then, we use random-sampling to obtain the
worker and task sets of certain size based on the experiment
requirements.

Note that each of the four types of MCS systems (i.e.,
proportional (P.) and non-uniform (N.U.), non-proportional
(N.P.) and non-uniform, proportional and uniform (U.), non-
proportional and uniform) necessitates different QoS and
reward settings. Thus, we generate a unique scenario for
each MCS system by integrating this information on top of
the geographical information.

As the default setup for all scenarios, we sample n = 100
workers and m = 50 tasks (an instance is illustrated in Fig.
3), and randomly assign a budget for each task between
Bmin = 100 and Bmax = 1000. Given the distance d
between a worker w and a task t, we let ct(w) = d × C ,
where C = 20 denotes the cost per kilometer. Below, we
describe the typical settings for each scenario.

• Proportional (P.) and uniform (U.): We assign a unique
QoS value v to each worker w randomly from [1, 200]
and let qt(w) = v, ∀t ∈ T .
Then, the rewards are set as

rt(w) =

{

θtqt(w) if θtqt(w) ≤ bt

0 otherwise

where θt is randomly selected from [1, 5] for each task
t.

• Proportional (P.) and non-uniform (N.U.): Given a
worker-task pair (w, t), we randomly assign the reward

(a) (b)

Fig. 3: Distribution of workers (circles) and tasks (triangles)
on the NYC map with different sampling ratios: (a) 100
workers, 50 tasks; (b) 500 workers, 500 tasks.

TABLE 3: Time complexities of all algorithms considered in
the simulations (* indicates the algorithms proposed in this
paper).

Algorithm Time complexity

UTA* O(n logn+ nm)
PSTA* O(n2mβ)

Heuristic* O(knmβ)
SJA O(nm2n)

φ-STA O(mn log(mn))
θ-STA O(mn log(mn))

rt(w) from [1, bt] (we also examine the cases where
reward values are assigned from [1, bt/2] and [bt/2, bt]),
and let qt(w) = rt(w)/θt, where θt is set as in the
previous scenario, yet its value is actually arbitrary for
all the algorithms considered in this scenario, unlike
the previous scenario where it is unarbitrary for UTA
algorithm.

• Non-proportional (N.P.) and uniform (U.): For this
scenario, the QoS information is produced exactly as
it is in the proportional and uniform scenario. The only
difference is that for each worker-task pair (w, t), the
reward rt(w) is assigned randomly from [1, bt].

• Non-proportional (N.P.) and non-uniform (N.U.):
Given a worker-task pair (w, t), we randomly assign
the reward rt(w) from [1, bt] and qt(w) from [1, 200].

Given the settings described above, the preference profiles
of workers and tasks can be determined by (1) and (2),
respectively. (Yet it should be noted that in practice none of
the algorithms requires tasks to form their preference lists,
which would take O(n2n) time and memory.)

Lastly, we run the simulations 100 times with a different
user set in each run and present the averaged results.

5.2 Algorithms in Comparison

We compare the performance of our algorithms with the
following algorithms proposed in [9] and [30] (see Table 3
for a comparison of the time complexities of all algorithms).

• Stable Job Assignment (SJA): This ILP-based algorithm [9]
produces pairwise stable matchings solely in proportional
and uniform MCS systems.
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TABLE 4: Mobile crowdsensing scenarios and correspond-
ing applicable algorithms (∗ indicates the algorithm is ap-
plicable but has a very poor performance since it is not
specifically designed for that scenario).

MCS Type UTA PSTA Heuristic SJA φ-STA θ-STA

P. & U. X X X X X *
P. & N.U. X X X *
N.P. & U. X X X X

N.P. & N.U. X X X

• φ-Stable Task Assignment (φ-STA): Proposed in [30], this
approximation algorithm produces matchings that are
guaranteed to be coalitionally φ-stable in proportional
matching markets, where φ (≈ 1.618) denotes the golden
ratio. In this algorithm, tasks (t) simply run the φ-
approximation algorithm for the single bin removable on-
line knapsack problem proposed in [41] to decide whether
to accept (and discard some other workers if needed) or
reject the proposing workers (w) using the rewards rt(w)
as the weights of items and bt as the size of the knapsack.
The running time of this algorithm is O(mn log(mn)).

• θ-Stable Task Assignment (θ-STA): This approximation algo-
rithm is also proposed in [30] and generates coalitionally
θ-stable matchings in general matching markets, where

θ =
1

1−maxw∈W,t∈T
rt(w)
bt

.

It follows the classic deferred acceptance mechanism:
workers make the proposals, tasks (t) that have available
budget accept the incoming proposals and those that do
not have available budget temporarily add the proposing
worker to their partner set and then discard the workers

(w′) with the lowest
qt(w

′)
rt(w′) ratio until the sum of rewards

to be paid to the remaining workers is less than or equal
to bt. As it is shown in Table 4, although it can be run
in all types of MCS systems, we do not provide results
for this algorithm in proportional MCS systems due to
its unpredictable and mostly poor performance in these
systems. This is because it randomly selects the workers
to be discarded in proportional settings as all workers

(w′) have the same
qt(w

′)
rt(w′) ratio for each task t. The time

complexity of this algorithm is also O(mn log(mn)).

Note that neither φ-STA nor θ-STA has a performance guar-
antee in terms of pairwise stability.

5.3 Performance metrics

We utilize the following performance metrics in the evalua-
tions.

• Overall user happiness: This is calculated as

100×

(

1−
# of coalitionally unhappy pairs

# of all matchable worker-task pairs

)

and expresses the overall user happiness based on the
instability of the matching. Thus, it is the main metric that
defines the performance of the algorithms.

• Outward user happiness: This is calculated as

100×

(

1−
# of unhappy pairs

# of all matchable worker-task pairs

)

and quantifies the outward user happiness based on the
one-dimensional instability of the matching. The reason
it is called outward is that compared to coalitionally un-
happy pairs, unhappy pairs are easier to notice for users,
and the users forming an unhappy pair have a stronger
incentive to deviate from (a subset of) their partners to
each other as they do not need a collective agreement that
involves other users (unlike coalitionally unhappy pairs).

• Maximum dissatisfaction ratio: This is the dissatisfaction of
the task in the unhappy coalition with the largest incentive
to deviate from the current matching, which is formally
defined as

δmax = max
t∈T

δt.

Given the maximum dissatisfaction ratio δmax of a match-
ing M, we can say that M is coalitionally δmax-stable and
is not coalitionally (δmax−ǫ)-stable for any positive real ǫ.
If a matching does not have any unhappy coalition, then
δmax = 1 by definition.

• Running time: We also compare the algorithms with re-
spect to their running time, which might be critical for
MCS systems with strict time constraints.

5.4 Results

We first look at the performance of the proposed algorithms
in proportional and non-uniform scenario. Fig. 4 shows
the performance of algorithms with different number of
workers. First, note that Heuristic algorithm (which is run
with k = 3 as default) usually performs the best and
produces optimal assignments in terms of both overall and
outward user happiness when the number of workers is
larger than 200. It is interesting that it achieves very similar
overall and outward user happiness scores, which indicates
that it yields matchings in which most of the coalitionally
unhappy pairs are also unhappy pairs. Second, we see
that despite having a better upper bound (UB) in terms of
maximum dissatisfaction ratio (i.e., the upper bounds for φ-
STA and PSTA are, respectively, φ (≈ 1.618) and 2, while
Heuristic algorithm is unbounded), φ-STA mostly performs
much worse than our algorithms. Besides, its performance
gets worse as the number of workers increases and it even
produces matchings with as low as 10% overall user hap-
piness. Since the system is proportional, PSTA algorithm
always achieves 100% outward user happiness (Theorem
4), but we still include it in all figures for completeness.
Also, it outperforms Heuristic algorithm when the number
of workers is small and generally achieves a maximum
dissatisfaction ratio that is much smaller than its upper
bound and very close to the optimal value (i.e., 1).

Fig. 5 shows the performance of algorithms with varying
number of tasks. As for the performance of Heuristic algo-
rithm, we see a trend that is similar to what we have seen
in Fig. 4. It performs worse when the number of workers
and tasks are close to each other. On the other hand, φ-
STA and PSTA algorithms always have a better performance
with increased number of tasks. This is because they are
worker-oriented algorithms where the proposals are made
by workers, so the increase in the number of tasks reduces
the competition among workers and results in improved
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Fig. 4: Performance comparison of algorithms in proportional and non-uniform scenario with varying number of workers
(m = 50 tasks).
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Fig. 5: Performance comparison of algorithms in proportional and non-uniform scenario with varying number of tasks
(n = 100 workers)

user happiness. Here, PSTA always performs better than φ-
STA, and it also outperforms Heuristic algorithm when the
number of tasks get larger than that of workers.

In Fig. 6a, we show the performance of Heuristic algo-
rithm when it is run with different k values. We see that
even with a few number of iterations, it achieves about 95%
overall user happiness, and that increasing the number of
iterations continues to improve the performance even up
until 100 iterations, but it may not be worth the increase
to be seen in the runtime, which is linear to the number of
iterations.

In Fig. 6b, we look at the impact of C (cost per kilometer)
on the performance of the algorithms. Note that an in-
creased C value can be interpreted as having very selective
workers who do not even find most of the tasks acceptable.
Thus, it deescalates the competition among workers and
results in an improvement in the performance of worker-
oriented algorithms (φ-STA and PSTA). Conversely, it es-
calates the competition among tasks as there will be less
number of eligible workers for each task, so the performance
of task-oriented Heuristic algorithm gets slightly worse. The
similar outcomes are also seen in Fig. 6c where we look at
the impact of reward ranges. When we lower the reward
range from [1, bt] to [1, bt/2], there will be fewer workers
eligible for each task, so the performance of φ-STA and PSTA
algorithms gets better, while that of Heuristic algorithm gets
worse due to the same reasons pointed out above. However,
when the reward range is made [bt/2, bt], the performance
of all algorithms get better (PSTA and Heuristic algorithms
even achieve optimal overall user happiness) because tasks
can now hire at most 2 workers, making it an almost
competition-free setting for both workers and tasks.

Next, we analyze the performance of algorithms in non-
proportional and non-uniform scenario in Fig. 7. Note that

since the system is non-proportional, PSTA algorithm fails
to achieve perfect outward user happiness most of the
times, but still manages to outperform the others in terms
of outward user happiness. The performance of Heuristic
algorithm seems similar to its performance in proportional
and non-uniform scenario: it achieves higher than 85%
overall/outward user happiness regardless of the number of
workers/tasks and performs the worst when the number of
workers and tasks are similar. However, in this scenario, our
algorithms are usually outperformed by θ-STA algorithm in
terms of overall user happiness. In fact, θ-STA algorithm has
a quite reliable performance in this scenario as its overall
user happiness score never drops below 95%.

Fig. 8 and 9 show the performance comparison of al-
gorithms in proportional and uniform scenario for varying
number of workers and tasks, respectively. Here, Heuristic
algorithm always outperforms all the other algorithms in
terms of overall user happiness by steadily achieving very
close to optimal scores (≥ 97%) regardless of worker and
task counts. On the other hand, φ-STA algorithm always
has the poorest performance in terms of all metrics con-
sidered here. Since the system is both proportional and
uniform, UTA and PSTA algorithms are guaranteed to
achieve perfect outward user happiness due to Theorems
3 and 4, respectively. It is remarkable that the increase in
the number of tasks improves the performance of UTA and
PSTA algorithms in terms of overall user happiness, while
it has a detrimental effect on them in terms of maximum
dissatisfaction ratio.

In Fig. 10, we look at the performance of algorithms
in non-proportional and uniform scenario. We first observe
that UTA algorithm generally has the worst performance in
terms of overall user happiness, yet it is the only algorithm
that ensures a perfect outward user happiness. Second, the
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Fig. 6: (a) Performance of Heuristic algorithm with increasing number of iterations; (b-c) Performance comparison of
algorithms with varying cost per kilometer values and reward ranges (all in proportional and non-uniform scenario with
m = 50 tasks and n = 100 workers).
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Fig. 7: Performance comparison of algorithms in non-proportional and non-uniform scenario with varying number of
workers and tasks.
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Fig. 8: Performance comparison of algorithms in proportional and uniform scenario with varying number of workers
(m = 50 tasks).
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Fig. 9: Performance comparison of algorithms in proportional and uniform scenario with varying number of tasks (n = 100
workers).

100 200 300 400 500
# of workers (n)

0

20

40

60

80

100

O
ve

ra
ll 

us
er

 h
ap

pi
ne

ss
 (%

)

-STA
Heuristic
PSTA
UTA

100 200 300 400 500
# of workers (n)

75

80

85

90

95

100

O
ut

w
ar

d 
us

er
 h

ap
pi

ne
ss

 (%
)

-STA
Heuristic
PSTA
UTA

50 100 150 200 250
# of tasks (m)

40

50

60

70

80

90

100

O
ve

ra
ll 

us
er

 h
ap

pi
ne

ss
 (%

)

-STA
Heuristic
PSTA
UTA

50 100 150 200 250
# of tasks (m)

60

70

80

90

100

O
ut

w
ar

d 
us

er
 h

ap
pi

ne
ss

 (%
)

-STA
Heuristic
PSTA
UTA

Fig. 10: Performance comparison of algorithms in non-proportional and uniform scenario with varying number of workers
and tasks.
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Fig. 11: (a-b) Comparison of algorithms in terms of running time; (c) Impact of Bmax on the running time of Heuristic and
PSTA algorithms.

performance of Heuristic algorithm is significantly worse
in this scenario compared to that in the others. In fact,
this is the only scenario where it achieves less than 85%
overall user happiness. Similar to the non-proportional and
non-uniform scenario, θ-STA algorithm usually manages to
deliver a higher overall user happiness score than the others
when there are more workers than tasks, but its performance
is also worse in this scenario. Besides, it is significantly
outperformed by PSTA and UTA algorithms in terms of
outward user happiness for the most part.

Lastly, in Fig. 11a-b, we compare the running time of all
algorithms. We only provide the results for the proportional
and uniform scenario as all of the algorithms can be run
in this scenario and those that are also run in different
scenarios have an almost indistinguishable running time
in all scenarios they have been used with. First, note that
the objective of SJA algorithm is to obtain assignments
with perfect outward user happiness in proportional and
uniform systems. Our UTA algorithm achieves the same in
not only proportional and uniform systems, but also in non-
proportional and uniform systems in an extremely shorter
time (by a few orders of magnitude). Furthermore, it has
the lowest running time among all, which is consistent
with its superior time complexity (O(n log n + mn)). Our
other algorithms (Heuristic and PSTA) are also much more
time-efficient than SJA algorithm, though they have notably
larger running time compared to the rest of the algorithms.
Nonetheless, it should be noted that we have assumed a pre-
scaling will have to be made in case budgets and rewards
are not defined as integers. Therefore, we used relatively
large budget (up to Bmax = 1000) and hence reward values
in all experiments. If pre-scaling can be avoided (or the
task requesters in the system have a rather limited budget),
the running time of Heuristic and PSTA algorithms will
decrease linearly with reduced budget values as shown in
Fig. 11c. Finally, we observe that increasing the number of
tasks after when there are equal number of workers and
tasks in the system (n = m = 100) either reduces the
running time or the increase in the running time of all
algorithms. This is because when there are more tasks than
workers, workers will be able to find their stable partners in
a shorter time as they are more likely to be matched with a
task that is at the top of their preference lists.

6 CONCLUSION

In this paper, we study the stable task assignment problem
in MCS systems. Different from the classic stable matching
problem, the task requesters in an MCS system may recruit
multiple workers within their budget ranges to reinforce
the quality of the sensed data. This makes the generic
stability definitions obsolete and the existing approaches
to find stable matchings inapplicable in MCS systems. To
address this problem, we first define the stability conditions
peculiar to MCS systems, and provide the existence and
hardness results for stable task assignments in different
types of MCS systems. Then, we introduce three different
stable task assignment algorithms, namely UTA, PSTA, and
Heuristic. We prove that UTA and PSTA algorithms always
produce pairwise stable task assignments in uniform and
proportional MCS systems, respectively. Finally, we evaluate
the performance of the proposed algorithms in terms of user
happiness through extensive simulations. The results show
that our algorithms significantly outperform the state-of-
the-art stable task assignment algorithms in most scenarios.
Specifically, PSTA and Heuristic algorithms usually achieve
the highest outward and overall user happiness, respec-
tively.

In our future work, we will address the problem of
many-to-one stable task assignment with non-additive task
preferences where the total QoS that two workers provide
for a task may be less or more than the sum of their indi-
vidual QoS considering the overlapping, redundant skills of
workers and the benefit of cooperation, respectively.
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