Computer Networks 172 (2020) 107156

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

User satisfaction aware maximum utility task assignment in mobile N

Check for

crowdsensing

Fatih Yucel, Eyuphan Bulut*

Department of Computer Science, Virginia Commonwealth University, 401 West Main, St. Richmond, VA 23284, USA

ARTICLE INFO ABSTRACT

Keywords:

Mobile crowdsensing
Task assignment
Stable matching

In mobile crowdsensing systems (MCS) efficient task assignment is the key problem that defines the performance
of the system. The current state-of-the-art solutions consider the problem from system’s point of view and target
an assignment that optimizes the overall system utility such as minimizing the cost of sensing or maximizing the
collected data quality. However, users (i.e., task requesters and task performers or workers) may have individual
preferences, hence the resulting assignment may not satisfy the users and can discourage them from participation
in the future. Stable matching based solutions can help achieving satisfactory assignments for the users, but
they may degrade the system utility especially when the number of eligible task performers for each task is
limited, hence may not be desired for the MCS platform. To address this problem, in this paper, we study the task
assignment problem that aims to maximize the system utility and user satisfaction simultaneously as much as
possible. As the problem is NP-complete, we first solve the problem using Integer Linear Programming (ILP) and
provide two different heuristic based polynomial solutions. We perform extensive simulations using real dataset
and show that the proposed solutions provide close to optimal results, complementing each other at different

scenarios.

1. Introduction

Mobile crowdsensing (MCS) has emerged as an effective approach to
accomplish large scale sensing and computation tasks that are beyond
the capabilities of the task requesters themselves [1]. Mobile users car-
rying devices equipped with various sensors (e.g., microphone, camera,
and GPS) are recruited to efficiently carry out the tasks that require mas-
sive expenses and execution times when performed individually. There
are many applications of MCS systems today in use such as traffic [2] and
air quality monitoring [3].

An MCS system consists of a platform, requesters, tasks and work-
ers!. Task requesters post a set of tasks with different requirements such
as a deadline to complete the task and a reward for completing the task.
The workers register to the system together with their capabilities and
any applicable restrictions (e.g., can only perform tasks in a specific
region, or can perform a task with at least a minimum reward). The
platform defines the workers eligible for each task and either automati-
cally matches them based on some optimization goal or let the workers
and task requesters communicate and agree on a task allocation in a

* Corresponding author.
E-mail addresses: yucelf@vcu.edu (F. Yucel), ebulut@vcu.edu (E. Bulut).
1 We utilize the term “user” to refer to both task requesters and workers. Work-
ers are the users who are recruited to perform tasks.

https://doi.org/10.1016/j.comnet.2020.107156

distributed manner based on their preferences, where the platform only
serves as the advertiser. For example, a worker may prefer to take the
tasks that will provide more profit with a minimal effort based on the
worker’s capabilities.

MCS can be performed either opportunistically or in a participatory
way. In the opportunistic MCS, workers passively contribute to the com-
pletion of tasks (e.g., sensing humidity in some region of the city) with-
out changing their mobility. On the contrary, in participatory sensing,
a central authority usually assigns workers to the tasks, and the work-
ers actively move to the task location to complete the tasks in return of
some reward. Depending on the MCS application and its requirements,
either one may have advantages over the other. In both scenarios, the
main challenging problem is the assignment of tasks to users under some
optimization goal. However, the nature of the task assignment process
changes depending on the scenario.

There have been many studies [4-16] performed to propose solu-
tions to this task assignment problem under different scenarios and lim-
itations (e.g., budget, maximum distance to travel). In most of these
studies, however, the problem is formulated as a maximum system util-
ity (e.g., number of completed tasks, quality of completed tasks, average
time needed to complete a task) problem and users’ individual goals are
overlooked. However, users may not want to sacrifice their individual

Received 14 September 2019; Received in revised form 19 December 2019; Accepted 17 February 2020

Available online 19 February 2020
1389-1286/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2020.107156
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107156&domain=pdf
mailto:yucelf@vcu.edu
mailto:ebulut@vcu.edu
https://doi.org/10.1016/j.comnet.2020.107156

F. Yucel and E. Bulut

Eligible tasks in
preference order

(a) (b)

Computer Networks 172 (2020) 107156

Eligible workers in
preference order

@adc @ =@ (153.2,4)

R C

—

06—
(c)

(d)

Fig. 1. An MCS scenario with 5 workers and 5 tasks, which are respectively denoted by numbers and letters. (a) The task and current worker locations on the map
(workers eligible to perform a task is connected with an edge to that task); (b) corresponding bipartite graph with the list and preference order (from left to right)
of workers and tasks; (c) Deferred acceptance based stable matching (Gale-Shapley algorithm [21]) leaving 4 and b unassigned, yielding a lower system utility; and
(d) An assignment that maximizes the system utility but yielding unhappy users (shown with dashed edges).

convenience for the system utility, and thus such task assignments may
not be appealing to users (i.e., both task requesters and workers) and im-
pair their future participation. Recently, stable matching based solutions
are adopted to address this problem [17-20], and task assignments that
are aware of user preferences are developed to make the users happy
with their assignments. However, these solutions may reduce the sys-
tem utility (e.g., some tasks and workers left unassigned) while trying
to satisfy users in some cases.

We illustrate this tradeoff between user happiness and system utility
through an example MCS scenario with 5 tasks and 5 workers shown
in Fig. 1a, which will be referenced throughout the paper to describe
the problem and the proposed solutions for convenience. We assume
that workers have some serving region and they are only eligible for
the tasks in that region. The preference orders of the workers and the
task requesters are also provided in Fig. 1b (we will describe how users
define their preferences in Section 3). A matching that satisfies all users
based on their preferences in the sense that they cannot claim to have
deserved a better assignment than their assigned partners can be found
via the well-known Gale-Shapley algorithm [21]. There can be many
such stable matchings in a single matching instance with the same size,
but there is only one in our example which is shown in Fig. 1c. Thus,
any other matching will make at least two users unhappy. On the other
hand, the issue with this matching is that it leaves a worker (4) and a
task (b) unassigned and hence diminishes the system utility. However,
the foremost objective of a reasonable platform would be to maximize
its own utility by assigning as many tasks as possible (as in Fig. 1d), since
it is typically paid a brokerage fee for each assignment it makes. Yet it is
for the platform’s own benefit to also take the preferences of users into
consideration and aim to decrease the number of unhappy users with
their assignments, because a user that continuously gets unhappy with
his assignments is likely to abandon the platform at some point, which
might have a more significant and permanent detrimental effect on the
system utility. Therefore, the platform should aim to find the matching
with the minimum number of unhappy pairs (i.e., a worker-task pair
preferring each other more than their current partners) without sacri-
ficing from its own utility. For example, a matching that also achieves
the maximum system utility, but with only one unhappy pair is possi-
ble in the given scenario; thus, the platform should try to produce this
matching instead of the one given in Fig. 1d, which contains 4 unhappy
pairs. In this paper, we address this problem, which turns out to be NP-
complete, and propose two polynomial time heuristic algorithms to find
the matching that contains as few unhappy pairs as possible among all
matchings with maximum system utility. The contributions of this paper
can be summarized as follows:

» We formulate the user satisfaction aware maximum utility task as-
signment problem and solve it optimally using Integer Linear Pro-
gramming (ILP).

» We provide two heuristic based efficient solutions that run in poly-
nomial time using different approaches.

+ We perform extensive real dataset based simulations covering nu-
merous scenarios and show that the proposed solutions provide close
to optimal results and complement each other at different scenarios.

In the preliminary version of this study [22], we only provide a single
heuristic based solution (i.e., Stable to Maximum) and limited simulation
results. The rest of the paper is organized as follows. In Section 2, we
present an overview of related work. In Section 3, we provide the moti-
vation of the study together with a background on stable matching and
problem definition. In Section 4, we elaborate on the ILP solution and
heuristic based approaches. In Section 5, we present an extensive eval-
uation of the proposed approaches through real data based simulations.
Finally, we end up with conclusion in Section 6.

2. Related work
2.1. Mobile crowdsensing

Mobile crowdsensing has received a great attention in recent years
and several aspects have been studied by many researchers. A primary
component of MCS systems is incentive mechanisms, which determine
how the participants of the system should be incentivized to perform as-
signed tasks. In some studies, participants are simply assumed to be self-
incentivized due to the entertaining [23] or mutually beneficial [24] na-
ture of the tasks tackled in the system, or by the fact that the objective
of the task coincides with their political, cultural, environmental or reli-
gious views. However, for the majority of the MCS systems that involve
sensing tasks that require the workers to spend their own resources (e.g.,
time, travel costs) to achieve the assigned tasks, it may not be feasi-
ble to assume self-incentivized workers. In such systems, the workers
should be compensated financially by the crowdsourcer for their efforts
and disbursements. In order to achieve this, various incentive mecha-
nisms (e.g., auctions, lottery contests, reputation based models) have
been proposed [25], among which auction models are the most pop-
ular and commonly used [26-28]. In these models, generally, workers
estimate and announce the level of effort they will have to put in to com-
plete each task, and the platform strategically selects the workers and
determines how much they will be rewarded while ensuring the quality
of the sensed data.

F. Yucel and E. Bulut

Another challenge in MCS systems that is as crucial as incentive
mechanisms is how to assign the requested tasks to the workers given the
incentives that the task requesters are willing to provide and the cost of
performing these tasks for each worker. This problem is referred to as the
task assignment/allocation or user recruitment problem in the MCS litera-
ture, and has been studied quite extensively [4-16]. In these works, dif-
ferent objectives have been considered such as maximizing the number
of completed tasks, minimizing the completion times of tasks [11], min-
imizing the incentives provided to the users [12,13], assuring the task or
sensing quality [14-16] within some limits such as budget [29], energy
consumption [15] and traveling distance [14]. Beyond these works, se-
curity [30], privacy [5,31,32], and trustfulness [6,33] of workers have
also been considered during the recruitment process.

Despite the variety of the literature on the task assignment and in-
centive models in MCS systems, the goal is mostly defined from overall
system’s point of view without considering the user preferences. Most
of these studies aim to maximize the overall system utility according to
a specific performance metric, but fail to take the user preferences into
account. Consequently, in the proposed models, some worker and task
requester pairs end up preferring each other to their assignments, which
leads to unstable and unfair results, discouraging users from future par-
ticipation.

2.2. Stable matching

Stable Matching (SM) problem is introduced in the seminal paper
of Gale and Shapley [21] and can simply be defined as the problem of
finding a matching between two groups of objects such that no pair of
objects favor each other over their partners in the matching. Gale and
Shapley have also introduced what is called the deferred acceptance pro-
cedure that finds stable matchings in both one-to-one matching scenar-
ios (i.e., stable marriages) and many-to-one matching scenarios with ca-
pacity constraints (i.e., stable college admissions) in O(mn) time, where
m and n are the size of the sets being matched (e.g., men/women, col-
leges/students, workers/tasks). Since its introduction in Gale and Shap-
ley [21], the concept of stability has been utilized in different prob-
lems including hospital resident assignment [34], resource allocation
in device-to-device communications [35], SDN controller assignment in
data center networks [36], and electric vehicle charging [37].

Since there can be multiple stable matchings in a matching instance,
finding the best SM in terms of another performance metric has received
a lot of attention. First, Gale and Sotomayor [38] proves that the set of
matched nodes is identical in all stable matchings, therefore all stable
matchings are of the same size. Iwama et al. [39] studies the problem
of finding sex-equal stable matchings where the difference between the
quality of the matching for two sides (e.g., men/women) of the matching
is minimum. The authors prove that the problem is NP-hard and propose
a polynomial time approximation algorithm. Irving et al. [40] focuses
on the maximum weighted stable matching problem, which turns out to
be solvable in O(N*log N) time (N = max{m,n}) and remains as one of
the few significant optimal stable matching problems that are solvable
in polynomial time. Note that an explicit method to solve these prob-
lems and all optimal stable matching problems is simply to enumerate
all stable matchings and find the best according to the utility metric
considered. In fact, Gusfield [41] proposes an algorithm that iterates
all stable matchings in a matching instance of size N in O(N2 + N|S|)
time, where S is the set of all stable matchings in the instance. How-
ever, since the number of stable matchings (|S|) can be massive even
for small problem sizes (e.g., the maximum number of stable matching
for a problem of size N = 32 is larger than 10'!) and grows exponen-
tially with increasing problem size [42], this method (i.e., enumerating
stable matchings to find the optimal one) would be a feasible solution
only in a very limited set of scenarios.

Recently, the concept of stability has also been utilized [17-20] in
mobile crowdsensing (and crowdsourcing) systems. In terms of consid-
ering user preferences in the task assignment, the closest studies to this

Computer Networks 172 (2020) 107156

paper are [18,20]. In [18], the authors study the many-to-one stable job
assignment problem under budget constraints. They define the unique
stability conditions for many-to-one matching scenarios where a crowd-
sourcer would like to recruit as many workers as his budget permits, and
propose an ILP-based algorithm to find pairwise stable matchings. On
the other hand, Abououf et al. [20] focuses on the problem of finding
many-to-many stable task assignments under capacity constraints and
provides a polynomial time heuristic algorithm that aims to maximize
user satisfaction in the resulting matching according to user preferences.
However, neither of these studies addresses the issue of flawed system
utility (or matching size) that comes with stable matchings. This issue
is firstly addressed in Biré et al. [43] from a theoretical perspective,
and it has been shown that given a matching instance with incomplete
preference lists, the problem of finding a matching of maximum size
with as few blocking/unhappy pairs as possible is NP-hard and is not
approximable within a constant factor. In other words, there cannot ex-
ist a polynomial time c-approximation algorithm that would produce
matchings with at most ¢ X # unhappy pairs unless P = NP, where c is
a constant (> 1) and f is the number of blocking pairs in the optimal
matching. In the SM literature, the idea of relaxing the stability in order
to achieve a better matching in terms of another utility has also been
studied under the concept of almost stable matchings, but these studies
[44,45] have mostly focused on reducing the running time by sacrific-
ing from the stability, for which they propose truncated versions of the
deferred acceptance procedure.

Despite the extensive studies in stable matching literature, to the
best of our knowledge, there is no study that provides an experimental
analysis that shows the severity of system utility loss in stable match-
ings, or proposes a heuristic algorithm to solve the problem of finding
a maximum system utility matching with as few unhappy pairs (i.e.,
instability) as possible by trading the optimality for speed. In order to
address these, this paper first investigates the trade-off between the sys-
tem utility and the stability (user satisfaction), and then proposes two
polynomial time heuristic algorithms that achieve very close to optimal
results in different scenarios.

3. System model
3.1. Assumptions

Let W = {w;,w,, ...,w,} denote the set of |[W| =n workers and 7
= {t},t5,... 1, } denote the set of |7| = m tasks in the system. Also, let
¢;j denote the cost® of assigning worker w; to task t and r; denote the
reward of completing the task t;. We assume that workers are rational;
hence, they do not perform a task if its cost is higher than the reward of
the task. The set of eligible tasks that worker w; can perform are defined
as:

S(wl) = {tjlrj > Cij»

vj €L,ml} M
As workers aim to increase the profit from the tasks they complete, they
prefer the tasks with higher r; - ¢;; value. We use 1; >, ¢, notation to
express that w; prefers ¢; to 7;, which happens when r; —¢;; > ry —¢;r.
The task requesters cannot also hire a worker if the cost of hiring that
worker is more than the reward the requester can provide (which could
also be considered as the budget of the requester). The set of eligible
workers that can perform the task ¢; is then similarly defined as:

E)) = {wilr; 2 ¢y, Vi €1,...]} @)
Similarly, the task requester can have preferences on the eligible set

of workers. For example, if the cost of assigning a worker to a task is

2 Note that cost can be defined with a complicated function that considers
the worker’s traveling and task completion duration due to spatio-temporal con-
straints, energy consumption on the worker’s device due to sensing, and privacy
risks to the worker. Similarly, reward can be defined based on several factors
such as the quality of sensed data and the trustworthiness of the users.

F. Yucel and E. Bulut

Table 1

Notations
Notation Description
w, T Set of workers and tasks, respectively.
n, m Number of workers and tasks, respectively.
N max {m, n}.
M Matching between workers and tasks.
M(u) Task/worker assigned for user (worker/task) u.
U(M) The set of unhappy pairs in matching M.
[UWM)| Unhappiness Index (UI).
Eu) Eligible tasks/workers for worker/task u.
1€] Average eligible task/worker size.
P, Preference list of user u.
Cij Cost for worker w; to perform task ¢;.
T Reward of completing task t;.
w; >, W; Task t; prefers worker w; to worker w, .
G=(V,E) Bipartite graph between workers and tasks.

dependent on the traveling distance from the worker location to the task
location [7,46], the task requester may prefer the workers who have less
cost, as they indicate quicker arrival of the worker to the task location
and early completion of the task. It could also be a totally location-
independent cost function and the preference of the task requester can
be determined by other factors such as the quality of the sensed data the
workers can provide. Given the eligibility relations, the corresponding
undirected bipartite graph G = (V, E) can be defined as

GV =WuT

G.E={uvuveGV,uec&v),vecu)} ®

Lastly, we use w; >, wy notation to express that t; prefers w; to wy,
and we assume that the preference list of a user u is the ordered list of
£(u) in which a more favorable candidate precedes the less favorable
ones, and is denoted by P,. The notations used throughout the paper
are summarized in Table 1.

3.2. Trade-off analysis

Having the set of eligible workers for each task and eligible tasks
for each worker, the platform then assigns the tasks to workers with
some optimization goal. An assignment aiming to maximize the system
utility® can be obtained by constructing the corresponding maximum
bipartite matching instance between workers and tasks and solving it
via the well-known Hungarian algorithm [47]. Similarly, an assignment
aiming to satisfy users with their assignments can be obtained using
the deferred acceptance mechanism in the Gale-Shapley algorithm [21].
However, achieving both may not be possible at the same time and there
is a trade-off between system utility and user satisfaction.

Let M = {(w[l’tf])"”’(w[k’tjk)}’ k < min{m, n} denote the set of
(worker, task) pairs assigned to each other depending on the task re-
quirements and worker skills. We denote the task assigned to a worker
w in a matching M by M(w). We say M(w) = @, if w is not matched in
M. Analogously, we denote the user assigned to a task t by M(z).

In order for a matching M to be stable it should not admit any un-
happy (i.e., blocking) pair (w, t) such that r € £(w), w € £(r), and

e 1>, M(w)and w >; M(1), or
o 1>, M(w) and M(t) = @, or
e w >, M(t) and M(w) = @, or
s M(w) =@ and M) = 0.

If M, however, contains such pairs, we say that M is unstable and
denote the set of unhappy pairs in M by U(M). The number of un-
happy pairs, |U(M)|, (which we also call as unhappiness index (UI)) in a

3 As we assume that the platform is paid a brokerage fee for each assignment it
makes, this refers to the number of worker task pairs assigned. More complicated
utility models can also be defined similarly and proposed algorithms could be
updated accordingly.

Computer Networks 172 (2020) 107156

matching has been a recognized way of measuring the instability of the
matching [43].

In Section 1, the instance in Fig. 1 is used to show that there can
be a trade-off between system utility and user satisfaction, which are
respectively measured by the number of assigned users and UI. In order
to quantify the loss in system utility and user satisfaction, respectively,
in stable matchings and maximum system utility matchings in general,
we run a series of experiments with 50 workers and 50 tasks randomly
deployed in a 1 km by 1 km region. Eligibility conditions for workers
and tasks are defined in two ways. In the local case, we assume that each
worker can only travel up to a distance with travel cost less than the task
reward and a worker prefers the task closer to the worker’s location and
vice versa. In the random case, since each user may have a distinct and
unique set of criteria to determine the eligibility, we randomly decide
the eligible user sets. We then obtained the task assignments with max-
imum system utility and stable matching procedures for eligibility sets
of different density (obtained by adjusting the rewards in the local case
and the probability of eligibility in the random case).

Fig. 2 shows the unhappiness index obtained with maximum system
utility matching and the percentage of decrease in the number of as-
signed workers and tasks in stable matching (Mg;,) compared to max-
imum system utility matching (M ,,,), which can formally be defined
as

(Mprpa| = IMgpl
[Marml '

For all results in this and the following sections, we take the average of
100 different runs for statistical significance. We observe that up to 17%
more users are left unassigned with stable matching, while maximum
system utility matching yields massively larger unhappiness index (i.e.,
by definition, unhappiness index is O in stable matching). Although one
can carefully use the appropriate algorithm in the extreme cases (e.g.,
stable matching when all workers are eligible for all tasks, and maximum
system utility matching when only a few workers are eligible for each
task provided that small number of unhappy pairs is acceptable), neither
algorithm provides efficient results for most scenarios.

In Fig. 3, the same trade-off is also obtained for different ratios of
worker and task ratios with an average eligible worker/task size of 3.
The highest decrease in the number of unassigned workers/tasks by sta-
ble matching is observed when the ratio is 1 (i.e., the set of workers
and tasks have equal size), where we see the minimum but comparable
unhappiness index obtained by maximum system utility matching.

In this paper, we aim to address this trade-off and develop a task
assignment algorithm that reaches the maximum possible system util-
ity (i.e., number of matched workers/tasks) while satisfying the users
as much as possible, thus minimizing the unhappiness index. A brute
force method to solve this problem would be to enumerate all maximum
cardinality matchings, and pick the one with the smallest unhappiness
index. However, this would be too costly since the number of maximum
cardinality matchings grows exponentially with the number of nodes.
Moreover, this problem can be reduced to max cardinality with min
blocking pairs problem [43], which is proven to be NP-complete, even
when the size of eligible worker/task sets is 3.

100 x

4. User satisfaction aware maximum utility task assignment

In this section, we first model the problem using Integer Linear Pro-
gramming (ILP) to find the optimal solution for a given set of tasks and
workers with their restrictions and eligibility. Then, we provide the de-
tails of two different heuristic based cost efficient solutions.

4.1. ILP design

Our goal is to assign as many workers and tasks as possible with the
minimum number of unhappy pairs, which can be formally defined as

F. Yucel and E. Bulut

25

T
—=%— Stable - Local

- % Stable - Random
20 F =% J

% of unassigned workers/tasks

0 10 20 30 40 50
Average number of eligible workers

Computer Networks 172 (2020) 107156

900

—&— Max System Utility - Local

800 [-
---%-- Max System Utility - Random

A a0 o N
o o o o
o o o o

Unhappiness index
w
8

0
0 10 20 30 40 50

Average number of eligible workers

Fig. 2. Percentage of decrease in the number of assigned workers/tasks in stable matching compared to maximum system utility matching (left) and unhappiness
index in maximum system utility matching (right) with varying size of eligible worker/task sets in local and random settings.

25 T T

—%— Stable - Local
¥ Stable - Random

% of unassigned workers/tasks

Average number of eligible workers

100 T T
—=— Max System Utility - Local
+ |-~ Max System Utility - Random

Unhappiness index

20 1 1

1/9 1 9
Average number of eligible workers

Fig. 3. Percentage of decrease in the number of assigned workers/tasks in stable matching compared to maximum system utility matching (left) and unhappiness
index in maximum system utility matching (right) with different ratios of worker and task set sizes. We use an average eligible worker/task set size of 3 with the

total number of tasks and workers fixed at 100.

follows:

max Z (mnXU - M) “4)
Vi,j

with the constraints:

Y, <1 vj
Vi
Y& <1 vi
vj
X < ey Vi, j
where,

o = 1, if w; is eligible to perform ¢;
7710, otherwise

X = 1, if w; is assigned to t
77010, otherwise

o= 1, if (w;,t;) is an unhappy pair
710, otherwise

Note that the number of unhappy pairs can be at most mn. Increment-
ing the assigned pair count will increase the objective function value in
(4) more than removing all unhappy pairs. Thus, it first tries to reach
an assignment with maximum system utility, then reduces unhappiness
index as much as possible.

4.2. Maximum to stable reduction algorithm

The first proposed algorithm works based on a greedy heuristic
which aims to first find the maximum utility matching and then try to
decrease the number of unhappy pairs in it one by one without altering
the total utility of the matching. Before elaborating the algorithm steps,
we first describe happify procedure, which constitutes the core part of
the algorithm.

4.2.1. Happify procedure

The purpose of the happify procedure is to get rid of a specific un-
happy pair by re-matching the worker and the task that form it with
each other. Consider the example in Fig. 4a, in which worker 1 and
task a form an unhappy pair, denoted by (1, a). We happify (1, a) by
matching 1 with a. In order to maintain the utility of the matching, we
also attempt to match their former partners, b and 2, with each other
(and form the matching M’). Yet this is not always feasible, because b
and 2 may be considering each other unacceptable (i.e., 2 ¢ £(b) and
b & £(2)). In this case, since leaving b and 2 unmatched would decrease
the utility of the matching, we avoid performing the happify procedure
on such pairs.

On the other hand, even if b and 2 consider each other as acceptable,
happifying (1, a) would not always yield a matching that contains fewer
unhappy pairs. In fact, the number of unhappy pairs can decrease, re-
main unchanged, or even increase. To figure that out, we need to check
the preference lists of these four nodes, and identify the nodes in their

F. Yucel and E. Bulut

Rl Rl Rl
o O a a b
RZ RZ RZ
a : b b a
Rs Rs Rs

(a) (b) (c) (d) (e)

Fig. 4. An instance of happify procedure. (a) the matching M before happify;
(b) the matching M’ after happifying the unhappy pair (1, a) in M; (c) 1’s pref-
erence list, P;; (d) 2’s possible preference list, PZ’ ; (e) 2’s alternative preference
list, Pz”, R,’s are defined in (5).

preference lists, which can be potentially affected by partner change. To
illustrate this, we will analyze the possible scenarios that can arise after
happifying (1, a). Since the relationship between the tasks and workers
is symmetric as seen in Fig. 4a, 1 and a will have similar scenarios, as
do 2 and b. Therefore, the examination of scenarios for nodes 1 and 2
should be sufficiently descriptive.

First of all, since (1, a) is given as an unhappy pair, we can deduce
that a >, (M(1) = b). Then, we divide P; (i.e., preference list of worker
1 on eligible tasks in £(1)) into regions as R U {a} UR, U {b} U R5 such
that

(Vx €R)) > a>; (Vx ERy) >, b> (Vx € R;))

as illustrated in Fig. 4c. Note that the partner change of 1, from M(1) = b
to M’(1) = a, will result in clearing all unhappy pairs in

{(Lx) | x € Ry, (1,x) € UM},

if any, because for all x € R,, a>;x. The set of other unhappy pairs
formed as

{(I,x) | x e R, {l,x) e UM)}

will remain unchanged in M’, as Vx € R, x >, (a = M'(1)). Lastly,
there cannot exist any unhappy pairs

{(Lx) | x € Rs}

in neither M nor M/, since (b = M(1)) >, x and (a = M'(1)) >, x, for all
X € R;.

Although we know how a and b are ranked in P;, we do not have any
data to infer that for P,. Therefore, we must consider both possibilities,
namely P, if a>,b and P, if b>,a, which are also partitioned into regions
as shown in Fig. 4d and e. Note that, regardless of P, or P,’, happifying
(1, a) will not affect the unhappy pairs in

{(2,x) | x € R{,{(2,x) e UM)},
so that they will still be present in M’, and
{{(2,x) | x € R3,(2,x) e UM)UUM)} =4,

due to same reasons pointed out above. As for R,, we face two differ-
ent scenarios. Considering P, = PJ, since happifying (1, a) forces 2 to
match with b, which it prefers less than its former partner a, a new set
of unhappy pairs

{(2,x) | x € Ry, 2 >, M/ (x)}

will arise in M’. Contrary to this, matching 2 with b is for the benefit
of 2if P, = P2” and will indirectly happify all the unhappy pairs, if any,
in

{(2,x) | x € Ry, (2,x) e UM)}.

The idea behind the happify procedure could also be applied to a
group of unhappy pairs simultaneously. However, it would dramatically
increase the number of permutations for the matching of former partners
of nodes comprising the unhappy pairs. To address that, as it will be

Computer Networks 172 (2020) 107156

explained in the next section, we introduce a phased approach. Before
going to its details, we next show how the set of unhappy pairs in M
and M’ are related.

Let U denote the subset of unhappy pairs in M that will be happified
and M’ be the resulting matching. The set of unhappy pairs, which were
not present in M, however will arise in M’ is

Uy = {(x,y> EUM) | y>, M(x),x>, M’(y)}, (©)

and the set of unhappy pairs that were found in M, but will disappear
in M’ is

Uo = {(x, y) EUM) | M'(x) >, yor M'(y) >, x}. Q)
Then, the set of unhappy pairs in the new matching becomes
UM = (VMUY) \Up

Thus, to find the new set of unhappy pairs, U(M’), we need to identify
Uy and Uy, for which we just need to check whether the users (i.e.,
x) whose partners have changed due to the happify procedure form an
unhappy pair with those (i.e.,) who are between M(x) and M'(x) in
P,. Note that only the users that are in at least one of the pairs in U will
get matched with a different user. Thus, for each worker w and task ¢, for
which M(w) # M’ (w) and M(¢) # M'(¢) (i.e., there are at most 4 of them
within a single round of happify procedure), we need to check at most
|7| — 2 and |W| — 2 worker-task pairs to find U (M), respectively. Thus,
each happify operation has O(N) complexity, where N = max{m, n}.

4.2.2. The algorithm

The algorithm aims to reduce the number of unhappy pairs greedily
through consecutive happify operations. To this end, we find the un-
happy pair which, when happified, reduces the total number of unhappy
pairs the most and proceed with it. However, it is possible that none of
the happify operations at the current iteration is able to reduce the un-
happy pair count as the result of hitting a local minimum. To address
this, we introduce a hop-based approach and give chance to reduction
in the unhappy pair count up to k consecutive happify operations. That
is, even though the happify operation that results in the minimum un-
happy pair count increases the current unhappy pair count, the process
continues up to k tries expecting that there will be a decrease.

Another consideration is rather than happifying the unhappy pairs
individually, we can happify them in groups simultaneously. In that
case, former partners of nodes comprising the unhappy pairs will have
more options to be matched. For example, Fig. 5 shows some possible
re-matchings of former partners for different cases observed when two
unhappy pairs are happified simultaneously. While this extension will
increase the likelihood of reducing the unhappy pair count without af-
fecting the matching utility at each iteration, it increases the complexity
of the algorithm due to more permutations to be checked.

In order to address all these points, we propose a phased approach.
That is, we begin by considering unhappy pairs individually in the hap-
pify procedure, and when this fails to provide further improvement, we
start to happify them in groups of two (it can also be extended to groups
of three or more). However, with the phased approach, we consider the
hop-based happify operations only for the last phase to avoid hitting the
local minimum earlier. Algorithm 1 shows a two-phase instance of the
proposed solution. The phases are iterated by the for loop in line 4. The
algorithm makes use of a subroutine, happify, that takes a matching M
and a set U of unhappy pairs in M as input and returns the set of all
possible matchings that can arise by happifying U. A pseudo-code of the
happify procedure is given in Algorithm 2.

Maximum to Stable Reduction algorithm, shown in Algorithm 1, be-
gins with finding a maximum utility (i.e., cardinality) matching, M, via
Hungarian Algorithm [47]. For the first phase, when i = 1, we find the

F. Yucel and E. Bulut

(c) (d)

Fig. 5. Some possible happify attempts that can occur in Phase 2. Unhappy
pairs are shown with red dotted lines. Once the two unhappy pairs are matched
with each other in each case, remaining workers and tasks are matched with all
possible permutations.

best matching, M’, amongst a set of matchings, each of which is ob-
tained from M by happifying a single, different unhappy pair in U(M)
(i.e., the set S in line 12 consists of the subsets .A of unhappy pairs with
size 1). We update M,,,, which denotes the best matching that is ever
reached by the algorithm, if M’ is better than M,,,,. Note that since all
the matchings that are scanned by the algorithm are of maximum util-
ity, the goodness of a matching depends only on the number of unhappy
pairs it has. The same process is then repeated for the new matching
M’ in the same manner as long as an improvement in the number of
unhappy pairs is observed in at least one of k consecutive steps. Note
that in the first phase, k is set to 1 as explained above. In the second
phase of our algorithm (i.e., i = 2), it tries to relax two unhappy pairs
simultaneously (happify in line 13 returns all possible variations). If no
improvement achieved in unhappy pair count by k hops, the algorithm
ends.

4.2.3. A toy example

We provide a sample run of Algorithm 1 on the instance in Fig. 1 to
demonstrate how it gradually decreases the number of unhappy pairs
while preserving the maximum system utility. Firstly, a maximum
matching is found via Hungarian algorithm, which, as shown in Fig. 6a,
turns out to have 4 unhappy pairs, namely (1, a), (2, c), (3, d), and (5,
c). We try to happify each of these unhappy pairs individually and find
the one that leads to a better matching when happified. The new set of
unhappy pairs that could be obtained by happifying each unhappy pair
is given in Table 2.

Computer Networks 172 (2020) 107156

Algorithm 1: Maximum to stable reduction (W, T, k).

Input: W: The set of workers

T: The set of tasks

k: The number of hops
M« Find a maximum cardinality matching via Hungarian
algorithm between W and 7.

—

2 U(M) « Identify the unhappy pairs in M.
3 Mbest M

4 fori < 1to2do

5 if i == 2 then

6 ‘ j<k

7 else

8 L j<1

9 while j > 0 do

10 M’ < NIL > |UWM)| = oo
1 S«{ACUWM): |A| =i}

12 for U € S do

13 for M,,,, € Happify(M,U) do
14 if [UWM,00)] < |U(M")| then
15 L L M« M,

16 if [UM)] < |U(My,,)| then

17 j<k

18 Mhesl “ M,

19 else

20 L jej—1

21 M« M

22 | Me My

23 return M,,,

Algorithm 2: Happify (M, U).
Input: M: A matching between W and 7'
U: The set of unhappy pairs to be happified
1 Let Mg be the set of all matchings that can be obtained by
happifying the unhappy pairs in U (as shown in Figs. 4 and 5).
2 foreach y € My do
3 L Find U and U, by Egs. (6) and (7).

4 | lUWI=UM)+|Uy| - U]

5 return Mg

Table 2
Matchings to be obtained by happifying each
unhappy pair in Fig. 6a.

Unhappy pair ~ U(M,

new)

(1, ay cannot be happified

(2, ¢) (1, a), (3, d)

3, d) cannot be happified

(5, ¢) (1, a), (2, c), (3, a), (3, d)

Note that we cannot happify (1, a) and (3, d), because their cur-
rent partners in the initial matching, (d, 5) for (1, a), and (b, 1) for (3,
d), consider each other unacceptable, therefore, we skip these unhappy
pairs. Since the matching obtained by happifying (2, c) has the mini-
mum number of unhappy pairs among all, we proceed with it (Fig. 6b)
to the second phase (any further try in phase 1 would not decrease the
unhappy pair count, as neither (1, a) nor (3, d) can be happified due to
partner incompatibility as above). In the second phase, since there are
only two unhappy pairs in the matching, we will have only one subset of
unhappy pairs of size 2 that we will, if possible, happify simultaneously,

F. Yucel and E. Bulut

(c) (e)

Fig. 6. Steps of running Algorithm 1 on the instance given in Fig. 1. (a) the
initial maximum matching found via Hungarian algorithm; (b) the best matching
reached by the end of the first phase; (c) the best matching ever found by the
algorithm, also an optimal solution; (d) happifying (2, c) on the matching in
Fig. 6a; (e) happifying {(1, a), (3, d)} on the matching in Fig. 6b.

which is {(1, a), (3, d)}. Indeed, these two unhappy pairs, which could
not be happified separately, can be jointly happified as in Fig. 6e. Be-
sides, this yields a matching with just one unhappy pair, (5, e), as shown
in Fig. 6¢, which, having less than 2 unhappy pairs, cannot be improved
furthermore by the second phase. Even if we run the first phase again on
this final matching, it would make no difference since (5, e) cannot be
happified due to partner incompatibility. Actually, this final matching is
identical to the optimal solution found via ILP, and is the only optimal
solution possible.

As for the complexity of Algorithm 1, since the loop starting at line
12 may run as many as the number of unhappy pairs in the current
matching, which could be at most mn, and the computation of the ben-
efit that can be obtained by happifying each unhappy pair takes O(N),
where N = max{m, n} (see Section 4.2.1), the worst-case complexity of
the first phase of our algorithm is O(N?). Luckily, this can be improved
as the calculation of the benefit that will come from happifying each set
of unhappy pairs, U, is independent from the others, hence can be run in
parallel. Thus, a time complexity of O(N?) is theoretically achievable. In
simulations, we obtain results showing this improvement. Similarly, the
time complexity of the second phase is O(B> N), where B is the number
of unhappy pairs in the final matching produced by the first phase. The
same parallelization approach could also be applied here to further re-
duce the complexity to O(B? + BN), however, as B is usually very small
(as will be shown in simulations) compared to the initial number of un-
happy pairs that the first phase deals with, the complexity is determined
by the complexity of the first phase.

Computer Networks 172 (2020) 107156

4.3. Stable to maximum convergence algorithm

In the second algorithm, we propose a reversed approach. That is,
we first aim to obtain an assignment based on the preferences of both
task requesters and workers so that every user is happy (i.e., unhappiness
index is 0). Then, we update it iteratively to obtain the assignment with
maximum system utility. Note that this can increase unhappiness index
but we aim to minimize it as much as possible.

The iterative process goes through finding special paths between
workers and tasks at every step that will increase the number of assigned
pairs with respect to the current assignment. We simply call these paths
as beneficial paths. Given a matching M defined on the bipartite graph
G (defined in (3)), a path p= {p;,p,,... ppj4,} is considered a benefi-
cial path if its both endpoints are not matched with any node in M,
and its edges alternate between the edges in M and the other edges not
included M. More formally,

M(py) = a, M(p2j+2) =0

M(py;) = Pyiy1» and (. i) €M
M(pyi_1) # Py DUt (py;_1. py;) € G.E\M

viell,...,j]
viell,...,jl

By definition, note that there cannot be a beneficial path of even length,
and for a path p = {p,,p,} of length 1 to be beneficial, both p; and p,
should be unmatched in M.

The proposed algorithm is given in Algorithm 3. We first find a stable
matching M between the given workers and tasks using the deferred
acceptance mechanism in Gale-Shapley algorithm [21]. Then, in each
iteration of the while loop in line 2, we try to find a beneficial path p in
M. If we find one, we update M as follows

M= M\ E(@)U(EP \ M),

where E(p) is the set of edges in p. Note that in a beneficial path p
of length 2 + 1 (with 2j + 2 nodes), there are j edges that are in M,
and j + 1 edges that are not. Thus, replacing the former j edges in M
with the latter j + 1 edges will increase the system utility by 1, which
is performed between lines 9-12. However, if we cannot find a ben-
eficial path, it means M has reached the maximum possible assign-
ment [48] and will be returned as the final matching.

The procedure of finding a beneficial path is shown in Algorithm 4.
Starting from each worker w not matched currently in M, we attempt
to find a beneficial path (lines 4-8 in Algorithm 3). If w can be matched
directly with an unmatched task in P,,, a beneficial path of length 1 is
obtained immediately (lines 2-6 in Algorithm 4). Otherwise, the tasks
that are currently matched in M are processed in their preference order.
For each such task t, a new potential path is created by extending the
current path with task t and its partner M(r), and the same process is
repeated recursively (lines 7-12 in Algorithm 4).

We run Algorithm 3 on the same toy example given in Fig. 1. We
first obtain the stable matching given in Fig. 7a. Then, we look for a
beneficial path in this matching. The process in Algorithm 4 finds the
beneficial path 4 — e — 5 — b (of length 3). Executing the lines 10-12 in
Algorithm 3 will result in the optimal solution (with unhappiness index
of 1 caused by (5,e)) shown in Fig. 7c. Since this matching is maximum,
Algorithm 3 will return it as the final matching. However, note that
there can be multiple beneficial paths in the initial stable matching, as
illustrated in Fig. 7, and any of them might be returned first based on
the implementation. For example, assume this time that we find the
beneficial path 4 - c—>2—»>e—>5—->a—>1—-d— 3 - b. It gives us
an assignment with unhappiness index of 4 and hence is not an optimal
solution. In our implementation, we visit the neighbors greedily in their
preference orders to find a beneficial path with the expectation that it
will generate smaller unhappiness index.

As for the complexity of Algorithm 3, the Gale-Shapley algorithm
takes O(N?), where N = max{m,n}. There can be at most O(N) cardi-
nality difference between a stable matching and a maximum matching
in a bipartite graph. Since finding a beneficial path, as well as updating

F. Yucel and E. Bulut

Workers Tasks

fadct @ G {15324

{c,e,b,a}

{d,a,b,c}

w@ﬁ<@9%

{c,a,e,b} Gﬁ

Preference (a)
orders

Preference
orders

Workers Tasks

o ®

Computer Networks 172 (2020) 107156

Workers Tasks

Fig.7. Two example beneficial paths (shown with dotted lines) in the initial stable matching (shown with solid lines) generated in the first line of Algorithm 3 when
it is run on the example illustrated in Fig. 1. (a) Beneficial path (4 — e — 5 — b) found by Algorithms 3 and 4; (b) An alternative beneficial path
4-c—>2->e—->5->a—-1->d- 3 - b) that could be found if the search was done without considering preference orders; (c) Matching obtained by
Algorithm 3 using the beneficial path shown in (a). The only remaining unhappy pair is shown with a dashed line.

Algorithm 3: Stable to maximum convergence (W, 7).

Input: W: The set of workers
T The set of tasks
1 M« Find a stable matching via Gale-Shapley algorithm between
Wand 7.
2 while true do

3 set all ¢+ € T as unvisited

4 foreach unmatched w € W do
5 p={w}

6 p < FindBeneficialPath(p)
7 if p.isBeneficialPath then

8 L break

9 if a beneficial path p = {p;, p,. ... P21} is found then
10 fori < 1toj+1do

1 M(pyi_1) < pay

12 M(py) < Py

13 else

14 L break

15 return M

Algorithm 4: FindBeneficialPath(p).

Input: p: Current path
1 w < p.last()
2 foreachr € P, do
3 if M(r) = ¢ then

> last node on current path

4 p<puUf{t}

5 p.isBeneficialPath « true

6 return p

7 foreach t € P, in the preference order do

8 if ¢ is unvisited then

9 set ¢ as visited

10 p' < FindBeneficialPath(p U {t, M(1)})
11 if p’.FindBeneficialPath then

12 L return p’

the matching accordingly, has ©@(N?) complexity (as an edge is visited
at most once), the total running time of Algorithm 3 becomes O(N?).

5. Simulation results

In this section, we evaluate the performance of the proposed algo-
rithms using a real world dataset.

5.1. Settings

In order to have a realistic set of user locations, we have used a taxi
trip dataset [49] in a city (i.e., New York City (NYC)) similar to previ-
ous work [50-52]. Previous work mostly consider taxi driver locations
as workers and assign task locations randomly. In order to have more
realistic task locations as well, we have used the pick up locations of pas-
sengers as task locations. Specifically, we generate the user set for each
of the 100 runs of an experiment by selecting the taxis that dropped off
their passengers between 1-2 pm on a randomly selected day in 2015 as
workers at the corresponding drop-off locations, and by creating a task
at the pick up location of each passenger who requested a taxi in the
next hour of the same day. Then, from this set we randomly sample a
certain number of workers and tasks according to the experiment speci-
fications. Fig. 8 shows a distribution of different number of workers and
tasks on the NYC map.

In the first part of the simulations, we use 50 workers and 50 tasks
as smaller and equal set sizes represent the hardest scenario. This is be-
cause, as it is shown in Fig. 3, the largest difference in the matching
cardinality between stable and maximum system utility matching hap-
pens when W/T =1. That is, the trade-off between user satisfaction and
system utility becomes more important and harder to handle when the
size of the worker and task sets are equal. Nonetheless, in the following
simulations, we also examine the scenarios with different W/7 values.
Moreover, we provide results regarding the scalability of proposed algo-
rithms with up to 1000 workers/tasks. The preference lists of workers
and tasks are defined either locally (i.e., based on the ascending order
of distances) or randomly, as described in Section 3.

5.2. Results

We first look at the effectiveness of the proposed approaches by com-
paring them with ILP results in terms of unhappiness index. Throughout

F. Yucel and E. Bulut

¢
()
800
700 1
« 600 1
[0
©
£ 500 1
7))
3
2400 | N 1
o3 0 10 20 30 40 50
& 300 .
< ~0-- ILP
-] 200 - +Ph1—H0p1 B
—+— Ph2-Hop1
100 - —&A— Stable to max 1
— Max System Utility
0 10 20 30 40 50
Average number of eligible workers
800
700 - 1
x 600 r |
(0]
©
£ 500 - 1
)]
3
2 400 : Y 1
o
g |0 10 20 40 50 |
;:; 300 0 ILP
) | —— Ph1-Hop1]
200 —+— Ph2-Hop1
100 k- —A— Stable to max
— Max System Utility
0 10 20 30 40 50

Average number of eligible workers

Fig. 9. Performance comparison of the heuristic algorithms with optimal re-
sults (ILP) and maximum system utility matching in terms of unhappiness index
(UD) in local (upper) and random (lower) settings, respectively. Both heuristics
achieve UI values that are very close to optimal Ul and significantly smaller
than that of the maximum system utility matching. It is also noteworthy that
the best-performing heuristic is different in local and random settings.

the section, we use the notation Phx-Hopk to denote the Maximum to Sta-
ble reduction algorithm with x phases in which the first (x — 1) phases
run only 1 hop and the xt" phase runs up to k hops. Fig. 9 shows the per-
formance comparison of Phl-Hopl, Ph2-Hop1, Stable to Max and Max

Computer Networks 172 (2020) 107156

Fig. 8. The distribution of workers (circles)
. and tasks (diamonds) on the NYC map: (i) 50
(ii) 100 and (iii) 1000 workers/tasks.

System Utility* algorithms with ILP results in local and random settings,
respectively. First of all, note that, as expected, the unhappiness index in
the initial maximum matching grows linearly with increasing average el-
igible worker/task set size (simply denoted as |£|). Ph1-Hop1 algorithm
gives a very close result to ILP, and Ph2-Hop1 can further improve the
result. The improvement is, however, more in random setting. Stable to
Max algorithm also performs differently. It performs better (i.e., fewer
unhappy pairs) than other algorithms in random setting, while it results
in more unhappiness index in local setting. With larger |£|, it also per-
forms better in local setting and always reaches complete perfect user
satisfaction and stability with unhappiness index zero. The maximum
gap between the proposed algorithms and the ILP results occurs with
|€| around 10-20 and gets smaller as it increases or decreases.

Next, in Fig. 10, we look at the impact of the number of hops and
different phases on the performance of the Maximum to Stable reduction
algorithm variants in both local and random settings. Note that, in lo-
cal setting, the unhappiness index in the optimal assignment increases
until |€] is 15 and then starts to decline, while it peaks at around 4-5 in
random setting. Besides, a sharper decrease is observed after the peak in
random setting compared to local setting. The results of our algorithms
are also in accordance with these trends in both settings.

As for the usefulness of Phase 2 or 3, we observe that more phases
offer more benefit in random setting compared to local setting. However,
there is not much benefit in running Phase 2 (or Phase 3) before the
peak in neither settings. This is because the likelihood of finding a set of
unhappy pairs that can be happified simultaneously is quite low when
|€| is small given that happifying multiple unhappy pairs at the same
time necessitates that the current partners of the nodes forming those
unhappy pairs have each other in their eligibility lists.

Note that we also run a special version called Only Ph2-Hop5 in
which Phase 2 is directly run by skipping Phase 1. This was to show
the benefit of phased approach as it can provide results as good as Only
Ph2-Hop5 with a much less running time (as it is shown in Fig. 12).
Another point is that the difference between the performance of same
phases with different number of hops is more profound in random set-
ting than it is in local setting. In fact, as it is shown in Fig. 11, running
the algorithm with higher number of hops reduces the unhappiness in-
dex by 1.12 per hop in random setting and by only 0.52 per hop in local
setting, on average. Nonetheless, increasing the number of hops does
not seem to be very beneficial after a certain point (around 5-10 hops)
in either setting.

In Fig. 12, we compare the running time of the proposed algorithms
in local setting (since the results are almost identical in random setting,
the corresponding figure is not shown here for brevity). Unsurprisingly,
ILP has a very long running time (e.g., approximately an hour when
|&| = 50), which makes it infeasible to find the optimal solutions for ap-

4 Tt refers to the solution found by Hungarian algorithm [47] without taking
into account the preferences of the users.

F. Yucel and E. Bulut

40 ‘

—O—ILP

—*— Ph1-Hop1
—+— Ph1-Hop3
—%— Ph1-Hop5 1
—%— Ph2-Hop1
—+— Ph2-Hop5
— %— Ph3-Hop5

—<&— Only Ph2-Hop5

w
o
T

Unhappiness index
N
o

—_
o
T

0 © L 1 1 L &
0 10 20 30 40 50
Average number of eligible workers
70 w
—O—ILP
60 - —— Ph1-Hop1 4
—+— Ph1-Hop3
— %— Ph1-Hop5
0r —%— Ph2-Hop1]
—+— Ph2-Hop5
0t — ¥— Ph3-Hop5 i
—<&— Only Ph2-Hop5

o
T

Unhappiness index
B w S (6]

—_
o
T

0 10 20 30 40 50
Average number of eligible workers

Fig. 10. The impact of number of hops and different phases on the performance
of the Maximum to Stable Reduction algorithm in local (upper) and random
(lower) settings, respectively. In both settings, we observe an improvement in
the performance with increasing number of hops and additional phases.

plications that demand timely response. The running time of Only Ph2-
Hop5 also increases substantially as the average eligible worker/task
set size, |£|, grows, which actually confirms the idea behind phased ap-
proach. Indeed, all the other variations of Maximum to Stable reduction
algorithm and the Stable to Max algorithm take less than 4 seconds even
when all workers are eligible for all tasks. It should also be noted that
the running time is not much affected by number of phases and hops.
For example, Ph1-Hopl and Ph2-Hopl take almost equal time despite
the fact that Ph2-Hop1l involves Phl-Hopl in it and additionally runs
Phase 2 of the algorithm. This is due to the fact that the large part of
the reduction in the number of unhappy pairs occurs during Phase 1.
For instance, in Fig. 9, when the average number of eligible workers is
10 in local setting, Phase 1 decreases the number of unhappy pairs by
around 155 (from 185 to 30), while Phase 2 decreases it by only about
2 and hence takes a lot less.

In Fig. 13, we analyze the performance of the proposed algorithms
when there are unequal number of workers and tasks in the system.
Specifically, we calculate the difference between the unhappiness index
in the optimal (i.e., ILP) matching and in the final matching produced
by Ph2-Hop1 (others perform similar). We observe that the difference in
the unhappiness index gets smaller as the disparity between the num-
ber of workers and tasks grows.® This is also consistent with the results

5 For unequal number of tasks and workers, there is a limit on the maximum
average eligible worker/task set size achievable. Thus, data is available up to
this maximum.

Computer Networks 172 (2020) 107156

50
—x—|e| =15
—+ || =20
%407 —o— || =25
o ‘\x\v —0— |e] =50
530'0:\\\ K
%] O— Tt -
2 e ~3
-5- *—‘¥**—‘_m
a20r]
e
[
:)10, i
G-

x
[0
©
£
)]
(%]
(0]
C
a
Qo
©
e
[

310, —a

O
-~ e_ _
0 I I ‘O“\““—F—;;O
2 4 6 8 10
of hops

Fig. 11. The change in the unhappiness index (in Ph1-Hop#) with different
number of hops in local (upper) and random (lower) setting, respectively, for
different eligible worker/task sizes (|£|). Increasing the number of hops notably
improves the performance of the algorithm, and the improvement is usually
more profound in random setting.

—O— ILP

—— Ph1-Hop1
—+— Ph1-Hop3
—%— Ph1-Hop5
—%— Ph2-Hop1
—+— Ph2-Hop5
— %— Ph3-Hop5 b
—<&— Only Ph2-Hop5

Stable to max

0 10 20 30 40 50
Average number of eligible workers

Fig. 12. Comparison of running times of proposed algorithms. Regardless of the
average number of eligible workers, ILP has the worst running time, and Stable
to Max algorithm has the best running time (which are in accordance with the
theoretical time complexities of the algorithms).

F. Yucel and E. Bulut

—x— |W| =50, [T| =50
+- [W| =40, |T| = 60
—a— |W| =230, |T| =170

o
= —o —|W| =20, |T| =80
5 —A—|W| =10, |T| =90}
>
o
-}
©
c
Q]
S
©
<< | e i
3l
——————)
30 40 50

Average number of eligible workers

Fig. 13. The difference in the unhappiness index between ILP and Ph2-Hop1 for
different number of workers/tasks ratios. Note that when |[W| =~ |T|, the average
loss in system utility with stable matchings is larger as shown in Fig. 3, implying
a harder scenario for trade-off between system utility and user satisfaction.

2.5
L e No32
e —+—N=64
[0}
2l
B e 0 A N=512
215F oo 102 —0—N=1024
(2]
(%]
(0]
c
£
o
]
N
c
205
10° 10° 102 10°

Average number of eligible workers

0.7
—%—N=32
o 300
= o —+—N=64 |
0.6 Q
- \ © 200 -8 -N=128
= | AN —© -N=256 ||
=< 05 I \\\ = 100 A N=512
[0} 7 \ =
2oal) N ——N =1024||
o 7 10° 102
& Y N
£03F / NN i
o AN
% N\
-E 0.2r \\;\)
-] N
0.1 | \\ -
DR
0 . " S~ g
10° 10° 102 10°

Average number of eligible workers

Fig. 14. The ratio of unhappiness index (UD) to N = |W| = |T| in Ph1-Hop1 and
Stable to Max algorithms, respectively, for different number of workers and tasks
(in local and random setting, respectively). The inner graphs show the difference
of UI/N in Max System Utility matching from the compared algorithms when
N =1024.

Computer Networks 172 (2020) 107156

(&)
o

o |W| = |T| = 32
W] =|T| = 64
— & —|W|=|T| =128
—o —|W|=|T| =256
A |W| = |T| =512
—o—|W| =|T| = 1024

N
o
T

w
o
T

% of remaining unhappiness index

20
10
0
10° 10" 102 10°
Average number of eligible workers
70 T T
—— |W| = |T| = 32
60 r ——|W|=|T|=64 |
—8 —|W|=|T| =128
50 r — o —|W|=|T| =256 |
AW = |T| =512
40 ——|W| = |T| =1024|

N W
o O

% of remaining unhappiness index
o

- O
o
o

10’ 107 10°
Average number of eligible workers

Fig. 15. The percentage of the unhappiness index in the Ph1-Hop1 and Stable to
Max algorithms, respectively, to the unhappiness index in the maximum system
utility based assignment for different number of workers and tasks (in local and
random setting, respectively).

in Fig. 3, since the decrease in system utility is maximum when there
are similar number of workers and tasks, which indicates that a larger
number of users’ happiness will have to be sacrificed in order to reach
the maximum system utility, in general.

Next, we look at the scalability results using both a Maximum to Sta-
ble algorithm and Stable to Maximum algorithm. More specifically, we
have used Ph1-Hop1 algorithm in local case (as it performs better than
Stable to Maximum as shown in Fig. 9) and Stable to Maximum algorithm
in random case. Fig. 14 shows the ratio of the unhappiness index to
the total number of workers/tasks (N) for different but equal number
of workers and tasks with Ph1-Hop1 and Stable to Maximum algorithms.
The results show that the proposed algorithms scale very well and pro-
duce only a few additional unhappy pairs per user for larger networks,
and that they greatly outperform the Max System Utility matching by
achieving up to more than 300 less unhappy pairs per user. Moreover,
as shown in Fig. 15 when we calculate the percentage of the unhappi-
ness index compared to the unhappiness index in the Max System Utility
matching, we obtain a similar percentage regardless of the number of
workers and tasks with Stable to Maximum algorithm. With Ph1-Hop1 al-
gorithm, the percentage shifts a bit with increasing user count, however
the peak stays similar. It is also worth noting that as the average eligible
worker/task set size, |£|, increases, we achieve a better performance in
both scenarios.

F. Yucel and E. Bulut

—— Serial Ph1-Hop1
—©— Parallel Ph1-Hop1]
—4— Stable to max (Serial)

10% ¢

Running time (ms)

200 400 600 800 1000
Average number of eligible workers

Fig. 16. The running time comparison of serial and parallel Phl-Hopl algo-
rithms and the Stable to Max algorithm. The running time of the parallel Phl-
Hopl is a few orders of magnitude shorter than its serial counterpart.

In order to show the impact of parallelizing the first phase of Max-
imum to Stable reduction algorithm (which is expected to reduce the
worst case complexity from O(N”) to O(N?)), we obtain results with dif-
ferent number of workers and tasks in a GPU server with NVIDIA Tesla
V100 PCle 32GB. Fig. 16 shows the comparison of running times of Ph1-
Hop1 algorithm in both serial and parallel as well as the running time of
Stable to Maximum algorithm (when all workers are eligible for all tasks
and in random setting as it takes the longest). The results show that
we can obtain two orders of magnitude saving with parallelization. Par-
allelized Ph1-Hop1 algorithm scales similar to Stable to Max algorithm
(slightly higher due to the larger constant factor), however Maximum to
Stable algorithms in general perform better in local setting.

6. Conclusion

In this paper, we study the problem of maximizing the system utility
of task assignment between workers and tasks in MCS while considering
the satisfaction and preferences of workers and task requesters as much
as possible. We propose two different heuristic based algorithms. In the
former, we first obtain the maximum system utility matching and try to
reduce the unhappy pairs iteratively through a process we call happify
until it cannot do more. In the latter, we first obtain a stable matching
and converge the graph to maximum system utility matching by find-
ing beneficial paths and reassigning the workers and tasks on this path
accordingly. The results show that the proposed algorithms run very
fast compared to ILP solution and can achieve close to optimal results.
Moreover, while Maximum to Stable reduction algorithm performs better
in local setting, the Stable to Maximum convergence algorithm performs
better in random setting, complementing each other. Note that the find-
ings in this paper can be applied to any matching problem in which
the overall system utility has a higher priority than the happiness of
the users but both are targeted. In our future work, we will study the
many-to-one assignment scenario, in which multiple workers could be
assigned to a single task while staying in the budget constraints of the
task. Note that this will require redefinition of stability and the happy
pairs; thus, it will require new solutions.

Declaration of Competing Interests
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

Computer Networks 172 (2020) 107156
CRediT authorship contribution statement

Fatih Yucel: Conceptualization, Methodology, Software, Validation,
Investigation, Data curation, Writing - original draft, Writing - review
& editing, Visualization. Eyuphan Bulut: Conceptualization, Methodol-
ogy, Investigation, Writing - original draft, Writing - review & editing,
Supervision, Funding acquisition.

Acknowledgment

This material is based upon work supported by the U.S. National
Science Foundation (NSF) under Grant CNS1647217.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.comnet.2020.107156.

References

[1] F. Khan, A.U. Rehman, J. Zheng, M.A. Jan, M. Alam, Mobile crowdsensing: a sur-
vey on privacy-preservation, task management, assignment models, and incentives
mechanisms, Future Gener. Comput. Syst. 100 (2019) 456-472.

[2] S.Hu, L. Su, H. Liu, H. Wang, T.F. Abdelzaher, Smartroad: smartphone-based crowd
sensing for traffic regulator detection and identification, ACM Trans. Sensor Netw.
(TOSN) 11 (4) (2015) 55.

[3] Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, X. Jiang, Aircloud: a cloud-based air-qual-
ity monitoring system for everyone, in: Proceedings of the 12th ACM Conference on
Embedded Network Sensor Systems, ACM, 2014, pp. 251-265.

[4] M. Xiao, J. Wu, L. Huang, Y. Wang, C. Liu, Multi-task assignment for crowdsensing
in mobile social networks, in: IEEE INFOCOM, IEEE, 2015, pp. 2227-2235.

[5] L. Wang, D. Yang, X. Han, T. Wang, D. Zhang, X. Ma, Location privacy-preserving
task allocation for mobile crowdsensing with differential geo-obfuscation, in: Pro-
ceedings of the 26th International Conference on World Wide Web, International
World Wide Web Conferences Steering Committee, 2017, pp. 627-636.

[6] J.Li, Z. Cai, J. Wang, M. Han, Y. Li, Truthful incentive mechanisms for geographical
position conflicting mobile crowdsensing systems, IEEE Trans. Comput. Soc. Syst. 5
(2) (2018) 324-334.

[7] X. Wang, R. Jia, X. Tian, X. Gan, Dynamic task assignment in crowdsensing with
location awareness and location diversity, in: Proc. of IEEE INFOCOM, 2018,
Pp. 2420-2428.

[8] S.He, D. Shin, J. Zhang, J. Chen, Near-optimal allocation algorithms for location-de-
pendent tasks in crowdsensing, IEEE Trans. Veh. Technol. 66 (4) (2017) 3392-3405.

[9] Y. Liu, B. Guo, Y. Wang, W. Wu, Z. Yu, D. Zhang, Taskme: multi-task allocation in
mobile crowd sensing, in: Proceedings of the 2016 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing, ACM, 2016, pp. 403-414.

[10] J. Wang, Y. Wang, D. Zhang, F. Wang, H. Xiong, C. Chen, Q. Lv, Z. Qiu, Multi-task al-
location in mobile crowd sensing with individual task quality assurance, IEEE Trans.
Mob. Comput. 17 (9) (2018) 2101-2113.

[11] M. Abououf, R. Mizouni, S. Singh, H. Otrok, A. Ouali, Multi-worker multi-task se-
lection framework in mobile crowd sourcing, J. Netw. Comput. Appl. 130 (2019)
52-62.

[12] T. Liu, Y. Zhu, L. Huang, Tgba: a two-phase group buying based auction mechanism
for recruiting workers in mobile crowd sensing, Comput. Netw. 149 (2019) 56-75.

[13] J. Nie, J. Luo, Z. Xiong, D. Niyato, P. Wang, A stackelberg game approach toward
socially-aware incentive mechanisms for mobile crowdsensing, IEEE Trans. Wirel.
Commun. 18 (1) (2018) 724-738.

[14] W. Gong, B. Zhang, C. Li, Location-based online task assignment and path planning
for mobile crowdsensing, IEEE Trans. Veh. Technol. 68 (2) (2018) 1772-1783.

[15] J. Wang, J. Tang, G. Xue, D. Yang, Towards energy-efficient task scheduling on
smartphones in mobile crowd sensing systems, Comput. Netw. 115 (2017) 100-109.

[16] T. Hu, M. Xiao, C. Hu, G. Gao, B. Wang, A QoS-sensitive task assignment algorithm
for mobile crowdsensing, Pervasive Mob. Comput. 41 (2017) 333-342.

[17] W. Li, L. Wang, Y. Gu, R. Li, M. Song, Z. Han, Stable multiple activity matching
based content sharing for mobile crowd sensing, in: IEEE International Conference
on Comm. (ICC), 2018, pp. 1-6.

[18] Y. Chen, X. Yin, Stable job assignment for crowdsourcing, in: GLOBECOM 2017-2017
IEEE Global Communications Conference, IEEE, 2017, pp. 1-6.

[19] X. Yin, Y. Chen, B. Li, Task assignment with guaranteed quality for crowdsourc-
ing platforms, in: Quality of Service (IWQoS), 2017 IEEE/ACM 25th International
Symposium on, IEEE, 2017, pp. 1-10.

[20] M. Abououf, S. Singh, H. Otrok, R. Mizouni, A. Ouali, Gale-Shapley matching game
selection—A framework for user satisfaction, IEEE Access 7 (2019) 3694-3703.

[21] D. Gale, L. Shapley, College admissions and stability of marriage, Am. Math. Mon.
69 (1962) 9-15.

[22] F. Yucel, E. Bulut, Joint optimization of system and user ori-

ented task assignment in mobile crowdsensing, 2019, (in Global

Telecommunications Conference (Globecom), 2019. [Online] Available:

http://www.people.vcu.edu/~ebulut/Globecom2019-matching.pdf).

https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.comnet.2020.107156
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0021
http://www.people.vcu.edu/~ebulut/Globecom2019-matching.pdf

F. Yucel and E. Bulut

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]
[41]

[42]

K. Tuite, N. Snavely, D. Hsiao, N. Tabing, Z. Popovic, PhotoCity: training experts
at large-scale image acquisition through a competitive game, in: Proceedings of the
International Conference on Human Factors in Computing Systems, CHI 2011, Van-
couver, BC, Canada, May 7-12, 2011, 2011, pp. 1383-1392.

P. Mohan, V.N. Padmanabhan, R. Ramjee, Nericell: rich monitoring of road and
traffic conditions using mobile smartphones, in: Proceedings of the 6th International
Conference on Embedded Networked Sensor Systems, SenSys 2008, Raleigh, NC,
USA, November 5-7, 2008, 2008, pp. 323-336.

T. Luo, S.S. Kanhere, J. Huang, S.K. Das, F. Wu, Sustainable incentives for mobile
crowdsensing: auctions, lotteries, and trust and reputation systems, IEEE Commun.
Mag. 55 (3) (2017) 68-74.

Z. Duan, W. Li, Z. Cai, Distributed auctions for task assignment and scheduling
in mobile crowdsensing systems, in: 37th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8, 2017, 2017,
pp. 635-644.

Y. Wen, J. Shi, Q. Zhang, X. Tian, Z. Huang, H. Yu, Y. Cheng, X. Shen, Quality—
driven auction-based incentive mechanism for mobile crowd sensing, IEEE Trans.
Veh. Technol. 64 (9) (2015) 4203-4214.

S. Chen, M. Liu, X. Chen, A truthful double auction for two-sided heterogeneous
mobile crowdsensing markets, Comput. Commun. 81 (2016) 31-42.

Z.Zheng, F. Wu, X. Gao, H. Zhu, S. Tang, G. Chen, A budget feasible incentive mecha-
nism for weighted coverage maximization in mobile crowdsensing, IEEE Trans. Mob.
Comput. 16 (9) (2016) 2392-2407.

M. Xiao, J. Wu, S. Zhang, J. Yu, Secret-sharing-based secure user recruitment proto-
col for mobile crowdsensing, in: IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, 2017, pp. 1-9.

L. Wang, D. Yang, X. Han, T. Wang, D. Zhang, X. Ma, Location privacy-preserving
task allocation for mobile crowdsensing with differential geo-obfuscation, in: Pro-
ceedings of the 26th International Conference on World Wide Web, International
World Wide Web Conferences Steering Committee, 2017, pp. 627-636.

Z. Wang, J. Hu, R. Lv, J. Wei, Q. Wang, D. Yang, H. Qi, Personalized privacy-pre-
serving task allocation for mobile crowdsensing, IEEE Trans. Mob. Comput. 18 (6)
(2018) 1330-1341.

H. Cai, Y. Zhu, Z. Feng, H. Zhu, J. Yu, J. Cao, Truthful incentive mechanisms for
mobile crowd sensing with dynamic smartphones, Comput. Netw. 141 (2018) 1-16.
National resident matching program, 2018, http://www.nrmp.org.

Z. Zhou, C. Gao, C. Xu, T. Chen, D. Zhang, S. Mumtaz, Energy-efficient stable match-
ing for resource allocation in energy harvesting-based device-to-device communica-
tions, IEEE Access 5 (2017) 15184-15196.

T. Wang, F. Liu, J. Guo, H. Xu, Dynamic SDN controller assignment in data center
networks: stable matching with transfers, in: INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, 2016, pp. 1-9.

R. Zhang, X. Cheng, L. Yang, Flexible energy management protocol for coopera-
tive EV-to-EV charging, IEEE Trans. Intell. Transp. Syst. 20 (1) (2019) 172-184,
doi:10.1109/TITS.2018.2807184.

D. Gale, M. Sotomayor, Some remarks on the stable matching problem, Discrete
Appl. Math. 11 (3) (1985) 223-232.

K. Iwama, S. Miyazaki, H. Yanagisawa, Approximation algorithms for the sex-equal
stable marriage problem, ACM Trans. Algorithms 7 (1) (2010) 2:1-2:17.

R.W. Irving, P. Leather, D. Gusfield, An efficient algorithm for the “optimal” stable
marriage, J. ACM 34 (3) (1987) 532-543.

D. Gusfield, Three fast algorithms for four problems in stable marriage, SIAM J.
Comput. 16 (1) (1987) 111-128.

R.W. Irving, P. Leather, The Complexity of Counting Stable Marriages, SIAM J. Com-
put. 15 (3) (1986) 655-667.

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]

Computer Networks 172 (2020) 107156

P. Bir, D. Manlove, S. Mittal, Size versus stability in the marriage problem, Theor.
Comput. Sci. 411 (16-18) (2010) 1828-1841, doi:10.1016/j.tcs.2010.02.003.

P. Floréen, P. Kaski, V. Polishchuk, J. Suomela, Almost stable matchings by
truncating the Gale-Shapley algorithm, Algorithmica 58 (1) (2010) 102-118,
doi:10.1007/500453-009-9353-9.

R. Ostrovsky, W. Rosenbaum, Fast distributed almost stable matchings, in: Pro-
ceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastian, Spain, July 21-23, 2015, 2015, pp. 101-108,
doi:10.1145/2767386.2767424.

C. Fiandrino, B. Kantarci, F. Anjomshoa, D. Kliazovich, P. Bouvry, J. Matthews,
Sociability-driven user recruitment in mobile crowdsensing internet of things plat-
forms, in: 2016 IEEE Global Communications Conference (GLOBECOM), IEEE, 2016,
pp. 1-6.

H.W. Kuhn, The hungarian method for the assignment problem, in: 50 Years of In-
teger Programming 1958-2008 - From the Early Years to the State-of-the-Art, 2010,
Pp. 29-47, doi:10.1007/978-3-540-68279-0_2.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, third
ed., MIT Press, 2009.

Taxi and limousine commission (tlc) trip record data., 2019, (NYC Taxi Limousine
Commission), https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.

E. Wang, Y. Yang, J. Wu, W. Liu, X. Wang, An efficient prediction-based user recruit-
ment for mobile crowdsensing, IEEE Trans. Mob. Comput. 17 (1) (2017) 16-28.

Y. Yang, W. Liu, E. Wang, J. Wu, A prediction-based user selection framework for het-
erogeneous mobile crowdsensing, IEEE Trans. Mob. Comput. 18 (11) (2019) 2460-
2473, doi:10.1109/TMC.2018.2879098.

G. Gao, M. Xiao, J. Wu, L. Huang, C. Hu, Truthful incentive mechanism for nonde-
terministic crowdsensing with vehicles, IEEE Trans. Mob. Comput. 17 (12) (2018)
2982-2997.

Fatih Yucel (M’17) received B.S. degree in Gazi University in
Turkey in 2017. He is now doing Ph.D. in the Computer Sci-
ence Department of Virginia Commonwealth University under
the supervision of Dr. Eyuphan Bulut. He joined MoWiNG lab
in Fall 2017. He is working on the development of efficient
algorithms for Internet of Things (IoT) and mobile crowdsens-
ing. He is a student member of IEEE.

Eyuphan Bulut (M’08) received the Ph.D. degree in the Com-
puter Science department of Rensselaer Polytechnic Institute
(RPI), Troy, NY, in 2011. He then worked as a senior engi-
neer in Mobile Internet Technology Group (MITG) group of
Cisco Systems in Richardson, TX for 4.5 years. He is now an
Assistant Professor with the Department of Computer Science,
Virginia Commonwealth University (VCU), Richmond, VA. His
research interests include mobile and wireless computing, net-
work security and privacy, mobile social networks and crowd-
sensing. Dr. Bulut is an Associate Editor in IEEE Access. He has
been also serving in the organizing committee of the LCN and
in the technical program committee of several conferences. He
is a member of IEEE and ACM.

http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://www.nrmp.org
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0034
https://doi.org/10.1109/TITS.2018.2807184
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0040
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0040
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0040
https://doi.org/10.1016/j.tcs.2010.02.003
https://doi.org/10.1007/s00453-009-9353-9
https://doi.org/10.1145/2767386.2767424
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
https://doi.org/10.1007/978-3-540-68279-0_2
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0046
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
https://doi.org/10.1109/TMC.2018.2879098
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049

	User satisfaction aware maximum utility task assignment in mobile crowdsensing
	1 Introduction
	2 Related work
	2.1 Mobile crowdsensing
	2.2 Stable matching

	3 System model
	3.1 Assumptions
	3.2 Trade-off analysis

	4 User satisfaction aware maximum utility task assignment
	4.1 ILP design
	4.2 Maximum to stable reduction algorithm
	4.2.1 Happify procedure
	4.2.2 The algorithm
	4.2.3 A toy example

	4.3 Stable to maximum convergence algorithm

	5 Simulation results
	5.1 Settings
	5.2 Results

	6 Conclusion
	Declaration of Competing Interests
	CRediT authorship contribution statement
	Acknowledgment
	Supplementary material
	References

