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Abstract—Energy management is a challenging issue
addressed in networks consisting of battery-powered ¢
With the recently emerging wireless power transfer tech
many studies have utilized wireless charging to addre
problem and provide energy ubiquitously to these devi
making them functional continuously. Besides the well-
problems such as optimal scheduling of mobile chargers, r
an interesting problem of energy balancing among a pop
of mobile nodes has been considered to prolong the lifei
the network through the opportunistic energy exchanges b
the nodes. The state-of-the-art solutions target an energy |
among the devices as fast as possible but they waste ener
to the loss during peer-to-peer energy transfer. In this pa
study the energy balancing problem that aims to minimi:
the energy difference between nodes and the energy loss
this process. To this end, we propose three different
sharing protocols between nodes based on different heuristics.
Through simulations, we show that all the proposed algorithms
show better performance than the state-of-the-art. The third
proposed algorithm achieves the best performance by reaching
an energy balance between nodes while keeping the maximum
possible energy in the network (i.e., minimum loss).

Index Terms—Energy balancing, wireless energy transfer,
mobile opportunistic network.

I. INTRODUCTION

Energy management is an important issue to be addressed
in networks consisting of battery-powered devices. Many
research efforts have been made for the efficient utilization
of energy at mobile devices to prolong the network life
time. With the recently emerging wireless power transfer
technology, wireless charging based energy replenishment of
nodes is considered in several studies [1]-[3]. For example,
mobile chargers, which are considered to be special devices
having high energy supplies, charge themselves from energy
sources, navigate to the locations of mobile nodes and transfer
energy to the sensor nodes in the network periodically.

Taking this further, recently, peer-to-peer energy sharing
between all kinds of nodes with bidirectional energy exchange
capability! in the network has been utilized for different
purposes. For example, for an opportunistic content delivery,
energy has been considered as an incentive [6], [7] to the

There are already several smartphones in the market with this feature
such as Samsung Galaxy S10, Huawei Mate 20 Pro. There are also some
prototypes [4], [5] developed by research community. While wireless charging
based energy sharing provides convenience, we do not restrict the proposed
solution in this paper to only wireless power transfer based energy sharing.
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Fig. 1: Energy balancing through interactions between nodes
at opposite sides of the average energy in the network.
Dividing the total energy into half when nodes meet can help
balancing energy among nodes but can waste energy.

devices to carry the message. Similarly, energy balancing [8]—
[10] among nodes has been studied to prolong the lifetime of
the network (especially when there is no access to additional
energy resources).

Energy balancing among nodes has been targeted through
the opportunistic energy exchanges between the nodes. The
goal is to minimize the difference in the energy levels of all
nodes. However, as nodes interact and transfer energy between
each other, there occurs an energy loss. Thus, both balancing
the energy among nodes and keeping the loss of total network
energy as low as possible is equally important. The state-of-
the-art solutions [8]-[10] suggest that the variation distance
among the target energy levels of nodes and current energy
levels will decrease only if the nodes in the opposite sides
of the average energy in the network interact and exchange
energy. While this is correct and help reach an energy balance
among the devices as fast as possible, it wastes energy due
to the unnecessarily frequent interactions between nodes. For
example, consider the example in Fig. 1. When node 1 and
node 2 meets at time ¢;, node 2 gives energy to node 1 in the
amount of the half of the difference of their energies. Note
that due to the loss, node 1 can only receive a portion of
the shared energy, hence it has a smaller energy than node
2 after this interaction. Similarly, node 3 provides energy to
node 2 at time to and node 3 again provides energy to node
1 at time t3. While such an interaction protocol can help
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reach an energy balance among nodes quickly, this can cause
unnecessary wastage of energy as some nodes keep switching
between the opposite sides of the average energy (which will
decrease as the interactions with energy exchanges increase).
In this specific example, after three interactions, node 2 has
almost the same energy as in the beginning. The same level
of energy distribution could have been obtained if the first
two interactions were not performed and only in the third one
node 3 provided energy to node 1.

In this paper, we study the energy balancing problem among
a population of mobile nodes that interact opportunistically.
We aim to minimize both the energy difference between
nodes and the energy loss during this process. To this end,
we propose three different energy sharing protocols between
nodes based on different heuristics. We evaluate the proposed
algorithms and compare with the state-of-the-art solutions
through simulations. The results show that the proposed
algorithms show better performance than the state-of-the-art,
with the third one having the best performance (i.e., balancing
the energy of nodes with minimum energy loss).

The rest of the paper is structured as follows. In Section II,
we discuss the related work that use peer-to-peer energy
sharing in mobile networks in general and specifically for
energy balancing. In Section III, we provide our assumptions
on the system model and provide the problem statement.
Section IV then gives the details of the proposed energy
balancing algorithms. In Section V, we present the simulation
settings used and provide the comparison results of the pro-
posed solutions with the state-of-the-art solutions. Finally, we
conclude the paper and outline the future work in Section VI.

II. RELATED WORK

Wireless power transfer (WPT) has been widely employed
in various applications mostly in wireless ad hoc and sensor
networks. Numerous studies have looked at the energy replen-
ishment of sensor nodes to prolong the network lifetime [1]—
[3]. Recently, energy sharing has also been considered in
mobile opportunistic networks in different contexts. In [11],
authors focus on enhancing the energy usage of wireless net-
works with wireless energy sharing to minimize the chances
of ending up with insufficient energy for their consumption.
In [12], the benefit of peer-to-peer energy sharing through a
group based charging is studied. Similarly, in [13], [14] match-
ing of mobile users based on their ability to provide energy
to each other is studied. In [15], [16], the impact of peer-
to-peer energy sharing is considered to reduce the number
of times mobile devices are charged through traditional ways
(i.e. charging from a wall outlet). Usage of energy sharing
has also been considered for content delivery in several recent
works [6], [7]. The energy is shared with relay nodes as an
incentive to carry the forwarded messages.

In a more related context to this paper, there are a few
recent works that study the utilization of peer-to-peer energy
sharing for energy balancing and network formation in mobile
networks. In [8]-[10], authors exploit peer-to-peer wireless
energy exchange to balance the energy within a mobile social

TABLE I: Notations

[ Notation [ Description ]
m Number of nodes in the network.
P Interaction protocol between nodes for energy exchange.
Jéj Energy loss rate.
€ Transferred energy.
E¢(u) Energy of user u’s device at time ¢.
Aij Average intermeeting time between nodes ¢ and j.
Et Average energy in the network at time ¢.
Eopt Maximum maintainable energy with perfect balance
among nodes.
o(P,Q) Total variation distance between two distributions, P, Q.
S:r "7 (j) | The set of nodes with more, less and equal energy to j.

network and propose various algorithms to be used in sharing
protocol. In [17], [18], the impact of P2P energy sharing
on network formation has been studied. The authors propose
several interaction protocols that assume different amounts
of network knowledge, achieving different trade-offs with
performance, measured in terms of how close they get to the
targeted energy distribution. While these works can decrease
the variation distance between the energy levels of nodes
and the target values (i.e., average energy) quickly, they do
suffer from high energy loss in the network by design. This is
because they let the nodes in the opposite sides of the target
energy interact and exchange energy at every opportunity,
causing the nodes change their side with respect to target
several times and lose energy unnecessarily.

In order to address this problem, in this paper, we aim to
both balance the energy levels among nodes and minimize
the energy loss. To this end, we propose three different loss-
aware energy exchange protocols between nodes. Through
simulations, we show that the proposed algorithms show
better performance than the state-of-the-art protocols thanks
to their designs that aim an energy exchange only in useful
interactions between nodes. The notations used throughout the
paper are summarized in Table 1.

III. SYSTEM MODEL
A. Assumptions

We consider a population of m mobile nodes M =
{u1,uz, ..., um }, each having a limited battery, and having en-
ergy sending and receiving capabilities. Whenever two nodes
interact based on a mobility pattern, they exchange energy
according to an interaction protocol P. The energy level of a
node wu at time ¢ is denoted by F;(u). We assume each pair
of nodes, (u;,u;), interacts in an exponentially distributed
manner with an average mean of );;. We also assume an
energy loss rate, 3, due to the nature of currently available
wireless power transfer technology. We assume € [0,1) is
a constant and depends on the equipment used.

When two nodes w and v’ interact at time ¢ and node u
transfers e energy to node ', node v’ will receive (1 — f)e
energy and their new energy levels will be:

(Ev(u), E(u)) = P(Ei1(u), B (u))
= (Bra(u) — €, Bea(u) + (1= Be)
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Since the interaction between u, and v’ doesn’t affect the
energy levels of any other nodes, the energy levels of all other
nodes remain unchanged. As in previous work [8]-[10], for
simplicity, we also do not consider energy loss due to mobility
or other activities of the nodes, as this is besides the focus of
the current paper.

B. Problem Description

The goal is to achieve an energy balance among a popu-
lation of nodes with a very low variation while minimizing
the energy loss due to the energy transfers among nodes.
We define the energy difference among nodes using the total
variation distance from probability theory as in [8]-[10].

Let P, Q be two probability distributions defined on a
sample space M. The total variation distance is calculated
as:

§(P,Q) =Y |P(z) - Q)] 1)

reM

Here, we do not divide the sum by two for the sake
of keeping the actual differences. In our context, the total
variation distance between the current energy distribution of
nodes and the target energy distribution, where all nodes have
the same energy, needs to be calculated. Note that the target
energy level will not be equal to the current average energy
in the network, as during the energy exchanges to balance
energy among nodes, there will be some energy loss. This
will make the average energy level decrease over time after
each interaction. At any time, we define the energy distribution
& on a sample space M by

gt (u) = Et (u)

= Et(M),where, Ey(M) = Z Ey(x) 2

reM

for any u € M. We also define the average energy in the
network at time ¢
Ey(M)
m

E, = (3)
We assume that each node knows the average energy
level in the network. This could be achieved via cellular
communication with a central server. The nodes only need
to send updates when they interact and exchange energy,
thus will happen rarely in a network with opportunistically
interacting nodes. This helps nodes know the exact energy
level that is targeted in real time. On the other hand, while it
could be reasonable for devices like smartphones, in practice
it may be costly for low power devices. Thus, in the third
protocol, we do not rely on this knowledge and achieve an
energy balancing with minimum loss by just using .

IV. LOoSS-AWARE ENERGY BALANCING

In this section, we give the details of the three proposed
energy balancing protocols. Each represents a solution attempt
towards our goal to achieve an energy balance with minimal
possible loss. Each solution depends on a rationale towards
decreasing the loss, with the third one achieving the optimal
loss.

Algorithm 1: GreedyPositive (u, u/, t)

Input: (u,v'): Interacting nodes
t: Time of interaction
1 if (Et,l(u) > Et,1 and Et,l(u’) < Etfl) OR
(Et_l(u) < Et—l and Et_l(u’) > Et—l) then
2 if £;_1(u) > E;_; then
3 Pap(Bi1(u), Ba(u)) = (Br—1, By () +
(1= B)(Ei-1(u) — E¢-1))

Pap(Er—1(u), Ei-1(u)) = (B-1(u) +
(1= 8)(Ei-1(v) — Ey—1), Er-1)

4 else

W

end
else

‘ do nothing
end

e e N &

A. Greedy Positive First Energy Balancing

Let A; = 6(&,U) —5(E4—1,U) be the decrease in variation
distance from time ¢t — 1 to ¢, where at time ¢ two nodes u
and v’ interact and U denotes the uniform distribution on M
(i.e., Ey(u) = Ey Vu). Let also z(z) = &(x) — L denote the
difference of node z’s energy from the uniform distribution.
It has been shown in [8]-[10] that if z;_q(u)zi—1(u') < 0,
A; < 0. That is, if a node v with E;(u) < F; and a
node v’ with F;(u') > E; interact at time ¢ and split their
energy equally, the energy variation distance in the network
decreases. Otherwise, with z;_1(u)z:—1(u’) > 0, Ay = 0.

While energy sharing in the opposite sides of the average
energy will decrease the variation distance, it may cause nodes
move between the negative and positive side of the average
energy level in the network (as shown in Fig. 1), and causes
unnecessary energy loss in the network. In order to solve
this problem and minimize the energy loss in the network
as much as possible while achieving low variation distance
among peers, we propose to make one of the nodes greedily
reach the current average energy level in the network (i.e.,
target) immediately. Moreover, we give priority to the positive
node. That is, if two nodes « and «’ at different sides of the
average energy level in the network interacts, the one in the
positive side gives its excessive energy above the target to the
one in the negative side. Note that, as the interactions in the
network continue, the target energy level will decrease thus,
this node may need to interact and decrease its energy again.
However, this will not waste energy as the node will still stay
in the positive side. If the node in the negative side was given
the priority to reach the target first, then this would make the
node switch to the positive side as the new interactions happen
and the average energy in the network decreases. Algorithm 1
shows the interaction process of this Greedy Positive first
protocol, or Pgp in short.

B. Greedy Closer First Energy Balancing

In the greedy positive first protocol, it is still possible that
some of the nodes in the negative side can switch to the
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Algorithm 2: GreedyCloser (u, u’, t)

Input: (u,u’): Interacting nodes
t: Time of interaction

1 (ut,u™) « (null, null)

2 if (E;_1(u) > Ey_1 and E;_1(v') < E;_1) then

3| (whum)  (u, )

4 else

5 if (B;_1(u) < Ey_1 and E;_1(v') > E;_1) then

6 ‘ (ut,u™) «+ (W, u)

7 end

8 end

9 if (u™,u™) is not null then

0 | da(ut)=Ea(ut) - Ei

11 5t_1(’UJ7) =F - Et_l(u’)

2 | if d_1(ut)(1—p8) > d—1(u") then

13 Pac(Ei—1(ut), Ei1(u™)) = (By_1(uh) -
Jt(_ll,(Z) ), Etfl)

14 else

15 Pac(Ei—1(u), Ey—1(u™)) = (B,
Eia(u™) + (1= B)d—1(u™))

16 end

17 end

positive side. For example, if the positive node has a very high
excessive energy and can provide the node in the negative side
with more energy than it actually needs to reach the target, this
will make the node in the negative side switch to the positive
side. To address this, we propose a new protocol which gives
priority to the node that is closest to the target energy level
and let it reach the target. Note that this has to be handled
separately depending on different cases.

Algorithm 2 shows the details of the Greedy Closer first
protocol, or Pgc in short. If the node in the negative side,
u~, needs less than the energy that the node in the positive
side, u™, can give after loss, u™ is given priority to reach the
target. The amount of energy that w* has to transfer should
consider the loss, thus should be more than what v~ will
actually need (lines 12-13). Otherwise, u™ is given priority to
reach the target and the energy of » ™~ is increased accordingly
(line 14-15).

C. Greedy Optimal Energy Balancing

The proposed protocols in previous sections aim to mini-
mize the energy loss while achieving a small variation distance
of energy level distribution of nodes with respect to the
uniform distribution at the current time. However, as nodes
interact, the average energy in the network, E, will decrease
and it will require the nodes that already reached the current
average in the network interact again to reach this new target.
For example, in Pgc protocol, there is still a possibility for
negative side nodes that reach the target find themselves later
in the positive side. Similarly, if priority is given to the nodes
in the positive side as it is closer to the current target, even

though it reaches the current average energy in the network,
it can find itself again in the positive side.

To this end, we propose a third protocol called Greedy
closer to Optimal first protocol, or Pgo in short. We aim to
maximize the benefit from each interaction, hence we make
one of the nodes in the interacting pair reach the final optimal
target immediately and stop interacting with others. This
achieves a larger variation distance decrease per interaction
and keeps the possible maximum energy in the network.
However, the key point here is to find this optimal target
energy level in the final network when all interactions finish
and every node’s energy is balanced.

For a given population of nodes and their energies, this can
be calculated in a discrete manner through iterations. Let us
divide the nodes in the network into three sets based on a
reference energy level j as follows:

SF(j) ={z e M| Ey(x) > j} €))
Sy (j) ={zx e M| Ey(x) <j} (5)
Sy (j) = {z € M | Ey(x) =0} (6)

Assume that F,,; is the optimal average target energy in the
network that can be reached by all nodes with the minimum
energy loss. It is clear that in the optimal way each node
should reach this target directly. That is, the nodes having
more energy than this target should give their excessive energy
to others and the nodes having less energy than this target
should receive energy from others in the amount of the
difference. However, due to the loss, the nodes that will give
energy to receiving nodes should transfer more than what they
actually need. E,,; will then be obtained when the sum of
receiving nodes energy can be supplied by giver nodes with
minimal loss. More formally,

Eoppr = arg m_in{l&’;r — B, } where,
j
Bf = Y (Eo(z)~-))
vz Sy (4)
_ j — E()((E)
5- T (55)
vz€Sy (4)

In a large scale network with many nodes having uniformly
distributed energy levels in [0,1], the expected value of F,;
can also be calculated as follows:

/y_o(m—y)dy = L(y—m)(l—ﬁ)dy
= (2 =22+ 1)(1-p)

flx)=Ba"+2(1-B)z—(1-8)=0 7)

This function, f(x) is strictly increasing function when x
€ [0,1] and B € [0,1], as f'(z) > 0. The solution is equal to
the positive root at,

g, - 28+ VI0p)
26
=9+ /=P -
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Fig. 2: Optimal target average energy for different energy
loss rates for a large-scale network with uniform energy
distributions.

Algorithm 3: GreedyOptimal(u, u’, t)
Input: (u,w’): Interacting nodes
t: Tige of interaction
1 Replace all E;_; in GreedyCloser(u, v/, t) with E,;
2 Run the same algorithm

As (1—-8) < /(1 — ) when 8 € [0,1], the value of E,; is
positive and lies in [0,1].

In Fig. 2, we show the values of E,,; for different energy
loss rates. The results are average of 1000 runs among 100
nodes where each node’s energy is determined randomly
between 0 and 100%. For example, when there is a 20%
energy loss during transfers, the optimal energy balance with
minimum loss and zero variation is 47.213%.

As shown in Algorithm 3, the interaction protocol between
nodes will be similar to the Pgc protocol except that
will be used instead of E,_;. If the nodes in the opposite
sides of E,,; interact, the one that can reach the target first
based on energy exchanges between them is given priority.

Note that in an ideal scenario, with n/2 interactions, a
perfect energy balance among all nodes can be achieved at
E,pt. This happens when the energy need of a node in the
negative side is perfectly provided by a node in the positive
side during a single interaction and they both reach the target.
This requires equal number of nodes in the opposite sides
of the target and perfect meeting schedule between corre-
sponding pairs that can complement each other. In practice,
usually this is not the case as due to uniform distribution,
there will not be equal number of nodes in both sides of the
final optimal average and the meeting patterns of nodes may
be very different.

V. SIMULATIONS

In this section, we present the results of our evaluation
through simulations. We create a network of m = 100 nodes
and assign each of them an energy level between 0 and 100
units randomly. We also generate a meeting pattern between
each pair of nodes using an exponential distribution with a

mean, J; ;, randomly selected from 1000 sec to 7000 sec.
From the beginning of the simulation, we let the devices
interact and exchange energy based on the characteristics of
each protocol proposed. We then compare our algorithms
with the state-of-the-art algorithm, Pp4 [8]-[10], in terms
of several metrics. Note that in the original Pp 4, each node
locally estimates the average energy level in the network using
the ratio of the total energy seen in the encountered nodes to
the number of encountered nodes. For a fair comparisonz, we
assume each node has the global information and knows the
exact average in the network in that protocol too, thus name
this version as Pg, 4. Note that Pg, 4, performs better than Pp 4.

Each simulation is repeated 1000 times for statistical
smoothness. Error bars are not shown as the results were
highly concentrated around the mean. For main simulations
we use an energy loss rate, 5, of 0.2. But we also show
the performance of the best algorithm proposed, Pgo, with
different 3 values.

In Fig. 3-a, we show the total variation distance comparison
for all algorithms. P, 4 can provide smaller variation distance
than the proposed algorithms. However, this is achieved with
a very high energy loss, as shown in Fig. 3-b. Moreover,
the number of interactions between nodes is also the highest
among all compared algorithms, as shown in Fig. 3-c. Thus,
when we compare the variation distance at the same total
energy in the network in Fig. 3-d, we see that it achieves
the worst performance. On the other hand, Pg;o achieves the
best performance and decreases the variation distance towards
the optimal energy, F,,;, gradually. It also achieves this with
minimum number of interactions. Thus, as it is shown in
Fig. 3-e, it gives the best performance in terms of the total
variation distance at a given interaction time.

The other proposed algorithms, Pgp and Pgc, perform
better than P 4, and worse than the Pgo. Pgc can achieve
similar total variation distance (Fig. 3-b) at a given total
energy in the network as Pgo and very close total energy
in the network around the same simulation time (Fig. 3-d).
However, as the nodes aim to reach the current average energy
in the network their interaction does not stop as in Pgo, thus
total variation distance at a given total interaction (with energy
exchanges) count is worse than the case in Pgo (Fig. 3-e).

The impact of energy loss rate on the performance of Pgo
is also shown in Fig. 3-f. Pgo always reaches the target
if it is run sufficiently long. However, we notice that with
higher 3, the linear decrease converts to non-linear decrease.
This is because, with higher 3, E,,; gets lower, hence the
difference in the number of nodes in the opposite sides of
E,,: increases. This then results in less meeting likelihood
between opposite side nodes in earlier times. Moreover, due
to the high energy loss, the nodes in negative side receive
small energy and cannot reach the target quickly. Thus, the
variation distance decreases slowly. However, Pgo eventually
reaches the optimal target with minimal loss.

ZNote that this is for fair comparison with only Pgp and Pgc as Pgo
does not use the global information of average network energy. In Pgo, each
node just calculates E,p¢ using 3 and decides accordingly.
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Fig. 3: Comparison of proposed algorithms with the state-of-the-art algorithm in terms of (a) variation distance, (b) total energy
remaining in the network, (c) total number of interactions, (d) variation distance at each total energy level and (e) variation
distance at each total number of interactions (when $=0.2). (f) shows the impact of different loss rates on Pgo performance.

VI. CONCLUSION

In this paper, we look at the energy balancing problem
among a population of mobile nodes that interact oppor-
tunistically. We aim to both balance the energy levels of
nodes and minimize the energy loss during this process. We
propose three different energy sharing protocols and through
simulations we show that they show better performance than
the state-of-the-art, with the third one achieving the best
performance. In our future work, we will consider the impact
of intermeeting times between nodes and integrate social
network metrics to speed up this process of balancing.
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