DIVERGENCE-FREE SCOTT-VOGELIUS ELEMENTS ON CURVED DOMAINS
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Abstract. We construct and analyze an isoparametric finite element pair for the Stokes problem in two dimensions.
The pair is defined by mapping the Scott-Vogelius finite element space via a Piola transform. The velocity space has the
same degrees of freedom as the quadratic Lagrange finite element space, and therefore, the proposed spaces reduce to the
Scott-Vogelius pair in the interior of the domain. We prove that the resulting method converges with optimal order, is
divergence—free, and is pressure robust. Numerical examples are provided which support the theoretical results.

1. Introduction. Isoparametric finite element methods are a well-known and extensively studied
technique to approximate PDEs on smooth domains. Such schemes use polynomial diffeomorphisms
between reference and physical elements with degree dictated by the approximation properties of the
underlying finite element space. The use of such mappings yield curved elements on the boundary that,
while still do not conform exactly to the physical domain, generally lead to higher—order approximations
and mitigate the geometric error. In particular, the resulting geometric error is generally of the same
order as the discretization error, and thus, the resulting methods are potentially robust with respect to
rates of convergence. The implementation and analysis of isoparametric elements for second—order, scalar
elliptic problems are well-established, and classical theories exist [23, 9, 17, 8, 20]. On the other hand,
isoparametric elements for mixed problems, in particular the Stokes problem, is less developed [2, 21, 11].

In this paper, we adopt and expand the isoparametric framework to construct a divergence—free
method for incompressible flow, i.e., schemes that yield discrete velocity solutions that are divergence—
free pointwise. The scheme is also pressure-robust, i.e., the gradient part of the source function only
influences the discrete pressure solution. This feature allows a decoupling of errors between the velocity
and pressure, which is beneficial for situations with fluid flow with large pressure gradient and/or small
viscosity. Such divergence-free and pressure-robust finite element schemes seem to be gaining in popularity
[14, 22, 13, 1, 18, 15, 3], although, as far as we are aware, the methods have only been constructed
on polytopal domains. Thus, divergence—free methods are currently limited to second-order accuracy
(formally) on general domains with smooth boundary.

The basis of our construction is the lowest-order two-dimensional Scott-Vogelius pair defined on
Clough-Tocher refinements, i.e., simplicial triangulations obtained by connecting the vertices of each tri-
angle in a given mesh to its barycenter. In this case, the velocity space is the space of continuous, piecewise
quadratic polynomials, and the pressure space is the space of (discontinuous) piecewise linear polynomi-
als. It is known, on affine Clough-Tocher meshes, this pair is stable, and the corresponding scheme is
divergence-free and pressure-robust. However, a direct application of the isoparametric paradigm to this
pair leads to a method with neither of these desirable properties. Indeed, the Scott-Vogelius pair, defined
by standard isoparametric mappings, is given by

Vi ={ve HY Q) : v|x =0 Fgt, 30 e Py(T) VK € TiH, (1.1a)
Qn={qe L3Q): qlx =GoFgt, 3G P1(T) VK € T}, (1.1b)

where 7' is a reference triangle, ka(T) denotes the space of polynomials of degree < k on T, Fx : T — K
is a quadratic diffeomorphism, and T is the Clough-Tocher refinement of a simplicial triangulation T3,
(cf. Section 2 for a detailed explanation of the notation). Applying the chain rule shows div vy, ¢ Qh for
general vy, € Vh (unless F is affine VK € T},), and simple calculations show the exact enforcement of
the divergence—free constraint and the pressure-robustness of the scheme using Vi, x Qh is lost on curved
elements.

Our methodology to construct divergence—free and pressure robust schemes consists of two main ideas.
First, instead of composition, we use a divergence—preserving transformation to recover the divergence—
free property, i.e., we use a Piola transform in the definition of the local velocity space instead of compo-
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sition. Combining the local spaces defined through this mapping with the Lagrange degrees of freedom
yields a global non-conforming (velocity) finite element space that is H!-conforming in the interior of the
domain and H (div)-conforming globally. We also show that the resulting space is “weakly continuous,”
and therefore suitable for second-order elliptic problems.

The second main idea in our construction is to treat the Scott-Vogelius pair as a macro-element,
rather than a finite element space defined on a refined (Clough-Tocher) triangulation. In particular,
local spaces are defined by mapping a macro reference local space, and therefore the corresponding finite
element code does not “see” the global Clough-Tocher triangulation. This modification is motivated by
the stability analysis of the Scott-Vogelius pair, which is based on Stenberg’s macro-element technique
[7]. Adopting this technique to the isoparametric setting, we show that the resulting pair satisfies the
inf-sup condition, and therefore the finite element method for the Stokes problem is well-posed.

The rest of the paper is organized as follows. In the next section, we set the notation, state the
properties of the quadratic diffeomorphisms, and provide some preliminary results. In Section 3, we
define the local spaces of the velocity-pressure pair and provide a unisolvent set of degrees of freedom.
Here, we also prove a local inf-sup stability result. Section 4 states the global spaces and proves a
global inf-sup stability result. We also show in this section that functions in the discrete velocity space
enjoy weak continuity properties. In Section 5, we state the finite element method and show that the
method is optimally convergent. Section 6 gives a pressure-robust scheme through the use of commuting
projections, and Section 7 provides numerical experiments which confirm the theoretical results. Some
auxiliary results are given in Appendix A.

2. Preliminaries. We assume that the domain 2 C R? is sufficiently smooth, and the boundary
0f) is given by a finite number of local charts. The construction of the mesh with curved boundaries
follows the standard isoparametric framework in [17, 8,9, 5]. In particular, we start with a shape-regular
and affine triangulation T}, with mesh size sufficiently small, such that the boundary vertices of T} lie on

o, and Q, = int( Ufeq, ’f’) is an O(h?) polygonal approximation to Q. Here, h = max;cg, diam(T).
We assume each 7' € T), has at most two boundary vertices.

REMARK 2.1. For the continuation of the paper, we use C (with or without subscript) to denote a
generic constant that is independent of any mesh size parameter. For a regular mapping H : R2 — R?,
we denote its Jacobian by DH.

We let G : Q;, — Q be a bijective map with 1Gllw1.(q,) < C such that such that G|z(z) = x at

all vertices of T', in particular, G is the identity map for any triangle T € T, with three interior vertices.
We denote by G, the piecewise quadratic nodal interpolant of G' satisfying [|[DGplly1. (5 < C and

HDG}:1||W1,OO(T) < C for all T € T,. We then set
Ty = {Gh(T) . T € ‘j'h}, Qp = int( UreT, T)

to be the isoparametric triangulation and computational domain, respectively.
Denote by 7' the reference triangle with vertices (1,0),(0,1), and (0,0). For 7" € Tj, we denote
by F7 : T — T an affine mapping satisfying |FT|W11<>°(T) < Chy and |Ff_1|W1=OC(T) < Chy', where

hr = diam(f’). We define the quadratic diffeomorphism Fr : T —Tas Fr =Gy o F; which satisfies

|Erlyymooiy SChE 0<m <2, |Eptlwmes(ry < Chp™ 0 <m <3, (2.1)
c1h? < det(DFr) < coh?,

where hy = diam(G; ' (T)). Note the mappings Fr and Fy (with T = G, (T)) are oriented in the same
way so that Fir = Fj; at the vertices of T. In particular, the mappings coincide if G| is the identity

operator. Furthermore, if e C 9T is a straight edge with e = Fr(é) and é C dT', then Fr|e is affine. If
T € Ty has all straight edges, then Fr is affine and T' = G,(T) = T. The conditions on Fr and the
shape-regularity of T;, imply |T|/|G;, *(T)| < C and |G, 1 (T)|/|T| < C for all T € Ty,.
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Denote by T = {K;}3_, the Clough-Tocher tri-
angulation of the reference triangle, obtained by con-
necting the vertices of 7' with its barycenter. We then fr
define the analogous local triangulations on T € T, and T
T € Ty, respectively, (cf. Figure 2.1) G,

T = {Fa(K) : K € T}, T° = {Fp(K): K € T°}.

The properties of Fr show |T| < C|K]| for all K € T*. g \F_T/
We denote by &7 the interior (straight) edges of T
Th, and by 82’6 C & the set of interior edges that
have one endpoint on 02, i.e., the set of interior edges FIGURE 2.1. Left: Clough-Tocher split of the refer-

ence triangle T. Right: The corresponding curved and
straight macro elements induced by the mappings Fr
and Fiy.

that “touch” the computational boundary. We use the
generic n to denote the outward unit normal of a do-
main which is clear from its context. The tangent vector
t is obtained by rotating n 90 degrees counterclockwise.
REMARK 2.2.
1. The globally refined triangulations are given by

Tt={K: KeT" 3ITeT,), T¢={K: KeT® 3TcT,}.

However, we emphasize that the construction of the Clough-Tocher isoparametric mesh T is
constructed by mapping the reference macro element Tet. In particular, the finite element spaces,
given in subsequent sections, are defined on Ty, (not T¢'); in fact, the corresponding finite element
code does not “see” the refined triangulation T§'.
2. Note that this construction leads to curved interior edges in T5', as interior edges of T' may be

curved.

The proofs of the following two lemmas are given in Appendix A.

LEMMA 2.3. For each T € Ty, define the matriz valued function Ap : T — R2*2 gs

R DFr(z)
A =—— 2.2
@) = St D) (22)
Then there holds
_ _ Ch:r™ m=0,1
| AT |y mooo (i < ChE ™, and AL oo 7y < { 0 m > 9 (2.3)

LEMMA 2.4. Let T € Ty, and T € T), with T = Gh(T). Let € be an edge ofT with outward unit
normal n, and assume that the corresponding edge e = Fr(é) on T is straight. Then

det(DFr(2))(DFr(2))”™n = det(DF;(2))(DF#(2)) " Tn

is constant on é.

We also need a scaling result which is found in [5].

LEMMA 2.5. Suppose that w(x) = (&) for sufficiently smooth w € W™P(T). Then for any
K c TCt,

2/p—m 2(m—r A~
[wlwmn ey < ChEPT™ S B3 by -
r=0

~ m—2
|w‘W’”vP(f() < Chy v Z [wlwre (k)
r=0

with K = F7 1 (K).



3. Local Spaces. Recall T C R? is the reference triangle, and Tet = {Kl, Kg,f(g} is the Clough—
Tocher triangulation, obtained by connecting the vertices of T" with its barycenter. We define the poly-
nomial spaces on T" without boundary conditions:

V={0cH(T): d|p €P2(K)VK € T}, Q={GeL*(T): §lz € P1(K) VK € T},

where P (S) is the space of scalar polynomials of degree < k with domain S, and Py (S) = [Pr(5)]*.
For an affine triangle T' € T} in the polygonal mesh, we define the spaces via composition

V(T)={oe H\(T): (%) =9(&), 30V}, Q) ={qeL*T): 47 =q#), 3G Q},

where & = Fi(2). Thus, V(T) is the local, quadratic Lagrange finite element space with respect to T,
and Q(T) is the space of (discontinuous) piecewise linear polynomials with respect to T!. We also define
the analogous spaces with boundary conditions

%:VQH(%(T)’ QOZQng(T)u

Vo(T) = V(T)N Hg(T),  Qo(T) = Q(T) N L§(T).
For T € T, possibly with curved boundary, we define the spaces with the aid of the Piola transform
V(T)={v e HYT): v(z) = Ap(&)6(2), 3o € V}, Vo(T) = V(T) N HL(T),
QT) ={q € L*(T): q(z) = (2), 3 € Q}, Qu(T) = {q € LX(T) : q(z) = 4(&), 34 € Qo}.

Here, = Fr(#) and we recall Ap(2) = DFy(z)/det(DFr(2)). If Fr is affine, then V(T) = V(T)
and Q(T) = Q(T); otherwise, both V(T) and Q(T) are not necessarily piecewise polynomial spaces.
Moreover, for v € V(T') and for a straight edge e C 9T, the restriction of v to e is not necessarily a
polynomial, even though F ! is affine on e. Nonetheless, the next lemma shows the normal component
of v is a polynomial on straight edges.

LEMMA 3.1. Let v € V(T), and suppose that e is a straight edge of OT with unit normal n. Then
v - nl. is a quadratic polynomial.

Proof. Write v(x) = Az (#)®(2) for some & € V, and set é = Fy ' (e) to be the corresponding edge
in T with outward unit normal 7. We then have

¥ -1 = (det(DFr)DF; 'v) -7 = (det(DFr)DF;Th) - v.

By Lemma 2.4, (det(DFr)DF; 1) is a constant vector. Using the identity n = DF~Tn/|DF~Tn| [19],
we conclude (det(DFr)DF;Tn) is a non-zero multiple of n. In particular v - n is a non-zero multiple of
© - n. Because Frl; is affine and © - 7 is a quadratic polynomial on é, we conclude v - n|. is a quadratic
polynomial on e. O
LEMMA 3.2. Suppose v = Aro € V(T) for some © € V. There holds vl gy < Ch;1||ﬁ||H1(T).
Proof. By a change of variables, the chain rule, Lemma 2.3, and Lemma 2.5, we have

vl (1) < C(|AT"A)|H1(T) + hT||ATﬁ||L2(T))
< CUIAT I oo (2 191l 11 ¢y + AT 1,00 (2101 22 ()) < CRT 1] g -
]

3.1. Degrees of freedom for V(T'). The canonical (nodal) degrees of freedom (DOFSs) of the
quadratic Lagrange finite element space on T are a given function’s values at the (four) vertices in
T, and its values at the (six) edge midpoints in T°¢. Here, we show that these Lagrange DOFs form a
unisolvent set over V' (T').

Let Nz := {a;}12, denote the set of (four) vertices and (six) edge midpoints in T, We let Ny :=
{a;}}2, and Nz := {@;}}2, be the corresponding sets on T° and T, respectively, with a; = Fr(a;), and
G = Fa(a).



LEMMA 3.3. A function v € V(T) is uniquely determined by the values v(a) for all a € Np.

Proof. The number of DOFs given is 20 which matches in the dimension of V' (T'). Thus, it suffices
to show that if v € V(T') vanishes on the DOFs, then v = 0.

Write v(z) = Ap(2)9(2) for some © € V. We then have

0= 'v(a) = AT(&)’&(&) VYa € Nr.

Because Ar(a) is invertible, we conclude ¥(a) = 0 for all & € N4. Since ¥ is uniquely determined by
these values, we conclude v = 0, and therefore v = 0. 00
LEMMA 3.4. There holds, for allv € V(T),

lllZ ey <C Y- (@)l

aeENT

Proof. Again, we write v(z) = Ap(2)6(&) with Ap(&) = DFp(z)/ det(DFp(&)) for some © € V. By
equivalence of norms in a finite dimensional setting, and the estimate || A} || () < Chr, we have

[613, 05, <C 3 @1 =C Y |4z @) Ar(@)(a)P

AEN 4 aEN 4
<Ch7 Y [Ar(@)8@)f* = Chi ) v(a)f.
dENT aeNp

Therefore by Lemma 3.2,
ol ) < CHATOI ) < ClATI 1 1610y < CHE 01 ) <€ [o()2
a€ENT
LEMMA 3.5. For T € Ty, let It : H3(T) — V(T) be uniquely determined by the conditions
(ITu)(a) = u(a) Va € Nr.
Then there holds

lw — Irul| gy < CRE ™ |ullgs(ry  Yu e H¥T), m=0,1.

Proof. Let uw € H3(T), and for notational convenience, we set v = Iru.
Write

v(z) = (Aro)(2),  wu(z) = (Ara)(2)
with & € V and @ € HS(T) By definition of ITw and the nodal points, we find

Therefore, because Ay is invertible, ©¥(a) = w(a) for all @ € Ny, i.e., ¥ is the quadratic Lagrange nodal

interpolant of & with respect to the local triangulation T¢t. Tt then follows from standard interpolation
theory that

[ =Bl g () < Cltt] g -
Applying Lemmas 2.5 and 2.3 then yields
u—v|gmry < Chy ™| Ar (@ = 0) | oy < Chr " [ Az llyym oo (718 = Ol gon ) < ChT™ [ s -
Finally, we once again use Lemmas 2.3 and 2.5 to obtain
|ﬁ|H3(T) = |A;1AT7A4‘H3(T) < C(|‘A;l||Lw(T)|ATﬁ|H3(T) + |A;1‘W1v°°(i“)|AT'a|H2(T))

< C(hT|ATﬁ|H3(T) —+ h%—v|AT’lAI,|H2(T)) < Ch%”u”H’s(T)



3.2. A connection between local finite element spaces. In this section, we explicitly identify a
correspondence between piecewise polynomials defined on the affine local triangulation Tt and functions
on T° with T = G ;L(T). This connection will be used to prove global inf-sup stability in the subsequent
section.

DEFINITION 3.6. Let T € Ty and T € Ty, with T = Gy (T).

1. We define the operator U : V(T) — V(T') uniquely by the conditions

(¥rv)(a) =v(a) Va € Ny, where a = Gp(a).
2. We define the operator Yr : Q(T) — Q(T) as
(Yrg)(z) = G(F7(2)).

THEOREM 3.7.
1. If Fr is affine, then (V79)(x) = ©(Z), in particular, Y1 is the identity operator.
2. If e C OT is a straight edge, so that e C 9T, then

(U70) - nle =0 nje.

3. There holds W10 g () < Cl|9] g1 (7)-
Proof. For notational simplicity, we set v = U0 € V(7).
1. If Fr is affine, so that D Fr is constant, we have V(T') = V(T). We then conclude that (¥79) = @
by Lemma 3.3.
2. Let e C OT be a straight edge with outward unit normal n, endpoints a; and as, and midpoint
as. Then e C T and

(v-m)(a1) = (©-n)(a1), (v-n)(az) =(v-n)(az), (v-n)(as)= (v n)(as).

By Lemma 3.3, v-n|. and ©-n|. are both quadratic polynomials, and therefore, these conditions

imply v - nl. = v - ne.

3. Set v(&) = v(Z) with & = Fj(#). Using Lemma 3.4 and a standard scaling argument, we have
lolinm <C Y- W@P=0 ) B@PF=Cc ) p@lP<Cloly ) <Cloli
a€ENT acNz aeEN 4

|
3.3. Local Inf-sup stability. In this section, we derive an indirect local inf-sup stability result of
the pair V(T) x Qo(T). As a first step, we use the stability of the analogous pair Vj x @y defined on

the reference triangle. The proof of the following lemma is found in, e.g., [1, 13].
LEMMA 3.8. For any ¢ € Qo, there exists © € Vg such that V - & = § with the bound ||’UHH1 <

C||q||L2(T)
THEOREM 3.9. Given q € Qo(T), then there exists v € Vo(T) such that
hiq(x)
V- -v)(z) = L , and ||v <C .
( )(x) det(DFT(Ffl(x))) vl ey < Cllgllpzer)
Proof. Let ¢ € Qo(T). Then there exists q € QO such that g(z) = G(&). Because h%§ € Qo,
by Lemma 3.8, there exists & € Vj such that V - & = h%§ and 100l a7y < h%HqHLQ (- Setting
v(z) = Apv € Vy(T), we compute
(V-o)(@) _ hpa@) hiq(x)

(V-v)(z) =

det(DFr(2))  det(DFr(2))  det(DFr(Fp'(z)))
Applying Lemma 3.2 and a change of variables yields

lolliry < Chp 8]l i) < Chrlldll ez < Cllallzzr



4. The Global Spaces. Define the Scott—Vogelius pair with respect to the affine triangulation Th:
Vi ={oc H}Qp): 0| e V(T), VT €Tn}, Q"={Ge L) : ql; € Q(T), VT € Tp,}.

We construct the global spaces V" x Q" defined on T, using the spaces Vhx Q" and with the aid of the
operators W and Y given in Definition 3.6. To this end, we define ¥ and T to be the operators given
by

‘I"TZ\I/T, TlT =Tr VT € Tp.
The global spaces, defined on the isoparametric mesh 7}, are then given by
Vh:i={v: v=0s, I0ecV"}, Q" :={q: ¢=17q, 35 Q"}.

REMARK 4.1. It is easy to see that the space V" is equivalently defined as functions locally in V (T)
on each T € Ty, are continuous on the DOF's in Lemma 3.3, and vanish on 0$y,.
THEOREM 4.2.
1. There holds V" C Hy(div; Q) = {v € L?(Q,) : V-v € L2(Q4), v - nlsq, = 0}.
2. There holds q € Q" if and only if q|7 o Fr € Q for all T € Ty, and

S off q
7 det(DFyp o F; 1)

TeTh

Proof.

1. Let T1,Ty € T, such that () £ 0Ty N 9T =: e, and let n be a unit normal of e. Note that e is a
straight edge in Tj. Let v = ¥(®) for some v € V", and denote by v; the restriction of v to Tj.
Likewise, let v; denote the restriction of v to T;. Then by Theorem 3.7 and the continuity of v,
we have

V1 N = V1 - N|e = V2Nl = Vo 1Y

Thus, the normal component of v is single-valued on interior edges. Because v|grnsq, = 0 for
all T € T}, we conclude that v € Hy(div; Q).

2. Let ¢ € Q". Then there exists a (unique) § € Q" such that ¢ = Y§, with qlr(Fr(z)) =
ql7(F7(2)). We then find by a change of variables

o:/ﬁhg:; /qufz YRTEESSE LY RTEEDS

€Th €Th TeTh TeT

- q
207 /T det(DFpo Fib)
T

The converse is proved similarly.
d

4.1. Global inf-sup stability. In this section, we show the finite element pair V" x Q" is inf-sup
stable. This is achieved by using the local stability result given in Theorem 3.9 combined with Stenberg’s
macro element technique. ~

We define the spaces of piecewise constants with respect to T, and Ty:

Yh:={qe L) : 4lr € Po(T) VT € T}  Q", Yhi={q: ¢q=7(3), 3geY"} c Q"

We first show that the pair V" x Y is stable in the following lemma.
LEMMA 4.3. There holds

Jo, (V-v)q
sup T > y1|gllr2,) Vg E Y™,
vevi o} IVYll2a,)



where the gradient of v is understood piecewise with respect to Ty,. Here, v1 > 0 is a constant independent
of h.

Proof. Fix ¢ € Y" and let § € Y" be the piecewise constant function such that ¢ = Y. Note that,
because ¢ and ¢ are both piecewise constant, there holds Q|melh = ’ﬂﬂmﬁh' In particular, we have

7| . Tl -
g=1= [ 4 and [ql2aep 112, VT € T,
/T 7| J7 @7

with T = G, (T). Thus we have ||qHL2(Qh) < C”ﬁ”p((n)

Let w € HL(y,) satisfy V - = ¢ and H@'LDHLQ(Q]_L) < Clldllz2(q,,)- The results in [6, Theorem 4.4]
and the properties of G ensure that C' > 0 is independent of h. From the stability proof of the piecewise
quadratic-constant pair [4, 7], there exists © € V" such that

['B:[ﬂ;, and (V5] 26, < CIV 2,

Let v = Yo and note that |[Vvl|r2(0,) < C[[V0|[12(g,) by Theorem 3.7 (item (3)). Furthermore, this
theorem shows that, on each T € T},

/Tv-v:/aT(v-n):Af(ﬁ-ﬁ):/ﬁ(w-ﬁ):/fvwz/f«j :; q,

and therefore, because ¢ is constant on 7',

[ @ wa=l [ 2=y,

Summing over T € T} then gets

| @ 0=l > il Villyea,)
h

> Cllll 2 a,) [IVVliz2@,) = Cllallz@) VYl L2(0))-

vw”m(gh C”‘i“m(m)

Dividing this expression by [|[Vv||2(q,) gives us the desired estimate. O
THEOREM 4.4. There holds

fQ YSéh r o T
sup

> Cllqll 2 () Vg e Q"
veVi\{0} ||VvHL2(Qh) ’

where the gradient of v is understood piecewise with respect to T,.
Proof. Let g € Q". For each T € Ty, we define gr € Po(T) such that

/ (¢ —aqr) -0
Tdet(DFT) ’

and set g such that glz = gr for all T € Tj,. Then (¢ — q)|r € Qo(T) for all T € Tp, and ¢ € Y.
Consequently, by Theorem 3.9, for each T' € T}, there exists v1 v € Vo(T') such that

h2.(q - q)

VLT = et (DFy)

Vol < Cllg — @llr2(7)-

Set vy such that vi|pr = vy for all T € Tp. Then v € V" because virlor = 0. We also have
[VvillL2,) < Cllg — dllz2(,), and

/(V'vl q—7q) Z/V’ulq—‘)

TeT,



-3 fitomy 2o X fla-o

TeT, TeT)
Cllg = 72y
>Cllqg— (1\|L2(Qh)||vvl||L2(Qh)-

Next, recall v1|gr = v1,7|s7 = 0, and § is constant on each T'. Therefore by the divergence theorem,

Vvlq—Z/Vvlq—Z/ (v1-n)g =

Qn TET), TET,

Thus, we conclude the existence of a constant 7y independent of i such that

B Jo, (V-v)gq
Yollg = qll2(0,) < sup st 2
vevi (o} IVollzz,)

Next, we use the stability of the V* x Y pair given in Lemma 4.3:

_ th (V-v)q
nldllr2@,y < sup  To——
veV\{0} ||VUHL2(Q}7

Ja,( _ _ Ja, (V- v)q
< sup 1O ey < (g sp YV
veVh\{0} HV”HL?(Q;) vevingor IVYllzca,)
Therefore,
fQ (V-v)q

lallz2n) < g = allzen) + lallz@n) < (0 '+ A+ ") sup oo
vevinoy IVollzz,)

This is the desired inf-sup condition. O

4.2. V" as an approximate H} () function space. Recall from Theorem 4.2 that the discrete
velocity space is Hy(div; Q2 )-conforming. However, in general there holds V* ¢ H'(Q) because v,
is not a quadratic polynomial on all edges e in J. More precisely, v|. is not a quadratic polynomial
if e C 9T, and T has a curved edge (otherwise v|. is quadratic and is continuous across the edge).
Nonetheless, the definition of V" shows that functions in V" are single-valued at three points on each
internal edge. We use this property in the next two lemmas to show that functions in V" are “weakly
continuous.”

LEMMA 4.5. There exists an operator Ej, : VI — H}(Q) such that for all v € V*,

Hv_Eh'UHLQ(T) +hT||V(’U—Eh’U)||L2(T) < Ch%ﬂHV’UHLz(T) VT € Tp. (41)

Proof. For given v € V" there exists © € V" such that v = ¥&. In particular, ¥ is uniquely
determined by

’U|T(CL) = ﬁ|T(d) Va € NT, VT € Ty,
with T = Gp,(T). We define the function Ejv via
Eyv|lr = (0o Fro F Y|y VT € Ty

That is, Epv is the function in the standard isoparametric quadratic Lagrange finite element space
associated with ©. We then have Eyv € HE(€y,). Furthermore, since F:Fl is affine on straight edges, we
see v = FEpv on straight edges. In particular, we conclude

Ehv|T(a) = ’U|T(CL) Ya € NT, VT € Ty,
9



We now estimate the difference v — Epv. On affine (non-curved) triangles, we easily see v = Epv
because both functions are piecewise quadratic polynomials. Therefore the estimate trivially holds in this
case.

Next, let T' € Tj, with curved boundary. We then have v|grnaq, = 0. Write v|r(z) = Ar(2)0(Z)
with © € V and Ar = DFr/det(DFr). We also set @ € V such that w (&) = Epv|r(z). We then have

Ar(a)o(a) =w(a)  Yae Nj.

Thus, w is the piecewise quadratic Lagrange interpolant of A9 on Tt. It then follows from the Bramble—
Hilbert lemma that

[A7® = || g () < ClATO| sy YK €T, m=0,1.
Expanding the right-hand side, using Lemma 2.3, and the fact that 9| is a quadratic polynomial shows
‘AT"A’|H3([<) < C(|A|W3,oo(1%)||ﬁ”1:2(k) + ‘A|W2,oo([<)|ﬁ|H1(f() + |A|W1,oo(f()"'}|H2(}%))
< Clloll oy < Cllol o,

where we used the equivalence of norms in a finite dimensional setting in the last inequality. Using the
estimate HA;”LW(T) < Chr, we conclude

||AT’IA}7’UA)||H,,,L(T) S ChT||ATﬁ||L2(T)a m = 0,1.
We then use Lemma 2.5 and the Poincare inequality to get (m =0, 1)

lo = Bnvllgmr) < Chi ™| Ar® = |l )
< Chi ™| A7l g2

< Chy™||vllz2(ry < Ch™ | Vol|z2(r).

a0

Recall, & is the set of internal edges of Tj,. For e = &L, write e = Ty NAT- for some Ty € Tj,. Let

n. denote the outward unit normal of 9T restricted to e, and for a piecewise smooth function v, let v4
denote the restriction of v to T'x. We then define the jump operator

[V]le =vy®@ny +v_@n_,

where (a X b)i,j = a,;bj.
LEMMA 4.6. Let e € & with e = Ty NOT_ for some Ty € Ty,. Then there holds for allv € V",

| [1l] < chtvoliae + IVolzay) (12)

where hy = max{hr, ,hr_}.

Proof. Let a1, aq be the endpoints of e, and let ag be the midpoint of e. If both 7'y and T_ are affine,
then v|r, ur. € H' (T UT_). This implies [v]|c = 0, and the estimate trivially follows.

Next suppose that at least one of T+ has a curved edge, which implies that one of the endpoints
a1, ag lie on 0€y,. Without loss of generality, we assume that T has a curved edge.

By construction of the space V", in particular, the definition of ¥, we have [v]|.(a;) =0, i = 1,2, 3.
It then follows from the error of Simpson’s rule that

| / [0]] < CleP|[0]] s oy < ChE(wlwosiac,) + [Olwsosqac ), (4.3)

where Ky € T§ satisfy 0K, NOK_ =e.
10



Write v|x, (z) = (A1, 04)|, (2) With 04 € V,and Ki = FT;I(Ki) We apply Lemmas 2.5 and 2.3
to the right-hand side of (4.3) and use the fact that vy is a quadratic polynomial:

4
— 2(4—r ~
"U|W4,oo(Ki) S Oth E hT(i )lATivi|Wr,w(ki)
r=0

r

4
< Ch%“i Z hﬁr Z |ATi |W”"‘°"(Ti) ‘ﬁi‘Wj'O"(f(i)
r=0 =0
4 2

_ =1y
< Ch%“i Z thr Z hTTij |vi‘Wj*°°(f{i)
r=0 7=0

2
—j—1 3|
<CY byl bl iy < Cht 9l 2
3=0
where we used equivalence of norms in the last inequality. Using the estimate ||A;i1 o () < Chry and
Lemma 2.5 we get
wlwaoo(ky) < ChT | Ay Os |l 12y < ChT 0|12 (1)

Combining this estimate with (4.3) and applying the Poincare inequality (on 77 ) yields

J10l] < OO (Iollsesy + bl 9olacr,). (4.4

Next we show |[v||z2(7_y < Chr||Vvl|p2¢r_y. To this end, we set w = Ejv, where Ejv is given in
Lemma 4.5. We then write

[vll2¢ry < lv = wllr2ery + lwll2ery < w2y + ChT_ || Vol 2(r ).

Let @ € V such that @(#) = w(z) with 2 = Fp_(&). Noting that w vanishes on 8y, in particular
w vanishes on at least one vertex of T, we conclude that

W = [[Vwl| 27y
is a norm. Therefore by Lemma 2.5 and equivalence of norms,
lwllzeer ) < Challib]apy < Chrl[Vll,a i) < Chrl|Vawl e ).
Hence, we have

lollzary < C(hrll Vel + B3 IV0ll ey ) < ChrllVolliaer ).

Combining this estimate with (4.4), we obtain the desired estimate (4.2). This concludes the proof. O
5. Finite Element Method and Convergence Analysis. For a given function f, we let (u,p) €
H}(Q) x L3(£2) be the solution to the Stokes problem
—vAu+Vp=f, V-u=0 in Q,

where v > 0 is the viscosity. We assume that 9Q and f are sufficiently smooth such that (u,p) €
H?3(Q) x H%(Q), and can be extended to R? in a way such that (u,p) € H?(R?) x H?(R?) with V-u =0
and (cf. [16])

|w]| s ®2) < Cllwl s, Il 2 (m2y < Clipll a2 (0)-
11



We then extend f by
f=-vAu+ Vp,

so that f € H'(R?).

We denote by f;, € L?(Q,) a computable approximation of f|o. For example, fj, could be the
(global) quadratic Lagrange nodal interpolant of f.

The finite element method seeks (up,ps) € V* x Q" such that

/ vVuy, : Vo —/ (V-v)py, = / fn-v Yo e VI, (5.1a)
Qp Qp Qp
/ (V-up)g=0 Vg € Q" (5.1b)
Qpn

where the gradient is understood piecewise with respect to the triangulation.

By the inf-sup condition established in Lemma 4.4 and standard theory of mixed finite element
methods, problem (5.1) is well-posed.

THEOREM 5.1. There exists a unique solution (up,pp) € VP x Q" satisfying (5.1).

Next, we show that, despite the non-inclusion V- V* ¢ Q", the finite element method yields exactly
divergence—free velocity approximations.

LEMMA 5.2. Suppose uj, € V* satisfies (5.1b). Then V -uy, = 0 in Q.

Proof. For each T € T}, write up|r = Artr, with ar € V. Define q to be the piecewise function

1. o o
qlr(z) = ﬁ(v car)(2),  x=Fp(@), T=G(T)

for all T € Tp,. Well-known properties of the Piola transform show

det(DFp o F;)

V-ou VT € Ty,
o7 ( hlT) h

qlr =

and therefore
S ol [ et = X [ Vo= [ w0
et det(DFro F, T, o,

Thus we conclude ¢ € Q" by Theorem 4.2.
Next, by (5.1b),

1 Vedar oo
0= V Uh q= / V- uh = (V . UT) det(DFT)
P> & 3 Jn P

T L2 97 / v

TE‘.T

Thus, V - @7 = 0 for all T € Ty, and therefore V - uj, = 0. O
5.1. Convergence Analysis. Define the subspace of divergence—free functions:
hi={veV": V.o=0}¢ X :={ve H}(Q): V-v=0}.

Then by Lemma 5.2 and (5.1), the discrete velocity solution is uniquely determined by the problem: Find
up, € X" such that

ap(up, v) ::/ vVuy : Vo = fn-v Vo e X"
Qh Qh

12



Standard theory of non—conforming and mixed finite element methods (e.g., [8]), along with Lemma 3.5
and Theorem 4.4 yields

an(up — u,v)

VIV = un)lzae, < it v V(= w)lza, +sup (5.2)

vexm oy [IVllLz,)
an(up —u,v
<C inf v|V(u- ), + sup o ZWY)
weVh veXm\{0} ||V'U||L2(Qh)
an(up, — u,v
< Ch?v|u|lgs) +  sup anl — 1, 0)
vexm oy IVPllLzan)

Recalling —vAu + Vp = f in R? and X" C Hy(div; ), we have

an(up — u,v) = f'v—ah(u,v>+/ (Fn— f) v

Qh, Q h

:_/ AW+ vp.v—ah<u7v)+/ (Fa—F) v
Qn Qy,

Qp,

:—/ VAu~v—ah(u,v)+/ (fo—f)-v Vo € X",
Qh Qh

We then integrate by parts to conclude

/QhVAu~vah(u,v)1/Z/Vu2[’U]7

I €
ecéy

where we used v is zero on 0.
Recall 8,{’6 is the set of edges in ! that have one endpoint on 9€2j,. Then by properties of V", there

holds [v]|. =0 for all e € 8{1\8,{’8, in particular,

ap(up, —u,v) =v Z /Vu:[v]Jr/Q (fn—1oF) v (5.3)

6682’0
LEMMA 5.3. There holds

v Z Vu : [v] < Ol/h2||u||H3(Q)||vaL2(Qh) Yo e VI

e
eESiV’a

Proof. For each e € 82’8, let G, € R%2%2 be the average of Vu on e. Standard interpolation estimates
show

he—1||v'u, — GeH%Q(e) g C|u|H2(T) he = diam(e), (54)

for T satisfying e C T'. Moreover, we clearly have |G| < Clu|w1.(q)-
Let Epv € H}(),) satisfy (4.1). Then [Eyv]|. =0 for all e € &/, and so,

I/Z Vu:[v]zz/z (/E(Vu—Ge):[v—Ehv]—i—/eGe:[v]) (5.5)

e
ecer? ecel?

=1 + L.
To bound I; we use the Cauchy—Schwarz inequality, (5.4), a trace inequality, and Lemma 4.5:

3 1/2 1/2
L<v( Y Ve Gellay) (Y kel — Eavlla) (5.6)
eEE}IL’B 668,11‘6
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< Cvh?|ul g2 (o) VY 12 (0)-

To bound I3, we apply Lemma 4.6.

L=v Y Ge:/[v] (5.7)
668;8 ¢
L[v]‘2>1/2

1/2
SCV|U|W1,<>¢(Q)( Z he) ( Z h;l
5/2 1/2 5/2
< Cvh HUHW“”(Q)( > he) IVllz2,) < Cvh> = |[ul g @)Vl L2 @,)-

ece? ecer?
668#8

Combining (5.5)—(5.7) yields the desired result. 0

Finally, we combine (5.2), (5.3), Lemma 5.3 to obtain the main result of the section.
THEOREM 5.4. There holds

IV(w —wn)ll 2@, < C(A?|ullms@) + v = falx;:), (5.8)

where

O (2

vex\for  IIVYllz2(a,)

Therefore if, for example, fy, is the nodal quadratic interpolant of f, and if f is sufficiently smooth, there
holds

IV (w —un)ll 2@,y < C(RP[[ullgs@) + v B2 £llas )
The pressure approximation satisfies

lp = prllz2(n) < CWIIV(w —wn)lL2(a,) + vh?||ul rao) + nf, Ip = a2 + I1f = Full2n))-
(5.9)

Proof. The error estimate of the velocity follows from (5.2), (5.3), and Lemma 5.3; thus, it remains
to prove (5.9).

For any ¢ € Q" and v € V" we have by (5.1) and Lemma 5.3,
/ (V-vh)(ph—q)=ah(uh,v)—/ (Vev)g— [ fnev
Qp Qp Qp

:ah(uh—u,v)—/Q (V-v)(q—p)—/Q (fn—F) v+v Z Vu : [v]

eegﬁa €
< CWIIV(u —un)| L2, + vh*[ull s + Ip = qll22@0)) IVl 2@,) + 1 = Fall 2 [0l 22 @.)-
Using the estimate (4.1) and the Poincare inequality, we have
[vllz2n) < 1ErvllLz(q,) + v — Exvl2(e,) < ClIVYll12(0,)-
Therefore
| (@0~ a) < COIV = w0y + vl
h

+ o = dllezn) + 1 = Fullzz@n) VYl L20)-
14



We then use the inf-sup condition given in Theorem 4.4 to obtain

Ja, (V-v)(pn —q)
Clon = allz@n) < sup =
vevigoy  IIVllzz(a,)

< C(v|IV(w —up)llrz,) + vh*|ullas@) + 1P = dllz2@n) + 11 = Fullzz@n))-

Applying the triangle inequality and taking the infimum over ¢ € Q", we obtain (5.9). O

6. A Pressure Robust Scheme. In this section, we construct a computable approximation f;, such
that the term v—1|f — Jn|x; appearing in estimate (5.8) is independent of the viscosity, in particular,
such that the method is pressure robust. Essentially, this construction is done by applying a commuting
operator to the function f|g. In particular, we adopt and modify the recent results in [12] for Scott—
Vogelius elements to construct commuting operators on meshes with curved boundary.

To discuss the main objections of this section further, we define the rot operator

and the corresponding Hilbert space
H (rot; Q) := {v € L*(Qy) : rotv € L*(Q,)}.

The main goal of this section is to prove the following result.
THEOREM 6.1. There exists finite element spaces W, C H (rot;Qy,), S, C HL(Q) with respect to
the partition Ty, and operators Iy, : H?(Q) — W}, and Ilx : H3(Q) — X, such that

Iy Vp = Vgp Vp € H3(Q) (61)
Moreover, there holds for any f € H3(S),

1f = Iw fll 20, < CR?(| Fllma), (6.2)

where f in the left-hand side of the above inequality is an H® extension of f|q.
COROLLARY 6.2. Let (up,pn) € Vi X Qn be the solution of the finite element method (5.1) with
fn=ILw f. Then there holds

IV (u = un)llz2(0,) < Ch?Jullms (o)

Proof. In light of estimate (5.8), it suffices to show [f — fu|x; < Cvh?||ul gs ).
Recall that the extension of f|q is given by f = —vAwu + Vp. Therefore by Theorem 6.1, for all
v e Xy,

/ (f—fh)-v:/ (—v(Au — Ty Au) 4+ (Vp — Oy Vp)) - v
Qn Qp
= /Q (—v(Au —TIywAu) + V(p —IIgp)) - v
= —1// (Au — Iy Au) - v,
Qp

where we used that V- v =0 and v - n|sq, = 0. Consequently,

|f — fh|X; S OI/HAU — HwA’u,HLQ(Qh) S ChZI/HA’u,HH?,(Q) S C’uh2Hu||H5(Q).
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6.1. Proof of Theorem 6.1: Preliminaries. As a first step of the proof of Theorem 6.1, we
“rotate” the space V(T).
DEFINITION 6.3. We define

W(T)={ve HYT): v(z) = (DFp(&)) To(z), 3o € V},
Wo(T) = W(T) N Hy(T).

REMARK 6.4. Define
0 -1
=1 0)

s0 that rot(Sv) = V - v, and SDFrS—! = det(DFr)(DFr)~T. Therefore, if v(z) = (DFr(2))"T9(2),

we have

ot v(z) = rot(SDFT(A)S 1}7(:@)) o (DFT(QA?)S_lilAJ(i‘)) _ ot f)(fc)A .
det(DFr (%)) det(DFr(z)) det(DFr(z))

REMARK 6.5. Note that rot : V. — Q is a surjection. Indeed, let § € Q. Then there exists o € V.
such that V - o = G. Then set w = Sv so that § = V- =rotw. Similar arguments show ot : Vo — Qo
is a bijection.

LEMMA 6.6. Let {&;}2_;,{mi}?_, C Ny be, respectively, the vertices and edge midpoints ofT
Set a; = Fr(&;) and m; = Fr(m;) to be the corresponding points on T. Any v € W (T) is uniquely
determined by the values

wlon), (won)(m) =123, (6.30)
/v -t Y edges of T, (6.3b)
/T (rotw)q Vg € Qo(T). (6.3¢)

Proof. Write v(z) = DF; "0 for some © € V, and suppose that v vanishes on the DOFs. We show
v =0.

We clearly have ©(d;) = 0 for i = 1,2,3, and by using the relation ¢ = DFypt/|DFrt| [19], and a
change of variables, we have

(DF;79) - (DFyt .
of/ tf/ Tllf)’F i r )|det(DFT)||DF*Tﬁ|:/ﬁ~t,
é T é

where we used the identity | det(DFr)||DF~Tf| = |DFrt|. Thus, we conclude ¥ - £|,7 = 0.
Similarly, using the relation n = DF "n/|DF; "n|, we compute
®- (DF;'DF;™R)
DR

0=(v-n)(m;) = (m;).

Because (DF;'DF;Th) - n = |[DF;™n|? # 0, we conclude (DF;'DF;Th) is not tangent to ¢. Thus,

since 9 - £|,7 = 0, we get 0|,z = 0, ie. , v e V.
Now let § € Qq, and set g(x) = §(&) so that ¢ € Qo(T). Using rotv = rot & /det(DFr), we have by

a change of variables,
/(rot v)q = / (rot 9)q.
T T
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Taking ¢ = rot ®, we conclude rot ® = 0. This implies © = 0, and therefore v = 0. O
Next, we define the local Clough-Tocher space on the reference element

S ={6¢€ HXT): 6| € P3(K) VK € T*}.
It is known that the dimension of 3 is 12 [10], and any & € S is uniquely determined by the valuess
Vé(dy), 6(&), (V6 -n)(m;)  i=1,2,3. (6.4)
We define the Clough—Tocher space on T' via composition
S(T) = {o: o(z)=6(&), 36 € £}.

It is easy to see X(T') C H?(T). In the following lemma, we extend the above DOFs to (7).
LEMMA 6.7. A function o € X(T) is uniquely determined by the values

Vo(ay), o(a;), (Vo -n)(m;) 1=1,2,3. (6.5a)

Proof. Write o () = 6(2) with 6 € 3. It suffices to show that if o vanishes at the above DOFs, then
¢ vanishes on (6.4).
If o vanishes at the above DOFs, then clearly

Vo(a) =0, 5(6:) =0 i=1,2,3.

Q»

This implies &|,; = 0, and therefore V& - [, = 0.
Next, by the chain rule and the relation n = DF TR /|DF~Tn|,

1

0= (Vo - n)(ms) = (m
T

V6 - (DF;lngTﬁ,)) (1723).

Thus, we have (V& - (DF;'DF;Th)) ;) = 0. Since
((DE;'DE;™R) - ) (i) = [(DFra)(i)[* # 0,

the vector (DFy ' DF; TR)(1;) is not tangent to é. Because the tangental derivative of & vanishes at 7,
we conclude Vé(ri;) = 0. Thus, é =0 and o = 0. O

REMARK 6.8. Note that if o € S(T) with o(z) = 6(&), then Vo(z) = (DFp(2))"TVé(z). We
conclude Vo € W (T').

As a next step, we use the DOFs stated in Lemmas 6.6-6.7 to construct commuting operators with
properties stated in Theorem 6.1. Note that an added difficulty of the construction is that the operators
are defined for functions with domain €2, but map to functions with domain ;. To mitigate this
mismatch, we employ the mapping G : Q;, — Q given in Section 2.

For each T' € T}, and edge e in T}, we set

Tri=GGNT) CQ,  er:=G(Gy'(e) c

where we recall G, is the quadratic interpolant of G. That is, Tg is obtained by first mapping 7' to its
associated affine element 7' = G, *(T) € Tj,, and then mapping T to G(T) C Q. By properties of the
quadratic interpolant Gj, we have G(Gj,'(«;)) = a; and G(G},'(m;)) = m; for all vertices and edge
midpoints of T

Via Lemmas 6.6-6.7 we introduce the operator IT}, : H*(Tr) — W (T) uniquely determined by the
conditions

(I v)(a;) = v() i=1,2,3, (6.6a)
17



(I v - n)(my) = (v-n)(m;) i=1,2,3, (6.6b)

/(HYV;/’U) t= / v-te, v edges of T, (6.6¢)

e €R

/ (rot T, v)q = / (rotv)g Vg€ Qo(T), (6.6d)
T TNTr

where n is the outward unit normal with respect to e C 07, t is the unit tangent of e C 97, and t.,, is
the unit tangent of ep C dTk. We also set I1L : H3(Ts) — S(T') uniquely determined by

MLo(a;) = o(e), V(IIso)(a;) = Vo(a), i=1,2,3, (6.7a)
V(ITLo)(m;) - n(m;) = Vo (m,) - n(m;) i=1,2,3. (6.7b)
We define the global spaces
Wh ={v e H(rot;Q,) : v|r € W(T) VT € T, v is continuous on (6.3)},
Y= {o e H () : o|r € 2(T) VT € T, o is continuous on (6.5)},
and the operators Iy, : H2(Q2) — W TIy : H3(Q) — X by
My v|r = T, Oso|r = Lo, VT € Ty,.

We now prove that these operators satisfy (6.1)—(6.2).

6.2. Proof of (6.1). For given p € H3(2), set p = Iy Vp — VlIsp € W(T). We wish to show
p = 0. This this end, it suffices to show p vanishes at the DOFs in Lemma 6.6 for each T € T},.
First, we consider the interior DOFs of W (T'). Using (6.6d) and the identity rot Vp = 0, we have

/ (rot p)g = / (vot (Ll Vp))q = / (tot (Vp))g =0 Vg € Qo(T).
T T TNTR

Let a; be a vertex of T. We then have by (6.6a) and (6.7a),
p(ai) = Iy Vp(a;) — VIIgp(a;) = 0.

Next, let m; be an edge midpoint of T' and let n be the outward unit normal at m;. Then by (6.6b) and
(6.7b),

Finally, let e C 0T be an edge of T with endpoints as and «7. Recalling that er also has endpoints
as and a7, we use (6.7a) and (6.6¢) to obtain

/p~t:/(HWVp—VH2p)-t:/ Vp~teR—/(VH2p)-t
e e €R

= p(ag) — p(ar) — ((Mgp)(az) — (Msp)(a1)) = 0.
Thus, p vanishes at all the DOFs in Lemma 6.6, and we conclude p = 0.

6.3. Proof of (6.2). We break up the proof of estimate (6.2) into three parts.
(1) Weextend f to R? such that || f[| g3y < C|| ] #3() With this extension, we define Iy f € W (T')
uniquely by the conditions

(T £)(0) = Flow), (Twf-n)mi) = (F-m)(m;)  i=123,

/(IWf)'t:/f't V edges of T,

/ (vot Iy f)g = / (vot £)g Vg € Qu(T).
T T
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(ii) We now estimate ||f — Iw f||z2(1). For notational convenience, we write v = Iw f, and set
v(z) = Rr(2)0(2),  f(z) = Rr(2) (),
with Rp(Z) = (DFp(Z))~T. We then have
0(a;) = F(@r). (o (REn)(my) = (£ - (RIn))(in))  i=1,2.3, (6.8)

We also have, by a change of variables (cf. proof of Lemma 6.6)

/vtf/vt*/ft*/ft. (6.9)

Next, for ¢ € Qo(T), write ¢(z) = §(2) with § € Q. We then have

/(rétﬁ)q = / (det(DFr)rotv) o Fpg = / rotvg = / rotfq = / rot £q. (6.10)
T T T T T
It follows from (6.8)—(6.10) and a slight generalization of the Bramble-Hilbert lemma that

||f - @\|L2(T) < C|f‘H3(T)' (6.11)

Therefore by (2.1), Lemma 2.5 and (6.11) (and noting R;' = DFJ.),

If = Iw fll2(r) < Chr||Rr(f - O 12 ) (6.12)
< O\fl sy = CIR7 Rr fl s oy
< C(\\REI||Lw(T)|RTf\H3(T) + |R:?1|W1,w(f)|RTf|H2(T))
< Chi[|f || s (-
(iii) We now estimate (ILy f — Iw f)|r € W(T'). Set w =Ilw f — Iw f € W(T'). Then

(w-n)(m 1=1,2,3,

/w t_/fteR /ft V edges of T,
| orwya= [ ot ot vae Q)

Write w(z) = Ry (2)w(&). By equivalence of norms, we have

3

612y O (D2 (ba0) 2 + (i) )+ sup ]/ wew) ) (613)
i=1 4€Qo
H‘ZHLQ(T)*l

c(iw(mi)l2+ sup \/T<f5t‘f’)@\2)

G€Qo
||¢jHL2(7:):1
Next we use the algebraic identity
b() = —— (@) - B)act — ((w(n + 6.14
W) = 7 3 ((w(ms)) - Bl — (w(ri)) - )8 (6.14)
for any linearly independent vectors a, 3 € R%2. Here, a* = Sa. We take a = —£(7;) and

B = RY.(rh;)n(m;), so that

la® - B| = |St(m;) - (R () (my))| = |(Rr ()7 (1)) - n(mi)| = [(Re) (i)
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where we used the relation n = Rrn/|Rrn| in the last equality. We use (6.14) and the identity
w(m;) - B = (w-n)(m;) =0 to conclude

9070 = a0 ) () SRE (o) | <

where C' > 0 is the condition number of Ry (which is independent of h).
We use this estimate in (6.13) to conclude

3
112, ) < C( 3100 D))+ sup \/mtwq\
=1 qGQo
”qHLZ(T)*l

Using Simpson’s rule, noting that w vanishes on the vertices of 7', we obtain

ipn(T)<C' Z ‘/w t‘ sup ‘/ (rot w)g

ecoT

(6.15)

”(I”L2(T)—1

We now estimate the two terms on the right-hand side of (6.15) separately.
First by a change of variables, we have

/éﬁz-f:/ew-tz/e f-teR—/ef-t.

Set © := G}, 0 G! so that e = O(eg) and T = O(Tg). There holds [17, Proposition 3]
Det.,
e, |

erl

0(@) — 2 = O(h3), D6 — L] = O(h3), H(O(x)) = veTh,  (6.16)

and therefore by a change of variables,

[re=] |<D@>teR<f~t>o®=/eR<foe>-<D@tER>.

€R

Thus,
/w~£=/ (f ten — (F0O)- (DOL.,))
:/ (F = (£00)) ten — (F0O) - (DO, — tey)),

er

and therefore by (6.16), Taylor’s Theorem, and a Sobolev embedding,

| < O (hplflwrge) + B[ Fll Lo @2)) < ORIl s (0)- (6.17)

Next we let ¢ € Qo with HQHH(T) = 1 and compute
[wow)i= [ rotwg= [ wotfia- [Gorpa= [ worpa
T T TNTR T T\Tr
where q € Qo(T) with ¢(z) = (). Using ||ql|z2(r) < Chrl|qll 23y < Chr, we obtain

/T(ratﬁf)d < |T\T&r||rot fllpo(w2)llall 2 (r) < CRT|I flas@llallzzr) < ChZ || fllms).  (6.18)
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Applying estimates (6.17)—(6.18) to (6.15) yields

]| gy 7y < Ch3 | fllms o)
Therefore
1T £ — T Fllcry = w20y < Chrl| el oy < Cllll o < CHF s,
Finally by (6.12) and the triangle inequality,

If — T £y < Ch3| £l s )

Summing over T' € T, yields the estimate (6.2):

1/2 1/2
1f =T fllzz@n < C( 30 W51 Bsw) < CRAIFIms (X2 #3) " < ChIf lscon.

TeT TeT

7. Numerical Experiments. In this section we perform a simple set of numerical experiments and
compare the results with the theory established in the previous section. We let Q = B;(0) C R? be the
unit ball, and take the data such that the exact solution is given by

(22 + 23 — 1)(82%x9 + 2% + 523 — 1) 9 o 1
We compute the finite element method (5.1), taking the source approximation f;, to be the quadratic
(nodal) Lagrange interpolant of f, and the viscosity v = 107!. The errors for a decreasing sequence of
mesh parameters h are depicted in Figure 7.1-7.2. For comparison, we also plot the errors of the analogous
Scott-Vogelius finite element method using affine approximations, i.e., method (5.1) with V* x Q" replaced
by V" x Q". The Figure shows the asymptotic convergence rates

lw — sz, = O(R), [V (w—un)llr2@,) = O(h?), llp—pullr2.) = O(h?),

for the isoparametric approximations. These results agree with the theoretical results stated in Theorem

5.4. In contrast, the numerics indicate the solution of the affine approximation, denoted by (u®/7, pzf ! ) €

Vhox Q" satisfies the sub-optimal convergence rates
lu =i 2,y = O®), [V (w =)l o,y = OGBY), =3/ 2 g, = OB®).

We also solve the finite element method (5.1) but with isoparametric spaces defined via the usual
composition, i.e., with velocity-pressure pair (1.1). Numerical experiments indicate the method is stable
and converges with optimal order. However, as Figure 7.2 shows, the method is not divergence—free (nor
pressure robust).
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Appendix A. Proofs of Preliminary Results.

A.1. Proof of Lemma 2.3. Proof. For notational simplicity, we set §(&) = det(DFr(Z)). Using the
fact that DFp — det(DFr) is quadratic in two dimensions and the estimates (2.1), a simple calculation
shows | §|Wm,oo(7q) < Ch%fm. Consequently, by the quotient rule, for any multi-index a with |a| = m,

o1y 017 19/037 |- |97 1g/03" |
8:2“‘15 <C Z g™
IBO|+[BP) | 4--4[ B0 |=m
248D\ g 2+]80™] 3m
< C (hT )A (hT ) < C AhT < Chm_2
|gm+1| |gm+1| T >

[BOHIBE) |4 4[BOm) |=m

where we used (2.1) in the last inequality.
We then use the product rule and (2.1) to find, for any 7,5 € {1,2} and multi-index « with |a| =

e
<C > |0%DFr);;/0"%|07g " jo" &
18I+ |=m
<C Y (YT < onp
18I+ |=m

This establishes the first inequality in (2.3).

Next, we use the identity A.' = det(DFr)(DFr)~' = adj(DFr), the adjugate matrix of DFr.
Because the entries of DFr and adj(DFr) are the same up to permutation and sign in two dimensions,
we have by (2.1),

|A 1|Wmoo(T) |DFT|Wm+1oo( )S

Ch%frm
0

d

A.2. Proof of Lemma 2.4. Proof. Let t be the unit tangent vector of é obtained by rotating 7
90 degrees clockwise. Then a calculation shows

)
t

det(DFr(2))(DFr(2)) Tn = <_(EfFFTJEg )32)

Because Fr restricted to é is affine, (DFp(&)t) is constant on é. This proves the lemma. O
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