
DIVERGENCE–FREE SCOTT–VOGELIUS ELEMENTS ON CURVED DOMAINS

MICHAEL NEILAN∗ AND M. BARIS OTUS†

Abstract. We construct and analyze an isoparametric finite element pair for the Stokes problem in two dimensions.
The pair is defined by mapping the Scott-Vogelius finite element space via a Piola transform. The velocity space has the
same degrees of freedom as the quadratic Lagrange finite element space, and therefore, the proposed spaces reduce to the
Scott-Vogelius pair in the interior of the domain. We prove that the resulting method converges with optimal order, is
divergence–free, and is pressure robust. Numerical examples are provided which support the theoretical results.

1. Introduction. Isoparametric finite element methods are a well-known and extensively studied
technique to approximate PDEs on smooth domains. Such schemes use polynomial diffeomorphisms
between reference and physical elements with degree dictated by the approximation properties of the
underlying finite element space. The use of such mappings yield curved elements on the boundary that,
while still do not conform exactly to the physical domain, generally lead to higher–order approximations
and mitigate the geometric error. In particular, the resulting geometric error is generally of the same
order as the discretization error, and thus, the resulting methods are potentially robust with respect to
rates of convergence. The implementation and analysis of isoparametric elements for second–order, scalar
elliptic problems are well–established, and classical theories exist [23, 9, 17, 8, 20]. On the other hand,
isoparametric elements for mixed problems, in particular the Stokes problem, is less developed [2, 21, 11].

In this paper, we adopt and expand the isoparametric framework to construct a divergence–free
method for incompressible flow, i.e., schemes that yield discrete velocity solutions that are divergence–
free pointwise. The scheme is also pressure-robust, i.e., the gradient part of the source function only
influences the discrete pressure solution. This feature allows a decoupling of errors between the velocity
and pressure, which is beneficial for situations with fluid flow with large pressure gradient and/or small
viscosity. Such divergence-free and pressure-robust finite element schemes seem to be gaining in popularity
[14, 22, 13, 1, 18, 15, 3], although, as far as we are aware, the methods have only been constructed
on polytopal domains. Thus, divergence–free methods are currently limited to second–order accuracy
(formally) on general domains with smooth boundary.

The basis of our construction is the lowest-order two-dimensional Scott-Vogelius pair defined on
Clough-Tocher refinements, i.e., simplicial triangulations obtained by connecting the vertices of each tri-
angle in a given mesh to its barycenter. In this case, the velocity space is the space of continuous, piecewise
quadratic polynomials, and the pressure space is the space of (discontinuous) piecewise linear polynomi-
als. It is known, on affine Clough-Tocher meshes, this pair is stable, and the corresponding scheme is
divergence-free and pressure-robust. However, a direct application of the isoparametric paradigm to this
pair leads to a method with neither of these desirable properties. Indeed, the Scott-Vogelius pair, defined
by standard isoparametric mappings, is given by

V̆h = {v ∈H1
0 (Ωh) : v|K = v̂ ◦ F−1

K , ∃v̂ ∈ P2(T̂ ) ∀K ∈ Tcth }, (1.1a)

Q̆h = {q ∈ L2
0(Ωh) : q|K = q̂ ◦ F−1

K , ∃q̂ ∈ P1(T̂ ) ∀K ∈ Tcth }, (1.1b)

where T̂ is a reference triangle, Pk(T̂ ) denotes the space of polynomials of degree ≤ k on T̂ , FK : T̂ → K
is a quadratic diffeomorphism, and Tcth is the Clough-Tocher refinement of a simplicial triangulation Th

(cf. Section 2 for a detailed explanation of the notation). Applying the chain rule shows div vh 6∈ Q̆h for

general vh ∈ V̆h (unless FK is affine ∀K ∈ Th), and simple calculations show the exact enforcement of

the divergence–free constraint and the pressure–robustness of the scheme using V̆h× Q̆h is lost on curved
elements.

Our methodology to construct divergence–free and pressure robust schemes consists of two main ideas.
First, instead of composition, we use a divergence–preserving transformation to recover the divergence–
free property, i.e., we use a Piola transform in the definition of the local velocity space instead of compo-
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sition. Combining the local spaces defined through this mapping with the Lagrange degrees of freedom
yields a global non-conforming (velocity) finite element space that is H1-conforming in the interior of the
domain and H(div)-conforming globally. We also show that the resulting space is “weakly continuous,”
and therefore suitable for second-order elliptic problems.

The second main idea in our construction is to treat the Scott-Vogelius pair as a macro-element,
rather than a finite element space defined on a refined (Clough-Tocher) triangulation. In particular,
local spaces are defined by mapping a macro reference local space, and therefore the corresponding finite
element code does not “see” the global Clough-Tocher triangulation. This modification is motivated by
the stability analysis of the Scott-Vogelius pair, which is based on Stenberg’s macro-element technique
[7]. Adopting this technique to the isoparametric setting, we show that the resulting pair satisfies the
inf-sup condition, and therefore the finite element method for the Stokes problem is well-posed.

The rest of the paper is organized as follows. In the next section, we set the notation, state the
properties of the quadratic diffeomorphisms, and provide some preliminary results. In Section 3, we
define the local spaces of the velocity-pressure pair and provide a unisolvent set of degrees of freedom.
Here, we also prove a local inf-sup stability result. Section 4 states the global spaces and proves a
global inf-sup stability result. We also show in this section that functions in the discrete velocity space
enjoy weak continuity properties. In Section 5, we state the finite element method and show that the
method is optimally convergent. Section 6 gives a pressure-robust scheme through the use of commuting
projections, and Section 7 provides numerical experiments which confirm the theoretical results. Some
auxiliary results are given in Appendix A.

2. Preliminaries. We assume that the domain Ω ⊂ R2 is sufficiently smooth, and the boundary
∂Ω is given by a finite number of local charts. The construction of the mesh with curved boundaries
follows the standard isoparametric framework in [17, 8, 9, 5]. In particular, we start with a shape-regular
and affine triangulation T̃h, with mesh size sufficiently small, such that the boundary vertices of T̃h lie on

∂Ω, and Ω̃h := int
(
∪T̃∈T̃h

T̃
)

is an O(h2) polygonal approximation to Ω. Here, h = maxT̃∈T̃h
diam(T̃ ).

We assume each T̃ ∈ T̃h has at most two boundary vertices.

Remark 2.1. For the continuation of the paper, we use C (with or without subscript) to denote a
generic constant that is independent of any mesh size parameter. For a regular mapping H : R2 → R2,
we denote its Jacobian by DH.

We let G : Ω̃h → Ω be a bijective map with ‖G‖W 1,∞(Ω̃h) ≤ C such that such that G|T̃ (x) = x at

all vertices of T̃ , in particular, G is the identity map for any triangle T̃ ∈ T̃h with three interior vertices.
We denote by Gh the piecewise quadratic nodal interpolant of G satisfying ‖DGh‖W 1,∞(T̃ ) ≤ C and

‖DG−1
h ‖W 1,∞(T̃ ) ≤ C for all T̃ ∈ T̃h. We then set

Th = {Gh(T̃ ) : T̃ ∈ T̃h}, Ωh := int
(
∪T∈Th

T
)

to be the isoparametric triangulation and computational domain, respectively.

Denote by T̂ the reference triangle with vertices (1, 0), (0, 1), and (0, 0). For T̃ ∈ T̃h, we denote
by FT̃ : T̂ → T̃ an affine mapping satisfying |FT̃ |W 1,∞(T̂ ) ≤ ChT and |F−1

T̃
|W 1,∞(T̃ ) ≤ Ch−1

T , where

hT = diam(T̃ ). We define the quadratic diffeomorphism FT : T̂ → T as FT = Gh ◦ FT̃ which satisfies

|FT |Wm,∞(T̂ ) ≤ Ch
m
T 0 ≤ m ≤ 2, |F−1

T |Wm,∞(T ) ≤ Ch−mT 0 ≤ m ≤ 3, (2.1)

c1h
2
T ≤ det(DFT ) ≤ c2h2

T ,

where hT = diam(G−1
h (T )). Note the mappings FT and FT̃ (with T = Gh(T̃ )) are oriented in the same

way so that FT = FT̃ at the vertices of T̂ . In particular, the mappings coincide if G|T̃ is the identity

operator. Furthermore, if e ⊂ ∂T is a straight edge with e = FT (ê) and ê ⊂ ∂T̂ , then FT |ê is affine. If
T ∈ Th has all straight edges, then FT is affine and T = Gh(T̃ ) = T̃ . The conditions on FT and the
shape-regularity of T̃h imply |T |/|G−1

h (T )| ≤ C and |G−1
h (T )|/|T | ≤ C for all T ∈ Th.
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Figure 2.1. Left: Clough-Tocher split of the refer-
ence triangle T̂ . Right: The corresponding curved and
straight macro elements induced by the mappings FT

and FT̃ .

Denote by T̂ ct = {K̂i}3i=1 the Clough–Tocher tri-
angulation of the reference triangle, obtained by con-
necting the vertices of T̂ with its barycenter. We then
define the analogous local triangulations on T̃ ∈ T̃h and
T ∈ Th, respectively, (cf. Figure 2.1)

T̃ ct = {FT̃ (K̂) : K̂ ∈ T̂ ct}, T ct = {FT (K̂) : K̂ ∈ T̂ ct}.

The properties of FT show |T | ≤ C|K| for all K ∈ T ct.
We denote by EIh the interior (straight) edges of

Th, and by E
I,∂
h ⊂ EIh the set of interior edges that

have one endpoint on ∂Ωh, i.e., the set of interior edges
that “touch” the computational boundary. We use the
generic n to denote the outward unit normal of a do-
main which is clear from its context. The tangent vector
t is obtained by rotating n 90 degrees counterclockwise.

Remark 2.2.
1. The globally refined triangulations are given by

T̃cth = {K̃ : K̃ ∈ T̃ ct, ∃T̃ ∈ T̃h}, Tcth = {K : K ∈ T ct, ∃T ∈ Th}.

However, we emphasize that the construction of the Clough-Tocher isoparametric mesh Tcth is

constructed by mapping the reference macro element T̂ ct. In particular, the finite element spaces,
given in subsequent sections, are defined on Th (not Tcth ); in fact, the corresponding finite element
code does not “see” the refined triangulation Tcth .

2. Note that this construction leads to curved interior edges in Tcth , as interior edges of T ct may be
curved.

The proofs of the following two lemmas are given in Appendix A.
Lemma 2.3. For each T ∈ Th, define the matrix valued function AT : T̂ → R2×2 as

AT (x̂) =
DFT (x̂)

det(DFT (x̂))
. (2.2)

Then there holds

|AT |Wm,∞(T̂ ) ≤ Ch
m−1
T , and |A−1

T |Wm,∞(T̂ ) ≤
{
Ch1+m

T m = 0, 1
0 m ≥ 2

(2.3)

Lemma 2.4. Let T̃ ∈ T̃h and T ∈ Th with T = Gh(T̃ ). Let ê be an edge of T̂ with outward unit
normal n̂, and assume that the corresponding edge e = FT (ê) on T is straight. Then

det(DFT (x̂))(DFT (x̂))−ᵀn̂ = det(DFT̃ (x̂))(DFT̃ (x̂))−ᵀn̂

is constant on ê.
We also need a scaling result which is found in [5].
Lemma 2.5. Suppose that w(x) = ŵ(x̂) for sufficiently smooth w ∈ Wm,p(T ). Then for any

K ∈ T ct,

|w|Wm,p(K) ≤ Ch
2/p−m
T

m∑
r=0

h
2(m−r)
T |ŵ|W r,p(K̂),

|ŵ|Wm,p(K̂) ≤ Ch
m−2/p
T

m∑
r=0

|w|W r,p(K),

with K̂ = F−1
T (K).
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3. Local Spaces. Recall T̂ ⊂ R2 is the reference triangle, and T̂ ct = {K̂1, K̂2, K̂3} is the Clough–
Tocher triangulation, obtained by connecting the vertices of T̂ with its barycenter. We define the poly-
nomial spaces on T̂ without boundary conditions:

V̂ = {v̂ ∈H1(T̂ ) : v̂|K̂ ∈ P2(K̂) ∀K̂ ∈ T̂ ct}, Q̂ = {q̂ ∈ L2(T̂ ) : q̂|K̂ ∈ P1(K̂) ∀K̂ ∈ T̂ ct},

where Pk(S) is the space of scalar polynomials of degree ≤ k with domain S, and Pk(S) = [Pk(S)]2.
For an affine triangle T̃ ∈ T̃h in the polygonal mesh, we define the spaces via composition

Ṽ (T̃ ) = {ṽ ∈H1(T̃ ) : ṽ(x̃) = v̂(x̂), ∃v̂ ∈ V̂ }, Q̃(T̃ ) = {q̃ ∈ L2(T̃ ) : q̃(x̃) = q̂(x̂), ∃q̂ ∈ Q̂},

where x̃ = FT̃ (x̂). Thus, Ṽ (T̃ ) is the local, quadratic Lagrange finite element space with respect to T̃ ct,

and Q̃(T̃ ) is the space of (discontinuous) piecewise linear polynomials with respect to T̃ ct. We also define
the analogous spaces with boundary conditions

V̂0 = V̂ ∩H1
0 (T̂ ), Q̂0 = Q̂ ∩ L2

0(T̂ ),

Ṽ0(T̃ ) = Ṽ (T̃ ) ∩H1
0 (T̃ ), Q̃0(T̃ ) = Q̃(T̃ ) ∩ L2

0(T̃ ).

For T ∈ Th, possibly with curved boundary, we define the spaces with the aid of the Piola transform

V (T ) = {v ∈H1(T ) : v(x) = AT (x̂)v̂(x̂), ∃v̂ ∈ V̂ }, V0(T ) = V (T ) ∩H1
0 (T ),

Q(T ) = {q ∈ L2(T ) : q(x) = q̂(x̂), ∃q̂ ∈ Q̂}, Q0(T ) = {q ∈ L2(T ) : q(x) = q̂(x̂), ∃q̂ ∈ Q̂0}.

Here, x = FT (x̂) and we recall AT (x̂) = DFT (x̂)/det(DFT (x̂)). If FT is affine, then V (T ) = Ṽ (T̃ )
and Q(T ) = Q̃(T̃ ); otherwise, both V (T ) and Q(T ) are not necessarily piecewise polynomial spaces.
Moreover, for v ∈ V (T ) and for a straight edge e ⊂ ∂T , the restriction of v to e is not necessarily a
polynomial, even though F−1

T is affine on e. Nonetheless, the next lemma shows the normal component
of v is a polynomial on straight edges.

Lemma 3.1. Let v ∈ V (T ), and suppose that e is a straight edge of ∂T with unit normal n. Then
v · n|e is a quadratic polynomial.

Proof. Write v(x) = AT (x̂)v̂(x̂) for some v̂ ∈ V̂ , and set ê = F−1
T (e) to be the corresponding edge

in ∂T̂ with outward unit normal n̂. We then have

v̂ · n̂ = (det(DFT )DF−1
T v) · n̂ = (det(DFT )DF−ᵀT n̂) · v.

By Lemma 2.4, (det(DFT )DF−ᵀT n̂) is a constant vector. Using the identity n = DF−ᵀn̂/|DF−ᵀn̂| [19],

we conclude (det(DFT )DF−ᵀT n̂) is a non-zero multiple of n. In particular v ·n is a non-zero multiple of
v̂ · n̂. Because FT |ê is affine and v̂ · n̂ is a quadratic polynomial on ê, we conclude v · n|e is a quadratic
polynomial on e.

Lemma 3.2. Suppose v = AT v̂ ∈ V (T ) for some v̂ ∈ V̂ . There holds ‖v‖H1(T ) ≤ Ch−1
T ‖v̂‖H1(T̂ ).

Proof. By a change of variables, the chain rule, Lemma 2.3, and Lemma 2.5, we have

‖v‖H1(T ) ≤ C(|AT v̂|H1(T̂ ) + hT ‖AT v̂‖L2(T̂ ))

≤ C(‖AT ‖L∞(T̂ )‖v̂‖H1(T̂ ) + ‖AT ‖W 1,∞(T̂ )‖v̂‖L2(T̂ )) ≤ Ch
−1
T ‖v̂‖H1(T̂ ).

3.1. Degrees of freedom for V (T ). The canonical (nodal) degrees of freedom (DOFs) of the
quadratic Lagrange finite element space on T ct are a given function’s values at the (four) vertices in
T ct, and its values at the (six) edge midpoints in T ct. Here, we show that these Lagrange DOFs form a
unisolvent set over V (T ).

Let NT̂ := {âi}10
i=1 denote the set of (four) vertices and (six) edge midpoints in T̂ ct. We let NT :=

{ai}10
i=1 and NT̃ := {ãi}10

i=1 be the corresponding sets on T ct and T̃ ct, respectively, with ai = FT (âi), and
ãi = FT̃ (âi).
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Lemma 3.3. A function v ∈ V (T ) is uniquely determined by the values v(a) for all a ∈ NT .
Proof. The number of DOFs given is 20 which matches in the dimension of V (T ). Thus, it suffices

to show that if v ∈ V (T ) vanishes on the DOFs, then v ≡ 0.

Write v(x) = AT (x̂)v̂(x̂) for some v̂ ∈ V̂ . We then have

0 = v(a) = AT (â)v̂(â) ∀a ∈ NT .

Because AT (â) is invertible, we conclude v̂(â) = 0 for all â ∈ NT̂ . Since v̂ is uniquely determined by
these values, we conclude v̂ ≡ 0, and therefore v ≡ 0.

Lemma 3.4. There holds, for all v ∈ V (T ),

‖v‖2H1(T ) ≤ C
∑
a∈NT

|v(a)|2.

Proof. Again, we write v(x) = AT (x̂)v̂(x̂) with AT (x̂) = DFT (x̂)/ det(DFT (x̂)) for some v̂ ∈ V̂ . By
equivalence of norms in a finite dimensional setting, and the estimate ‖A−1

T ‖L∞(T̂ ) ≤ ChT , we have

‖v̂‖2
H1(T̂ )

≤ C
∑
â∈NT̂

|v̂(â)|2 = C
∑
â∈NT̂

|A−1
T (â)AT (â)v̂(â)|2

≤ Ch2
T

∑
â∈NT̂

|AT (â)v̂(â)|2 = Ch2
T

∑
a∈NT

|v(a)|2.

Therefore by Lemma 3.2,

‖v‖2H1(T ) ≤ C‖AT v̂‖
2
H1(T̂ )

≤ C‖AT ‖2W 1,∞(T̂ )
‖v̂‖2

H1(T̂ )
≤ Ch−2

T ‖v̂‖
2
H1(T̂ )

≤ C
∑
a∈NT

|v(a)|2.

Lemma 3.5. For T ∈ Th, let IT : H3(T )→ V (T ) be uniquely determined by the conditions

(ITu)(a) = u(a) ∀a ∈ NT .

Then there holds

‖u− ITu‖Hm(T ) ≤ Ch3−m
T ‖u‖H3(T ) ∀u ∈H3(T ), m = 0, 1.

Proof. Let u ∈H3(T ), and for notational convenience, we set v = ITu.
Write

v(x) = (AT v̂)(x̂), u(x) = (AT û)(x̂)

with v̂ ∈ V̂ and û ∈H3(T̂ ). By definition of ITu and the nodal points, we find

(AT v̂)(â) = (AT û)(â) ∀â ∈ NT̂ .

Therefore, because AT is invertible, v̂(â) = û(â) for all â ∈ NT̂ , i.e., v̂ is the quadratic Lagrange nodal

interpolant of û with respect to the local triangulation T̂ ct. It then follows from standard interpolation
theory that

‖û− v̂‖Hm(T̂ ) ≤ C|û|H3(T̂ ).

Applying Lemmas 2.5 and 2.3 then yields

|u− v|Hm(T ) ≤ Ch1−m
T ‖AT (û− v̂)‖Hm(T̂ ) ≤ Ch

1−m
T ‖AT ‖Wm,∞(T̂ )‖û− v̂‖Hm(T̂ ) ≤ Ch

−m
T |û|H3(T̂ ).

Finally, we once again use Lemmas 2.3 and 2.5 to obtain

|û|H3(T̂ ) = |A−1
T AT û|H3(T̂ ) ≤ C

(
‖A−1

T ‖L∞(T̂ )|AT û|H3(T̂ ) + |A−1
T |W 1,∞(T̂ )|AT û|H2(T̂ )

)
≤ C

(
hT |AT û|H3(T̂ ) + h2

T |AT û|H2(T̂ )

)
≤ Ch3

T ‖u‖H3(T ).
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3.2. A connection between local finite element spaces. In this section, we explicitly identify a
correspondence between piecewise polynomials defined on the affine local triangulation T̃ ct and functions
on T ct with T = Gh(T̃ ). This connection will be used to prove global inf-sup stability in the subsequent
section.

Definition 3.6. Let T̃ ∈ T̃h and T ∈ Th with T = Gh(T̃ ).
1. We define the operator ΨT : Ṽ (T̃ )→ V (T ) uniquely by the conditions

(ΨT ṽ)(a) = ṽ(ã) ∀ã ∈ NT̃ , where a = Gh(ã).

2. We define the operator ΥT : Q̃(T̃ )→ Q(T ) as

(ΥT q̃)(x) = q̃(FT̃ (x̂)).

Theorem 3.7.
1. If FT is affine, then (ΨT ṽ)(x) = ṽ(x̃), in particular, ΨT is the identity operator.
2. If e ⊂ ∂T is a straight edge, so that e ⊂ ∂T̃ , then

(ΨT ṽ) · n|e = ṽ · n|e.

3. There holds ‖ΨT ṽ‖H1(T ) ≤ C‖ṽ‖H1(T̃ ).

Proof. For notational simplicity, we set v = ΨT ṽ ∈ V (T ).
1. If FT is affine, so thatDFT is constant, we have V (T ) = Ṽ (T̃ ). We then conclude that (ΨT ṽ) = ṽ

by Lemma 3.3.
2. Let e ⊂ ∂T be a straight edge with outward unit normal n, endpoints a1 and a2, and midpoint
a3. Then e ⊂ ∂T̃ and

(v · n)(a1) = (ṽ · n)(a1), (v · n)(a2) = (ṽ · n)(a2), (v · n)(a3) = (ṽ · n)(a3).

By Lemma 3.3, v ·n|e and ṽ ·n|e are both quadratic polynomials, and therefore, these conditions
imply v · n|e = ṽ · n|e.

3. Set ˆ̃v(x̂) = ṽ(x̃) with x̃ = FT̃ (x̂). Using Lemma 3.4 and a standard scaling argument, we have

‖v‖2H1(T ) ≤ C
∑
a∈NT

|v(a)|2 = C
∑
ã∈NT̃

|ṽ(ã)|2 = C
∑
â∈NT̂

|ˆ̃v(â)|2 ≤ C‖ˆ̃v‖2
H1(T̂ )

≤ C‖ṽ‖2
H1(T̃ )

.

3.3. Local Inf-sup stability. In this section, we derive an indirect local inf-sup stability result of
the pair V0(T ) × Q0(T ). As a first step, we use the stability of the analogous pair V̂0 × Q̂0 defined on
the reference triangle. The proof of the following lemma is found in, e.g., [1, 13].

Lemma 3.8. For any q̂ ∈ Q̂0, there exists v̂ ∈ V̂0 such that ∇̂ · v̂ = q̂ with the bound ‖v̂‖H1(T̂ ) ≤
C‖q̂‖L2(T̂ ).

Theorem 3.9. Given q ∈ Q0(T ), then there exists v ∈ V0(T ) such that

(∇ · v)(x) =
h2
T q(x)

det(DFT (F−1
T (x)))

, and ‖v‖H1(T ) ≤ C‖q‖L2(T ).

Proof. Let q ∈ Q0(T ). Then there exists q ∈ Q̂0 such that q(x) = q̂(x̂). Because h2
T q̂ ∈ Q̂0,

by Lemma 3.8, there exists v̂ ∈ V̂0 such that ∇̂ · v̂ = h2
T q̂ and ‖v̂‖H1(T̂ ) ≤ Ch2

T ‖q̂‖L2(T̂ ). Setting

v(x) = AT v̂ ∈ V0(T ), we compute

(∇ · v)(x) =
(∇̂ · v̂)(x̂)

det(DFT (x̂))
=

h2
T q̂(x̂)

det(DFT (x̂))
=

h2
T q(x)

det(DFT (F−1
T (x)))

.

Applying Lemma 3.2 and a change of variables yields

‖v‖H1(T ) ≤ Ch−1
T ‖v̂‖H1(T̂ ) ≤ ChT ‖q̂‖L2(T̂ ) ≤ C‖q‖L2(T ).
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4. The Global Spaces. Define the Scott–Vogelius pair with respect to the affine triangulation T̃h:

Ṽ h = {ṽ ∈H1
0 (Ω̃h) : ṽ|T̃ ∈ Ṽ (T̃ ), ∀T̃ ∈ T̃h}, Q̃h = {q̃ ∈ L2

0(Ω̃h) : q̃|T̃ ∈ Q̃(T̃ ), ∀T̃ ∈ T̃h}.

We construct the global spaces V h×Qh defined on Th using the spaces Ṽ h× Q̃h and with the aid of the
operators ΨT and ΥT given in Definition 3.6. To this end, we define Ψ and Υ to be the operators given
by

Ψ|T = ΨT , Υ|T = ΥT ∀T ∈ Th.

The global spaces, defined on the isoparametric mesh Th, are then given by

V h : = {v : v = Ψṽ, ∃ṽ ∈ Ṽ h}, Qh := {q : q = Υq̃, ∃q̃ ∈ Q̃h}.

Remark 4.1. It is easy to see that the space V h is equivalently defined as functions locally in V (T )
on each T ∈ Th, are continuous on the DOFs in Lemma 3.3, and vanish on ∂Ωh.

Theorem 4.2.
1. There holds V h ⊂H0(div; Ωh) = {v ∈ L2(Ωh) : ∇ · v ∈ L2(Ωh), v · n|∂Ωh

= 0}.
2. There holds q ∈ Qh if and only if q|T ◦ FT ∈ Q̂ for all T ∈ Th, and∑

T∈Th

2|T̃ |
∫
T

q

det(DFT ◦ F−1
T )

= 0.

Proof.
1. Let T1, T2 ∈ Th such that ∅ 6= ∂T1 ∩ ∂T2 =: e, and let n be a unit normal of e. Note that e is a

straight edge in Th. Let v = Ψ(ṽ) for some ṽ ∈ Ṽ h, and denote by vi the restriction of v to Ti.
Likewise, let ṽi denote the restriction of ṽ to T̃i. Then by Theorem 3.7 and the continuity of ṽ,
we have

v1 · n|e = ṽ1 · n|e = ṽ2 · n|e = v2 · n|e.

Thus, the normal component of v is single-valued on interior edges. Because v|∂T∩∂Ωh
= 0 for

all T ∈ Th, we conclude that v ∈H0(div; Ωh).
2. Let q ∈ Qh. Then there exists a (unique) q̃ ∈ Q̃h such that q = Υq̃, with q|T (FT (x̂)) =
q̃|T̃ (FT̃ (x̂)). We then find by a change of variables

0 =

∫
Ω̃h

q̃ =
∑
T̃∈T̃h

∫
T̃

q̃ =
∑
T̃∈T̃h

2|T̃ |
∫
T̂

q̃ ◦ FT̃ =
∑
T∈Th

2|T̃ |
∫
T̂

q ◦ FT =
∑
T∈Th

2|T̃ |
∫
T

q

det(DFT ◦ F−1
T )

.

The converse is proved similarly.

4.1. Global inf-sup stability. In this section, we show the finite element pair V h ×Qh is inf-sup
stable. This is achieved by using the local stability result given in Theorem 3.9 combined with Stenberg’s
macro element technique.

We define the spaces of piecewise constants with respect to T̃h and Th:

Ỹ h : = {q ∈ L2
0(Ω̃h) : q̃|T ∈ P0(T̃ ) ∀T̃ ∈ T̃h} ⊂ Q̃h, Y h := {q : q = Υ(q̃), ∃q̃ ∈ Ỹ h} ⊂ Qh.

We first show that the pair V h × Y h is stable in the following lemma.
Lemma 4.3. There holds

sup
v∈V h\{0}

∫
Ωh

(∇ · v)q

‖∇v‖L2(Ωh)
≥ γ1‖q‖L2(Ωh) ∀q ∈ Y h,
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where the gradient of v is understood piecewise with respect to Th. Here, γ1 > 0 is a constant independent
of h.

Proof. Fix q ∈ Y h, and let q̃ ∈ Ỹ h be the piecewise constant function such that q = Υq̃. Note that,
because q and q̃ are both piecewise constant, there holds q|Ωh∩Ω̃h

= q̃|Ωh∩Ω̃h
. In particular, we have∫

T

q =
|T |
|T̃ |

∫
T̃

q̃, and ‖q‖2L2(T ) =
|T |
|T̃ |
‖q̃‖2

L2(T̃ )
∀T̃ ∈ T̃h,

with T = Gh(T̃ ). Thus we have ‖q‖L2(Ωh) ≤ C‖q̃‖L2(Ω̃h).

Let w̃ ∈ H1
0 (Ω̃h) satisfy ∇̃ · w̃ = q̃ and ‖∇̃w̃‖L2(Ω̃h) ≤ C‖q̃‖L2(Ω̃h). The results in [6, Theorem 4.4]

and the properties of G ensure that C > 0 is independent of h. From the stability proof of the piecewise
quadratic-constant pair [4, 7], there exists ṽ ∈ Ṽ h such that∫

ẽ

ṽ =

∫
ẽ

w̃, and ‖∇̃ṽ‖L2(Ω̃h) ≤ C‖∇̃w̃‖L2(Ω̃h).

Let v = Ψṽ and note that ‖∇v‖L2(Ωh) ≤ C‖∇ṽ‖L2(Ω̃h) by Theorem 3.7 (item (3)). Furthermore, this
theorem shows that, on each T ∈ Th,∫

T

∇ · v =

∫
∂T

(v · n) =

∫
∂T̃

(ṽ · ñ) =

∫
∂T̃

(w̃ · ñ) =

∫
T̃

∇̃ · w̃ =

∫
T̃

q̃ =
|T̃ |
|T |

∫
T

q,

and therefore, because q is constant on T ,∫
T

(∇ · v)q =
|T̃ |
|T |

∫
T

q2 = ‖q̃‖2
L2(T̃ )

.

Summing over T ∈ Th then gets∫
Ωh

(∇ · v)q = ‖q̃‖2
L2(Ω̃h)

≥ C‖q̃‖L2(Ω̃h)‖∇̃w̃‖L2(Ω̃h) ≥ C‖q̃‖L2(Ω̃h)‖∇̃ṽ‖L2(Ω̃h)

≥ C‖q̃‖L2(Ω̃h)‖∇v‖L2(Ωh) ≥ C‖q‖L2(Ωh)‖∇v‖L2(Ωh).

Dividing this expression by ‖∇v‖L2(Ωh) gives us the desired estimate.
Theorem 4.4. There holds

sup
v∈V h\{0}

∫
Ωh

(∇ · v)q

‖∇v‖L2(Ωh)
≥ C‖q‖L2(Ωh) ∀q ∈ Qh,

where the gradient of v is understood piecewise with respect to Th.
Proof. Let q ∈ Qh. For each T ∈ Th, we define q̄T ∈ P0(T ) such that∫

T

(q − q̄T )

det(DFT )
= 0,

and set q̄ such that q̄|T = q̄T for all T ∈ Th. Then (q − q̄)|T ∈ Q0(T ) for all T ∈ Th, and q̄ ∈ Y h.
Consequently, by Theorem 3.9, for each T ∈ Th, there exists v1,T ∈ V0(T ) such that

∇ · v1,T =
h2
T (q − q̄)

det(DFT )
, ‖∇v1,T ‖ ≤ C‖q − q̄‖L2(T ).

Set v1 such that v1|T = v1,T for all T ∈ Th. Then v1 ∈ V h because v1,T |∂T = 0. We also have
‖∇v1‖L2(Ωh) ≤ C‖q − q̄‖L2(Ωh), and∫

Ωh

(∇ · v1)(q − q̄) =
∑
T∈Th

∫
T

(∇ · v1)(q − q̄)
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=
∑
T∈Th

∫
T

h2
T |q − q̄|2

det(DFT )
≥ C

∑
T∈Th

∫
T

|q − q̄|2

= C‖q − q̄‖2L2(Ωh)

≥ C‖q − q̄‖L2(Ωh)‖∇v1‖L2(Ωh).

Next, recall v1|∂T = v1,T |∂T = 0, and q̄ is constant on each T . Therefore by the divergence theorem,∫
Ωh

(∇ · v1)q̄ =
∑
T∈Th

∫
T

(∇ · v1)q̄ =
∑
T∈Th

∫
∂T

(v1 · n)q̄ = 0.

Thus, we conclude the existence of a constant γ0 independent of h such that

γ0‖q − q̄‖L2(Ωh) ≤ sup
v∈V h\{0}

∫
Ωh

(∇ · v)q

‖∇v‖L2(Ωh)
.

Next, we use the stability of the V h × Y h pair given in Lemma 4.3:

γ1‖q̄‖L2(Ωh) ≤ sup
v∈V h\{0}

∫
Ωh

(∇ · v)q̄

‖∇v‖L2(Ωh)

≤ sup
v∈V h\{0}

∫
Ωh

(∇ · v)q

‖∇v‖L2(Ωh)
+ ‖q − q̄‖L2(Ωh) ≤ (1 + γ−1

0 ) sup
v∈V h\{0}

∫
Ωh

(∇ · v)q

‖∇v‖L2(Ωh)
.

Therefore,

‖q‖L2(Ωh) ≤ ‖q − q̄‖L2(Ωh) + ‖q̄‖L2(Ωh) ≤ (γ−1
0 + γ−1

1 (1 + γ−1
0 )) sup

v∈V h\{0}

∫
Ωh

(∇ · v)q

‖∇v‖L2(Ωh)
.

This is the desired inf-sup condition.

4.2. V h as an approximate H1
0 (Ωh) function space. Recall from Theorem 4.2 that the discrete

velocity space is H0(div; Ωh)-conforming. However, in general there holds V h 6⊂ H1(Ωh) because v|e
is not a quadratic polynomial on all edges e in Th. More precisely, v|e is not a quadratic polynomial
if e ⊂ ∂T , and T has a curved edge (otherwise v|e is quadratic and is continuous across the edge).
Nonetheless, the definition of V h shows that functions in V h are single-valued at three points on each
internal edge. We use this property in the next two lemmas to show that functions in V h are “weakly
continuous.”

Lemma 4.5. There exists an operator Eh : V h →H1
0 (Ωh) such that for all v ∈ V h,

‖v −Ehv‖L2(T ) + hT ‖∇(v −Ehv)‖L2(T ) ≤ Ch2
T ‖∇v‖L2(T ) ∀T ∈ Th. (4.1)

Proof. For given v ∈ V h, there exists ṽ ∈ Ṽ h such that v = Ψṽ. In particular, ṽ is uniquely
determined by

v|T (a) = ṽ|T̃ (ã) ∀a ∈ NT , ∀T ∈ Th,

with T = Gh(T̃ ). We define the function Ehv via

Ehv|T = (ṽ ◦ FT̃ ◦ F
−1
T )|T ∀T ∈ Th.

That is, Ehv is the function in the standard isoparametric quadratic Lagrange finite element space
associated with ṽ. We then have Ehv ∈H1

0 (Ωh). Furthermore, since F−1
T is affine on straight edges, we

see ṽ = Ehv on straight edges. In particular, we conclude

Ehv|T (a) = v|T (a) ∀a ∈ NT , ∀T ∈ Th.
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We now estimate the difference v − Ehv. On affine (non-curved) triangles, we easily see v = Ehv
because both functions are piecewise quadratic polynomials. Therefore the estimate trivially holds in this
case.

Next, let T ∈ Th with curved boundary. We then have v|∂T∩∂Ωh
= 0. Write v|T (x) = AT (x̂)v̂(x̂)

with v̂ ∈ V̂ and AT = DFT / det(DFT ). We also set ŵ ∈ V̂ such that ŵ(x̂) = Ehv|T (x). We then have

AT (â)v̂(â) = ŵ(â) ∀â ∈ NT̂ .

Thus, ŵ is the piecewise quadratic Lagrange interpolant of AT v̂ on T̂ ct. It then follows from the Bramble–
Hilbert lemma that

‖AT v̂ − ŵ‖Hm(K̂) ≤ C|AT v̂|H3(K̂) ∀K̂ ∈ T̂ ct, m = 0, 1.

Expanding the right–hand side, using Lemma 2.3, and the fact that v̂|K̂ is a quadratic polynomial shows

|AT v̂|H3(K̂) ≤ C
(
|A|W 3,∞(K̂)‖v̂‖L2(K̂) + |A|W 2,∞(K̂)|v̂|H1(K̂) + |A|W 1,∞(K̂)|v̂|H2(K̂)

)
≤ C‖v̂‖H2(K̂) ≤ C‖v̂‖L2(K̂),

where we used the equivalence of norms in a finite dimensional setting in the last inequality. Using the
estimate ‖A−1

T ‖L∞(T̂ ) ≤ ChT , we conclude

‖AT v̂ − ŵ‖Hm(T̂ ) ≤ ChT ‖AT v̂‖L2(T̂ ), m = 0, 1.

We then use Lemma 2.5 and the Poincare inequality to get (m = 0, 1)

‖v −Ehv‖Hm(T ) ≤ Ch1−m
T ‖AT v̂ − ŵ‖Hm(T̂ )

≤ Ch2−m
T ‖AT v̂‖L2(T̂ )

≤ Ch1−m
T ‖v‖L2(T ) ≤ Ch2−m

T ‖∇v‖L2(T ).

Recall, EIh is the set of internal edges of Th. For e = EIh, write e = ∂T+ ∩ ∂T− for some T± ∈ Th. Let
n± denote the outward unit normal of ∂T± restricted to e, and for a piecewise smooth function v, let v±
denote the restriction of v to T±. We then define the jump operator

[v]|e = v+ ⊗ n+ + v− ⊗ n−,

where (a⊗ b)i,j = aibj .
Lemma 4.6. Let e ∈ EIh with e = ∂T+ ∩ ∂T− for some T± ∈ Th. Then there holds for all v ∈ V h,∣∣∣ ∫

e

[v]
∣∣∣ ≤ Ch3

T (‖∇v‖L2(T+) + ‖∇v‖L2(T−)), (4.2)

where hT = max{hT+
, hT−}.

Proof. Let a1, a2 be the endpoints of e, and let a3 be the midpoint of e. If both T+ and T− are affine,
then v|T+∪T− ∈H1(T+ ∪ T−). This implies [v]|e = 0, and the estimate trivially follows.

Next suppose that at least one of T± has a curved edge, which implies that one of the endpoints
a1, a2 lie on ∂Ωh. Without loss of generality, we assume that T+ has a curved edge.

By construction of the space V h, in particular, the definition of Ψ, we have [v]|e(ai) = 0, i = 1, 2, 3.
It then follows from the error of Simpson’s rule that∣∣∣ ∫

e

[v]
∣∣∣ ≤ C|e|5∣∣[v]

∣∣
W 4,∞(e)

≤ Ch5
T (|v|W 4,∞(K+) + |v|W 4,∞(K−)), (4.3)

where K± ∈ T ct± satisfy ∂K+ ∩ ∂K− = e.
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Write v|K±(x) = (AT± v̂±)|K̂±(x̂) with v̂± ∈ V̂ , and K̂± = F−1
T±

(K±). We apply Lemmas 2.5 and 2.3

to the right-hand side of (4.3) and use the fact that v± is a quadratic polynomial:

|v|W 4,∞(K±) ≤ Ch−4
T±

4∑
r=0

h
2(4−r)
T±

|AT± v̂±|W r,∞(K̂±)

≤ Ch4
T±

4∑
r=0

h−2r
T±

r∑
j=0

|AT± |W r−j,∞(T̂±)|v̂±|W j,∞(K̂±)

≤ Ch4
T±

4∑
r=0

h−2r
T±

2∑
j=0

hr−j−1
T±

|v̂±|W j,∞(K̂±)

≤ C
2∑
j=0

h−j−1
T±

|v̂±|W j,∞(K̂±) ≤ Ch
−3
T±
‖v̂±‖L2(K̂±),

where we used equivalence of norms in the last inequality. Using the estimate ‖A−1
T±
‖L∞(T̂ ) ≤ ChT± and

Lemma 2.5 we get

|v|W 4,∞(K±) ≤ Ch−2
T±
‖AT± v̂±‖L2(T̂ ) ≤ Ch

−3
T±
‖v‖L2(T±).

Combining this estimate with (4.3) and applying the Poincare inequality (on T+) yields∣∣∣ ∫
e

[v]
∣∣∣ ≤ Ch2

T

(
‖v‖L2(T−) + hT ‖∇v‖L2(T+)

)
. (4.4)

Next we show ‖v‖L2(T−) ≤ ChT ‖∇v‖L2(T−). To this end, we set w = Ehv, where Ehv is given in
Lemma 4.5. We then write

‖v‖L2(T−) ≤ ‖v −w‖L2(T−) + ‖w‖L2(T−) ≤ ‖w‖L2(T−) + Ch2
T−‖∇v‖L2(T−).

Let ŵ ∈ V̂ such that ŵ(x̂) = w(x) with x = FT−(x̂). Noting that w vanishes on ∂Ωh, in particular
w vanishes on at least one vertex of T−, we conclude that

ŵ → ‖∇̂w‖L2(T̂ )

is a norm. Therefore by Lemma 2.5 and equivalence of norms,

‖w‖L2(T−) ≤ ChT ‖ŵ‖L2(T̂ ) ≤ ChT ‖∇̂ŵ‖L2(T̂ ) ≤ ChT ‖∇w‖L2(T−).

Hence, we have

‖v‖L2(T−) ≤ C
(
hT ‖∇w‖L2(T−) + h2

T ‖∇v‖L2(T−)

)
≤ ChT ‖∇v‖L2(T−).

Combining this estimate with (4.4), we obtain the desired estimate (4.2). This concludes the proof.

5. Finite Element Method and Convergence Analysis. For a given function f , we let (u, p) ∈
H1

0 (Ω)× L2
0(Ω) be the solution to the Stokes problem

−ν∆u+∇p = f , ∇ · u = 0 in Ω,

where ν > 0 is the viscosity. We assume that ∂Ω and f are sufficiently smooth such that (u, p) ∈
H3(Ω)×H2(Ω), and can be extended to R2 in a way such that (u, p) ∈H3(R2)×H2(R2) with ∇·u = 0
and (cf. [16])

‖u‖H3(R2) ≤ C‖u‖H3(Ω), ‖p‖H2(R2) ≤ C‖p‖H2(Ω).
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We then extend f by

f = −ν∆u+∇p,

so that f ∈H1(R2).
We denote by fh ∈ L2(Ωh) a computable approximation of f |Ω. For example, fh could be the

(global) quadratic Lagrange nodal interpolant of f .
The finite element method seeks (uh, ph) ∈ V h ×Qh such that∫

Ωh

ν∇uh : ∇v −
∫

Ωh

(∇ · v)ph =

∫
Ωh

fh · v ∀v ∈ V h, (5.1a)∫
Ωh

(∇ · uh)q = 0 ∀q ∈ Qh, (5.1b)

where the gradient is understood piecewise with respect to the triangulation.
By the inf-sup condition established in Lemma 4.4 and standard theory of mixed finite element

methods, problem (5.1) is well-posed.
Theorem 5.1. There exists a unique solution (uh, ph) ∈ V h ×Qh satisfying (5.1).
Next, we show that, despite the non-inclusion ∇ ·V h 6⊂ Qh, the finite element method yields exactly

divergence–free velocity approximations.
Lemma 5.2. Suppose uh ∈ V h satisfies (5.1b). Then ∇ · uh ≡ 0 in Ωh.

Proof. For each T ∈ Th, write uh|T = AT ûT , with ûT ∈ V̂ . Define q to be the piecewise function

q|T (x) =
1

2|T̃ |
(∇̂ · ûT )(x̂), x = FT (x̂), T = Gh(T̃ )

for all T ∈ Th. Well-known properties of the Piola transform show

q|T =
det(DFT ◦ F−1

T )

2|T̃ |
(∇ · uh|T ) ∀T ∈ Th,

and therefore ∑
T∈Th

2|T̃ |
∫
T

q

det(DFT ◦ F−1
T )

=
∑
T∈Th

∫
T

∇ · uh =

∫
∂Ωh

uh · n = 0.

Thus we conclude q ∈ Qh by Theorem 4.2.
Next, by (5.1b),

0 =

∫
Ωh

(∇ · uh)q =
∑
T∈Th

∫
T

(∇ · uh)q =
∑
T∈Th

1

2|T̃ |

∫
T̂

∇̂ · ûT
det(DFT )

(∇̂ · ûT ) det(DFT )

=
∑
T∈Th

1

2|T̃ |

∫
T̂

|∇̂ · ûT |2.

Thus, ∇̂ · ûT = 0 for all T ∈ Th, and therefore ∇ · uh = 0.

5.1. Convergence Analysis. Define the subspace of divergence–free functions:

Xh := {v ∈ V h : ∇ · v = 0} 6⊂X := {v ∈H1
0 (Ω) : ∇ · v = 0}.

Then by Lemma 5.2 and (5.1), the discrete velocity solution is uniquely determined by the problem: Find
uh ∈Xh such that

ah(uh,v) :=

∫
Ωh

ν∇uh : ∇v =

∫
Ωh

fh · v ∀v ∈Xh.
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Standard theory of non–conforming and mixed finite element methods (e.g., [8]), along with Lemma 3.5
and Theorem 4.4 yields

ν‖∇(u− uh)‖L2(Ωh) ≤ inf
w∈Xh

ν‖∇(u−w)‖L2(Ωh) + sup
v∈Xh\{0}

ah(uh − u,v)

‖∇v‖L2(Ωh)
(5.2)

≤ C inf
w∈V h

ν‖∇(u−w)‖L2(Ωh) + sup
v∈Xh\{0}

ah(uh − u,v)

‖∇v‖L2(Ωh)

≤ Ch2ν‖u‖H3(Ω) + sup
v∈Xh\{0}

ah(uh − u,v)

‖∇v‖L2(Ωh)
.

Recalling −ν∆u+∇p = f in R2 and Xh ⊂H0(div; Ω), we have

ah(uh − u,v) =

∫
Ωh

f · v − ah(u,v) +

∫
Ωh

(fh − f) · v

= −
∫

Ωh

ν∆u · v +

∫
Ωh

∇p · v − ah(u,v) +

∫
Ωh

(fh − f) · v

= −
∫

Ωh

ν∆u · v − ah(u,v) +

∫
Ωh

(fh − f) · v ∀v ∈Xh.

We then integrate by parts to conclude

−
∫

Ωh

ν∆u · v − ah(u,v) = ν
∑
e∈EI

h

∫
e

∇u : [v],

where we used v is zero on ∂Ωh.
Recall EI,∂h is the set of edges in EIh that have one endpoint on ∂Ωh. Then by properties of V h, there

holds [v]|e = 0 for all e ∈ EIh\E
I,∂
h , in particular,

ah(uh − u,v) = ν
∑
e∈EI,∂

h

∫
e

∇u : [v] +

∫
Ωh

(fh − f) · v. (5.3)

Lemma 5.3. There holds

ν
∑
e∈EI,∂

h

∫
e

∇u : [v] ≤ Cνh2‖u‖H3(Ω)‖∇v‖L2(Ωh) ∀v ∈ V h.

Proof. For each e ∈ E
I,∂
h , let Ge ∈ R2×2 be the average of ∇u on e. Standard interpolation estimates

show

h−1
e ‖∇u−Ge‖2L2(e) ≤ C|u|H2(T ) he = diam(e), (5.4)

for T satisfying e ⊂ ∂T . Moreover, we clearly have |Ge| ≤ C|u|W 1,∞(Ω).
Let Ehv ∈H1

0 (Ωh) satisfy (4.1). Then [Ehv]|e = 0 for all e ∈ EIh, and so,

ν
∑
e∈EI,∂

h

∫
e

∇u : [v] = ν
∑
e∈EI,∂

h

(∫
e

(∇u−Ge) : [v −Ehv] +

∫
e

Ge : [v]
)

(5.5)

=: I1 + I2.

To bound I1 we use the Cauchy–Schwarz inequality, (5.4), a trace inequality, and Lemma 4.5:

I1 ≤ ν
( ∑
e∈EI,∂

h

h−1
e ‖∇u−Ge‖2L2(e)

)1/2( ∑
e∈EI,∂

h

he‖[v −Ehv]‖2L2(e)

)1/2

(5.6)
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≤ Cνh2|u|H2(Ω)‖∇v‖L2(Ωh).

To bound I2, we apply Lemma 4.6.

I2 = ν
∑
e∈EI,∂

h

Ge :

∫
e

[v] (5.7)

≤ Cν|u|W 1,∞(Ω)

( ∑
e∈EI,∂

h

he

)1/2( ∑
e∈EI,∂

h

h−1
e

∣∣∣ ∫
e

[v]
∣∣∣2)1/2

≤ Cνh5/2‖u‖W 1,∞(Ω)

( ∑
e∈EI,∂

h

he

)1/2

‖∇v‖L2(Ωh) ≤ Cνh5/2‖u‖H3(Ω)‖∇v‖L2(Ωh).

Combining (5.5)–(5.7) yields the desired result.
Finally, we combine (5.2), (5.3), Lemma 5.3 to obtain the main result of the section.
Theorem 5.4. There holds

‖∇(u− uh)‖L2(Ωh) ≤ C
(
h2‖u‖H3(Ω) + ν−1|f − fh|X∗h

)
, (5.8)

where

|f − fh|X∗h = sup
v∈Xh\{0}

∫
Ωh

(f − fh) · v
‖∇v‖L2(Ωh)

.

Therefore if, for example, fh is the nodal quadratic interpolant of f , and if f is sufficiently smooth, there
holds

‖∇(u− uh)‖L2(Ωh) ≤ C
(
h2‖u‖H3(Ω) + ν−1h3‖f‖H3(Ω)

)
.

The pressure approximation satisfies

‖p− ph‖L2(Ωh) ≤ C
(
ν‖∇(u− uh)‖L2(Ωh) + νh2‖u‖H3(Ω) + inf

q∈Qh
‖p− q‖L2(Ωh) + ‖f − fh‖L2(Ωh)

)
.

(5.9)

Proof. The error estimate of the velocity follows from (5.2), (5.3), and Lemma 5.3; thus, it remains
to prove (5.9).

For any q ∈ Qh and v ∈ V h, we have by (5.1) and Lemma 5.3,∫
Ωh

(∇ · vh)(ph − q) = ah(uh,v)−
∫

Ωh

(∇ · v)q −
∫

Ωh

fh · v

= ah(uh − u,v)−
∫

Ωh

(∇ · v)(q − p)−
∫

Ωh

(fh − f) · v + ν
∑
e∈EI,∂

h

∫
e

∇u : [v]

≤ C
(
ν‖∇(u− uh)‖L2(Ωh) + νh2‖u‖H3(Ω) + ‖p− q‖L2(Ωh)

)
‖∇v‖L2(Ωh) + ‖f − fh‖L2(Ωh)‖v‖L2(Ωh).

Using the estimate (4.1) and the Poincare inequality, we have

‖v‖L2(Ωh) ≤ ‖Ehv‖L2(Ωh) + ‖v −Ehv‖L2(Ωh) ≤ C‖∇v‖L2(Ωh).

Therefore ∫
Ωh

(∇ · vh)(ph − q) ≤ C
(
ν‖∇(u− uh)‖L2(Ωh) + νh2‖u‖H3(Ω)

+ ‖p− q‖L2(Ωh) + ‖f − fh‖L2(Ωh)

)
‖∇v‖L2(Ωh).
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We then use the inf-sup condition given in Theorem 4.4 to obtain

C‖ph − q‖L2(Ωh) ≤ sup
v∈V h\{0}

∫
Ωh

(∇ · v)(ph − q)
‖∇v‖L2(Ωh)

≤ C
(
ν‖∇(u− uh)‖L2(Ωh) + νh2‖u‖H3(Ω) + ‖p− q‖L2(Ωh) + ‖f − fh‖L2(Ωh)

)
.

Applying the triangle inequality and taking the infimum over q ∈ Qh, we obtain (5.9).

6. A Pressure Robust Scheme. In this section, we construct a computable approximation fh such
that the term ν−1|f − fh|X∗h appearing in estimate (5.8) is independent of the viscosity, in particular,
such that the method is pressure robust. Essentially, this construction is done by applying a commuting
operator to the function f |Ω. In particular, we adopt and modify the recent results in [12] for Scott–
Vogelius elements to construct commuting operators on meshes with curved boundary.

To discuss the main objections of this section further, we define the rot operator

rotv =
∂v2

∂x1
− ∂v1

∂x2
,

and the corresponding Hilbert space

H(rot; Ωh) := {v ∈ L2(Ωh) : rotv ∈ L2(Ωh)}.

The main goal of this section is to prove the following result.
Theorem 6.1. There exists finite element spaces Wh ⊂ H(rot; Ωh), Σh ⊂ H1

0 (Ω) with respect to
the partition Th, and operators ΠW : H2(Ω)→Wh and ΠΣ : H3(Ω)→ Σh such that

ΠW∇p = ∇ΠΣp ∀p ∈ H3(Ω). (6.1)

Moreover, there holds for any f ∈H3(Ω),

‖f −ΠWf‖L2(Ωh) ≤ Ch2‖f‖H3(Ω), (6.2)

where f in the left-hand side of the above inequality is an H3 extension of f |Ω.
Corollary 6.2. Let (uh, ph) ∈ Vh × Qh be the solution of the finite element method (5.1) with

fh = ΠWf . Then there holds

‖∇(u− uh)‖L2(Ωh) ≤ Ch2‖u‖H5(Ω).

Proof. In light of estimate (5.8), it suffices to show |f − fh|X∗h ≤ Cνh
2‖u‖H5(Ω).

Recall that the extension of f |Ω is given by f = −ν∆u + ∇p. Therefore by Theorem 6.1, for all
v ∈Xh, ∫

Ωh

(f − fh) · v =

∫
Ωh

(
− ν(∆u−ΠW∆u) + (∇p−ΠW∇p)

)
· v

=

∫
Ωh

(
− ν(∆u−ΠW∆u) +∇(p−ΠΣp)

)
· v

= −ν
∫

Ωh

(∆u−ΠW∆u) · v,

where we used that ∇ · v = 0 and v · n|∂Ωh
= 0. Consequently,

|f − fh|X∗h ≤ Cν‖∆u−ΠW∆u‖L2(Ωh) ≤ Ch2ν‖∆u‖H3(Ω) ≤ Cνh2‖u‖H5(Ω).

15



6.1. Proof of Theorem 6.1: Preliminaries. As a first step of the proof of Theorem 6.1, we
“rotate” the space V (T ).

Definition 6.3. We define

W (T ) = {v ∈H1(T ) : v(x) = (DFT (x̂))−ᵀv̂(x̂), ∃v̂ ∈ V̂ },
W0(T ) = W (T ) ∩H1

0 (T ).

Remark 6.4. Define

S =

(
0 −1
1 0

)
,

so that rot(Sv) = ∇ · v, and SDFTS
−1 = det(DFT )(DFT )−ᵀ. Therefore, if v(x) = (DFT (x̂))−ᵀv̂(x̂),

we have

rotv(x) = rot
(
S
DFT (x̂)S−1v̂(x̂)

det(DFT (x̂))

)
= ∇ ·

(DFT (x̂)S−1v̂(x̂)

det(DFT (x̂))

)
=

ˆrot v̂(x̂)

det(DFT (x̂))
.

Remark 6.5. Note that ˆrot : V̂ → Q̂ is a surjection. Indeed, let q̂ ∈ Q̂. Then there exists v̂ ∈ V
such that ∇̂ · v̂ = q̂. Then set ŵ = Sv̂ so that q̂ = ∇̂ · v̂ = ˆrot ŵ. Similar arguments show ˆrot : V̂0 → Q̂0

is a bijection.
Lemma 6.6. Let {α̂i}3i=1, {m̂i}3i=1 ⊂ NT̂ be, respectively, the vertices and edge midpoints of T̂ .

Set αi = FT (α̂i) and mi = FT (m̂i) to be the corresponding points on T . Any v ∈ W (T ) is uniquely
determined by the values

v(αi), (v · n)(mi) i = 1, 2, 3, (6.3a)∫
e

v · t ∀ edges of T , (6.3b)∫
T

(rotv)q ∀q ∈ Q0(T ). (6.3c)

Proof. Write v(x) = DF−ᵀT v̂ for some v̂ ∈ V̂ , and suppose that v vanishes on the DOFs. We show
v̂ ≡ 0.

We clearly have v̂(α̂i) = 0 for i = 1, 2, 3, and by using the relation t = DFT t̂/|DFT t̂| [19], and a
change of variables, we have

0 =

∫
e

v · t =

∫
ê

(DF−ᵀT v̂) · (DFT t̂)
|DFT t̂|

|det(DFT )||DF−ᵀn̂| =
∫
ê

v̂ · t̂,

where we used the identity |det(DFT )||DF−ᵀn̂| = |DFT t̂|. Thus, we conclude v̂ · t̂|∂T̂ = 0.

Similarly, using the relation n = DF−ᵀT n̂/|DF−ᵀT n̂|, we compute

0 = (v · n)(mi) =
v̂ · (DF−1

T DF−ᵀT n̂)

|DF−ᵀT n̂|
(m̂i).

Because (DF−1
T DF−ᵀT n̂) · n̂ = |DF−ᵀT n̂|2 6= 0, we conclude (DF−1

T DF−ᵀT n̂) is not tangent to t̂. Thus,

since v̂ · t̂|∂T̂ = 0, we get v̂|∂T̂ = 0, i.e., v̂ ∈ V̂0.

Now let q̂ ∈ Q̂0, and set q(x) = q̂(x̂) so that q ∈ Q0(T ). Using rotv = ˆrot v̂/det(DFT ), we have by
a change of variables, ∫

T

(rotv)q =

∫
T̂

( ˆrot v̂)q̂.
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Taking q̂ = ˆrot v̂, we conclude ˆrot v̂ = 0. This implies v̂ ≡ 0, and therefore v ≡ 0.
Next, we define the local Clough-Tocher space on the reference element

Σ̂ = {σ̂ ∈ H2(T̂ ) : σ̂|K̂ ∈ P3(K̂) ∀K̂ ∈ T̂ ct}.

It is known that the dimension of Σ̂ is 12 [10], and any σ̂ ∈ Σ̂ is uniquely determined by the valuess

∇̂σ̂(α̂i), σ̂(α̂i), (∇̂σ̂ · n̂)(m̂i) i = 1, 2, 3. (6.4)

We define the Clough–Tocher space on T via composition

Σ(T ) = {σ : σ(x) = σ̂(x̂), ∃σ̂ ∈ Σ̂}.

It is easy to see Σ(T ) ⊂ H2(T ). In the following lemma, we extend the above DOFs to Σ(T ).
Lemma 6.7. A function σ ∈ Σ(T ) is uniquely determined by the values

∇σ(αi), σ(αi), (∇σ · n)(mi) i = 1, 2, 3. (6.5a)

Proof. Write σ(x) = σ̂(x̂) with σ̂ ∈ Σ̂. It suffices to show that if σ vanishes at the above DOFs, then
σ̂ vanishes on (6.4).

If σ vanishes at the above DOFs, then clearly

∇̂σ̂(α̂i) = 0, σ̂(α̂i) = 0 i = 1, 2, 3.

This implies σ̂|∂T̂ = 0, and therefore ∇̂σ̂ · t̂|∂T̂ = 0.
Next, by the chain rule and the relation n = DF−ᵀn̂/|DF−ᵀn̂|,

0 = (∇σ · n)(mi) =
( 1

|DF−ᵀT n̂|
∇̂σ̂ · (DF−1

T DF−ᵀT n̂)
)

(m̂i).

Thus, we have
(
∇̂σ̂ · (DF−1

T DF−ᵀT n̂)
)
(m̂i) = 0. Since(

(DF−1
T DF−ᵀT n̂) · n̂

)
(m̂i) = |(DFT n̂)(m̂i)|2 6= 0,

the vector (DF−1
T DF−ᵀT n̂)(m̂i) is not tangent to ê. Because the tangental derivative of σ̂ vanishes at m̂i,

we conclude ∇̂σ̂(m̂i) = 0. Thus, σ̂ ≡ 0 and σ ≡ 0.
Remark 6.8. Note that if σ ∈ Σ(T ) with σ(x) = σ̂(x̂), then ∇σ(x) = (DFT (x̂))−ᵀ∇̂σ̂(x̂). We

conclude ∇σ ∈W (T ).
As a next step, we use the DOFs stated in Lemmas 6.6–6.7 to construct commuting operators with

properties stated in Theorem 6.1. Note that an added difficulty of the construction is that the operators
are defined for functions with domain Ω, but map to functions with domain Ωh. To mitigate this
mismatch, we employ the mapping G : Ω̃h → Ω given in Section 2.

For each T ∈ Th and edge e in Th, we set

TR := G(G−1
h (T )) ⊂ Ω, eR := G(G−1

h (e)) ⊂ Ω̄,

where we recall Gh is the quadratic interpolant of G. That is, TR is obtained by first mapping T to its
associated affine element T̃ = G−1

h (T ) ∈ T̃h, and then mapping T̃ to G(T̃ ) ⊂ Ω. By properties of the
quadratic interpolant Gh, we have G(G−1

h (αi)) = αi and G(G−1
h (mi)) = mi for all vertices and edge

midpoints of T .
Via Lemmas 6.6–6.7 we introduce the operator ΠT

W : H2(TR)→W (T ) uniquely determined by the
conditions

(ΠT
Wv)(αi) = v(αi) i = 1, 2, 3, (6.6a)
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(ΠT
Wv · n)(mi) = (v · n)(mi) i = 1, 2, 3, (6.6b)∫

e

(ΠT
Wv) · t =

∫
eR

v · teR ∀ edges of T , (6.6c)∫
T

(rot ΠT
Wv)q =

∫
T∩TR

(rotv)q ∀q ∈ Q0(T ), (6.6d)

where n is the outward unit normal with respect to e ⊂ ∂T , t is the unit tangent of e ⊂ ∂T , and teR is
the unit tangent of eR ⊂ ∂TR. We also set ΠT

Σ : H3(TS)→ Σ(T ) uniquely determined by

ΠT
Σσ(αi) = σ(αi), ∇(ΠΣσ)(αi) = ∇σ(a), i = 1, 2, 3, (6.7a)

∇(ΠT
Σσ)(mi) · n(mi) = ∇σ(mi) · n(mi) i = 1, 2, 3. (6.7b)

We define the global spaces

W h = {v ∈H(rot; Ωh) : v|T ∈W (T ) ∀T ∈ Th, v is continuous on (6.3)},
Σh = {σ ∈ H1(Ωh) : σ|T ∈ Σ(T ) ∀T ∈ Th, σ is continuous on (6.5)},

and the operators ΠW : H2(Ω)→W h, ΠΣ : H3(Ω)→ Σh by

ΠWv|T = ΠT
Wv, ΠΣσ|T = ΠT

Σσ, ∀T ∈ Th.

We now prove that these operators satisfy (6.1)–(6.2).

6.2. Proof of (6.1). For given p ∈ H3(Ω), set ρ = ΠW∇p − ∇ΠΣp ∈ W (T ). We wish to show
ρ ≡ 0. This this end, it suffices to show ρ vanishes at the DOFs in Lemma 6.6 for each T ∈ Th.

First, we consider the interior DOFs of W (T ). Using (6.6d) and the identity rot∇p = 0, we have∫
T

(rotρ)q =

∫
T

(rot (ΠW∇p))q =

∫
T∩TR

(rot (∇p))q = 0 ∀q ∈ Q0(T ).

Let αi be a vertex of T . We then have by (6.6a) and (6.7a),

ρ(αi) = ΠW∇p(αi)−∇ΠΣp(αi) = 0.

Next, let mi be an edge midpoint of T and let n be the outward unit normal at mi. Then by (6.6b) and
(6.7b),

ρ(mi) · n = ΠW∇p(mi) · n−∇ΠΣp(mi) · n = 0.

Finally, let e ⊂ ∂T be an edge of T with endpoints α2 and α1. Recalling that eR also has endpoints
α2 and α1, we use (6.7a) and (6.6c) to obtain∫

e

ρ · t =

∫
e

(
ΠW∇p−∇ΠΣp

)
· t =

∫
eR

∇p · teR −
∫
e

(∇ΠΣp) · t

= p(α2)− p(α1)−
(
(ΠΣp)(α2)− (ΠΣp)(α1)

)
= 0.

Thus, ρ vanishes at all the DOFs in Lemma 6.6, and we conclude ρ ≡ 0.

6.3. Proof of (6.2). We break up the proof of estimate (6.2) into three parts.
(i) We extend f to R2 such that ‖f‖H3(R) ≤ C‖f‖H3(Ω) With this extension, we define IWf ∈W (T )

uniquely by the conditions

(IWf)(αi) = f(αi), (IWf · n)(mi) = (f · n)(mi) i = 1, 2, 3,∫
e

(IWf) · t =

∫
e

f · t ∀ edges of T ,∫
T

(rot IWf)q =

∫
T

(rotf)q ∀q ∈ Q0(T ).
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(ii) We now estimate ‖f − IWf‖L2(T ). For notational convenience, we write v = IWf , and set

v(x) = RT (x̂)v̂(x̂), f(x) = RT (x̂)f̂(x̂),

with RT (x̂) = (DFT (x̂))−ᵀ. We then have

v̂(α̂i) = f̂(α̂i), (v̂ · (Rᵀ
Tn))(m̂i) = (f̂ · (Rᵀ

Tn))(m̂i) i = 1, 2, 3. (6.8)

We also have, by a change of variables (cf. proof of Lemma 6.6)∫
ê

v̂ · t̂ =

∫
e

v · t =

∫
e

f · t =

∫
ê

f̂ · t̂. (6.9)

Next, for q ∈ Q0(T ), write q(x) = q̂(x̂) with q̂ ∈ Q̂. We then have∫
T̂

( ˆrotv̂)q̂ =

∫
T̂

(det(DFT )rotv) ◦ FT q̂ =

∫
T

rotvq =

∫
T

rotfq =

∫
T̂

ˆrotf̂ q̂. (6.10)

It follows from (6.8)–(6.10) and a slight generalization of the Bramble–Hilbert lemma that

‖f̂ − v̂‖L2(T̂ ) ≤ C|f̂ |H3(T̂ ). (6.11)

Therefore by (2.1), Lemma 2.5 and (6.11) (and noting R−1
T = DF ᵀ

T ),

‖f − IWf‖L2(T ) ≤ ChT ‖RT (f̂ − v̂)‖L2(T̂ ) (6.12)

≤ C|f̂ |H3(T̂ ) = C|R−1
T RT f̂ |H3(T̂ )

≤ C
(
‖R−1

T ‖L∞(T̂ )|RT f̂ |H3(T̂ ) + |R−1
T |W 1,∞(T̂ )|RT f̂ |H2(T̂ )

)
≤ Ch3

T ‖f‖H3(T ).

(iii) We now estimate (ΠWf − IWf)|T ∈W (T ). Set w = ΠWf − IWf ∈W (T ). Then

w(αi) = 0, (w · n)(mi) = 0 i = 1, 2, 3,∫
e

w · t =

∫
eR

f · teR −
∫
e

f · t ∀ edges of T ,∫
T

(rotw)q =

∫
T∩TR

(rotf)q −
∫
T

(rotf)q ∀q ∈ Q0(T ).

Write w(x) = RT (x̂)ŵ(x̂). By equivalence of norms, we have

‖ŵ‖2
Hm(T̂ )

≤ C
( 3∑
i=1

(|ŵ(α̂i)|2 + |ŵ(m̂i)|2) + sup
q̂∈Q̂0

‖q̂‖L2(T̂ )=1

∣∣∣ ∫
T̂

( ˆrot ŵ)q̂
∣∣∣2) (6.13)

= C
( 3∑
i=1

|ŵ(m̂i)|2 + sup
q̂∈Q̂0

‖q̂‖L2(T̂ )=1

∣∣∣ ∫
T̂

( ˆrot ŵ)q̂
∣∣∣2).

Next we use the algebraic identity

ŵ(m̂i) =
1

α⊥ · β

(
((ŵ(m̂i)) · β)α⊥ − ((ŵ(m̂i)) ·α)β⊥

)
(6.14)

for any linearly independent vectors α,β ∈ R2. Here, α⊥ = Sα. We take α = −t̂(m̂i) and
β = Rᵀ

T (m̂i)n(mi), so that

|α⊥ · β| = |St̂(m̂i) · (Rᵀ
T (m̂i)n(mi))| = |(RT (m̂i)n̂(m̂i)) · n(mi)| = |(RT n̂)(m̂i)|,
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where we used the relation n = RT n̂/|RT n̂| in the last equality. We use (6.14) and the identity
ŵ(m̂i) · β = (w · n)(mi) = 0 to conclude

|ŵ(m̂i)| =
1

|RT n̂(m̂i)|
∣∣(ŵ · t̂)(m̂i)SR

ᵀ
T (m̂i)n(mi)

∣∣ ≤ |RT (m̂i)|
|RT n̂(m̂i)|

|(ŵ · t)(m̂i)| ≤ C|(ŵ · t)(m̂i)|,

where C > 0 is the condition number of RT (which is independent of h).
We use this estimate in (6.13) to conclude

‖ŵ‖2
Hm(T̂ )

≤ C
( 3∑
i=1

|(ŵ · t̂)(m̂i)|2 + sup
q̂∈Q̂0

‖q̂‖L2(T̂ )=1

∣∣∣ ∫
T̂

( ˆrot ŵ)q̂
∣∣∣2).

Using Simpson’s rule, noting that ŵ vanishes on the vertices of T̂ , we obtain

‖ŵ‖2
Hm(T̂ )

≤ C
( ∑
ê⊂∂T̂

∣∣∣ ∫
ê

ŵ · t̂
∣∣∣2 + sup

q̂∈Q̂0

‖q̂‖L2(T̂ )=1

∣∣∣ ∫
T̂

( ˆrot ŵ)q̂
∣∣∣2). (6.15)

We now estimate the two terms on the right-hand side of (6.15) separately.
First by a change of variables, we have∫

ê

ŵ · t̂ =

∫
e

w · t =

∫
eR

f · teR −
∫
e

f · t.

Set Θ := Gh ◦G−1 so that e = Θ(eR) and T = Θ(TR). There holds [17, Proposition 3]

|Θ(x)− x| = O(h3
T ), |DΘ− I2| = O(h2

T ), t(Θ(x)) =
DΘteR
|DΘteR |

(x), x ∈ T̄R, (6.16)

and therefore by a change of variables,∫
e

f · t =

∫
eR

|(DΘ)teR |(f · t) ◦Θ =

∫
eR

(f ◦Θ) · (DΘteR).

Thus, ∫
ê

ŵ · t̂ =

∫
eR

(
f · teR − (f ◦Θ) · (DΘteR)

)
=

∫
eR

(
f − (f ◦Θ)

)
· teR − (f ◦Θ) · (DΘteR − teR)

)
,

and therefore by (6.16), Taylor’s Theorem, and a Sobolev embedding,∣∣∣ ∫
ê

ŵ · t̂
∣∣∣ ≤ C(h4

T |f |W 1,∞(R2) + h3
T ‖f‖L∞(R2)

)
≤ Ch3

T ‖f‖H3(Ω). (6.17)

Next we let q̂ ∈ Q̂0 with ‖q̂‖L2(T̂ ) = 1 and compute∫
T̂

( ˆrot ŵ)q̂ =

∫
T

rotwq =

∫
T∩TR

(rotf)q −
∫
T

(rotf)q =

∫
T\TR

(rotf)q,

where q ∈ Q0(T ) with q(x) = q̂(x̂). Using ‖q‖L2(T ) ≤ ChT ‖q̂‖L2(T̂ ) ≤ ChT , we obtain∫
T̂

( ˆrot ŵ)q̂ ≤ |T\TR|‖rotf‖L∞(R2)‖q‖L2(T ) ≤ Ch3
T ‖f‖H3(Ω)‖q‖L2(T ) ≤ Ch4

T ‖f‖H3(Ω). (6.18)
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Applying estimates (6.17)–(6.18) to (6.15) yields

‖ŵ‖Hm(T̂ ) ≤ Ch
3
T ‖f‖H3(Ω).

Therefore

‖ΠWf − IWf‖L2(T ) = ‖w‖L2(T ) ≤ ChT ‖RT ŵ‖L2(T̂ ) ≤ C‖ŵ‖L2(T̂ ) ≤ Ch
3
T ‖f‖H3(Ω).

Finally by (6.12) and the triangle inequality,

‖f −ΠWf‖L2(T ) ≤ Ch3
T ‖f‖H3(Ω).

Summing over T ∈ Th yields the estimate (6.2):

‖f −ΠWf‖L2(Ωh) ≤ C
( ∑
T∈Th

h6
T ‖f‖2H3(Ω)

)1/2

≤ Ch2‖f‖H3(Ω)

( ∑
T∈Th

h2
T

)1/2

≤ Ch2‖f‖H3(Ω).

7. Numerical Experiments. In this section we perform a simple set of numerical experiments and
compare the results with the theory established in the previous section. We let Ω = B1(0) ⊂ R2 be the
unit ball, and take the data such that the exact solution is given by

u =

(
(x2

1 + x2
2 − 1)(8x2

1x2 + x2
1 + 5x2

2 − 1)
−4x1(x2

1 + x2
2 − 1)(3x2

1 + x2
2 + x2 − 1)

)
, p = 10(x2

1 + x2
2 −

1

2
).

We compute the finite element method (5.1), taking the source approximation fh to be the quadratic
(nodal) Lagrange interpolant of f , and the viscosity ν = 10−1. The errors for a decreasing sequence of
mesh parameters h are depicted in Figure 7.1–7.2. For comparison, we also plot the errors of the analogous
Scott-Vogelius finite element method using affine approximations, i.e., method (5.1) with V h×Qh replaced
by Ṽ h × Q̃h. The Figure shows the asymptotic convergence rates

‖u− uh‖L2(Ωh) = O(h3), ‖∇(u− uh)‖L2(Ωh) = O(h2), ‖p− ph‖L2(Ωh) = O(h2),

for the isoparametric approximations. These results agree with the theoretical results stated in Theorem
5.4. In contrast, the numerics indicate the solution of the affine approximation, denoted by (uaff , paffh ) ∈
Ṽ h × Q̃h satisfies the sub-optimal convergence rates

‖u− uaffh ‖L2(Ω̃h) = O(h2), ‖∇(u− uaffh )‖L2(Ω̃h) = O(h3/2), ‖p− paffh ‖L2(Ω̃h) = O(h3/2).

We also solve the finite element method (5.1) but with isoparametric spaces defined via the usual
composition, i.e., with velocity-pressure pair (1.1). Numerical experiments indicate the method is stable
and converges with optimal order. However, as Figure 7.2 shows, the method is not divergence–free (nor
pressure robust).
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Appendix A. Proofs of Preliminary Results.

A.1. Proof of Lemma 2.3. Proof. For notational simplicity, we set ĝ(x̂) = det(DFT (x̂)). Using the
fact that DFT → det(DFT ) is quadratic in two dimensions and the estimates (2.1), a simple calculation
shows |ĝ|Wm,∞(T̂ ) ≤ Ch

2+m
T . Consequently, by the quotient rule, for any multi-index α with |α| = m,

∣∣∣ ∂m
∂x̂α

1

ĝ

∣∣∣ ≤ C ∑
|β(1)|+|β(2)|+···+|β(m)|=m

|∂|β(1)|ĝ/∂x̂β
(1) | · · · |∂|β(m)|ĝ/∂x̂β

(m) |
|ĝm+1|

≤ C
∑

|β(1)|+|β(2)|+···+|β(m)|=m

(h
2+|β(1)|
T ) · · · (h2+|β(m)|

T )

|ĝm+1|
≤ C h3m

T

|ĝm+1|
≤ Chm−2

T ,

where we used (2.1) in the last inequality.
We then use the product rule and (2.1) to find, for any i, j ∈ {1, 2} and multi-index α with |α| = m,∣∣∣∂m(AT )i,j

∂x̂α

∣∣∣ =
∣∣∣ ∂m
∂x̂α

(
(DFT )i,j/ĝ

)∣∣∣
≤ C

∑
|β|+|γ|=m

∣∣∂β(DFT )i,j/∂
|β|x̂

∣∣∣∣∂γ ĝ−1/∂|γ|x̂
∣∣

≤ C
∑

|β|+|γ|=m

(
h

1+|β|
T

)(
h
|γ|−2
T

)
≤ Chm−1

T .

This establishes the first inequality in (2.3).
Next, we use the identity A−1

T = det(DFT )(DFT )−1 = adj(DFT ), the adjugate matrix of DFT .
Because the entries of DFT and adj(DFT ) are the same up to permutation and sign in two dimensions,
we have by (2.1),

|A−1
T |Wm,∞(T̂ ) = |DFT |Wm+1,∞(T̂ ) ≤

{
Ch1+m

T m = 0, 1
0 m ≥ 2

A.2. Proof of Lemma 2.4. Proof. Let t̂ be the unit tangent vector of ê obtained by rotating n̂
90 degrees clockwise. Then a calculation shows

det(DFT (x̂))(DFT (x̂))−ᵀn̂ =

(
−(DFT (x̂)t̂)2

(DFT (x̂)t̂)1

)
.

Because FT restricted to ê is affine, (DFT (x̂)t̂) is constant on ê. This proves the lemma.
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