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Abstract—Finding efficient task assignments is key to the success
of mobile crowdsensing campaigns. Many studies in the literature
focus on this problem and propose solutions that optimize the goals
of mobile crowdsensing platform, but disregard user preferences.
On the other hand, in a few recent studies that consider user
preferences, workers are assigned a single task at a time, and
the effect of these assignments to their prospective utilities is
ignored. In this paper, we address these issues and study the
task assignment problem considering both the user preferences
and impact of each task assignment on the long-term utility
of workers given the spatio-temporal characteristics of tasks.
We propose a dynamic programming based task assignment
algorithm that guarantees the satisfaction of users with their
assignments. Through simulations, we compare it with a state-
of-the-art algorithm and show the superiority of our algorithm in
various aspects.

Index Terms—Participatory mobile crowdsensing, task assign-
ment, stable matching.

I. INTRODUCTION

Mobile crowdsensing (MCS) aims to leverage the ubiquity

of mobile devices with embedded sensors (e.g., microphone,

camera) owned by people and perform various sensing tasks

without deploying dedicated sensor networks [1]. The success

of an MCS system is mostly defined by the task assignment or

user recruitment process. In worker-scarce MCS systems, some

workers may need to be assigned to multiple tasks in order to

meet the demands of task requesters in the platform. This also

gives the workers an opportunity to gain more rewards. In such

MCS systems where workers can be assigned to multiple tasks

and each task is assigned to only a worker, there are basically

two ways to handle the task assignments: instant (or local) task

assignment and predetermined (or global) task assignment.

In instant task assignment, workers are assigned to a single

task at a time, and they are periodically assigned to a new one

only after they perform their previous assignments. However,

this brings an uncertainty that will affect the workers’ ability

to plan the rest of their days. For example, a worker who will

not be assigned to an acceptable task in the next assignment

rounds will not be able to readily schedule his day for those

time periods in advance as it is not clear to him whether

he will get an assignment and hence be busy until the very

last moment. Moreover, since instant task assignment does not

consider the potential future assignments for workers, it may

end up producing a task assignment that is optimal locally,

but not globally. Predetermined task assignment circumvents

the mentioned issues by deciding all assignments for the

foreseeable future (e.g., hourly, daily) in advance. That is, it

considers the impact of each task assignment to the utility of

the workers in the remaining part of the considered time frame

and seeks to find a globally optimal solution.

There are various studies that look at the task assignment

problem in MCS systems with several different objectives such

as minimizing the worker travel costs [2], maximizing the total

profit of workers [3] and maximizing the quality of service

(QoS) in the completed tasks [4]. However, most of the existing

work either do not consider multiple task assignment to each

worker or adopt instant task assignment. A few studies [5], [6]

look at this joint task assignment and path planning problem

and aim to minimize the total delay in completed tasks while

also targeting a large number of completed tasks. However,

these solutions mostly consider system level objectives and do

not take into account user preferences during task assignment.

Thus, they may result in dissatisfied users and affect the future

user participation. To address this, several recent studies [7]–

[11] utilize Stable Matching Theory [12] and provide task

assignments satisfying all users. However, these solutions do

not take the scheduling of tasks into account, thus may assign

a worker with a set of tasks that he cannot perform in time.

In this paper, we study this challenging problem and propose

a task assignment algorithm that considers scheduling of tasks

for workers and respects user preferences so that no user will

have a desire to deviate from his assignment.

The rest of the paper is organized as follows. In Section II,

we introduce the system model. In Section III, we describe

our dynamic programming based solution. In Section IV, we

evaluate the performance of the proposed solution through

simulations. Finally, we provide our conclusions in Section V.

II. SYSTEM MODEL

We assume a system model with an MCS platform that aims

to find a predetermined task assignment for each assignment cy-

cle between a set of available workers W = {w1, w2, . . . , wm}
and a set of tasks T = {t1, t2, . . . , tn} published by the

registered task requesters. Each task t has strict spatio-temporal

requirements and needs to be performed at a specific location
~lt in a certain time frame [t.s, t.e]. Besides, each task t

has a minimum QoS requirement qtmin and offers a monetary

incentive/reward rt(w) to each worker w that satisfies this

requirement.
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We assume a participatory MCS platform, thus workers are

willing to interrupt their daily schedule to perform assigned

tasks. For individual rationality, we let each worker w define a

minimum profit requirement, rwmin, which ensures that if he is

assigned to any non-empty set of tasks in an assignment cycle,

he will make at least rwmin profit. Let tS1 , t
S
2 , . . . , t

S
k be a given

set S of tasks in non-decreasing order of their starting times

(i.e., tSi .s ≤ tSi+1.s). We denote whether worker w can perform

the tasks in S in time by Pw(S), which, given the average speed

sw of worker w and d(~lw,~lt) denoting the distance between

locations ~lw and ~lt, can be formally defined as

Pw(S) =











1, if pw(t
S
1 )×

k−1
∏

i=1

pw(t
S
i , t

S
i+1) = 1

0, otherwise,

where pw(t) = 1 if d(~lw,~lt) ≤ sw × t.s, 0 otherwise, and

pw(ti, tj) = 1 if d(~lti ,
~ltj ) ≤ sw × (tj .s − ti.e), 0 otherwise.

Let cw(t) denote the sensing cost of task t for worker w, which

may depend on various factors such as the energy consumption

on the sensing device and time/effort required to perform the

task. Also, let cw(x, y) = d(x, y) × θw be the cost of travel

between locations x and y for worker w, where θw denotes the

travel cost of w per km. Then, we can calculate the profit that

worker w will make when assigned to S with Pw(S) = 1 by

Uw(S) =
∑

t∈S

gw(t)− cw(~lw,~ltS
1
)−

|S|−1
∑

i=1

cw(~ltS
i
,~ltS

i+1
),

where gw(t) = rt(w)− cw(t).
Each worker w has a QoS score q(w), so we can define the

set of tasks that find worker w acceptable in terms of QoS

requirement and are also individually acceptable for worker w

in terms of spatio-temporal and profit-based requirements as

E(w) = {t : qtmin ≤ q(w), gw(t) > 0, pw(t) = 1}. (1)

A worker-task pair (w, t) is called a qualified pair only if

t ∈ E(w). Lastly, we denote whether a task set S is admissible

for worker w by Ew(S), which is determined by

Ew(S) =

{

1, if S ⊆ E(w), Pw(S) = 1 and Uw(S) ≥ rwmin

0, otherwise.

(2)

Below, we first give a formal definition of a matching and

then provide the constraints for user satisfaction (stability).

Definition 1 (Matching). A mapping between the sets W and T
is a feasible (F) and rational (R) matching (or task assignment)

if

• [F] ∀w ∈ W : M(w) ⊆ T and Pw(M(w)) = 1,
• [F] ∀t ∈ T : M(t) ∈ W or M(t) = ∅,
• [F] ∀w, t ∈ W × T : M(t) = w iff t ∈ M(w),
• [R] ∀w ∈ W : Uw(M(w)) ≥ rwmin if |M(w)| > 0,
• [R] ∀t ∈ T : q(M(t)) ≥ qtmin if M(t) 6= ∅.

Algorithm 1: TCSTA (W , T )

1 T ′ ← T
2 M(u) ← ∅, ∀u ∈ W ∪ T
3 w′

1, w
′
2, . . . , w

′
m ← sort W such that q(w′

i) ≥ q(w′
i+1)

4 for i ← 1 to m do

5 E ← T ′ ∩ E(w′
i)

6 t′1, t
′
2, . . . , t

′
k ← sort E such that t′i+1.e ≥ t′i.e

7 u, S ← solveDP(w′
i, E)

8 utilmax ← 0, index ← 0
9 for j ← 1 to k do

10 util ← u[j] + gw′

i
(t′j)− cw′

i
(~lw′

i
,~lt′

j
)

11 if util > utilmax then

12 utilmax ← util

13 index ← j

14 if utilmax ≥ r
w′

i

min then

15 F ← S[index] ∪ {t′index}
16 M(w′

i) ← F

17 foreach t ∈ F do

18 M(t) ← w′
i, T

′ ← T ′ \ t

19 return M

Note that M(u) denotes the partner or partner set (for

workers) of u in M.

Definition 2 (Unhappy coalition). Given a matching M, a

worker w and a subset S of tasks form an unhappy coalition

(denoted by 〈w, S〉) if ∀t ∈ S, q(w) > q(M(t)) (where

q(∅) = 0), and ∃V ⊆ M(w) such that Ew(S ∪ V ) =
1 and Uw(S ∪ V ) > Uw(M(w)). That is, tasks in S prefer

w to their partners in M, and w prefers S to a subset of his

partner set in M.

If M contains an unhappy coalition 〈w, S〉 such that t ∈ S,

the worker-task pair (w, t) is said to be an unhappy pair (and

users in at least one unhappy pair are said to be unhappy users).

Definition 3 (Stable matching). A matching M is (coalition-

ally) stable if it contains no unhappy coalitions.

III. PROPOSED SOLUTION

The outline of the proposed solution is presented in Algo-

rithm 1. It maintains a list T ′ of available tasks that are still

unmatched, which is initialized in line 1 to contain all the tasks

in the platform. In line 2, it creates a matching M where the

partner of each worker and task is set to be an empty set. In

the main for loop in lines 4-18, it iterates the workers in non-

increasing order of their QoS values, which is found in line 3,

and finds the optimal task set for the ith worker (w′
i) among the

tasks that are still available and in the eligible task set E(w′
i)

of worker w′
i (line 5). Before describing the process of finding

the optimal task set for a worker, we first provide the following

theorem.
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Algorithm 2: solveDP (w, E)

1 let u[1 . . . k] and S[1 . . . k] be two new arrays

2 u[k] ← 0, S[k] ← ∅
3 for i ← k − 1 down to 1 do

4 utilmax ← 0, index ← 0
5 for j ← i+ 1 to k do

6 util ← pw(t
′
i, t

′
j)× (u[j] + gw(tj)− cw(~lti ,

~ltj ))
7 if util > utilmax then

8 utilmax ← util

9 index ← j

10 if utilmax > 0 then

11 u[i] ← utilmax, S[i] ← S[index] ∪ {t′index}
12 else

13 u[i] ← 0, S[i] ← ∅

14 return u, S

Theorem 1. The problem of finding the highest utility (i.e., net

profit) assignment for worker w among a given set S ⊆ E(w)
of tasks has an optimal-substructure property, and an optimal

solution can be found using the following recursive formula:

max
t∈S

{

U [t.e] + gw(t)− cw(~lw,~lt)
}

, where (3)

U [t.e] = max
t′∈S

{

pw(t, t
′)× (U [t′.e] + gw(t

′)− cw(~lt,~lt′))
}

.

Proof. The proof is omitted due to space limitations.

Algorithm 2 solves the problem formulated in Theorem 1

using dynamic programming. It takes a worker w and a set

E of tasks (which are assumed to be in non-decreasing order

of their ending times) as input, and uses two arrays, u and S,

of length k = |E| to store the solutions to the subproblems

(of finding the best feasible task set in E for w). Here, u[i]
(1 ≤ i ≤ k) stores the maximum utility that worker w can

achieve after performing task t′i (the ith task in E), whereas

S[i] stores the corresponding optimal task set.

Algorithm 1 calls Algorithm 2 in line 7 to calculate the arrays

u and S. Then, in lines 8-13, it finds which task is the best to

perform for worker w′
i starting from his initial location con-

sidering the utilities he can achieve after performing each one

(which are stored in the array u). Finally, in line 14 it checks

whether the utility/profit found is economically admissible for

worker w′
i. If so, it matches the corresponding task set and

worker w′
i with each other, and removes the matched tasks

from the available task set in lines 16-19. Below, we provide

the theoretical analysis of the algorithm.

Theorem 2. Algorithm 1 produces feasible and rational match-

ings.

Proof. The proof is omitted due to space limitations.

Theorem 3. Algorithm 1 produces stable task assignments.

Proof. The proof is omitted due to space limitations.

TABLE I: Simulation parameters

Parameter Value Parameter Value Parameter Value

m 20 n 200 q(w) [5,10]

θw [1,5] cw(t) [0,5] qtmin [0,10]

βt [5,10]

Theorem 4. The running time of Algorithm 1 is O(m logm+
mn2).

Proof. The proof is omitted due to space limitations.

IV. SIMULATION RESULTS

In this section, we present the empirical evaluation of the

proposed algorithm. In order to create realistic MCS instance,

we utilize the NYC taxi data set [13] and follow the instance

generation scheme defined in [11] for this data set (where the

properties of workers and tasks are set according to the taxi

and passenger data, respectively). Differently from [11], we set

[t.s, t.e], ∀t to the time frame between the pick-up and drop-off

times of the corresponding passenger, and sw, ∀w to the average

speed of the corresponding taxi in the most recent trip. The

other variables are assigned randomly from the ranges given

in Table I. For each worker-task pair (w, t), we let rt(w) =
q(w)× βt, where βt denotes the reward constant of task t.

We compare our algorithm with Global Assignment and

Local Scheduling (or GALS) algorithm [5], which is a state-

of-the-art algorithm for spatio-temporal task matching and

scheduling. The objective of this algorithm is to maximize the

number of completed (matched) tasks. In the evaluation of the

algorithms, we consider the following performance metrics:

• Pairwise user happiness: 100×
(

1− # of unhappy pairs

# of qualified pairs

)

.

• Individual happiness: 100×
(

1− # of unhappy users

m+n

)

.

• Average coverage quality: 100×
∑n

i=1
q(M(ti))

n
.

• Ratio of completed tasks: 100× |{t∈T :M(t)6=∅}|
n

.

We lastly note that all results provided in this section are the

average of the results obtained in 100 different MCS instances.

A. Results

In Fig. 1, we first look at the impact of number of workers

on the performance of the algorithms. Fig. 1a and 1b show

that our algorithm produces perfect task assignments in terms

of user happiness (Theorem 3) and greatly outperforms the

GALS algorithm especially with respect to the individual hap-

piness. Specifically, we see that the GALS algorithm produces

matchings where nearly 20% of all qualified pairs and up to

80% of all users are unhappy with their assignments. Since our

algorithm takes the preferences of tasks into consideration and

the tasks prefer to be matched to the workers with higher QoS

values, our algorithm also achieves a notably better average

coverage quality scores than the GALS algorithm (Fig. 1c),

which disregards the user preferences to maximize the number

of completed tasks. As seen in Fig. 1d, it indeed matches more

tasks than our algorithm does, but the difference in the number

of tasks they match is at most 6%.
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Fig. 1: Performance comparison of the algorithms against varying number of workers (n = 200).
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Fig. 2: Performance comparison of the algorithms against varying number of tasks (m = 20).

Fig. 2 shows the performance of the algorithms with varying

number of tasks. In Fig. 2a & 2b, we see that our algorithm

maintains its superior performance over the GALS algorithm in

terms of user happiness, and that the task assignments produced

by the GALS algorithm always upset the majority of the

individuals and about 20% of the qualified pairs. A remarkable

point in this figure is that both happiness scores for the GALS

algorithm slightly improve with the increasing number of tasks

due to the decreasing competition between workers. On the

other hand, Fig. 2c & 2d show that an increase in the number of

tasks results in a lower average coverage quality and a smaller

ratio of completed tasks for both algorithms, because workers

can perform only a limited number of tasks due to spatio-

temporal constraints.

V. CONCLUSION

In this paper, we study the problem of finding stable task

assignments in MCS systems that involves tasks with strict

spatio-temporal constraints. We first describe the feasibility and

stability (or user happiness) conditions for task assignments in

such systems, and give a formal problem definition. Then, we

present an efficient, dynamic-programming based algorithm that

produces stable task assignments satisfying all workers and task

requesters. Finally, we present an evaluation of the proposed

algorithm on a real data set, where we compare its performance

with that of a benchmark algorithm. The results demonstrate

the superior performance of the proposed algorithm in terms

of achieved coverage quality as well as user happiness with a

slightly smaller percentage of completed tasks.
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