2020 IEEE 45th Conference on Local Computer Networks (LCN) | 978-1-7281-7158-6/20/$31.00 ©2020 IEEE | DOI: 10.1109/LCN48667.2020.9314829

Time-dependent Stable Task Assignment in
Participatory Mobile Crowdsensing

Fatih Yucel and Eyuphan Bulut
Department of Computer Science, Virginia Commonwealth University
401 West Main St. Richmond, VA 23284, USA
{yucelf, ebulut} @vcu.edu

Abstract—Finding efficient task assignments is key to the success
of mobile crowdsensing campaigns. Many studies in the literature
focus on this problem and propose solutions that optimize the goals
of mobile crowdsensing platform, but disregard user preferences.
On the other hand, in a few recent studies that consider user
preferences, workers are assigned a single task at a time, and
the effect of these assignments to their prospective utilities is
ignored. In this paper, we address these issues and study the
task assignment problem considering both the user preferences
and impact of each task assignment on the long-term utility
of workers given the spatio-temporal characteristics of tasks.
We propose a dynamic programming based task assignment
algorithm that guarantees the satisfaction of users with their
assignments. Through simulations, we compare it with a state-
of-the-art algorithm and show the superiority of our algorithm in
various aspects.

Index Terms—Participatory mobile crowdsensing, task assign-
ment, stable matching.

I. INTRODUCTION

Mobile crowdsensing (MCS) aims to leverage the ubiquity
of mobile devices with embedded sensors (e.g., microphone,
camera) owned by people and perform various sensing tasks
without deploying dedicated sensor networks [1]. The success
of an MCS system is mostly defined by the task assignment or
user recruitment process. In worker-scarce MCS systems, some
workers may need to be assigned to multiple tasks in order to
meet the demands of task requesters in the platform. This also
gives the workers an opportunity to gain more rewards. In such
MCS systems where workers can be assigned to multiple tasks
and each task is assigned to only a worker, there are basically
two ways to handle the task assignments: instant (or local) task
assignment and predetermined (or global) task assignment.

In instant task assignment, workers are assigned to a single
task at a time, and they are periodically assigned to a new one
only after they perform their previous assignments. However,
this brings an uncertainty that will affect the workers’ ability
to plan the rest of their days. For example, a worker who will
not be assigned to an acceptable task in the next assignment
rounds will not be able to readily schedule his day for those
time periods in advance as it is not clear to him whether
he will get an assignment and hence be busy until the very
last moment. Moreover, since instant task assignment does not
consider the potential future assignments for workers, it may
end up producing a task assignment that is optimal locally,
but not globally. Predetermined task assignment circumvents

978-1-7281-7158-6/20/$31.00 ©2020 IEEE

the mentioned issues by deciding all assignments for the
foreseeable future (e.g., hourly, daily) in advance. That is, it
considers the impact of each task assignment to the utility of
the workers in the remaining part of the considered time frame
and seeks to find a globally optimal solution.

There are various studies that look at the task assignment
problem in MCS systems with several different objectives such
as minimizing the worker travel costs [2], maximizing the total
profit of workers [3] and maximizing the quality of service
(QoS) in the completed tasks [4]. However, most of the existing
work either do not consider multiple task assignment to each
worker or adopt instant task assignment. A few studies [5], [6]
look at this joint task assignment and path planning problem
and aim to minimize the total delay in completed tasks while
also targeting a large number of completed tasks. However,
these solutions mostly consider system level objectives and do
not take into account user preferences during task assignment.
Thus, they may result in dissatisfied users and affect the future
user participation. To address this, several recent studies [7]-
[11] utilize Stable Matching Theory [12] and provide task
assignments satisfying all users. However, these solutions do
not take the scheduling of tasks into account, thus may assign
a worker with a set of tasks that he cannot perform in time.
In this paper, we study this challenging problem and propose
a task assignment algorithm that considers scheduling of tasks
for workers and respects user preferences so that no user will
have a desire to deviate from his assignment.

The rest of the paper is organized as follows. In Section II,
we introduce the system model. In Section III, we describe
our dynamic programming based solution. In Section IV, we
evaluate the performance of the proposed solution through
simulations. Finally, we provide our conclusions in Section V.

II. SYSTEM MODEL

We assume a system model with an MCS platform that aims
to find a predetermined task assignment for each assignment cy-
cle between a set of available workers W = {wy,wa, ..., W}
and a set of tasks 7 = {t1,t2,...,t,} published by the
registered task requesters. Each task ¢ has strict spatio-temporal
requirements and needs to be performed at a specific location
I, in a certain time frame [t.s,t.c]. Besides, each task ¢
has a minimum QoS requirement ¢’ . and offers a monetary
incentive/reward r;(w) to each worker w that satisfies this
requirement.

433

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on April 28,2021 at 13:51:18 UTC from IEEE Xplore. Restrictions apply.

We assume a participatory MCS platform, thus workers are
willing to interrupt their daily schedule to perform assigned
tasks. For individual rationality, we let each worker w define a
minimum profit requirement, 7. . which ensures that if he is
assigned to any non-empty set of tasks in an assignment cycle,
he will make at least 7%, profit. Let t7,¢5,...,¢7 be a given
set S of tasks in non-decreasing order of their starting times
(ie., t7.5 <t ,.5). We denote whether worker w can perform
the tasks in S in time by P,,(S), which, given the average speed
Sw of worker w and d(l:,,,l;) denoting the distance between

locations le and l: can be formally defined as

k—1

17 if pw(tf) X pr(tf>tis+l) =1
i=1

Pw(S) =

0, otherwise,

where p,(t) = 1 if d(fw,ﬁ) < s, x t.s, 0 otherwise, and
Pultinty) = 1if d(ly;, i) < sw X (tj.5 — t;.€), 0 otherwise.
Let ¢, (t) denote the sensing cost of task ¢ for worker w, which
may depend on various factors such as the energy consumption
on the sensing device and time/effort required to perform the
task. Also, let ¢, (z,y) = d(z,y) x 6, be the cost of travel
between locations x and y for worker w, where 6,, denotes the
travel cost of w per km. Then, we can calculate the profit that
worker w will make when assigned to S with P, (S) =1 by

1S|—1
Uw(S) = Zgw(t) - Cw(lwaltf) - Z C’Uf(ltfvlt§+1)a
tes i=1

where g,,(t) = r:(w) — ¢y (2).

Each worker w has a QoS score g(w), so we can define the
set of tasks that find worker w acceptable in terms of QoS
requirement and are also individually acceptable for worker w
in terms of spatio-temporal and profit-based requirements as

E(w) - {t : Qfm'n < CI(U/),gw(t) > Oapw(t) - 1} (D

A worker-task pair (w,t) is called a qualified pair only if
t € £(w). Lastly, we denote whether a task set S is admissible
for worker w by &,(S), which is determined by
if S C E(w), Py(S)=1and Uy,(S) > r¥,
0, otherwise.

2

Below, we first give a formal definition of a matching and
then provide the constraints for user satisfaction (stability).

Definition 1 (Matching). A mapping between the sets VW and T
is a feasible (F) and rational (R) matching (or task assignment)
if

o [FIVweW : M(w) CT and P,(M(w)) =1,
[FIVte T : M(t) e W or M(t) =10,
[FIYw,t e WX T : M(t) =w iff t € M(w),
o [R]Vw e W : Uyp(M(w)) 2 rpy, if IM(w)] >0,
[RIVEE€T : q(M(t)) = iy if M(t) # 0.

Algorithm 1: TCSTA W, T)

1T« T

2 M(u) 0, YVu e WUT

3wy, wy, ..., w, < sort W such that q(w;) > q(wj)
4 for i <=1 to m do

s | E< T néEw

6 | t),th,... 1) < sort E such that t; ,.e > t.e
7 u, S < solveDP(w}, E)

8 utilygy <— 0, index <+ 0

9 for j < 11t k do

10 util + ulj] + Juw! (t;) — Cu/ (l_'w;, l_,;;)
11 if util > util,,,, then

12 util . < util

13 L index < j

1 | if utilyee > " then

15 F <« Slindex) U{t},;..}

16 M(w)) « F

17 foreach ¢ € F' do

18 | M(t) wj, T' < T\ t

19 return M

Note that M(u) denotes the partner or partner set (for
workers) of u in M.

Definition 2 (Unhappy coalition). Given a matching M, a
worker w and a subset S of tasks form an unhappy coalition
(denoted by (w,S)) if ¥t € S, q(w) > q(M(t)) (where
q® = 0), and IV C M(w) such that £,(S U V) =
1and Uy,(SUV) > Uy(M(w)). That is, tasks in S prefer
w to their partners in M, and w prefers S to a subset of his
partner set in M.

If M contains an unhappy coalition (w, S} such that t € S,
the worker-task pair (w,t) is said to be an unhappy pair (and
users in at least one unhappy pair are said to be unhappy users).

Definition 3 (Stable matching). A matching M is (coalition-
ally) stable if it contains no unhappy coalitions.

III. PROPOSED SOLUTION

The outline of the proposed solution is presented in Algo-
rithm 1. It maintains a list 7’ of available tasks that are still
unmatched, which is initialized in line 1 to contain all the tasks
in the platform. In line 2, it creates a matching M where the
partner of each worker and task is set to be an empty set. In
the main for loop in lines 4-18, it iterates the workers in non-
increasing order of their QoS values, which is found in line 3,
and finds the optimal task set for the ith worker (w}) among the
tasks that are still available and in the eligible task set &(wy})
of worker w); (line 5). Before describing the process of finding
the optimal task set for a worker, we first provide the following
theorem.

434

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on April 28,2021 at 13:51:18 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: solveDP (w, F)

1 let w[l...k] and S[1...k] be two new arrays
2 ulk] < 0,S[k] < 0
3fori<+ k—1downto1do
Utilygy <— 0, index < 0
for j < i+ 1t k do
util < pw(tgat;') X (u[]] + gw(tj) - Cw(ltwltj))
if wutil > util,,,, then
util . < util
L index < j

e e N n s

10 if util,,,, > 0 then

11 | uli] < utilyae, S[i] < Slindex] U {t}, 4.}
12 else

13 | ufi] < 0,S[i] + 0

14 return u, .S

Theorem 1. The problem of finding the highest utility (i.e., net
profit) assignment for worker w among a given set S C E(w)
of tasks has an optimal-substructure property, and an optimal
solution can be found using the following recursive formula:

max {U[t.e] + gu(t) — o (b, l_;)} where 3)

Ult.e] = max {pu(t,1') x (U[t'-e] + gu(t') - ol i)}
‘e
Proof. The proof is omitted due to space limitations. O

Algorithm 2 solves the problem formulated in Theorem 1
using dynamic programming. It takes a worker w and a set
E of tasks (which are assumed to be in non-decreasing order
of their ending times) as input, and uses two arrays, v and S,
of length k = |E| to store the solutions to the subproblems
(of finding the best feasible task set in E for w). Here, uli]
(1 <7 < k) stores the maximum utility that worker w can
achieve after performing task ¢} (the ith task in E), whereas
S[i] stores the corresponding optimal task set.

Algorithm 1 calls Algorithm 2 in line 7 to calculate the arrays
w and S. Then, in lines 8-13, it finds which task is the best to
perform for worker w} starting from his initial location con-
sidering the utilities he can achieve after performing each one
(which are stored in the array u). Finally, in line 14 it checks
whether the utility/profit found is economically admissible for
worker w}. If so, it matches the corresponding task set and
worker w; with each other, and removes the matched tasks
from the available task set in lines 16-19. Below, we provide
the theoretical analysis of the algorithm.

Theorem 2. Algorithm I produces feasible and rational match-
ings.

Proof. The proof is omitted due to space limitations. O

Theorem 3. Algorithm 1 produces stable task assignments.

Proof. The proof is omitted due to space limitations. O

TABLE I: Simulation parameters

[Parameter [Value [[Parameter | Value [[Parameter | Value |
m 20 n 200 q(w) [5,10]
O (151 [cw(t) [05] [¢l [0,10]
Bt [5,10]

Theorem 4. The running time of Algorithm 1 is O(mlogm +
mn?).

Proof. The proof is omitted due to space limitations. O

IV. SIMULATION RESULTS

In this section, we present the empirical evaluation of the
proposed algorithm. In order to create realistic MCS instance,
we utilize the NYC taxi data set [13] and follow the instance
generation scheme defined in [11] for this data set (where the
properties of workers and tasks are set according to the taxi
and passenger data, respectively). Differently from [11], we set
[t.s,t.e], Vt to the time frame between the pick-up and drop-off
times of the corresponding passenger, and s,,, Vw to the average
speed of the corresponding taxi in the most recent trip. The
other variables are assigned randomly from the ranges given
in Table I. For each worker-task pair (w,t), we let r,(w) =
q(w) x B, where ; denotes the reward constant of task ¢.

We compare our algorithm with Global Assignment and
Local Scheduling (or GALS) algorithm [5], which is a state-
of-the-art algorithm for spatio-temporal task matching and
scheduling. The objective of this algorithm is to maximize the
number of completed (matched) tasks. In the evaluation of the
algorithms, we consider the following performance metrics:

of unha airs
1 _ #of unhappy pai)
of qualified pairs /
__ # of unhappy users)
m+n °
. o q(M(ts
o Average coverage quality: 100 x Zim aMt))
n

100 x |{t€7’:M(t)7£@}\.

o Pairwise user happiness: 100 x (

e Individual happiness: 100 x (1

e Ratio of completed tasks:

We lastly note that all results provided in this section are the
average of the results obtained in 100 different MCS instances.

A. Results

In Fig. 1, we first look at the impact of number of workers
on the performance of the algorithms. Fig. la and 1b show
that our algorithm produces perfect task assignments in terms
of user happiness (Theorem 3) and greatly outperforms the
GALS algorithm especially with respect to the individual hap-
piness. Specifically, we see that the GALS algorithm produces
matchings where nearly 20% of all qualified pairs and up to
80% of all users are unhappy with their assignments. Since our
algorithm takes the preferences of tasks into consideration and
the tasks prefer to be matched to the workers with higher QoS
values, our algorithm also achieves a notably better average
coverage quality scores than the GALS algorithm (Fig. 1c),
which disregards the user preferences to maximize the number
of completed tasks. As seen in Fig. 1d, it indeed matches more
tasks than our algorithm does, but the difference in the number
of tasks they match is at most 6%.

435

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on April 28,2021 at 13:51:18 UTC from IEEE Xplore. Restrictions apply.

Individual happiness (%)

40 \

20

—6—TDSTA —6—TDSTA

50 100 150 200 50 100 150 200
of workers (m) # of workers (m)

(@ (b)

Pairwise user happiness (%)

Avg coverage quality
~

Ratio of completed tasks (%)
~
S

—&—TDSTA
——GALS

50 100 150 200 50 100 150 200
of workers (m) # of workers (m)
() (d)

Fig. 1: Performance comparison of the algorithms against varying number of workers (n = 200).

* //’*/w
2 W
—&—TDSTA —&—TDSTA
——GALS ——GALS

50 100 150 200 50 100 150 200
of tasks (n) # of tasks (n)

(a) (b)

Pairwise user happiness (%)
Individual happiness (%)

Fig. 2: Performance comparison of the algorithms

Fig. 2 shows the performance of the algorithms with varying
number of tasks. In Fig. 2a & 2b, we see that our algorithm
maintains its superior performance over the GALS algorithm in
terms of user happiness, and that the task assignments produced
by the GALS algorithm always upset the majority of the
individuals and about 20% of the qualified pairs. A remarkable
point in this figure is that both happiness scores for the GALS
algorithm slightly improve with the increasing number of tasks
due to the decreasing competition between workers. On the
other hand, Fig. 2c & 2d show that an increase in the number of
tasks results in a lower average coverage quality and a smaller
ratio of completed tasks for both algorithms, because workers
can perform only a limited number of tasks due to spatio-
temporal constraints.

V. CONCLUSION

In this paper, we study the problem of finding stable task
assignments in MCS systems that involves tasks with strict
spatio-temporal constraints. We first describe the feasibility and
stability (or user happiness) conditions for task assignments in
such systems, and give a formal problem definition. Then, we
present an efficient, dynamic-programming based algorithm that
produces stable task assignments satisfying all workers and task
requesters. Finally, we present an evaluation of the proposed
algorithm on a real data set, where we compare its performance
with that of a benchmark algorithm. The results demonstrate
the superior performance of the proposed algorithm in terms
of achieved coverage quality as well as user happiness with a
slightly smaller percentage of completed tasks.

ACKNOWLEDGEMENT

This material is based upon work supported by the U.S. Na-
tional Science Foundation (NSF) under Grant CNS-1647217.

Avg coverage quality

Ratio of completed tasks (%)

—e—TDSTA
—*—GALS

—e—TDSTA
——GALS
50

[1]

[2

—

[3]

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

436

50 100 150
of tasks (n)

50 100 150 200 200

of tasks (n)

(© (d)

against varying number of tasks (m = 20).

REFERENCES

A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich,
and P. Bouvry, “A survey on mobile crowdsensing systems: Challenges,
solutions, and opportunities,” IEEE communications surveys & tutorials,
vol. 21, no. 3, pp. 2419-2465, 2019.

W. Gong, B. Zhang, and C. Li, “Location-based online task assignment
and path planning for mobile crowdsensing,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 2, pp. 1772-1783, 2018.

Y. Kang, X. Miao, K. Liu, L. Chen, and Y. Liu, “Quality-aware online
task assignment in mobile crowdsourcing,” in 12th IEEE Inter. Conf. on
Mobile Ad Hoc and Sensor Systems (MASS), 2015, pp. 127-135.

H. Xiong, D. Zhang, G. Chen, L. Wang, and V. Gauthier, “CrowdTasker:
Maximizing coverage quality in piggyback crowdsensing under budget
constraint,” in International Conference on Pervasive Computing and
Communications, (PerCom), 23-27 March, 2015, pp. 55-62.

D. Deng, C. Shahabi, and L. Zhu, “Task matching and scheduling for
multiple workers in spatial crowdsourcing,” in 23rd SIGSPATIAL Inter.
Conf. on Advances in Geographic Information Systems, 2015, pp. 1-10.
X. Tao and W. Song, “Location-dependent task allocation for mobile
crowdsensing with clustering effect,” IEEE Internet of Things Journal,
vol. 6, no. 1, pp. 1029-1045, 2018.

F. Yucel and E. Bulut, “User satisfaction aware maximum utility task
assignment in mobile crowdsensing,” Computer Networks, vol. 172, p.
107156, 2020.

Y. Chen and X. Yin, “Stable job assignment for crowdsourcing,” in
GLOBECOM 2017-2017 IEEE Global Communications Conference.
IEEE, 2017, pp. 1-6.

M. Abououf, S. Singh, H. Otrok, R. Mizouni, and A. Ouali, “Gale-
shapley matching game selection—a framework for user satisfaction,”
IEEE Access, vol. 7, pp. 3694-3703, 2018.

C. Dai, X. Wang, K. Liu, D. Qi, W. Lin, and P. Zhou, “Stable task assign-
ment for mobile crowdsensing with budget constraint,” I[EEE Transactions
on Mobile Computing, 2020.

F. Yucel, M. Yuksel, and E. Bulut, “QoS-based budget constrained stable
task assignment in mobile crowdsensing,” IEEE Transactions on Mobile
Computing, 2020.

D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9-15,
1962.

“Taxi and limousine commission (tlc) trip record data.” NYC Taxi
Limousine Commission, 2019. [Online]. Available: https://www1.nyc.
gov/site/tlc/about/tlc- trip-record-data.page

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on April 28,2021 at 13:51:18 UTC from IEEE Xplore. Restrictions apply.

