CONNECTION BETWEEN GRAD-DIV STABILIZED STOKES FINITE
ELEMENTS AND DIVERGENCE-FREE STOKES FINITE ELEMENTS
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Abstract. In this paper, we use recently developed theories of divergence—free finite element
schemes to analyze methods for the Stokes problem with grad-div stabilization. For example, we
show that, if the polynomial degree is sufficiently large, the solutions of the Taylor—-Hood finite
element scheme converges to an optimal convergence exactly divergence—free solution as the grad-div
parameter tends to infinity. In addition, we introduce and analyze a stable first-order scheme that

does not exhibit locking phenomenon for large grad-div parameters.
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1. Introduction

Grad-div stabilization is a well-known and simple stabilization technique in numerical discretiza-
tions to improve mass conservation in simulations of incompressible flow. In its simplest form, the
methodology adds the consistent term (written in strong form)

—V(V - u)

to the momentum equations of the (Navier-)Stokes equations. Here, v > 0 is a user-defined constant,
which is referred to as the grad-div parameter. In addition to improving conservation of mass of the
scheme, this stabilization technique may also improve the coupling errors of the velocity and pressure
solutions. This can be advantageous for situations with large pressure gradients, e.g., in natural
convection problems.

While enjoying many benefits, the use of grad-div stabilization comes with several practical disad-
vantages. These include a deterioration of the condition number and reduced sparsity of the algebraic
system. Another disadvantage is the possible emergence of ‘locking’ for large grad-div parameters.
Indeed, simply energy arguments show the discrete velocity solution satisfies ||V - uy|| = O(y™1), and
therefore, in the limiting case, the discrete solution is divergence—free. If the discrete divergence—
free subspace does not have rich enough approximation properties, then grad-div stabilization, while
improving mass conservation, may lead to poor approximations.

The stability and convergence analysis for grad-div stabilization for incompressible flow have been
explored in, e.g., [23, 9, 10, 27, 1]. These estimates, together with numerical simulations, provide a
guide to choose optimal ~-values. For example, references [24, 21, 23, 4] suggests v = O(1) as the
optimal value. On the other hand, numerical experiments in [12] and the analysis in [27, 1] suggest
that the optimal choice may be much larger and depend on the finite element spaces, the mesh, and/or
the viscosity of the model.

In another direction, and the path taken in this paper, is to identify and characterize the limiting
solution as the grad-div parameter tends to infinity. For example, in [7, 19], it is shown that the
Taylor-Hood finite element scheme on special (Clough-Tocher) triangulations, no locking occurs in the
limiting case 7 — oo, and the Taylor—-Hood grad-div solution converges to the analogous (divergence—
free) Scott—Vogelius solution.
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The purpose of this paper is to extend and generalize the results in [7] by incorporating the recent
theories of divergence—free finite element Stokes pairs. In this regard, we make two main contributions.
First we show the absence of locking for the two-dimensional Taylor-Hood pair for a general class
of meshes. In particular, we show that high—-order Taylor-Hood pairs are generally locking-free. In
addition, we show that the limiting (Taylor-Hood) solutions converge to the solution of the divergence—
free Scott-Vogelius scheme, defined on general triangulations. The second contribution of the paper
is the introduction and analysis of a new low—order and stable finite element pair that is locking—free.
The velocity space is simply the linear Lagrange finite element space, and the pressure space consists
of piecewise constants with respect to an auxiliary coarsened mesh.

The paper is organized as follows. In the next section, we introduce the notation and a framework
for the grad-div finite element method for the Stokes problem. We show that the discrete solutions
converge to a solution of a divergence—free method with rate O(y~1). In Section 3, we apply this
framework to the two-dimensional Taylor-Hood elements. The general theme of the results is that
additional mesh constraints are imposed for lower degree polynomial spaces. In Section 4, we define a
stable first-order scheme for the Stokes problem, and show that the solutions converge to a divergence—
free method as v — oco. Finally, in Section 5 we provide some numerical experiments.

2. Notation and Framework

The Stokes equations defined on a polytope domain 2 C R? (d = 2,3) with Lipschitz continuous
boundary 02 is given by the system of equations

(2.1a) —pAu+Vp=f in Q,
(2.1b) V-u=0 inQ,
(2.1c) u=20 on 012,

where the u is the velocity, p the pressure, and V, A denote the gradient operator and vector Laplacian
operators, respectively. In (2.1a), p is the viscosity.
We define the following function spaces on €2:

L) ={w: Q= R: ||wlq) = (/ lw|? dz)1/? < oo},
Q
H™Q) = {w: Q=R |Jw|gm@ = (Y [|IDPw]3:qg)"? < oo},
1Bl<m

and set (-,-) denote the inner product on L*(Q) and set || - || = || - || ;2(q). The analogous spaces with
boundary conditions are given by

L3(Q) = {w € L*(Q) : /Q wdx = 0},
HMQ) == {we H™(Q) : DPwlsq =0,Y8: |8 <m —1}.

We denote the analogous vector-valued function spaces in boldface; for example H(Q) = H'(Q)4
and L%(Q) = L?(2)4. We also define the space of HJ(f2) divergence—free vector fields

Vi={ve H}Q):V-v=0}

The weak formulation for (2.1) reads: Find (u,p) € H}(Q) x L3(2) such that V(v,q) € H}(Q) x
L3(Q2) we have

(2:2a) 1(Vu, Vo) = (V- v,p) = (f,v),
(2.2b) (V-u,q) =0.

It is well known that the problem (2.2) has a unique solution [13].
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Let X5, x Yy, C HE(Q2) x LZ(Q) be a conforming finite element pair with respect to mesh parameter
h > 0. For each such a pair, we define the space of discretely divergence—free vector fields as follows

Vh = {’U S Xh : (V . ’U,qh) = O,th S Yh}.

We note, for many finite element pairs, there holds the non—inclusion V;, ¢ V.

The discrete Stokes problem corresponding to the pair X x Y}, reads: Find (up,pr) € Xp X Yy,
such that V(v,q) € X, x Y}, we have
(233‘) /L(VU}L, V”U) - (v ' v7ph) = (.fa ’U),
(2.3b) (V-up,q) =0.

Problem (2.3) has a unique solution provided that the pair X x Y}, satisfies the inf-sup condition,
that is, there exists a constant 8 > 0 independent of the mesh parameter h such that

(v - v, Q)
(2.4) sup  ~———— > fllq]| Vg€ Y.
vex,\{oy [Vl

We introduce the corresponding grad-div stabilized problem, which reads: For given v € R with
v >0, find (u],p]) € X, x Y}, such that V(v,q) € X, x Y, we have
(2.5a) w(Vu), Vo) +v(V-u),V-v)— (V-v,p)) = (f,v),
(2.5Db) (V-u),q)=0.
Again, standard arguments show that (2.5) is well-posed provided the inf-sup condition (2.4) is satis-
fied. Adding the term v(V - u],V - v;) improves mass conservation and can reduce the effect of the

pressure error on the velocity approximation. The limiting case v — oo is studied in the following
two theorems.

Theorem 2.1. Let X, XY}, be a conforming finite element pair defined satisfying the inf-sup condition.
Let {v;}52, C R with v; — oo, and let (u;,p;) € Xp, X Yy, be the solution for (2.5) corresponding to
vi. Then the sequence {u;}32, C X, converges to some wy, € X, N V. Moreover,

(26) IV~ wi)ll= _inf [V(u- o).

Proof. We follow the ideas in [7, Theorem 3.1] and begin with an a priori bound which is obtained by
taking v = u; and ¢ = p; in (2.5):
(2.7) lVul? + iV - wil P = [(F wa)l.
Thus, we have the following inequality
ul Vil <[ fllsn Vi €N,

where | fll.,n = supyex,\{o} %. The above inequality shows that the sequence {u;}$2; is a

uniformly bounded sequence in the finite dimensional space X),. Hence, {u;}$2, has a convergent
subsequence {u% }j that converges to some wy € Xj,.
To show wy, € V i.e., V- wy, =0, we use (2.7) and the Cauchy-Schwarz inequality to obtain

1
Ve
Because ||V - v|| < v2||Vo|| for all v € H}(Q) and u;; — wy,, it follows that

IV - wnl| = [V - (wn — wi; + )|
<V - (wn = wi) [ + [V - w |
1
24y

(2.8) IV -y || < [fllsn Vi eN.

< V2| V(wh —wi,)| +

[ llo = 0 as j — oo,
25

Hence, we conclude that |V - wp|| =0, and so wy, € V.
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To show the estimate (2.6) and the uniqueness of wy,, we observe that for v € X}, NV we have

/.L(V'LU}L, V’U) - (f,'U) = hm /J’(vuljyvv) + hm Yi; (v ' U’ijav ! 'U) - (f,'l))
j—o0 j—oo
= lim (M(vulj ) V’U) + Y (v C Uy, V- v) - (fa ’U))

j—oo
=0.

Hence, w, satisfies

(2.9) w(Vwp, Vo) = (f,v) Yve X,NV,

and (2.6) immediately follows by Cea’s lemma.

By the Lax-Milgram theorem, problem (2.9) has a unique solution. If {u;, } is another convergent
subsequence of {u;}32; that converges to some z;, € Xj, then z, is a solution to the problem
(2.9). Since the problem (2.9) has a unique solution, we conclude that w;, = z,, which means any
convergent subsequence of {u;}32; converges to the same element in X},. Hence the entire sequence
{u;}$2, converges to wp,. O

Theorem 2.2. Suppose that the conditions of Theorem 2.1 are satisfied. Set
Qh ::V~Xh:{V-v: ’UEXh},
and suppose that Yy, C Qpn and Xy X @y, is an inf-sup stable pair, i.e.,

V- v,q
(2.10) sup g > Bollqll Vg e Qn, 3Bg >0.
veX,\{0} [Vl

Then the sequence {(w;, p; —v:V-u;)}32, C X, X Qp converges to (wp, pr) € (XpNV) x Q) satisfying

(2.11a) w(Vwy, Vo) — (V-v,pn) = (f,v) Vv € Xy,
(2.11b) (V-wp,q) =0 Vg € Q4.
There also holds

(2.12) Bon lpn = (pi =7V - wi)ll < BlIV (wh — )|

<1V - | < minf265 ;7 (205) 72 F Ll

Proof. The convergence u; — wy, for some wy, € X, NV is established in Theorem 2.1. Since wy, is
divergence—free, it clearly satisfies (2.11b).
To show the convergence of the modified pressure sequence, we first use with the inf-sup condition
for the pair X} x @y, (2.10) and the inclusion Y, C @} to obtain
—(V-v,p) +%(V-u;, Vv
Ballpi =%V -l < sup ( ) 3 lV )
veX;\{0} [Vl
_ (f;v) = p(Vuy, Vo)
[V
Thus, {p; — 1V - u;}52, C Qp is a bounded sequence, and thus has a convergent subsequence:
pi; — %, V - wi; — pp for some pp, € Q. We then find that, for any v € Xp,

(Vwy, Vo) — (V- v,pp) = Jhﬁrgo (Vus,, Vo) = (p;;, V- v) +7;,(V - u;,, V- v)) = (f,v).

wh + 1l V.

We conclude that (wp,pn) € Xp x @y satisfies (2.11). The convergence of the entire sequence
{(wi,pi — %V - u;)}2, follows directly from the arguments in Theorem 2.1.

Next we establish the rate of convergence given in (2.12). As a first step, we first note that
[Vwp|| < g~ fll«.n. Consequently, by the inf-sup condition (2.10),
(V"U,ph) _ (f,’U) _M(thvvv)

(2.13) Bollpnll < sup sup
@ veX,\{0} [Vl veX,\{0} [Vl

< 2/[fl+,n-
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Write e; = wy, — u; € V), and note that
(2.14) w(Ve;, Vo) — (pp, —pi, V-v) +7(V-€;,V-v) =0  Yv e X,.
Consequently, by setting v = e; and using V - wy, = 0, we find
Vel +5illV - wil> = (V- ei.pn — pi) = (V- ei.01) < |V -l [pal.
Therefore by (2.13),
2
V- u; < — f *,h -
| I o 171
Combined with (2.8), this establishes the last inequality in (2.12).
To derive a convergence rate for |Ve;|| with respect to 7;, we introduce the space
R,=(X,NnV)={veX,: (Vo,Vw)=0Vw e X, NV}.

Because X, NV ={ve X, : (V-v,q) =0Vq € Q}, and X}, x Y}, is assumed to be inf-sup stable,
there holds [20]

(2.15) Vol <8IV v Vve R,

Write e; = € + e with €? € X;, NV and e? € Ry,. Because ||Ve;||? = ||[Ve?|? + ||[Vef||? and
V - €Y = 0, there holds by (2.15)

Vel < BV - el = BV - eill = B85 IV - .

On the other hand, by taking v = e € X;, NV in (2.14), we get
0=u(Ve;, Ved) — (pr, —pi, V-€)) +7(V-e;,V-ef)

= u(Vel',ve)) + p||Vel|* = ul|Vel|*.

Thus €? = 0, and therefore
Vel = Vel < BV - will.
Finally, we use the inf-sup condition on X x @ to derive the convergence rate of the modified
pressure equation as follows:

(V-v,pn) = (V-v,p) +7(V-u;, V- v)

Bollpn — (pi — vV -w;)|| < sup

veX,\{0} [Vl
—u(Ve;, Vo
= sup —uVes, V) < pl|Veil|.
veX,\{0} [Vl

Remark 2.3. Since wy, € X, NV, the error ||V(u — ;)| can be decomposed as follows
IV(w—wi)|| = [[V(u— wn + wp, —u)|
< IV (u —wn) [ + [[Vei
2
< i - _c ,
< iy, IV =l + Sl

Since the pair X X @, is inf-sup stable, we have by [6, Theorem 12.5.17] to get the estimate

gy . 2
(2.16) V=l < (14 5-) i V= 0)l+ gl

v é%’
where C' > 0 is a constant independent of h, Bg and ~;.

For comparison, the following estimate for grad-div stabilized finite element methods for the Stokes
problem was derived in [27]:

, 2
2.17 V(u—u)|?< inf <4Vu—v 24 9% v-v2)+— inf |pn — qnl%,
e1n) V- w)lP < i (V- o+ 2219 o) + 2 it o al
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Note that
. 2 Yi 2 . 2 i 2
_ . < _ il .
vlen‘f/h (4||V(u v)|| +2M |V - v ) _ue;?hfmv (4||V(u v)|| +2,u IV - v )
C
< i I -
< (1+ 5Q)vlen)£h IV (u — v)]|

for a generally different constant C > 0. Thus, we see that the first term in the right-hand side of
(2.17) is sharper than the analogous term in (2.16). On the other hand, unlike estimate (2.17), the
bound (2.16) does not depend on p. Thus, we conclude that the estimate (2.16) can be sharper than
the estimate (2.17) for small values of f.

3. Application I: Taylor-Hood Pairs

In this section, we apply Theorem 2.2 to the two—dimensional Taylor—-Hood pair and show, under
assumptions of the mesh and the polynomial degree, the Taylor-Hood finite element method with
grad-div stabilization does not experience locking in the limit v — oo. To proceed, we require some
additional notation.

Denote by 7, a conforming, shape-regular, simplicial triangulation of  C R2. For T € Ty, we
denote by hy = diam(7T) and set h = maxper, hy. Let V,g and V}? denote the sets of interior and
boundary vertices of Ty, respectively, and set V), = VL U VP,

Let Py(S) denote the space of polynomials of degree < k with domain S; the analogous vector-
valued space is denoted by P (S) := [P(S)]?>. We define the piecewise polynomials with respect to
the mesh 7}, as

Pu(Th) == [ Pe(D).
T€Th
For an integer k > 2, the Taylor-Hood pair is given as

X; 1 = Pu(Th) 0 Hg (),

VI =P (Th) N H'(Q) N LE(Q).
We also define the image of the divergence acting on the Taylor—-Hood velocity space:
(3.1) ™ .—v. XM ={V-v:ve X"}

It is well known that the pair X7# x V,I'H is inf-sup stable provided that each T' € T}, has at most
one boundary edge [5]. We assume this mild condition is satisfied throughout this section.

To apply Theorem 2.2 to the Taylor—Hood pair, we split the results into three cases, depending on
the polynomial degree: k > 4, k = 3, and k = 2. The general theme is that additional mesh conditions
are introduced for lower degree polynomial spaces.

3.1. High order pairs: k > 4. To apply Theorem 2.2 on the Taylor-Hood pair for k£ > 4, we need
to establish the inf-sup stability of the pair X,?H X QfH . To do so, following the notation introduced
in [16], we introduce the concept of a singular vertex and the vertex singularity of a mesh.

For z € V, let T, C Ty denote the set of triangles that have z as a vertex. We assume that
T. ={T1,...,Tn}, enumerating such that T; and T;4; share an edge for j =1,...,N — 1, and if 2
is an interior vertex, then 77 and T share an edge. Letting 6; denote the angle between the angle
between the edges of T; originating from z, we define

0. — max{|sin(6; + 0s)|,...|sin(On_1 + On)|, |sin(d1 + Oxn)|} if 2 € V],
#77 | max{|sin(f; +62)|,...|sin(On_1 + ONn)|} if 2 € VP.
Definition 3.1.

(i) We say that a vertex z is singular if ©, = 0; otherwise we say that z is non—singular.
(ii) The measure of vertex singularity of the mesh is given by the positive number

O, = min ©, > 0.
z2€Vh
0,0
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Remark 3.2. An interior vertex is singular if and only if exactly two straight lines emanating from
the vertex (and hence N = 4 in this case). A non—corner boundary vertex z is singular if exactly two
triangles have z as a vertex. Finally, a corner (boundary) vertex z is singular if only one triangle in
Tr has z as a vertex. Note that, because we assumed that each T' € 7;, has at most one boundary
edge, there exists no corner singular vertices.

The quantity O, gives an indication on “how close” a non—singular vertex z is from being singular.
Essentially, if ©, is small, then there exists a vertex in 7, that is a small perturbation of a singular
vertex. Note that if the cardinality of 7, is greater than 4 for all z € V}, and greater than 2 for all
z € VB, then O, is uniformly bounded from below.

Let
ShZ{ZGVhZ @ZZO}
denote the set of singular vertices in the mesh 7;. A characterization of the divergence operator acting
on the Taylor—-Hood velocity space is given in the next lemma for high—order pairs. Its proof is found
n [16, 26].
Lemma 3.3. Suppose that k > 4. Then there holds

N
Bt =v X" ={qePir(T)NLIQ) : Y (-Dqlr,(z) =0 Vz € S}
=1

Moreover, X" x QT represents an inf-sup stable pair with inf-sup constant B¢ independent of size
of the triangles in Tp,. Rather, Bg = CO, for some h-independent constant C' > 0.

Combining Lemma 3.3 with Theorem 2.2 then yields the convergence of the (high—order) grad-div
stabilized Taylor-Hood pair.

Theorem 3.4. Let {7;}2, C R with v; — oo and (u;,p;) € XFH x V,I'H be the solution of the
grad-div stabilized Stokes problem (2.5) corresponding to ~y; using the Taylor—-Hood pair with k > 4.
Then w; — wyp, and p; — vV - w; — pp as © — oo for some wy € X}TH NV and p, € QZH with
(wn, pr) being the solution for (2.11) with xQp, = X' x QTH. In particular,

(32) O Hpn = (pi =%V - w)| < IV(wh —wi)|l < COM min{OF ', (i) ~12),

where C > 0 is independent of h, u, and O,.
If u € H*(Q) for some s > 1, then the divergence—free function wy, satisfies

(3.3) IV (u = wp) || < CR | ge g,
where £ = min{k + 1, s} and C > 0 is independent of h, vy, u and O,.

Remark 3.5. For fixed p, Theorem 3.4 implies that the convergence for the sequence {(w;,p; — vV -
u;)}22, to (wp,pr) is O(v; ') provided 4; > ©72u. Otherwise, for smaller grad-div parameters the

~

theorem predicts O(vy; 1 %) convergence.

Remark 3.6. Theorem 3.4 states that {w;}$2, converges to an exactly divergence—free solution with
optimal order properties as i — co; this is true on meshes with singular vertices or “nearly singular”
vertices.

Proof. The convergence and convergence rates for the sequence {(u;,p; — 7V - u;)}52, directly follow
from Lemma 3.3 with Theorem 2.2.
To prove (3.3), we first use the estimate (2.6):

— < i — .
I9(u~wn)| < __inf  |V(u-v)]|

Following [11], we introduce the modified H2-conforming Argyris (TUBA) finite element space [2]
Yh={s€ H3(Q)NPri1(Ts) : sis C? at all non-corner vertices of 75 }.
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We then have [11]

Vx3p:={Vxs: sl CcVnXy,
where V x s = (0s/0xq,—0s/0x1)T is the two—dimensional curl operator. Therefore, by writing u in
terms of its stream function w = V x v for some ¢ € HZ(Q) N H*T1(Q), we have

| o )
Lt IV@-v)| < inf [V(u- )]

= inf D — 5)] < CH ey < OBl oy

]

3.2. The cubic—quadratic Taylor—Hood pair. To apply Theorem 2.2 to the cubic-quadratic
Taylor-Hood pair, we incorporate the recent stability results of the cubic-quadratic Scott—Vogelius
pair in [17]. In particular, a characterization of the space QTH (cf. (3.1)) was explicitly given and
inf-sup stability results were shown. To explain these results further, we introduce the concept of a
interpolating vertex.

Recall that for a vertex z € Vy,, T, = {T1,...,Tn} denotes the set of triangles that have z as vertex.
Set
N
W, :={a e RY : if 2 € Sy, then Z(—l)jaj = 0}.
j=1
Set

QZ = lnt( UTe'TZ T>7
and define

X, ={ve X suppv CQ.: /v-vd:c:owen, (V-v)(o) =0 Vo € Vp\{z}}.
T

Definition 3.7. We say that z € V}, is an interpolating vertex if, for all a € W, there exists v € X,
such that (V- )|z, (2) = a; for all j € {1,2,..., N}. We denote the set of all interpolating vertices in
Vh by Eh.

Remark 3.8. examples are given in [17], where the local interpolating vertex property in Definition
3.7 is satisfied by all interior vertices. Examples include

(1) Criss-crossed mesh
(2) Every mesh 7, such that |7;| = N is odd for all z € V.

It is also shown in [17] that not every interior vertex in a type-I triangulation (cf. Figure 1) is an
interpolating vertex.

Now, we state the following lemma which gives a stability result of the cubic Scott-Vogelius pair.
We refer to [17] for a detailed proof.

Lemma 3.9. Suppose that k =3 and V} C L},. Then there holds

T =v X" ={g€Per(Tn) N L3(Q Z Vg, (2) = 0z € Sp}.

{=1

Moreover, X}?H X QgH represents an inf-sup stable pair with Bg independent of size of the triangles
in Tn. Rather, fo = CO, for some h-independent constant C' > 0.

Combining Lemma 3.9 with Theorem 2.2 then yields the convergence of the grad-div stabilized
Taylor-Hood pair.
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FIGURE 1. type-I triangulation on (0, 1)?

Theorem 3.10. Let {v;}3°; C R with v; — oo and (u;,p;) € X H x VI be the solution of the
grad-div stabilized Stokes problem (2.5) corresponding to ~y; using the Taylor—Hood pair with k = 3.
Assume V}Il C Ly, i.e., all interior vertices in Tp are interpolating vertices. Then u; — wy and
pi—viV-u; — pp as i — oo for some wy, € X,?H NV and py, € QfH with (wp, pr) being the solution
for (2.11) with Xp, x Qn, = X2 x Q. The convergence of (wi,p; — vV - u;) satisfies (3.2).

3.3. The Quadratic-Linear Taylor—-Hood pair on Clough-Tocher splits. The case quadratic—
linear Taylor—-Hood pair on Clough-Tocher splits was discussed and studied in detail in [7]; here, we
state these results for completeness.

A Clough—Tocher split (or refinement) of a shape-regular triangulation 7y, is obtained connecting
the vertices of each triangle T' € 7T to its barycenter. Thus, each triangle is split into three sub-
triangles. Denote by ’771CT the Clough-Tocher split of 7j, and, with an abuse of notation, define the
quadratic—linear Taylor—Hood pair on 77LCT:

(3.4a) X =Pa(TCT) N Hy (),
(3.4b) VI =P (T¢T) 0 HY(Q) N LA(Q).

The following lemma gives a characterization of the divergence acting on X};H and states that
the quadratic-linear Scott—Vogelius pair is stable on Clough—Tocher splits. Its proof can be found in
[3, 14].

Lemma 3.11. Let X x Y,I'H be defined by (3.4). Then there holds
Y cpt = v X =PuTT) N L3(9Q).

Moreover, X}TH X QgH represents an inf-sup stable pair with inf-sup constant Bg independent of size
of the triangles in Tp.

Combining Lemma 3.11 with Theorem 2.2 then yields the convergence of the (low—order) grad-div
stabilized Taylor-Hood pair.

Theorem 3.12. Let X' x Y,'H be defined by (3.4), and let {7;}22; C R with v — oo. Let
(ui,pi) € XM x Y;T'H be the solution of the grad-div stabilized Stokes problem (2.5) corresponding
to v;. Then uw; — wy, and p; — vV - w; — pp as i — oo with rate O(’yi_l) for some wy, € XA NV
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and pp, € QLT with (wy,pp) being the solution to (2.11). If w € H*(Q) for some s > 1, then the
divergence—free function wy, satisfies

(3.5) IV (w = wp)|| < CR*|u| ey,
where £ = min{3, s} and C > 0 is independent of h, v, p and Bq.

Proof. The convergence and convergence rates for the sequence {(u;, p; — vV - u;)}52; directly follow
from Lemma 3.3 with Theorem 2.2 (see also [7]).

To prove (3.5), and to show that the constant C' > 0 is independent of 8¢, we first use the estimate
(2.6):

— < i —v)|.
IV —wn)| < _inf V(=)

Following the ideas in Theorem 3.4, we introduce the modified H?-conforming Hsieh—Clough-Tocher
finite element space [18]
R = HE (@) NPTy ).
We then have [18]
VxfT . ={Vxs: sex{TycVnX,.
Writing w = V x ¢ for some v € H3(Q) N H*T1(Q), we have

inf  |[V(u—o)||< inf |[|[V(u—v)
veVNXy, vevVxseT

= inf |D*(¢—s)| < Ché_1||w||H“1(Q) < Chz_lHUHHZ(Qy

4. Application II: The P; x Py pair on Powell-Sabin Splits

In the previous section, we considered the Taylor-Hood pair with grad-div stabilization for various
polynomial degrees. The general theme in the arguments is to use the stability of the Scott—Vogelius
pair to prove convergence and the absence of locking in the limiting case v — oco. In this section,
we show that the grad-div connection discussed in the previous sections can be generalized to the
low—order P X Py pair defined on a Powell-Sabin split mesh by incorporating the recently developed
divergence—free methods in [15, 8].

As before, we start with a shape-regular simplicial triangulation 7T, of 2. We then construct the
Powell-Sabin split of Ty, as follows [25, 22]. Let T € T, be a triangle with vertices 21, 25 and z3 labelled
counterclockwise, and let zy be the incenter of T. Denote the edges of T by {e; ?:17 labelled such
that z; is not a vertex of e;. Let z31; be the interior point of the edge of e; that is the intersection
of the line segment connecting the incenters of the triangles 7" and its neighboring triangle that has
e; as an edge. We then construct the triangulation 779 = {T1, ..., Ts} by connecting each z; to zo for
1 <1 < 6; see Figures 2 and 3.

Let 7,75 = |J U 7 be the global triangulation of Q, and VF¥ be the set of vertices of 7,75,
T€Th TeTPS
Let S9 € VIS be the set of all singular vertices in 7,75, Let S} = {z € SF'° : 2 ¢ 00} be the set
of interior singular vertices, and S}? ={z e S}I; 91 2 € 0Q} be the set of boundary singular vertices.
Observe that each z € S} is attached to exactly four triangles, and each z € SP is attached to exactly
two triangles. By construction, the cardinality of S’ 9 is exactly the number of edges in 7y,.

Definition 4.1. Let p € Py(T,7®) = {q € L*(Q) : qir € Po(T),VT € T;F5}. We say that p satisfies
the weak continuity property on T,PS if for any z € S} and {Ty,...,Tu} = T. C T,F° we have that

Py, — P, 01 — Py = 0,
and for any z € S,‘? and {Th,To} =T. C 771PS we have that

Py = P\
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Z3

24
25
Z6
FIGURE 2. A Powell-Sabin local split of a triangle. Note that the vertices z4, 25, and
zg are singular vertices in global mesh.

FIGURE 3. A triangulation 7, of the unit square (left), its Powell-Sabin refinement
T,F5 (middle), and the mesh KPS (right).

22

We introduce the finite element pair X/ x QF% defined on the Powell-Sabin triangulation 7,75
proposed in [15]:
(4.1a) X% =Pu(T%) N Hy (),
(4.1b) PS = Lq e Po(TPS) N LE(Q) : q satisfies the weak continuity property}.

Now, we state the following lemma concerning the image of the divergence operator acting on X S
and the inf-sup stability of X,};S X Qfs. We refer to [15] for a detailed proof.

Lemma 4.2. There holds

VX[ =Qps
with bounded right-inverse. Therefore, X}};S X Qfs is inf-sup stable, with inf-sup constant Bg inde-
pendent of h.

We note that, while X ,IL) S x Qf 9 is an inf-sup stable and divergence-free pair, the construction of
a basis for the pressure space and its implementation are non—trivial. Here, we propose a smaller and
simpler pressure space that conforms to the framework in the previous sections. To this end, we let

/ChPS:{U T:zec 8P
TET.

be the mesh obtained by connecting the triangles associated with each singular vertex. Thus, IC;: S s
a set consisting of quadrilaterals (in the case that z is an interior singular vertex) and triangles (in
the case that z is a boundary singular vertex); see Figure 3.
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We define the auxiliary pressure space
(4.2) ViPS ={qe Li(Q) : qlx € Po(K),VK € KI5},

Remark 4.3. Tt was shown that the pair X/ x QP is inf-sup stable when defined on the mesh 7,7%.
Since YhPS C Qfs, the pair X,fs X YhPS is stable. Hence, we can incorporate Theorem 2.1 to conclude
the following theorem.

Theorem 4.4. Let {v;}32; C R with v; — oo and (u;,p;) € XFS x Y;PS be the solution of the
grad-div stabilized Stokes problem (2.5) correspondes to 7; using the pair st X YhPS. Then u; — wy,
and p; — vV - uw; — pp as i — oo with rate O(’yi_l) for some wy, € XFS NV and py, € QY with
(wn, pr) being the solution for (2.11) with X, x Qn = X% x QFS.

5. Numerical Examples

In this section, we perform some simple numerical experiments and compare the results with the
theoretical ones given in the previous sections. In all tests, we take the domain to be the unit square
Q = (0,1)2, and choose the source function such that the exact velocity and pressure solutions are
given respectively as

. 7 sin® (mz) sin(2my) = cos(mz) cos(m
(5.1) wm (o) p=costr) ostr)

5.1. The P, x Py pair on Powell-Sabin Splits. In this section, we report and discuss the numerical
results for the P1 x Py pair on Powell-Sabin splits.

Let 7, be a quasi-uniform Delaunay triangulation of Q with A = 1/32, and let 7,9 be the
corresponding Powell-Sabin global triangulation (cf. Section 4). We compute problem (2.11) with
X, x Qp = X% x QP9 defined by (4.1), and denote the solution pair by (wp, p). We also compute
problem (2.5) with X, x Y}, = X/ x Y;P'¥ (cf. (4.2)), and denote the solution pair corresponding to
i by (ui,p;). The grad-div parameters are taken to be v; = 10 for i = 1,...,6.

5.1.1. The P; x Py pair on Powell-Sabin Splits with fixed viscosity p = 1. In Figure 4, we
plot the quantities [|[V(wn — w;)[L[|V - wsl| and [lpn — (ps — %V - wi)|| versus v; for fixed h = 1/32
and fixed viscosity 1+ = 1. The plot clearly shows linear convergence with respect to v, ! for all three
quantities, which is in exact agreement with Theorem 4.4.

5.1.2. The P, x Py pair on Powell-Sabin Splits with varying viscosity. In these series of tests,
we compute the same problem as the previous section, but for different viscosity values: p = 1077 for
j=1,2,3,4. We report the differences ||V(wy — w;)|,||V - w;i]| and ||pr, — (p; — %V - w;)]|| versus the
grad-div parameter in Figure 5.

Again, we observe that all three quantities converge with rate O(v; 1) for each value of p, at least
for moderately sized values of ;. On the other hand, we see that, for small values of u, the differences
lon — (pi — gV - i) L2(0) and ||V (wp, — u;)|[12(q) increase (with rate = O(v;)) as 7; — oo. This
behavior is due to round-off error as we now explain.

Observe that (2.14) reads

w(Ve;, Vv) — (pp, — pi, V-v)+v(V-€;,V-v) =0 Yo € X,
where e; = wj, — u;. Consequently, by setting v = e; and using V - wy, = 0, and dividing by u and
rearrange terms, we find
1
IV (wn = wi)|[ 720y = IVeil|* = ;(Ph = (i =%V i), V- ).

We computed the term i(ph — (pi —viV -u;),V-u;), and we observed that as soon as this term is

less than machine epsilon, both quantities ||V (wy, — w;)|| and ||pn — (pi — %V - u;)|| grow as v; — oo.
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L 0 ) A |
ol o [V (o — )] |

- [[Veu|
10—2 ; ||ph 7pTH ;
103 | .
104 | .

EHHH\ T Y O A 1 B I \i

10! 102 108 10*  10° 109
Vi

FIGURE 4. Numerical results on Powell-Sabin splits using the P x Py pairs for fixed
h = 1/32 and viscosity p = 1. Here, pr = p; — vV - u;. The plot shows O('y;l)
convergence for all three quantities.

5.2. Taylor-Hood Finite Elements. In this section we report and discuss the numerical results
for Taylor-Hood finite element with polynomial degrees k = 4, 3,2, and compare the results with the
theoretical ones established in Section 3. We compute problem (2.11) with X, x Q, = X[ x QTH,
and we denote the solution pair by (wp,pr). Also, we consider the problem (2.5) with X, x Y, =
X,?H x ;I H and we denote the solution pair by (u;,p;) that corresponding to ;.

5.2.1. Grad-div Taylor-Hood methods on perturbed criss—cross meshes with fixed vis-
cosity. Recall from Lemmas 3.3 and 3.9 that the stability of Scott—Vogelius pair depends on the
vertex singularity of the mesh ©, given in Definition 3.1. This in turn affects the convergence be-
havior of the grad-div solution (u;,p;) to the divergence—free solution (wy, py); see Theorems 3.4 and
3.10. The purpose of the tests presented in this section is to gauge the affect of the vertex singularity
of the mesh, and to compare the numerical results with the theoretical ones derived in Section 3.

To this end, we start by constructing criss—cross triangulation of € with A = 1/20 which has
O(h~2) singular vertices. Then for each singular vertex of the triangulation, we add its coordinates
by (r1,72)h®Tt, where r; € {—2,—1,1,2} is chosen randomly, and with exponent « € {0,1,2,3}; see
Figure 6. The resulting perturbed mesh has no singular vertices, but simple trigonometric arguments
show the vertex singularity of the mesh is O, ~ h®.

We report the quantities quantities ||V - w;l|, |V(wn — w;)|, and ||pn — (pi — %V - w;)|| using
the Pr X Pr—1 (k = 3,4) Taylor—-Hood and Scott—Vogelius elements with x = 1 in Figure 7. For
comparison, the convergence estimate for the Taylor—-Hood element stated in Theorems 3.4 and 3.10
read

B2l = (s = %V - wa)| < 1|V (wn — wi)| < Ch™* min{h~; "5, %),

which suggests a deterioration of the “errors” for large perturbation exponents «. Indeed, Figure 7
shows pre-asymptotic O(vy; L 2) convergence rates for a = 0 before achieving O(v; !) rates for large
values of ;. On the other hand, for larger a-values (e.g., @ = 2, 3), we see pre-asymptotic convergence
(k =4) or no convergence (k = 3). The deterioration of the errors for large a-values is most evident
for the modified pressure, where Figure 7 shows no convergence with respect to 7; for o € {2,3}.
Therefore we conclude from these results that the quantity ©, stated in Theorem 3.4 does influence
the convergence of the grad-div solution.
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FIGURE 5. Numerical experiments using the P; X Py pairs on Powell-Sabin splits
with fixed h = 1/32 and varying viscosity p. Here, pr = p; —v;V - u;. The plot shows
O(v; 1y convergence for all three quantities. The increase in the first and third plots
for large values of ; is due to round—off error.
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FIGURE 6. A criss—cross mesh of the unit square with h = 1/10 (left), and its per-
turbations with o = 0 (middle) and oo = 1 (right).

On the other hand, Figure 7 shows |V - u;|| = O(y; ') for any value a. Consequently, the conver-
gence estimate of this quantity stated in Theorem 3.4 may not be sharp for this quantity.

5.2.2. Grad-div Taylor-Hood methods with varying viscosity. In this series of tests we com-
pute the grad-div Taylor-Hood method with k& = 3,4 and vary the viscosity g = 1077 j = 1,2,3,4 on
a perturbed criss cross mesh with h = 1/20 and o = 0. In this setting, vertex singularity of the mesh
is ©, = O(1). The estimates stated in Theorems 3.4 and 3.10 read

p on = (i =7V - w) | < [V (wn = w)l < Cmin{y; ™, (i) =12}

We report the quantities ||V (w —u;)||, |V ;|| and ||pr — (p; — vV -u;)| for 45 = 10° and k € {3,4}
in Figure 8. We observe that the estimate ||V - u;|| converges with rate O(v; ') regardless of the value
of p. The errors ||pn, — (pi — %V - w;)|| and |V (wy, — w;)| initially converge with rates O(v; ') but
quickly increase for large 7;-values with rate O(v;) due to the round-off error (cf. Section 5.1.2).

5.3. Grad-div Taylor-Hood methods on type—I triangulations. In the final set of numerical
experiments, we compute the grad-div Taylor-Hood methods on type-I triangulations with h = 1/24
(cf. Figure 1). Recall from Remark 3.8 that on this mesh, not all interior vertices are interpolating
vertices, and therefore the cubic—quadratic Scott—Vogelius pair is not stable on this mesh.

Similar to the previous sections with compute the grad-div stabilized finite element method using
the Pj x Pr_1 pair with k& = 3,4 and fixed viscosity p = 1. As the Scott—Vogelius pair (wp,pp) is
unavailable on this mesh, we instead compute the errors ||V (u—w;)||, [|V-u;||, and ||p— (p; —7: V- u;) ||,
where (u,p) are given by (5.1).

We report these quantities in Figure 9. We observe a clear convergence of the divergence of the
computed solution with ||V ;|| = O(; ') (asymptotically) in both cases k = 3,4. On the other hand,
the errors for the quartic—cubic pair perform much better for large values of the grad-div parameter
~;. Indeed, in this case the errors stabilize relatively quickly at 7; = 102. On the other hand, for the
cubic-quadratic case, we see that the errors | V(u — u;)|| and especially ||p — (p; — %V - u;)|| increase
for large ~;-values. This behavior may be due to the instability of the Scott-Vogelius pair and the lack
of a discrete divergence—free subspace with optimal approximation properties.
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FIGURE 7. Results of the grad-div stabilized P, x Px_1 Taylor-Hood pair on O(h*+1)
perturbed criss-cross meshes with h = 1/20 and p = 1. Left: k = 4. Right: k = 3.
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