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Abstract. In this paper, we use recently developed theories of divergence–free finite element

schemes to analyze methods for the Stokes problem with grad-div stabilization. For example, we

show that, if the polynomial degree is sufficiently large, the solutions of the Taylor–Hood finite

element scheme converges to an optimal convergence exactly divergence–free solution as the grad-div

parameter tends to infinity. In addition, we introduce and analyze a stable first-order scheme that

does not exhibit locking phenomenon for large grad-div parameters.
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1. Introduction

Grad-div stabilization is a well-known and simple stabilization technique in numerical discretiza-
tions to improve mass conservation in simulations of incompressible flow. In its simplest form, the
methodology adds the consistent term (written in strong form)

−γ∇(∇ · u)

to the momentum equations of the (Navier-)Stokes equations. Here, γ > 0 is a user-defined constant,
which is referred to as the grad-div parameter. In addition to improving conservation of mass of the
scheme, this stabilization technique may also improve the coupling errors of the velocity and pressure
solutions. This can be advantageous for situations with large pressure gradients, e.g., in natural
convection problems.

While enjoying many benefits, the use of grad-div stabilization comes with several practical disad-
vantages. These include a deterioration of the condition number and reduced sparsity of the algebraic
system. Another disadvantage is the possible emergence of ‘locking’ for large grad-div parameters.
Indeed, simply energy arguments show the discrete velocity solution satisfies ‖∇ ·uh‖ = O(γ−1), and
therefore, in the limiting case, the discrete solution is divergence–free. If the discrete divergence–
free subspace does not have rich enough approximation properties, then grad-div stabilization, while
improving mass conservation, may lead to poor approximations.

The stability and convergence analysis for grad-div stabilization for incompressible flow have been
explored in, e.g., [23, 9, 10, 27, 1]. These estimates, together with numerical simulations, provide a
guide to choose optimal γ-values. For example, references [24, 21, 23, 4] suggests γ = O(1) as the
optimal value. On the other hand, numerical experiments in [12] and the analysis in [27, 1] suggest
that the optimal choice may be much larger and depend on the finite element spaces, the mesh, and/or
the viscosity of the model.

In another direction, and the path taken in this paper, is to identify and characterize the limiting
solution as the grad-div parameter tends to infinity. For example, in [7, 19], it is shown that the
Taylor–Hood finite element scheme on special (Clough-Tocher) triangulations, no locking occurs in the
limiting case γ →∞, and the Taylor–Hood grad-div solution converges to the analogous (divergence–
free) Scott–Vogelius solution.
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The purpose of this paper is to extend and generalize the results in [7] by incorporating the recent
theories of divergence–free finite element Stokes pairs. In this regard, we make two main contributions.
First we show the absence of locking for the two-dimensional Taylor–Hood pair for a general class
of meshes. In particular, we show that high–order Taylor–Hood pairs are generally locking-free. In
addition, we show that the limiting (Taylor-Hood) solutions converge to the solution of the divergence–
free Scott-Vogelius scheme, defined on general triangulations. The second contribution of the paper
is the introduction and analysis of a new low–order and stable finite element pair that is locking–free.
The velocity space is simply the linear Lagrange finite element space, and the pressure space consists
of piecewise constants with respect to an auxiliary coarsened mesh.

The paper is organized as follows. In the next section, we introduce the notation and a framework
for the grad-div finite element method for the Stokes problem. We show that the discrete solutions
converge to a solution of a divergence–free method with rate O(γ−1). In Section 3, we apply this
framework to the two-dimensional Taylor–Hood elements. The general theme of the results is that
additional mesh constraints are imposed for lower degree polynomial spaces. In Section 4, we define a
stable first-order scheme for the Stokes problem, and show that the solutions converge to a divergence–
free method as γ →∞. Finally, in Section 5 we provide some numerical experiments.

2. Notation and Framework

The Stokes equations defined on a polytope domain Ω ⊂ Rd (d = 2, 3) with Lipschitz continuous
boundary ∂Ω is given by the system of equations

−µ∆u +∇p = f in Ω,(2.1a)

∇ · u = 0 in Ω,(2.1b)

u = 0 on ∂Ω,(2.1c)

where the u is the velocity, p the pressure, and∇, ∆ denote the gradient operator and vector Laplacian
operators, respectively. In (2.1a), µ is the viscosity.

We define the following function spaces on Ω:

L2(Ω) := {w : Ω 7→ R : ‖w‖L2(Ω) := (

∫
Ω

|w|2 dx)1/2 <∞},

Hm(Ω) := {w : Ω 7→ R : ‖w‖Hm(Ω) := (
∑
|β|≤m

‖Dβw‖2L2(Ω))
1/2 <∞},

and set (·, ·) denote the inner product on L2(Ω) and set ‖ · ‖ = ‖ · ‖L2(Ω). The analogous spaces with
boundary conditions are given by

L2
0(Ω) := {w ∈ L2(Ω) :

∫
Ω

w dx = 0},

Hm
0 (Ω) := {w ∈ Hm(Ω) : Dβw|∂Ω = 0,∀β : |β| ≤ m− 1}.

We denote the analogous vector-valued function spaces in boldface; for example H1(Ω) = H1(Ω)d

and L2(Ω) = L2(Ω)d. We also define the space of H1
0 (Ω) divergence–free vector fields

V := {v ∈H1
0 (Ω) : ∇ · v ≡ 0}.

The weak formulation for (2.1) reads: Find (u, p) ∈ H1
0 (Ω)× L2

0(Ω) such that ∀(v, q) ∈ H1
0 (Ω)×

L2
0(Ω) we have

µ(∇u,∇v)− (∇ · v, p) = (f ,v),(2.2a)

(∇ · u, q) = 0.(2.2b)

It is well known that the problem (2.2) has a unique solution [13].
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Let Xh×Yh ⊂H1
0 (Ω)×L2

0(Ω) be a conforming finite element pair with respect to mesh parameter
h > 0. For each such a pair, we define the space of discretely divergence–free vector fields as follows

Vh := {v ∈Xh : (∇ · v, qh) = 0,∀qh ∈ Yh}.
We note, for many finite element pairs, there holds the non–inclusion Vh 6⊂ V .

The discrete Stokes problem corresponding to the pair Xh × Yh reads: Find (uh, ph) ∈ Xh × Yh
such that ∀(v, q) ∈Xh × Yh we have

µ(∇uh,∇v)− (∇ · v, ph) = (f ,v),(2.3a)

(∇ · uh, q) = 0.(2.3b)

Problem (2.3) has a unique solution provided that the pair Xh× Yh satisfies the inf-sup condition,
that is, there exists a constant β > 0 independent of the mesh parameter h such that

(2.4) sup
v∈Xh\{0}

(∇ · v, q)
‖∇v‖

≥ β‖q‖ ∀q ∈ Yh.

We introduce the corresponding grad-div stabilized problem, which reads: For given γ ∈ R with
γ > 0, find (uγh, p

γ
h) ∈Xh × Yh such that ∀(v, q) ∈Xh × Yh we have

µ(∇uγh,∇v) + γ(∇ · uγh,∇ · v)− (∇ · v, pγh) = (f ,v),(2.5a)

(∇ · uγh, q) = 0.(2.5b)

Again, standard arguments show that (2.5) is well-posed provided the inf-sup condition (2.4) is satis-
fied. Adding the term γ(∇ · uγh,∇ · vh) improves mass conservation and can reduce the effect of the
pressure error on the velocity approximation. The limiting case γ → ∞ is studied in the following
two theorems.

Theorem 2.1. Let Xh×Yh be a conforming finite element pair defined satisfying the inf-sup condition.
Let {γi}∞i=1 ⊂ R with γi → ∞, and let (ui, pi) ∈ Xh × Yh be the solution for (2.5) corresponding to
γi. Then the sequence {ui}∞i=1 ⊂Xh converges to some wh ∈Xh ∩ V . Moreover,

(2.6) ‖∇(u−wh)‖= inf
v∈Xh∩V

‖∇(u− v)‖.

Proof. We follow the ideas in [7, Theorem 3.1] and begin with an a priori bound which is obtained by
taking v = ui and q = pi in (2.5):

(2.7) µ‖∇ui‖2 + γi‖∇ · ui‖2 = |(f ,ui)|.
Thus, we have the following inequality

µ‖∇ui‖ ≤ ‖f‖∗,h ∀i ∈ N,

where ‖f‖∗,h = supv∈Xh\{0}
|(f ,v)|
‖∇v‖ . The above inequality shows that the sequence {ui}∞i=1 is a

uniformly bounded sequence in the finite dimensional space Xh. Hence, {ui}∞i=1 has a convergent
subsequence {uij}j that converges to some wh ∈Xh.

To show wh ∈ V , i.e., ∇ ·wh = 0, we use (2.7) and the Cauchy-Schwarz inequality to obtain

(2.8) ‖∇ · uij‖ ≤
1√

2µγij
‖f‖∗,h ∀j ∈ N.

Because ‖∇ · v‖ ≤
√

2‖∇v‖ for all v ∈H1
0 (Ω) and uij → wh, it follows that

‖∇ ·wh‖ = ‖∇ · (wh − uij + uij )‖
≤ ‖∇ · (wh − uij )‖+ ‖∇ · uij‖

≤
√

2‖∇(wh − uij )‖+
1√

2µγij
‖f‖∗,h → 0 as j →∞.

Hence, we conclude that ‖∇ ·wh‖ = 0, and so wh ∈ V .
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To show the estimate (2.6) and the uniqueness of wh, we observe that for v ∈Xh ∩ V we have

µ(∇wh,∇v)− (f ,v) = lim
j→∞

µ(∇uij ,∇v) + lim
j→∞

γij (∇ · uij ,∇ · v)− (f ,v)

= lim
j→∞

(µ(∇uij ,∇v) + γij (∇ · uij ,∇ · v)− (f ,v))

= 0.

Hence, wh satisfies

(2.9) µ(∇wh,∇v) = (f ,v) ∀v ∈Xh ∩ V ,

and (2.6) immediately follows by Cea’s lemma.
By the Lax-Milgram theorem, problem (2.9) has a unique solution. If {uik}k is another convergent

subsequence of {ui}∞i=1 that converges to some zh ∈ Xh, then zh is a solution to the problem
(2.9). Since the problem (2.9) has a unique solution, we conclude that wh = zh, which means any
convergent subsequence of {ui}∞i=1 converges to the same element in Xh. Hence the entire sequence
{ui}∞i=1 converges to wh. �

Theorem 2.2. Suppose that the conditions of Theorem 2.1 are satisfied. Set

Qh := ∇ ·Xh = {∇ · v : v ∈Xh},
and suppose that Yh ⊂ Qh and Xh ×Qh is an inf-sup stable pair, i.e.,

sup
v∈Xh\{0}

(∇ · v, q)
‖∇v‖

≥ βQ‖q‖ ∀q ∈ Qh, ∃βQ > 0.(2.10)

Then the sequence {(ui, pi−γi∇·ui)}∞i=1 ⊂Xh×Qh converges to (wh, ph) ∈ (Xh∩V )×Qh satisfying

µ(∇wh,∇v)− (∇ · v, ph) = (f ,v) ∀v ∈Xh,(2.11a)

(∇ ·wh, q) = 0 ∀q ∈ Qh.(2.11b)

There also holds

β2
Qµ
−1‖ph − (pi − γi∇ · ui)‖ ≤ βQ‖∇(wh − ui)‖(2.12)

≤ ‖∇ · ui‖ ≤ min{2β−1
Q γ−1

i , (2µγi)
−1/2}‖f‖∗,h.

Proof. The convergence ui → wh for some wh ∈ Xh ∩ V is established in Theorem 2.1. Since wh is
divergence–free, it clearly satisfies (2.11b).

To show the convergence of the modified pressure sequence, we first use with the inf-sup condition
for the pair Xh ×Qh (2.10) and the inclusion Yh ⊂ Qh to obtain

βQ‖pi − γi∇ · ui‖ ≤ sup
v∈Xh\{0}

−(∇ · v, pi) + γi(∇ · ui,∇ · v)

‖∇v‖

=
(f ,v)− µ(∇ui,∇v)

‖∇v‖
≤ ‖f‖∗,h + µ‖∇ui‖.

Thus, {pi − γi∇ · ui}∞i=1 ⊂ Qh is a bounded sequence, and thus has a convergent subsequence:
pij − γij∇ · uij → ph for some ph ∈ Qh. We then find that, for any v ∈Xh,

(∇wh,∇v)− (∇ · v, ph) = lim
j→∞

(
(∇uij ,∇v)− (pij ,∇ · v) + γij (∇ · uij ,∇ · v)

)
= (f ,v).

We conclude that (wh, ph) ∈ Xh × Qh satisfies (2.11). The convergence of the entire sequence
{(ui, pi − γi∇ · ui)}∞i=1 follows directly from the arguments in Theorem 2.1.

Next we establish the rate of convergence given in (2.12). As a first step, we first note that
‖∇wh‖ ≤ µ−1‖f‖∗,h. Consequently, by the inf–sup condition (2.10),

βQ‖ph‖ ≤ sup
v∈Xh\{0}

(∇ · v, ph)

‖∇v‖
= sup

v∈Xh\{0}

(f ,v)− µ(∇wh,∇v)

‖∇v‖
≤ 2‖f‖∗,h.(2.13)
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Write ei = wh − ui ∈ Vh and note that

µ(∇ei,∇v)− (ph − pi,∇ · v) + γi(∇ · ei,∇ · v) = 0 ∀v ∈Xh.(2.14)

Consequently, by setting v = ei and using ∇ ·wh = 0, we find

µ‖∇ei‖2 + γi‖∇ · ui‖2 = (∇ · ei, ph − pi) = (∇ · ei, ph) ≤ ‖∇ · ui‖‖ph‖.
Therefore by (2.13),

‖∇ · ui‖ ≤
2

γiβQ
‖f‖∗,h.

Combined with (2.8), this establishes the last inequality in (2.12).
To derive a convergence rate for ‖∇ei‖ with respect to γi, we introduce the space

Rh = (Xh ∩ V )⊥ = {v ∈Xh : (∇v,∇w) = 0 ∀w ∈Xh ∩ V }.
Because Xh ∩ V = {v ∈Xh : (∇ · v, q) = 0 ∀q ∈ Qh}, and Xh × Yh is assumed to be inf-sup stable,
there holds [20]

(2.15) ‖∇v‖ ≤ β−1
Q ‖∇ · v‖ ∀v ∈ Rh.

Write ei = e0
i + eRi with e0

i ∈ Xh ∩ V and eRi ∈ Rh. Because ‖∇ei‖2 = ‖∇e0
i ‖2 + ‖∇eR‖2 and

∇ · e0
i = 0, there holds by (2.15)

‖∇eRi ‖ ≤ β−1
Q ‖∇ · e

R
i ‖ = β−1

Q ‖∇ · ei‖ = β−1
Q ‖∇ · ui‖.

On the other hand, by taking v = e0
i ∈Xh ∩ V in (2.14), we get

0 = µ(∇ei,∇e0
i )− (ph − pi,∇ · e0

i ) + γi(∇ · ei,∇ · e0
i )

= µ(∇eRi ,∇e0
i ) + µ‖∇e0

i ‖2 = µ‖∇e0
i ‖2.

Thus e0
i ≡ 0, and therefore

‖∇ei‖ = ‖∇eRi ‖ ≤ β−1
Q ‖∇ · ui‖.

Finally, we use the inf-sup condition on Xh × Qh to derive the convergence rate of the modified
pressure equation as follows:

βQ‖ph − (pi − γi∇ · ui)‖ ≤ sup
v∈Xh\{0}

(∇ · v, ph)− (∇ · v, pi) + γi(∇ · ui,∇ · v)

‖∇v‖

= sup
v∈Xh\{0}

−µ(∇ei,∇v)

‖∇v‖
≤ µ‖∇ei‖.

�

Remark 2.3. Since wh ∈Xh ∩ V , the error ‖∇(u− ui)‖ can be decomposed as follows

‖∇(u− ui)‖ = ‖∇(u−wh + wh − ui)‖
≤ ‖∇(u−wh)‖+ ‖∇ei‖

≤ inf
v∈V ∩Xh

‖∇(u− v)‖+
2

β2
Qγi
‖f‖∗,h.

Since the pair Xh ×Qh is inf-sup stable, we have by [6, Theorem 12.5.17] to get the estimate

‖∇(u− ui)‖ ≤
(

1 +
C

βQ

)
inf

v∈Xh

‖∇(u− v)‖+
2

β2
Qγi
‖f‖∗,h,(2.16)

where C > 0 is a constant independent of h, βQ and γi.
For comparison, the following estimate for grad-div stabilized finite element methods for the Stokes

problem was derived in [27]:

‖∇(u− ui)‖2 ≤ inf
v∈Vh

(
4‖∇(u− v)‖2 + 2

γi
µ
‖∇ · v‖2

)
+

2

µγi
inf

qh∈Yh

‖ph − qh‖2,(2.17)
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Note that

inf
v∈Vh

(
4‖∇(u− v)‖2 + 2

γi
µ
‖∇ · v‖2

)
≤ inf

v∈Xh∩V

(
4‖∇(u− v)‖2 + 2

γi
µ
‖∇ · v‖2

)
≤
(

1 +
C

βQ

)
inf

v∈Xh

‖∇(u− v)‖

for a generally different constant C > 0. Thus, we see that the first term in the right-hand side of
(2.17) is sharper than the analogous term in (2.16). On the other hand, unlike estimate (2.17), the
bound (2.16) does not depend on µ. Thus, we conclude that the estimate (2.16) can be sharper than
the estimate (2.17) for small values of µ.

3. Application I: Taylor–Hood Pairs

In this section, we apply Theorem 2.2 to the two–dimensional Taylor–Hood pair and show, under
assumptions of the mesh and the polynomial degree, the Taylor–Hood finite element method with
grad-div stabilization does not experience locking in the limit γ → ∞. To proceed, we require some
additional notation.

Denote by Th a conforming, shape–regular, simplicial triangulation of Ω ⊂ R2. For T ∈ Th, we
denote by hT = diam(T ) and set h = maxT∈Th hT . Let VIh and VBh denote the sets of interior and
boundary vertices of Th, respectively, and set Vh = VIh ∪ VBh .

Let Pk(S) denote the space of polynomials of degree ≤ k with domain S; the analogous vector-
valued space is denoted by Pk(S) := [Pk(S)]2. We define the piecewise polynomials with respect to
the mesh Th as

Pk(Th) :=
∏
T∈Th

Pk(T ).

For an integer k ≥ 2, the Taylor–Hood pair is given as

XTH
h = Pk(Th) ∩H1

0 (Ω),

Y THh = Pk−1(Th) ∩H1(Ω) ∩ L2
0(Ω).

We also define the image of the divergence acting on the Taylor–Hood velocity space:

QTHh := ∇ ·XTH
h = {∇ · v : v ∈XTH

h }.(3.1)

It is well known that the pair XTH × Y THh is inf–sup stable provided that each T ∈ Th has at most
one boundary edge [5]. We assume this mild condition is satisfied throughout this section.

To apply Theorem 2.2 to the Taylor–Hood pair, we split the results into three cases, depending on
the polynomial degree: k ≥ 4, k = 3, and k = 2. The general theme is that additional mesh conditions
are introduced for lower degree polynomial spaces.

3.1. High order pairs: k ≥ 4. To apply Theorem 2.2 on the Taylor–Hood pair for k ≥ 4, we need
to establish the inf–sup stability of the pair XTH

h ×QTHh . To do so, following the notation introduced
in [16], we introduce the concept of a singular vertex and the vertex singularity of a mesh.

For z ∈ Vh, let Tz ⊂ Th denote the set of triangles that have z as a vertex. We assume that
Tz = {T1, . . . , TN}, enumerating such that Tj and Tj+1 share an edge for j = 1, . . . , N − 1, and if z
is an interior vertex, then T1 and TN share an edge. Letting θj denote the angle between the angle
between the edges of Tj originating from z, we define

Θz :=

{
max{| sin(θ1 + θ2)|, . . . | sin(θN−1 + θN )|, | sin(θ1 + θN )|} if z ∈ VIh,
max{| sin(θ1 + θ2)|, . . . | sin(θN−1 + θN )|} if z ∈ VBh .

Definition 3.1.

(i) We say that a vertex z is singular if Θz = 0; otherwise we say that z is non–singular.
(ii) The measure of vertex singularity of the mesh is given by the positive number

Θ∗ := min
z∈Vh
Θz 6=0

Θz > 0.
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Remark 3.2. An interior vertex is singular if and only if exactly two straight lines emanating from
the vertex (and hence N = 4 in this case). A non–corner boundary vertex z is singular if exactly two
triangles have z as a vertex. Finally, a corner (boundary) vertex z is singular if only one triangle in
Th has z as a vertex. Note that, because we assumed that each T ∈ Th has at most one boundary
edge, there exists no corner singular vertices.

The quantity Θz gives an indication on “how close” a non–singular vertex z is from being singular.
Essentially, if Θ∗ is small, then there exists a vertex in Th that is a small perturbation of a singular
vertex. Note that if the cardinality of Tz is greater than 4 for all z ∈ VIh, and greater than 2 for all
z ∈ VBh , then Θ∗ is uniformly bounded from below.

Let

Sh = {z ∈ Vh : Θz = 0}
denote the set of singular vertices in the mesh Th. A characterization of the divergence operator acting
on the Taylor–Hood velocity space is given in the next lemma for high–order pairs. Its proof is found
in [16, 26].

Lemma 3.3. Suppose that k ≥ 4. Then there holds

Y THh ⊂ QTHh := ∇ ·XTH
h = {q ∈ Pk−1(Th) ∩ L2

0(Ω) :

N∑
`=1

(−1)`q|T`
(z) = 0 ∀z ∈ Sh}.

Moreover, XTH
h ×QTHh represents an inf-sup stable pair with inf-sup constant βQ independent of size

of the triangles in Th. Rather, βQ = CΘ∗ for some h-independent constant C > 0.

Combining Lemma 3.3 with Theorem 2.2 then yields the convergence of the (high–order) grad-div
stabilized Taylor–Hood pair.

Theorem 3.4. Let {γi}∞i=1 ⊂ R with γi → ∞ and (ui, pi) ∈ XTH
h × Y THh be the solution of the

grad-div stabilized Stokes problem (2.5) corresponding to γi using the Taylor–Hood pair with k ≥ 4.
Then ui → wh and pi − γi∇ · ui → ph as i → ∞ for some wh ∈ XTH

h ∩ V and ph ∈ QTHh with
(wh, ph) being the solution for (2.11) with ×Qh = XTH

h ×QTHh . In particular,

Θ∗µ
−1‖ph − (pi − γi∇ · ui)‖ ≤ ‖∇(wh − ui)‖ ≤ CΘ−1

∗ min{Θ−1
∗ γ−1

i , (µγi)
−1/2},(3.2)

where C > 0 is independent of h, µ, and Θ∗.
If u ∈Hs(Ω) for some s ≥ 1, then the divergence–free function wh satisfies

(3.3) ‖∇(u−wh)‖ ≤ Ch`−1‖u‖H`(Ω),

where ` = min{k + 1, s} and C > 0 is independent of h, γ, µ and Θ∗.

Remark 3.5. For fixed µ, Theorem 3.4 implies that the convergence for the sequence {(ui, pi − γi∇ ·
ui)}∞i=1 to (wh, ph) is O(γ−1

i ) provided γi & Θ−2
∗ µ. Otherwise, for smaller grad-div parameters the

theorem predicts O(γ
−1/2
i ) convergence.

Remark 3.6. Theorem 3.4 states that {ui}∞i=1 converges to an exactly divergence–free solution with
optimal order properties as i→∞; this is true on meshes with singular vertices or “nearly singular”
vertices.

Proof. The convergence and convergence rates for the sequence {(ui, pi− γi∇·ui)}∞i=1 directly follow
from Lemma 3.3 with Theorem 2.2.

To prove (3.3), we first use the estimate (2.6):

‖∇(u−wh)‖ ≤ inf
v∈V ∩Xh

‖∇(u− v)‖.

Following [11], we introduce the modified H2-conforming Argyris (TUBA) finite element space [2]

Σh = {s ∈ H2
0 (Ω) ∩ Pk+1(Th) : s is C2 at all non-corner vertices of Th}.
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We then have [11]

∇× Σh := {∇ × s : s ∈ Σh} ⊂ V ∩Xh,

where ∇× s = (∂s/∂x2,−∂s/∂x1)ᵀ is the two–dimensional curl operator. Therefore, by writing u in
terms of its stream function u = ∇× ψ for some ψ ∈ H2

0 (Ω) ∩Hs+1(Ω), we have

inf
v∈V ∩Xh

‖∇(u− v)‖ ≤ inf
v∈∇×Σh

‖∇(u− v)‖

= inf
s∈Σh

‖D2(ψ − s)‖ ≤ Ch`−1‖ψ‖H`−1(Ω) ≤ Ch`−1‖u‖H`(Ω).

�

3.2. The cubic–quadratic Taylor–Hood pair. To apply Theorem 2.2 to the cubic-quadratic
Taylor–Hood pair, we incorporate the recent stability results of the cubic-quadratic Scott–Vogelius
pair in [17]. In particular, a characterization of the space QTHh (cf. (3.1)) was explicitly given and
inf–sup stability results were shown. To explain these results further, we introduce the concept of a
interpolating vertex.

Recall that for a vertex z ∈ Vh, Tz = {T1, . . . , TN} denotes the set of triangles that have z as vertex.
Set

Wz := {a ∈ RN : if z ∈ Sh, then

N∑
j=1

(−1)jaj = 0}.

Set

Ωz = int
(
∪T∈Tz T̄

)
,

and define

Xz = {v ∈XTH
h : suppv ⊂ Ωz :

∫
T

∇ · v dx = 0 ∀T ∈ Th, (∇ · v)(σ) = 0 ∀σ ∈ Vh\{z}}.

Definition 3.7. We say that z ∈ Vh is an interpolating vertex if, for all a ∈Wz, there exists v ∈Xz

such that (∇ · v)|Tj
(z) = aj for all j ∈ {1, 2, . . . , N}. We denote the set of all interpolating vertices in

Vh by Lh.

Remark 3.8. examples are given in [17], where the local interpolating vertex property in Definition
3.7 is satisfied by all interior vertices. Examples include

(1) Criss-crossed mesh
(2) Every mesh Th such that |Tz| = N is odd for all z ∈ VIh.

It is also shown in [17] that not every interior vertex in a type–I triangulation (cf. Figure 1) is an
interpolating vertex.

Now, we state the following lemma which gives a stability result of the cubic Scott-Vogelius pair.
We refer to [17] for a detailed proof.

Lemma 3.9. Suppose that k = 3 and VIh ⊂ Lh. Then there holds

Y THh ⊂ QTHh := ∇ ·XTH
h = {q ∈ Pk−1(Th) ∩ L2

0(Ω) :

M∑
`=1

(−1)`q|T`
(z) = 0 ∀z ∈ Sh}.

Moreover, XTH
h ×QTHh represents an inf-sup stable pair with βQ independent of size of the triangles

in Th. Rather, βQ = CΘ∗ for some h-independent constant C > 0.

Combining Lemma 3.9 with Theorem 2.2 then yields the convergence of the grad-div stabilized
Taylor–Hood pair.
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Figure 1. type–I triangulation on (0, 1)2

Theorem 3.10. Let {γi}∞i=1 ⊂ R with γi → ∞ and (ui, pi) ∈ XTH
h × Y THh be the solution of the

grad-div stabilized Stokes problem (2.5) corresponding to γi using the Taylor–Hood pair with k = 3.
Assume VIh ⊂ Lh, i.e., all interior vertices in Th are interpolating vertices. Then ui → wh and
pi−γi∇·ui → ph as i→∞ for some wh ∈XTH

h ∩V and ph ∈ QTHh with (wh, ph) being the solution
for (2.11) with Xh ×Qh = XTH

h ×QTHh . The convergence of (ui, pi − γi∇ · ui) satisfies (3.2).

3.3. The Quadratic-Linear Taylor–Hood pair on Clough-Tocher splits. The case quadratic–
linear Taylor–Hood pair on Clough-Tocher splits was discussed and studied in detail in [7]; here, we
state these results for completeness.

A Clough–Tocher split (or refinement) of a shape–regular triangulation Th is obtained connecting
the vertices of each triangle T ∈ Th to its barycenter. Thus, each triangle is split into three sub-
triangles. Denote by T CTh the Clough-Tocher split of Th, and, with an abuse of notation, define the
quadratic–linear Taylor–Hood pair on T CTh :

XTH
h = P2(T CTh ) ∩H1

0 (Ω),(3.4a)

Y THh = P1(T CTh ) ∩H1(Ω) ∩ L2
0(Ω).(3.4b)

The following lemma gives a characterization of the divergence acting on XTH
h and states that

the quadratic-linear Scott–Vogelius pair is stable on Clough–Tocher splits. Its proof can be found in
[3, 14].

Lemma 3.11. Let XTH
h × Y THh be defined by (3.4). Then there holds

Y THh ⊂ QTHh := ∇ ·XTH
h = P1(T CTh ) ∩ L2

0(Ω).

Moreover, XTH
h ×QTHh represents an inf-sup stable pair with inf-sup constant βQ independent of size

of the triangles in Th.

Combining Lemma 3.11 with Theorem 2.2 then yields the convergence of the (low–order) grad-div
stabilized Taylor–Hood pair.

Theorem 3.12. Let XTH
h × Y THh be defined by (3.4), and let {γi}∞i=1 ⊂ R with γi → ∞. Let

(ui, pi) ∈ XTH
h × Y THh be the solution of the grad-div stabilized Stokes problem (2.5) corresponding

to γi. Then ui → wh and pi − γi∇ · ui → ph as i → ∞ with rate O(γ−1
i ) for some wh ∈ XTH

h ∩ V
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and ph ∈ QTHh with (wh, ph) being the solution to (2.11). If u ∈ Hs(Ω) for some s ≥ 1, then the
divergence–free function wh satisfies

(3.5) ‖∇(u−wh)‖ ≤ Ch`−1‖u‖H`(Ω),

where ` = min{3, s} and C > 0 is independent of h, γ, µ and βQ.

Proof. The convergence and convergence rates for the sequence {(ui, pi− γi∇·ui)}∞i=1 directly follow
from Lemma 3.3 with Theorem 2.2 (see also [7]).

To prove (3.5), and to show that the constant C > 0 is independent of βQ, we first use the estimate
(2.6):

‖∇(u−wh)‖ ≤ inf
v∈V ∩Xh

‖∇(u− v)‖.

Following the ideas in Theorem 3.4, we introduce the modified H2-conforming Hsieh–Clough–Tocher
finite element space [18]

ΣCTh = H2
0 (Ω) ∩ P3(T CTh ).

We then have [18]
∇× ΣCTh := {∇ × s : s ∈ ΣCTh } ⊂ V ∩Xh.

Writing u = ∇× ψ for some ψ ∈ H2
0 (Ω) ∩Hs+1(Ω), we have

inf
v∈V ∩Xh

‖∇(u− v)‖ ≤ inf
v∈∇×ΣCT

h

‖∇(u− v)‖

= inf
s∈ΣCT

h

‖D2(ψ − s)‖ ≤ Ch`−1‖ψ‖H`−1(Ω) ≤ Ch`−1‖u‖H`(Ω).

�

4. Application II: The P1 × P0 pair on Powell-Sabin Splits

In the previous section, we considered the Taylor–Hood pair with grad-div stabilization for various
polynomial degrees. The general theme in the arguments is to use the stability of the Scott–Vogelius
pair to prove convergence and the absence of locking in the limiting case γ → ∞. In this section,
we show that the grad-div connection discussed in the previous sections can be generalized to the
low–order P1×P0 pair defined on a Powell-Sabin split mesh by incorporating the recently developed
divergence–free methods in [15, 8].

As before, we start with a shape–regular simplicial triangulation Th of Ω. We then construct the
Powell–Sabin split of Th as follows [25, 22]. Let T ∈ Th be a triangle with vertices z1, z2 and z3 labelled
counterclockwise, and let z0 be the incenter of T . Denote the edges of T by {ei}3i=1, labelled such
that zi is not a vertex of ei. Let z3+i be the interior point of the edge of ei that is the intersection
of the line segment connecting the incenters of the triangles T and its neighboring triangle that has
ei as an edge. We then construct the triangulation TPS = {T1, ..., T6} by connecting each zi to z0 for
1 ≤ i ≤ 6; see Figures 2 and 3.

Let T PSh =
⋃

T∈Th

⋃
τ∈TPS

τ be the global triangulation of Ω, and VPSh be the set of vertices of T PSh .

Let SPSh ⊂ VPSh be the set of all singular vertices in T PSh . Let SIh = {z ∈ SPSh : z 6∈ ∂Ω} be the set
of interior singular vertices, and SBh = {z ∈ SPSh : z ∈ ∂Ω} be the set of boundary singular vertices.
Observe that each z ∈ SIh is attached to exactly four triangles, and each z ∈ SBh is attached to exactly
two triangles. By construction, the cardinality of SPSh is exactly the number of edges in Th.

Definition 4.1. Let p ∈ P0(T PSh ) = {q ∈ L2(Ω) : q|T ∈ P0(T ),∀T ∈ T PSh }. We say that p satisfies

the weak continuity property on T PSh if for any z ∈ SIh and {T1, ..., T4} = Tz ⊂ T PSh we have that

p|T1
− p|T2

+ p|T3
− p|T4

= 0,

and for any z ∈ SBh and {T1, T2} = Tz ⊂ T PSh we have that

p|T1
= p|T2

.
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T1 T2

T3

T4T5

T6

Figure 2. A Powell-Sabin local split of a triangle. Note that the vertices z4, z5, and
z6 are singular vertices in global mesh.

Figure 3. A triangulation Th of the unit square (left), its Powell–Sabin refinement
T PSh (middle), and the mesh KPSh (right).

We introduce the finite element pair XPS
h × QPSh defined on the Powell-Sabin triangulation T PSh

proposed in [15]:

XPS
h = P1(T PSh ) ∩H1

0 (Ω),(4.1a)

QPSh = {q ∈ P0(T PSh ) ∩ L2
0(Ω) : q satisfies the weak continuity property}.(4.1b)

Now, we state the following lemma concerning the image of the divergence operator acting on XPS
h

and the inf-sup stability of XPS
h ×QPSh . We refer to [15] for a detailed proof.

Lemma 4.2. There holds

∇ ·XPS
h = QPSh

with bounded right-inverse. Therefore, XPS
h × QPSh is inf-sup stable, with inf-sup constant βQ inde-

pendent of h.

We note that, while XPS
h ×QPSh is an inf-sup stable and divergence–free pair, the construction of

a basis for the pressure space and its implementation are non–trivial. Here, we propose a smaller and
simpler pressure space that conforms to the framework in the previous sections. To this end, we let

KPSh = {
⋃
T∈Tz

T : z ∈ SPSh }

be the mesh obtained by connecting the triangles associated with each singular vertex. Thus, KPSh is
a set consisting of quadrilaterals (in the case that z is an interior singular vertex) and triangles (in
the case that z is a boundary singular vertex); see Figure 3.
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We define the auxiliary pressure space

(4.2) Y PSh = {q ∈ L2
0(Ω) : q|K ∈ P0(K),∀K ∈ KPSh }.

Remark 4.3. It was shown that the pair XPS
h ×QPSh is inf-sup stable when defined on the mesh T PSh .

Since Y PSh ⊂ QPSh , the pair XPS
h ×Y PSh is stable. Hence, we can incorporate Theorem 2.1 to conclude

the following theorem.

Theorem 4.4. Let {γi}∞i=1 ⊂ R with γi → ∞ and (ui, pi) ∈ XPS
h × Y PSh be the solution of the

grad-div stabilized Stokes problem (2.5) correspondes to γi using the pair XPS
h ×Y PSh . Then ui → wh

and pi − γi∇ · ui → ph as i → ∞ with rate O(γ−1
i ) for some wh ∈ XPS

h ∩ V and ph ∈ QPSh with
(wh, ph) being the solution for (2.11) with Xh ×Qh = XPS

h ×QPSh .

5. Numerical Examples

In this section, we perform some simple numerical experiments and compare the results with the
theoretical ones given in the previous sections. In all tests, we take the domain to be the unit square
Ω = (0, 1)2, and choose the source function such that the exact velocity and pressure solutions are
given respectively as

u =

(
π sin2(πx) sin(2πy)
−π sin2(πy) sin(2πx)

)
, p = cos(πx) cos(πy).(5.1)

5.1. The P1×P0 pair on Powell–Sabin Splits. In this section, we report and discuss the numerical
results for the P1 × P0 pair on Powell–Sabin splits.

Let Th be a quasi–uniform Delaunay triangulation of Ω with h = 1/32, and let T PSh be the
corresponding Powell-Sabin global triangulation (cf. Section 4). We compute problem (2.11) with
Xh×Qh = XPS

h ×QPSh defined by (4.1), and denote the solution pair by (wh, ph). We also compute
problem (2.5) with Xh × Yh = XPS

h × Y PSh (cf. (4.2)), and denote the solution pair corresponding to
γi by (ui, pi). The grad-div parameters are taken to be γi = 10i for i = 1, . . . , 6.

5.1.1. The P1 × P0 pair on Powell-Sabin Splits with fixed viscosity µ = 1. In Figure 4, we
plot the quantities ‖∇(wh − ui)‖,‖∇ · ui‖ and ‖ph − (pi − γi∇ · ui)‖ versus γi for fixed h = 1/32
and fixed viscosity µ = 1. The plot clearly shows linear convergence with respect to γ−1

i for all three
quantities, which is in exact agreement with Theorem 4.4.

5.1.2. The P1×P0 pair on Powell-Sabin Splits with varying viscosity. In these series of tests,
we compute the same problem as the previous section, but for different viscosity values: µ = 10−j for
j = 1, 2, 3, 4. We report the differences ‖∇(wh − ui)‖,‖∇ · ui‖ and ‖ph − (pi − γi∇ · ui)‖ versus the
grad-div parameter in Figure 5.

Again, we observe that all three quantities converge with rate O(γ−1
i ) for each value of µ, at least

for moderately sized values of γi. On the other hand, we see that, for small values of µ, the differences
‖ph − (pi − g∇ · ui)‖L2(Ω) and ‖∇(wh − ui)‖L2(Ω) increase (with rate = O(γi)) as γi → ∞. This
behavior is due to round-off error as we now explain.

Observe that (2.14) reads

µ(∇ei,∇v)− (ph − pi,∇ · v) + γi(∇ · ei,∇ · v) = 0 ∀v ∈Xh,

where ei = wh − ui. Consequently, by setting v = ei and using ∇ ·wh = 0, and dividing by µ and
rearrange terms, we find

‖∇(wh − ui)‖2L2(Ω) = ‖∇ei‖2 =
1

µ
(ph − (pi − γi∇ · ui),∇ · ui).

We computed the term 1
µ (ph− (pi− γi∇ ·ui),∇ ·ui), and we observed that as soon as this term is

less than machine epsilon, both quantities ‖∇(wh −ui)‖ and ‖ph − (pi − γi∇ ·ui)‖ grow as γi →∞.



CONNECTION BETWEEN STOKES FINITE ELEMENTS 13

101 102 103 104 105 106

10−6

10−5

10−4

10−3

10−2

10−1

γi

‖∇(wh − ui)‖
‖∇ · ui‖
‖ph − pr‖

Figure 4. Numerical results on Powell-Sabin splits using the P1×P0 pairs for fixed
h = 1/32 and viscosity µ = 1. Here, pr = pi − γi∇ · ui. The plot shows O(γ−1

i )
convergence for all three quantities.

5.2. Taylor–Hood Finite Elements. In this section we report and discuss the numerical results
for Taylor–Hood finite element with polynomial degrees k = 4, 3, 2, and compare the results with the
theoretical ones established in Section 3. We compute problem (2.11) with Xh ×Qh = XTH

h ×QTHh ,
and we denote the solution pair by (wh, ph). Also, we consider the problem (2.5) with Xh × Yh =
XTH
h × Y THh and we denote the solution pair by (ui, pi) that corresponding to γi.

5.2.1. Grad-div Taylor–Hood methods on perturbed criss–cross meshes with fixed vis-
cosity. Recall from Lemmas 3.3 and 3.9 that the stability of Scott–Vogelius pair depends on the
vertex singularity of the mesh Θ∗ given in Definition 3.1. This in turn affects the convergence be-
havior of the grad-div solution (ui, pi) to the divergence–free solution (wh, ph); see Theorems 3.4 and
3.10. The purpose of the tests presented in this section is to gauge the affect of the vertex singularity
of the mesh, and to compare the numerical results with the theoretical ones derived in Section 3.

To this end, we start by constructing criss–cross triangulation of Ω with h = 1/20 which has
O(h−2) singular vertices. Then for each singular vertex of the triangulation, we add its coordinates
by (r1, r2)hα+1, where ri ∈ {−2,−1, 1, 2} is chosen randomly, and with exponent α ∈ {0, 1, 2, 3}; see
Figure 6. The resulting perturbed mesh has no singular vertices, but simple trigonometric arguments
show the vertex singularity of the mesh is Θ∗ ≈ hα.

We report the quantities quantities ‖∇ · ui‖, ‖∇(wh − ui)‖, and ‖ph − (pi − γi∇ · ui)‖ using
the Pk × Pk−1 (k = 3, 4) Taylor–Hood and Scott–Vogelius elements with µ = 1 in Figure 7. For
comparison, the convergence estimate for the Taylor–Hood element stated in Theorems 3.4 and 3.10
read

hα‖ph − (pi − γi∇ · ui)‖ ≤ ‖∇(wh − ui)‖ ≤ Ch−α min{h−αγ−1
i , γ

−1/2
i },

which suggests a deterioration of the “errors” for large perturbation exponents α. Indeed, Figure 7

shows pre-asymptotic O(γ
−1/2
i ) convergence rates for α = 0 before achieving O(γ−1

i ) rates for large
values of γi. On the other hand, for larger α-values (e.g., α = 2, 3), we see pre-asymptotic convergence
(k = 4) or no convergence (k = 3). The deterioration of the errors for large α-values is most evident
for the modified pressure, where Figure 7 shows no convergence with respect to γi for α ∈ {2, 3}.
Therefore we conclude from these results that the quantity Θ∗ stated in Theorem 3.4 does influence
the convergence of the grad-div solution.
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Figure 5. Numerical experiments using the P1 × P0 pairs on Powell–Sabin splits
with fixed h = 1/32 and varying viscosity µ. Here, pr = pi−γi∇·ui. The plot shows
O(γ−1

i ) convergence for all three quantities. The increase in the first and third plots
for large values of γi is due to round–off error.
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Figure 6. A criss–cross mesh of the unit square with h = 1/10 (left), and its per-
turbations with α = 0 (middle) and α = 1 (right).

On the other hand, Figure 7 shows ‖∇ · ui‖ = O(γ−1
i ) for any value α. Consequently, the conver-

gence estimate of this quantity stated in Theorem 3.4 may not be sharp for this quantity.

5.2.2. Grad-div Taylor–Hood methods with varying viscosity. In this series of tests we com-
pute the grad-div Taylor–Hood method with k = 3, 4 and vary the viscosity µ = 10−j j = 1, 2, 3, 4 on
a perturbed criss cross mesh with h = 1/20 and α = 0. In this setting, vertex singularity of the mesh
is Θ∗ = O(1). The estimates stated in Theorems 3.4 and 3.10 read

µ−1‖ph − (pi − γi∇ · ui)‖ ≤ ‖∇(wh − ui)‖ ≤ C min{γ−1
i , (µγi)

−1/2}.

We report the quantities ‖∇(w−ui)‖, ‖∇·ui‖ and ‖ph−(pi−γi∇·ui)‖ for γi = 10i and k ∈ {3, 4}
in Figure 8. We observe that the estimate ‖∇ ·ui‖ converges with rate O(γ−1

i ) regardless of the value

of µ. The errors ‖ph − (pi − γi∇ · ui)‖ and ‖∇(wh − ui)‖ initially converge with rates O(γ−1
i ) but

quickly increase for large γi-values with rate O(γi) due to the round-off error (cf. Section 5.1.2).

5.3. Grad-div Taylor–Hood methods on type–I triangulations. In the final set of numerical
experiments, we compute the grad-div Taylor–Hood methods on type–I triangulations with h = 1/24
(cf. Figure 1). Recall from Remark 3.8 that on this mesh, not all interior vertices are interpolating
vertices, and therefore the cubic–quadratic Scott–Vogelius pair is not stable on this mesh.

Similar to the previous sections with compute the grad-div stabilized finite element method using
the Pk × Pk−1 pair with k = 3, 4 and fixed viscosity µ = 1. As the Scott–Vogelius pair (wh, ph) is
unavailable on this mesh, we instead compute the errors ‖∇(u−ui)‖, ‖∇·ui‖, and ‖p−(pi−γi∇·ui)‖,
where (u, p) are given by (5.1).

We report these quantities in Figure 9. We observe a clear convergence of the divergence of the
computed solution with ‖∇·ui‖ = O(γ−1

i ) (asymptotically) in both cases k = 3, 4. On the other hand,
the errors for the quartic–cubic pair perform much better for large values of the grad-div parameter
γi. Indeed, in this case the errors stabilize relatively quickly at γi = 102. On the other hand, for the
cubic-quadratic case, we see that the errors ‖∇(u−ui)‖ and especially ‖p− (pi − γi∇ ·ui)‖ increase
for large γi-values. This behavior may be due to the instability of the Scott-Vogelius pair and the lack
of a discrete divergence–free subspace with optimal approximation properties.
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Figure 7. Results of the grad-div stabilized Pk×Pk−1 Taylor–Hood pair on O(hα+1)
perturbed criss-cross meshes with h = 1/20 and µ = 1. Left: k = 4. Right: k = 3.
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Figure 8. Pk × Pk−1 grad-div sequences errors for O(h) perturbed mesh with dif-
ferent viscosities. Left: k = 4. Right: k = 3.
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Figure 9. Errors of grad-div finite element method using the Taylor-Hood pair Pk×
Pk−1 on type–I triangulation with k = 4 (left) and k = 3 (right). Here, pr =
pi − γi∇ · ui

.

References

[1] N .Ahmed, On the grad-div stabilization for the steady Oseen and Navier-Stokes equations, Calcolo, 54(1):471–501,

2017.

[2] J. H. Argyris, I. Fried, D. W. Scharpf The TUBA family of plate elements for the matrix displacement method,
Aero. J. Roy. Aero. Soc., 72:701–709, 1968.

[3] D.N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, in Advances in Computer Methods
for Partial Differential Equations VII, ed. R. Vichnevetsky and R.S. Steplemen, 1992.

[4] M. Braack, E. Burman, V. John, and G. Lube, Stabilized finite element methods for the generalized Oseen problem,

Comput. Methods Appl. Mech. Engrg., 196(4-6):853–866, 2007.
[5] D. Boffi, F. Brezzi and M. Fortin, Finite elements for the Stokes problem, in Mixed Finite Elements, Com-

patibility Conditions, and Applications, Lectures given at the C.I.M.E. Summer School, Springer-Verlag, Berlin,

2008.
[6] S. C. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Methods, Third Edition, Springer, 2000.

[7] M. A. Case, V. J. Ervin, A. Linke, L. G. Rebholz Connection between Scott–Voglius and Grad-Div stabilized

Taylor–Hood FE approximations of the Navier–Stokes equations, SIAM J. Numer. Anal., 49(4):1461–1481, 2011.
[8] S. Christiansen and K. Hu, Generalized finite element systems for smooth differential forms and Stokes’ problem,

Numer. Math., DOI:10.1007/s00211-018-0970-6, 2018.

[9] J. de Frutos, B. Garcia-Archilla, V. John, and J. Novo, Grad-div stabilization for the evolutionary Oseen problem
with inf-sup stable finite elements, J. Sci. Comput., 66(3):991–1024, 2016.

[10] J. de Frutos, B. Garcia-Archilla, V. John, and J. Novo, Analysis of the grad-div stabilization for the time-dependent

Navier-Stokes equations with inf-sup stable finite elements, Adv. Comput. Math., 44(1):195–225, 2018.
[11] R.S. Falk, M. Neilan, Stokes complexes and the construction of stable finite elements with pointwise mass conser-

vation, SIAM J. Numer. Anal., 51(2):1308–1326, 2013.
[12] K. J. Galvin, A. Linke, L. G. Rebholz, N. E. Wilson, Stabilizing poor mass conservation in incompressible ow

problems with large irrotational forcing and application to thermal convection, Comput. Methods Appl. Mech.

Engrg., 237/240 (2012), pp. 166-176,
[13] V. Girault, P.-A Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer

Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986.

[14] J. Guzmán and M. Neilan, Inf-sup stable finite elements on barycentric refinements producing divergence–free
approximations in arbitrary dimension, SIAM J. Numer. Anal., 56(5):2826–2844, 2018.

[15] J. Guzman, A. Lischke, M. Neilan Exact Sequences on Powell-Sabin Split, Calcolo, to appear.

[16] J. Guzman, R. Scott, The Scott-Vogelius Finite Element revisited, Math. Comp., 88(316):515–529, 2019.
[17] J. Guzman, R. Scott, Cubic Lagrange elements satisfying exact incompressibility, SMAI J. Comput. Math. 4:345–

374, 2018.

[18] V. John, A. Linke, C. Merdon, M. Neilan, and L.G. Rebholz, On the divergence constraint in mixed finite element
methods for incompressible flows, SIAM Rev., 59(3):492–544, 2017.



CONNECTION BETWEEN STOKES FINITE ELEMENTS 19

[19] A. Linke, L.G. Rebholz, and N.E. Wilson, On the convergence rate of grad-div stabilized Taylor-Hood to Scott-
Vogelius solutions for incompressible flow problems, J. Math. Anal. Appl., 381(2):612–626, 2011.

[20] A. Linke, M. Neilan, L.G. Rebholz, and N.E. Wilson, A connection between coupled penalty projection timestepping

schemes with FE spatial discretization for the Naiver-Stokes equations, J. Numer. Math., 25(4):229–248, 2017.
[21] G. Lube and M. A. Olshanskii, Stable finite-element calculation of incompressible flows using the rotation form of

convection, IMA J. Numer. Anal., 22(3):437–461, 2002.

[22] M.-J. Lai and L. L. Schumaker, Spline functions on triangulations, Encyclopedia of Mathematics and its Applica-
tions, 110., Cambridge University Press, Cambridge, 2007.

[23] M. Olshanskii and A. Reusken, Grad-div stabilization for Stokes equations, Math. Comp., 73:1699–1718, 2004.
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