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Abstract—Current research that use wireless charging for the
energy replenishment of nodes in a network mostly considers
charging of sensors from special mobile charging vehicles (MCV)
and focuses on optimal path planning of these MCVs. However,
it may not be practical to use such vehicles due to its operational
cost and other restrictions. To this end, in this paper, we
consider to utilize smartphones owned by people and let the low
cost Internet of Things (IoT) devices harvest energy from the
smartphones that pass by. We study the wireless crowd charging
of such IoT devices from these smartphones in an opportunistic
manner, without changing their actual trajectories. As each
smartphone user will limitedly support such a crowd charging
process, the selection of IoT devices that will be charged from
each smartphone has to be determined based on the trajectories
of smartphone users. To address that, we model the problem
using Mixed Integer Linear Programming (MILP) and decide the
optimal charging relation between smartphones and IoT devices.
Through simulations on both synthetic and real user traces, we
show that MILP based solution offers a more successful crowd
charging outcome with a better charging ratio than the greedy
approach where the IoT devices can harvest maximum possible
energy from all users encountered.

Index Terms—Crowd charging, wireless energy harvesting,
opportunistic network, wireless power transfer.

I. INTRODUCTION

Internet of Things (IoT) technology has enabled many
devices to be connected to collect and exchange data in
various applications including smart cities [1], environmental
monitoring [2], localization [3] and home automation. As the
operation of IoT devices mostly depend on capacity limited
batteries, their energy constraint has to be addressed for
continuous operation. One common approach is to harvest
energy from surrounding environment, such as solar, wind, or
vibration [4], however its performance highly varies in practice
and is intermittent and limited due to the uncontrollable
environmental conditions such as cloudy skies [5].

Thanks to the recent breakthroughs in wireless power trans-
fer (WPT) [6] and RF based energy harvesting techniques [7],
wireless charging of low-power IoT devices and sensors have
been considered as a practical remedy. Most of the current
research, however, considers charging of sensors from mobile
charging vehicles (MCV) such as robots, and UAVs and
focuses on the optimal path planning of these MCVs in
order to replenish the energy of sensors before they face
energy shortage [8]-[10]. There are also studies that focus on
designing novel beamforming based WPT systems [11]-[13]
for IoT devices.

Us

Fig. 1: Overview of the wireless crowd charging system. IoT devices
on the routes of smartphone users receive wireless energy from
smartphones opportunistically. Each IoT device needs to select the
set of smartphones that they will harvest energy from considering
the charging thresholds of smartphones and their spatio-temporal
trajectory distributions.

In this paper, our goal is to leverage the smartphones owned
by people to wirelessly charge the IoT devices in their vicinity.
The advantage of using smartphones as in the roles of mobile
charging vehicles is that they are carried by people and most
of the time they are charged at home during night by people
thus there is no dedicated effort for their mobility and energy
management. The idea of crowd charging has recently been
considered in several different domains. For example, it has
been considered for the charging of smartphones in a mobile
social network environment [14]-[17], and for the charging of
electric vehicles (EV) [18], [19] from other EVs with excessive
energy. To the best of our knowledge, there is also only one
very recent work [20] that considers charging of IoT devices
from smartphones and studies a game theoretical incentive
framework. However, authors assume that smartphone users
will be provided incentives to change their regular routes and
charge the IoT devices, which may not work in practice.
Contrary to this study, in this paper, we study the charging
of IoT devices from smartphones in an opportunistic manner,
i.e., without having the smartphone users deviate from their
original path or making them have a stop for charging the
devices. An example scenario for the proposed system is
illustrated in Fig. 1.
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The goal is to let the IoT devices harvest energy from
the smartphones of users who are passing by them. While
the mobility cannot be controlled per definition of the sce-
nario, there are things that could be managed to increase
the performance of the proposed wireless crowd charging
scenario. For example, the power levels of the transmitters
in the smartphones can be adjusted to maximize the wireless
charging performance when they are in the vicinity of the
IoT devices in need. Note that while it is technically possible
to achieve long distance charging at higher charging rates
(e.g., as high as to fully charge even a smartphone), due to
the Federal Communications Commission (FCC) regulations
which mandate a maximum of 1 watt power transmission,
there is a limit on what is achievable. While the 1 watt
power limit causes harvesting of very small energy (e.g., a few
milliwatts in three feet) and will not help realize the charging
of a smartphone, it will help power many low-power IoT
devices in public and commercial places such as thermometers,
window sensors, and motion sensors at reasonable distances.

In this crowd charging model, we assume that users will
follow their regular trajectories which are known or could be
predicted. The IoT devices on their paths will be eligible to
harvest energy from smartphones, however each smartphone
will have a certain threshold up to which it can share energy.
Note that we do not allow the mobile users to stop or alter
its paths in anyway in order to charge the IoT devices.
We assume IoT devices are equipped with energy receiv-
ing capabilities and mobile users are equipped with energy
transmitting capabilities. Such an energy harvesting can be
achieved utilizing wireless energy sharing methods including
far [21], [22] or near [23], [24] field technologies. The energy
consumption due to mobility and other factors are not taken
into consideration since this is beyond the focus of this paper.
We propose an optimal user selection strategy for IoT devices
(through communication and agreement between smartphones
and IoT devices) with a goal of maximizing the total charging
coverage (i.e., number of fully charged devices) and total
energy harvested in the network. Through simulations, we
evaluate the performance of proposed solution using traces
generated from a real dataset as well as random walk based
simulations. The results show the benefit of optimal selection
strategy over a greedy approach where the IoT devices harvest
maximum possible energy from all users encountered.

The rest of the paper is organized as follows. We provide
our system model and assumptions in Section II. In Section
II, we provide the details of the proposed Mixed Integer
Linear Programming (MILP) based solution and the greedy
approach. Then, in Section IV, we provide the details of the
simulations made and show the simulation results that evaluate
the performance of the proposed solution. Finally, we end up
with conclusion in Section V.

II. SYSTEM MODEL

We assume a set S = {s1, Sa,... 5, } of static IoT devices
(e.g., sensors) that are rechargeable. Each sensor is equipped
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[ Notations | Description

S Set of IoT devices in the crowd charging system.

U Set of mobile users in the crowd charging system.

P(s;,uj)| Power rate of sensor s; received from user u; per
min.

DPmin Minimum power dissipated upon contact with IoT
devices.

pe(si) Power consumption rate per min for sensor s;.

E,(s;) Total energy need for a sensor s; for a day.

E¢(s;) Total energy received by IoT device s; by time t.

CR Total Charging Ratio.

T Deadline for completing charging.

€s;,u; (t) | Total energy provided by user u; to IoT device s;.

EU Total energy harvested by all IoT devices at the end
of deadline (T).

u Energy sharing threshold for mobile user j.

TABLE I: Notations and their description

with wireless energy harvesting equipment and thus can har-
vest energy from the smartphones of mobile users passing by.
We assume a set U = {uq,us,...u,} of mobile users that
participate to the crowd charging of IoT devices registered
in the system. Both the IoT devices and mobile users are
distributed in a two-dimensional region.

For the energy harvesting model, we assume a simplified
commonly used [20], [25] empirical wireless energy harvest-
ing model which is defined as follows:

Wlﬂ)mim ifd<r,

P(si,uj) =
( 2 0, d>r.

ey

where P(s;,u;) is the power rate of a sensor s; received
from a user u; per min. o and 3 are the environmental
constraints and r is the maximum charging range for sensors.
Similarly, Py, is the minimum power dissipated when the
IoT device harvests energy from a nearby mobile user. [; is
the charging level of a mobile device which we set to 6 for
the rest of the paper. Also, let p.(s;) be the consumption rate
of sensor s; per min. We calculate the energy need of sensor
s; for a day as:

E,(s;) = pe(si) x 24 x 60

We assume that sensors can harvest energy up to its need
and no more. The model assumes that mobile users crowd
charges the devices as an energy backup for the next day,
hence we do not take into account the energy loss due to
consumption by the devices. Also, since the main goal is to see
the benefit of crowd charging for IoT devices, we do not take
into the energy consumption by the mobile devices. However,
we assume that there is a threshold to identify the maximum
amount of energy that can be shared by a given mobile user
to prevent excessive utilization of a single user device. We
denote this threshold for u; as ;. Let E.(s;) be the total
energy received by the IoT device s; by time t and let CR be
the ratio of totally charged IoT devices at the end of deadline
T. CR can be expressed formally as:

|{Si | S; € S7 ET(SZ')
15|
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where |S| is the total number of available IoT devices in the
network.

Similarly, since we do not consider losses due to mobility
and other factors, the total energy harvested can be calculated
based on the total energy provided by all users. Let EV be
the total energy harvested from a set U of mobile users at the
end of deadline T. Then, EY can be expressed as:

T
BY =2 > > ()

t=0 s, €S u; €U

3

where €, 4, (1) is the total actual energy provided by the user
uj to the sensor s; at time t. Note that ¢, ., (t) will be less
than or equal to P(s;,u;) at any time t. The notations used
throughout the paper and their descriptions are summarized in
Table 1.

III. PROPOSED SOLUTION

In this section, we first provide a greedy approach for energy
harvesting scheduling of IoT devices from smartphones and
then provide the details of a Mixed Integer Linear Program-
ming (MILP) based optimal user selection strategy.

1) Greedy Charging (GC): In this simple approach, we
allow the IoT devices to greedily harvest energy from the
mobile devices they encounter. That is, as the smartphone users
move following their own trajectories and when they come
to the transmission range of IoT devices, the devices harvest
energy following (1) until their needed energy amount F,, is
satisfied. Note that as there is a limit on the amount of energy
that can be shared by each smartphone, once the charging of
earlier IoT devices on the trajectory of a smartphone user make
the smartphone reach that limit, it stops charging thus the IoT
devices in the rest of the trajectory will not benefit from this
smartphone. Moreover, if this smartphone is their only option
to be charged, then they will not be charged as the drawback
of this greedy approach.

2) Optimal Charger (OC) selection: The objective of op-
portunistic crowd charging is to maximize the amount of
energy harvested in the network with a goal of fully charging
the IoT devices that fall on the trajectory of the mobile users
without any deviation from their original trajectories. However,
due to the overlap between the sets of IoT devices that are
on the trajectories of each smartphone user, the selection of
IoT devices which will harvest energy from each smartphone
is critical. To this end, we utilize a Mixed Integer Linear
Programming (MILP) based optimal charger selection strategy
to maximize the amount of energy harvested and number of
IoT devices charged.

Since, we do not allow mobile users to change their tra-
jectory to charge the IoT devices and we only allow a certain
percentage of user energy to be harvested, the greedy selection
of users to harvest energy from can cause some loT devices
not charged in the amount of their need from the users passing
by them. Thus, an optimal selection of chargers is important
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for IoT devices to gain the optimal benefit. The MILP program
for optimal charger selection is formulated as below:

max (EY +CR) “4)
s.t. 0 < €g,u,;(t) < min(En(si) — Ei(si), P(si,uy5)))
5
T

D> o, () <11y x 100, Vu; € U (6)

t=0 s; €8
E(s;) = Z €s;,u;(d), Vs; €S 7

ujel,del..t
EY <Y Eu(si) ®)
s, €S

The objective function (4) first aims to maximize the total
energy harvested in the network from users U and also aims
to increase the total charging ratio (CR), which is defined as
the number of IoT devices fully charged for the same total
energy harvested. Note that the objective function is indeed
M x EY +CR, where M is the largest possible value for C'R,
so it gives priority to EV over CR. Since CR < M =1, we
simply write it as in (4) without presence of M = 1. Constraint
(5) denotes how much energy can be harvested from mobile
user u given the user node and IoT devices are within the
transmission range (r). Similarly, constraint (6) restricts each
mobile user to share more energy than the predefined upper
threshold (u;). We use 100 as the current mobile user’s energy
since we assume that each node will always have sufficient
energy for the IoT device to harvest from. Constraint (8)
limits the total energy harvested by the total energy demand
in the network. Overall, with all these constraints, we want
to utilize the energy from smartphones as efficient as possible
within their limitations (e.g., mobility, threshold on the energy
amount that can be shared). The ideal goal is to fully supply
the demand from all IoT devices and fully charge each of them
separately.

IV. EVALUATIONS

In this section, we provide the evaluation of the proposed
crowd charging based solutions for IoT devices. We first
provide the details of the simulation setting used, then list
the performance metrics and provide the results.

Simulation setting. We develop a custom Java based simulator
to simulate the crowd charging scenario studied. We use two
different user traces to evaluate our proposed methods:

o Synthetic traces: We generate trajectories for multiple
users that move on a lkm by lkm torus using random
walk mobility model whose parameters are shown in
Table II. We set u; to 0.2 and the number of users to
30 when generating different results. We also deploy 20
IoT devices on the same area and set the charging range
to 30 m.

KAIST traces [26]: These traces contain trajectories for
92 mobile users. We set number of IoT devices to 12 and
generate results for different number of users. Similarly,
we set u; to 0.2 to generate results for different number of
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Parameters | Values
Constant « in wireless energy harvesting model 0.64
Constant 3 in wireless energy harvesting model 10

Number of IoT devices |S] 20, 12]
Charging range (r) [30, 50] m
Energy sharing threshold for mobile users (u;) 0.2
Minimum energy dissipated upon contact p,,in in | 600
unit/min

Consumption power rate for sensor p¢(s;) of s; in | [0.02 - 0.06]
unit/min

Charging level [; 6

Deadline T 300 min
Torus area 1 km X 1 km
Speed (min, max) of users in random walk 4, 10)
Epoch period (min, max) in random walk (8, 15) min

TABLE II: Simulation parameters and their values

users. In addition, we also show results based on varying
u;. The charging range is set to 50 m.

The simulation parameters and their values are summarized in
Table II.

Performance metrics. In order to evaluate the performance
of the proposed charger selection strategies, we utilize two
performance metrics:

o Charging Ratio (CR): This is the total number of sensors
fully charged (e.g., sensor s; is fully charged if it harvests
all of its demanded energy E,,(s;) at the end of deadline
(T)) to the total number of sensors in the network. It is
calculated using (2).

Supply Demand Ratio: This metric is the indication of
how much energy is harvested in the network given
a certain amount of energy demand. A higher supply
demand ratio means a higher energy harvested in the
network. This metric can be expressed as:

EU
Eies En(si)

Results. We first look at the performance comparison of MILP
based solution to greedy solution in the KAIST traces shown
in Fig. 2. Fig. 2a shows the charging ratio achievable from
both strategies. We can clearly see that optimal charging
strategy outperforms greedy approach. With increasing number
of users, the available energy in the network increases, thus
IoT devices are able to harvest more energy and consequently
receive sufficient energy to be fully charged. Similarly, Fig.
2b shows the total supply demand ratio achievable using
greedy and optimal (i.e., MILP based) charging strategies. The
optimal charging strategy is able to harvest more energy even
with fewer users due to its smart selection of charging users.
However, when the number of users are increased, even greedy
method is able to obtain total supply demand ratio of 1. Fig. 2c
shows the charging ratio obtained for different energy sharing
threshold. To this end, we use 50 users and 12 IoT devices to
generate these results. We can see that when we increase the
sharing threshold, the IoT devices can harvest more energy
during the limited contact duration of nodes and IoT devices
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Fig. 2: Comparison of Greedy Charging (OC) against Optimal
Charging (OC) in terms of (a) charging ratio given different
number of mobile users, (b) supply demand ratio for different
number of mobile users (when u; = 0.2), (c) charging ratio
for varying u;, (d) supply demand ratio for varying 1; (when
|U| = 50) using KAIST traces.

and thus the number of fully charged IoT devices increases.
Similarly, Fig. 2d shows achievable supply demand ratio for
increasing sharing threshold. In all the cases, we can see the
optimal charging strategy outperforms the greedy approach for
charger selection.

Also, in Fig.3, we show the charging ratio and supply
demand ratio for different number of users and different shar-
ing thresholds using synthetic traces. We consider 30 mobile
users and 20 IoT devices to generate these results. From
Fig. 3a, we can see that optimal charging is able to charge
more [oT devices with a given number of users than greedy
approach. However, when the number of users is increased to
70, both methods can charge all the IoT devices. This clearly
shows the benefit of optimal charging strategy over greedy
charging especially when there are limited number of users
in the network. Similarly, Fig. 3b shows the total achievable
supply demand ratio for different number of mobile users. As
expected, the optimal strategy is able to harvest more energy
from users due to its careful selection of charging users thus
provides a higher supply demand ratio. Fig. 3c and Fig. 3d
show the impact of sharing threshold on achievable charging
ratio and supply demand ratio, respectively. The results show
that optimal charging strategy outperforms greedy approach
again in this setting, by providing higher charging ratio and
supply demand ratio especially when the amount of energy
shared by smartphones is limited (i.e., sharing threshold is
small).

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on April 28,2021 at 13:56:15 UTC from IEEE Xplore. Restrictions apply.



[ [ )
o 0.8 |[EEdoc os
T
o6 2os
2 E
2o4 Sos
2 2
©o2 go2 E——r
—s—oc

o
o

10 30 50 70 90 0 20 20 60 80
Number of mobile users Number of mobile users
(a) (®)
1 1
I GC 2
o 0.8 f [EEEoC gos
T o
X6 506
2 £
e
D04 Soa4
] >
5 )
2] —&—0C
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Sharing Threshold Sharing Threshold
© (@

Fig. 3: Comparison of Greedy Charging against Optimal
Charging in terms of (a) charging ratio given different number
of mobile users, (b) supply demand ratio for different number
of mobile users (when u; = 0.2), (c) charging ratio for varying
uj, (d) supply demand ratio for varying w; (when |U| = 30)
using synthetic traces.

V. CONCLUSION

In this paper, we study the wireless crowd charging of
IoT devices from the smartphones owned by people that are
passing by. In contrast to prior work, we study a crowd
charging scenario in an opportunistic manner and assume
that the user devices charge the IoT devices through their
originally scheduled paths. In other words, they do not change
their trajectories for the purpose of charging the devices.
We study two different charging strategies, namely, a greedy
approach and optimal charging strategy that is determined by
a MILP based model. Through simulations on both synthetic
and real user traces, we show that MILP based strategy can
achieve a better charging ratio than the greedy approach while
providing more supply demand ratio. For future work, we plan
to introduce limited deviations in user trajectories to improve
the performance of crowd charging scenario for IoT devices.
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