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1. Introduction

The Open Coloring Axiom (OCA) is the assertion that every open graph on a separable metric space 

is either countably chromatic or else has an uncountable complete subgraph. Here a graph is open if the 

adjacency relation on the vertex set is topologically open. OCA is a consequence of the Proper Forcing 

Axiom (PFA) [10] and has been useful in a broad spectrum of applications, especially when combined with 

Martin’s Axiom [3], [4], [6], [7], [12], [10], [13], [14].

This form of OCA is due to Todorcevic [10] and was inspired by similar principles (one bearing the same 

name) introduced and studied by Abraham, Rubin, and Shelah in [1]. All of those consequences except the 

one also denoted OCA follow from Todorcevic’s formulation of OCA. In what follows, we will denote the 

original OCA of [1] by OCA[ARS].

Soon after Todorcevic introduced OCA, he proved that it implies b = ℵ2 and asked if it implies c = ℵ2

[10]. This question was made more intriguing by the following result.

Theorem 1. [8] The conjunction of OCA[ARS] and OCA implies that c = ℵ2.

Recently Gilton and Neeman have announced that OCA[ARS] does not imply c = ℵ2. One purpose of 

this note is to present two results which relate to the problem of whether OCA implies c = ℵ2. The first is 

stated as follows.
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Theorem 2. If OCA holds and Q is a c.c.c. forcing which adds a new real then OCA fails in any forcing 

extension by Q which does not add a dominating real.

Theorem 2 gives some explanation to the general observation that it is very difficult (if not impossible) to 

add any reals and preserve OCA.

In order to understand and motivate the second result, we need to recall the basic structure of the proof of 

Theorem 1. Central to the argument is the notion of a code for a real r, which was inspired by Todorcevic’s 

proof that PFA implies c = ℵ2 [9] (see [2], [11]). A code for r is an uncountable clique for a certain open 

graph Gr on ωω. In [8] it is shown that OCA implies that if X ⊆ ωω is an unbounded <∗-chain consisting 

of increasing functions, then each real has a code which is a subset of X. It is then shown that OCA[ARS]

implies that any X0 ⊆ ωω of cardinality ℵ1 can contain codes for at most ℵ1 many reals. The next result 

shows that this consequence of OCA[ARS] is not a consequence of OCA.

Theorem 3. OCA is consistent with the existence of a set X0 ⊆ ωω of size ℵ1 which contains codes for ℵ2

reals.

The final section of the paper answers a question of Ilijas Farah. In [5], he introduced a formal strength-

ening of OCA in [5] which he denoted OCA∞. This strengthening also follows from PFA and has been used 

in some applications of PFA where OCA a priori wasn’t quite sufficient to carry out the proof. It turns out, 

however, that OCA∞ is equivalent to OCA.

Theorem 4. Assume OCA. Whenever X is a separable metric space and 〈Gn | n ∈ ω〉 is a decreasing 

sequence of open subsets of [X]2 then either:

(1) there is a decomposition X =
⋃

n∈ω Xn where Gn ∩ [Xn]2 = ∅ for each n ∈ ω or

(2) There is an uncountable partial injection f : 2ω → X such that if a 
= b are in the domain of f , then 

{f(a), f(b)} ∈ G∆(a,b).

The conclusion of Theorem 4 is in fact a formal strengthening of OCA∞ already considered in [5].

2. Notation and preliminaries

While an attempt has been made to keep this paper self contained, the reader is encouraged to have 

some familiarity with [8] as much of the motivation for the results in this paper stem from it. We will now 

fix some notation and recall some definitions. If x, y ∈ ωω are distinct, define Δ(x, y) to be the minimum n

such that x(n) 
= y(n). The function 2−∆(x,y) defines a separable metric topology on ωω which is compatible 

with the product topology. We will also equip ωω with the partial order of eventual dominance: x <∗ y

if x(n) < y(n) for all but finitely many n. We will identify [ωω]2 — the collection of all unordered pairs 

from ωω — with the collection of ordered pairs (x, y) ∈ (ωω)2 such that x <lex y. When we refer to the 

topology on [ωω]2, we will be referring to the subspace topology inherited from (ωω)2. Occasionally we will 

need to replace ωω with ω↑ω, the collection of all strictly increasing functions from ω to ω. Recall that b, 

the unbounding number, is the smallest cardinality of a <∗-unbounded subset of ωω.

We will need the map t from [8] and the notion of a code as presented there. To liberate the variable t

we will use τ to denote this map. All that we will need from τ is that it satisfies the following conditions:

(1) τ is continuous and the domain of τ is an open subset of [ω↑ω]2;

(2) if x <∗ y then {x, y} is in the domain of τ ;

(3) for all {x, y} in the domain of τ , τ(x, y) is a binary sequence of length Δ(x, y).
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(4) If r is in 2ω and X ⊆ ω↑ω is unbounded and countably directed with respect to <∗ then there is a 

{x, y} ∈ [X]2 ∩ dom(τ) such that τ(x, y) is an initial part of r.

Define Gr to be the collection of all pairs {x, y} such that τ(x, y) is defined and is an initial part of r. A set 

H ⊆ ω↑ω is said to be a code for an element r of 2ω if H is uncountable and [H]2 ⊆ Gr.

If G is an open graph on X, we will let H(G, X) denote the collection of all finite cliques viewed as 

a forcing, with the order of reverse containment. We will need the following consequence of the proof of 

Theorem 4.4 of [10].

Lemma 1 (CH). Let (G, X) be an open graph on a separable metric space X and let 〈Mα | α ∈ ω1〉 be a 

continuous ∈-increasing sequence of elementary submodels of H(ℵ2), each with (G, X) as an element. If Y

is separated by �M then H(G, Y ) is c.c.c. in all its finite powers.

Here �M separates Y if for all x 
= y in Y there is an α ∈ ω1 such that exactly one of x, y is in Mα.

3. OCA and c.c.c. forcing extensions

In this section we will give a proof of Theorem 2. Let P be a c.c.c. partial order and let G ⊆ P be 

V -generic such that V [G] does not contain a dominating real. Let t ∈ 2ω be in V [G] but not in V . By 

assumption, ω↑ω ∩ V is unbounded in V [G]. Since P is c.c.c., every countable subset of ω↑ω ∩ V in V [G] is 

contained in a countable set in V and hence ω↑ω ∩ V is countably directed in V [G]. By the properties of τ , 

the restriction of Gr to ω↑ω is not countably chromatic and hence there is a code H ⊆ ω↑ω ∩ V for t. Now 

return to V and let X be the collection of all x in ω↑ω such that there is a p in P which forces x̌ to be in Ḣ.

Now define a graph G∗ on X × 2ω by putting {(x, r), (y, s)} in G∗ if and only if x 
= y and τ(x, y) is an 

initial part of either r or s. To prove the theorem, it suffices to show that G∗ is not countably chromatic 

and yet does not contain an uncountable clique.

To see that G∗ is not countably chromatic, suppose for contradiction that it is and let X ×2ω ⊆
⋃

n∈ω Γn

where Γn is closed and G∗ independent for each n. For each x in X, define

Γn(x) := {r ∈ 2ω | (x, r) ∈ Γn}

and for each r in 2ω define

Γ−1
n (r) := {x ∈ X | (x, r) ∈ Γn}.

Observe that for all x in X, {Γn(x) | n ∈ ω} is a cover of 2ω. Hence X × 2ω ⊆
⋃

{Γn | n ∈ ω} holds in any 

forcing extension by Shoenfield’s absoluteness theorem. On the other hand, if r is in 2ω, {Γ−1
n (r) | n ∈ ω}

is a cover of X by Gr-independent sets. Hence X cannot contains a code for any r in any generic extension, 

a contradiction.

Now suppose that G∗ contains an uncountable clique Ω ⊆ X × 2ω. Notice that since Ω is in V and t

is not, there is an n ∈ ω such that for some uncountable Ω′ ⊆ Ω, if (x, r) is in Ω′ then Δ(r, t) ≤ n and if 

(x, r), (y, s) are in Ω′ then Δ(x, y) > n. Define

Y := {y ∈ X | ∃r ∈ 2ω((y, r) ∈ Ω′)}.

Then Y is uncountable but cannot have an uncountable intersection with H. This is a contraction: since P

is c.c.c., there must be a p ∈ P which forces that Y̌ ∩ Ḣ is uncountable. It follows that G∗ does not have an 

uncountable clique, completing the proof of Theorem 2.
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4. OCA and small sets which contain many codes

The purpose of this section is to prove Theorem 3. Before we begin we will need some definitions. If 
�X = 〈xξ | ξ ∈ ω1〉 is a sequence of distinct elements of ω↑ω and G is an open graph on the range of X

then G is NS-Luzin if whenever E ⊆ ω1 indexes a G-independent set, E is nonstationary. We will use X to 

denote the range of �X. If u is a finite binary sequence, define Gu to consist of all {x, y} ∈ [ω↑ω]2 such that 

u is an initial part of τ(x, y).

The essence of our proof of Theorem 3 is contained in the following lemmas.

Lemma 2 (CH). If 〈(Gi, �Xi) | i ∈ ω〉 is a sequence of NS-Luzin open graphs and (G∗, Y ) is an open graph 

such that (G∗, Y ) is not countably chromatic then there is a c.c.c. forcing which introduces an uncountable 

clique to (G∗, Y ) and preserves the NS-Luzin property of (Gi, �Xi) for all i ∈ ω.

Lemma 3. If G is an NS-Luzin graph and 〈Pα | α ∈ δ〉 is a directed system of c.c.c. forcings such that for 

all α ∈ δ, 1 ‖ Pα
Ǧ is NS-Luzin, then the direct limit forces that Ǧ is NS-Luzin.

Lemma 4. If �X := 〈xξ | ξ ∈ ω1〉 is a sequence of distinct elements of ω↑ω such that for every finite binary 

sequence u, Gu is NS-Luzin when restricted to X, then (Gċ, �X) is NS-Luzin for any Cohen real ċ.

Before we prove the Lemmas, we first see how to deduce Theorem 3. Let V be a model of CH + ♦(S2
1). 

Observe that if �X = 〈xξ | ξ ∈ ω1〉 is an unbounded chain in ω↑ω in V then Gu is NS-Luzin for all finite 

binary u. Now iterate c.c.c. forcings using finite support using ♦(S2
1) as a bookkeeping device as in the 

standard consistency proof of OCA, all the time using Lemma 2 to generate the necessary partial orders 

which preserve that Gu is NS-Luzin for each u in 2<ω. By Lemma 3 this is preserved by all initial stages of 

the iteration. Since Cohen reals are added cofinally often by the support of the iteration, there will be ℵ2

reals r in the final model such that (Gr, X) is NS-Luzin. By OCA such graphs must have an uncountable 

clique. We will now turn to the proofs of the lemmas.

Proof of Lemma 2. Let 〈(Gi, �Xi) | i ∈ ω〉 and (G∗, Y ) be given and let xi,α denote the αth entry of �Xi. 

Consider the graphs 〈(Gi, Xi) | i ∈ ω〉 and (G∗, Y ) as a single graph which is the disjoint union of these 

graphs. Let 〈Mα | α ∈ ω1〉 be a continuous ∈-chain of countable elementary submodels of H(ℵ2) which 

contains all of these objects. Let C be the closed unbounded set of all α ∈ ω1 such that α = Mα ∩ ω1. For 

each α in C, let yα be any element of Y which is in Y ∩ (Mα+2 \ Mα+1) and define Y ′ := {yα | α ∈ C}. 

For each i ∈ ω, the set Z := {xi,α | α ∈ C} ∪ Y ′ is still separated by �M and therefore H(Gi∪̇G∗, Z) is 

c.c.c. in all its finite powers. Notice that this implies that H(G∗, Y ′) does not introduce any uncountable 

Gi-independent subset of {xi,α | α ∈ C} since otherwise this would give an uncountable antichain in

H(Gi, {xα | α ∈ C}) × H(G∗, Y ′) ⊆ H(Gi ∪ G∗, Z)2.

This finishes the proof. �

Proof of Lemma 3. Suppose that G is a graph on {xξ | ξ ∈ ω1} and that Ṡ is a Pδ-name for a stationary 

subset of ω1 where Pδ is the direct limit of the system 〈Pα | α ∈ δ〉. If δ has countable cofinality then let 

δ := supn δn and Ṡn be the Pδn
-name which is the restriction of Ṡ — an element of Pδn

-forces ξ is in Ṡn if 

its image in Pδ forces that ξ is in Ṡ. Let p ∈ Pδ be arbitrary. Since p forces that Ṡ is the union of Ṡn, there 

is an n and q ∈ Pδn
such that q ≤ p and q ‖ Pδn

Ṡn is stationary. By assumption q ‖ Pδn
{xξ | ξ ∈ Ṡn} is 

not G-independent. Thus q ‖ Pδ
{xξ | ξ ∈ Ṡ} is not G-independent. Since p was arbitrary, this is forced by 

every condition in Pδ.
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Now suppose that δ has uncountable cofinality. Suppose that Ė is a Pδ-name for a subset of ω1 such 

that {xξ | ξ ∈ Ė} is forced by p ∈ Pδ to be G-independent. We need to show that p forces that Ė is 

nonstationary. Since the closure of a G-independent set is independent, we may assume that {xξ | ξ ∈ Ė} is 

relatively closed in {xξ | ξ ∈ ω1}. Now, since Pδ is a direct limit of c.c.c. partial orders and δ has uncountable 

cofinality, any relatively closed set added by Pδ is added by some Pα for α ∈ δ. Hence there is an α ∈ δ and 

a Pα-name Ḟ such that p ‖ Pδ
Ḟ = Ė. Now applying the hypothesis, we see that Ė is forced by p to be 

nonstationary. �

Proof of Lemma 4. Suppose that p ∈ 2<ω is a condition in Cohen forcing and Ṡ is a name such that p

forces Ṡ is a stationary subset of ω1. We need to find an extension q of p and α 
= β such that q forces that 

α̌, β̌ ∈ Ṡ and {x̌α, ̌xβ} is in Gċ.

Find an extension p′ of p such that S′ := {α ∈ ω1 | p′ ‖ α ∈ Ṡ} is stationary. Since Gp′ is NS-Luzin, 

there is a pair α 
= β in S′ such that τ(xα, xβ) extends p′. Finally, extend p′ to q := τ(xα, xβ). Now q forces 

that τ(xα, xβ) is an initial part of ċ and hence that {x̌α, ̌xβ} is in Gċ. �

5. OCA implies OCA∞

We will now prove Theorem 4. Let 〈(Gn, X) | n ∈ ω〉 be given as in the statement of Theorem 4 and 

define an open graph G on 2ω × X by {(a, x), (b, y)} ∈ G if and only if a 
= b, x 
= y, and {x, y} ∈ G∆(a,b). 

Notice that G is open: if {(a, x), (b, y)} is in G, then there are disjoint open neighborhoods U and V

about (a, x) and (b, y) respectively so that if (a′, x′) ∈ U and (b′, y′) ∈ V then Δ(a′, b′) = Δ(a, b) and 

{x′, y′} ∈ G∆(a,b) = G∆(a′,b′). Next observe that if f ⊆ 2ω × X is an uncountable complete subgraph of G, 

then f satisfies the second alternative of the lemma.

Now suppose that 2ω × X =
⋃

n∈ω En. Since the closure of a Gn-independent set is Gn-independent, we 

may assume that each En is closed in 2ω × X. For each x ∈ X, 2ω × {x} ⊆
⋃

n∈ω En. Hence by the Baire 

Category Theorem, it is possible to pick nx ∈ ω and tx ∈ 2<ω for each x ∈ X such that [tx] × {x} ⊆ Enx
. 

If (n, t) ∈ ω × 2<ω, define Xn,t to be the set of all x such that nx = n and tx = t.

Claim. For each n and t, Xn,t is G|t|-independent.

Proof. Let x 
= y be in Xn,t and fix a ∈ [t�0] and b ∈ [t�1]. We have that Δ(a, b) = |t| and {(x, a), (y, b)} ⊆

En. Since En is G-independent, {x, y} /∈ G∆(a,b) = G|t|. �

Finally let 〈Xn | n ∈ ω〉 be any enumeration of {Xn,t | n ∈ ω and t ∈ 2<ω} such that if Xk = Xn,t, then 

k ≥ |t|. Since Gm+1 ⊆ Gm for all m, any Gm-independent set is Gk independent for all k > m. It follows 

that the decomposition X =
⋃

k∈ω Xk satisfies the first alternative of the lemma.

6. Open questions

We will conclude with a list of some open questions.

Question 1. Assume OCA. If Q is a c.c.c. poset which adds a new real, does Q force that OCA fails?

Question 2. Is it possible to force OCA together with c > ℵ2 with a c.c.c. poset starting from some model 

of CH?

Question 3. Does OCA imply that cov(M ) ≤ ℵ2?
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The existing techniques for building posets for forcing instances of OCA all involve using finite conditions. 

Such posets seem likely to add Cohen reals (although this is not well understood — it is not known if OCA 

implies cov(M ) > ℵ1), suggesting that if we force OCA using known techniques, cov(M ) = c should hold 

in the generic extension. On the other hand, if OCA holds, there will be a transitive set M of cardinality 

ℵ2 such that (M, ∈) satisfies OCA and a suitable fragment of ZFC and such that M ∩ ωω is <∗-unbounded. 

If cov(M) > ℵ2, then there will be a Cohen real c over M and c will have a code H which is a subset of 

M ∩ ω↑ω. This seems implausible.
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