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A brief introduction to amenable equivalence relations

Justin Tatch Moore

1. Introduction

The notion of an amenable equivalence relation was introduced by Zimmer [23]
[24] in the course of his analysis of orbit equivalence relations in ergodic theory.
More recently it played an important role in Monod’s striking family of examples
of nonamenable groups which do not contain nonabelian free subgroups. Recall
that a group is amenable if it supports a mean which is translation invariant. Such
groups were first studied by von Neumann who observed that amenable groups
can not contain nonabelian free subgroups. He famously asked if this was the only
obstruction to a group’s amenability.

Monod’s example1 can be described as follows. If A is a subring of R, de-
fine H(A) to be the group of all piecewise PSL2(A) homeomorphisms of the real
projective line which fix the point at infinity.

Theorem 1.1. [18] If A is any dense subring of R, then H(A) is nonamenable.

Moreover, if f, g ∈ H(R), then either 〈f, g〉 is metabelian or else contains an infinite

rank free abelian subgroup. In particular, H(R) does not contain a nonabelian free

subgroup.

Subsequently, Lodha and the author constructed a finitely presented nona-
menable subgroup of H(Z[1/

√
2]) [16]. Lodha has since shown that the group of

[16] is moreover of type F∞ [15].
At least from a group-theoretic perspective, the most novel aspect of [18] was

the use of Zimmer’s notion of an amenable equivalence relation in the proof of the
nonamenability of the groups H(A). The purpose of this article is to give a brief
survey of the theory of amenable and hyperfinite equivalence relations and illustrate
how it can be used to show that certain discrete groups are nonamenable.

The subject matter falls within the broader scope of what is sometimes called
measurable group theory — the study of groups through the analysis of their action
on measure spaces and using analytical tools. This is in contrast with geometric

group theory, where groups are studied through their actions which preserve an

2010 Mathematics Subject Classification. Primary: 43A07; Secondary: 20F65.
Key words and phrases. amenable, equivalence relation, free group, hyperfinite.
The author was supported in part by NSF grant DMS–1262019.
1This is a slight and, at least for our purposes, inessential variation of Monod’s example
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154 JUSTIN TATCH MOORE

underlying geometry and by employing geometric techniques and concepts. Mea-
surable group theory is closely aligned with the ergodic theory, the dynamics of
discrete groups, probability, and descriptive set theory. Further reading can be
found in [7] and [12] and their references. Further background on descriptive set
theory can be found in [11].

This article is organized as follows. After reviewing some background mate-
rial and fixing some terminology, we will present the definitions of amenable and
hyperfinite equivalence relations in Section 3. This section will culminate with a
theorem connecting these two apparently different notions. Section 4 will present
several examples of nonamenable equivalence relations. Section 5 will discuss the
analogs of the closure properties of amenable groups in the setting of equivalence
relations. These played an important role in the isolation of the group in [16].

This article does not contain any new results, although Theorem 4.8 below is
cast in a more abstract way than in [9]. (It is also to the author’s knowledge, the
first account of this proof in English.) The article’s goal is to encourage the reader
to pursue further reading in, e.g., [7] and [12] which contains a much more complete
treatment of the subject matter presented here.

2. Preliminaries

Before proceeding, we will fix some terminology. In a few places we will refer to
the continuity of extended real valued functions. In this context, the neighborhoods
of infinity are the co-bounded sets. Recall that a Polish space is a topological
space which is separable and completely metrizable. The σ-algebra of Borel sets
in a Polish space is said to be a standard Borel space. A function f between
standard Borel spaces X and Y is Borel if preimages of Borel sets are Borel. This
is equivalent to the graph of f being a Borel subset of X×Y . It is well known that
any two uncountable standard Borel spaces are isomorphic in the sense that there
is a bijection f between them such that f and f−1 are Borel.

A Borel measure on a standard Borel space is a countably additive σ-finite
measure defined on its Borel sets. Such a measure extends uniquely to the σ-
algebra generated by the Borel sets and the subsets of measure 0 Borel sets. We
will generally not distinguish between these measures but note here that measurable

will always refer to the larger σ-algebra.
In this article we will write (X,μ) is a measured Polish space to mean that X

is a Polish space and that μ is a Borel measure on X. If in addition the topology
on X is generated by the open sets of finite measure, then we say that (X,μ) is
locally finite. If Γ is a topological group, then we will say that Γ acts continuously
on a measured Polish space (X,μ) if:

• the map (g, x) �→ g · x is continuous and
• the maps g �→ μ(g · E) are continuous for each measurable E ⊆ X.

Notice that this is stronger than the assertion that Γ acts continuously on the metric
space X.

We note some useful facts about measured Polish spaces.

Fact 2.1. If (X,μ) is a measured Polish space and E ⊆ X is measurable, then
μ(E) is the supremum of all μ(F ) where F is a closed subset of E.

Licensed to Cornell Univ.  Prepared on Wed Apr 28 10:20:57 EDT 2021for download from IP 132.174.252.179.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



AMENABLE EQUIVALENCE RELATIONS 155

Fact 2.2. Suppose that (X,μ) is a locally finite measured Polish space. If
E ⊆ X is measurable and has positive measure, then for every ε > 0 there is an
open set U ⊆ X such that 0 < μ(U) < ∞ and μ(E ∩ U) > (1− ε)μ(U).

We will also need the following proposition.

Proposition 2.3. Suppose that (X,μ) is a locally finite measured Polish space

and Γ is a metrizable group acting continuously on (X,μ). If E ⊆ X is a measurable

set of positive measure, then there is an open neighborhood V of the identity of Γ
and an ε > 0 such that if g is in V , then μ((g · E) ∩E) > ε.

Proof. Let E ⊆ X be given and let U ⊆ X be an open set with

0 <
3

4
μ(U) < μ(E ∩ U) < μ(U) < ∞.

Set ε = 1
4μ(U). Observe by our continuity assumption on the action, we have that

for every x in U there is an open Wx ⊆ U containing x and a δx > 0 such that if
the distance from g to the identity is less than δx, then g ·Wx ⊆ U . Find a δ > 0
such that

μ({x ∈ U : δx ≥ δ}) > 3

4
μ(U)

and define W =
⋃{Wx : δx ≥ δ}, observing that μ(W ) > 3

4μ(U). In particular,

μ(E ∩W ) > 1
2μ(U). By our assumption that Γ acts continuously on (X,μ), there

is an open set V containing the identity such that every element of V has distance
less than δ to the identity and μ(g · (E ∩W )) > 1

2μ(U) whenever g is in V . Since

μ(E∩U) > 3
4μ(U) and since g·(E∩W ) ⊆ (g·E)∩U , it follows that μ(E∩(g·E)∩U) >

1
4μ(U) = ε. �

If X is a standard Borel space, an equivalence relation E on X is Borel if it is
Borel as a subset of X2. A Borel equivalence relation is said to be countable if every
equivalence class is countable. Notice that while this meaning conflicts with the
literal interpretation of “countable,” there is never a cause for confusion since for an
equivalence relation to be countable as a set, it must have a countable underlying set
and in the present context one is generally only interested in uncountable standard
Borel spaces.

The principal example of a countable Borel equivalence relation is as follows: if
G is a countable discrete group acting by Borel automorphisms on a standard Borel
space X, then the orbit equivalence relation EG

X is a countable Borel equivalence
relation. That is, (x, y) is in EG

X if and only if there is a g in G such that g · x = y.
In fact all countable Borel equivalence relations arise in this way:

Theorem 2.4. [6] If E is a countable Borel equivalence relation on a standard

Borel space, then there is a countable group G and a Borel action of G on X such

that E = EG
X .

The advantage of working with equivalence relations is in part that the notion
of a countable Borel equivalence relation is much more flexible than that of a group.
For instance while subgroups give rise to subequivalence relations, the converse is
not generally true. A more sophisticated use of this generality occurs in the proof
of Theorem 1.1: orbit equivalence relations are used to transfer the nonamenability
of PSL2(A) to the group H(A) even though these groups are quite unrelated from
an algebraic perspective.
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3. Amenable and hyperfinite equivalence relations

Any action of a countable group on a standard Borel space gives rise to a
countable Borel equivalence relation and, conversely, any countable Borel equiv-
alence relation can be generated as the orbit equivalence relation of some group
action. The fundamental problem of this subject is to understand the extent to
which properties of the group which generated a countable Borel equivalence rela-
tion are reflected in properties of the equivalence relation and vice versa.

Our focus in this article will be to develop the properties of equivalence relations
which are analogs of the group-theoretic property of amenability. Roughly speaking,
the notion of an amenable equivalence relation has the property that every action
of an amenable group gives rise to an amenable equivalence relation and a group is
amenable only when every orbit equivalence relation is amenable.

Now to be more precise. Suppose that (X,μ) is Borel measure on a standard
Borel space and E is a countable Borel equivalence relation on X. We say that E
is μ-amenable if there is a μ-measurable assignment x �→ νx such that:

• each νx is a finitely additive probability measure on X satisfying that
νx([x]E) = 1.

• if (x, y) ∈ E, then νx = νy.

By measurable we mean that if A is any measurable subset of X ×X, then

x �→ νx({y ∈ X : (x, y) ∈ A})
is μ-measurable. While we will generally quantify amenable with a measure, a Borel
equivalence relation is said to be amenable if it is μ-amenable with respect to every
Borel measure on the underlying standard Borel space.

While it is not apparent from the definition, it is true that every orbit equiv-
alence relation of a countable amenable group acting on standard Borel space is
necessarily μ-amenable with respect to any Borel measure μ (this does not require
any invariance of μ with respect to the group action). This will follow from Theorem
3.5 below.

Next we turn to a seemingly unrelated notion. A countable Borel equivalence
relation E on a standard Borel space X is hyperfinite if E is an increasing union
of Borel equivalence relations with finite equivalence classes. A good example to
keep in mind is that of eventual equality on infinite binary sequences: define x =∗ y
if x(k) = y(k) for all but finitely many k. Notice that this is the union of the
equivalence relations =n defined by x =n y if x(k) = y(k) for all k ≥ n. The
following theorem gives a powerful criterion for verifying hyperfiniteness.

Theorem 3.1. [4] Suppose that X is a standard Borel space and f : X → X
is a Borel function which such that f−1(x) is at most countable for each x. The

smallest equivalence relation E satisfying that, for each x ∈ X, (x, f(x)) ∈ E is

hyperfinite.

Example 3.2. [4] Define an equivalence relation E all infinite binary sequences
by xEy if for some m and n, x(m + i) = y(n + i) for all i > 0. This equivalence
relation is called tail equivalence and is generated by the shift map f : 2ω → 2ω

given by f(x)(i) = x(i+ 1).

Example 3.3. [2] Recall that the real projective line P 1(R) is the collection
of all lines in R2 passing through the origin. Identify an element of P 1(R) with the
x-coordinate of its intersection with the line y = 1, adopting the convention that
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AMENABLE EQUIVALENCE RELATIONS 157

the line y = 0 becomes identified with ∞. This identification gives P 1(R) a natural
compact metric topology — it is in fact homeomorphic to a circle. PSL2(R) is the
group of fractional linear transformations t �→ at+b

ct+d
of P 1(R), interpreted as the

extended real line. Define a map Φ : 2ω → P 1(R) by

Φ(1x) = φ(x) Φ(0x) = −φ(∼ x)

(∼ x denotes the bitwise complement of x) where φ is the unique order preserving
map from 2ω to [0,∞] which satisfies the equation:

φ(1x) = 1 + φ(x) φ(0x) =
1

1 + 1
φ(x)

.

Informally, the first digit of x determines the sign of Φ(x) and the remaining digits
are used to determine the continued fraction expansion of |Φ(x)| so that the nth

“digit” in this expansion is the length of the nth block of consecutive equal digits
in x (after the first digit). Formally, the existence and uniqueness of φ can be
seen as follows. First, the implicit definition gives a recursive formula for φ on on
those binary sequences which are eventually 0, noting that φ(0) is forced to be 0.
Moreover φ maps these eventually 0 sequences in an order preserving manner to
the nonnegative rationals. It is then readily checked that φ extends to 2ω so as
to still preserve order and satisfy the implicit equation. The action of PSL2(Z) =
〈t �→ t+ 1, t �→ −1/t〉 on P 1(R) naturally lifts to an action on 2ω. Specifically, if
a(t) = t+ 1 and b(t) = −1/t, then the action of these generators is given by

a · (00x) = 0x b · (0x) = 1x

a · (01x) = 10x b · (1x) = 0x

a · (1x) = 11x

It can be verified that the corresponding orbit equivalence relation on 2ω is tail
equivalence. In particular, this orbit equivalence relation of PSL2(Z)’s action on
P 1(R) is hyperfinite.

The following gives an important characterization of the hyperfinite equivalence
relations:

Theorem 3.4. [21] [22] Every Borel action of Z on a standard Borel space

generates a hyperfinite orbit equivalence relation. Conversely, every hyperfinite

Borel equivalence relation is the orbit equivalence relation of a Borel action of Z.

While it is not obvious, it turns out that every hyperfinite Borel equivalence
relation is in fact μ-amenable with respect to any Borel measure on the underlying
space. In fact, a natural weakening captures the notation of μ-amenability exactly.
If μ is a Borel measure on X, then we say that E is μ-hyperfinite if there is a
μ-measure 0 set Y ⊆ X such that the restriction of E to X \ Y is hyperfinite.

The following theorem is an amalgamation of several results stated in modern
language (see also [12]).

Theorem 3.5. [2] [5] [13] [19] [24] Suppose that X is a standard Borel space,

E is a countable Borel equivalence relation on X, and μ is a Borel measure on X.

The following are equivalent:

(1) E is μ-amenable;

(2) E is μ-hyperfinite;
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158 JUSTIN TATCH MOORE

(3) E = EG
X for some μ-measurable action of an amenable group G on X;

(4) E = EZ

X for some μ-measurable action of Z on X.

It is worth noting that the extent to which the measure 0 sets can be omitted
in the previous theorem is a major open problem in descriptive set theory. For
instance:

Problem 3.6. [4] If En (n < ∞) is an increasing sequence of hyperfinite Borel
equivalence relations on a standard Borel space, is

⋃

∞

n=0 En hyperfinite?

Problem 3.7. [22] Is every orbit equivalence relation of a Borel action of a
countable amenable group acting on a standard Borel space hyperfinite?

In fact it was only relatively recently that a positive solution to Problem 3.7
was proved for the class of abelian groups [8]; the strongest result at the time of this
writing is [20]. Problem 3.7 remains open for the Baumslag-Solitar group BS(1, 2)
generated by the affine transformations t �→ t + 1 and t �→ 2t. While not directly
related, Marks has recently demonstrated differences between the so-called Borel

context and measure-theoretic context [17].

4. Examples

In this section we will consider a number of examples. Perhaps the easiest way
to generate nonamenable equivalence relations is through actions of groups which
preserve a probability measure.

Theorem 4.1. [19] Suppose that G is a countable group, (X,μ) is a standard

Borel space equipped with a Borel probability measure, and E is the orbit equivalence

relation of a measure preserving action of G which is free μ-a.e.. The equivalence

relation E is μ-amenable if and only if G is amenable.

The following are two typical — but quite different — examples of such actions.

Example 4.2. If G is any countably infinite group and (X,μ) is any proba-
bility space, then G acts by shift on XG as follows: (g · x)(h) = x(g−1h). This
action preserves the product measure and, unless μ is a point-mass, is free almost
everywhere with respect to the product measure.

Example 4.3. The action of SL2(Z) on the torus T2 equipped with Lebesgue
measure is measure preserving and free λ-a.e.. Since SL2(Z) contains the free group
on two generators, this orbit equivalence relation is not λ-amenable.

Example 4.3 is in contract with Example 3.3 in which the group PSL2(Z) acts
on P 1(R), which is homeomorphic to the circle. It is well known that PSL2(Z)
contains a free subgroup (even one of finite index) and hence is nonamenable. On
the other hand, we have seen above that the orbit equivalence relation induced on
P 1(R) is just tail equivalence on 2ω in disguise; in particular it is hyperfinite and
hence amenable. Notice that, unlike the action of SL2(Z) on the torus, there is no
probability measure on P 1(R) which is preserved by the action of PSL2(Z).

It turns out, however, that dense subgroups of PSL2(R) do produce a nona-
menable orbit equivalence relation when they act on P 1(R).

Theorem 4.4. [9] Every nondiscrete subgroup of PSL2(R) is either solvable or

else contains a nondiscrete free subgroup on two generators.
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AMENABLE EQUIVALENCE RELATIONS 159

Theorem 4.5. [9] If Γ is a rank 2 free subgroup of a finite dimensional Lie

group G and Γ is nondiscrete, then the orbit equivalence relation of Γ’s action on

G is nonamenable with respect to Haar measure.

In the case of Γ = PSL2(Z[1/2]), it is not difficult to exhibit a nondiscrete free
subgroup explicitly.

Example 4.6. The matrices

α =

(

1/2 −4
1/4 0

)

β =

(

1/2 −1/4
4 0

)

generate a nondiscrete free subgroup of PSL2(Z[1/2]). In order to see this, first
observe that the traces of these matrices are 1/2 and hence both matrices describe
elliptic transformations of the real projective line (i.e. there are no fixed points).
Since any elliptic element of PSL2(R) of infinite order generates a nondiscrete
subgroup, it suffices to show that the above matrices generate a free group.

Define X to be the set of all rational numbers in P 1(R) = R ∪ {∞} which
can be represented by a fraction with an odd denominator and let Y denote the
remaining rational numbers in P 1(R). By the Ping-Pong Lemma (see, e.g., [3]),
it suffices to show that if n �= 0 is an integer, then αnY ⊆ X and βnX ⊆ Y . Let
X0 consist of those elements of X which can be represented by a fraction of the
form (4p + 2)/q where q is odd. Notice that α(X0 ∪ Y ) ⊆ X0 and that X0 and Y
are disjoint. It follows that αnY ⊆ X whenever n is a nonzero integer. Similarly,
βnX ⊆ Y .

Theorem 4.4 was generalized considerably by the following result.

Theorem 4.7. [1] If Γ is a dense subgroup of a connected semi-simple real Lie

group, then Γ contains a dense free subgroup of rank 2.

The following theorem is a generalization of Theorem 4.5, although the argu-
ment closely follows that of [9].

Theorem 4.8. Suppose that (X,μ) is a locally finite measured Polish space. If

Γ = 〈a, b〉 is a free nondiscrete metrizable group which is acting freely and contin-

uously on (X,μ), then the orbit equivalence relation is not μ-amenable.

Proof. Suppose for contradiction thatEΓ
X is μ-amenable and fix a μ-measurable

assignment x �→ νx such that:

• for each x, νx is a finitely additive probability measure supported on the
orbit of x;

• if x and y are in the same orbit, then νx = νy.

For u ∈ {a, b}, define Γu to be all those elements of Γ which are representable
by a reduced word beginning with u and ending with u−1. Observe that if g is
a nonidentity element of Γ, then there is a h in {a, ab, ab−1} such that hgh−1 is
in Γa. Thus there is an h ∈ {e, a, ab, ab−1} and a Γ′ ⊆ Γ which accumulates to
the identity such that hΓ′h−1 ⊆ Γa. Since conjugation is continuous, it follows
that Γa also accumulates to the identity. Furthermore, bΓab

−1 ⊆ Γb and thus Γb

accumulates to the identity as well.
Since the action of Γ on X is free, for each x, y ∈ X which lie in the same orbit,

there is a unique γ = γ(x, y) in Γ such that x = γ · y. Notice that γ(g · x, y) =
gγ(x, y). Define φ : X → [0, 1] by letting φ(x) = νx(Ax) where Ax is the set of
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160 JUSTIN TATCH MOORE

those y in the orbit of x such that the reduced word representing γ(x, y) begins
with a or a−1. Observe that for any x in X and g in Γb, Ax ∩ Ag·x = ∅. Hence
if x is in X and φ(x) > 1/2, then φ(g · x) < 1/2 whenever g is in Γb. Similarly,
if φ(x) < 1/2 and g is in Γa, then φ(g · x) > 1/2. Furthermore, for all x and
g ∈ Γa, the sets Ax, Abgb−1

·x and Ab2gb−2
·x are pairwise disjoint and consequently

0 ≤ φ(x) + φ(bgb−1 · x) + φ(b2gb−2 · x) ≤ 1.
I next claim that Y = {x ∈ X : φ(x) �= 1/2} has positive measure with respect

to μ. Suppose not. Using our assumption that Γ acts continuously on (X,μ), find
an open neighborhood V of the identity such that if g is in V , then Y , bg−1b−1 ·Y ,
and b2g−1b−2 · Y have total measure less than that of X. Now if x is outside these
sets and g ∈ V ∩Γa, we have that φ(x), φ(bgb

−1 ·x), and φ(b2gb−2 ·x) are each 1/2,
contradicting that there sum is at most 1. Thus Y must have positive measure.

Let Ya = {y ∈ Y : φ(y) > 1/2} and Yb = {y ∈ Y : φ(y) < 1/2}. Since Y has
positive measure, either Ya or Yb have positive measure. If Ya has positive measure,
then by Proposition 2.3 there is a g in Γb such that (g ·Ya)∩Ya has positive measure
and in particular is nonempty. This contradicts our observation that if φ(y) > 1/2
and g is in Γb, then φ(g ·y) < 1/2. Similarly, if Yb has positive measure, one obtains
a contradiction by finding a g in Γa such that g · Yb intersects Yb and recalling our
observation that if φ(y) < 1/2 and g is in Γa, then φ(g · y) > 1/2. It must be,
therefore, that the orbit equivalence relation is nonamenable. �

We finish this section with a simple but powerful observation of Monod.

Example 4.9. [18] If A is a countable dense subring of R, let H(A) denote
the group consisting of all orientation preserving homeomorphisms of P 1(R) which
fix the point at infinity and which are piecewise PSL2(A). Suppose that α is in
PSL2(A) and that α does not fix∞. As a fractional linear transformation, the graph
of α is a hyperbola. If r ∈ R is sufficiently large in magnitude, then α(t) = t + r
has two solutions a < b; set

αr(t) =

{

α(t) if a < t < b

t+ r otherwise.

If r is moreover an integer, then αr is in H(A). It follows that the restriction of
the orbit equivalence relation of PSL2(A) to R coincides with the corresponding
restriction of the orbit equivalence relation of H(A)’s action on R. By Theorem
3.5 and the results of [9] mentioned above, H(A) is nonamenable whenever A is a
dense subring of R.

Example 4.10. [16] Let P (Z) denote the subgroup of H(Z) consisting of those
elements which have a continuous derivative. By unpublished work of William
Thurston, P (Z) is isomorphic to Richard Thompson’s group F . In fact

α(t) = t+ 1 β(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

t if t ≤ 0
t

1−t
if 0 ≤ t ≤ 1

2

3− 1
t

if 1
2 ≤ t ≤ 1

t+ 1 if 1 ≤ t

is the standard set of generators with respect to the usual finite presentation of F
(see [16]). It is not difficult to see that the orbit equivalence relation of P (Z)’s
action on P 1(R) coincides with that of PSL2(Z) except for the point at infinity.
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AMENABLE EQUIVALENCE RELATIONS 161

Since PSL2(Z)∪ {t �→ t+1/2} generates PSL2(Z[1/2]), it follows that 〈t �→ t/2, β〉
is nonamenable.

The previous example is less relevant to the amenability problem for F , how-
ever, than it might initially appear. For instance, Lodha has shown that if Γ is any
subgroup of H(R) which is isomorphic to F , then the orbit equivalence relation of
Γ’s action on R is λ-amenable where λ is Lebesgue measure [14].

5. Closure properties of amenable equivalence relations

One of the most basic facts about amenable groups is that they are closed
under taking subgroups, extensions, and directed unions. These operations have
their analogs in the setting of countable Borel equivalence relations as well. Notice
that if H ≤ G, then EH

X ⊆ EG
X whenever G acts on a standard Borel space.

Also, if G is an increasing union of a sequence of subgroups Gn (n < ∞), then

EG
X =

⋃

n E
Gn

X . Since the property of being μ-hyperfinite is clearly inherited to
subequivalence relations, we have the following corollary of Theorem 3.5.

Proposition 5.1. If E is a subequivalence relation of a μ-amenable equivalence

relation is μ-amenable.

While there is no natural notion of extension in the setting of equivalence
relations, it is easy to formulate what is meant by a product of equivalence relations.
It is straightforward to verify the following analog of the closure of the class of
amenable groups under taking products.

Proposition 5.2. Products of μ-amenable equivalence relations are amenable

with respect to the corresponding product measure.

The following is the corresponding analog of the amenability of increasing
unions of amenable groups.

Theorem 5.3. [5] [13] Suppose that En (n < ∞) is an increasing sequence

of countable Borel equivalence relations on a standard Borel space X. If μ is a

standard probability measure on X and each En is μ-hyperfinite, then
⋃

n En is

μ-hyperfinite.

The power of the closure properties mentioned in this section is that they afford
some flexibility which has no analog in the algebraic setting. For instance, while
the equivalence relations En in the previous theorem are required to be nested,
they need not come from a nested sequence of groups. It is also sometimes fruitful
to generate equivalence relations with partial homeomorphisms rather than full
automorphisms of an underlying space.

Example 5.4. Consider the following homeomorphisms of P 1(R) = R∪ {∞}:
α(t) = t+ 1/2 and β(t) = −1/t. For 0 < r < ∞, define αr to be the restriction of
α to [−r,−1/r]. Let E be the equivalence relation generated by α and β and Er be
the equivalence relation generated by β and αr (i.e. Er is the smallest equivalence
relation such that for all t, (t, t + 1/2) ∈ Er and if additionally −r ≤ t ≤ −1/r,
then (t,−1/t) ∈ Er). Notice that if 0 < r < s < ∞, then Er ⊆ Es ⊆ E and
that E =

⋃

r>0Er. Thus there is an r such that 0 < r < ∞ such that Er is
nonamenable. In fact a more careful analysis reveals that E4 = E, although this is
not relevant for the point we wish to illustrate here.
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Example 5.5. Suppose that α and β are homeomorphisms such that the action
of 〈α, β〉 on R generates a nonamenable equivalence relation. Suppose further that
αn (n < ∞) and βn (n < ∞) are sequences of homeomorphisms such that for all
but countably many t, αn(t) = α(t) and βn(t) = β(t) holds for all but finitely many
n. It follows that there exists an n such that the action of 〈αn, βn〉 on R generates
a nonamenable equivalence relation. To see this, let Xn denote the set of all t in
R such that for all k ≥ n, αk(t) = α(t) and βk(t) = β(t). Define En to be the
equivalence relation generated by the restrictions of αn and βn to Xn. It follows
that En (n < ∞) is an increasing sequence of countable Borel equivalence relations
which, off a countable subset of R, unions to the equivalence relation generated by
α and β. The claim now follows from Theorem 5.3.
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