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a b s t r a c t

The class of simple separable KK-contractible (KK-equivalent to {0}) C*-algebra s which
have finite nuclear dimension is shown to be classified by the Elliott invariant. In
particular, the class of C*-algebra s A ⊗ W is classifiable, where A is a simple separable
C*-algebra with finite nuclear dimension and W is the simple inductive limit of Razak
algebras with unique trace, which is bounded (see Razak (2002) and Jacelon (2013)).
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1. Introduction

The classification of unital simple separable C*-algebras with finite nuclear dimension which satisfy the UCT has been
completed (see, for example, [16,24,29,40], and [50]). As is well known, the case that there exists a non-zero projection in
the stabilization of the algebra follows. In the remaining case, that the algebra A is stably projectionless (i.e., if the algebra
is finite, the case K0(A)+ = {0}), a number of classification results are known (see [41,43,53]).

In this paper we consider the general (axiomatically determined) case assuming trivial K-theory. Recall that a
C*-algebra A is said to be KK-contractible if it is KK-equivalent to {0}. In the presence of the UCT, it is equivalent to
say that Ki(A) = {0}, i = 0, 1. From the order structure of the K0-group, one sees that the case of stably projectionless
simple C*-algebras is very different from the unital case. In particular, the proofs in this paper do not depend on the unital
results—and require rather different techniques.

We obtain the following classification theorem:

Theorem (Theorem 7.5). The class of KK-contractible stably projectionless simple separable C*-algebras with finite nuclear
dimension is classified by the invariant (̃T(A),ΣA). Any C*-algebra A in this class is a simple inductive limit of Razak algebras.

Here, T̃(A) is the cone of lower semicontinuous traces finite on the Pedersen ideal Ped(A) of A, with the topology of
pointwise convergence (on Ped(A)), and ΣA is the norm function (the lower semicontinuous extended positive real-valued
function on T̃(A) defined by ΣA(τ ) = sup{τ (a) : a ∈ Ped(A)+, ∥a∥ ≤ 1}).

Consider the C*-algebra W , the (unique) simple inductive limit of Razak algebras with a unique trace (up to a multiple),
which is furthermore bounded (see [41] and [28]; W is also sometime called the Razak–Jacelon algebra). We will show
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that W is the unique separable simple C*-algebra with a unique tracial state and with finite nuclear dimension which is
KK-contractible. Hence A ⊗ W is KK-contractible for any amenable C*-algebra A (see Lemma 3.17). Thus, if A has finite
nuclear dimension, so that the C*-algebra A⊗W has finite nuclear dimension as well (see Proposition 2.3(ii) of [57]), then

⊗ W is classifiable (whether it is finite – Theorem 7.5 – or infinite—in which case by [40] it must be O2 ⊗ K).

orollary (Corollary 6.7). Let A be a simple separable C*-algebra with finite nuclear dimension. Then the C*-algebra A ⊗ W is
lassifiable. In particular, W ⊗ W ∼= W .

. The reduction class R, the tracially approximate point-line class D, and model algebras

Let A be a C*-algebra. Denote by Ped(A) the Pedersen ideal. Denote by T̃(A) the topological cone of lower semicontinuous
ositive traces defined (i.e., finite) on Ped(A), with the topology of pointwise convergence (on the elements of Ped(A)).
enote by T(A) the set of all tracial states of A. Denote by T(A)

w
the weak* closure of T(A) in the space of all positive linear

functionals on A. Let X be a topological convex set, or a topological cone. Denote by Aff+(X) the cone of all continuous
ositive real-valued affine functions f on X which vanish at zero and only at that point, together with zero function.
ollowing [43], let us denote by LAff+(X) the cone of all lower semicontinuous affine functions with values in [0,∞] on
which are limits of increasing sequences of functions in Aff+(X). We are mostly interested in the case that X = T̃(A).

et ΣA ∈ LAff+ (̃T(A)) denote the (possibly infinite) norm function: ΣA(τ ) = sup{τ (a) : a ∈ Ped(A)+, ∥a∥ ≤ 1}. We shall
efer to ΣA as the scale of A.

For ε > 0, let fε ∈ C0((0,∞))+ (throughout the paper) such that f (t) = 0 if t ∈ (0, ε/2), f (t) = 1 if t ∈ [ε,∞) and
inear in [ε/2, ε).

Let a ∈ A+, for each τ ∈ T̃(A), define dτ (a) = limε→0 τ (fε(a)). If e ∈ A+ is a strictly positive element, then ΣA(τ ) = dτ (e)
or all τ ∈ T̃(A) (independent of the choice of e). If S ⊆ T̃(A) \ {0} is a convex subset, denote by LAff0+(S) the cone
f |S : f ∈ LAff+ (̃T(A))} of restrictions to S of the functions in T̃(A) \ {0}. If S is bounded, denote by LAffb,0+(S) the subset of
Aff0+(S) consisting of those functions bounded on S. In the case that T(A) is compact, let us denote the cone LAff0+(T(A))
ust by LAff+(T(A)).

efinition 2.1. A simple C*-algebra A will be said to be in the reduction class, denoted by R, if A is separable, has
ontinuous scale ([32] and [17]), and T(A) ̸= Ø. For any non-zero exact Jiang–Su stable separable simple C*-algebra A,
y Lemma 6.5 of [19] (combined with Theorem 1.2 of [44]; see Remark 5.2 of [17]), there is a non-zero hereditary sub-
*-algebra A0 ⊆ A such that A0 has continuous scale—and so, if T(A) ̸= Ø, belongs to the class R. In particular, as A is
eparable and simple, it follows from Brown’s theorem [7] that A⊗K ∼= A0⊗K. We will use the fact that T(A) is a compact
ase for T̃(A) when A belongs to the class R (see Theorem 5.3 of [17] and Theorem 3.3 of [32]). (By Theorem 5.3 of [17],
hen A is as above, with T(A) ̸= Ø, and A = Ped(A), these two properties are in fact equivalent.)

efinition 2.2 ([15]). Let E and F be finite dimensional C*-algebras, and let φ0, φ1 : E → F be homomorphisms (not
ecessarily unital). The C*-algebra

A(E, F , φ0, φ1) = {(e, f ) ∈ E ⊕ C([0, 1], F ) : f (0) = φ0(e), f (1) = φ1(e)}

ill be called an Elliott–Thomsen algebra or a point-line algebra. (See [15]. These algebras are the one-dimensional case
f the non-commutative CW-complexes studied in [13].) The class of point-line algebras will be denoted by C.

efinition 2.3 ([41]). Let k, n ∈ N. Consider the homomorphisms φ0, φ1 : Mk(C) → Mk(n+1)(C) defined by

φ0(a) = a ⊗ diag(1n, 0k) = diag(a, . . . , a  
n

, 0k) and φ1(a) = a ⊗ 1n+1 = diag(a, . . . , a  
n+1

).

he C*-algebra

R(k, n) = A(Mk(C),Mk(n+1)(C), φ0, φ1) ∈ C (2.1)

will be called a Razak algebra. Let e ∈ R(k, n) be a strictly positive element. (It is easy to check that

λs(R(k, n)) = inf{dτ (e) : τ ∈ T(R(k, n))} =
n

n + 1
− − − see 5.3). (2.2)

Let us also call a direct sum of such C*-algebras a Razak algebra, and denote this class of C*-algebras by Raz.

Definition 2.4. Denote by C0 the class of all C*-algebras A in C which satisfy the following conditions: (1) K1(A) = {0},
(2) K0(A)+ = {0}, and (3) 0 ̸∈ T(A)

w
. (What (2) says is that the C*-algebras in C0 are stably projectionless. What (3) says

is that the spectrum of A is compact.)
Denote by C0

0 the subclass of C*-algebras in C0 with K0(A) = {0}. Then every Razak algebra is in C0
0 . Let C′

0 denote
the class of all full hereditary sub-C*-algebras of C*-algebras in C0 and let C0

0
′ denote the class of all full hereditary

sub-C*-algebras of C*-algebras in C0.
0
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In what follows, for r > 0, we will use fr to denote the continuous positive function defined on [0,∞) by fr (t) = 0 if
∈ [0, r/2], fr (t) = 1 if t ∈ [r, 1], and fr is linear on (r/2, r).

efinition 2.5 (see 8.1 and 8.11 of [17]). Recall that a simple C*-algebra is said to be in the class D (or D0), if the following
onditions hold: There are a strictly positive element e ∈ A with ∥e∥ ≤ 1 and a real number 1 > fe > 0, such that for any
> 0, any finite subset F ⊆ A, and any a ∈ A+ \ {0}, there are F-ε-multiplicative completely positive contractive maps
: A → A0 and ψ : A → D for orthogonal sub-C*-algebras A0, D ⊆ A with D ∈ C0 (or C0

0 ), satisfying

∥x − (φ(x) + ψ(x))∥ < ε for all x ∈ F, (2.3)
φ(e) ≲ a, and (2.4)
τ (f1/4(ψ(e))) ≥ fe for all τ ∈ T(D). (2.5)

n fact fe can be chosen to be inf{τ (f1/4(e)) : τ ∈ T(A)}/2 (see 9.2 of [17]). Note that, if A ∈ D is a separable C*-algebra
nd B is a hereditary sub-C*-algebra of A, then B ∈ D (see 8.6 of [17]). We refer to [17] for a detailed discussion of the
efinition of the class D.

efinition 2.6. Let us denote by M0 the class of simple separable C*-algebras which are inductive limits of sequences of
*-algebras in C0

0 , with respect to maps which are injective and take strictly positive elements to strictly positive elements.
his class is closed under tensoring with full matrix algebras (as the class of Razak algebras is), and hence is closed under
ensoring with any unital simple AF algebra (as the tensor product of a map between two Razak algebras and a unital
ap between two finite-dimensional algebras is injective and preserves strictly positive elements if both maps have these
roperties).

efinition 2.7. Recall that the C*-algebra W is the simple inductive limit of a sequence of Razak algebras with injective
onnecting maps ((2.1)—see [41,53], and [28]) with a unique trace, which is bounded. By Theorem 1.1 of [41], it is the
nique such C*-algebra. (Unique meaning in the Razak limit class, with unique trace which is bounded; in particular it
ollows that this algebra – indeed any simple such limit of Razak algebras – is isomorphic to its tensor product with a full
atrix algebra.) The C*-algebra W belongs to the class M0 by Lemma 3.3 of [28].
Furthermore, W has continuous scale (and so belongs to the class R), by the first part of Proposition 5.4 of [17] (the

equired property of strict comparison holds by Theorem 4.6 of [51]). Hence by Theorem 3.3 of [32], W is algebraically
imple. Hence by the remark in Definition 9.5 of [17], W ∈ D0.

heorem 2.8. For any non-empty metrizable Choquet simplex ∆, there exists a non-unital simple C*-algebra A ∈ R
Definition 2.1) such that A = limn→∞(Bn, ın) where each Bn is a finite direct sum of copies of W and each ın preserves
trictly positive elements (takes strictly positive elements into strictly positive elements), every trace of A is bounded, and

(K0(A),K1(A), T(A)) = ({0}, {0},∆).

Moreover, A may be chosen so that A ∈ M0 (Definition 2.6), and A ∈ D0 (Definition 2.5).

roof. By 3.10 of [3], there exists a unital simple AF algebra D with T(D) = ∆. As we shall now show, the
*-algebra A = D ⊗ W has the desired properties. By 2.7, A ∈ M0. Since Mn(W) ∼= W (see 2.7), it follows easily that
= limn→∞(Bn, ιn), where each Bn is a finite direct sum of copies of W .
Let e ∈ W be a strictly positive element. Since W is algebraically simple (see 2.7), e ∈ Ped(W). By the definition of the

edersen ideal, 1 ⊗ e ∈ Ped(A). It follows from Proposition 5.6.2 of [38] that Ped(A) = A as the hereditary sub-C*-algebra
enerated by 1 ⊗ e is A itself. In other words, A is algebraically simple. By (the end of) Definition 9.5 of [17], A ∈ D0.
onsequently, all traces of A are bounded, and by Theorem 9.4 of [17], A has strict comparison for positive elements.
t is clear that K0(A) = K1(A) = {0}. Note that the natural affine map from the simplex ∆ = T(D) to T(A), consisting
of tensoring with the unique tracial state of W , is weak* continuous and bijective and therefore a homeomorphism. It
remains to show that A has continuous scale (and so belongs to the class R). This follows from the established facts that
A is algebraically simple and T(A) is compact and Theorem 5.3 of [17]. □

Corollary 2.9 ([41,53]). Let T̃ be a non-zero topological cone with a compact base which is a metrizable Choquet simplex and
let γ : T̃ → (0,∞] be a lower semicontinuous affine function, zero at 0 ∈ T̃ , but only there. There exists a simple C*-algebra
A which is an inductive limit of Razak algebras such that

(̃T(A),ΣA) = (̃T , γ ).

Moreover, A may be chosen to be an inductive limit of finite direct sums of copies of W .

Proof. By Theorem 5.1 of [53], there is a simple C*-algebra B which is an inductive limit of Razak algebras such that
T(B) = T̃ and the lower semicontinuous function ω(τ ) = ∥τ∥ (allow values in [0,∞]) is equal to γ . Let e ∈ B+ be a
strictly positive element of B with ∥e∥ = 1. Then dτ (e) = ∥τ∥ for each τ ∈ T̃(A). Thus, (̃T(B),ΣB) = (̃T , γ ).
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To see the last part of the theorem, let b ∈ Ped(B)+ \ {0} with ∥b∥ = 1. Define ∆ = {τ ∈ T̃(B) : τ (b) = 1}. Since B is
separable, by Proposition 2.6 of [49], ∆ is a base for T̃ and it is a metrizable Choquet simplex. Moreover 0 ̸∈ ∆. Choose
a unital simple AF algebra C with T(C) = ∆ [3]. Since ∆ is compact, inf{γ (τ ) : τ ∈ ∆} > 0. It follows from Corollary
.1.4 of [1] that there is an increasing sequence of continuous affine functions fn converging to γ on ∆. By a compactness
rgument, we may assume that each fn ∈ Aff+(∆). (In other words, γ ∈ LAff+(T̃ ).) Since ρC (K0(C)) is dense in Aff(∆) (see
II.3.4 of [5]), there is an element a ∈ (C ⊗ K)+ such that dτ (a) = γ (τ ) for all τ ∈ ∆ = T(C) (see, for example, Theorem
5.2 of [25] and also the proof of III 3.3 of [5]). Set a(C ⊗ K)a = C1; the hereditary sub-C*-algebra C1 is also AF. Note

that the topological cone T̃(A), being completely determined by the compact base ∆ (which does not contain zero), is
isomorphic to the cone T̃ which also has ∆ as a base. The tensor product A = C1 ⊗ W has the desired properties. □

. A stable uniqueness theorem

The following lemma, concerning extensions with non-unital quotient, is a consequence of, and in fact equivalent to,
he second part of Corollary 16 of [18] and Theorem 2.1 of [20], in the case of a trivial extension (which is all that we
eed – this restriction can easily be removed, in the nuclear setting, by working with Choi–Effros liftings). The analogous,
urely unital setting – both quotient and extension unital—is dealt with in Theorem 6 of [18]. As pointed out in [20], the
ixed case, unital quotient but non-unital extension, while discussed in Section 16 of [18], is not correctly dealt with

here, and a corrected statement of the first part of Corollary 16 of [18] was given in Theorem 2.3 of [20]. Closely related
arlier results are contained in [11] and [33].

emma 3.1. Let A and B be C*-algebras with B stable and A separable and non-unital. Let π : A → M(B) be a faithful
omomorphism such that the composition with the quotient map to M(B)/B is also faithful and the induced (trivial) extension
s purely large (in the sense of [18]). Then, for any nuclear homomorphism σ : A → M(B), there is a sequence (un) in M(M2(B))
ith u∗

nun = 1M(B) ⊗ e11 and unu∗
n = 1M(M2(B)) such that

(1) π (a) − u∗
n(σ (a) ⊕ π (a))un ∈ B, n = 1, 2, . . ., a ∈ A, and

(2) limn→∞(π (a) − u∗
n(σ (a) ⊕ π (a))un) = 0, a ∈ A.

Proof. This follows immediately from the second part of Corollary 16 of [18] and Theorem 2.1 of [20], in the case of a
trivial extension, with the ideal of that theorem taken to be the C*-algebra direct sum of a countable infinity of copies of
the present ideal, B, and the (trivial) extension to be that induced by the infinite repetition of the map π into the Cartesian
product of copies of the multiplier algebra M(B). (This ostensibly special case of 2.1 of [20] is interesting in that it is in
fact a stronger result, in the case of trivial extensions – this observation is also valid in the case of a general (non-trivial)
extension, in the nuclear setting – again, on considering Choi–Effros liftings.) □

Let A and B be C*-algebras, let γ : A → B be a homomorphism, and consider the ampliated homomorphism

γ∞ := γ ⊕ γ ⊕ · · · : A → M(K ⊗ B),

where K is the algebra of compact operators on a separable infinite-dimensional Hilbert space, and M(K ⊗ B) is the
multiplier algebra.

Lemma 3.2. With A and B and γ and γ∞ as above, assume that A and B are separable and γ is faithful, and that A is not
unital. If γ : A → B is full, i.e., if Bγ (a)B = B, a ∈ A \ {0}, then for any nuclear homomorphism σ : A → M(K ⊗ B), there is a
sequence (un) in M(M2(K ⊗ B)) with u∗

nun = 1M(K⊗B) ⊗ e11 and unu∗
n = 1M2(M(K⊗B)) such that

(1) γ∞(a) − u∗
n(σ (a) ⊕ γ∞(a))un ∈ K ⊗ B, n = 1, 2, . . ., a ∈ A, and

(2) limn→∞(γ∞(a) − u∗
n(σ (a) ⊕ γ∞(a))un) = 0, a ∈ A.

Proof. The lemma follows from Lemma 3.1 immediately once one checks that the extension γ∞ is purely large.
To see γ∞ is purely large, let Bs = B⊗ K. Let c ∈ γ∞(A)+ Bs be a non-zero element which is not in Bs. One may write

c = γ∞(a)+ b for some a ̸= 0 and b ∈ Bs. Let us consider cBc∗. Replacing c by cc∗, one may assume that c ≥ 0. Therefore
ne may assume that a ≥ 0. It is clear that γ∞(a)Bsγ∞(a) ∼= γ (a)Bγ (a)⊗K. Since Bγ (a)B = B, Bγ∞(a)Bsγ∞(a)B = B. Thus
⊂ γ∞(a)Bsγ∞(a). It follows γ∞(a)Bsγ∞(a) = Bs. In other words, γ∞(a)Bsγ∞(a) is full in Bs. In what follows, we assume
c∥ ≤ 1 and ∥a∥ ≤ 1.
We now follows the proof of Theorem 17 (iii) of [18]. Since there are some typos there, we will add some details

oncerning the current situation.
We first show that cBsc is full. Put c1 = γ∞(a) = γ (a) ⊗ 1 and choose un = 1 ⊗ vn, where vn ∈ M(K) and (vn) is a

equence of unitaries corresponding to some permutations of an orthonormal basis such that limn→∞ ∥b1unb2∥ = 0 for
ny b , b ∈ B . Note that u c1/2 = c1/2u as c = γ (a), and u cu∗

→ c strictly in M(B ) exactly as on the page 405
1 2 s n 1 1 n 1 ∞ n n 1 s
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of [18]. Hence

un(c(u∗

nb
′un)c)u∗

n = (uncu∗

n)b
′(uncu∗

n) → c1b′c1 for all b′
∈ B

converges in norm). Since c1Bsc1 = γ∞(a)Bsγ∞(a) is full in Bs, It follows that cBsc is full in Bs.
Put c ′

= c1/2c1c1/2 and c ′′
= c1/21 cc1/21 . Put x = c1/2c1/21 . Then xx∗

= c ′ and x∗x = c ′′. Let C1 := c ′Bsc ′ and C2 := c ′′Bsc ′′.
Note, since c ′′

= γ∞(a2)+b′ for some b′
∈ Bs, C2 is also full in Bs.) We will show that C2 := c ′′Bsc ′′ is stable. Since C1 ∼= C2,

C1 is then also stable. (Note also, since the (closed) ideal generated by xx∗Bsxx∗ contains that of x∗xBsx∗x = C2, C1 is also
ull.) Since 0 ≤ c ′

≤ c1/2, this implies that cBsc contains a stable sub-C*-algebra C1. In other words, γ∞ is purely large.
To show that C2 is stable, we write c ′′

= c21 +b1 for some b1 ∈ Bs. We will verify condition (b) of Proposition 2.2 of [26]
which by Proposition 2.2 and Theorem 2.1 of [26] is equivalent to the stability of a σ -unital C*-algebra. Fix an element

∈ C2 with 0 ≤ a1 ≤ 1 and ε > 0. Since C2 ⊂ c1Bsc1, one may choose an integer k ≥ 4 such that

∥(c ′′)1/2ka1/21 − a1/21 ∥ < ε/8 and ∥c1/k1 a1/21 − a1/21 ∥ < ε/8. (3.1)

ut d = c1/k1 and d1 = (c ′′)1/2k. Then d − d1 ∈ Bs. Since d = γ (a)1/k ⊗ 1, und = dun. Recall that limn→∞ ∥b1unb2∥ = 0 for
ny b1, b2 ∈ Bs. Hence, there is an integer n1 ≥ 1 such that, for all n ≥ n1,

duna
1/2
1 ≈ε/8 d1una

1/2
1 = und1a

1/2
1 ≈ε/8 una

1/2
1 , and (3.2)

a1/21 duna
1/2
1 ≈ε/4 0. (3.3)

ut yn = duna
1/2
1 ∈ C2. Then (see (3.2) and (3.3))

y∗

nyn = a1/21 u∗

ndduna
1/2
1 ≈ε/4 (a1/21 und)a

1/2
1 ≈ε/4 a and (3.4)

(y∗

nyn)(yny
∗

n) = y∗

n(duna
1/2
1 duna

1/2
1 )yn = (yndun)(a

1/2
1 duna

1/2
1 )yn ≈ε/4 0. (3.5)

y 2.2 (b) of [26], C2 is stable. As mentioned above, it follows that C1 is stable and is full in Bs. This shows that the extension
∞ is purely large. □

emark 3.3. One may prove directly that the map γ∞ absorbs any σ as stated in Lemma 3.2 without using the notion
f purely large.

heorem 3.4 (Theorem 4.2 of [10]). Let A be a separable C*-algebra without unit, and let B be a separable C*-algebra. Let
: A → B be a full homomorphism.
Let φ,ψ : A → B be nuclear homomorphisms with [φ] = [ψ] in KKnuc(A, B). Then for any finite set F ⊆ A and ε > 0,

here exist an integer n and a unitary u ∈ M̃n+1(B) such that

∥u∗(φ(a)) ⊕ (γ (a) ⊕ · · · ⊕ γ (a)  
n

)u − ψ(a) ⊕ (γ (a) ⊕ · · · ⊕ γ (a)  
n

)∥ < ε, a ∈ F .

Proof. Since [φ] = [ψ] in KKnuc(A, B), one has that [φ,ψ, 1] = 0 in KKnuc(A, B) in the sense of [10]. Set M(K(H)⊗B) = D,
M(K(C ⊕ H) ⊗ B) = D1, M(K(H ⊕ H) ⊗ B) = D2, where H = l2.

Consider the projection en = fn ⊗ 1̃B ∈ M(K(H) ⊗ B), n = 1, 2, . . ., where fn is the projection onto the first n basis
elements of H .

Consider the unital maps Φ∼,Ψ ∼
: Ã → M(K(H) ⊗ B) defined by

Φ∼(a) = φ(a) ⊕ γ ′

∞
(a) and Ψ ∼(a) = ψ(a) ⊕ γ ′

∞
(a) for all a ∈ A, (3.6)

where γ ′
∞
(a) is considered to be a map from A to (1D−e1)M(K(H)⊗B)(1D−e1). One checks [Φ∼,Ψ ∼, 1] = 0 in KKnuc (̃A, B).

By Proposition 3.6 of [10], there are a unital strictly nuclear representation σ : Ã → M(K(H) ⊗ B) and a continuous path
of unitaries u : [0,∞) → U(K(H⊕H) ⊗ B + C1D2 ) such that for any a ∈ A,

lim
t→∞

∥ut (Φ∼(a) ⊕ σ (a))u∗

t − (Ψ ∼(a) ⊕ σ (a))∥ = 0, and

ut (Φ∼(a) ⊕ σ (a))u∗

t − (Ψ ∼(a) ⊕ σ (a)) ∈ K(H ⊕ H) ⊗ B.

In particular, there is a sequence of unitaries (un) in U(K(H ⊕ H) ⊗ B + C1D2 ) such that

lim ∥un(φ(a) ⊕ γ ′

∞
(a) ⊕ σ (a))u∗

n − (ψ(a) ⊕ γ ′

∞
(a) ⊕ σ (a))∥ = 0, a ∈ Ã. (3.7)
n→∞



6 G.A. Elliott, G. Gong, H. Lin et al. / Journal of Geometry and Physics 158 (2020) 103861

I
t

Since γ is full, by Lemma 3.2, the map γ∞ is (non-unital) nuclearly absorbing. Therefore γ ′
∞

⊕ σ ∼ γ∞; that is, there
is a sequence of isometries (vn) in M(K(H1 ⊕ H) ⊗ B), with vnv∗

n = 1D, such that, for any a ∈ A,

lim
n→∞

∥γ ′

∞
(a) ⊕ σ (a) − v∗

nγ∞(a)vn∥ = 0, and

γ ′

∞
(a) ⊕ σ (a) − v∗

nγ∞(a)vn ∈ K(H1 ⊕ H) ⊗ B,

where H1 = (1D − e1)H .
Consider the unitaries wn = (e1 ⊕vn)un(e1 ⊕v∗

n ) in M(K(C⊕H)⊗B), in fact in K(C⊕H)⊗B+C1D1 . For any contraction
a ∈ A,

∥wn(φ(a) ⊕ γ∞(a))w∗

n − ψ(a) ⊕ γ∞(a)∥
= ∥(e1 ⊕ vn)un(e1 ⊕ v∗

n )(φ(a) ⊕ γ∞(a))(e1 ⊕ vn)u∗

n(e1 ⊕ v∗

n ) − ψ(a) ⊕ γ∞(a)∥
≈ ∥(e1 ⊕ vn)un(φ(a) ⊕ (γ ′

∞
(a) ⊕ σ (a)))u∗

n(e1 ⊕ v∗

n ) − ψ(a) ⊕ γ∞(a)∥
≈ ∥(e1 ⊕ vn)(ψ(a) ⊕ (γ ′

∞
(a) ⊕ σ (a)))(e1 ⊕ v∗

n ) − ψ(a) ⊕ γ∞(a)∥
≈ ∥ψ(a) ⊕ γ∞(a) − ψ(a) ⊕ γ∞(a)∥ = 0.

That is, there is a sequence of unitaries (wk) in U(K(C ⊕ H) ⊗ B + C1D1 ) such that

lim
k→∞

∥wk(φ(a) ⊕ γ∞(a))w∗

k − (ψ(a) ⊕ γ∞(a))∥ = 0, a ∈ A.

Since wk ∈ K(C ⊕ H) ⊗ B + C1D1 , one has that [wk, en] → 0, as n → ∞. Then, for sufficiently large k, and then
sufficiently large n, the element enwken of Mn(B) + C1n can be perturbed to a unitary u verifying the conclusion of the
theorem. □

Remark 3.5. The unital version of 3.4 can be found in 4.2 of [10] (see an earlier version in [33]). A different approach
could also be found in an earlier version of this paper (see [22]).

Proposition 3.6 (Proposition 2.1 of [2]). Let A be a separable C*-algebra (with or without unit). Then there is a countable subset
S of A such that if J is any ideal of A, then S ∩ J is dense in J.

Lemma 3.7. Let D be a C*-algebra. Let A ⊆ D be a separable sub-C*-algebra such that

DaD = D for all a ∈ A \ {0},

and let B ⊆ D be another separable sub-C*-algebra. Then, there is a separable sub-C*-algebra C of D such that

A, B ⊆ C and CaC = C for all a ∈ A \ {0} (3.8)

(i.e., such that the inclusion map A → C is full).

Proof. The proof follows an idea of Blackadar. Applying Proposition 3.6, one obtains a countable set

{a0, a1, a2, . . .} ⊆ A

such that {a0, a1, a2, . . .} ∩ J is dense in J for any ideal J of A. We may assume that

a0 = 0, so that aj ̸= 0, j = 1, 2, . . . .

Set

C1 = C*(A ∪ B) ⊆ D.

t is clear that C1 is separable. Pick a dense set {c1, c2, . . .} in C1. Since DajD = D, j = 1, 2, . . ., for any ε > 0 and any ci,
here are finitely non-zero sequences xci,aj,ε,1, xci,aj,ε,2, . . . and yci,aj,ε,1, yci,aj,ε,2, . . . in D such that

∥ci − (xci,aj,ε,1ajyci,aj,ε,1 + xci,aj,ε,2ajyci,aj,ε,2 + · · ·)∥ < ε.

Set

C2 = C*(C1, xci,aj, 1n ,k, yci,aj, 1n ,k : i, j, n, k = 1, 2, . . .).

Then

C2ajC2 ⊇ C1, j = 1, 2, . . . .

Repeating the construction above, one obtains a sequence of separable C*-algebras

C ⊆ C ⊆ · · · ⊆ C ⊆ · · · ⊆ D
1 2 n
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such that

Cn+1ajCn+1 ⊇ Cn, j = 1, 2, . . . , n = 1, 2, . . . .

Setting
⋃

∞

n=1 Cn = C , one has

CajC = C, j = 1, 2, . . . .

Then the separable sub-C*-algebra C satisfies the requirements of the lemma. Indeed, let a ∈ A \ {0}. Consider the
ideal J := CaC ∩ A. Since a ∈ J , one has J ̸= {0}. By Proposition 3.6, one has that {a0, a1, a2, . . .} ∩ J is dense in J , and in
particular, the ideal J contains some aj ̸= 0. Since C = CajC ⊆ CJC = CaC , one has CaC = C , as desired. □

emark 3.8. If A is simple, then, in the proof above, one only needs to pick one non-zero element of A and does not need
roposition 3.6.

emma 3.9. Let B be a σ -unital C*-algebra and let A be a separable amenable C*-algebra which is a sub-C*-algebra of B. Let
1, h2 : A → B be homomorphisms such that [h1] = [h2] in KK(A, B) (which we regard as KK1(A, SB)). There exists a separable
ub-C*-algebra C ⊆ B such that A, h1(A), h2(A) ⊆ C and [h1] = [h2] in KK(A, C). If the inclusion of A in B is full (in other
ords, BaB = B for any 0 ̸= a ∈ A), then C may be chosen such that the inclusion of A in C is full.

roof. Consider the extensions τ1, τ2 : A → M(SB)/SB given by the mapping tori

Mhi = {(f , a) ∈ C([0, 1], B) ⊕ A : f (0) = a and f (1) = hi(a)}, i = 1, 2. (3.9)

et Hi : A → M(SB) be a completely positive contractive lifting of τi, i = 1, 2. There are a monomorphism φ0 : A →

(SB ⊗ K) and a unitary w ∈ M(SB ⊗ K) such that

w∗(H1(a) ⊕ φ0(a))w − (H2(a) ⊕ φ0(a)) ∈ SB ⊗ K for all a ∈ A.

et C000 denote the (separable) sub-C*-algebra of B generated by A, h1(A), and h2(A).
Choose a system of matrix units (ei,j) for K, and choose a dense sequence (tn) in (0, 1). Choose an increasing

pproximate unit (En) for SB ⊗ K such that En ∈ Mk(n)(SB), n = 1, 2, . . ..
Denote by D0 the (separable) sub-C*-algebra of SB ⊗ K generated by

w∗(diag(H1(a), φ0(a)))w − diag(H2(a), φ0(a)), a ∈ A. (3.10)

Denote by D00 the sub-C*-algebra of SB ⊗ K generated by

{En, wEn, Enw, Enφ0(a), φ0(a)En : a ∈ A, n ∈ N}.

et D000 denote the (separable) sub-C*-algebra of SB ⊗ K generated by D00 and D0. Denote by πt : SB ⊗ K → B ⊗ K the
oint evaluation at t ∈ (0, 1), and by C00 the sub-C*-algebra of B ⊗ K generated by

{πtn (D000) + C000 ⊗ e1,1 : n = 1, 2, . . .}.

enote by C0,n ⊆ B⊗K the sub-C*-algebra generated by {(1 ⊗ e1,i)C00(1 ⊗ ej,1) : 1 ≤ i, j ≤ n}, n = 1, 2, . . .. Let C ′ denote
he (separable) sub-C*-algebra of B generated by

⋃
∞

n=1 C0,n. Choose a separable sub-C*-algebra C of B containing A and
′. By Lemma 3.7, if the inclusion A → B is full, then we may choose C such that the inclusion A → C is full. Note that
as C000 ⊆ C0,1), h1(A), h2(A) ⊆ C ′

⊆ C . Consider the sub-C*-algebra C1 = C ⊗ K of B ⊗ K. Fix

b ∈ {En, wEn, Enw, Enφ0(a), φ0(a)En : a ∈ A, n ∈ N} ⊆ SB ⊗ K. (3.11)

eep in mind that En ∈ SB⊗K = C0((0, 1), B⊗K), in particular, En(0) = En(1) = 0, n ∈ N. Then, for each tn, n = 1, 2, . . .,

πtn (b) ∈ πtn (SC1 ⊗ K).

t follows that b ∈ SC1 ⊗ K. To see this, fix ε > 0, and choose a finite sequence tni ∈ (tn), i = 1, 2, . . . , k, such that

0 = tn0 < tn1 < tn2 < · · ·<tnk < tnk+1 = 1

nd

∥b(t) − b(tni )∥ < ε/4 for all t ∈ (tni , tni+1 ), i = 0, 1, . . . , k.

et

c(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
t
tn1

)b(tn1 ), t ∈ (0, tn1 )

(
tni+1 − t
tni+1 − tni

)b(tni ) + (
t − tni

tni+1 − tni
)b(tni+1 ), t ∈ [tni , tni+1 ), i = 1, 2, . . . , k,

(
1 − t

)b(tnk ), t ∈ (tnk , 1).
1 − tnk
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Then c ∈ SC1 ⊗ K. On the other hand,

∥b(t) − c(t)∥ < ε for all t ∈ (0, 1).

ince ε > 0 is arbitrary, this implies that b ∈ SC1 ⊗ K.
In particular, En ∈ SC1 ⊗ K and (En) is an approximate unit for SC1 ⊗ K, and so M(SC1 ⊗ K) ⊆ M(SB ⊗ K). Since also

wEn, Enw ∈ SC1 ⊗ K, and w ∈ M(SB ⊗ K), it follows that w ∈ M(SC1 ⊗ K). Similarly, since φ0(a)En, Enφ0(a) ∈ SC1 ⊗ K for
ll a ∈ A and φ0(w) ∈ M(SB ⊗ K), we may view φ0 as a monomorphism from A to M(SC1 ⊗ K) ⊆ M(SB ⊗ K).
A similar argument shows that D0 ⊆ SC1 ⊗ K.
We now have

w,H1(a) ⊕ φ0(a),H2(a) ⊕ φ0(a) ∈ M(SC1 ⊗ K),

w∗(H1(a) ⊕ φ0(a))w − (H2(a) ⊕ φ0(a)) ∈ SC1 ⊗ K
for all a ∈ A. This implies that [h1] = [h2] in KK(A, C). □

In a similar way (using Lemma 3.7), one also has the following result:

Lemma 3.10. Let A,D be C*-algebras, with A separable. Let φ,ψ, σ : A → D be homomorphisms such that
[φ] = [ψ] in HomΛ(K(A),K(D)), and
Dσ (a)D = D, 0 ̸= a ∈ A.

Then there is a separable sub-C*-algebra C ⊆ D such that
φ(A), ψ(A), σ (A) ⊆ C,
[φ] = [ψ] in HomΛ(K(A),K(C)), and
Cσ (a)C = C, 0 ̸= a ∈ A.

Proof. The proof is in the same spirit as that of 3.9. We sketch it below. Since A is separable, it is easy to find a separable
C*-algebra B1 ⊆ D such that φ(A), ψ(A) ⊆ B1 and φ∗i = ψ∗i (i = 0, 1) viewing φ and ψ as maps from A to B1. For
ach m ≥ 2, let Cm ∼= C0(Xm) for some locally compact and σ -compact metric space Xm such that K0(Cm) = Z/mZ and
1(Cm) = {0}. Denote by Ym the one-point compactification of Xm with the point ξ0 as the additional point. Note Ym is

separable.
Let φ(m), ψ (m)

: Cm ⊗ A → Cm ⊗ D be the natural extensions of φ and ψ . Suppose that p and q are two projections
in Ml((Cm ⊗ D)∼) for some l ≥ 1 such that there exists v ∈ Ml+k((Cm ⊗ D)∼) with v∗v = p ⊕ 1k and vv∗

= q ⊕ 1k.
We now view p, q, v as functions in C(Ym,Ml+k (̃D)). Let (yn) be a dense sequence of Ym such that y1 = ξ0. Consider
the sub-C*-algebra B′′

m,0 of Ml+k (̃D) which is generated by p(yn), q(yn), and v(yn) for all n ≥ 1. Then B′′

m,0 is separable.
One then easily constructs a separable sub-C*-algebra B′

m,0 of D such that p, q, v are in Ml+k((Cm ⊗ B′

m,0)
∼). Similarly, if

u, w are unitaries in Ml((Cm ⊗D)∼) which are connected by a continuous path of unitaries, then one may also construct a
separable sub-C*-algebra B′

m,1 of D such that u, w are in Ml((Cm⊗D)∼) and are connected by a continuous path of unitaries
in Ml((Cm ⊗ D)∼).

From this, one concludes that there is a separable sub-C*-algebra Bm ⊆ D such that φ(m)(Cm⊗A), ψ (m)(Cm⊗A) ⊆ Cm⊗Bm
nd φ(m)

∗i = ψ
(m)
∗i (i = 0, 1) viewing φ(m) and ψ (m) as maps from Cm⊗A to Cm⊗Bm,m = 2, 3, . . . Let D1 be the sub-C*-algebra

enerated by Bm, m = 1, 2, . . .. Then D1 is separable. By 3.9, there is a separable sub-C*-algebra C ⊇ D1, σ (A) such that
Cσ (a)C = C for all a ∈ A \ {0}. Note now that [φ] = [ψ] in HomΛ(K(A),K(C)) as φ

(m)
∗i = ψ

(m)
∗i with φ(m) and ψ (m) viewed

as maps from A into C . □

Definition 3.11. Let M : (A+ \ {0}) × (0, 1) → (0,+∞) and N : (A+ \ {0}) × (0, 1) → N be maps. A positive map
φ : A → B will be said to be (N,M)-full if for any 1 > ε > 0, any a ∈ A+ \ {0}, and any b ∈ B+ with ∥b∥ ≤ 1, there are
1, b2, . . . , bN(a,ε) ∈ B with ∥bi∥ ≤ M(a, ε), i = 1, 2, . . . ,N(a, ε), such that

∥b − (b∗

1φ(a)b1 + b∗

2φ(a)b2 + · · · + b∗

N(a,ε)φ(a)bN(a,ε))∥ ≤ ε.

Write F := (N,M) : (A+ \ {0}) × (0, 1) → N × R+, and let H ⊆ A+ \ {0}. A positive map L : A → B will be said to be
F-H-full if, for any a ∈ H, any b ∈ B+ with ∥b∥ ≤ 1, and any ε > 0, there are x1, x2, . . . , xm ∈ B with m ≤ N(a, ε) and
∥xi∥ ≤ M(a, ε) such that

∥

m∑
i=1

x∗

i L(a)xi − b∥ ≤ ε. (3.12)

The map L will be said to be uniformly (N,M)-full if N and M are independent of ε, (i.e., N : A+ \ {0} → N and
M : A+ \ {0} → R+ \ {0}) and to be strongly uniformly (N,M)-full, if, in addition, ε can be replaced by zero. The map L
will be said to be uniformly F-H-full, if F is independent of ε.

Let B be any C*-algebra and D ⊂ B be a σ -unital sub-C*-algebra. Let F = (N,M) : (A+ \ {0}) × (0, 1) → N × R+ be
a map described above. We would like to make the following remark: If L : A → D is (F ,H)-full, then j ◦ L : A → DBD
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is (F (1/2),H)-full, where F (1/2)((a, ε)) = F ((a, ε/2)) and j : D → DBD is the embedding. In fact, for any ε > 0, given any

∈ DBD+ with ∥b∥ ≤ 1, there is d ∈ D+ with ∥d∥ = 1 such that ∥b1/2db1/2 − b∥ < ε/2. Fix a ∈ H ⊆A+ \ {0}. There are
x1, x2, . . . , xm with m ≤ N(a, ε/2) and ∥xi∥ ≤ M(a, ε/2) such that

∥

m∑
i=1

x∗

i L(a)xi − d∥ ≤ ε/2.

It follows that, for a ∈ H,

∥

m∑
i=1

b1/2x∗

i L(a)xib
1/2

− b∥ < ε/2 + ε/2 = ε.

Note that ∥xib1/2∥ ≤ ∥xi∥. So j ◦ L is (F (1/2),H)-full. Note also, if F (a, t) = F (a, t ′) for all t, t ′ ∈ (0, 1), (uniformly full), then
F (1/2)

= F , whence j ◦ L is still (F ,H)-full.

Let A and B be C*-algebras and d : A → B a map. For each integer n ≥ 1, denote by dn : A → Mn(B) the map
dn : a ↦→ d(a) ⊕ d(a) ⊕ · · · ⊕ d(a)  

n

(for a ∈ A).

Theorem 3.12 (cf. Theorem 3.9 of [34]). Let A be a separable amenable C*-algebra and let B be a σ -unital C*-algebra. Let
h1, h2 : A → B be homomorphisms such that

[h1] = [h2] in KL(A, B).

Suppose that there is an embedding d : A → B which is (N,M)-full for some N : A+ \ {0} × (0, 1) → N and
M : A+ \ {0} × (0, 1) → R+ \ {0}.

Then, for any ε > 0 and finite subset F ⊆ A, there are an integer n ≥ 1 and a unitary u ∈ M̃n+1(B) such that

∥u∗diag(h1(a), dn(a))u − diag(h2(a), dn(a))∥ < ε for all a ∈ F . (3.13)

Proof. Write C =
∏

∞

k=1 B, C0 =
⨁

∞

k=1 B, and let π : C → C/C0 denote the quotient map. Let Hi = (hi) : A → C be defined
by Hi(a) = (hi(a)) for all a ∈ A, i = 1, 2. Define H0 : A → C by H0(a) = (d(a)) for all a ∈ A. It follows from 3.5 of [34] that

[π ◦ H1] = [π ◦ H2] in KK(A, C/C0). (3.14)

Since d : A → B is (N,M)-full, for any a ∈ A+ \ {0}, let M(a, ε) and N(a, ε) be as in Definition 3.11. Let (bn) ∈ (
∏

∞

n=1 B)+
with ∥(bn)∥ ≤ 1. Then, for any ε > 0, there are b1,n, b2,n, . . . , bN(a,ε),n ∈ B with ∥bi,n∥ ≤ M(a, ε) such that

∥

N(a,ε)∑
i=1

b∗

i,nd(a)bi,n − bn∥ < ε.

Set (bi,n) = zi, i = 1, 2, . . . ,N(a, ε). Then ∥zi∥ = sup{∥bi,n∥ : n ∈ N} ≤ M(a, ε), i = 1, 2, . . . ,N(a, ε). Therefore,
zi ∈

∏
∞

n=1 B. We have

∥

N(a,ε)∑
i=1

z∗

i H0(a)zi − (bn)∥ < ε.

This implies that the map H0 : A →
∏

∞

n=1 B is full.
It follows that the embedding π ◦ H0 : A → C/C0 is full. Combining this with (3.14), and applying Lemma 3.9, we

obtain a separable sub-C*-algebra D ⊆ C/C0 such that π ◦H0(A), π ◦H1(A), π ◦H2(A) ⊆ D, the map π ◦H0 : A → D is full,
and

[π ◦ H1] = [π ◦ H2] in KK(A,D).

By Theorem 3.4 there exist an integer n ≥ 1 and a unitary U ∈ Mn+1(D)∼ such that

∥U∗diag(π ◦ H1(a), dn(π ◦ H0(a)))U − diag(π ◦ H2(a), dn(π ◦ H0(a)))∥ < ε, a ∈ F .

Note that U ∈ Mn+1(C/C0)∼. Therefore (by stable relations) there is a unitary V = (vk) ∈ Mn+1(C)∼ such that π (V ) = U .
Then, for all sufficiently large k,

∥v∗

kdiag(h1(a), dn(a))vk − diag(h2(a), dn(a))∥ < ε for all a ∈ F .

Thus, the unitary u = vk with k sufficiently large satisfies the conclusion of the theorem. □
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Definition 3.13 (Definition 2.1 of [23]). Fix a map r0 : N → Z+, a map r1 : N → Z+, a map T : N × N → N, and integers
s ≥ 1 and R ≥ 1. We shall say a C*-algebra A belongs to the class C (r0,r1,T ,s,R) if

(a) for any integer n ≥ 1 and any pair of projections p, q ∈ Mn (̃A) with [p] = [q] in K0(A), p ⊕ 1Mr0(n) (̃A)
and q⊕1Mr0(n) (̃A)

are Murray–von Neumann equivalent, and moreover, if p ∈ Mn (̃A) and q ∈ Mm (̃A) and [p] − [q] ≥ 0, then there exists
′
∈ Mn+r0(n) (̃A) such that p′

≤ p ⊕ 1Mr0(n)
and p′ is equivalent to q ⊕ 1Mr0(n)

;

(b) if k ≥ 1, and x ∈ K0(A) such that −n[1̃A] ≤ kx ≤ n[1̃A] for some integer n ≥ 1, then

−T (n, k)[1̃A] ≤ x ≤ T (n, k)[1̃A];

(c) the canonical map U(Ms (̃A))/U0(Ms (̃A)) → K1(A) is surjective;
(d) if u ∈ U(Mn (̃A)) and [u] = 0 in K1 (̃A), then u ⊕ 1Mr1(n)

∈ U0(Mn+r1(n) (̃A));
(f) cer(Mm (̃A)) ≤ R for all m ≥ 1 (see 2.15 of [24], for example).
If A has stable rank one, and (a) to (f) hold, then they hold with r0 = r1 = 0.

Let A be a unital C*-algebra and let x ∈ A. Suppose that ∥x∗x− 1∥ < 1/2 and ∥xx∗
− 1∥ < 1/2. Then x is invertible and

|x|−1 is a unitary. Let us use ⌈x⌉ to denote x|x|−1. We will use this notation in the next statement (see (3.15)).

heorem 3.14 (cf. 5.3 of [33], Theorem 3.1 of [23], Theorem 4.15 of [11], 5.9 of [34], and Theorem 7.1 of [36]). Let A be a
on-unital separable amenable C*-algebra which satisfies the UCT, let r0, r1 : N → Z+, T : N × N → N be three maps, let
, R ≥ 1 be integers, and let F : A+ \ {0} → N×R+ \ {0} and L : U(M∞ (̃A)) → R+ be two additional maps. For any ε > 0 and
ny finite subset F ⊆ A, there exist δ > 0, a finite subset G ⊆ A, a finite subset P ⊆ K(A), a finite subset U ⊆ U(M∞ (̃A)), a

finite subset H ⊆ A+ \ {0}, and an integer K ≥ 1 satisfying the following condition: For any two G-δ-multiplicative contractive
completely positive linear maps φ,ψ : A → B, where B ∈ C r0,r1,T ,s,R, and any G-δ-multiplicative contractive completely positive
inear map σ : A → Ml(B) (for any integer l ≥ 1) which is (uniformly) T -H-full and such that

cel(⌈φ(u)⌉⌈ψ(u∗)⌉) ≤ L(u) for all u ∈ U, and (3.15)
[φ]|P= [ψ]|P , (3.16)

see 1.1 of [23] and [42] for the definition of cel) there exists a unitary U ∈ M̃1+Kl(B) such that

∥AdU ◦ (φ ⊕ σK )(a) − (ψ ⊕ σK )(a)∥ < ε for all a ∈ F, (3.17)

here

σK :=

K  
σ ⊕ σ ⊕ · · · ⊕ σ : A → MKl(B).

Proof. Let us also use φ and ψ for φ⊗ idMm and ψ ⊗ idMm , respectively. Fix A, r0, r1, T , s, R, F , and L as described above.
Suppose that the conclusion of the theorem is false for these data. Then there exist ε0 > 0 and a finite subset F ⊆ A such
hat there are a sequence of positive numbers (δn) with δn ↘ 0, an increasing sequence (Gn) of finite subsets of A such that

n Gn is dense in A, an increasing sequence (Pn) of finite subsets of K(A) such that
⋃

n Pn = K(A), an increasing sequence
Un) of finite subsets of U(M∞ (̃A)) such that

⋃
n Un ∩U(Mm (̃A)) is dense in U(Mm (̃A)) for each integer m ≥ 1, an increasing

equence (Hn) of finite subsets of A1
+

\ {0} such that, if a ∈ Hn and f1/2(a) ̸= 0, then f1/2(a) ∈ Hn+1, and
⋃

n Hn is dense
n A1, and (use 3.6) has dense intersection with the unit ball of each closed two-sided ideal of A, a sequence of integers
k(n)) with limn→∞ k(n) = +∞, a sequence of unital C*-algebras Bn ∈ Cr0,r1,T ,s,R, two sequences of Gn-δn-multiplicative
ompletely positive contractive maps φn, ψn : A → Bn such that

[φn]|Pn= [ψn]|Pn and cel(⌈φn(u)⌉⌈ψn(u∗)⌉) ≤ L(u), for all u ∈ Un, (3.18)

sequence of Gn-δn-multiplicative completely positive contractive linear maps σn : A → Ml(n)(Bn) which are F-Hn-full
nd satisfy, for each n = 1, 2, . . .,

inf{sup ∥v∗

n (φn(a) ⊕ (σn)k(n)(a))vn − (ψn(a) ⊕ (σn)k(n)(a))∥ : a ∈ F} ≥ ε0, (3.19)

here the infimum is taken among all unitaries vn ∈ ˜Mk(n)l(n)+1(Bn) and (σn)k(n) : A → Mk(n)l(n)(Bn) is as above.
Set Ml(n)(Bn) = B′

n,
⨁

∞

n=1 B
′
n = C0,

∏
∞

n=1 B
′
n = C , and C/C0 = Q (C), and denote by π : C → Q (C) the quotient map.

onsider the maps Φ,Ψ , S : A → C defined by Φ(a) = (φn(a))n≥1, Ψ (a) = (ψn(a))n≥1, and S(a) = (σn(a))n≥1, a ∈ A. Note
hat π ◦ Φ , π ◦ Ψ and π ◦ S are homomorphisms. Consider also the truncations Φ(m),Ψ (m), S(m)

: A →
∏

n≥m B′
n defined

y Φ(m)(a) = (φn(a))n≥m, Ψ (m)(a) = (ψn(a))n≥m, and S(m)(a) = (σn(a))n≥m, a ∈ A.
For each u ∈ Um, we have u ∈ ML(m) (̃A) for some integer L(m) ≥ 1. When n ≥ m, by hypothesis, there exists a

ontinuous path of unitaries {un(t) : t ∈ [0, 1]} ⊆ ML(m) (̃B′
n) such that

u (0) = ⌈φ (u)⌉, u (1) = ⌈ψ (u)⌉ and cel({u (t)}) ≤ L(u).
n n n n n
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It follows from Lemma 1.1 of [23] that, for all n ≥ m, there exists a continuous path {U(t) : t ∈ [0, 1]} ⊆ U0(

∏
n≥m B̃′

n)
uch that U(0) = (⌈φn(u)⌉)n≥m and U(1) = (⌈ψn(u)⌉)n≥m. This in particular implies that

⌈Φ(m)(u)⌉⌈Ψ (m)(u∗)⌉ ∈ U0(ML(m)(
∏
n≥m

B̃′

n)) and [π ◦Φ]∗1 = [π ◦ Ψ ]∗1. (3.20)

By (3.18), for all n ≥ m,

[φn]|Pm= [ψn]|Pm . (3.21)

By hypothesis and by [23], K0(C) =
∏

b K0(B′
n), it follows that

[Φ (m)
]|K0(A)∩Pm= [Ψ (m)

]|K0(A)∩Pm , m = 1, 2, . . . . (3.22)

In particular,

[π ◦Φ]∗0 = [π ◦ Ψ ]∗0. (3.23)

Now let x0 ∈ Pm ∩ K0(A,Z/kZ) for some k ≥ 2. Denote by x̃0 ∈ K1(A) the image of x0 under the map
K0(A,Z/kZ) → K1(A). We may assume that x̃0 ∈ Pm0 for some m0 ≥ m. By (3.20), [Φ (m0)](x̃0) = [Ψ (m0)](x̃0). Set
y0 = [Φ (m0)](x0) − [Ψ (m0)](x0). Then y0 ∈ K0((

∏
n≥m0

B′
n),Z/kZ) must be in the image of K0(

∏
n≥m0

B′
n), which may be

identified with K0(
∏

n≥m0
B′
n)/kK0(

∏
n≥m0

B′
n) (see [23]). However, by (3.21),

y0 ∈ kerψ (k)
0 ,

where ψ (k)
0 : K0(

∏
n≥m0

B′
n,Z/kZ) →

∏
n≥m0

K0(B′
n,Z/kZ) is as in 4.1.4 of [31]. By [23], y0 = 0. In other words,

[Φ (m0)](x0) = [Ψ (m0)](x0),

which implies that

[π ◦Φ]|K0(A,Z/kZ)= [π ◦ Ψ ]|K0(A,Z/kZ), k = 2, 3, . . . . (3.24)

Now let x1 ∈ K1(A,Z/kZ). Then x1 ∈ Pm for some m ≥ 1. Denote by x̃1 ∈ K0(A) the image of x1 under the
map K1(A,Z/kZ) → K0(A). There is m1 ≥ m such that x̃1 ∈ Pm1 . By (3.22), [Φ (m1)](x̃1) = [Ψ (m1)](x̃1). Put y1 =

[Φ (m1)](x1) − [Ψ (m1)](x1). Then y1 ∈ K1(
∏

n=m1
B′
n)/kK1(

∏
n=m1

B′
n) (see [23]). However, by (3.20), y1 ∈ kerψ (k)

1 (see 4.1.4
of [31]). It follows from [23] that y1 = 0. In other words,

[Φ (m1)](x1) = [Ψ (m1)](x1).

Thus,

[π ◦Φ]|K1(A,Z/kZ)= [π ◦ Ψ ]|K1(A,Z/kZ). (3.25)

Combining (3.20), (3.23), (3.24), and (3.25), we have

[π ◦Φ] = [π ◦ Ψ ] in HomΛ(K(A),K(Q (C))),

where C =
∏

n≥m B′
n. For each a ∈ Hm ⊆ A1

+
\ {0}, any (bn) ∈ C1

+
, and any η > 0, since σn is F-Hn-full, for all n ≥ m, there

are xi,n(a) ∈ B′
n with ∥xi,n∥ ≤ M(a), i = 1, 2, . . . ,N(a), where F (a) = M(a) × N(a), such that

∥

N(a)∑
i=1

xi,n(a)∗σn(a)xi,n(a) − bn∥ < η.

Define x(i, a) = (xi,n(a)). Then x(i, a) ∈ C . It follows that

∥

N(a)∑
i=1

x(i, a)∗S(m)(a)x(i, a) − (bn)n≥m∥ < η.

This shows that π ◦ S(a) is a full element of Q (C) for any 0 ̸= a ∈
⋃

∞

n=1 Hn. Let I be an ideal of Q (C) and consider the
pre-image

J = {a ∈ A : π ◦ S(a) ∈ I}.

By the choice of (Hn), J = {0}. It follows that the map π ◦ S : A → Q (C) is full.
By Lemma 3.10, there exists a separable sub-C*-algebra D ⊆ Q (C) such that π ◦ S(A), π ◦Φ(A), π ◦Ψ (A) ⊆ D, the map

π ◦ S : A → D is full, and

[π ◦Φ] = [π ◦ Ψ ] in Hom (K(A),K(D)).
Λ
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Since A satisfies the UCT, by [12], [π ◦Φ] = [π ◦ Ψ ] in KL(A,D). Then, by Theorem 3.12 (as at the end of the proof of
heorem 3.12), there exist an integer K ≥ 1 and a unitary V ∈ ˜MK+1(Q (C)) such that

∥V ∗(π ◦Φ(a) ⊕Σ(a))V − (π ◦ Ψ (a) ⊕Σ(a))∥ < ε0/4, a ∈ F

where, as above,

Σ(a) =

K  
π ◦ S(a) ⊕ π ◦ S(a) ⊕ · · · ⊕ π ◦ S(a), a ∈ A.

herefore, there exists a sequence of unitaries (vn) ⊆ M̃K+1(C) and an integer N1 such that k(n) ≥ K for all n ≥ N1 and

∥v∗

n (φn(a) ⊕ (σn)K (a))vn − (ψn(a) ⊕ (σn)K (a))∥ < ε0/2, a ∈ F,

where

(σn)K (a) =

K  
σn(a) ⊕ σn(a) ⊕ · · · ⊕ σn(a), a ∈ A.

his contradicts (3.19). □

emark 3.15. Suppose that K1(A) ∩ P = {z1, z2, . . . , zm}. Then, by choosing sufficiently large P , we can always choose
= {w1, w2, . . . , wm} so that [wi] = zi, i = 1, 2, . . . ,m. In other words, we do not need to consider unitaries in

0(M∞ (̃A)). In particular, if K1(A) = {0}, then we can omit the condition (3.15). Moreover, if B is restricted in the class of
*-algebras of real rank zero, then one can choose L ≡ 2π + 1 and (3.15) always holds if P is sufficiently large. In other
ords, in this case, condition (3.15) can also be dropped.
Let B0 be a C*-algebra with a strictly positive element e0 and B = eb(MK+1(B0))eb, where eb ∈ MK+1(B0)+ and eb ≥

(
∑K

i=1(e0⊗eii) and {ei,j : 0 ≤ i, j ≤ K } is a matrix unit for MK+1. Let B1 = e1Be1, where e1 ∈ (e0 ⊗ e0,0)MK+1(B0)(e0 ⊗ e0,0)+.
e may view B1 ⊂ B0. Suppose B0 ∈ C r0,r1,T ,s,R. Suppose that φ,ψ : A → B1 ⊂ B and σ : A → B0 ⊂ B are as in
heorem 3.14 (φ and ψ are G-δ-multiplicative, and σ is T -H-full in B0), and that cel(⌈φ(u)⌉⌈ψ(u∗)⌉) ≤ L(u) for all u ∈ U
viewing φ and ψ as maps to B0 instead of B1) and (3.16) holds. Then there exists u ∈ B̃ such that

∥u∗diag(φ(a), σK (a))u − diag(ψ(a), σK (a))∥ < ε for all a ∈ F, (3.26)

here σK (a) = diag(σ (a), . . . , σ (a)), where σ (a) repeats K times (see also below).

orollary 3.16. Let A be a non-unital separable amenable C*-algebra which is KK-contractible and let T : A+ \ {0} →

× R+ \ {0} be a map. For any ε > 0 and any finite subset F ⊆ A, there exist δ > 0, a finite subset G ⊆ A, a finite subset
⊂ A+ \ {0} and an integer K ≥ 1 satisfying the following:
Let B0 be any C*-algebra with a strictly positive element e0 and B = ebMK+1(B0)eb, where eb ∈ MK+1(B0), eb ≥

∑K
i=1(e0⊗eii)

and {ei,j : 0 ≤ i, j ≤ K } is a matrix unit for MK+1. Let B1 = e1Be1, where e1 ∈ (e0 ⊗ e0,0)MK+1(B0)(e0 ⊗ e0,0)+. For any two
-δ-multiplicative contractive completely positive linear maps φ,ψ : A → B1, and any G-δ-multiplicative contractive
ompletely positive linear map σ : A → B0 which is also T-H-full in B0, there exists a unitary U ∈ B̃ such that

∥AdU ◦ (φ ⊕ σK )(a) − (ψ ⊕ σK )(a)∥ < ε for all a ∈ F, (3.27)

where, as earlier,

σK =

K  
σ ⊕ σ ⊕ · · · ⊕ σ : A → MK (B0) ⊂ B.

Proof. In Theorem 3.14, the only reason that the restriction has to be placed on B is for the computation of the K-theory
of the maps φ and ψ . More precisely, the restriction is used to obtain

[π ◦Φ] = [π ◦ Ψ ] in HomΛ(K(A),K(Q (C)))

n the proof of 3.14. Since A is KK -contractible, K (A) = {0}. Hence [π ◦ Φ] = [π ◦ Ψ ] = 0. Note that, since KK(A, A) = 0,
satisfies the UCT. □

emma 3.17. If a separable C*-algebra B is KK-contractible, then A⊗B is KK-contractible for any separable amenable C*-algebra
.

roof. Since B is KK-contractible, i.e., idB ∼KK 0B, there is a continuous path (in the strict topology) of pairs (φ+

t , φ
−

t ),
∈ [0, 1], where

φ±
: B → M(B ⊗ K), t ∈ [0, 1],
t
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are homomorphisms such that

φ+

t (a) − φ−

t (a) ∈ B ⊗ K, t ∈ [0, 1], a ∈ B,

(φ+

0 , φ
−

0 ) = (idB, 0) and (φ+

1 , φ
−

1 ) = (0, 0).

Let A be a separable amenable C*-algebra. Consider the two families of elements

Φ±

t (a ⊗ b) = a ⊗ φ±

t (b) ∈ A ⊗ M(B ⊗ K) ⊆ M(A ⊗ B ⊗ K), a ∈ A, b ∈ B, t ∈ [0, 1].

(Nuclearity of A implies that the two tensor products are unambiguous.) Then Φ±

t (a⊗ b), t ∈ [0, 1], are continuous paths
(in the strict topology) in M(A ⊗ B ⊗ K), and

Φ+

t (a ⊗ b) −Φ−

t (a ⊗ b) = a ⊗ (φ+

t (b) − φ−

t (b)) ∈ A ⊗ B ⊗ K.

oreover, (Φ+

0 ,Φ
−

0 ) = (idA⊗B, 0) and (Φ+

1 ,Φ
−

1 ) = (0, 0). Therefore, idA⊗B ∼KK 0, i.e., A ⊗ B is KK-contractible, as
sserted. □

. An isomorphism theorem

Recall that a non-unital C*-algebra A is said to have almost stable rank one if the closure of the set of invertible elements
n Ã contains A, and if this holds also for each hereditary sub-C*-algebra of A in place of A (see [44]).

Recall also that if A ∈ D is a separable simple C*-algebra, then A has (Blackadar) strict comparison for positive elements,
has stable rank one, and the map from Cu(A) to LAff0+(T(aAa)

w
) is an isomorphism of ordered semigroups (for any

non-zero element a ∈ Ped(A)) (see 11.8 and 11.3 of [17])
In what follows, if A is a C*-algebra, we use A1 for the unit ball of A. We will use the following reformulation of

Definition 2.5 given by 11.10 of [17] when K0(A) = {0}.

Proposition 4.1 (11.10 and 10.8 of [17]). Let A be a separable C*-algebra in D with K0(A) = {0}. Let the strictly positive
element e ∈ A with ∥e∥ ≤ 1 and the number 1 > fe > 0 be as in 2.5. There is a map T : A+ \ {0} → N × R+ \ {0} with the
following property: For any finite subset F0 ⊆ A+ \ {0}, any ε > 0, any finite subset F ⊆ A, any b ∈ A+ \ {0}, and any integer
n ≥ 1, there are F-ε-multiplicative completely positive contractive maps φ : A → A and ψ : A → D for some sub-C*-algebra
D = D ⊗ e11 ⊆ Mn(D) ⊆ A such that ψ(e) is strictly positive in D and T-F0 ∪ {f1/4(e)}-full as a map A → D,

∥x − (φ(x) ⊕

n  
ψ(x) ⊕ ψ(x) ⊕ · · · ⊕ ψ(x))∥ < ε for all x ∈ F ∪ {e}, (4.1)

D ∈ C0, φ(e) ≲ b, φ(A) ⊥ Mn(D), (4.2)

φ(e) ≲ ψ(e) and t ◦ f1/4(ψ(e)) > fe for all t ∈ T (D). (4.3)

Definition 4.2. Let A be a C*-algebra with T(A) ̸= Ø such that 0 ̸∈ T(A)
w
. There is an affine map rAff : As.a. → Aff(T(A)

w
)

defined by

rAff(a)(τ ) = â(τ ) = τ (a), τ ∈ T(A)
w
, a ∈ As.a..

Denote by Aq the space rAff(As.a.), A
q
+ = rAff(A+) and A1,q

+ = rAff(A1
+
).

Theorem 4.3. Let A and B be two separable simple amenable C*-algebras in the class D with continuous scale. Suppose that
both A and B are KK-contractible. Then A ∼= B if and only if there is an affine homeomorphism γ : T(B) → T(A). Moreover, the
isomorphism φ : A → B can be chosen such that φT = γ , where φT is the map from T(B) to T(A) induced by φ.

Proof. By Theorem 2.8, there exists a simple C*-algebra C = limn→∞(Cn, ın), where each Cn is a finite direct sum of copies
of W and ın maps strictly positive elements to strictly positive elements, which has continuous scale, and is such that

T(A) ∼= T(C).

It suffices to show that A ∼= C . (By symmetry, then also B ∼= C .) We will use Γ : T(C) → T(A) for the affine homeomorphism
given above. We will use the approximate intertwining argument of Elliott [14]. We would like recall thatW is an inductive
limit of Razak algebras with injective connecting maps and the fact that A has stable rank one (see 11.5 of [17]). Fix two
sequences, {x1, x2, . . . , xn, . . .} of A and {y1, y2, . . . , yn, . . .} of C , which are dense in the unit ball of A and B, respectively.

Step 1: Construction of L1.
Fix a finite subset F ⊆ A and ε > 0. Without loss of generality, we may assume that x ∈ F ⊆ A1.
1 1 1
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Since A has continuous scale, A = Ped(A) (3.3 of [32]). Choose a strictly positive element a0 ∈ A+ with ∥a0∥ = 1 and
fa0 > 0 as in Definition 2.5. We may assume, without loss of generality, that

a0y = ya0 = y, a0 ≥ y∗y and a0 ≥ yy∗ for all y ∈ F1. (4.4)

Let T : A+ \ {0} → N × R+ \ {0} with T (a) = (N(a),M(a)) (a ∈ A+ \ {0}) be as given by Proposition 4.1 (11.10 and 10.8
of [17]).

Let δ1 > 0 (in place of δ), let G1 ⊆ A (in place of G) be a finite subset, let H1,0 ⊆ A+ \ {0} (in place of H) be a finite
subset, and let K1 ≥ 1 (in place of K ) be an integer as given by 3.16 for the above T , ε/16 (in place of ε), and F1. We may
assume that δ1 < ε.

Without loss of generality, we may assume that F1 ∪ H1,0 ⊆ G1 ⊆ A1.
Choose b0 ∈ A+ \ {0} with dτ (b0) < 1/8(K1 + 1).
It follows from Proposition 4.1 that there are G1-δ1/64-multiplicative completely positive contractive maps φ0 : A → A

nd ψ0 : A → D for some D = D ⊗ e1,1 ⊆ D ⊗ M2K1+1 ⊆ A with D ∈ C′

0 such that (D ⊗ M2K1+1)φ0(A) = 0 and

∥x − (φ0 ⊕

2K1+1  
ψ0 ⊕ ψ0 ⊕ · · · ⊕ ψ0)(x)∥ < min{ε/128, δ1/128} for all x ∈ G1, (4.5)

φ0(a0) ≲ b0, φ0(a0) ≲ ψ0(a0), (4.6)

0(a0) is strictly positive in D, and, moreover, ψ0 is T -H1,0 ∪ {f1/4(a0)}-full as a map from A to D.
By (4.6), replacing φ0 by fη(φ0(a0))φ0fη(φ0(a0)) for some sufficiently small η, applying a result of Rørdam (see also

emma 3.2 of [17]), as A has stable rank one (see 11.5 of [17]), one may assume that there is a unitary w0 ∈ Ã such that

w∗

0φ0(a)w0 ∈ DAD. (4.7)

efine φ′

0 : A → A by φ′

0(a) = diag(φ0(a), ψ0(a)) for all a ∈ A. Let D1,1 = M2K1 (D) and D′

1,1 = M2K1+1(D). Let
1 : D → M2K1 (D) be defined by

j1(d) =

2K1  
d ⊕ d ⊕ · · · ⊕ d for all d ∈ D.

Let

d′

00 =

1+2K1  
ψ0(a0) ⊕ ψ0(a0) ⊕ · · · ⊕ ψ0(a0) ∈ D′

1,1.

Let ı1 : D′

1,1 → A denote the embedding map, and let Cu∼(ı1) : Cu∼(D′

1,1) → Cu∼(A) denote the induced map.

By 6.2.3 of [43], Cu∼(A) = LAff∼
+
(T(A)) (see also 7.3 and 11.8 of [17]). This also holds with C in place of A. Let

Γ ∼
: Cu∼(A) → Cu∼(C) be the isomorphism given by Γ ∼(f )(τ ) = f (Γ (τ )) for all f ∈ LAff∼

+
(T(A)) and τ ∈ T(A) (see

7.3 of [17]). By Theorem 1.0.1 of [43], there is a homomorphism h′

1 : D′

1,1 → C such that

Cu∼(h′

1) = Γ ∼
◦ Cu∼(ı1), in particular, ⟨h′

1(d
′

00)⟩ = Γ ∼
◦ Cu∼(ı1)(⟨d′

00⟩). (4.8)

Write h1 = (h′

1)|D1,1 , and C ′
= {c ∈ C : ch1(d) = h1(d)c = 0 for all d ∈ D1,1}. Note that

h′

1(ψ0(a) ⊕

2K1  
0 ⊕ 0 ⊕ · · · ⊕ 0)∈C ′ for all a ∈ A.

efine h′

0 : A → C ′ by

h′

0(a) = h′

1(ψ0(a) ⊕

2K1  
0 ⊕ 0 ⊕ · · · ⊕ 0) for all a ∈ A.

efine L1 : A → C by

L1(a) = h′

0(a) ⊕ h1(

2K1  
ψ0(a) ⊕ ψ0(a) ⊕ · · · ⊕ ψ0(a)) for all a ∈ A. (4.9)

ote that L1 is G1-δ1/64-multiplicative (see (4.5)).
Step 2: Construct H1 and the first approximate commutative diagram.
It follows from Theorem 1.0.1 of [43], as A has stable rank one (by 11.5 of [17]), that there is a homomorphism
: C → A such that

Cu∼(H) = (Γ ∼)−1. (4.10)

ote that (by (4.10), (4.6) and the definition of h′

0)

⟨H ◦ h′ (a )⟩ ≤ ⟨ψ (a )⟩ (4.11)
0 0 0 0
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in the C*-algebra A. Choose δ1/4 > η0 > 0 such that

∥fη0 (H ◦ h′

0(a0))x − x∥, ∥x − xfη0 (H ◦ h′

0(a0))∥ < min{ε/128, δ1/128} (4.12)

for all x ∈ H ◦ h′

0(G1). Again, since A has stable rank one (11.5 of [17]), by a result of Rørdam (see also 3.2 of [17]), there
is a unitary u0 ∈ Ã such that

u∗

0fη0 (H ◦ h′

0(a0))u0 ∈ ψ00(a0)Aψ00(a0)= DAD, (4.13)

where

ψ00(a) = ψ0(a) ⊕

2K1  
0 ⊕ 0 ⊕ · · · ⊕ 0 ∈ M1+2K1 (D) ⊆ A for all a ∈ A.

Set A′

0,1 = u∗

0fη0 (H ◦ h′

0(a0))u0Au∗

0fη0 (H ◦ h′

0(a0))u0. Define H ′
: A → A′

0,1 ⊂ DAD by

H ′(a) = u∗

0(fη0 (H ◦ h′

0(a0)))H ◦ h′

0(a)(fη0 (H ◦ h′

0(a0)))u0 for all a ∈ A.

Note that H ′ is a G1-δ1/32-multiplicative completely positive contractive map. Moreover, by (4.12),

∥ Ad u0 ◦ H ◦ h′

0(a) − H ′(a)∥ < min{ε/128, δ1/128} for all a ∈ G1. (4.14)

Consider the homomorphisms Ad u0 ◦ H ◦ h1 ◦ j1 and ı1 ◦ j1 (or rather ı1|D1,1◦j1). Then, by (4.8) and (4.10),

Cu∼(Ad u0 ◦ H ◦ h1 ◦ j1) = Cu∼(ı1 ◦ j1). (4.15)

Put A′
= {a ∈ A : a ⊥ A′

0,1}. Then A′ is a hereditary sub-C*-algebra of A. Thus A′
∈ D and K0(A′) = 0. Note that we may

view both ı1 ◦ j1 and Ad u0 ◦H ◦h1 ◦ j1 as maps into A′ (recall h′

0(A) ⊥ h1(D1,1)). By Theorem 3.3.1 of [43] (as any hereditary
ub-C*-algebra of A has stable rank one) and by (4.15), there exists a unitary u1 ∈ Ã′ such that

∥u∗

1(Ad u0 ◦ H ◦ h1 ◦ j1(x))u1 − ı1 ◦ j1(x)∥ < min{ε/16, δ1/16} for all x ∈ ψ0(G1). (4.16)

riting u1 = λ+ z with z ∈ A′, we may view u1 is a unitary in Ã. Note that, for any b ∈ A′

0,1, u
∗

1bu1 = b. In particular, for
ny a ∈ A,

Ad u1 ◦ H ′(a) = H ′(a) for all a ∈ A. (4.17)

ote that the map ı′ ◦ ψ0 : A → DAD is T -H1,0 ∪ {f1/4(a0)}-full (see the last remark of 3.11), where ı′ : D → DAD is the
embedding. By Corollary 3.16, there is u2 ∈ Ã (see (4.7)) such that

∥Ad u2 ◦ (H ′(a) ⊕ ı1 ◦ j1 ◦ ψ0(a)) − (φ′

0(a) ⊕ ı1 ◦ j1 ◦ ψ0(a))∥ < ε/16 (4.18)

or all a ∈ F1. Recall that H ◦ L1(a) = H ◦ h′

0(a) ⊕ H ◦ h1 ◦ j1 ◦ ψ0(a) for a ∈ A (see (4.9)). Combining with (4.14), (4.16),
nd (4.17), we have

∥Ad (u0u1u2) ◦ H ◦ L1(a) − Ad u2 ◦ (H ′(a) ⊕ ı1 ◦ j1 ◦ ψ0(a))∥ < ε/128 + ε/16 (4.19)

or all a ∈ F1. On the other hand, by (4.5),

∥idA(a) − (φ′

0(a) ⊕ ı1◦j1 ◦ ψ0(a))∥ < ε/16 for all a ∈ F1. (4.20)

ut U1 = u0u1u2. By (4.20), (4.18), and (4.19), we conclude that

∥idA(a) − AdU1 ◦ H ◦ L1(a)∥ < ε for all a ∈ F1. (4.21)

Put H1 = AdU1 ◦ H (note that H1 is a homomorphism). Then we have the diagram

A id →→

L1
↓↓

A

C
H1

↗↗

which is approximately commutative on the subset F1 to within ε.
Step 3: Construct L2 and the second approximately commutative diagram.
We first return to C . Define ∆ : C1,q

+ \ {0} → (0, 1) by

∆(â) = (1/2) inf{τ (a) : τ ∈ T (C)} (4.22)

(Recall that T(C) is compact, by 5.3 of [17] since C has continuous scale.)
Fix any η > 0 and a finite subset S ⊆ C . We may assume that y ∈ S ⊆ C1 and L (F ) ⊆ S .
1 1 1 1 1 1 1
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Let G2,C ⊆ C (in place of G), H1,1 ⊆ C1
+

\ {0} (in place of H1), and H1,2 ⊆ Cs.a. (in place of H2) be finite subsets, and
2 > 0 (in place of δ) and γ1 > 0 (in place of γ ) be real numbers as provided by 7.8 of [17] for C , η1/16 (in place of ε),
nd S1 (in place of F), as well as ∆ above.
Without loss of generality, we may assume that S1 ∪ H1,2 ⊆ G2,C ⊆ C1.
Fix ε2 > 0 (with ε2 < ε/2) and a finite subset F2 such that {x1, x2} ∪H1(S1)∪F1 ⊆ F2. We may assume that F2 ⊆ A1.

et

γ0 = min{γ1, inf{∆(â) : a ∈ H1,1 ∪ H1,2}}.

ix a strictly positive element a1 of A with ∥a1∥ = 1. We may assume, without loss of generality, that

a1y = ya1 = y, a1 ≥ y∗y and a1 ≥ yy∗ for all y ∈ F2. (4.23)

et the map T : A+ \ {0} → N×R+ \ {0} with T (a) = (N(a),M(a)) (a ∈ A+ \ {0}), be as in 4.1 (see 11.10 and 10.8 of [17])
as mentioned in Step 1.

Let δ′

2 > 0 (in place of δ), let G2 ⊆ A (in place of G) be a finite subset, let H2,0 ⊆ A+ \ {0} (in place of H) be a finite
subset, and let K ′

2 ≥ 1 (in place of K ) be an integer as given by 3.16 for the above T , ε1/16 (in place of ε), and F2.
Without loss of generality, we may assume that H1(G2,C ),H1(H1,1 ∪ H1,2),H2,0 ⊆ G2 ⊆ A1 and δ′

2 < min{δ2, γ0, δ1/2}.
Choose K2 ≥ K ′

2 such that 1/K2 < γ0/8. Choose b2,0 ∈ A+ \ {0} with

dτ (b2,0) < 1/8(K2 + 1). (4.24)

It follows from Proposition 4.1 (11.10 and 10.7 of [17]) that there are G2-δ′

2/64-multiplicative completely positive
contractive maps φ2,0 : A → A and ψ2,0 : A → D2 for some D2 =D2 ⊗ e11 ⊆ D2 ⊗ M2K2+1 ⊆ A with D2 ∈ C0 such that
(D2 ⊗ M2K2+1)φ2,0(A) = 0,

∥x − (φ2,0(x) ⊕

2K2+1  
ψ2,0(x) ⊕ ψ2,0(x) ⊕ · · · ⊕ ψ2,0(x))∥ < min{ε2/128, δ′

2/128}, x ∈ G2, (4.25)

φ2,0(a1) ≲ b2,0, φ2,0(a1) ≲ ψ2,0(a1), (4.26)

nd ψ2,0(a1) is strictly positive in D2, and, moreover ψ2,0 is T -H2,0 ∪ {f1/4(a1)}-full in D2. As in Step 1, we may assume
hat there is a unitary w1 ∈ Ã such that

w∗

1φ2,0(a0)w1 ∈ D2AD2 (see (4.7)). (4.27)

Define φ′

2,0 : A → A by φ′

2,0(a) = φ2,0(a) ⊕ ψ2,0(a) for all a ∈ A. Let D2,1 = M2K2 (D2) and D′

2,1 = M2K2+1(D2). Let
j2 : D2 → M2K2 (D2) be defined by

j2(d) = diag(

2K2  
d, d, . . . , d) for all d ∈ D2.

Set

d′

2,00 =

2K2+1  
ψ2,0(a1) ⊕ ψ2,0(a1) ⊕ · · · ⊕ ψ2,0(a1) ∈ D′

2,1.

ith ı2 : D′

2,1 → A the inclusion map, consider the induced map Cu∼(ı2) : Cu∼(D′

2,1) → Cu∼(A). It follows from
heorem 1.0.1 of [43] (as C has stable rank one) that there is a homomorphism h′

2 : D′

2,1 → C such that

Cu∼(h′

2) = Γ ∼
◦ Cu∼(ı2), in particular, ⟨h′

2(d
′

2,00)⟩ = Γ ∼
◦ Cu∼(ı2)(⟨d′

2,00⟩). (4.28)

Let h2 = (h′

2)|D2,1 . Denote by C ′′
= {c ∈ C : ch2(d) = h2(d)c = 0, for all d ∈ D2,1}. Note that

h′

2(ψ2,0(a) ⊕

2K2  
0 ⊕ 0 ⊕ · · · ⊕ 0)∈C ′′, for all a ∈ A.

efine h′

2,0 : A → C ′′ by

h′

2,0(a) = h′

2(ψ2,0(a) ⊕

2K2  
0 ⊕ 0 ⊕ · · · ⊕ 0), for all a ∈ A.

efine L′

2 : A → C by, for all a ∈ A,

L′

2(a) = h′

2,0(a) ⊕ h2(

2K2  
ψ2,0(a) ⊕ ψ2,0(a) ⊕ · · · ⊕ ψ2,0(a)) = h′

2,0(a) ⊕ h2 ◦ j2(ψ2,0). (4.29)

y (4.28), (4.25), (4.26), and 1/K2 < γ0/8, we have, for all a ∈ G2,

|τ (h ◦ j (ψ (a))) − Γ (τ )(a)| = |Γ (τ )(j (ψ (a))) − Γ (τ )(a)| < γ /128 + γ /8. (4.30)
2 2 2,0 2 2,0 0 0
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It follows (see (4.29)) that

|τ (L′

2(a)) − Γ (τ )(a)| < γ0/128 + γ0/8 + γ0/8, for all a ∈ G2 and for all τ ∈ T (C). (4.31)

Since Cu∼(H1) = Cu∼(H) = (Γ ∼)−1, Γ (τ )(H1(x)) = τ (x) for all x ∈ C and τ ∈ T (C). Thus

sup{|τ ◦ L′

2 ◦ H1(x) − τ (x)| : τ ∈ T (C)} < γ0≤ γ1, for all x ∈ H1,1 ∪ H1,2. (4.32)

This implies that, in particular,

τ (L′

2 ◦ H1(b)) ≥ ∆(b̂), b ∈ H1,1. (4.33)

Note also that, by construction of C , K0(C) = K1(C) = {0}, and so we may apply 7.8 of [17]. In this way, by (4.32) and
(4.33), we obtain a unitary V1 ∈ C̃ such that

∥Ad V1 ◦ L′

2 ◦ H1(a) − idC (a)∥ < η1/2, for all a ∈ S1. (4.34)

Set L2 = Ad V1 ◦ L′

2. We have the diagram

A id →→

L1
↓↓

A

L2
↓↓

C
H1

↗↗

id
→→ C,

with the upper triangle approximately commuting on F1 to within ε and the lower triangle approximately commuting
on S1 to within η1. Also note that L2 is G2-δ′

2/64-multiplicative.
Step 4: Show that the process continues.
We will repeat the argument of Step 2.
Recall

Cu∼(H) = (Γ ∼)−1. (4.35)

hus

⟨H ◦ h′′

2,0(a1)⟩ ≤ ⟨ψ2,0(a1)⟩ (4.36)

n the C*-algebra A, where h′′

2,0 = Ad V1 ◦ h′

2,0. Put h
∼

2 = Ad V1 ◦ h2.
Choose δ2/4 > η1 > 0 such that

∥fη1 (H ◦ h′′

2,0(a1))x − x∥, ∥x − xfη1 (H ◦ h′′

2,0(a1))∥ < min{ε2/128, δ′

2/128} (4.37)

or all x ∈ H ◦ h′

2,0(G2). Since A has stable rank one, by a result of Rørdam (see also 3.2 of [17]), there is a unitary u2,0 ∈ Ã
such that

u∗

2,0fη1 (H ◦ h′′

2,0(a1))u2,0 ∈ ψ2,00(a1)Aψ2,00(a1) = D2AD2, (4.38)

where

ψ2,00(a1) = (ψ2,0(a1) ⊕

2K2  
0 ⊕ 0 ⊕ · · · ⊕ 0).

Set A′

2,0 = u∗

2,0fη1 (H ◦ h′′

2,0(a1))u2,0Au∗

2,0fη1 (H ◦ h′′

2,0(a1))u2,0. Note that A′

2,0 is a hereditary sub-C*-algebra of A. Define
′′

: A → A′

2,0 ⊂ D2AD2 by

H ′′(a) = u∗

2,0(fη1 (H ◦ h′′

2,0(a1)))H ◦ h′′

2,0(a)(fη1 (H ◦ h′′

2,0(a1)))u2,0 for all a ∈ A.

Note that H ′′ is a G2-δ′

2/32-multiplicative completely positive contractive map. Moreover, by (4.37),

∥Ad u2,0 ◦ H ◦ h′′

2,0(a) − H ′′(a)∥ < min{ε2/128, δ′

2/128} for all a ∈ G2. (4.39)

Consider the two homomorphisms Ad u2,0 ◦ H ◦ h∼

2 ◦ j2 and ı2 ◦ j2. Then, by (4.28) and (4.32),

Cu∼(Ad u2,0 ◦ H ◦ h∼

2 ◦ j2) = Cu∼(ı2 ◦ j2). (4.40)

ut A′′
= {a ∈ A : a ⊥ A′

2,0}. Note that we may view both ı2 ◦ j2 and Ad u2,0 ◦ H ◦ h∼

2 ◦ j2 as maps into A′′. It follows from
heorem 3.3.1 of [43], as A′′, a hereditary subalgebra, has stable rank one, that there exists a unitary u2,1 ∈ Ã′′ such that

∥u∗ (Ad u ◦ H ◦ h∼
◦ j (x))u − ı ◦ j (x)∥ < min{ε /16, δ′ /16} for all x ∈ ψ (G ). (4.41)
2,1 2,0 2 2 2,1 2 2 2 2 2,0 2
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Writing u2,1 = λ + z ′ for some z ′
∈ A′′. Therefore we may view u2,1 as a unitary in Ã. Note that, for any b ∈ D2AD2,

u∗

2,1bu2,1 = b. In particular, for any a ∈ A,

Ad u2,1 ◦ H ′′(a) = H ′′(a) for all a ∈ A. (4.42)

ote that the map ı′′ ◦ ψ2,0 : A → D2AD2 is T -H1,0 ∪ {f1/4(a1)}-full (see the last remark of 3.11), where ı′′ : D2 → D2AD2

is the embedding. By Corollary 3.16, there is a unitary u2,2 ∈ Ã (see (4.27)) such that

∥Ad u2,2 ◦ (H ′′(a) ⊕ ı2 ◦ j2 ◦ ψ2,0(a)) − (φ′

2,0(a) ⊕ j2 ◦ ψ2,0(a))∥ < ε2/16 (4.43)

or all a ∈ F2. Recall that H ◦ L2(a) = H ◦ h′′

2,0(a) ⊕ H ◦ h∼

2 ◦ j1 ◦ ψ0(a) for a ∈ A (see (4.29)) and the line after (4.36).
ombining with (4.39), (4.41), and (4.42), we have

∥Ad (u2,0u2,1u2,2) ◦ H ◦ L2(a) − Ad u2,2 ◦ (H ′′(a) ⊕ ı2 ◦ j2 ◦ ψ2,0(a))∥ < ε2/128 + ε2/16, (4.44)

or all a ∈ F2. On the other hand, by (4.25),

∥idA(a) − (φ′

2,0(a) ⊕ j2 ◦ ψ2,0(a))∥ < ε2/16 for all a ∈ F2. (4.45)

et U2 = u2,0u2,1u2,2. By (4.45), (4.43), and (4.44), we conclude that

∥idA(a) − AdU2 ◦ H ◦ L2(a)∥ < ε2 for all a ∈ F2. (4.46)

hus, we have expanded the diagram above to the diagram

A id →→

L1
↓↓

A

L2
↓↓

id →→ A

C
H1

↗↗

id
→→ C

H2

↗↗ ,

where H2 := AdU2 ◦ H (which is a homomorphism), with the last triangle approximately commuting on F2 to within
ε2(< ε/2).

After continuing in this way (to construct L3 and so on), the Elliott approximate intertwining argument (see [14],
Theorem 2.1) shows that A and C are isomorphic. □

Corollary 4.4. Let A be a non-unital simple separable amenable C*-algebra with continuous scale and satisfying the UCT.
Suppose that A ∈ D and K0(A) = ker ρA, where ρA is the canonical map K0(A) → Aff(T(A)). Suppose that B ∈ D0 satisfies
the UCT, has continuous scale and satisfies K0(B) = K1(B) = {0}, and suppose that there is an affine homeomorphism
γ : T(B) → T(A). Then there is an embedding φ : A → B such that φT = γ .

roof. Since ker ρA = K0(A), then, in the previous proof, Γ (extended to be zero on K0(A)) now gives a homomorphism
from Cu∼(A), which is equal to K0(A)⊔LAff∼

+
(T(A)), by 6.2.3 of [43] and 7.3 of [17], to Cu∼(C), where C is a simple inductive

limit of Razak algebras with continuous scale such that T(A) ∼= T(C). Note that it follows from Theorem 4.3 that C ∼= B. We
simply omit the construction of H1 and keep Step 1 and Step 3 (in the (new) first step now we ignore anything related
to Step 2). A one-sided Elliott intertwining yields a homomorphism from A to C . □

5. Tracial approximation and non-unital versions of some results of Winter

Lemma 5.1 (Prop. 2.1 of [55]). Let A be a simple C*-algebra (with or without unit) belonging to the reduction class R, and
assume that A has strict comparison.

Let F be a finite dimensional C*-algebra, and let

φ : F → A and φi : F → A for all i ∈ N (5.1)

be c.p.c. order-zero maps such that for each c ∈ F+ and f ∈ C+

0 ((0, 1]),

lim
i→∞

sup
τ∈T(A)

|τ (f (φ)(c) − f (φi)(c))| = 0 and (5.2)

lim sup
i→∞

∥f (φi)(c)∥ ≤ ∥f (φ)(c)∥. (5.3)

It follows that there are contractions

si ∈ M4 ⊗ A for all i ∈ N
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such that

lim
i→∞

∥si(14 ⊗ φ(c)) − (e1,1 ⊗ φi(c))si∥ = 0 for all c ∈ F+ and (5.4)

lim
i→∞

∥(e1,1 ⊗ φi(c))sis∗i − e1,1 ⊗ φi(c)∥ = 0. (5.5)

(See 4.2 of [56] for the definition of f (ψ) where ψ is an order zero map.)

roof. The proof is the same as for Proposition 2.1 of [55] (the argument does not require the C*-algebra to be unital;
he hypothesis of strict comparison is sufficient for the argument to proceed). □

The following lemma is a slight modification of 4.2 of [54].

emma 5.2. Let A be a separable C*-algebra with nuclear dimension at most m. Let (en) be an increasing approximate unit
or A. Then there is a sequence of (m + 1)-decomposable completely positive approximations

Ã
ψ̃j →→ F (0)

j ⊕ F (1)
j ⊕ · · · ⊕ F (m)

j ⊕ C
φ̃j →→ Ã, j = 1, 2, ...

(i.e., each φ̃j|F (l)j
is of order zero) such that, for each j = 1, 2, . . .,

φ̃j(F
(l)
j ) ⊆ A, l = 0, 1, . . . ,m, (5.6)

φ̃j|C(1C) = 1̃A − enj , for some enj in the approximate unit (en), and (5.7)

lim
j→∞

∥φ̃jψ̃j(a) − a∥ = 0, lim
j→∞

∥φ̃
(l)
j ψ̃

(l)
j (1̃A)a − φ̃

(l)
j ψ̃

(l)
j (a)∥ = 0, l = 0, 1, . . . ,m, a ∈ Ã, (5.8)

where φ̃(l)
j and ψ̃ (l)

j are the restriction of φ̃j to F (l)
j and the projection of ψ̃j to F (l)

j , respectively.

Proof. Let F ⊆ Ã be a finite set of positive elements with norm one, and let ε > 0 be arbitrary. Each element a ∈ F may
be written as π (a) · 1̃A + x(a), where π : Ã → C is the canonical quotient map and x(a) ∈ A. Let {en} be an approximate
identity of A with en+1en = enen+1, n = 1, 2, . . .. Choose N such that

∥eNx(a)eN − x(a)∥ < ε/4 and ∥x(a)∥ ≤ 2 for all a ∈ F . (5.9)

Set e = eN+1 and, for a ∈ F , a′
= π (a) · 1Ã + eNx(a)eN . It follows that a − a′

∈ A. Moreover,

∥a − a′
∥ < ε/4, a′e = ea′, and (a′

− π (a′) · 1̃A)(1 − e) = 0 (5.10)

where π : Ã → C is the canonical quotient map. Denote by F ′ the set of such a′. Let F1 = {e
1
2 a′e

1
2 , e

1
2 (a − a′)e

1
2 : a ∈

F, a′
∈ F ′

}. Then choose a factorization

A
ψ →→ F (0)

⊕ F (1)
⊕ · · · ⊕ F (m) φ →→ A

such that

∥φ(ψ(x)) − x∥ < ε/4 for all x ∈ F1, (5.11)

and the restriction of φ to each direct summand F (l), l = 0, 1, . . . ,m, is of order zero.
Then, define maps

ψ̃ : Ã ∋ a ↦→ ψ(e
1
2 ae

1
2 ) ⊕ π (a) ∈ (F (0)

⊕ F (1)
⊕ · · · ⊕ F (m)) ⊕ C, and (5.12)

φ̃ : (F (0)
⊕ F (1)

⊕ · · · ⊕ F (m)) ⊕ C ∋ (a, λ) ↦→ φ(a) + λ(1 − e). (5.13)

For any a ∈ F , one has,

∥φ̃(ψ̃(a)) − a∥ = ∥φ̃(ψ̃(a′)) + φ̃(ψ̃(a − a′)) − a′
− (a − a′)∥

< ∥φ̃(ψ̃(a′)) − a′
∥ + ∥φ̃(ψ̃(a − a′)) − (a − a′)∥

= ∥φ̃(ψ̃(a′)) − a′
∥ + ∥φ(ψ(a − a′)) − (a − a′)∥ (recall a − a′

∈ A)
< ∥φ̃(ψ̃(a′)) − a′

∥ + ε/4 (see (5.11))

= ∥φ(ψ(e
1
2 a′e

1
2 )) + π (a′)(1 − e) − a′

∥ + ε/4

< ∥e
1
2 a′e

1
2 + π (a′)(1 − e) − a′

∥ + ε/2 < ε (see (5.10)).

It is clear that the restriction of φ̃ to each direct summand F (l) of F (0)
⊕ F (1)

⊕ · · · ⊕ F (m)
⊕ C, l = 0, 1, . . . ,m, has order

zero.
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Since F and ε are arbitrary, one obtains the (m + 1)-decomposable completely positive approximations (ψ̃j, φ̃j),
= 1, 2, . . ., which satisfy (5.6) and (5.7) of the lemma.
In the same way as in the proof of Proposition 4.2 of [54], ψ̃j and φ̃j can be modified to satisfy (5.8). Indeed, consider

he maps

ψ̂j : Ã ∋ a ↦→ ψ̃j(1̃A)
−

1
2 ψ̃j(a)ψ̃j(1̃A)

−
1
2 ∈ (F (0)

j ⊕ F (1)
j ⊕ · · · ⊕ F (m)

j ) ⊕ C,

where the inverse is taken in the hereditary sub-C*-algebra generated by ψ̃(1̃A), and

φ̂j : (F (0)
j ⊕ F (1)

j ⊕ · · · ⊕ F (m)
j ) ⊕ C ∋ a ↦→ φ̃j(ψ̃j(1̃A)

1
2 aψ̃j(1̃A)

1
2 ) ∈ Ã.

hen the proof of Proposition 4.2 of [54] shows that

lim
j→∞

∥φ̂
(l)
j ψ̂

(l)
j (a) − φ̂

(l)
j ψ̂

(l)
j (1̃A)φ̃jψ̃j(a)∥ = 0, a ∈ A, l = 0, 1, . . . ,m.

Note that π (1̃A) = 1C. One has that π (1̃A)Cπ (1̃A) = C, and the restriction of φ̂ to C is the map λ ↦→ λ(1− e). It follows
hat the decompositions (ψ̂j, φ̂j) satisfy the requirements of the lemma. □

efinition 5.3. In the next statement, denote by S a fixed class of non-unital separable amenable C*-algebras C such that
(C) ̸= Ø and 0 ̸∈ T(C)

w
. If C ∈ S and eC ∈ C is a strictly positive element, define λs(C) = inf{dτ (eC ) : τ ∈ T(C)

w
}, where

τ (eC ) := limε→0 τ (fε(eC )).
Suppose that C = ∪

∞

n=1Cn is a simple C*-algebra such that Cn ⊂ Cn+1 and Cn ∈ S , n ∈ N. Suppose that C has continuous
scale. In the following statement, we assume that there are en ∈ Cn+ with ∥en∥ = 1 satisfy

(1) {en} forms an approximate identity for C and dt (en) > 1 − 1/n for all t ∈ T (Cm) for all m ≥ n.
This, in fact, is always the case when Cn ∈ S and C has continuous scale. Let cn ∈ Cn be a strictly positive element

ith ∥cn∥ = 1. Then c =
∑

∞

n=1 cn/2
n+1 is a strictly positive element of C . Thus {c1/k} forms an approximate identity for

. Since C has continuous scale, τ (c1/k) ↗ 1 uniformly on T (C). Put dn =
∑n

j=1 cj/2
j+1. Then d1/kn ≤ d1/k1m if n ≤ m and

< k1. Note that d1/kn ∈ Cn. It follows that a choice of subsequence of the form {d1/kn } forms an approximate identity. So,
assing to a subsequence, we relabel it as cn ∈ Cn. Note that τ (cn) → 1 uniformly to 1 on T (C). We may assume that
(cn) > 1 − 1/2n for all τ ∈ T (C). One then shows that, for each fixed n, there is N(n) ≥ n such that τ (cn) > 1 − 1/n for
ll τ ∈ T (Cm) for all m ≥ N(n), using a weak* compactness argument. This, by passing to another subsequence, implies
1) holds.

Note also condition (1) implies that λs(Cn) ≥ 1 − 1/n.

The following is a non-unital version of 2.2 of [55].

heorem 5.4. Let A be a stably projectionless separable simple C*-algebra in R with dimnucA = m < ∞.
Fix a positive element e ∈ A+ with 0 ≤ e ≤ 1 such that τ (e), τ (f1/2(e)) ≥ r0 > 0 for all τ ∈ T(A). Let C =

⋃
∞

n=1 Cn be
a non-unital simple C*-algebra with continuous scale, where Cn ⊆ Cn+1 and Cn ∈ S which also satisfies condition (1) in 5.3.
Suppose that there is an affine homeomorphism Γ : T(C) → T(A) and suppose that there are sequences of completely positive
contractive maps σn : A → C and homomorphisms ρn : C → A such that

lim
n→∞

∥σn(ab) − σn(a)σn(b)∥ = 0, a, b ∈ A, (5.14)

lim
n→∞

sup{|t ◦ σn(a) − Γ (t)(a)| : t ∈ T(C)} = 0, a ∈ A, (5.15)

lim
n→∞

sup{|τ (ρn ◦ σn(a)) − τ (a)| : τ ∈ T(A)} = 0, a ∈ A, and (5.16)

σn(e) is strictly positive in C for all n ∈ N.
Then A has the following property: For any finite set F ⊆ A and any ε > 0, there are a projection p ∈ M4(m+2) (̃A), a

sub-C*-algebra S ⊆ pM4(m+2)(A)p with S ∈ S , and an F-ε-multiplicative completely positive contractive map L : A → S such
that

(1) ∥[p, 14(m+2) ⊗ a]∥ < ε, a ∈ F ,
(2) p(14(m+2) ⊗ a)p ∈ε S, a ∈ F ,
(3) ∥L(a) − p(14(m+2) ⊗ a)p∥ < ε, a ∈ F ,
(4) p ∼ e11 in M4(m+2) (̃A),
(5) τ (L(e)), τ (f1/2(L(e))) > 7r0/32(m + 2) for all τ ∈ T(M4(m+2)(A)),
(6) (14(m+2) − p)M4(m+2)(A)(14(m+2) − p) ∈ R, and
(7) t(f1/4(L(e))) ≥ (3r0/8)λs(C1) for all t ∈ T(S).

Proof. Since A has finite nuclear dimension, one has that A ∼= A ⊗ Z [54] for the unital case and [49] for the non-unital
case). Therefore, A has strict comparison for positive elements (Corollary 4.7 of [47]).
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The proof is essentially the same as that of Theorem 2.2 of [55]. We give the proof in the present very much analogous
ituation for the convenience of the reader. Let e ∈ A+ with ∥e∥ = 1, τ (e) > r0, and τ (f1/2(e)) > r0 for all τ ∈ T(A).
Let (en) be an (increasing) approximate unit for A. Since A ∈ R, and since A is also assumed to be projectionless,

ne may assume that sp(en) = [0, 1]. Since dimnuc(A) ≤ m, by Lemma 5.2, there is a system of (m + 1)-decomposable
ompletely positive approximations

Ã
ψj →→ F (0)

j ⊕ F (1)
j ⊕ · · · ⊕ F (m)

j ⊕ C
φj →→ Ã, j = 1, 2, ...

such that

φj(F
(l)
j ) ⊆ A, l = 0, 1, . . . ,m, and (5.17)

φj|C(1C) = 1̃A − ej, (5.18)

where ej is an element of (en).
Write

φ
(l)
j = φj|F (l)j

and φ
(m+1)
j = φj|C, l = 0, 1, . . . ,m.

As in Lemma 5.2, one may assume that

lim
j→∞

∥φ
(l)
j ψ

(l)
j (1̃A)a − φ

(l)
j ψ

(l)
j (a)∥ = 0, l = 0, 1, . . . ,m, a ∈ A. (5.19)

Note that φ(l)
j : F (l)

j → A is of order zero, and the relation for an order zero map is weakly stable (see (P) and (P1) of 2.5
of [30]). On the other hand, if i is large enough, then σi ◦ φ

(l)
j satisfies the relation for order zero to within an arbitrarily

small tolerance, since σi will be sufficiently multiplicative. It follows that there are order zero maps

φ̃
(l)
j,i : F (l)

j → C

such that

lim
i→∞

∥φ̃
(l)
j,i (c) − σi(φ

(l)
j (c))∥ = 0, c ∈ F (l)

j .

We will identify C with Si = ρi(C) ⊆ A, σi : A → C with ρi ◦ σi : A → Si ⊆ A, and φ̃(l)
j,i with ρi ◦ φ̃

(l)
j,i . There is a positive

linear map (automatically order zero)

φ̃
(m+1)
j,i : C ∋ 1 ↦→ 1̃A − σi(ej) ∈ S̃i = C*(Si, 1̃A) ⊆ Ã, i ∈ N.

Note that

φ̃
(m+1)
j,i (λ) = σi(φ

(m+1)
j (λ)), λ ∈ F (m+1)

j = C, (5.20)

where one still uses σi to denote the induced map Ã → S̃i.
Note that for each l = 0, 1, . . . ,m,

lim
i→∞

∥f (φ̃(l)
j,i )(c) − σi(f (φ

(l)
j )(c))∥ = 0, c ∈ (F (l)

j )+, f ∈ C0((0, 1])+,

(see the comment before the proof of 5.1 for the notation f (φ̃(l)
j,i ) and f (φ(l)

j )) and hence, from (5.16),

lim
i→∞

sup
τ∈T(A)

|τ (f (φ̃(l)
j,i )(c) − f (φ(l)

j )(c))| = 0, c ∈ (F (l)
j )+, f ∈ C0((0, 1])+.

Also note that

lim sup
i→∞

∥f (φ̃(l)
j,i )(c)∥ ≤ ∥f (φ(l)

j )(c)∥, c ∈ (F (l)
j )+, f ∈ C0((0, 1])+.

Applying Lemma 5.1 to (φ̃(l)
j,i )i∈N and φ(l)

j for each l = 0, 1, . . . ,m, we obtain contractions

s(l)j,i ∈ M4(A) ⊆ M4 (̃A), i ∈ N,

such that

lim
i→∞

∥s(l)j,i(14 ⊗ φ
(l)
j (c)) − (e1,1 ⊗ φ̃

(l)
j,i (c))s

(l)
j,i∥ = 0, c ∈ F (l)

j , and (5.21)

lim
i→∞

∥(e1,1 ⊗ φ̃
(l)
j,i (c))s

(l)
j,i(s

(l)
j,i)

∗
− e1,1 ⊗ φ̃

(l)
j,i (c)∥ = 0. (5.22)

Note that sp(ej) = [0, 1]. Put C0 = C0((0, 1]). Define

∆ (f̂ ) = inf{τ (f (e )) : τ ∈ T(A)} for all f ∈ (C ) \ {0}. (5.23)
j j 0 +
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Since A is assumed to have continuous scale, T(A) is compact and ∆j(f̂ ) > 0 for all f ∈ (C0)+ \ {0}. For l = m + 1, since
p(ej) = [0, 1], by considering ∆j for each j, since i is chosen after j is fixed, by applying A.16 in the Appendix, one obtains
nitaries

s(m+1)
j,i ∈ Ã, i ∈ N,

uch that

lim
i→∞

∥s(m+1)
j,i ej − σi(ej)s

(m+1)
j,i ∥ = 0,

nd hence

lim
i→∞

∥s(m+1)
j,i (1̃A − ej) − (1̃A − σi(ej))s

(m+1)
j,i ∥ = 0.

y (5.18) and (5.20), one has

lim
i→∞

∥s(m+1)
j,i φ

(m+1)
j (c) − φ̃

(m+1)
j,i (c)s(m+1)

j,i ∥ = 0, c ∈ F (m+1)
j = C.

Considering the element e1,1 ⊗ s(m+1)
j,i ∈ M4 ⊗ Ã, and still denoting it by s(m+1)

j,i , we have

lim
i→∞

∥s(m+1)
j,i (14 ⊗ φ

(m+1)
j (c)) − (e1,1 ⊗ φ̃

(m+1)
j,i (c))s(m+1)

j,i ∥ = 0, c ∈ F (l)
j

nd

(e1,1 ⊗ φ̃
(m+1)
j,i (c))s(m+1)

j,i (s(m+1)
j,i )∗ = e1,1 ⊗ φ̃

(m+1)
j,i (c).

Therefore,

lim
i→∞

∥s(l)j,i(14 ⊗ φ
(l)
j (c)) − (e1,1 ⊗ φ̃

(l)
j,i (c))s

(l)
j,i∥ = 0, c ∈ F (l)

j , l = 0, 1, . . . ,m + 1. (5.24)

lim
i→∞

∥(e1,1 ⊗ φ̃j,i(c))s
(l)
j,i(s

(l)
j,i)

∗
− φ̃j,i(c)∥ = 0, c ∈ F (l)

j , l = 0, 1, . . . ,m + 1. (5.25)

Let σ̃i : Ã → C̃ and ρ̃i : C̃ → Ã denote the unital maps induced by σi : A → C and ρi : C → A, respectively.
Consider the contractions

s(l)j := (s(l)j,i)i∈N ∈ (M4 ⊗ Ã)∞, l = 0, 1, . . . ,m + 1, j = 1, 2, . . . .

y (5.24) and (5.25), these satisfy

s(l)j (14 ⊗ ῑ(φ(l)
j (c))) = (e1,1 ⊗ ρ̄σ̄ (φ(l)

j (c)))s(l)j and

(e1,1 ⊗ ρ̄ ◦ σ̄ (φ(l)
j (c)))s(l)j (s(l)j )∗ = (e1,1 ⊗ ρ̄ ◦ σ̄ (φ(l)

j (c))),
here

σ̄ : Ã∞ →

∏
C̃/

⨁
C̃ and ρ̄ :

∏
C̃/

⨁
C̃ → Ã∞

re the homomorphisms induced by σ̃i and ρ̃i, and the map

ῑ : (̃A)∞ → ((̃A)∞)∞

s the embedding induced by the canonical embedding ι : Ã → (̃A)∞.
Let

γ̄ : Ã∞ → ((̃A)∞)∞

enote the homomorphism induced by the composed map

ρ̄σ̄ : Ã∞ → (̃A)∞,

or each l = 0, 1, . . . ,m + 1, let

φ̄(l)
:

∏
j

F (l)
j /

⨁
j

F (l)
j → A∞ and (5.26)

ψ̄ (l)
: A →

∏
j

F (l)
j /

⨁
j

F (l)
j (5.27)

enote the maps induced by φ(l)
j and ψ (l)

j .
Consider the contraction

s̄(l) = (s(l)) ∈ (M ⊗ Ã ) .
j 4 ∞ ∞



G.A. Elliott, G. Gong, H. Lin et al. / Journal of Geometry and Physics 158 (2020) 103861 23

a

H

Then

s̄(l)(14 ⊗ ῑφ̄(l)ψ̄ (l)(a)) = (e1,1 ⊗ γ̄ φ̄(l)ψ̄ (l)(a))s̄(l), a ∈ Ã, and

(e1,1 ⊗ γ̄ φ̄(l)ψ̄ (l)(a))s̄(l)(s̄(l))∗ = (e1,1 ⊗ γ̄ φ̄(l)ψ̄ (l)(a)).
By (5.19), one has

φ̄(l)ψ̄ (l)(1̃A)ι(a) = φ̄(l)ψ̄ (l)(a), a ∈ A.

In particular,

(φ̄(l)ψ̄ (l)(1̃A))
1
2 ι(a) ∈ C*(φ̄(l)ψ̄ (l)(A)),

nd hence

s̄(l)(14 ⊗ (ῑφ̄(l)ψ̄ (l)(1̃A))
1
2 )(14 ⊗ ῑι(a)) = s̄(l)(14 ⊗ ῑφ̄(l)ψ̄ (l)(1̃A)

1
2 ι(a))

= (e1,1 ⊗ γ̄ (φ̄(l)ψ̄ (l)(1̃A))
1
2 ι(a))s̄(l)

= (e1,1 ⊗ γ̄ ι(a)(φ̄(l)ψ̄ (l)(1̃A))
1
2 )s̄(l)

= (e1,1 ⊗ γ̄ (ι(a)))(e1,1 ⊗ γ̄ (φ̄(l)ψ̄ (l)(1̃A))
1
2 )s̄(l). (5.28)

Set

v̄ =

m+1∑
l=0

e1,l ⊗ ((e1,1 ⊗ γ̄ φ̄lψ̄ (l)(1̃A))
1
2 s̄(l))

=

m+1∑
l=0

e1,l ⊗ (s̄(l)(14 ⊗ ῑφ̄lψ̄ (l)(1̃A))
1
2 ) ∈ Mm+2(C) ⊗ M4(C) ⊗ (̃A∞)∞.

Then

v̄v̄∗
=

m+1∑
l=0

e1,1 ⊗ (e1,1 ⊗ γ̄ φ̄lψ̄ (l)(1̃A)) = e1,1 ⊗ e1,1 ⊗ γ̄ (1̃A).

Thus, v̄ is an partial isometry. Moreover, for any a ∈ Ã,

v̄(1(m+2) ⊗ 14 ⊗ ῑι(a)) =

m+1∑
l=0

e1,l ⊗ (s̄(l)(14 ⊗ ῑφ̄lψ̄ (l)(1̃A)
1
2 )(14 ⊗ ῑι(a)))

=

m+1∑
l=0

e1,l ⊗ (e1,1 ⊗ γ̄ (ι(a)))(e1,1 ⊗ γ̄ (φ̄(l)ψ̄ (l)(1̃A)
1
2 s̄(l))) (by (5.28))

= (e1,1 ⊗ e1,1 ⊗ γ̄ (ι(a)))
m+1∑
l=0

e1,l ⊗ e1,1 ⊗ γ̄ (φ̄(l)ψ̄ (l)(1̃A)
1
2 s̄(l))

= (e1,1 ⊗ e1,1 ⊗ γ̄ (ι(a)))v̄.

ence

v̄∗v̄(1m+2 ⊗ 14 ⊗ ῑι(a)) = v̄∗(e1,1 ⊗ e1,1 ⊗ γ̄ ι(a))v̄ = (1m+2 ⊗ 14 ⊗ ῑι(a))v̄∗v̄, a ∈ Ã.

Then, for any finite set G ⊆ Ã and any δ > 0, there are i ∈ N and vi ∈ Mm+2(C) ⊗ M4(C) ⊗ Ã such that

viv
∗

i = e1,1 ⊗ e1,1 ⊗ ρ̃i(1S̃i
) = e1,1 ⊗ e1,1 ⊗ 1̃A, (5.29)

∥[v∗

i vi, 1m+2 ⊗ 14 ⊗ a]∥ < δ for all a ∈ G, (5.30)

∥v∗

i vi(1m+2 ⊗ 14 ⊗ a) − vi
∗(e1,1 ⊗ e1,1 ⊗ ρ̃iσ̃i(a))vi∥ < δ for all a ∈ G and (5.31)

τ (ρi ◦ σi(e)), τ (f1/2(ρi ◦ σi(e))) ≥ 15r0/16 for all τ ∈ T(A). (5.32)

Define κi : S̃i → Mm+2 ⊗ M4 ⊗ Ã by

κi(s) = vi
∗(e1,1 ⊗ e1,1 ⊗ ρi(s))vi.

Note that

κ (S ) ⊆ M ⊗ M ⊗ A.
i i m+2 4
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Then κi is an embedding; and on setting pi = 1κi(S̃i) = v∗

i vi, one has

(i) pi ∼ e1,1 ⊗ e1,1 ⊗ 1̃A,
(ii) ∥[pi, 1m+2 ⊗ 14 ⊗ a]∥ < δ, a ∈ G,
(iii) pi(1m+2 ⊗ 14 ⊗ a)pi ∈δ κi(S̃i), a ∈ G.

ote that A is Z-stable (by [54]) and hence has strict comparison (by [47]). Let e ∈ (14(m+2) − pi)M4(m+2)(A)(14(m+2) − pi)
e a strictly positive element. By (i), dτ (e) = τ (14(m+2) − pi) = τ (14(m+2) − e1,1 ⊗ e1,1 ⊗ 1̃A) for all τ ∈ T (A), where
τ is naturally extended to Ã. Since A and M4(m+2)(A) have continuous scale, τ ↦→ dτ is continuous on T (A). Hence
(14(m+2) − pi)M4(m+2)(A)(14(m+2) − pi) also has continuous scale (see 5.4 of [17]) and is still in the reduction class R (so
ondition (6) holds).
Define Li : A → κi(Si) by Li(a) = vi

∗(e1,1 ⊗ e1,1 ⊗ ρi(σi(a)))vi for all a ∈ A. Then

(iv) ∥Li(a) − pi(14(m+2) ⊗ a)pi∥ < δ for all a ∈ G and

(v) τ (Li(e)), τ (f1/2(Li(e))) ≥
15r0

64(m + 2)
for all τ ∈ T(M4(m+2)(A)).

et τi ∈ T(κi(Si)). Then τi◦Li is a positive linear functional. Let t̄ be a weak *-limit of {τi◦Li}. Note that, for any 1/2 > ε > 0,
ince A has continuous scale, there is eA ∈ A with ∥eA∥ = 1 such that τ (eA) > 1 − ε/2 for all τ ∈ T (A). By (5.16) (see also
5.29)), we may assume that τi ◦ Li(eA) > 1 − ε for all large i. It follows that t̄(eA) ≥ 1 − ε. Hence ∥t̄∥ ≥ 1 − ε for any
/2 > ε > 0. It follows that t̄ is a state of A. Then, by (5.14) and (5.16), t̄ is a tracial state of A. Therefore, with sufficiently
mall δ and large G (and sufficiently large i), by also (5.32), we may assume that

t(f1/4(Li(e))) ≥ 7r0/8 for all t ∈ T(κi(Si)). (5.33)

Since κi(Si) ∼= C , we may write κi(Si) =
⋃

∞

n=1 Si,n, where each Si,n ∼= Cn and, by condition (1) of 5.3, there exists a
ositive element eC ∈ Si,1 ⊂ Si,n with ∥eC∥ = 1 such that t(eC ) > λs(C1)/2 for all t ∈ T (Si,n) for all n ≥ 1. Since each Si,n

is amenable, there exist completely positive contractive maps Φn : κi(Si) → Si,n such that

lim
n→∞

∥Φn(s) − s∥ = 0 for all s ∈ κi(Si) and ∥Φn(eC ) − eC∥ < 1/2n+1. (5.34)

We assert that, for all sufficiently large n,

t(f1/4(Φn ◦ Li(e))) > (3r0/8)λs(C1) for all t ∈ T(Si,n). (5.35)

Otherwise, there exists a sequence (n(k)) and tk ∈ T(Si,n(k)) such that

tk(f1/4(Φn(k) ◦ Li(e))) < (3r0/8)λs(C1). (5.36)

Note that, since eC ∈ Si,n(k), tk+1|Si,n(k)∈ T (Si,n(k)). Let t0 be a weak* limit of {tk ◦Φn(k)}. Then, by (5.36),

t0(f1/4(Li(e))) ≤ (3r0/8)λs(C1). (5.37)

ote that tk(eC ) ≥ λs(C1)/2 for all k. Thus, by (5.34), one computes that t0(eC ) ≥ λs(C1)/2. It follows that t0 is a trace of Si
ith ∥t0∥ ≥ λs(C1)/2. Then, by (5.33),

t0(f1/4(Li(e))) ≥ (7r0/8)(λ(C1)/2). (5.38)

his contradicts (5.37) and so the assertion (5.35) holds. We then define L = Φn ◦ Li for some sufficiently large n (and i).
he conclusion of the theorem follows from (i),(ii), (iii), (iv), (v), and (5.35). □

emma 5.5. Let A be a stably projectionless simple separable C*-algebra with almost stable rank one (recall that by definition
his includes hereditary sub-C*-algebras). Suppose that A has continuous scale and has strict comparison for positive elements.
uppose also that the map ı : W+(A) → LAffb,+(T(A)) is surjective. Suppose that there are 1 > η > 0 and 1 > λ > 0 such
hat every hereditary sub-C*-algebra B with continuous scale has the following property:

Let r0 > 0 and let a0 ∈ B+ be a positive element with ∥a0∥ = 1 with τ (a0) ≥ r0 and τ (f1/2(a0)) ≥ r0 > 0 for all
∈ T(B). Suppose that, for any ε > 0, any finite subset F ⊆ B, there are F-ε-multiplicative completely positive contractive
aps φ : B → B′, where B′ is a hereditary sub-C*-algebra of B, and ψ : B → D for some sub-C*-algebra D ⊆ B, and D ⊥ B′,
uch that

∥x − (φ(x) + ψ(x))∥ < ε for all x ∈ F ∪ {a0}, (5.39)
dτ (φ(a0)) < 1 − η for all τ ∈ T(A), (5.40)
τ ′(φ(a0)), τ ′(f1/2(φ(a0))) ≥ r0 − ε for all τ ′

∈ T (B′), (5.41)

D ∈ C′

0(∈ C0
0
′
), (5.42)

τ (ψ(a )) ≥ r η for all τ ∈ T(B), (5.43)
0 0
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t(f1/4(ψ(a0))) ≥ r0λ for all t ∈ T (D). (5.44)

Then A ∈ D (or D0).

roof. Let b0 ∈ A+ \ {0} with ∥b0∥ = 1. Choose k ≥ 1 such that

(1 − η/2)k < inf{dτ (b0) : τ ∈ T(A)}. (5.45)

Choose a strictly positive element a0 ∈ A with ∥a0∥ = 1 such that τ (a0), τ (f1/2(a0)) ≥ 1 − 1/64 for all τ ∈ T(A). Put
0 = 1 − 1/64 and put fa = (r0/2)λ.

Fix 1 > ε > 0. Put ε1 = min{r0ε/2(k + 1), r0η/4(k + 1)}. We choose δ1 > 0 small enough such that

∥fσ ′ (a′) − fσ ′ (b′)∥ < ε1, (5.46)

henever ∥a′
− b′

∥ < δ1 for any 0 ≤ a′, b′
≤ 1 in any C*-algebra, where σ ′

∈ {1/2, 1/4}.
Fix a finite subset F ⊆ A1. Let δ2 = min{δ1/2(k + 1), ε1/2(k + 1)}. Choose some g ∈ C0((0, 1]) with 0 ≤ g ≤ 1 and let

1 = g(a0) such that a1 ≥ a0 and

∥a1xa1 − x∥ < δ2/64 for all x ∈ F ∪ {a0}. (5.47)

Let F1 be a finite subset containing F ∪ {ai, f1/4(ai), f1/2(ai) : i = 0, 1}.
By hypothesis, there are F1-δ2/64-multiplicative completely positive contractive maps φ′

1 : A → B′, where B′ is a
ereditary sub-C*-algebra of A, and ψ1 : A → D1 for some sub-C*-algebra D1 ⊆ A such that D1 ∈ C′

0 (or ∈ C0′

0 ), D1 ⊥ φ′

1(A),
and

∥x − (φ′

1(x) + ψ1(x))∥ < δ2/16 for all x ∈ F1, (5.48)

dτ (φ′

1(a0)) < 1 − η for all τ ∈ T(A), (5.49)

τ ′(φ′

1(a0)), τ
′(f1/2(φ′

1(a0))) ≥ r0 − δ2/16 for all τ ′
∈ T(B′) (5.50)

τ (ψ1(a0)), τ (f1/2(ψ1(a0))) ≥ r0η for all τ ∈ T(A), (5.51)

t(f1/4(ψ1(a0))) ≥ r0λ for all t ∈ T(D1). (5.52)

We have, by (5.47),

∥φ′

1(a1)φ
′

1(x)φ
′

1(a1) − φ′

1(x)∥ < δ2/8 for all x ∈ F1. (5.53)

Therefore, for some σ > 0,

∥fσ (φ′

1(a1))φ
′

1(x)fσ (φ
′

1(a1)) − φ′

1(x)∥ < δ2/4 for all x ∈ F1. (5.54)

By 7.2 of [17], there exists 0 ≤ e ≤ 1 such that

fσ (φ′

1(a1)) ≤ e ≤ f2σ ′ (φ′

1(a1)) (5.55)

and dτ (e) is continuous on T(A)
w
, where 0 < σ ′ < σ/4. Define φ1 : A → A by

φ1(a) = e1/2φ′

1(a)e
1/2 for all a ∈ A. (5.56)

We also have

e1/2((φ′

1(a1) − σ ′/2)+)e1/2 ≤ e1/2φ′

1(a1)e
1/2

≤ e. (5.57)

But

e = e1/2fσ ′ (φ′

1(a1))e
1/2

≤ e1/2((2/σ ′)(φ′

1(a1) − σ ′/2)+)e1/2 (5.58)

= (2/σ ′)(e1/2((φ′

1(a1) − σ ′/2)+)e1/2). (5.59)

Combining these two inequalities, we conclude that dτ (φ1(a1)) = dτ (e) for all τ ∈ T(A). In particular, dτ (φ1(a1)) is
continuous on T(A). By (5.54), we have

∥φ′

1(a) − φ1(a)∥ < δ2/4 for all a ∈ F1. (5.60)

By the choice of δ1, we have

∥f1/2(φ1(a0)) − f1/2(φ′

1(a0))∥ < ε1. (5.61)

It follows that

τ ′(f1/2(φ1(a0))) ≥ r0 − δ2/16 − ε1 for all τ ′
∈ T(B′). (5.62)

ut B1 = φ1(a1)Aφ1(a1). Then by 5.4 of [17] B1 has continuous scale. Note φ1 maps A into B1. We also have

∥x − (φ (x) + ψ (x))∥ < δ /2 for all x ∈ F . (5.63)
1 1 2 1
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Moreover, since B1 ⊂ B′, we have B1 ⊥ D1, and

τ ′(φ1(a0)), τ ′(f1/2(φ1(a0))) ≥ r0 − δ2/16 − ε1 for all τ ′
∈ T(B1). (5.64)

Since B1 ∈ D (or in D0), we can repeat the process above for B1. Therefore we may now apply the hypothesis to B1 in
place of A, and continue the process and stop at stage k.

In this way, we obtain hereditary sub-C*-algebras B1, B2, . . . , Bk, and sub-C*-algebras D1,D2, . . . ,Dk such that Bi+1 ⊆ Bi,
Bi ⊥ Di, Di+1 ⊆ Bi, Di ∈ C′

0 (or C0′

0 ), Fi-δ2/16 · 2i+1-multiplicative completely positive contractive maps φi+1 : Bi → Bi+1
and ψi+1 : Bi → Di+1 such that

Fi+1 = {φi(x); x ∈ Fi, cj, f1/2(cj), f1/4(cj), j = 0, 1},

where cj = φi ◦ φi−1 ◦ · · · ◦ φ1(aj), j = 0, 1, i = 1, 2, . . . , k − 1,

∥x − (φi+1(x) ⊕ ψi+1(x))∥ < δ2/2i+1 for all x ∈ Fi+1 (as in (5.63)), (5.65)
dτ (φi+1(ci,0)) < (1 − η)i+1 for all τ ∈ T(A), (as in (5.49), see also (5.56)), (5.66)

τ ′(φi+1(ci,0)), τ ′(f1/2(φi+1(ci,0))) ≥ (r0 − (i + 1)(δ2/16 + ε1)) (5.67)
for all τ ′

∈ T(Bi+1) (as in (5.62)),
τ (ψi+1(ci,0)) ≥ (r0 − (i + 1)(δ2/16 + ε1))η for all τ ∈ T(Bi) (as in (5.51)), (5.68)

t(f1/4(ψi+1(ci,0))) ≥ (r0 − (i + 1)(δ2/16 + ε1))λ for all t ∈ T (Di+1) (as in (5.52)), (5.69)

and Bi+1 has continuous scale, i = 1, 2, . . . , k−1. Note that (r0−k(δ2/16+ε1)) ≥ r0/2. Let D =
⨁k

i=1 Di and let Ψ : A → D
be defined by

Ψ (a) = (ψ1(a)) ⊕ ψ2(φ1((a)) ⊕ · · · ⊕ ψk(φk−1 ◦ · · · ◦ φ1(a))) for all a ∈ A.

By (5.65), with Φ = φk ◦ φk−1 ◦ · · ·φ1 : A → Bk,

∥x − (Φ(x) ⊕ Ψ (x))∥ < ε for all x ∈ F, (5.70)
t(f1/4(Ψ (a0))) ≥ (r0/2)λ = fa for all t ∈ T(D), (5.71)

We also have D ∈ C′

0, or D ∈ C0′

0 .
Moreover,

dτ (Φ(a0)) ≤ (1 − η)k for all τ ∈ T(A).

This implies, by (5.45), that

Φ(a0) ≲ b0, (5.72)

since A is assumed to have strict comparison for positive elements. By (5.70), (5.71), and (5.72), we conclude that A is in
D or in D0. □

Definition 5.6 (10.1 of [17]). Let A be a non-unital and σ -unital simple C*-algebra. A is said to be tracially approximately
divisible in the non-unital sense if the following property holds:

For any ε > 0, any finite subset F ⊆ A, any b ∈ A+ \ {0}, and any integer n ≥ 1, there are σ -unital sub-C*-algebras
A0, A1 of A such that

dist(x, Bd) < ε for all x ∈ F,

where Bd ⊆ B := A0 ⊕ Mn(A1) ⊆ A, A0 ⊥ Mn(A1),

Bd = {(x0,
n  

x1, x1, . . . , x1) : x0 ∈ A0, x1 ∈ A1} (5.73)

and a0 ≲ b, where a0 is a strictly positive element of A0.

Theorem 5.7. Let A be a stably projectionless separable simple C*-algebra in the class R with dimnucA = m < ∞.
Suppose that every hereditary sub-C*-algebra B of A with continuous scale has the following properties: Let eB ∈ B be a

strictly positive element with ∥eB∥ = 1 and τ (eB) > 1−1/64 for all τ ∈ T(B). With C the unique non-unital simple C*-algebra
C in M0 ∩ R such that T(C) ∼= T(B), for each affine homeomorphism γ : T(B) → T(C), there exist sequences of completely
positive contractive maps σn : B → C and homomorphisms ρn : C → B such that

lim
n→∞

∥σn(ab) − σn(a)σn(b)∥ = 0 for all a, b ∈ B, (5.74)

lim
n→∞

sup{|t ◦ σn(a) − γ−1(t)(a)| : t ∈ T (C)} = 0 for all a ∈ A, (5.75)

lim
n→∞

sup{|τ (ρn ◦ σn(b)) − τ (b)| : τ ∈ T(B)}= 0. (5.76)

Suppose also that every hereditary sub-C*-algebra A is tracially approximately divisible. Then A ∈ D .
0
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Proof. By [49] (see also [54]), A′
⊗ Z ∼= A′ for every hereditary sub-C*-algebra A′ of A. It follows from [44] that A has

almost stable rank one. Let B be a hereditary sub-C*-algebra with continuous scale. Then B has finite nuclear dimension
(see [57]). By [49] again, B is Z-stable. It follows from 6.6 of [19] that the map from Cu(A) to LAff+(T̃(B)) is surjective.
Note that the map from W(A)+ to LAffb,+(T(A)) is surjective. We will apply Theorem 5.4 and Lemma 5.5.

Fix a strictly positive element e ∈ B with ∥e∥ = 1. Since B has continuous scale, we may assume there is e′
∈ B+

ith ∥e′
∥ = 1 such that f1/2(e)e′

= e′
= f1/2(e)e′ and dτ (f1/2(e′)) > 1 − 1/64(m + 2) for all τ ∈ T(B). Let 1 > ε > 0,

⊆ B be a finite subset. and let b ∈ B+ \ {0}. Choose b0 ∈ B+ \ {0} and 64(m + 2)⟨b0⟩ ≤ ⟨b⟩ in Cu(A). Since we assume
hat A is tracially approximately divisible (see (5.6)), there are e0 ∈ B+ and a hereditary sub-C*-algebra A0 of B such that
0 ⊥ M4(m+2)(A0), e0 ≲ b0 and

dist(x, B1,d) < ε/64(m + 2) for all x ∈ F ∪ {e},

here B1,d ⊆ Bs := e0Be0 ⊕ M4(m+2)(A0) ⊆ B and

B1,d = {x0 ⊕ (

4(m+2)  
x1 ⊕ x1 ⊕ · · · ⊕ x1) : x0 ∈ e0Be0, x1 ∈ A0}. (5.77)

Without loss of generality, we may further assume that F ∪ {e′
} ⊆ B1,d. Let P : Bs → M4(m+2)(A0) be the projection map

and P (1)
: M4(m+2)(A0) → A0 = A0 ⊗ e11 be defined by P (1)(a) = (1A0 ⊗ e11)a(1A0 ⊗ e11), where {eij}4(m+2)×4(m+2) is a

system of matrix unit. Therefore, we may assume, without loss of generality, that ∥e0x − xe0∥ < ε/64(m + 2), and there
is e1 ∈ M4(m+2)(A0) with 0 ≤ e1 ≤ 1 such that ∥e1x − xe1∥ < ε/64(m + 2) and ∥e1P(x) − P(x)∥ < ε/64(m + 2) for all
x ∈ F ∪ {e, e′, f1/2(e), f1/4(e), f1/2(e′)}. Moreover, since the map from W (A)+ to LAffb,+(T(A)) is surjective, as in the proof of
5.5 (when 7.2 of [17] is applied), without loss of generality, we may assume that A0 has continuous scale. Write

x = x0 +

4(m+2)  
x1 ⊕ x1 ⊕ · · · ⊕ x1 .

Let F1 = {x1 : x ∈ F ∪ {e′, f1/2(e′)}}. Note that we may write

4(m+2)  
x1 ⊕ x1 ⊕ · · · ⊕ x1 = x1 ⊗ 14(m+2). Then dimnucA0 = m

(see [57]). Also, A0 is a non-unital separable simple C*-algebra which has continuous scale. We may then apply 5.4 to A0

ith S = Raz. By 2.8, in 5.4, we may choose C =
⋃

∞

n=1 Wn, where each Wn is a finite direct sum of W ’s, Wn ⊂ Wn+1 and
strictly positive elements of Wn are strictly positive elements of Wn+1 for all n. Since (see 9.6 of [17]) W =

⋃
∞

k=1 Rk, where
Rm ⊂ Rm+1, strictly positive elements of Rm are strictly positive elements of Rk+1, and each Rk is Razak algebra (as in 2.3),
where λs(Rk) → 1, as k → ∞ (see for λs in 5.3, and also (2.2)), we may write C =

⋃
∞

n=1 Cn, where Cn ⊂ Cn+1, strictly
positive elements of Cn are strictly positive elements of Cn+1. Moreover, λs(Cn) ≥ 1/2 for all n. Put r0 = (1−1/64(m+2)).
Choose η0 = 7/32(m+2) and λ = 3/16. Thus, by applying 5.4, we have, with φ1(b) = (E−p)b(E−p) for all b ∈ M4(m+2)(A0),
where E = 1M4(m+2)(Ã0), and p ∈ M4(m+2)(Ã0) is a projection given by 5.4, and L : A0 → D1 is an F1-ε-multiplicative
completely positive contractive map

∥x ⊗ 14(m+2) − (φ1(x ⊗ 14(m+2)) + L(x))∥ < ε/4 for all x ∈ F1, (5.78)

dτ (φ1(e)) ≤ 1 − 1/4(m + 2) for all τ ∈ T(A0), (5.79)
τ ′(φ1(e)), τ ′(f1/2(φ1(e))) ≥ r0 − ε/4 for all τ ′

∈ T((1 − p)M4(m+1)(A0)(1 − p)), (5.80)

D1 ∈ C0
0,D1⊆pM4(m+2)(A0)p, (5.81)

τ (L(P (1)(e))) ≥ r0η0 for all τ ∈ T(M4(m+2)(A0)) and (5.82)

t(f1/4(L(P (1)(e)))) ≥ r0λ for all t ∈ T(D1). (5.83)

Let B1 = (1 − p)M4(m+1)(A0))(1 − p) ⊕ e0Be0 and φ : B → B1 be defined by φ(b) = φ1(e1be1) + e0be0 for b ∈ B. Define
L1 : B → D1 by L1(b) = L(P (1)(e1/21 be1/21 )). Then both L1 and φ is F-ε-multiplicative. Put η = η0/2 <

η0
1+ε/64(m+2) . Then, in

addition to (5.83) and (5.81),

∥x − (φ(x) + L1(x))∥ < ε for all x ∈ F,
dτ (φ(e)) ≤ 1 − η for all τ ∈ T(B),
τ ′(φ1(e)), τ ′(f1/2(φ1(e))) ≥ r − ε for all τ ′

∈ T(B1),
τ (L(e)) ≥ r0η for all τ ∈ T(B).

Note this holds for every such B. Thus, the hypotheses of 5.5 are satisfied. We then apply 5.5. □

6. The C*-algebra W and UHF-stability

Definition 6.1 (12.1 of [17]). Let A be a non-unital separable C*-algebra. Suppose that τ ∈ T(A). Recall that τ was said to
be a W-trace in [17] if there exists a sequence of completely positive contractive maps (φn) from A into W such that

lim ∥φn(ab) − φn(a)φn(b)∥ = 0 for all a, b ∈ A, and

n→∞
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τ (a) = lim
n→∞

τW (φn(a)) for all a ∈ A, (6.1)

where τW is the unique tracial state on W .

The following two statements (6.2, and 6.3) are taken from [17] (and the proofs are straightforward).

roposition 6.2 (12.4 of [17]). Let A be a separable simple C*-algebra with a W-tracial state τ ∈ T(A). Let 0 ≤ a0 ≤ 1 be
strictly positive element of A. Then there exists a sequence of completely positive contractive maps φn : A → W such that

φn(a0) is a strictly positive element,

lim
n→∞

∥φn(a)φn(b) − φn(ab)∥ = 0 for all a, b ∈ A and

τ (a) = lim
n→∞

τW ◦ φn(a) for all a ∈ A, (6.2)

here τW is the unique tracial state of W .

heorem 6.3 (12.2 of [17]). Let A be a separable simple C*-algebra with A = Ped(A). If every tracial state τ ∈ T(A) is a W-trace,
hen K0(A) = kerρA.

roposition 6.4. Let A be a separable C*-algebra with A = Ped(A) such that every tracial state τ of A is quasidiagonal. Let
Y ∈ D0 be a simple C*-algebra which is an inductive limit of C*-algebras in C′

0 such that K0(Y ) = kerρY , and Y has a unique
trace, which is bounded. Then all tracial states of A ⊗ Y are W-tracial states. In particular, all tracial states of A ⊗ W are
W-tracial states.

Proof. Let τ ∈ T(A). Denote by t the unique tracial state of Y . We will show τ ⊗ t is a W-trace on A ⊗ Y .
By 8.12 of [17], Y is an inductive limit of 1-dimensional non-commutative CW complexes (C*-algebras in C0) with

K1(Y ) = {0}. For each n, there is a homomorphism hn : Mn(Y ) → W (by Theorem 1.0.1 of [43]) such that hn maps a
strictly positive element of Mn(Y ) to a strictly positive element of W . Consider τW ∈ T(W). Then τW ◦ hn is a tracial state
f Y . Therefore t ⊗ trn(a) = τW ◦ hn(a) for all a ∈ Mn(Y ). Moreover, for any a ∈ Mn and b ∈ Y ,

trn(a)t(b) = τW ◦ hn(a ⊗ b),

here trn is the normalized trace on Mn, n = 1, 2, . . ..
Since τ is quasidiagonal, there is a sequence ψn : A → Mk(n) of completely positive contractive maps such that

lim
n→∞

∥ψn(ab) − ψn(a)ψn(b)∥ = 0 for all a, b ∈ A and (6.3)

τ (a) = lim
n→∞

trk(n) ◦ ψn(a) for all a ∈ A. (6.4)

Define φn : A ⊗ Y → W by φn(a ⊗ b) = hk(n)(ψn(a) ⊗ b) for all a ∈ A and b ∈ Y . Then φn is completely positive
ontractive map and, for any a ∈ A and b ∈ Y ,

(τ ⊗ t)(a ⊗ b) = lim
n→∞

trk(n)(ψn(a))t(b) (6.5)

= lim
n→∞

τW ◦ hk(n)(ψn(a) ⊗ b) = lim
n→∞

τW (φn(a ⊗ b)). (6.6)

Therefore τ ⊗ t is a W-trace. □

Theorem 6.5. Let A be a simple separable C*-algebra with finite nuclear dimension which has bounded scale and is such that
K0(A) = ker ρA and every tracial state is a W-trace. Suppose that every hereditary sub-C*-algebra of A with continuous scale
is tracially approximately divisible. Then A ∈ D0. (In particular, A ⊗ U ∈ D0 for any UHF-algebra U.)

Proof. By [49], A is Z-stable. By Remark 5.2 of [17], A has a non-zero hereditary sub-C*-algebra A0 with continuous scale.
Then Mk(A0) also has continuous scale for every integer k ≥ 1. Since A has bounded scale, it is isomorphic to a hereditary
sub-C*-algebra of Mk(A0) for some possibly large k. Since Mk(A0) has the same properties as assumed for A, it then follows
from 8.6 of [17] that, to prove that A is in D0, we may assume that A has continuous scale.

It follows from Theorem 2.8 that there is a simple C*-algebra B = limn→∞(Bn, ın), where each Bn is a finite direct
um of copies of W and ın,∞ maps strictly positive elements to strictly positive elements, each Bn has bounded scale, and
(B) ∼= T(A). Denote by γ : T(A) → T(B) the affine homeomorphism. By [53], we may assume that B = limn→∞(Rn, ın),

where each Rn is a Razak algebra and ın is injective. It follows from Corollary A.27 of the Appendix that there exists a
homomorphism ρ : B → A which induces γ , i.e.,

τ (ρ(b)) = γ (τ )(b) for all b ∈ B and τ ∈ T (A). (6.7)

Let (ın,∞)T : T(B) → T(Bn) be the continuous affine map such that, for t ∈ T(B),

t ◦ ı (b) = (ı ) (t)(b)
n,∞ n,∞ T
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for all b ∈ Bn, n = 1, 2, . . .. Recall that T(W) = {τW}, where τW is the unique tracial state of W .
Fix a strictly positive element a0 ∈ A. Fix ε > 0 and a finite subset F ⊆ A, since B = limn→∞(Bn, ın) and T(Bn) has

initely many extremal traces, then, as is standard and easy to see, there are an integer n1 ≥ 1 and a continuous affine
ap κ : T(Bn1 ) → T(A) such that, for τ ∈ T(B),

sup
τ∈T(B)

|κ ◦ (ın1,∞)T(τ )(f ) − γ−1(τ )(f )| < ε/3 for all f ∈ F . (6.8)

rite Bn1 = W1 ⊕ W2 ⊕ · · · ⊕ Wm, where each Wi ∼= W . Denote by τW1 , τW2 , . . . , τWm the unique tracial states on Wi,
nd θi = κ(τWi ), i = 1, 2, . . . ,m. By the assumption, there exists, for each i, a sequence of completely positive contractive
aps φn,i : A → Wi such that

lim
n→∞

∥φn,i(a)φn,i(b) − φn,i(ab)∥ = 0 for all a, b ∈ A, and (6.9)

θi(a) = lim
n→∞

τWi ◦ φn,i(a) for all a ∈ A. (6.10)

Moreover, by 6.2, we may assume that φn,i(a0) is strictly positive. Define φn : A → Bn1 by

φn(a) = φn,1(a) ⊕ φn,2(a) ⊕ · · ·⊕φn,m(a), a ∈ A. (6.11)

Then

lim
n→∞

sup
τ∈T(Bn1 )

{|τ (φn(a)) − κ(τ )(a)|} = 0 for all a ∈ A. (6.12)

Define σn : A → B by

σn(a) = ın1,∞ ◦ φn(a), a ∈ A. (6.13)

Note that σn(a0) is a strictly positive element. We also have that

lim
n→∞

∥σn(ab) − σn(a)σn(b)∥ = 0, a, b ∈ A. (6.14)

Moreover, for any τ ∈ T(B) and any f ∈ F ,

|γ−1(τ )(f ) − τ ◦ σn(f )| ≤ |γ−1(τ )(f ) − κ ◦ (ın1,∞)T (τ )(f )| (6.15)

+ |κ ◦ (ın1,∞)T(τ )(f ) − τ ◦ σn(f )| (6.16)

< ε/3 + |κ ◦ (ın1,∞)T(τ )(f ) − τ ◦ ın1,∞ ◦ φn(f )| (6.17)

≤ ε/3 + sup
t∈T(Bn1 )

{|τ (φn(f )) − κ(τ )(f )|}. (6.18)

By (6.12), there exists N ≥ 1 such that, for all n ≥ N ,

sup
τ∈T(B)

{|γ−1(τ )(f ) − τ ◦ σn(f )|} < 2ε/3 for all f ∈ F . (6.19)

Thus the map σn satisfies (5.74) and (5.75). By (6.7) and (6.19), for all n ≥ N ,

sup
τ∈T(A)

{|τ (f ) − τ (ρ ◦ σn(f ))|} = sup
τ∈T(A)

{|τ (f ) − γ (τ )(σn(f ))|} < ε for all f ∈ F .

Thus (5.76) also holds (with ρ = ρn). Therefore, by 5.7, A ∈ D0. □

Theorem 6.6. Let A be a non-unital separable simple C*-algebra with finite nuclear dimension and with A = Ped(A). Suppose
that T(A) ̸= Ø. Then A ⊗ W ∈ D0.

Proof. By Lemma 3.17, A⊗W is KK-contractible. Therefore A⊗W satisfies the UCT. Since W has finite nuclear dimension,
so also does A⊗W . Hence by [50], every tracial state is quasi-diagonal. It follows by 6.4 that every tracial state of A⊗W
is a W-trace. We also have K0(A ⊗ W) = {0}. Let b ∈ (A ⊗ W)+. Since W has a unique tracial state, by 11.8 of [17],
W (A ⊗ W) = LAffb,0+(T(A)

w
). Therefore, there are a ∈ A and b1 ∈ M2(W)+ such that b ∼ a ⊗ b1. Put B = b(A ⊗ W)b and

B1 = (a ⊗ b1)(A ⊗ W)(a ⊗ b1). Then B ∼= B1. Note that b1Wb1 ∼= W . It follows that B1 ∼= aAa ⊗ W . But W ⊗ Q ∼= W . This
mplies that B1 is tracially approximately divisible. Therefore B is tracially approximately divisible. Then 6.5 applies. □

Added in proof: The condition of finite nuclear dimension in 6.6 can be much weakened to the condition that A is
menable. Since A ⊗ W is Z-stable, by a recent preprint of J. Castillejos and S. Evington, arXiv:1901.11441, it has finite
uclear dimension, as kindly pointed out by the referee.

orollary 6.7. Let A be a simple separable finite C*-algebra such that A⊗Z has finite nuclear dimension. Then the C*-algebra
⊗W belongs to the classM0, and so A⊗W is isomorphic to an inductive limit of C*-algebras inRaz. in particular,W⊗W ∼= W .
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Proof. By 6.6, A ⊗ W ∈ D0 and, by 3.17, A ⊗ W is KK-contractible. Then 4.3 applies. □

emma 6.8. Let A be a separable simple C*-algebra in R with finite nuclear dimension which is KK-contractible and assume
hat all tracial states of A are W-traces. Let Mp and Mq be two UHF algebras, where p and q are relatively prime supernatural
umbers. Then, there exist an isomorphism φ : A⊗Mp → A⊗Mp⊗Mq and a continuous path of unitaries ut ∈ M(A⊗Mp⊗Mq),
≤ t < ∞, such that u1 = 1 and

lim
t→∞

u∗

t (a ⊗ r ⊗ 1q)ut = φ(a ⊗ r), a ∈ A, r ∈ Mp.

Proof. Note that every hereditary sub-C*-algebra B of A⊗Mp and A⊗Q is tracial approximately divisible, since Mp and Q
are strongly self-absorbing. By the assumption and 6.5, A⊗Mp and A⊗Q are in D0. It follows from 4.3 that A⊗Mp

∼= A⊗Q .
Let ξ : A ⊗ Mp → A ⊗ Q be an isomorphism. It is well known that any isomorphism ψ : Q → Q ⊗ Mq is asymptotically
unitarily equivalent to the embedding Q → Q ⊗ Mq given by r → r ⊗ 1q for all r ∈ Q (see, for instance, [31]). Therefore
here exists a continuous path of unitaries vt ∈ Q ⊗ Mq such that v1 = 1 and

lim
t→∞

v∗

t (r ⊗ 1q)vt = ψ(r) for all r ∈ Q .

Define φ1 : A ⊗ Q → A ⊗ Q ⊗ Mq by φ1(a ⊗ r) = a ⊗ ψ(r) for all a ∈ A and r ∈ Q . Therefore

lim
t→∞

(1A ⊗ v∗

t )(b ⊗ 1q)(1A ⊗ vt ) = φ1(b) for all b ∈ A ⊗ Q . (6.20)

Define φ : A ⊗ Mp → A ⊗ Mp ⊗ Mq by φ = (ξ−1
⊗ idMq ) ◦ φ1 ◦ ξ and let ut = ξ̃−1(1A ⊗ vt ), where ξ̃ : M(A ⊗ Mp ⊗ Mq) →

M(A ⊗ Q ⊗ Mq) is the extension of ξ ⊗ idMq : A ⊗ Mp ⊗ Mq → A ⊗ Q ⊗ Mq. Note that u1 = 1, since v1 = 1 and {ut} is a
ontinuous path of unitaries in M(A ⊗ Mp ⊗ Mq). Suppose that a ∈ A and r ∈ Mp. So ξ (a ⊗ r) ∈ A ⊗ Q . Then we have

lim
t→∞

u∗

t (a ⊗ r ⊗ 1q)ut = lim
t→∞

ξ̃−1(1A ⊗ v∗

t )
(
(ξ−1

⊗ idMq )(ξ (a ⊗ r) ⊗ 1q)
)
ξ̃−1(1A ⊗ vt )

= (ξ−1
⊗ idMq )( limt→∞

(
(1A ⊗ u∗

t )(ξ (a ⊗ r) ⊗ 1q)(1A ⊗ ut )
)
)

=
see (6.20)ξ−1

⊗ idMq (φ1(ξ (a ⊗ r))) = φ(a ⊗ r)

s desired. □

heorem 6.9. Let A be a non-unital separable simple C*-algebra in R with finite nuclear dimension which is KK-contractible
nd such that every trace is a W-trace. Then A ∼= A ⊗ Q .

roof. It follows from [49] that A ∼= A ⊗ Z . Decompose A ⊗ Z as an inductive limit of copies of A ⊗ Zp,q, where p, q are
wo relatively prime supernatural numbers such that Mp ⊗ Mq = Q . By Corollary 3.4 of [52], in order to show that A is
-stable, it is enough to show that A ⊗ Zp,q is Q -stable. Note that

A ⊗ Zp,q = {f ∈ C([0, 1], A ⊗ Mp ⊗ Mq) : f (0) ∈ A ⊗ Mp ⊗ 1q, f (1) ∈ A ⊗ 1p ⊗ Mq}.

pplying Lemma 6.8 to both endpoints, one obtains isomorphisms

φ0 : A ⊗ Mp → A ⊗ Mp ⊗ Mq, φ1 : A ⊗ Mq → A ⊗ Mp ⊗ Mq,

ogether with a continuous path of unitaries ut ∈ M(A ⊗ Mp ⊗ Mq), 0 < t < 1, such that u 1
2

= 1,

lim
t→0

u∗

t (a ⊗ r ⊗ 1q)ut = φ0(a ⊗ r), a ∈ A, r ∈ Mp,

nd

lim
t→1

u∗

t (a ⊗ 1p ⊗ r)ut = φ1(a ⊗ r), a ∈ A, r ∈ Mq.

Define the continuous field map Φ : A ⊗ Zp,q → C([0, 1], A ⊗ Mp ⊗ Mq) by

Φ(f )(t) = u∗

t f (t)ut , t ∈ [0, 1],

where Φ(f )(0) and Φ(f )(1) are understood as φ0(f (0)) and φ1(f (1)), respectively. Then the map Φ is an isomorphism
(the inverse is Φ−1(g)(t) = utg(t)u∗

t , t ∈ (0, 1), Φ−1(g)(0) = φ−1
0 (g(0)), and Φ−1(g)(1) = φ−1

0 (g(1))), and hence
A ⊗ Zp,q

∼= C([0, 1], A ⊗ Mp ⊗ Mq). Since the trivial field C([0, 1], A ⊗ Mp ⊗ Mq) is Q -stable, one has that A ⊗ Zp,q is
Q -stable, as desired. □

7. The case of finite nuclear dimension

Let A be a non-unital separable C*-algebra. Since Ã ⊗ Q is unital, we may view Ã ⊗ Q as a sub-C*-algebra of Ã ⊗ Q
with the unit 1 . In the following corollary we use ı for the embedding from A ⊗ Q to Ã ⊗ Q as well as from Ã ⊗ Q
Ã⊗Q
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to Ã ⊗ Q . Since K1(Q ) = {0}, from the six-term exact sequence in K-theory, one concludes that the homomorphism
ı∗0 : K0(A ⊗ Q ) → K0 (̃A ⊗ Q ) is injective.

We will use this fact and identify x with ı∗0(x) for all x ∈ K0(A ⊗ Q ) in the following corollary.

emma 7.1. Let A be a non-unital separable C*-algebra and let (ψn) be a sequence of approximately multiplicative completely
ositive contractive maps from Ã⊗Q to Q . Then φn = ψn ◦ ı is a sequence of approximately multiplicative completely positive
ontractive maps from A into Q , where ı0 :A → Ã ⊗ Q is the embedding defined by a ↦→ a ⊗ 1 for all a ∈ A.
Conversely, if (φn) is a sequence of approximately multiplicative completely positive contractive maps from A to Q , then,

here exists a sequence of approximately multiplicative completely positive contractive maps (ψn) : Ã ⊗ Q → Q such that

lim
n→∞

∥φn(a) − ψn ◦ ı0(a)∥ = 0 for all a ∈ A.

Moreover, if lim sup ∥φn(a)∥ ̸= 0 for some a ∈ A and if {en} is an approximate unit, then, we can choose ψn such that

tr(ψn(1)) = dtr(φn(en)) for all n.

roof. We prove only the second part. Write Q =
⋃

∞

n=1 Mn! with the embedding jn : Bn := Mn! → Mn! ⊗Mn+1 = M(n+1)!,
n = 1, 2, . . .. Without loss of generality, we may assume that φn maps A into Bn, n = 1, 2, . . .. Consider φ′

n(a) =

φn(e
1/2
n ae1/2n ), n = 1, 2, . . .. Choose pn to be the range projection of φn(en) in Bn. Define ψ ′

n : Ã ⊗ Q → Q ⊗ Q by
ψ ′

n(a ⊗ 1Q ) = φ′
n(a) ⊗ 1Q for all a ∈ A, ψ ′

n(1 ⊗ r) = pn ⊗ r for all r ∈ Q . Then

lim
n→∞

∥ψ ′

n(a ⊗ 1) − φn(a) ⊗ 1∥ = 0 for all a ∈ A.

Moreover, tr(ψ ′
n(1)) = dtr(φn(en)) for all n. There is an isomorphism h : Q ⊗ Q → Q such that h ◦ ıQ is approximately

unitarily equivalent to idQ , where ıQ : a ↦→ a ⊗ 1Q is the embedding. By choosing some unitaries un ∈ Q , we can choose
ψ = Ad un ◦ h ◦ ψn, n = 1, 2, . . .. □

The following is a non-unital version of Lemma 4.2 of [16].

Lemma 7.2. Let A be a non-unital simple separable amenable C*-algebra with T(A) ̸= Ø which has bounded scale and which
satisfies the UCT. Fix a strictly positive element a ∈ A+ with ∥a∥ = 1 such that

τ (f1/2(a)) ≥ d for all τ ∈ T(A)
w
. (7.1)

For any ε > 0 and any finite subset F of A, there exist δ > 0, a finite subset G of A, and a finite subset P of K0(A) with the
ollowing property. Let ψ, φ : A → Q be two G-δ-multiplicative completely positive contractive maps such that

[ψ]|P= [φ]|P and (7.2)
tr(f1/2(ψ(a))) ≥ d/2 and tr(f1/2(φ(a))) ≥ d/2, (7.3)

here tr is the unique tracial state of Q . Then there are a unitary u ∈ Q and an F-ε-multiplicative completely positive
ontractive map L : A → C([0, 1],Q ) such that

π0 ◦ L = ψ, π1 ◦ L = Adu ◦ φ. (7.4)

oreover, if

|tr ◦ ψ(h) − tr ◦ φ(h)| < ε′/2 for all h ∈ H, (7.5)

or a finite set H ⊆ A and ε′ > 0, then L may be chosen such that

|tr ◦ πt ◦ L(h) − tr ◦ π0 ◦ L(h)| < ε′ for all h ∈ H and t ∈ [0, 1]. (7.6)

ere, πt : C([0, 1],Q ) → Q is the point evaluation at t ∈ [0, 1].

Proof. Let T : A+ \ {0} → N×R+ \ {0} be given by 5.7 of [17] (with above d and a). In the notation in 3.13, Q ∈ C0,0,t,1,2,
here t : N × N → N is defined to be t(n, k) = n/k for all n, k ≥ 1. Now C0,0,t,1,2 is fixed. We are going to apply
heorem 3.14 together with Remark 3.15 (note that Q has real rank zero and K1(Q ) = {0}).
Let F ⊆ A be a finite subset and let ε > 0 be given. We may assume that a ∈ F and every element of F has norm at

most one. Write F1 = {ab : a, b ∈ F} ∪ F .
Let δ1 > 0 (in place δ), G1 (in place of G) and H1(in place of H), P , and K be as assured by Theorem 3.14 for F1 and

ε/4 as well as T (in place of F ). (As stated earlier we will also use Remark 3.15 so that we drop L and condition (3.15).)
Since K1(Q ) = {0} and K0(Q ) = Q, we may choose P ⊆ K0(A).

We may also assume that F1 ∪ H1 ⊆ G1 and K ≥ 2.
Now, let G2 ⊆ A (in place of G) be a finite subset and let δ2 > 0 (in place of δ1) given by 5.7 of [17] for the above H1

and T .
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Let δ = min{ε/4, δ1/2, δ2/2} and G = G1 ∪ G2. Without loss of generality, we may assume that G ⊆ A1.
Since Q ∼= Q ⊗ Q , we may assume, without loss of generality, that φ(a), ψ(a) ∈ Q ⊗ 1 for all a ∈ A. Pick mutually

equivalent projections e0, e1, e2, . . . , e2K ∈ Q satisfying
∑2K

i=0 ei = 1Q . Then, consider the maps φi, ψi : A → Q ⊗ eiQei,
i = 0, 1, . . . , 2K , which are defined by

φi(a) = φ(a) ⊗ ei and ψi(a) = ψ(a) ⊗ ei, a ∈ A,

and consider the maps

ΦK+1 := φ = φ0 ⊕ φ1 ⊕ · · · ⊕ φ2K , Φ0 := ψ = ψ0 ⊕ ψ1 ⊕ · · · ⊕ ψ2K

and

Φi := φ0 ⊕ · · · ⊕ φi−1 ⊕ ψi ⊕ · · · ⊕ ψ2K , i = 1, 2, . . . , 2K .

Since ei is unitarily equivalent to e0 for all i, one has

[φi]|P= [ψj]|P , 0 ≤ i, j ≤ 2K .

and in particular,

[φi]|P= [ψi]|P , i = 0, 1, .., 2K . (7.7)

Note that, for each i = 0, 1, . . . , n, Φi is unitarily equivalent to

ψi ⊕ (φ0 ⊕ φ1 ⊕ · · · ⊕ φi−1 ⊕ ψi+1 ⊕ ψi+2 ⊕ · · · ⊕ ψ2K ),

and Φi+1 is unitarily equivalent to

φi ⊕ (φ0 ⊕ φ1 ⊕ · · · ⊕ φi−1 ⊕ ψi+1 ⊕ ψi+2 ⊕ · · · ⊕ ψ2K ).

Using (7.3), on applying 5.7 of [17], we obtain that maps φi and ψi are T -H1-full in eiQei, i = 0, 1, 2, . . . , 2K .
In view of this, and (7.7), applying Theorem 3.14 (and its remarks), we obtain unitaries ui ∈ Q , i = 0, 1, . . . , 2K , such

hat

∥Φ̃i+1(a) − Φ̃i(a)∥ < ε/4, a ∈ F1, where (7.8)

Φ̃0 := Φ0 = ψ and Φ̃i+1 := Ad ui ◦ · · · ◦ Ad u1 ◦ Ad u0 ◦Φi+1, i = 0, 1, . . . , 2K .
ut ti = i/(2K + 1), i = 0, 1, . . . , 2K + 1, and define L : A → C([0, 1],Q ) by

πt ◦ L = (2K + 1)(ti+1 − t)Φ̃i + (2K + 1)(t − ti)Φ̃i+1, t ∈ [ti, ti+1], i = 0, 1, . . . , 2K .

y construction,

π0 ◦ L = Φ̃0 = ψ and π1 ◦ L = Φ̃n+1 = Ad un ◦ · · · ◦ Ad u1 ◦ Ad u0 ◦ φ. (7.9)

ince Φ̃i, i = 0, 1, . . . , 2K , are G-δ-multiplicative (in particular F-ε/4-multiplicative), it follows from (7.8) that L is
-ε-multiplicative. By (7.9), L satisfies (7.4) with u = u2K · · · u1u0.
Moreover, if there is a finite set H such that (7.5) holds, it is then also straightforward to verify that L satisfies (7.6),

s desired. □

emark 7.3. If A is KK-contractible, then the assumption that A satisfies the UCT can of course be dropped.

heorem 7.4. Let A be a non-unital simple separable amenable C*-algebra with K0(A) = Tor(K0(A)) which satisfies the UCT.
uppose that A = Ped(A). Then every trace in T(A)

w
is a W-trace.

roof. It suffices to show that every tracial state of A is a W-trace. It follows from [50] that every trace is quasidiagonal.
or a fixed τ ∈ T(A), there exists a sequence of approximately multiplicative completely positive contractive maps (φn)
rom A into Q such that

lim
n→∞

tr ◦ φn(a) = τ (a) for all a ∈ A.

y Lemma 7.1, we may assume that φn = ψn ◦ ı, where ı : A → A ⊗ Q is the embedding defined by ı(a) = a ⊗ 1Q for all
∈ A and ψn : A ⊗ Q → Q is a sequence of approximate multiplicative completely positive contractive maps.
Therefore it suffices to show that every tracial state of A ⊗ Q is a W-trace. Set A1 = A ⊗ Q . Then K0(A1) = {0}.
Fix 1 > ε > 0, 1 > ε′ > 0, a finite subset F ⊆ A1 and a finite H ⊆ A1. Put F1 = F ∪ H. Without loss of generality, we

ay assume that F1 ⊆ A1
1. Note that A is non-unital. Choose a strictly positive element a ∈ A+ with ∥a∥ = 1. We may

lso assume that

τ (f (a)) ≥ d > 0 for all τ ∈ T(A)
w

(for some d > 0).
1/2
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Let 1 > δ > 0, G ⊆ A1 be a finite subset as provided by 7.2 for A1 (in place of A), d/2 (in place of d), ε/16 (in place of
), and F1. (Note since K0(A1) = {0}, the required set P in 7.2 does not appear here.)
Let G1 = G ∪ F1 and let ε1 = ε · ε′

· δ/2. Let τ ∈ T(A1). Since τ is quasidiagonal, there exists a G1-ε1-multiplicative
ompletely positive contractive map ψ : A1 → Q such that

|τ (b) − tr ◦ ψ(b)| < ε′/16 for all b ∈ G ∪ F, and (7.10)
tr(f1/2(ψ(a))) > 2d/3. (7.11)

hoose an integer m ≥ 3 such that

1/m < min{ε1/64, d/8}.

Let e1, e2, . . . , em+1 ∈ Q be a set of mutually orthogonal and mutually equivalent projections such that
m+1∑
i=1

ei = 1Q and tr(ei) =
1

m + 1
, i = 1, 2, . . . ,m + 1.

Let ψi : A1 → (1 ⊗ ei)(Q ⊗ Q )(1 ⊗ ei) be defined by ψi(b) = ψ(b) ⊗ ei, i = 1, 2, . . . ,m + 1. Set
m∑
i=1

ψi = Ψ0 and
m+1∑
i=1

ψi = Ψ1.

Identify Q ⊗ Q with Q . Note that

tr(f1/2(Ψi(a))) ≥ d/2, i = 0, 1. (7.12)

Moreover,

|τ ◦ Ψ0(b) − τ ◦ Ψ1(b)| <
1

m + 1
< min{ε1/64, d/8} for all b ∈ A1.

Again, keep in mind that K0(A1) = {0}. Applying 7.2, we obtain a unitary u ∈ Q and a F1-ε/16-multiplicative completely
positive contractive map L : A → C([0, 3/4],Q ) such that

π0 ◦ L = Ψ0, π3/4 ◦ L = Adu ◦ Ψ1. (7.13)

Moreover,

|tr ◦ πt ◦ L(h) − tr ◦ π0 ◦ L(h)| < 1/m < ε′/64, h ∈ F1, t ∈ [0, 3/4]. (7.14)

Here, πt : C([0, 3/4],Q ) → Q is the point evaluation at t ∈ [0, 3/4]. There is a continuous path of unitaries {u(t) : t ∈

[3/4, 1]} such that u(3/4) = u and u(1) = 1Q . Define L1 : A1 → C([0, 1],Q ) by πt ◦ L1 = πt ◦ L for t ∈ [0, 3/4] and
πt ◦ L1 = Adut ◦ Ψ1 for t ∈ (3/4, 1]. L1 is a F1-ε/16-multiplicative completely positive contractive map from A1 into
C([0, 1],Q ). Note now

π0 ◦ L1 = Ψ0 and π1 ◦ L1 = Ψ1 and (7.15)
|tr ◦ πt ◦ L(h) − tr ◦ Ψ1(h)| < ε′/64 for all h ∈ H. (7.16)

Fix an integer k ≥ 2. Let κi : Mk → Mk(m+1) (i = 0, 1) be defined by

κ0(c) = (

m  
c ⊕ c ⊕ · · · ⊕ c ⊕0), and κ1(c) = (

m+1  
c ⊕ c ⊕ · · · ⊕ c) (7.17)

or all c ∈ Mk. Define

C0 = {(f , c) : C([0, 1],Mk(m+1)) ⊕ Mk : f (0) = κ0(c) and f (1) = κ1(c)}.

nd set

C0 ⊗ Q = C1.

ote that C0 ∈ C0
0 and C1 is an inductive limit of Razak algebras C0 ⊗ Mn!. Moreover K0(C1) = K1(C1) = {0}. Put

0 =
∑m

i=1 1Q ⊗ ei. Define κ̄0 : Q → p0(Q ⊗ Q )p0 to be the unital homomorphism defined by κ̄0(a) = a ⊗
∑m

i=1 ei
nd κ̄1(a) = a ⊗ 1Q for all a ∈ Q .
Then one may write

C1 = {(f , c) ∈ C([0, 1],Q ) ⊕ Q : f (0) = κ̄0(c) and f (1) = κ̄1(c)}.

ote that κ̄0 ◦ ψ(b) = Ψ0(b) for all b ∈ A1 and κ̄1 ◦ ψ(b) = Ψ1(b) for all b ∈ A1. Thus one can define Φ ′
: A1 → C1 by

′(b) = (L (b), ψ(b)) for all b ∈ A .
1 1
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Then Φ ′ is a F1-ε/16-multiplicative completely positive contractive map such that

|tr(πt ◦Φ ′(h)) − tr ◦ ψ(h)| < ε′/4 for all h ∈ H. (7.18)

et µ denote Lebesgue measure on [0, 1]. There is a homomorphism Γ : Cu∼(C1) → Cu∼(W) (see [43]) such that
(f )(τW ) = (µ ⊗ tr)(f ) for all f ∈ Aff(T(C1)), where τW is the unique tracial state of W . By [43], there exists a
omomorphism λ : C1 → W such that

τW ◦ λ((f , c)) =

∫ 1

0
tr(f (t))dt for all (f , c) ∈ C1. (7.19)

inally, let Φ = λ ◦ Φ ′. Then Φ is a F1-ε-multiplicative completely positive contractive map from A1 into W . Moreover,
ne computes that

|τW ◦Φ(h) − τ (h)| < ε′ for all h ∈ H, (7.20)

s desired. □

heorem 7.5. Let A and B be non-unital separable simple (finite) C*-algebras with finite nuclear dimension and with non-zero
races. Suppose that both A and B are KK-contractible. Then A ∼= B if and only if there is an isomorphism (scale preserving
ffine homeomorphism) Γ : (̃T(B),ΣB) ∼= (̃T(A),ΣA).
Moreover, there is an isomorphism φ : A → B such that φ induces Γ .

roof. Let Γ : (̃T(B),ΣB) → (̃T(A),ΣA) be an isomorphism. By 2.9, we may assume that B ∈ M0 (an inductive limit of
azak algebras). Recall that A is Z-stable (by [49]). Let a ∈ Ped(A)+ with ∥a∥ = 1 such that A0 = aAa has continuous scale

(see 5.2 of [17]). Then T(A0) is a metrizable Choquet simplex and is a base for the cone T̃(A). Let b ∈ B+ be such that

dΓ (τ )(b) = dτ (a) for all τ ∈ T̃(A).

et bBb = B0. Then Γ gives an affine homeomorphism from T(A0) onto T(B0). It follows from 7.4 that every tracial state
f A0 or B0 is a W-trace. By 6.9, A0 and B0 are tracially approximately divisible. It follows from 6.5 that A0, B0 ∈ D0. Then,
y 4.3, there is an isomorphism φ : A0 → B0 such that φT gives Γ |T (B0) and by By [7], this induces an isomorphism

˜ : A ⊗ K → B ⊗ K. Fix a strictly positive element a0 ∈ A with ∥a0∥ = 1 such that

dτ (a0) = ΣA(τ ), τ ∈ T̃(A).

et φ̃(a0) = b0. Then φ̃ gives an isomorphism from A to B1 := b0(B ⊗ K)b0. Let b1 ∈ B be a strictly positive element, so
hat

dτ (b1) = ΣB(τ ), τ ∈ T̃(B).

hen

dτ (b1) = dτ (b0), τ ∈ T̃(B).

ince B is a separable simple C*-algebra with stable rank one, this implies there exists an isomorphism φ1 : B1 → B such
hat (φ1)T = id̃T(A) (see Theorem 3 of [9]; this also follows from [41] as B is an inductive limit of Razak algebras—see
lso [43]). Then the composition φ1 ◦ φ̃|A gives the required isomorphism. □

orollary 7.6. Let A, B be simple separable KK-contractible finite C*-algebras with finite nuclear dimension. If there is a
omomorphism ξ : (̃T(B),ΣB) → (̃T(A),ΣA), then there is a C*-algebra homomorphism φ : A→B such that φ∗ = ξ .

roof. In view of 7.5 and 2.9, this follows from the classification of limits of Razak algebras [41]. □
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Appendix

This section, mainly contributed by Huaxin Lin, removes the necessity of assuming that A has stable rank one in
heorem 7.5 and Corollary 7.6.
The main purpose of this appendix is to prove Corollary A.27. The existence of a map as stated in A.27 was proved

n [43] under the additional assumption that A has stable rank one. It is needed in the proof of 6.5.
Appendix A.1 of the appendix also contains some results of independent interest. In particular, Corollary A.8, together

with the construction of models in [15], establishes the range of the Elliott invariant for Jiang–Su stable separable simple
exact C*-algebras.

A.1. Strict comparison in Ã

Definition A.1. Let B be a C*-algebra with T(B) ̸= ∅ and let S ⊆ T(B) be a subset. Suppose that a ∈ (B ⊗ K)+ is such that
dτ (a) < +∞ for all τ ∈ T(B). Define

ωS(a) = inf{sup{dτ (a) − τ (c) : τ ∈ S} : c ∈ a(B ⊗ K)a, 0 ≤ c ≤ 1}. (A.1)

et us note that, when S is compact, ωS(a) = 0 if and only if dτ (a) is continuous on S. Also note that if a, b ∈ (B ⊗ K)+,
≤ a, b ≤ 1 and a ≲ b, then there exists a sequence xn ∈ B ⊗ K such that x∗

nxn → a and xnx∗
n ∈ b(B ⊗ K)b. It follows,

for any 1 > δ > 0, fδ(x∗
nxn) → fδ(a). Note that τ (fδ(x∗

nxn)) = τ (fδ(xnx∗
n)) for any τ ∈ T(B). We conclude that, if a ≲ b, there

exists a sequence {ck} in b(B ⊗ K)b+ with 0 ≤ ck ≤ 1 such that

lim
k→∞

sup{|τ (ck) − τ (f1/k(a))| : τ ∈ T(B)} = 0.

onsequently, if we further assume dτ (a) = dτ (b), then ωS(a) ≥ ωS(b). Note that, if a ∼ b, then dτ (a) = dτ (b). Hence,
hen a ∼ b, we have ωS(a) = ωS(b).
Now let A be a C*-algebra with T(A) ̸= ∅ and with compact T(A). Let a ∈ (̃A ⊗ K)+ be such that dτ (a) < +∞ for all

τ ∈ T(A). We will write ω(a) for ωT(A)(a), namely,

ω(a) = inf{sup{dτ (a) − τ (c) : τ ∈ T(A)} : c ∈ a(̃A ⊗ K)a, 0 ≤ c ≤ 1}. (A.2)

As mentioned above, if b ∈ (̃A ⊗ K)+, 0 ≤ b ≤ 1 and a ∼ b, in Ã ⊗ K, then ω(a) = ω(b).

Lemma A.2. Let A be a separable stably projectionless simple C*-algebra such that Mr (A) almost has stable rank one for every
nteger r ≥ 1 and QT(A) = T(A) which has strict comparison for positive elements and has continuous scale. Suppose that
u(A) = LAff+(T(A)). Suppose also that a ∈ Mr (̃A) with 0 ≤ a ≤ 1 for some integer r ≥ 1 and 0 < ⟨π (a)⟩, where π : Ã → C

is the quotient map. Suppose further that

inf{dτ (a) : τ ∈ T(A)} > 4ω(a). (A.3)

Then, for any d > 2ω(a) and ω(a)/2 > ε0 > 0, there is b ∈ Mr (A)+ with b ≤ a such that

2ω(a) < dτ (b) < d for all τ ∈ T(A) (A.4)

nd, for any 0 < ε < inf{dτ (b) : τ ∈ T(A)}, there is also a1 ∈ Mr (̃A)+ such that

π (a1) = π (a′), b ⊕ a1 ≤ a′,

ith ⟨a′
⟩ = ⟨a⟩, dτ (a1) > dτ (a) − d for all τ ∈ T(A), and a1 also has the following property: if {cn} ∈ Mr (̃A)+ is an increasing

equence such that cn ∈ a1 (̃A ⊗ K)a1 and τ (cn) ↗ dτ (a1), then, for some n0 ≥ 1,

dτ (a1) − τ (cn) < ω(a) + ε0 + ε for all τ ∈ T(A) and for all n ≥ n0. (A.5)

roof. We first consider the case that ⟨a⟩ is not represented by a projection. There exists an invertible matrix y ∈ Mr (C)+
such that y1/2π (a)y1/2 = p is a projection. Let Y ∈ Mr (C·1̃A)+ be the same invertible scalar matrix. Then π (Y 1/2aY 1/2) = p.
It is clear that ⟨a⟩ = ⟨Y 1/2aY 1/2

⟩ and we may replace a by Y 1/2aY 1/2. So we assume that π (a) = p.
Choose η0 > 0 such that, for 0 < η < η0,

dτ (a) − τ (fη(a)) < ω(a) + ε0 for all τ ∈ T(A). (A.6)

Let (en) be an approximate identity for aMr (A)a such that en+1en = en, n = 1, 2, . . ..
There exists n0 ≥ 1 such that

dτ (a) − τ (en) < ω(a) + ε0 for all τ ∈ T(A) and for all n ≥ n0. (A.7)

y a standard compactness argument, for a fixed n0 + 1, there exists η0 > η1 > 0 such that

τ (f (a)) > τ (e ) for all τ ∈ T(A). (A.8)
η1 n0+3
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Let (e1,n) be an approximate identity for fη1 (a)Mr (A)fη1 (a) with e1,ne1,n+1 = e1,n, n = 1, 2, . . .. By the same compactness
rgument, we have e1,n for some n such that

τ (e1,n) > τ (en0+3) for all τ ∈ T(A). (A.9)

t follows that en0+2 ≲ e1,n+1. Since A has almost stable rank one, one has

w∗en0+2w ≤ fη1/2(a) (A.10)

or some unitary w ∈ Mr (A)∼ (see the last part of Lemma 3.2 of [17]). Choose a strictly positive function g1,η1 ∈ C0((0, 1])+
uch that g1,η1 (t) = 1, if t ≥ η1/4, and g1,η1 (t) is linear on [0, η1/4). In particular, fη1/2g1,η1 = fη1/2. Put a

′
= g1,η1 (a). Note

(a′) = π (a) and ⟨a′
⟩ = ⟨a⟩. Note also that

0 ≤ w∗en0w ≤ w∗en0+1w ≤ w∗en0+2w ≤ fη1/2(a) ≤ a′ and (A.11)

dτ (a′) − τ (w∗en0w) < ω(a) + ε0 for all τ ∈ T(A). (A.12)

n particular, dτ (w∗en0w) > 5ω/2 for all τ ∈ T(A). There exists b0 ∈ Mr (A)+ with

dτ (b0) = 2ω(a) + min{(3/4)(d − 2ω(a)), (3/4)(τ (w∗en0w) − 2ω(a))}

or all τ ∈ T(A). Note that dτ (b0) ∈ Aff(T(A)). We have

dτ (b0) < dτ (w∗en0w) for all τ ∈ T(A). (A.13)

ince Mr (A) almost has stable rank one, by 3.2 of [17], one concludes that there exists b′
∈ w∗en0wMr (A)w∗en0w such

that dτ (b′) = dτ (b0) for all τ ∈ T(A). Note that b′a′
= b′. Let ε > 0. Since dτ (b0) is continuous on T(A) and T(A) is compact,

there exists δ0 > 0 such that

τ (fδ(b0)) > dτ (b0) − min{(d − 2ω(a))/2, ε/4} for all τ ∈ T(A) (A.14)

and 0 < δ ≤ δ0.
Put b = fδ0 (b

′), b1 = fδ/2(b′) and b2 = fδ/4(b′). Note that b ≤ b1 ≤ b2 ≤ w∗en0+1w. Note also that

2ω(a) < dτ (b) < d and 0 < dτ (b2) − τ (b) < ε/4 for all τ ∈ T(A). (A.15)

So (A.4) holds. Put a1 = a′
−b1. Note that a′b = b. So a1⊕b ≲ a1. Since π (a1) = π (a′), ⟨π (a1)⟩ = ⟨π (a)⟩. Let pa be the open

projection corresponding to a, pa1 the open projection corresponding to a1 and pb′ be the open projection corresponding
to b′ in Mr (̃A)∗∗. Note that pa is the same as the open projection corresponding to a′. Then pa ≥ pa1 ≥ pa − pb′ ,

dτ (a1) = τ (pa1 ) ≥ τ (pa′ − pb′ ) = τ (pa′ ) − τ (pb′ ) (A.16)

= τ (pa′ ) − dτ (b′) > dτ (a) − d and (A.17)
dτ (a1) = τ (pa1 ) < τ (pa − b) < τ (pa − pb′ ) + ε/4 (A.18)

< τ (pa) − τ (pb′ ) + ε/4 = dτ (a) − dτ (b′) + ε/4 for all τ ∈ T(A). (A.19)

If cn is as stated, then τ (cn) ↗ τ (pa1 ). Therefore, on T(A), which is compact, by a standard compactness argument, there
is n1 ≥ 1 such that

τ (w∗en0+1w) − dτ (b′) < τ (cn) ≤ τ (pa1 ) = dτ (a1) (A.20)

for all τ ∈ T(A) and for all n ≥ n1. It follows from (A.19), (A.12) and (A.20) that

dτ (a1) − τ (cn) < dτ (a′) − τ (cn) (A.21)
< ((τ (w∗en0+1w) + ω(a) + ε0) − dτ (b′) + ε/4) − (τ (w∗en0+1w) − dτ (b′)) (A.22)

= ω(a) + ε0 + ε/4 for all τ ∈ T(A). (A.23)

Now we consider the case that ⟨a⟩ is represented by a projection p ∈ Mm (̃A). We may write p = a1 + b1, where
a1 ∈ Mm(A) and b1 ∈ Mm(C · 1̃A) is a scalar matrix. In particular, dτ (p) is continuous on T(A). Therefore ω(p) = 0. Let
d > 0. We may assume that d < 1/2. Since Cu(A) = LAff+(T(A)), choose an element b0 ≤ A such that dτ (b0) = d/4 for all
τ ∈ T(A). Note that pb0 = b0 and dτ (b0) is continuous. Now with ω(p) = 0, with a = p, and with this new b0, the rest of
the proof above (beginning with b0 as constructed) applies. □

Lemma A.3. Let A be a separable stably projectionless simple C*-algebra such that Mn(A) has almost stable rank one for all
integers n ≥ 1 and QT(A) = T(A) which has strict comparison for positive elements and has continuous scale. Suppose also that
Cu(A) = LAff+(T(A)). Let a, b ∈ Mr (̃A)+. Suppose that ⟨π (a)⟩ ≤ ⟨π (b)⟩(< ∞), where π : Ã → C is the quotient map, and

dτ (a) + 4ω(b) < dτ (b) for all τ ∈ T(A). (A.24)

Then a ≲ b.
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Proof. If ⟨a⟩ is represented by a projection, then dτ (a) is continuous. So

inf{dτ (b) − dτ (a) : τ ∈ T(A)} > 4ω(b). (A.25)

Otherwise, fix 1/2 > η1 > 0. By applying 7.1 of [17], there exist η1 > η2 > 0 and a continuous function f : T(A) → R+

such that

dτ ((a − η1)+) < f (τ ) < dτ ((a − η2)+) < dτ (b) for all τ ∈ T(A). (A.26)

Then

inf{dτ (b) − dτ (a) : τ ∈ T(A)} ≥ inf{dτ (a) − f (τ ) : τ ∈ T(A)} > 0. (A.27)

Thus, in both cases,

d = inf{dτ (b) − dτ (a) : τ ∈ T(A)} > 4ω(b). (A.28)

By applying A.2, one obtains non-zero and mutually orthogonal elements b0 ∈ Mr (A)+ and b1, b′
∈ Mr (̃A)+ such that

b0 + b1 ≤ b′, ⟨b′
⟩ = ⟨b⟩, π (b1) = π (b′), (A.29)

2ω(a) < dτ (b0) < d/2, dτ (b1) > dτ (b) − d/2 for all τ ∈ T(A). (A.30)

and, for any cn ∈ Mr (A)+ with cn ∈ b1 (̃A ⊗ K)b1 and dτ (cn) ↗ dτ (b1) on T(A), there exists n0 ≥ 1 such that

dτ (b1) − dτ (cn) < ω(b) + (1/64) inf{τ (b0) : τ ∈ T(A)} for all τ ∈ T(A). (A.31)

Moreover, ⟨π (b1)⟩ = ⟨π (b)⟩. Replacing b by b′, without loss of generality, we may assume that b0 + b1 ≤ b.
Put d0 = inf{τ (b0) : τ ∈ T(A)}.
There exists an invertible matrix y1 ∈ Mr (C)+ such that y1/21 π (b1)y

1/2
1 = p1 is a projection. Let Y1 ∈ Mr (̃A) denote the

scalar matrix such that π (Y1) = y1. Note that ⟨Y 1/2
1 b1Y 1/2

⟩ = ⟨b1⟩, Y
1/2
1 cnY 1/2

≤ Y 1/2
1 b1Y 1/2 and dτ (Y 1/2cnY 1/2) = dτ (cn).

So, replacing b1 by Y 1/2
1 b1Y 1/2, we may assume that π (b1) = p1. Similarly, we may assume that π (a) = p2 is also a

projection. There is a scalar matrix U ∈ Mr (̃A) such that π (U∗aU) ≤ p2. Without loss of generality, we may assume that
p2 ≤ p1.

We may further assume that there are integers 0 ≤ m2 ≤ m1 such that

pi = diag(

mi  
1, 1, . . . , 1, 0, . . . , 0), i = 1, 2. (A.32)

Let Pi = diag(

mi  
1̃A, 1̃A, . . . , 1̃A, 0, . . . , 0) ∈ Mr (̃A) so that π (Pi) = pi, i = 1, 2.

Note (b1 − 1/n)+ ≤ b1 and dτ ((b1 − 1/n)+) ↗ dτ (b1), so by (A.31), for some δ1 > 0,

dτ (b1) − dτ (fδ(b1)) < ω(b) + d0/64 for all τ ∈ T(A) (A.33)

and all 0 < δ < δ1.
Let (en) be an approximate identity for A such that enen+1 = en+1en = en, n = 1, 2, . . .. Put

En = diag(en, en, . . . , en) ∈ Mr (A), n = 1, 2, . . . . (A.34)

Then (En) is an approximate identity for Mr (A) and PiEn = EnPi, i = 1, 2, and n = 1, 2, . . ..
We have b1/21 E2

nb
1/2
1 ↗ b1 (in the strict topology). Let cn = Enb1En, n = 1, 2, . . .. It follows that dτ (cn) ↗ dτ (b1) on T(A).

By the construction of b1, there exists n0 ≥ 1 such that

dτ (b1) − dτ (b
1/2
1 E2

nb
1/2
1 ) = dτ (b1) − dτ (cn) < ω(b) + d0/64 (A.35)

for all τ ∈ T(A) and for all n ≥ n0.
One then computes, by (A.30) and (A.35), that, for n ≥ n0,

dτ (a) < dτ (cn) for all τ ∈ T(A). (A.36)

On the other hand, since π (b1) = π (P1) and π (a) = π (P2),

lim
k→∞

∥(Ekb1Ek + (1 − Ek)P1(1 − Ek)) − b1∥ = 0 and (A.37)

lim
k→∞

∥(EkaEk + (1 − Ek)P2(1 − Ek)) − a∥ = 0. (A.38)

Put xk = Ekb1Ek + (1 − Ek)P1(1 − Ek) and yk = EkaEk + (1 − Ek)P2(1 − Ek), k = 1, 2, . . .. Since

lim ∥fδ /2(xk) − fδ /2(b1)∥ = 0, (A.39)

k→∞

1 1
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we may assume, without loss of generality, for all k ≥ 1, that

τ (fδ1/2(xk)) ≥ τ (fδ1/2(b1)) − d0/64 for all τ ∈ T(A). (A.40)

t follows by (A.33) (with δ = δ1/2) that

τ (fδ1/2(xk)) > dτ (b1) − ω(b) − 3d0/64 for all τ ∈ T(A). (A.41)

ince A has continuous scale, there is k0 ≥ n0 such that

τ (1 − en) < d0/64 for all τ ∈ T(A) and for all n ≥ k0. (A.42)

t follows that, for k ≥ k0,

τ (fδ1/2(xk)) ≤ dτ (xk) ≤ dτ (ck) + d0/64 (A.43)

= dτ (b
1/2
1 E2b1/21 ) + d0/64 ≤ dτ (b1) + d0/64 for all τ ∈ T(A). (A.44)

et gδ1 ∈ C0((0, 1])+ with 1 ≥ g(t) > 0 for all t ∈ (0, δ1/4), gδ1 (t) ≥ t for t ∈ (0, δ1/16), gδ1 (t) = 1 for t ∈ (δ1/16, δ1/8)
nd gδ1 (t) = 0 if t ≥ δ1/4.
Since gδ1 (xk)fδ1/2(xk) = 0, by (A.43), we conclude that, for k ≥ k0,

dτ (gδ1 (xk)) + τ (fδ1/2(xk)) ≤ dτ (xk) ≤ dτ (b1) + d0/64 for all τ ∈ T(A). (A.45)

hen, by (A.41),

dτ (gδ1 (xk)) ≤ (dτ (b1) − τ (fδ1/2(xk))) + d0/64 (A.46)

≤ ω(b) + 3d0/64 + d0/64 = ω(b) + d0/16 (A.47)

or all τ ∈ T(A) and for all k ≥ k0. Moreover, since π (xk) = π ((1 − En)P1(1 − En)) = p1 for all n,

gδ1 (xk) ∈ Mr (A). (A.48)

It should be noted and will be used later that, for any 0 ≤ x ≤ 1,

x ≤ fδ(x) + gδ1 (x) for all 0 < δ < δ1/8. (A.49)

Fix an η > 0. Then there exists k1 ≥ k0 + 2 such that, since limk→∞ ∥yk − a∥ = 0,

(a − η)+ ≲ yk = EkaEk + (1 − Ek)P2(1 − Ek). (A.50)

ote that this holds regardless of whether ⟨a⟩ is represented by a projection or not. Fix any n ≥ k0 ≥ n0,. By (A.36),

dτ (EkaEk) = dτ (a1/2E2
k a

1/2) ≤ dτ (a) < dτ (cn) for all τ ∈ T(A) (A.51)

nd for any k. Since A has strict comparison,

EkaEk≲cn (A.52)

or any n ≥ k0 and any k. Choose k ≥ max{k1, n} + 2. In particular, En and (1 − Ek) are mutually orthogonal. Then

(a − η)+ ≲ yk ≲ EkaEk + (1 − Ek)P2(1 − Ek) (A.53)
≲ cn + (1 − Ek)P2(1 − Ek) ≤ cn + (1 − Ek)P1(1 − Ek) (A.54)
= cn + P1(1 − Ek)2P1 ≤ cn + P1(1 − En)2P1 (A.55)
= cn + (1 − En)P1(1 − En) = xn. (A.56)

n other words,

(a − η)+ ≤ xn for all n ≥ k0. (A.57)

hoose n ≥ k0 such that (note that, by (A.37), xn → b1 as n → ∞) fδ1/2(xn)≲b1. By (A.49),

⟨xn⟩ ≤ ⟨fδ1/2(xn) + gδ1 (xn)⟩ ≤ ⟨fδ1/2(xn)⟩ + ⟨gδ1 (xn)⟩ (A.58)

≤ ⟨b1⟩ + ⟨gδ1 (xn)⟩. (A.59)

y (A.47) and (A.30) and the strict comparison of A,

⟨gδ1 (xn)⟩ ≤ b0. (A.60)

ombining (A.57), (A.58) and (A.60)

⟨(a − η)+⟩ ≤ ⟨b1⟩ + ⟨b0⟩ = ⟨b1 + b0⟩ ≤ ⟨b⟩. (A.61)

Since this holds for any η > 0, we conclude that

a ≲ b. □ (A.62)
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Corollary A.4. Let A and a be as in A.3. Suppose that b ∈ Mr (̃A) is such that dτ (b) is continuous on T(A) and suppose that
π (a)⟩ ≤ ⟨π (b)⟩ and

dτ (a) < dτ (b) for all τ ∈ T(A). (A.63)

hen a ≲ b.

efinition A.5. Let A be a separable simple stably projectionless C*-algebra with continuous scale and with strict
omparison. Suppose also that Mm(A) has almost stable rank one for all m ≥ 1, QT(A) = T(A) and Cu(A) = LAff+(T(A)). In
hat follows we will continue to denote by π the quotient map from Ã → C and its extension from Mm (̃A) → Mm for all
≥ 1, as well as from Ã⊗K → K. Let S (̃A) be the sub-semigroup of Cu(̃A) generated by ⟨a⟩ ∈ Cu(A) and those x ∈ Cu(̃A)

which is equal to the supremum of an increasing sequence (⟨an⟩), where dτ (an) ∈ Aff+(T(A)) and ⟨π (an)⟩ < +∞, and ⟨x⟩
s not represented by a projection. If ⟨a⟩ ∈ Cu(̃A), we will write ⟨a⟩ˆ for the function dτ (a) on T(A).

For each ⟨a⟩ ∈ S (̃A), note that ⟨π (a)⟩ = j(a) is either an integer or ∞. Let

L(̃A) = {(f , n) : f ∈ LAff+(T(A)), n ∈ N ∪ {0} ∪ {∞}}.

e also define (f , n) ≤ (g,m) if f ≤ g and n ≤ m. Define Γ0(⟨a⟩) : S (̃A) → L(̃A) by Γ0(⟨a⟩) = (⟨a⟩ ,̂ j(a)).
For any C*-algebra B, as a tradition, we use V (B) for the semigroup of Murray–von Neumann equivalence classes of

rojections in B ⊗ K.

heorem A.6. Let A be a stably projectionless simple C*-algebra such that Mr (A) has almost stable rank one for all r ≥ 1,
T(A) = T(A), A has continuous scale, and Cu(A) = LAff+(T(A)). Then Γ0 : S (̃A) → L(̃A) is an ordered semigroup isomorphism.
For any x = ⟨a⟩, y = ⟨b⟩ ∈ V (̃A) ⊔ S (̃A), if x̂ < ŷ for all τ ∈ T(A) and ⟨π (a)⟩ ≤ ⟨π (b)⟩, then x ≤ y. Moreover, if x is not

epresented by a projection, then x̂ ≤ ŷ and ⟨π (a)⟩ ≤ ⟨π (b)⟩ imply that x ≤ y.
Furthermore, if ⟨a⟩ˆ≤ ⟨b⟩ˆand ⟨π (a)⟩ ≤ ⟨π (b)⟩, and if ⟨b⟩ ∈ S (̃A) and ⟨a⟩ ∈ Cu(̃A) is any element which is not represented

y a projection, then x ≤ y.

roof. We will leave the additive part to the reader. We first note that Γ0|Cu(A) is an ordered semigroup isomorphism
to {(f , 0) : f ∈ LAff+(T(A))} (Note that we also use the fact that A is stably projectionless). It is then also clear that Γ0 is
order preserving.

Claim 1. If ⟨a⟩ ∈ Cu(̃A), ⟨b⟩ ∈ S (̃A) and ⟨b⟩ˆ ∈ Aff+(T(A)) (i.e., ⟨b⟩ˆ is continuous), and if Γ0(⟨a⟩) ≤ Γ0(⟨b⟩), then ⟨a⟩ ≤ ⟨b⟩,
provided that ⟨a⟩ is not represented by a projection.

If ⟨a⟩ ∈ Cu(̃A), then, since A is stably projectionless, for any ε > 0,

⟨(a − ε)+⟩ˆ< ⟨b⟩ .̂ (A.64)

Note that ⟨π (b)⟩ < ∞. Note also π ((a − ε)+) ≤ π (a). It follows from A.3 (and A.4) that

(a − ε)+ ≲ b. (A.65)

Therefore a ≲ b. This proves Claim 1.

Claim 2. If ⟨a⟩, ⟨b⟩ ∈ S (̃A), Γ0(⟨a⟩) = Γ0(⟨b⟩) and ⟨b⟩ˆ∈ Aff+(T(A)), Then ⟨a⟩ = ⟨b⟩.

Note that ⟨a⟩ˆ = ⟨b⟩ˆ (so both continuous). If j(a) = j(b) = 0, then this follows from the fact that Γ0|Cu(A) is an
isomorphism. So we assume j(a) = j(b) ̸= 0. By Claim 1, ⟨a⟩ ≤ ⟨b⟩ ≤ ⟨a⟩. So ⟨a⟩ = ⟨b⟩.

Now assume that a ∈ (̃A ⊗ K)+, ⟨a⟩ is not represented by a projection, ⟨b⟩ ∈ S (̃A) and

⟨a⟩ˆ≤ ⟨b⟩ˆ and ⟨π (a)⟩ ≤ ⟨π (b)⟩. (A.66)

Write ⟨bn⟩ ≤ ⟨bn+1⟩ and b = sup{⟨bn⟩}, where ⟨bn⟩ˆare continuous and ⟨π (bn)⟩ < ∞. Then

⟨(a − ε)+⟩ˆ≤ ⟨b⟩ˆ and ⟨π ((a − ε)+)⟩ < ∞ (A.67)

(for any ε > 0). Since ⟨a⟩ is not represented by projections, for any sufficiently small ε > 0,

⟨(a − ε)+⟩ˆ< ⟨(a − ε/2)+⟩̂ < ⟨b⟩ .̂ (A.68)

On the compact set T(A), one finds an integer k ≥ 1 such that

⟨(a − ε)+⟩ˆ< ⟨bk⟩ˆ and ⟨π ((a − ε)+)⟩ ≤ ⟨π (bk)⟩. (A.69)

It then follows from A.3 that
⟨(a − ε)+⟩ < ⟨bk⟩ ≤ ⟨b⟩. (A.70)
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Therefore

⟨a⟩ ≤ ⟨b⟩. (A.71)

This also implies that if Γ0(a) = Γ0(b) then ⟨a⟩ = ⟨b⟩. In particular, Γ0 is the injective and the inverse restricted to the
mage is also order preserving.

To complete the proof of the first part the statement, it remains to show that the map is surjective. Note that
u(A) = LAff+(T(A)). Therefore elements with the form (f , 0) are in the image of Γ0.
Let f ∈ Aff+(T(A)) and m ∈ N. Choose m0 ≥ 1 such that f (t) − m0 < 0 for all t ∈ T(A). Put γ = m0 − f (t) ∈ Aff+(T(A)).
We then borrow the proof of surjectivity in 6.2.3 of [43] but we also use A.3 with possibly nonzero ω(b).
Choose a1 ∈ Mm1 (A) such that a1 = 2γ . For each large n ≥ 2, γ ≪ (1 + 1/n)γ . Thus there exists an ∈ Mmn (A)+ such

that, for some δn > 0,

γ < ⟨(an − δn)+⟩ˆ< ⟨an⟩ˆ< (1 + 1/n)γ . (A.72)

Note that A has strict comparison as Cu(A) = LAff+(T(A)). Therefore we may assume that an ≤ a1 (⟨a1⟩ˆ= γ ). In particular,
we may assume that mn = m1, n = 1, 2, . . .. We may also assume that m1 ≥ m0. We may further assume that ∥an∥ = 1,
n = 1, 2, . . .

Since an ∈ Mm1 (A)+ and A is stably projectionless, we may assume that sp(an) = [0, 1]. Consider the commutative sub-
*-algebra generated by an and 1Mm1

. Then it is isomorphic to C([0, 1]). Denote by cδn a function in the sub-C*-algebra
hich is zero at 1, strictly positive on [0, δn/2), zero elsewhere and ∥cδn∥ = 1. Note cδn ∈ Mm1 (̃A) and π (cδn ) = 1Mm1

(in
m1 (C)). Let gn be also in the sub-C*-algebra which is given by a non-zero positive continuous function with support in
δn/2, δn). Note that gn ̸= 0. We may assume that ∥gn∥ ≤ 1.

Then

⟨cδn⟩ + ⟨gn⟩ + ⟨(a − δn)+⟩ ≤ m1⟨1̃A⟩ ≤ ⟨cδn⟩ + ⟨an⟩. (A.73)

e compute that

−(1 + 1/n)γ < (⟨cδn⟩ − m1⟨1̃A⟩)ˆ< (⟨cδn⟩ − m1⟨1̃A⟩)ˆ+ ⟨gn⟩ˆ< −γ . (A.74)

herefore

m1⟨1̃A⟩ˆ− (1 + 1/n)γ < ⟨cδn⟩ˆ< ⟨cδn⟩ˆ+ ⟨gn⟩ˆ< m1⟨1̃A⟩ˆ− γ . (A.75)

ote that, for each n, ω(cδn ) ≤ γ /n, since both γ and ⟨1̃A⟩ are continuous. For each nk there exists nk+1 > nk such that
γ /nk+1 < ⟨gnk⟩ .̂ Hence

⟨cδnk ⟩ < m1⟨1̃A⟩ˆ− γ − 7γ /nk+1. (A.76)

Therefore, there exists a subsequence {nk} such that

⟨cδnk ⟩ˆ+ 6ω(cδnk+1
) < ⟨cδnk ⟩ˆ+ 6γ /nk+1 (A.77)

< m1⟨1̃A⟩ˆ− γ − γ /nk+1 < ⟨cδnk+1
⟩ ,̂ k = 1, 2, . . . . (A.78)

It follows from A.3 that ⟨cδnk ⟩ ≤ ⟨cδnk+1
⟩, k = 1, 2, . . .. Let c ∈ Cu(̃A) such that c = sup{cδnk }. Since cδnk ∈ Mm1 (̃A) and

(cδnk ) = 1Mm1
, we conclude that c ≤ 1Mm1

and ⟨π (c)⟩ = m1. We also have

⟨c⟩ˆ= m1⟨1̃A⟩ˆ− γ = (m1 − m0)⟨1̃A⟩ˆ+ f . (A.79)

ote that

Γ0(⟨c⟩) = ((m1 − m0)⟨1̃A⟩ˆ+ f ,m1). (A.80)

f m0 −m > 0, then there exists a00 ∈ Ml(A)+ for some l ≥ 1 such that ⟨a00⟩ˆ= (m0 −m)⟨1̃A⟩ .̂ Put c1 = c0 ⊕a00. If m = m0,
eep c = c1. Then

Γ0(⟨c1⟩) = (f + (m1 − m)⟨1̃A⟩ ,̂m1). (A.81)

f m1 = m, then Γ0(⟨c1⟩) = (f ,m). If m1 − m > 0, we have

(m1 − m)⟨1̃A⟩ˆ< (m1 − m)⟨1̃A⟩ˆ+ f . (A.82)

ince (m1 − m)⟨1̃A⟩ˆ+ f ∈ Aff+(T(A)), by A.4, we conclude that

(m1 − m)⟨1̃A⟩ ≤ ⟨c1⟩. (A.83)

ince (m1 − m)⟨1̃A⟩ is represented by a projection, one has c2 ∈ Mm1 (̃A)+ such that

(m − m)⟨1 ⟩ + ⟨c ⟩ = ⟨c ⟩. (A.84)
1 Ã 2 1
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It follows that ⟨π (c2)⟩ = m. Note that Γ0(⟨c2⟩) = (f ,m). To see that we can choose c2 so that it is not represented by a
rojection, choose an integer k ≥ 1 such that f > 1/k on T(A). Choose c ′

2 so that ⟨c ′

2⟩ = (f − 1/k,m) and c2,0 ∈ (A ⊗ K)+
uch that dτ (c2,0) = 1/k. Now c2 = c ′

2 ⊕ c ′′

2 cannot be represented by a projection but Γ0(c2) = (f ,m).
Now let f ∈ LAff+(T(A)) and m ∈ N ∪ {∞}. Choose a sequence (fn) in LAff+(T(A)) with fn ↗ f and mn ↗ m, where

n < ∞, n = 1, 2, . . .. As in the previous paragraph, choose xn ∈ S (̃A) with Γ0(xn) = (fn,mn) such that they are not
epresented by projections. By what has been proved, xn ≤ xn+1, n = 1, 2, . . .. Put x = sup{xn}. Then it is easy to check
hat Γ0(x) = (f ,m).

This shows that Γ0 is surjective.
For the last part of the statement, let ⟨π (a)⟩ ≤ ⟨π (b)⟩. Suppose that y = ⟨b⟩ is represented by a projection p and

= ⟨a⟩ is not represented by a projection, and ⟨a⟩ˆ≤ ⟨b⟩ .̂ Then, for any ε > 0,

⟨(a − ε)+⟩ˆ< ŷ (A.85)

hen since ŷ is now continuous, by A.4,

⟨(a − ε)+⟩ ≤ y. (A.86)

t follows that x ≤ y.
Now suppose that x is represented by a projection and x̂ < ŷ. If y is also represented by a projection, then by A.4,

≤ y.
It remains to check the case that ⟨a⟩ is represented by a projection and y is not, and ⟨a⟩ˆ < ŷ, as well as ⟨π (a)⟩ ≤

u(π )(y). Note that since ⟨a⟩ is represented by a projection, ⟨π (a)⟩ < ∞. In this case, there exists an increasing sequence
⟨bn⟩) in Aff+(T(A)) such that y = sup{⟨bn⟩}. Since ⟨a⟩ˆ is continuous, one finds bn such that ⟨a⟩ˆ< ⟨bn⟩ˆ for some large n.
e may also assume that ⟨π (bn)⟩ ≥ ⟨a⟩ .̂ Now ⟨bn⟩ˆ∈ Aff+(T(A)). From what has been proved, ⟨a⟩ ≤ y. This completes the

proof. □

Corollary A.7. Let A be a stably projectionless simple C*-algebra such that Mr (A) almost has stable rank one for all r ≥ 1,
QT(A) = T(A), A has strict comparison for positive elements and has continuous scale, and Cu(A) = LAff+(T(A)). Then K0(A)
has the following property: for any x ∈ K0(A), there exists τ ∈ T(A) such that ρA(x)(τ ) = 0.

Proof. Since A is stably projectionless, by [4], A is stably finite (see also Theorem 1.2 of [37]). It follows from [6] that
T(A) ̸= Ø. Let x = [p] − [q], where p, q ∈ Mr (̃A) are projections such that [π (p)] = [π (q)], where π : Mr (̃A) → Mr (C) is
the quotient map. Suppose that ρA(x)(τ ) > 0 for all τ ∈ T(A). Then,

τ (p) > τ (q) for all τ ∈ T(A). (A.87)

By Theorem A.6,

q ≲ p. (A.88)

Thus, there is a projection p′
≤ p such that [p′

] = [q]. Put P = p−p′. Then P is a non-zero projection in Mr (̃A), as τ (P) > 0
for all τ ∈ T(A). Since π (p′) ≤ π (p) and [π (p′)] = [π (q)] = [π (p)], without loss of generality, we may assume that

π (P) = 0. (A.89)

This implies that P ∈ Mr (A), which is impossible. By considering −x, we conclude that it is also impossible to have
ρA(x)(τ ) < 0 for τ ∈ T (A).

If there were no τ such that ρA(x)(τ ) = 0, then there would be τ1, τ2 ∈ T(A) such that ρA(x)(τ1) = t1 > 0,
A(x)(τ2) = t2 < 0. Then 0 < α := t2/(t2 − t1) < 1. Put τ = ατ1 + (1 − α)τ2 ∈ T(A). Then ρA(x)(τ ) = 0. This

implies there is τ ∈ T(A) such that ρA(x)(τ ) = 0. □

Corollary A.8. Let A be a separable, exact, Z-stable simple C*-algebra, where Z is the Jiang–Su algebra. Suppose that x ∈ K0(A)
is such that τ (x) > 0 for all non-zero traces τ of A. Then x is represented by a projection p ∈ A ⊗ K.

Proof. Since A is assumed to be exact, QT(A) = T(A). Also, since A is Z-stable, by Lemma 6.5 of [19], Cu(A) = LAff+(T̃ (A)).
It follows from [44] that Mn(A) almost has stable rank one as Mn(A) is Z-stable. Moreover, there is a non-zero a ∈ Ped(A)+
(see 5.2 of [17]) such that C = aAa has continuous scale. By Brown’s theorem [7], C ⊗K ∼= A⊗K. It follows from A.7 that
we may assume that A ⊗ K has a non-zero projection e. Then, by Brown’s theorem [7] again, A ⊗ K ∼= B ⊗ K, where B is
the hereditary sub-C*-algebra generated by e. Now since B is unital and B ⊗ K is Z-stable, by [21] (see also 4.6 of [47]),
K0(B) is weakly unperforated. Thus x > 0 and it is represented by a projection. □

Corollary A.9. Let A be a stably projectionless simple C*-algebra such that Mr (A) has almost stable rank one for all r ≥ 1,
QT(A) = T(A), A has finitely many extremal traces, Ped(A) = A, and Cu(A) = LAff+(T(A)). Then Cu(̃A) = V (̃A) ⊔ L(̃A).
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Proof. Since Ped(A) = A and A has finitely many extremal traces, dτ (eA) is continuous on T(A) for any strictly positive
lement eA ∈ A. Since A has strict comparison, A has continuous scale (see the proof 5.4 of [17], for example). Since T(A)
as only finitely many extreme points, any finite affine function on T(A) is continuous, and so, for any integer r ≥ 1, and
ny a ∈ Mr (̃A), ⟨a⟩ˆ∈ Aff+(T(A)). Therefore, if x ∈ Cu(̃A) is not represented by a projection, then x ∈ S (̃A). In other words,
u(̃A) = V (̃A) ⊔ S (̃A). Thus, the corollary follows from A.6. □

orollary A.10. Let A be a stably projectionless simple C*-algebra with continuous scale and with stable rank one such that
T(A) = T(A), and Cu(A) = LAff+(T(A)). Then Cu(̃A)+ = S (̃A) and Γ0 is an ordered semigroup isomorphism from Cu+ (̃A) onto
(̃A). Moreover, Cu(̃A) = V (̃A) ⊔ L(̃A).

emark A.11. Let A be a stably projectionless simple C*-algebra which is Z-stable such that QT(A) = T(A). Then, by [44],
r (A) (for all r ≥ 1) almost has stable rank one. A combination of [47,48], and [19] shows that A also satisfies the rest of

he conditions of A.6.
There are several other immediate consequences of A.6 and related facts about Cu∼ (see [43]). Let A be as A.6.
(i) Then the canonical map ι0,A : Cu(A) → Cu∼(A) is injective. To see this, let ⟨a⟩, ⟨b⟩ ∈ Cu(A). If ⟨a⟩+k[1Ã] = ⟨b⟩+k[1Ã],

hen ⟨a⟩̂ = ⟨b⟩̂. Since Cu(A) = Laff+(T(A)), ⟨a⟩ = ⟨b⟩.
(ii) Let xn ∈ S (̃A) with xn ≤ xn+1, n = 1, 2, . . .. Then supn xn ∈ S (̃A). This follows from the definition immediately.
(iii) As indicated in the proof of A.6, if ⟨p⟩ ∈ V (̃A) and x ∈ S (̃A) \ {0}, then ⟨p⟩ + x ∈ S (̃A).
(iv) Denote by S∼(A) = {⟨a⟩ − ⟨π (a)⟩ · [1Ã] : ⟨a⟩ ∈ S (̃A), ⟨π (a)⟩ < ∞} as a sub-semigroup of Cu∼(A) (see [43]). Then,

y A.6, Cu(A) ⊂ S∼(A).
Let x = ⟨a⟩, y = ⟨b⟩ ∈ S (̃A) such that ⟨π (a)⟩ = n and ⟨π (b)⟩ = m, where n,m are nonnegative integers. Suppose that

ˆ −n = ŷ−m. Then x̂+m = ŷ+n and ⟨π (a)⟩+m = n+m = ⟨π (y)⟩+n. If x = 0, by (iii), y = 0. Let us assume neither are
ero. It follows from (iii) that x+m⟨1⟩ and y+n⟨1⟩ are not represented by projections. By A.6, x+m⟨1⟩ = y+n⟨1⟩. It follows
hat x−n⟨1⟩ = y−m⟨1⟩ in Cu∼(A). Therefore we may write S∼(A) = LAff∼

+
(T(A)) = {f −g : f ∈ LAff+(T(A)), g ∈ Aff+(T(A))}

see [43] for the notation).
(v) Let ι∼A : Cu∼(A) → Cu∼ (̃A) be the natural map. Then, by A.6, ι∼A is injective on S∼(A). In fact, let x−n⟨1⟩, y−m⟨1⟩ ∈

∼(A), such that, for some integer k ≥ 0,

x + m⟨1⟩ + k⟨1⟩ = y + n⟨1⟩ + k⟨1⟩ ∈ S (̃A) ⊂ Cu(̃A). (A.90)

hen

x̂ + m + k = ŷ + n + k and ⟨π (a)⟩ + m + k = ⟨π (b)⟩ + n + k. (A.91)

t follows that

x̂ + m = ŷ + n and ⟨π (a)⟩ + m = ⟨π (b)⟩ + n. (A.92)

s (iv), we may assume neither x nor y are zero. Since x + m⟨1⟩ and y + n⟨1⟩ are not represented by projections, by A.6,
+ n⟨1⟩ = y + m⟨1⟩. Thus x − n⟨1⟩ = y − m⟨1⟩ in S∼(A) ⊂ Cu∼ (̃A).
(vi) Exactly the same argument shows that S (̃A) maps to Cu∼ (̃A) injectively. Let us denote this map by ι∼S . Let us also

et S∼ (̃A) = {x − n⟨1Ã⟩ : x ∈ S (̃A), n ∈ N ∪ {0}} ⊂ Cu∼ (̃A). So S (̃A) ⊂ S∼ (̃A).
(vii) Note that V (̃A)⊔S (̃A) maps into K0 (̃A)⊔S∼ (̃A). Let us identify N ⊂ V (̃A) with N · ⟨1Ã.⟩ The map above maps N⊔S (̃A)

nto Z ⊔ S∼ (̃A) injectively.

.2. An existence theorem and some uniqueness theorems

The following is a variation of a result of Pedersen and Rørdam [39].

emma A.12. Let A be a non-unital C*-algebra and let x ∈ A and 1 > δ > β > γ > 0. Suppose that there exists y ∈ GL(̃A)
uch that ∥x − y∥ < γ . Then there is a unitary u ∈ Ã with the form u = 1 + z, where z ∈ A, such that

ufδ(|x|) = vfδ(|x|), (A.93)

here x = v|x| is the polar decomposition of x in A∗∗.

roof. This is a modification of the proof of Pedersen in [39]. We will follow the proof and keep the notation of [39] and
oint out where to make the changes.
In Lemma 1 of [39], write A = λ + A′, where A′

∈ A for some λ ̸= 0. Let π : Ã → C denote the quotient map
ith kerπ = A. If T ∈ A and ∥T − A∥ < γ , then ∥π (A)∥ < γ . It follows that |λ| < γ . There is a continuous path

∗−1 −1 −1
g1(t) : t ∈ [|λ|, γ ]} such that g1(|λ|) = λ , g1(γ ) = γ and |g1(t)| ≥ γ . We define a complex valued function
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g ′
∈ C([0, ∥A∥]) as follows:

g ′(t) =

⎧⎨⎩
λ∗−1 if t ∈ [0, |λ|];
g1(t) if t ∈ (λ, γ ];

t−1 if t ∈ (γ ,∞).
(A.94)

This g ′ will replace the function g in the proof of Lemma 1 of [39]. Put

B = (g ′)−1(|T ∗
|)A∗−1(1 − f )(|T |) + Vf (|T |) (A.95)

with f as described in [39]. Note that fg ′(t) = 0 if t ∈ [0, γ ], fg ′(t) = t−1 if t ∈ [β,∞), and tf (t)g ′(t) = f (t)
if t ∈ [0,∞). Exactly as in the proof of [39], one has BEβ = VEβ . Set C = f (|T |) − A∗Vg ′(|T |)f (|T |). We still have
f (|T |) = |T |V ∗Vg ′(|T |)f (|T |). Therefore

C = f (|T |) − A∗Vg ′(|T |)f (|T |) = (T ∗
− A∗)V (fg ′)(|T |). (A.96)

The same estimate yields

∥C∥ ≤ ∥T ∗
− A∗

∥∥fg ′
∥∞ ≤ ∥T − A∥γ−1 < 1. (A.97)

As in the proof of Lemma 1 of [39], this implies that B defined above is invertible and BEβ = VEβ . Note that π (B) =

λ∗λ∗−1
= 1. In other words B = 1 + z ′ for some z ∈ A. As in [39], B also satisfies the conclusion of Lemma 2 of [39],

i.e., FβB∗−1
= FβV .

Define h(t) = (t − β) ∨ 0. Then Bh(|T )) = BEβh(|T |) = VEβh(|T |) = Vh(|T |). Let A0 be as in Lemma 3 of [39] with B
defined above. Then the conclusion of Lemma 3 of [39] holds.

Then, as in Lemma 4 of [39], one obtains B0 ∈ Ã with π (B0) = 1 defined as B defined with g ′

0 instead of g0 as we
demonstrated above. The same computation provides

B0 − Vf0(|T |) = (g ′

0)
−1(|T ∗

|)A∗−1
0 (1 − f0)(|T |) (A.98)

= (g ′

0)
−1(|T ∗

|)B∗−1(h + ε)−1(|T |)(1 − f0)(|T |). (A.99)

Exactly as in the proof of Lemma 4 of [39], we have B0Eδ = FδB0 = FδV = VEδ . Since B0 is invertible, we have the polar
decomposition B0 = U |B0| in Ã. Note that π (U) = 1 since π (B0) = 1. Hence U = 1 + z for some z ∈ A. As in Theorem 5
of [39], UEδ = VEδ . Then Ufδ(|T |) = Vfδ(|T |). The lemma follows. □

Corollary A.13. Let A be a non-unital C*-algebra which almost has stable rank one. Then, for any x ∈ A and any ε > 0, there
is a unitary u ∈ Ã with form u = 1 + y for some y ∈ A such that

∥u|x| − x∥ < ε. (A.100)

Proof. We have ∥fε/8(|x|)x − x∥ < ε/4. Since A almost has stable rank one, by A.12, there exists a unitary u ∈ Ã with the
form u = 1 + z for some z ∈ A such that

∥ufε/8(|x|) − vfε/8(|x|)∥ < ε/4, (A.101)

where x = v|x| is the polar decomposition in A∗∗. It follows that

∥u|x| − x∥ < ∥u|x| − ufε/8(|x|)|x|∥ + ∥ufε/8(|x|)|x| − vfε/8(|x|)|x|∥ (A.102)

+ ∥vfε/8(|x|)|x| − v|x|∥ < ε. □ (A.103)

Lemma A.14 (Theorem 3.3.1 of [43]). Let B be a simple C*-algebra which has almost stable rank one. Then, for any finite subset
F and ε > 0, there exists a finite subset G ⊆ Cu(C) such that, for any two homomorphisms φ1, φ2 : C := C0((0, 1]) → B, if

Cu(φ1)(f ) ≤ Cu(φ2)(g) and Cu(φ2)(f ) ≤ Cu(φ1)(g) for all f , g ∈ G with f ≪ g, (A.104)

there exists a unitary u ∈ B̃ such that

∥u∗φ2(f )u − φ1(f )∥ < ε for all f ∈ F . (A.105)

Proof. The lemma is based on the fact that φ and ψ are approximately unitarily equivalent if Cu(φ) = Cu(ψ) (see the
proof of ‘‘(iii) implies (i)’’ in ‘‘Proof of Theorem 1.3’’ in [44]).

The actual proof is almost the same as that of 3.3.1 of [43]. Let us present the details.
Let us point out what is the difference. In the proof of 3.3.1 of [43], consider (bG) ∈

∏
G BG and let ε > 0. Since each

BG almost has stable rank one, by A.13, there is uG ∈ B̃G such that uG = 1 + zG for some zG ∈ BG with ∥zG∥ ≤ 2 and
∥uG|bG| − bG∥ < ε. (A.106)
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h
i

Note that (uG) ∈ 1 +
∏

G BG. Since elements with polar decomposition, in the sense of being the (non-unique) product of
a unitary and a positive element, are in the closure of the invertible elements, this implies that (with notation as in the
proof of 3.3.1 of [43]) both

∏
G BG and B almost have stable rank one. The rest of the proof then can proceed just as in

the proof of 3.3.1 of [43] (note that we only compute Cu(φ) and Cu(ψ) which is easier). □

Remark A.15. A direct proof of the lemma above could also be obtained using [39] directly.

Corollary A.16. Let C = C0((0, 1]) and let ∆ : Cq,1
\ {0} → (0, 1) be an order preserving map. Then, for any ε > 0 and any

finite subset F ⊆ C, there exist a finite subset H1 ⊆ C1
+

\ {0}, a finite subset H2 ⊆ Cs.a., and γ > 0 satisfying the following
condition: for any two homomorphisms φ1, φ2 : C → A for some A which is separable, simple, exact, stably projectionless, and
as continuous scale, almost stable rank one, and the property that the map Cu(A) → LAff +(T(A)) is an ordered semigroup
somorphism such that

τ (φi)(a) ≥ ∆(â) for all a ∈ H1 and for all τ ∈ T(A) and (A.107)
|τ (φ1(b)) − τ (φ2(b))| < γ for all b ∈ H2 and for all τ ∈ T(A), (A.108)

there exists a unitary u ∈ Ã such that

∥u∗φ2(f )u − φ1(f )∥ < ε for all f ∈ F .

Proof. The proof of this is the combination of A.14 and the proof of 7.8 of [17]. □

Remark A.17. Let α, β : Cu(C0((0, 1])) → Cu(A) be two morphisms in Cu. Recall the pseudo-metric dw introduced in [8]:

dw(α, β) = inf{r ∈ R+
: α(⟨et+r⟩) ≤ β(⟨et⟩) and β(⟨et+r⟩) ≤ α(⟨et⟩), t ∈ R+

}, (A.109)

where et (x) = (x − t)+ is a function on (0, 1].
If φ,ψ : C0((0, 1]) → A are two homomorphisms, define dw(φ,ψ) = dw(Cu(φ), Cu(ψ)). Let J ⊆ (0, 1] be any relatively

open interval (α, β) ∩ (0, 1]. Define, for each r > 0, Jr = {t ∈ (0, 1] : dist(J, t) < r}. For each J fix a positive function eJ
which is strictly positive on J and zero elsewhere. To be more symmetric than the definition of dw , one can also define
the following metric:

Dw(φ,ψ) = inf{r ∈ R+
: φ(eJ ) ≲ ψ(eJr ), ψ(eJ ) ≲ φ(eJr ), J ⊆ (0, 1]}. (A.110)

(see some related discussion in [27]). Then Dw is a metric (see the proof of Proposition 2 of [45]). If Cu(A) has the weak
cancellation, dw is a metric (Proposition 2 of [45]), and dw and Dw are equivalent.

Another version of A.14 can be stated as follows:
(A): For any ε > 0 and any finite subset F ⊆ C , there exists δ > 0 with the following property: if Dw(φ,ψ) < δ, then

there exists a unitary u ∈ Ã such that

∥u∗φ(f )u − ψ(f )∥ < ε for all f ∈ F, (A.111)

and, if, furthermore, Cu(A) has weak cancellation, Dw(φ,ψ) < δ can be replaced by dw(φ,ψ) < δ (with possibly a different
δ).

Suppose that A is a stably projectionless simple C*-algebra with T(A) ̸= Ø. Consider any x+z ≪ y+z for x, y, z ∈ Cu(A),
where x ̸= y. Suppose that b ∈ (A⊗K)+ is such that ⟨b⟩ = y+z and 0 ≤ b ≤ 1. Then, for any 1/2 > δ > 0, fδ/2(b)−fδ(b) > 0.
Therefore dτ (x + z) < dτ (y + z) for all τ ∈ QT(A). Thus dτ (x) < dτ (y) for all τ ∈ QT(A). If A is also assumed to have strict
comparison, then x ≤ y. This implies that Cu(A) has weak cancellation. As shown in Proposition 2 of [45], dw is then a
metric.

Proposition A.18. Let C = C0((0, 1]). Then, for any ε > 0, any σ > 0, and any finite subset F ⊆ C, there exists δ > 0
satisfying the following condition: Suppose that A is a stably projectionless simple C*-algebra with continuous scale which almost
has stable rank one and suppose that φ,ψ : C → Ã are homomorphisms. If dw(φ,ψ) < δ, then there exists ψ ′

: C → Ã such
that π ◦ ψ ′

= π ◦ φ,

∥ψ ′(f ) − ψ(f )∥ < ε and dw(φ,ψ ′) < σ, (A.112)

where π : Ã → C is the quotient map.

Proof. Let ι : (0, 1] → (0, 1] denote the identity map which we view as a generating element of C0((0, 1]). Fix 0 < η < ε/2
and a finite subset G ⊆ C0((0, 1]). There exists δ′ > 0 such that, if |t − t ′| < δ′, then

′

∥g(t) − g(t )∥ < η for all g ∈ G. (A.113)
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If dw(φ,ψ) < δ′, then it is easy to see that ∥π (φ(ι)) − π (ψ(ι))∥ < δ′. Let λ1, λ2 ∈ (0, 1] such that π (φ(ι)) = λ1 and
(ψ(ι)) = λ2. Then |λ1 − λ2| < δ′. There exists a continuous map j : (0, 1] → (0, 1] such that

|j(t) − t| < δ′ and j(λ2) = λ1.

efine ψ ′
: C0((0, 1]) → Ã by ψ ′(f ) = ψ(f ◦ j). Then π (ψ ′(ι)) = λ1 = π (φ(ι)). Moreover

∥ψ(g) − ψ ′(g)∥ = ∥ψ(g − g ◦ j)∥ < η for all g ∈ G. (A.114)

If σ > 0 is given one can choose large G and sufficiently small η so that

dw(ψ(f ), ψ ′(f )) < σ/2. (A.115)

We also can choose δ = min{δ′, σ/2}. □

Remark A.19. Let I = (α, β] (or I = [α, β)). Let A be a stably projectionless simple C*-algebra which almost has stable
rank one. Fix a homeomorphism hI : (α, β] → (0, 1] given by h(t) =

t−α
β−α

for t ∈ (α, β], or (hI (t) =
β−t
β−α

for t ∈ [α, β).) If
: C0(I) → A is a homomorphism, denote by φ ◦ h∗

I : C0((0, 1]) → A the homomorphism defined by φ ◦ h∗

I (f ) = φ(f ◦ h)
for all f ∈ C0((0, 1]).

Suppose now there are two homomorphisms φ,ψ : C0(I) → A. Define

Dw,I (φ,ψ) = Dw(φ ◦ h∗

I , ψ ◦ h∗

I ) and dw,I (φ,ψ) = dw(φ ◦ h∗

I , ψ ◦ h∗

I ). (A.116)

Put ι′I (t) = t − α, if I = (α, β] and ι′I (t) = β − t , if I = [α, β). Now assume that 0 < β − α ≤ 1. Put
fI (t) = (β − α)t ∈ C0((0, 1]). Then ι′I = fI ◦ h. Let F ⊂ C0(0, 1]. Then g ◦ ι′I = g ◦ fI ◦ h for each g ∈ F . Let λ ∈ (0, 1]. Define
λ(t) = λt for t ∈ (0, 1].

For any ε > 0, there is a finite subset K ∈ (0, 1] such that, for any 0 < β − α ≤ 1, with I = (α, β] or I = [α, β), for
ach g ∈ F , ∥g ◦ ι′I − g ◦ fλ ◦ h∥ < ε/2 for some λ ∈ K . Let GF , ε = {g ◦ fλ : g ∈ F, λ ∈ K }. Then, by (A) of A.17, we have
he following:

(B): Let ε > 0, let F ⊂ C0((0, 1]) be a finite subset, Let δ > 0 be given by (A) in A.17 for ε/2 and GF , ε. Suppose
I = (α, β] or I = [α, β) with 0 < β − α < 1. Then, for any homomorphisms φ,ψ : C0(I) → A such that Dw,I (φ,ψ) < δ,
there exists a unitary u ∈ Ã such that

∥u∗ψ(f )u − φ(f )∥ < ε for all f ∈ {ι′I , g ◦ ι′I : g ∈ F}. (A.117)

Furthermore, if Cu(A) has weak cancellation, Dw,I above could be replaced by dw,I .

Lemma A.20. Let A be a stably projectionless simple C*-algebra with continuous scale which almost has stable rank one.
Suppose also that A has strict comparison for positive elements and that QT(A) = T(A). For any ε > 0 and any finite subset
F ⊆ C, there exists δ > 0 satisfying the following condition: If φ,ψ : C0((0, 1]) → Ã are two homomorphisms such that

dw(φ,ψ) < δ, (A.118)

then there exists a unitary u ∈ Ã such that

∥u∗ψ(f )u − φ(f )∥ < ε for all f ∈ F . (A.119)

Moreover, (A.119) also holds, without assuming A has strict comparison, on replacing (A.118) by

Dw(φ,ψ) < δ. (A.120)

Proof. By A.18, without loss of generality, we may assume that π ◦ φ = π ◦ ψ , where π : Ã → C is the quotient map.
et ι : (0, 1] → (0, 1] denote the identity map which we view as a generator of C0((0, 1]). Fix ε > 0. Put a = φ(ι) and
= ψ(ι). It suffices to establish the case that F = {ι}.
Choose σ0 = ε/256. We will prove the last part of the statement first. The first part will follow, since, by A.17, with

he assumption that A has strict comparison, Cu(A) has weak cancellation. It follows that dw and Dw are equivalent. Let
′

0 = {ι, fσ0}.
By (B) of A.19, we obtain 1/2 > δ0 > 0 with the following property: for any interval I = [α, β) or I = (α, β] with
< β − α ≤ 1, and if φ′, ψ ′

: C0(I) → A are two homomorphisms such that Dw(φ′, ψ ′) < δ0, then there exists a unitary
′
∈ Ã such that

∥(u′)∗ψ ′(f )u′
− φ′(f )∥ < ε/64 for all f ∈ F0, (A.121)

here F0 = {ι′I , fσ0/2(ι
′

I )} and where ι′I is the function defined in A.19,
Put δ = (ε/4)δ0 > 0. Let φ,ψ : C0((0, 1]) → Ã be two homomorphisms which satisfy (A.118) for δ.
Now suppose that π (a) = π (b) = λ for some λ ∈ (0, 1]. Let x = a − λ · 1̃A and y = b − λ · 1̃A. Note

hat sp(x), sp(y) ⊂ [−λ, 1 − λ]. If f ∈ C ([−λ, 0)) ⊕ C ((0, 1 − λ]) ⊂ C([−λ, 1 − λ]), then f (0) = 0. Therefore
0 0
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φ

a

π (f (x)) = π (f (y)) = 0. Define two homomorphisms φ1, ψ1 : C0([−λ, 0)) ⊕ C0((0, 1 − λ]) → A by φ1(f ) = f (x) and
ψ1(f ) = f (y) for all f ∈ C0([−λ, 0)) ⊕ C0((0, 1 − λ]).

Define c− ∈ C0([−λ, 0))⊕ C0((0, 1−λ]) by c−(t) = max(−t, 0) (c−(t) = −t in [−λ, 0) and c−(t) = 0 in (0, 1−λ]), and
c+(t) = max(t, 0). Then φ1(c+(x)) = (a − λ)+, φ1(c−(x)) = (a − λ)−, and ψ1(c+) = (b − λ)+ and ψ1(c−(x)) = (b − λ)−. Let
1+ = φ1|C0((0,1−λ]), ψ1,+ = ψ1|C0((0,1−λ]), φ1− = φ1|C0([−λ,0)), and ψ1,− = ψ1|C0([−λ,0)).
Note that

∥fσ (c−)c− − c−∥ < ε/64, ∥c−fσ (c−) − c−∥ < ε/64, and (A.122)
∥fσ (c+)c+ − c+∥ < ε/64, ∥c+fσ (c+) − c+∥ < ε/64 (A.123)

for all 0 < σ ≤ σ0. Let us also assume that, for all 0 < σ ≤ σ0,

∥fσ (c−)1/2c− − c−∥ < ε/64, ∥c−fσ (c−)1/2 − c−∥ < ε/64, and (A.124)
∥fσ (c+)1/2c+ − c+∥ < ε/64, ∥c+fσ (c+)1/2 − c+∥ < ε/64. (A.125)

Let us consider the case λ ≥ ε/2 and λ < 1 − ε/2 first. Let I+ = (0, 1 − λ] and I− = [−λ, 0). Recall that hI+ (t) =
t

1−λ
nd hI− (t) =

−t
λ

(see A.19). Therefore the condition that Dw(φ,ψ) < δ = (ε/4)δ0 implies (see A.19) that

Dw,I+ (φ1,+, ψ1,+) = Dw(φ+ ◦ h∗

I+ , φ+ ◦ h∗

I+ ) < δ0. (A.126)

Note this holds in Cu(A). We also have that

Dw,I− (φ1,−, ψ1,−) < δ0. (A.127)

Put F ′

1 = {fσ0/2(c−), c−} and F ′

2 = {fσ0/2(c+), c+}. By the choice of δ0, there are unitaries u1, u2 ∈ Ã such that

∥u∗

i φ1(f )ui − ψ1(f )∥ < ε/64 for all f ∈ F ′

i , i = 1, 2. (A.128)

By replacing ui by αiui for some αi ∈ T, we may assume that π (ui) = 1, i = 1, 2. Put z = φ1(fσ0/2(c−)
1/2)u1ψ1(fσ0 (c−)

1/2)+
φ1(fσ0/2(c+)

1/2)u2ψ1(fσ0 (c+)
1/2) ∈ A. Keep in mind that φ1(c+)φ1(c−) = 0 and ψ1(c+)ψ1(c−) = 0. Then we have

∥z∗φ1(f )z − ψ1(f )∥ < ε/16 for all f ∈ F ′

0. (A.129)

We also have, by (A.128)

ψ1(fσ0 (c−)
1/2)u∗

1φ1(fσ0/2(c−))u1ψ1(fσ0 (c−)
1/2) (A.130)

≈ε/64 ψ1(fσ0 (c−)
1/2)ψ1(fσ0/2(c−))ψ1(fσ0 (c−)

1/2) = ψ1(fσ0 (c−)). (A.131)

Similarly,

ψ1(fσ0 (c+)
1/2)u∗

1φ1(fσ0/2(c+))u1ψ1(fσ0 (c+)
1/2) ≈ε/64 ψ1(fσ0 (c+)). (A.132)

It follows from Lemma 5 of [39] (see also A.13 here for convenience) that there exists a unitary u ∈ Ã such that

∥u|z| − z∥ < ε/64. (A.133)

Combining this with (A.129), (A.130) and (A.132), we estimate that

∥u∗φ1(f )u − ψ1(f )∥ < ε for all f ∈ F . (A.134)

Thus, there exists a unitary w ∈ Ã such that ∥w∗xw − y∥ < ε. Then

w∗aw = w∗(x + λ1̃A)w ≈ε y + w∗(λ1̃A)w = b. (A.135)

For the case λ > 1 − ε/2, note that we have reduced the general case (of this) to the case F = {ι}. Choose a 1–1
continuous function h : (0, 1] → (0, λ] such that

∥h − ι∥ < ε/2 and ∥ι− h ◦ ι∥ < ε/2. (A.136)

Consider the composed maps φ1 = φ ◦ h and ψ2 = ψ ◦ h. This reduces the problem to the case λ = 1. So there exists
only one interval [−1, 0). In this case we can choose δ depending only on ε/2 not on λ.

In the case λ < ε/2, one has a unitary u ∈ Ã such that ∥u∗φ1(c+)u − ψ1(c+)∥ < ε/64. Then

u∗φ(ι)u ≈ε/2 u∗φ1(c+)u ≈ε/64 ψ1(c+) ≈ε/2 ψ(ι). □ (A.137)

Corollary A.21. Let C = C0([0, 1)) ⊗ K and let A be a stably projectionless simple C*-algebra such that Mm(A) almost has
stable rank one for each m ≥ 1 and suppose that A has strict comparison for positive elements and that QT(A) = T(A). Then,
for any ε > 0 and any finite subset F ⊆ C there exists δ > 0 satisfying the following:
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Let φ,ψ : C → Ã ⊗ K be two homomorphisms such that dw(φ,ψ) < δ. Let C0 = C0([0, 1)) = C0([0, 1)) ⊗ e11 ⊆ C denote
he 1–1 corner. If φ(C0), ψ(C0) ⊆ Ã⊗ e11, then for any ε > 0 and any finite subset F ⊆ C, there exists a unitary U ∈ (A⊗K)∼
uch that

∥U∗φ(c)U − ψ(c)∥ < ε for all c ∈ F, (A.138)

here U = diag(
n  

u, u, . . . , u, 1, 1, . . .), where u ∈ U (̃A) for some n ≥ 1.

Proof. We will write Mn(C0([0, 1))) as a sub-C*-algebra of C , Mn (̃A) as a sub-C*-algebra of Ã ⊗ K and Mn(A) as a
ub-C*-algebra of A ⊗ K for all integers n ≥ 1. Let ε > 0 and F ⊆ C be a finite subset. Without loss of generality,
e may assume that F ⊆ Mn(C). Furthermore we may write F = {(ci,j)n×n : ci,j ∈ G}, where G ⊆ C0 is a finite subset. We
ill apply A.20 with ε/n2 in place of ε and G in place of F . Choose δ as provided for ε/n2 and G (in place of F) in A.20.
uppose that dw(φ,ψ) < δ.
Define φ1 = φ|C0 and ψ1 = ψ |C0 . By A.20, there exists a unitary u ∈ Ã such that

∥u∗φ1(a)u − ψ1(a)∥ < ε/n2 for all a ∈ G. (A.139)

e may assume that π (u) = 1, where π : Ã → C is the quotient map. Define

U = diag(
n  

u, u, . . . , u, 1, 1, . . .).

Then U ∈ (A ⊗ K)∼. Moreover,

∥U∗φ(c)U − ψ(c)∥ < ε for all c ∈ F . □ (A.140)

Corollary A.22. Let C = C0((0, 1]) with a strictly positive element ec and A be a stably projectionless simple C*-algebra with
continuous scale such that Mm(A) almost has stable rank one (m ≥ 1). Suppose also that A has strict comparison for positive
elements and that QT(A) = T(A).

(a) Then, for any γ : Cu(C) → Cu(̃A) which is an ordered semigroup homomorphism in Cu such that ⟨ec⟩ ≤ ⟨1̃A⟩, there
exists a homomorphism φ : C → Ã such that Cu(φ) = γ .

(b) Let φ,ψ : C → Ã be two unital homomorphisms such that Cu(φ) = Cu(ψ). Then Cu∼(φ) = Cu∼(ψ).

Proof. For part (a), for any integer n ≥ 1, by Theorem 4 of [45], there exists homomorphism ψn : C → Ã such
that dw(Cu(ψn), γ ) < 1/2n. By Corollary A.21, one obtains a sequence of homomorphisms φk : C → Ã such that
dw(Cu(φk), γ ) → 0 and (φk(c))∞k=1 is a Cauchy sequence for all c ∈ C . Let φ be the limit homomorphism. Then Cu(φ) = γ .

For part (b) follows from Corollary A.21 immediately. □

Definition A.23. Let R = R1,n be the Razak algebra as below:

R = R1,n = {f ∈ Mn(C([0, 1])) : f (0) = α · 1Mn−1 and f (1) = α · 1Mn , α ∈ C}. (A.141)

Put

D = {f ∈ Mn(C0([0, 1))) : f (0) =

(
0n−1 0
0 α

)
, α ∈ C}.

Then R̃ is the unitization of D. Denote by φ∼, ψ∼
: D̃ → Ã the unital extension of φ and ψ . Consider

C0 = {f ∈ Mn(C0([0, 1))) : f (t) =

(
0n−1 0
0 a(t)

)
, a(t) ∈ C0([0, 1))}. (A.142)

Then C0 ∼= C0([0, 1)). Note also that C0 ⊂ D is a full hereditary sub-C*-algebra Let j0 : C0([0, 1)) → C0 ⊂ D be the
embedding. By Brown’s theorem (see [7]), there is an isomorphism s : C0 ⊗ K ∼= D ⊗ K. Note, from the construction
in [7], the isomorphism s (given by partial isometry in M2(M(D ⊗ K))) has the property that Cu(s) = Cu(j0). This was
discussed in 4.3 of [43]. Let eC be a strictly positive element of s(C0([0, 1))⊗ e1,1) and eC0 be a strictly positive element of
C0 ⊗ e1,1 ⊂ D ⊗ e1,1 ⊂ D ⊗ K. Then ⟨eC ⟩ = ⟨eC0⟩ in D ⊗ K. Since D ⊗ K has stable rank one, by [9] (see also 1.7 of [35]),
there is a partial isometry w ∈ (D ⊗ K)∗∗ such that wa, aw∗

∈ D ⊗ K for all a ∈ s(C0([0, 1)) ⊗ e1,1) and w∗aw ∈ C0 ⊗ e1,1.
Denote by s(e1,1) the range projection of s(C0([0, 1)) ⊗ e1,1). Then s(e1,1) ∈ M(s(C0([0, 1))) ⊗ K). Also w∗s(e11)w = ē1,1,
where ē1,1 is the range projection of C0 ⊂ D. Clearly ē1,1 ∈ M(D) ⊂ M(D ⊗ K). Denote by pD the range projection of
D ⊗ e1,1. Let P = 1 − pD in M(D ⊗ K). Then we may write 1 − ē11 = ((1D − ē1,1) ⊗ 1) ⊕ (ē1,1 ⊗ P) which is Murray-Von
Neumann equivalent to ((1D − ē1,1) ⊗ 1) ⊕ (ē1,1 ⊗ 1) = 1D ⊗ 1 in M(D ⊗ K). Note also 1 − s(e1,1) is also Murray–Von
Neumann equivalent to 1, as s(C0 ⊗ K) = D ⊗ K. It follows that there is a partial isometry W1 ∈ M(D ⊗ K) such that
W ∗

1W1 = (1 − s(e1,1)) and W1W ∗

1 = 1 − ē1,1 (see also Lemma 2.5 of [7]). Define W = W1 ⊕ w. Then W ∈ M(D ⊗ K) is a
unitary. Set j = AdW ◦ s. Note Cu(j) = Cu(id ). The additional feature is that j(C ([0, 1))) ⊂ D.
C0 0
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For any homomorphism φ : D̃ → B (for some C*-algebra B), denote by φ again for the extension from D̃⊗K → B⊗K.
efine φC0 = φ ◦ j : C0([0, 1)) ⊗ K → B ⊗ K. If ψ : R → A (for any C*-algebra) is a homomorphism let ψ∼

: D̃ = R̃ → Ã
e the extension. We will use ψC0 := ψ∼

◦ j : C0([0, 1)) ⊗ K → Ã ⊗ K.

With the definition above, we present the following lemma:

emma A.24. Let D be as in A.23 and let A be a stably projectionless simple C*-algebra such that Mm(A) almost has stable
ank one for every m ≥ 1, has strict comparison and QT(A) = T(A). Then, for any η > 0 and any finite subset S ⊆ D̃, there
xists δ0 > 0 satisfying the following condition:
For any two unital homomorphisms φ,ψ : D̃ → Ã, if

dw(φC0 , ψC0 ) < δ0, (A.143)

hen there exists a unitary u ∈ Ã such that

∥u∗ψ(f )u − φ(f )∥ < η for all f ∈ S. (A.144)

roof. Fix η > 0 and finite subset S ⊂ D̃. We may assume that S = {g + r · 1D̃ : g ∈ G, r ∈ K }, where G ⊂ D is a finite
ubset and K is a finite subset of C. Let j : C0([0, 1))⊗K → D⊗K be the isomorphism defined in A.23. Let F = j−1(G). Note
(C0([0, 1))⊗e11) ⊂ D. Let δ0 > 0 be given for η (in place of ε) and F by A.21. Consider φ ◦ j, ψ ◦ j : C0([0, 1))⊗K → Ã⊗K.
y applying A.21, there exist a unitary u ∈ Ã and an integer n ≥ 1 such that

∥U∗φ ◦ j(f )U − ψ ◦ j(f )∥ < η for all f ∈ F, (A.145)

here U = diag(
n  

u, u, . . . , u, 1, 1, . . .). This implies that

∥U∗φ(g)U − ψ(g)∥ < η for all g ∈ G. (A.146)

Since φ(g), φ(g) ∈ Ã for all g ∈ G, we actually have

∥u∗φ(g)u − ψ(g)∥ < η for all g ∈ G. (A.147)

Since both φ and ψ are unital and u∗r · 1̃Au = r · 1̃A, we finally conclude that (A.144) holds. □

Theorem A.25. Let R be a Razak algebra and let A be a separable stably projectionless simple C*-algebra with continuous scale
such that Mn(A) almost has stable rank one for every n ≥ 1. Suppose that A also has strict comparison for positive elements
and QT(A) = T(A). Let γ : Cu(̃R) → N ⊔ S (̃A) ⊂ Cu(̃A) (see A.5 and (vii) of A.11) be an ordered semigroup homomorphism
in Cu with γ (⟨1̃R⟩) = ⟨1̃A⟩ such that γ |Cu(R)⊂ Cu(A) and γ (⟨a⟩) ̸= 0 for all ⟨a⟩ ̸= 0 in Cu(̃R). We also assume that γ maps
elements which cannot be represented by projections to the sub-semigroup S (̃A). Then there exists a homomorphism φ : R → A
such that Cu(φ) = γ |Cu(R).

Proof. We will keep notation in A.23. In what follows denote by π : Ã → C as well as π : D̃ → C for the quotient maps.
By the assumption above, we Cu(π ) ◦ γ |Cu(R)= 0.

Since R̃ = D̃, D is a hereditary sub-C*-algebra of R̃. It follows that Cu(D) is an ordered sub-semigroup of Cu(̃R). Note

also D ⊗ K ∼= C0([0, 1)) ⊗ K. We specify a strictly positive element eD(t) =

(
g(t) · 1n−1 0

0 (1 − t)

)
(for t ∈ [0, 1]), where

g(t) = 2t if t ∈ [0, 1/2] and g(t) = 2(1 − t) for t ∈ (1/2, 1]. Note γ (⟨eD⟩) ≤ ⟨1A⟩. By part (a) of A.22, there is a
homomorphism φC : C0([0, 1)) ⊗ K → A ⊗ K such that Cu(φC ) = γ ◦ Cu(j). Then ψ := φC ◦ j−1

: D ⊗ K → Ã ⊗ K is a
homomorphism such that Cu(φC ◦ j−1) = γ |Cu(D).

Define en = ψ(f1/2n (eD)), n = 1, 2, . . .. Note γ (⟨eD⟩) ≤ γ (⟨1D̃⟩ = ⟨1Ã⟩. It follows from Proposition 2.4 of [46] that there
exists xn ∈ Ã ⊗ K such that

en = x∗

n1̃Axn, n = 1, 2, . . . . (A.148)

Put yn = 1̃Axn. Let yn = vn|yn| be the polar decomposition of yn in (̃A)∗∗. Then vna ∈ Ã ⊗ K for all a ∈ en (̃A ⊗ K)en and
∗
navn ∈ Ã for all a ∈ en (̃A ⊗ K)en, n = 1, 2, . . . Define ψn : D → Ã by ψn(d) = v∗

nenψ(d)envn for all d ∈ D. Since D is

emiprojective, there exists, for each large n, a homomorphism hn : D → Ã such that

lim
n→∞

∥hn(d) − ψn(d)∥ = 0 for all d ∈ D. (A.149)

efine h∼
n : D̃ → Ã by defining hn(1D̃ + d) = 1̃A + hn(d). It is a unital homomorphism.

Since limn→∞ ∥e∗
nψ(d)en − ψ(d)∥ = 0, it is easy to compute that

lim dw(Cu((h∼)C ), Cu(φC )) = 0 (A.150)

n→∞

n 0 0
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Let Fn ⊂ D̃ be finite subsets such that Fn ⊂ Fn+1 and ∪
∞

n=1Fn is dense in D̃. It follows from A.24 that there exist a
ubsequence {nk} and a sequence of unitaries uk ∈ Ã such that,

∥Ad uk+1 ◦ hnk+1 (d) − Ad uk ◦ hnk (d)∥ < 1/2k for all d ∈ Fk, k = 1, 2, . . . . (A.151)

t follows that (Ad uk ◦ hnk (a))
∞

k=1 a Cauchy sequence for each d ∈ D̃. Let H(a) be the limit. Then H defines a unital
omomorphism from D̃ to Ã. By (A.150), Cu(HC0 ) = Cu(φC ). Since D⊗K ∼= C0([0, 1))⊗K, we then have Cu(H|D) = γ |Cu(D).
Since Cu(π ) ◦ γ |Cu(R)= 0, if Cu(H) = γ , then H|R⊂ A. Therefore it remains to show Cu(H) = γ . To show that, we will

pply part (b) of A.22.
It follows by [53] that there is a separable simple C*-algebra B which is an inductive limit of Razak algebras with

ontinuous scale such that T(B) = T(A). Note that B has stable rank one and K0(B) = {0}. By 6.2.3 of [43] (see also
.3 of [17]), Cu(̃B) = N ⊔ L(̃B). It follows by A.6 there is an ordered semigroup isomorphism γb : L(̃B) → S (̃A). This
xtends to an ordered semigroup isomorphism γB : Cu(̃B) → N⊔S (̃A). It then extends an ordered semigroup isomorphism
∼

B : Cu∼ (̃B) → Z ∪ S∼ (̃A) defined by γB(m) = m and γ∼

B (x − k⟨1B̃⟩) = γb(x) − k⟨1Ã⟩. (Recall that B̃ has stable rank one

nd, by 3.16 of [43], Cu(̃B) embedded into Cu∼ (̃B) and, by (vi) of A.11, S (̃A) embedded into S∼ (̃A).) Moreover it induces an
somorphism γB∼ : Cu∼(B) → S∼(A). Let γ−1

b , γ−1
B and γ−1

B∼ be the inverse maps of γb, γB and γB∼.
Define γ∼ : Cu∼(D) → S∼(A) by γ∼(⟨a⟩ − n⟨1D̃⟩) = γ (⟨a⟩) − n⟨1̃A⟩ for all a ∈ Cu(̃D) which are not represented by

rojections (recall also V (D̃) = N and K0(D) = K0(C0([0, 1))) = {0}.) and n = ⟨π (a)⟩ < ∞. This extends γ |Cu(D). We can
lso define γ∼

: Cu∼ (̃D) → Z ⊔ S∼(Ã) (see A.11) by γ∼(m⟨1D̃⟩) = m⟨1Ã⟩ and γ∼(⟨a⟩ − k⟨1D̃⟩) = γ (⟨a⟩) − k⟨1D̃⟩ for all
a⟩ ∈ Ã which are not represented by projections. Note, in fact, since both D̃ and Ã are unital, γ∼ is uniquely determined
y γ (see 3.1 of [43]). Note that γ∼

|Cu∼(D)= γ∼, γ∼
|Cu(D̃)= γ and γ∼|Cu(D)= γ |Cu(D). Recall that N⊔ S (̃A) ∼= Cu(̃B), Note that,

y the assumption, γ∼, γ∼ are ordered semigroup homomorphisms in Cu.
Note D̃ is a 1-dimensional NCCW and B̃ has stable rank one. By Theorem 1.0.1 of [43], there is a unital homomorphism

d,b : D̃ → B̃ such that Cu∼(Ψd,b) = (γ∼

B )−1
◦ γ∼.

Let D1 = H(D) and let ıD1 : D1 → Ã be the embedding. Denote also ıD1 : D̃1 → Ã the unital extension. Since γ is strictly
ositive, ıD1 ◦H|D is an isomorphism. Then there exists a homomorphism ΨD1 : D1 → B̃ such that Cu(ΨD1 ) = γ−1

B ◦Cu(ıD1 ).
et Ψ −1

D1
: Ψ |D1 (D1) → D1 be the inverse of ΨD1 . Then Cu(ΨD1◦H|D) = γ−1

B ◦γ |Cu(D). In particular, Cu(Ψd,b◦j) = γ−1
B ◦γ ◦Cu(j).

t follows from part (b) of A.22 that Cu∼(Ψd,b ◦ j) = Cu∼(ΨC1 ◦H ◦ j). Note that j is also an isomorphism from C0([0, 1))⊗K
nto D ⊗ K. It follows that Cu∼(ΨD1 ◦ H|D) = Cu∼(Ψd,b|D). In other words, Cu∼(ΨD1 ◦ H|D) = (γ∼

B )−1
◦ γ∼

|Cu∼(D). Since
−1
D1

◦ ΨD1 ◦ H = H , it follows that

Cu∼(H)|Cu∼(D)= γ∼
|Cu∼(D)= γ∼, (A.152)

here Cu∼(H) : Cu∼ (̃D) → Cu∼ (̃A) is the map induced by H .
Now let x ∈ Cu(̃D) with ⟨π (x)⟩ = n < ∞. Then

Cu(H)(x) = Cu∼(H)(x − n⟨1D̃⟩) + Cu∼(H)(n⟨1D̃⟩) (A.153)

= γ∼(x − n⟨1D̃⟩) + n⟨1Ã⟩ = γ∼(x − n⟨1D̃⟩) + γ∼(n⟨1D̃⟩) (A.154)

= γ∼(x) = γ (x). (A.155)

t follows that Cu(H) = γ . □

heorem A.26. Let A be a separable simple stably projectionless C*-algebra with continuous scale such that Mm(A) has almost
table rank one for all m ≥ 1. Suppose that QT(A) = T(A) and Cu(A) = LAff+(T(A)). Suppose also that B is a simple C*-algebra
hich is an inductive limit of Razak algebras with injective connecting maps, with continuous scale and with T(A) = T(B). Then
here exists a homomorphism φ : B → A which maps strictly positive elements to strictly positive elements and which induces
he identification T(A) = T(B).

roof. Let us construct the required homomorphism φ.
Note Cu(A) = LAff+(T(A)) and Cu(B) = LAff+(T(B)). Denote by Λ : T(A) → T(B) the affine homeomorphism. Then Λ

nduces an ordered semigroup isomorphism λ0 : Cu(B) → Cu(A) in Cu.
Fix strictly positive elements eB of B and eA of A, respectively. Then λ0(⟨eB⟩) ≤ ⟨eA⟩. Consider the sub-semigroup
= S (̃A) ⊆ Cu(̃A) defined in A.5. Note that, by A.10, Cu(̃B) = N ⊔ L(̃B). By A.6, this induces an ordered semigroup

somorphism λ1 : Cu(̃B) → N ⊔ S (̃A) ⊆ Cu(̃A) with λ1(⟨1B̃⟩) = ⟨1Ã⟩ (see also (vii) of A.11). Write B = limn→∞(Rn, ın)
see [53]), where each ın is injective. Let γn : Cu(̃Rn) → Cu(̃A) be given by λ1 ◦ Cu(ın,∞). Note that γn+1 ◦ Cu(ın) = γn
nd γn(⟨1R̃n⟩) = ⟨1Ã⟩. It follows from A.25 that there is a unital homomorphism φn : R̃n → Ã such that Cu(φn) = γn and
n|Rn⊂ A, n = 1, 2, . . .. Note also Cu(φn+1 ◦ ın) = Cu(φn), n = 1, 2, . . .. We also have γn(Cu(Rn)) ⊂ Cu(A). If x ∈ Cu(̃Rn) is
ot represented by a projection, neither Cu(ın,∞)(x). It follows that γn(x) ⊂ S (̃A), n = 1, 2, . . ..
Let (εn) be a decreasing sequence of positive numbers with

∑
∞

n=1 εn < ∞. Let Fn ⊆ Rn be finite subsets such that⋃
∞

n(Fn) ⊆ Fn+1, n = 1, 2, . . ., and we assume that n=1 ın,∞(Fn) is dense in B. By A.24, there exists a sequence of unitaries
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un ∈ Ã such that

∥Ad un ◦ φn+1(b) − Ad ◦ φn(b)∥ < 1/2n for all b ∈ Fn, (A.156)

n = 1, 2, . . .. Then (Ad un◦φn(b))∞n=1 is a Cauchy sequence in A for each b ∈ B. Let φ(b) be the limit (for each b ∈ B). Then φ
is a homomorphism from B to A such that Cu(φ) = λ1. From the definition of λ1, we see that φ meets the requirement. □

Corollary A.27. Let A be a separable simple C*-algebra which has finite nuclear dimension and continuous scale. Then there
exist a simple C*-algebra B which is an inductive limit of Razak algebras with injective connecting maps and with T(A) = T(B)
and a homomorphism φ : B → A which maps strictly positive elements to strictly positive elements and which induces the
identification T(A) = T(B).

Proof. First, the existence of such a C*-algebra B with T(B) = T(A) is given by 2.8. It follows from [54] that A is Z-stable
and has strict comparison for positive elements. Moreover, by [44], Mr (A) (for every integer r ≥ 1) and A⊗K have almost
stable rank one. By Lemma 6.5 of [19], Cu(A) = LAff+ (̃T(A)). Thus A.26 applies. □
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