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1. Introduction

The classification of unital simple separable C*-algebras with finite nuclear dimension which satisfy the UCT has been
completed (see, for example, [16,24,29,40], and [50]). As is well known, the case that there exists a non-zero projection in
the stabilization of the algebra follows. In the remaining case, that the algebra A is stably projectionless (i.e., if the algebra
is finite, the case Ko(A), = {0}), a number of classification results are known (see [41,43,53]).

In this paper we consider the general (axiomatically determined) case assuming trivial K-theory. Recall that a
C*-algebra A is said to be KK-contractible if it is KK-equivalent to {0}. In the presence of the UCT, it is equivalent to
say that Kj(A) = {0}, i = 0, 1. From the order structure of the Ky-group, one sees that the case of stably projectionless
simple C*-algebras is very different from the unital case. In particular, the proofs in this paper do not depend on the unital
results—and require rather different techniques.

We obtain the following classification theorem:

Theorem (Theorem 7.5). The class of KK-contractible stably projectionless simple separable C*-algebras with finite nuclear
dimension is classified by the invariant (T(A), X4). Any C*-algebra A in this class is a simple inductive limit of Razak algebras.

Here, T(A) is the cone of lower semicontinuous traces finite on the Pedersen ideal Ped(A) of A, with the topology of
pointwise convergence (on Ped(A)), and Xy is the norm function (the lower semicontinuous extended positive real-valued
function on T(A) defined by X4(t) = sup{r(a) : a € Ped(A)4, |la| < 1}).

Consider the C*-algebra W, the (unique) simple inductive limit of Razak algebras with a unique trace (up to a multiple),
which is furthermore bounded (see [41] and [28]; W is also sometime called the Razak-Jacelon algebra). We will show
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that W is the unique separable simple C*-algebra with a unique tracial state and with finite nuclear dimension which is
KK-contractible. Hence A ® W is KK-contractible for any amenable C*-algebra A (see Lemma 3.17). Thus, if A has finite
nuclear dimension, so that the C*-algebra A® W has finite nuclear dimension as well (see Proposition 2.3(ii) of [57]), then
A ® W is classifiable (whether it is finite — Theorem 7.5 - or infinite—in which case by [40] it must be O, ® K).

Corollary (Corollary 6.7). Let A be a simple separable C*-algebra with finite nuclear dimension. Then the C*-algebra A®@ W is
classifiable. In particular, W ® W = W.

2. The reduction class R, the tracially approximate point-line class D, and model algebras

Let A be a C*-algebra. Denote by Ped(A) the Pedersen ideal. Denote by :f( A) the topological cone of lower semicontinuous
positive traces defined (i.e., finite) on Ped(A), with the topology of pointwise convergence (on the elements of Ped(A)).
Denote by T(A) the set of all tracial states of A. Denote by T(A) ) the weak* closure of T(A) in the space of all positive linear
functionals on A. Let X be a topological convex set, or a topological cone. Denote by Aff, (X) the cone of all continuous
positive real-valued affine functions f on X which vanish at zero and only at that point, together with zero function.
Following [43], let us denote by LAff,(X) the cone of all lower semicontinuous affine functions with values in [0, co] on
X which are limits of increasing sequences of functions in Aff| (X). We are mostly interested in the case that X = T(A).
Let ¥, € LAff,(T(A)) denote the (possibly infinite) norm function: X4(t) = sup{t(a) : a € Ped(A),, |la|]| < 1}. We shall
refer to X4 as the scale of A.

For ¢ > 0, let fe € Co((0, 00))4 (throughout the paper) such that f(t) = 0 if t € (0,¢/2), f(t) = 1if t € [e, 00) and
linear in [g/2, &).

Leta € A,, foreacht € T( ), define d.(a) = lim,_.q t(f:(a)). If e € A, is a strictly positive element, then X4(t) = d.(e)
for all T € T( ) (independent of the choice of e). If S C :l:(A) \ {0} is a convex subset, denote by LAffy,(S) the cone
{fls: f € LAff+( (A))} of restrictions to S of the functions in T(A) \ {0}. If S is bounded, denote by LAff}, 0. (S) the subset of
LAffy.(S) consisting of those functions bounded on S. In the case that T(A) is compact, let us denote the cone LAffy (T(A))
just by LAff, (T(A)).

Definition 2.1. A simple C*-algebra A will be said to be in the reduction class, denoted by R, if A is separable, has
continuous scale ([32] and [17]), and T(A) # @. For any non-zero exact Jiang-Su stable separable simple C*-algebra A,
by Lemma 6.5 of [19] (combined with Theorem 1.2 of [44]; see Remark 5.2 of [17]), there is a non-zero hereditary sub-
C*-algebra Ap C A such that Ay has continuous scale—and so, if T(A) # @, belongs to the class R. In particular, as A is
separable and simple, it follows from Brown'’s theorem [7] that AQ K = Ay ® K. We will use the fact that T(A) is a compact
base for T(A) when A belongs to the class R (see Theorem 5.3 of [17] and Theorem 3.3 of [32]). (By Theorem 5.3 of [17],
when A is as above, with T(A) # @, and A = Ped(A), these two properties are in fact equivalent.)

Definition 2.2 ([15]). Let E and F be finite dimensional C*-algebras, and let ¢, ¢1 : E — F be homomorphisms (not

necessarily unital). The C*-algebra

A(E.F, ¢o, ¢1) = {(e.f) e E® ([0, 1], F) : f(0) = dho(e), f(1) = ¢(e)}

will be called an Elliott-Thomsen algebra or a point-line algebra. (See [15]. These algebras are the one-dimensional case
of the non-commutative CW-complexes studied in [13].) The class of point-line algebras will be denoted by C.

Definition 2.3 ([41]). Let k, n € N. Consider the homomorphisms ¢g, ¢1 : Mi(C) = Myu41)(C) defined by
¢o(a) = a @ diag(1,, 0x) = diag(a, ..., a,0;) and ¢ (a) =a® 1,4 = diag(a, ..., a).
——— ———

n n+1
The C*-algebra

R(k, n) = A(Mi(C), Myn41)(C), ¢o, 1) € C (2.1)
will be called a Razak algebra. Let e € R(k, n) be a strictly positive element. (It is easy to check that
As(R(k, n)) = inf{d.(e) : T € T(R(k, n))} = _T_ T~ see 5.3). (2.2)
n

Let us also call a direct sum of such C*-algebras a Razak algebra, and denote this class of C*-algebras by R.,.

Definition 2.4. Denote by Cy the class of all C*-algebras A in C which satisfy the following conditions: (1) K;(A) = {0},
(2) Ko(A)r = {0},and (3) 0 ¢ mw. (What (2) says is that the C*-algebras in Cy are stably projectionless. What (3) says
is that the spectrum of A is compact.)

Denote by Cg the subclass of C*-algebras in Cy with Ko(A) = {0}. Then every Razak algebra is in Cg. Let ¢, denote
the class of all full hereditary sub-C*-algebras of C*-algebras in Cy and let 68' denote the class of all full hereditary
sub-C*-algebras of C*-algebras in Cg.



G.A. Elliott, G. Gong, H. Lin et al. / Journal of Geometry and Physics 158 (2020) 103861 3

In what follows, for r > 0, we will use f. to denote the continuous positive function defined on [0, co) by f;(t) = 0 if
t €[0,r/2], fi(t)=1if t € [r, 1], and f; is linear on (r/2, ).

Definition 2.5 (see 8.1 and 8.11 of [17]). Recall that a simple C*-algebra is said to be in the class D (or Dy), if the following
conditions hold: There are a strictly positive element e € A with |le|| < 1 and a real number 1 > f, > 0, such that for any
& > 0, any finite subset 7 C A, and any a € A, \ {0}, there are F-¢-multiplicative completely positive contractive maps
¢ :A— Ag and ¢ : A — D for orthogonal sub-C*-algebras Ag, D C A with D € Cy (or cg), satisfying

lx — (p(x) + ¥ (x))|| < e for all x € F, (2.3)
¢(e) <a, and (2.4)
t(fija(¥(e))) = fe for all 7 € T(D). (2.5)

In fact f. can be chosen to be inf{z(fi/4(e)) : T € T(A)}/2 (see 9.2 of [17]). Note that, if A € D is a separable C*-algebra
and B is a hereditary sub-C*-algebra of A, then B € D (see 8.6 of [17]). We refer to [17] for a detailed discussion of the
definition of the class D.

Definition 2.6. Let us denote by M the class of simple separable C*-algebras which are inductive limits of sequences of
C*-algebras in (28, with respect to maps which are injective and take strictly positive elements to strictly positive elements.
This class is closed under tensoring with full matrix algebras (as the class of Razak algebras is), and hence is closed under
tensoring with any unital simple AF algebra (as the tensor product of a map between two Razak algebras and a unital
map between two finite-dimensional algebras is injective and preserves strictly positive elements if both maps have these
properties).

Definition 2.7. Recall that the C*-algebra W is the simple inductive limit of a sequence of Razak algebras with injective
connecting maps ((2.1)—see [41,53], and [28]) with a unique trace, which is bounded. By Theorem 1.1 of [41], it is the
unique such C*-algebra. (Unique meaning in the Razak limit class, with unique trace which is bounded; in particular it
follows that this algebra - indeed any simple such limit of Razak algebras - is isomorphic to its tensor product with a full
matrix algebra.) The C*-algebra W belongs to the class My by Lemma 3.3 of [28].

Furthermore, W has continuous scale (and so belongs to the class R), by the first part of Proposition 5.4 of [17] (the
required property of strict comparison holds by Theorem 4.6 of [51]). Hence by Theorem 3.3 of [32], W is algebraically
simple. Hence by the remark in Definition 9.5 of [17], W € D.

Theorem 2.8. For any non-empty metrizable Choquet simplex A, there exists a non-unital simple C*-algebra A € R
(Definition 2.1) such that A = lim,_, - (Bx, 1,) Where each B, is a finite direct sum of copies of W and each 1, preserves
strictly positive elements (takes strictly positive elements into strictly positive elements), every trace of A is bounded, and

(Ko(A), K1(A), T(A)) = ({0}, {0}, A).
Moreover, A may be chosen so that A € Mg (Definition 2.6), and A € Dy (Definition 2.5).

Proof. By 3.10 of [3], there exists a unital simple AF algebra D with T(D) = A. As we shall now show, the
C*-algebra A = D ® W has the desired properties. By 2.7, A € My. Since M,(W) = W (see 2.7), it follows easily that
A = limy_, »(By, ty), Where each B, is a finite direct sum of copies of W.

Let e € W be a strictly positive element. Since W is algebraically simple (see 2.7), e € Ped(W). By the definition of the
Pedersen ideal, 1 ® e € Ped(A). It follows from Proposition 5.6.2 of [38] that Ped(A) = A as the hereditary sub-C*-algebra
generated by 1 ® e is A itself. In other words, A is algebraically simple. By (the end of) Definition 9.5 of [17], A € Dj.
Consequently, all traces of A are bounded, and by Theorem 9.4 of [17], A has strict comparison for positive elements.
It is clear that Ko(A) = K;(A) = {0}. Note that the natural affine map from the simplex A = T(D) to T(A), consisting
of tensoring with the unique tracial state of W, is weak* continuous and bijective and therefore a homeomorphism. It
remains to show that A has continuous scale (and so belongs to the class R). This follows from the established facts that
A is algebraically simple and T(A) is compact and Theorem 5.3 of [17]. O

Corollary 2.9 ([41,53]). Let T be a non-zero topological cone with a compact base which is a metrizable Choquet simplex and
let y : T — (0, oo] be a lower semicontinuous affine function, zero at 0 € T, but only there. There exists a simple C*-algebra
A which is an inductive limit of Razak algebras such that

(T(A), Za) = (T, p).

Moreover, A may be chosen to be an inductive limit of finite direct sums of copies of W.

Proof. By Theorem 5.1 of [53], there is a simple C*-algebra B which is an inductive limit of Razak algebras such that
T(B) = T and the lower semicontinuous function w(t) = |t (allow values in [0, oc]) is equal to y. Let e € B, be a
strictly positive element of B with |le|| = 1. Then d,(e) = ||z|| for each 7 € T(A), Thus, (T(B), ) = (T, y).
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To see the last part of the theorem, let b € Ped(B), \ {0} with ||b|| = 1. Define A = {r € T(B) : t(b) = 1}. Since B is

separable, by Proposition 2.6 of [49], A is a base for T and it is a metrizable Choquet simplex. Moreover 0 ¢ A. Choose
a unital simple AF algebra C with T(C) = A [3]. Since A is compact, inf{y(t) : © € A} > 0. It follows from Corollary
1.1.4 of [1] that there is an increasing sequence of continuous affine functions f, converging to y on A. By a compactness
argument, we may assume that each f, € Aff,(A). (In other words, y € LAff, (T).) Since pc(Ko(C)) is dense in Aff(A) (see
I1.3.4 of [5]), there is an element a € (C ® K); such that d.(a) = y(7) for all T € A = T(C) (see, for example, Theorem
15.2 of [25] and also the proof of III 3.3 of [5]). Set a(C ® K)a = C;; the hereditary sub-C*-algebra C; is also AF. Note
that the topological cone 'I'(A), being completely determined by the compact base A (which does not contain zero), is
isomorphic to the cone T which also has A as a base. The tensor product A = C; ® W has the desired properties. O

3. A stable uniqueness theorem

The following lemma, concerning extensions with non-unital quotient, is a consequence of, and in fact equivalent to,
the second part of Corollary 16 of [18] and Theorem 2.1 of [20], in the case of a trivial extension (which is all that we
need - this restriction can easily be removed, in the nuclear setting, by working with Choi-Effros liftings). The analogous,
purely unital setting - both quotient and extension unital—is dealt with in Theorem 6 of [18]. As pointed out in [20], the
mixed case, unital quotient but non-unital extension, while discussed in Section 16 of [18], is not correctly dealt with
there, and a corrected statement of the first part of Corollary 16 of [18] was given in Theorem 2.3 of [20]. Closely related
earlier results are contained in [11] and [33].

Lemma 3.1. Let A and B be C*-algebras with B stable and A separable and non-unital. Let = : A — M(B) be a faithful
homomorphism such that the composition with the quotient map to M(B)/B is also faithful and the induced (trivial) extension
is purely large (in the sense of [18]). Then, for any nuclear homomorphism o : A — M(B), there is a sequence (u,) in M(M3(B))
with uju, = 1y ® e1r and unuy = Tvovys) Such that

(1) w(a) —ui(o(a)®m(a))u, €eB,n=1,2,..,a€A and
(2) limp_, oo(r(a) — ui(o(a) @ w(a)u,) =0, a € A.

Proof. This follows immediately from the second part of Corollary 16 of [18] and Theorem 2.1 of [20], in the case of a
trivial extension, with the ideal of that theorem taken to be the C*-algebra direct sum of a countable infinity of copies of
the present ideal, B, and the (trivial) extension to be that induced by the infinite repetition of the map = into the Cartesian
product of copies of the multiplier algebra M(B). (This ostensibly special case of 2.1 of [20] is interesting in that it is in
fact a stronger result, in the case of trivial extensions - this observation is also valid in the case of a general (non-trivial)
extension, in the nuclear setting - again, on considering Choi-Effros liftings.) O

Let A and B be C*-algebras, let y : A — B be a homomorphism, and consider the ampliated homomorphism
Voo =Y By D---:A— MKQB),

where K is the algebra of compact operators on a separable infinite-dimensional Hilbert space, and M(K ® B) is the
multiplier algebra.

Lemma 3.2. With A and B and y and y, as above, assume that A and B are separable and y is faithful, and that A is not

unital. If y : A — Bis full, i.e., if By(a)B = B, a € A\ {0}, then for any nuclear homomorphism o : A — M(K ® B), there is a
sequence (up) in M(My(K ® B)) with uju, = Iwices) @ €11 and upuy = Iv,mices)) such that

(1) yoola) —ui(o(a) ® yso(a)up e K®B, n=1,2,...,a €A and

(2) limy, so(Veo(@) — up(o (@) @ yoo(@)un) = 0, a € A,

Proof. The lemma follows from Lemma 3.1 immediately once one checks that the extension y, is purely large.
To see y is purely large, let B, = B® K. Let ¢ € y»(A) + Bs be a non-zero element which is not in B;. One may write

¢ = y(a)+ b for some a # 0 and b € B;. Let us consider cBc*. Replacing c by cc*, one may assume that ¢ > 0. Therefore

one may assume that a > 0. It is clear that y..(a)Bsyso(a) = y(a)By(a) ® K. Since By(a)B = B, By~,(a)Bsy~o(a)B = B. Thus
B C Yoo(@)Bsyso(a). It follows . (a)Bsyso(a) = Bs. In other words, y-(a)Bsyso(a) is full in Bs. In what follows, we assume
llcll < 1and Jla| < 1.

We now follows the proof of Theorem 17 (iii) of [18]. Since there are some typos there, we will add some details
concerning the current situation.

We first show that cB,c is full. Put ¢; = y(a) = y(a) ® 1 and choose u, = 1 ® v,, where v, € M(K) and (v,) is a
sequence of unitaries corresponding to some permutations of an orthonormal basis such that lim,_, , ||biu,b;z|| = 0 for
any by, b, € B;. Note that unc]”2 = cl/zun as 1 = Ywo(a), and u,cu;; — ¢y strictly in M(B;) exactly as on the page 405
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of [18]. Hence

un(c(uib'un)oul, = (uqcuy)b'(upcu) — cib'cy for all b’ € B

(converges in norm). Since ¢1B;¢c1 = Voo(@)Bsyoo(a) is full in Bg, It follows that cBsc is full in Bs.

Put ¢’ = c?c;cV? and ¢’ = C11/2CC11/2_ Put x = C1/2C]1/2. Then xx* = ¢’ and x*x = ¢”. Let C; := ¢’Bs¢’ and C, := ¢”Bcc”.
(Note, since ¢’ = ys,(a?)+b’ for some b’ € By, C, is also full in B;.) We will show that C, := c¢”Bsc” is stable. Since C; = G,
C; is then also stable. (Note also, since the (closed) ideal generated by xx*Bsxx* contains that of x*xBsx*x = C;, C; is also

full.) Since 0 < ¢’ < ¢/, this implies that cBc contains a stable sub-C*-algebra C;. In other words, y,, is purely large.

To show that G, is stable, we write ¢” = ¢? + by for some b; € B;. We will verify condition (b) of Proposition 2.2 of [26]
which by Proposition 2.2 and Theorem 2.1 of [26] is equivalent to the stability of a o-unital C*-algebra. Fix an element
ae€ G with0 <a; <1ande > 0. Since C, C c1Bsc;, one may choose an integer k > 4 such that

I(c")"%*al? — a)?|| < &/8 and ||c;*a}? — a}*|| < &/8. (3.1)

Put d = ¢,’* and d; = (¢”)"/*. Then d — d; € B;. Since d = y(a)"/* ® 1, u,d = duy. Recall that lim,,_. o [|byu,b, | = O for
any by, b, € Bs. Hence, there is an integer n; > 1 such that, for all n > ny,

1/2 1/2 1/2 1/2

dunal/ Rg/8 d1una1/ = u,,dla]/ R /8 una/ , and (3.2)
1/2 1/2

a]/ dunal/ R4 0. (3.3)

Put y, = duna}/2 € C,. Then (see (3.2) and (3.3))

Viyn = a}/zu:dduna}/z Rg/a (a}/zund)a}/2 A4 a and (3.4)
Wiyn)ynys) = Yi(dunay*dunay )y = (ydun)(ay*duna;’ )y ~e/4 0. (35)

By 2.2 (b) of [26], C; is stable. As mentioned above, it follows that C; is stable and is full in B;. This shows that the extension
Vs 1S purely large. O

Remark 3.3. One may prove directly that the map y., absorbs any o as stated in Lemma 3.2 without using the notion
of purely large.

Theorem 3.4 (Theorem 4.2 of [10]). Let A be a separable C*-algebra without unit, and let B be a separable C*-algebra. Let
y : A — B be a full homomorphism.

Let ¢,y : A — B be nuclear homomorpﬂiirﬁs with [¢] = [¢¥] in KKy, (A, B). Then for any finite set F € Aand ¢ > O,
there exist an integer n and a unitary u € M,,1(B) such that

lu*(¢p(@) @ (y(@) @ --- ®y(@u— Y@@ (y(@)®-- - ®y(a)l <& aeF.

n n

Proof. Since [¢] = [¥] in KK,,(A, B), one has that [¢, ¥, 1] = 0 in KKp(A, B) in the sense of [10]. Set M(XC(H) ® B) = D,
M(K(C @ H)® B) = D1, M(K(H @ H) ® B) = D,, where H = .
Consider the projection e, = f, ® 13 € M(K(H) ® B), n = 1,2, ..., where f, is the projection onto the first n basis
elements of H.
Consider the unital maps @™, ¥~ : A— M(K(H) ® B) defined by

o

@~ (a)=¢(a)® y.(a) and ¥~ (a) = yY(a) ® y.(a) for all a €A, (3.6)

where y/ (a) is considered to be a map from A to (1p —e; )M(K(H)®B)(1p—e1). One checks [¢™,¥™, 1] = 0in 1<1<HUC(Z, B).
By Proposition 3.6 of [10], there are a unital strictly nuclear representation o : A — M(X(H) ® B) and a continuous path
of unitaries u : [0, oo) — U(K(H®H) ® B 4 C1p,) such that for any a € A,

Jim Jlu (¢~ (a) @ o(@)uf — (¥ (a)®o(a))l =0, and

u (@~ (a)® o(a)uf — (¥ (a)®o(a)) e K(HSH)®B.
In particular, there is a sequence of unitaries (u,) in UX(H @ H) ® B + C1p,) such that

~

Jim lun(¢(a) @ Yoo(@) ® o(@)u; — (Y(a) ® yi(a) @ o(a)| =0, aeA. (3.7)



6 G.A. Elliott, G. Gong, H. Lin et al. / Journal of Geometry and Physics 158 (2020) 103861
Since y is full, by Lemma 3.2, the map y., is (non-unital) nuclearly absorbing. Therefore y., @ 0 ~ yuo; that is, there
is a sequence of isometries (v,) in M(X(H, ® H) ® B), with v,v;; = 1p, such that, for any a € A,

lim fly;o(a) @ o(a) — vyeo(@vnl =0, and

Yoo(@) ® 0(a) — v yso(a)vy, € K(H ®H) @ B

where H; = (1p — eq)H.
Consider the unitaries w, = (e1 @ vn)us(e; @ v}) in M(K(CPH)®B), in fact in K(C@H)®@ B+ Clp,. For any contraction
ach,

lwn(é(a) & yoo(@))wy, — ¥(a) @ yoo(a)l
= [I(e1 @ vn)un(er ® vy N(@(a) B Yoo(a))(e1 @ vn)uiy(e1 ® vy) — ¥(a) ® yoo(a)ll
~ |l(e1 @ va)un($(a) ® (voo(a) ® o(a))uy(er @ vy) — ¥(a) ® yeo(a)|
~ |l(e1 ® va)(Yr(a) ® (vo(a@) ® o(@))er ® vy) — ¥(a) ® yao(a)l
~ [¥(a) @ yoo(a) — ¥(a) @ yoo(a)ll = 0.
That is, there is a sequence of unitaries (wy) in U(KX(C @ H) ® B 4 C1p, ) such that

k@g@ lwilg(a) ® yoola))wy — (¥(a) ® yola))ll =0, ae€A.

Since wy € K(C @ H) ® B + Clp,, one has that [wy, e,] — 0, as n — oo. Then, for sufficiently large k, and then
sufficiently large n, the element e,wye,, of My(B) + C1, can be perturbed to a unitary u verifying the conclusion of the
theorem. O

Remark 3.5. The unital version of 3.4 can be found in 4.2 of [10] (see an earlier version in [33]). A different approach
could also be found in an earlier version of this paper (see [22]).

Proposition 3.6 (Proposition 2.1 of [2]). Let A be a separable C*-algebra (with or without unit). Then there is a countable subset
S of A such that if | is any ideal of A, then S N ] is dense in ].

Lemma 3.7. Let D be a C*-algebra. Let A C D be a separable sub-C*-algebra such that
DaD =D for all a € A\ {0},
and let B C D be another separable sub-C*-algebra. Then, there is a separable sub-C*-algebra C of D such that
A,BC C and CaC = C for all a e A\ {0} (3.8)

(i.e., such that the inclusion map A — C is full).

Proof. The proof follows an idea of Blackadar. Applying Proposition 3.6, one obtains a countable set
{ap,a1,a3,...} €A
such that {ao, ay, az, ...} NJ is dense in J for any ideal J of A. We may assume that
=0, sothat aq #0, j=1,2,....
Set
C; =C(AUB)CD.

It is clear that C; is separable. Pick a dense set {c1, ¢2, ...} in C;. Since Da;D =D, j = 1,2, ..., for any ¢ > 0 and any c;,
there are finitely non-zero sequences Xei,aj,6.15 Xe,q,6.25 - - - and Veiaje1s Yeiape.2s - - - in D such that

llci — (Xc,01,6,1%Y cp.a5.6,1 T Xe 6,20V cpaj,e2 + -l < €.
Set
C2:C*(C1,Ca7k,ycalk ijnk=1,2,...).
Then
GaG2C, j=1,2,....
Repeating the construction above, one obtains a sequence of separable C*-algebras

GSGC - CGC--CD



G.A. Elliott, G. Gong, H. Lin et al. / Journal of Geometry and Physics 158 (2020) 103861 7

such that

Ci10C12GCy, j=1,2,...,n=1,2,....

Setting |, C, = C, one has

CaC=C, j=12,....

Then the separable sub-C*-algebra C satisfies the requirements of the lemma. Indeed, let a € A \ {0}. Consider the
ideal | := CaC N A. Since a € J, one has J # {0}. By Proposition 3.6, one has that {ao, a1, az, ...} NJ is dense in J, and in

particular, the ideal J contains some g; # 0. Since C = Ca;C € (JC = CaC, one has CaC = C, as desired. O

Remark 3.8. If A is simple, then, in the proof above, one only needs to pick one non-zero element of A and does not need
Proposition 3.6.

Lemma 3.9. Let B be a o-unital C*-algebra and let A be a separable amenable C*-algebra which is a sub-C*-algebra of B. Let
hi, hy : A — B be homomorphisms such that [h1] = [h2] in KK(A, B) (which we regard as KK'(A, SB)). There exists a separable
sub-C*-algebra C C B such that A, hy(A), ha(A) C C and [hy] = [hy] in KK(A, C). If the inclusion of A in B is full (in other

words, BaB = B for any 0 # a € A), then C may be chosen such that the inclusion of A in C is full.

Proof. Consider the extensions 71, 7, : A — M(SB)/SB given by the mapping tori
My, ={(f,a) € ([0, 1], B)® A : f(0) = a and f(1) = h(a)}, i=1,2. (3.9)

Let H; : A — M(SB) be a completely positive contractive lifting of t;, i = 1, 2. There are a monomorphism ¢¢ : A —
M(SB ® K) and a unitary w € M(SB ® K) such that

w*(Hi(a) ® ¢o(a))w — (Hy(a) ® ¢o(a)) € SB® K for all a € A.

Let Cygo denote the (separable) sub-C*-algebra of B generated by A, h;(A), and hy(A).

Choose a system of matrix units (e;;) for K, and choose a dense sequence (t,) in (0, 1). Choose an increasing
approximate unit (E,) for SB ® K such that E, € My;)(SB), n=1,2, ....

Denote by Dqy the (separable) sub-C*-algebra of SB ® K generated by

w*(diag(H1(a), go(a)))w — diag(Hx(a), ¢o(a)), a € A. (3.10)
Denote by Dgg the sub-C*-algebra of SB ® K generated by
{En, wE,, Eqw, Engo(a), ¢po(a)E, : a € A,n € N}.

Let Dygo denote the (separable) sub-C*-algebra of SB ® K generated by Dgg and Dy. Denote by 7; : SB® K — B ® K the
point evaluation at t € (0, 1), and by Cyp the sub-C*-algebra of B ® K generated by

{m¢,(Dooo) + Cooo ® €11 :n=1,2,...}.

Denote by Gy, € B® K the sub-C*-algebra generated by {(1® e1;)Coo(1®e€j1):1<1i,j<n},n=1,2,....Let C’ denote
the (separable) sub-C*-algebra of B generated by |-, Co.n. Choose a separable sub-C*-algebra C of B containing A and
C’. By Lemma 3.7, if the inclusion A — B is full, then we may choose C such that the inclusion A — C is full. Note that
(as Cooo < Co,1), h1(A), ha(A) € C’ < C. Consider the sub-C*-algebra (; = C ® K of B® K. Fix

b € {E,, wE,, Eqw, Ey¢o(a), po(a)E, :a € A,n e N} CSB® K. (3.11)
Keep in mind that E, € SB® K = Co((0, 1), B® K), in particular, E;(0) = E,(1) =0, n € N. Then, foreach t,,n=1,2, ...,
7, (b) € 7, (SC1 @ K).
It follows that b € SC; ® K. To see this, fix ¢ > 0, and choose a finite sequence t,, € (t;),i=1,2,...,k, such that

0=ty <tn <tn, < <l <tp,, =1

and
Ib(t) — bt )| < /4 for all £ € (ty,. ta,,). i=0,1,....k.
Set
t
(—)b(tn,), t € (0, tn,)
o
i1 t—ty :
o(t) = § (- —b(ty) + (———b(tu, ) t € [ns by )i = 1,2, k.
t"i+l — tn, t”i+1 — by,
1—-t¢
(= b(tw, ), £ (. 1).

11—t
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Then ¢ € SC; ® K. On the other hand,
IIb(t) — c(t)|| < & for all t € (0, 1).

Since ¢ > 0 is arbitrary, this implies that b € SC; ® K.

In particular, E, € SC; ® K and (E,) is an approximate unit for SC; ® K, and so M(SC; ® K) € M(SB ® k). Since also
wE,, Eqw € SC; ® K, and w € M(SB ® K), it follows that w € M(SC; ® K). Similarly, since ¢o(a)E,, Eno(a) € SC; ® K for
all a € A and ¢p(w) € M(SB ® K), we may view ¢ as a monomorphism from A to M(SC; ® £) € M(SB ® K).

A similar argument shows that Dy C SC; ® K.

We now have

w, Hi(a) @ ¢o(a), Ha(a) ® ¢o(a) € M(SC; ® K),

w*(Hi(a) ® ¢o(a))w — (Ha(a) ® ¢o(a)) € SC; ® K
for all a € A. This implies that [h] = [h;] in KK(A, C). O

In a similar way (using Lemma 3.7), one also has the following result:

Lemma 3.10. Let A, D be C*-algebras, with A separable. Let ¢, v, o : A — D be homomorphisms such that
[¢] = [¥] in Hom 4(K(A), K(D)), and
Do(a)D =D, 0 #a € A
Then there is a separable sub-C*-algebra C C D such that
#(A), ¥(A), o(A) € C,
[¢] = [¥] in Hom4(K(A), K(C)), and
Co(a)C =C,0#£acA

Proof. The proof is in the same spirit as that of 3.9. We sketch it below. Since A is separable, it is easy to find a separable
C*-algebra By € D such that ¢(A), ¥(A) € By and ¢,; = ¥, (i = 0, 1) viewing ¢ and ¥ as maps from A to B;. For
each m > 2, let G, = Co(X,) for some locally compact and o-compact metric space X, such that Ko(G,) = Z/mZ and
K1(Cy,) = {0}. Denote by Y, the one-point compactification of X;, with the point & as the additional point. Note Y, is
separable.

Let ™ (™ : ¢, ® A — Cn ® D be the natural extensions of ¢ and . Suppose that p and q are two projections
in M((Gy ® D)) for some [ > 1 such that there exists v € My ((C, ® D)) with v*v = p @ 1; and vv* = ¢ @ 1;.
We now view p, q, v as functions in C(Yy, Mi1«(D)). Let (y,) be a dense sequence of Y, such that y; = &,. Consider
the sub-C*-algebra By, ; of My (D) which is generated by p(y,), q(yn), and v(y,) for all n > 1. Then B} , is separable.
One then easily constructs a separable sub-C*-algebra B;m) of D such that p, g, v are in M ((Cp, ® B;n,o)N)- Similarly, if
u, w are unitaries in M;((G, ® D)™) which are connected by a continuous path of unitaries, then one may also construct a
separable sub-C*-algebra B,/ﬂ,1 of D such that u, w are in M;((C; ®D)™) and are connected by a continuous path of unitaries
in Mi((C, ® D)7).

From this, one concludes that there is a separable sub-C*-algebra B,, € D such that ¢/™(C,®A), ¥™(Cr®A) C Cn®Bn
and ¢!V = v (i = 0, 1) viewing '™ and ™ as maps from C,; ®A to Gy @By, m = 2, 3, ... Let D; be the sub-C*-algebra
generated by B;, m = 1, 2, .... Then D, is separable. By 3.9, there is a separable sub-C*-algebra C 2 D1, o(A) such that

Co(a)C = C forall a € A\ {0}. Note now that [¢] = [v] in Hom ,(K(A), K(C)) as o™ = ¢™ with ¢™ and ™ viewed
as maps from A into C. O

Definition 3.11. Let M : (A, \ {0}) x (0,1) — (0,4o00) and N : (A \ {0}) x (0, 1) — N be maps. A positive map
¢ : A — B will be said to be (N, M)-full if for any 1 > ¢ > 0, any a € A, \ {0}, and any b € Bt with ||b|| < 1, there are
b1, by, ..., bN(a,é‘) € B with ||b;|| < M(a,e),i=1,2,...,N(a, ¢), such that

b — (bié(a)by + b3p(a)bz + - - - + byq ) @(@bnae)ll < €.

Write F := (N, M) : (A4 \ {0}) x (0,1) > N x R, and let # € A, \ {0}. A positive map L : A — B will be said to be
F-#-full if, for any a € #, any b € B, with ||b|| < 1, and any ¢ > 0, there are X1, X3, ..., X, € B with m < N(a, ¢) and
[Ixi|l < M(a, ) such that

m
1) XLk — bl < e. (3.12)
i=1

The map L will be said to be uniformly (N, M)-full if N and M are independent of ¢, (i.e, N : A, \ {0} — N and
M : A\ {0} - R, \ {0}) and to be strongly uniformly (N, M)-full, if, in addition, ¢ can be replaced by zero. The map L
will be said to be uniformly F-#-full, if F is independent of ¢.

Let B be any C*-algebra and D C B be a o-unital sub-C*-algebra. Let F = (N, M) : (A \ {0}) x (0,1) - N x R, be
a map described above. We would like to make the following remark: If L : A — D is (F, H)-full, then joL : A — DBD
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is (F1/2), 1)-full, where F('/2)((a, ¢)) = F((a, &/2)) and j : D — DBD is the embedding. In fact, for any ¢ > 0, given any
b € DBD,. with ||b| < 1, there is d € D, with ||d|| = 1 such that ||b1/2db'/?> — b|| < &/2. Fix a € % CA, \ {0}. There are
X1,X2, ..., Xm with m < N(a, ¢/2) and ||x;|| < M(a, £/2) such that

m
1% Law —di| < e/2.
i=1
It follows that, for a € H,
m
1> b2xLaib? — bl < /2 + /2 =e.
i=1

Note that ||x;b'/?|| < ||x;||. SojoL is (F('/?), #)-full. Note also, if F(a, t) = F(a, t') for all t, t' € (0, 1), (uniformly full), then
F(/2) = F, whence j o L is still (F, #)-full.

Let A and B be C*-algebras and d : A — B a map. For each integer n > 1, denote by d, : A — Mjy(B) the map
dy:a— da)®da)® ---® da) (for a € A).

n
Theorem 3.12 (cf. Theorem 3.9 of [34]). Let A be a separable amenable C*-algebra and let B be a o-unital C*-algebra. Let
hy, hy : A— B be homomorphisms such that
[h1] = [h2] in KL(A, B).

Suppose that there is an embedding d : A — B which is (N, M)-full for some N : A, \ {0} x (0,1) — N and
M AL\ {0) % (0,1) > Ry \ {0} _
Then, for any ¢ > 0 and finite subset 7 C A, there are an integer n > 1 and a unitary u € My, (B) such that

lu*diag(hq(a), dn(a))u — diag(hy(a), d,(a))|| < & for all a € F. (3.13)
Proof. Write C = [[;2, B, Co = @D,-, B, and let 7 : C — C/C, denote the quotient map. Let H; = (h;) : A — C be defined
by Hj(a) = (hj(a)) for all a € A, i = 1, 2. Define Hy : A — C by Hg(a) = (d(a)) for all a € A. It follows from 3.5 of [34] that

[ o Hi] = [ o H,] in KK(A, C/Co). (3.14)

Since d : A — B is (N, M)-full, for any a € A, \ {0}, let M(a, &) and N(a, &) be as in Definition 3.11. Let (b;) € ([];—, B)+
with ||(by)|l < 1. Then, for any ¢ > 0, there are by n, ban, ..., bn(ae).n € B with ||b; z|| < M(a, &) such that

N(a,e

)
I b d(@bin — ball < e
i1
Set (bin) = z,i = 1,2,...,N(a, ¢). Then ||zi]| = sup{||binll : n € N} < M(a,¢e),i = 1,2,...,N(a, ¢). Therefore,
zi € []o2, B. We have

N(a,e

)
1Yz Ho(@)zi — (ba)ll < &
i=1

This implies that the map Ho : A — [],-, B is full.

It follows that the embedding 7 o Hy : A — C/Cy is full. Combining this with (3.14), and applying Lemma 3.9, we
obtain a separable sub-C*-algebra D C C/C, such that 7w o Hy(A), = o H{(A), m o Hy(A) C D, the map w oHy : A — D is full,
and

[ o Hi] = [ o Hy] in KK(A, D).
By Theorem 3.4 there exist an integer n > 1 and a unitary U € M, (D)~ such that
|U*diag(w o Hq(a), dy(7 o Ho(a)))U — diag(w o Hy(a), dy(r o Ho(a)))|| <&, ae€F.

Note that U € M;,1(C/Cp)~. Therefore (by stable relations) there is a unitary V = (vy) € Mp+1(C)™~ such that #(V) = U.
Then, for all sufficiently large k,

lv;diag(hi(a), dn(a))vk — diag(ha(a), dn(a))|l < & for all a € F.

Thus, the unitary u = v, with k sufficiently large satisfies the conclusion of the theorem. O
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Definition 3.13 (Definition 2.1 of [23]). Fixamapry: N — Z,,amapr; : N — Z,,amap T : N x N — N, and integers
s> 1and R > 1. We shall say a C*-algebra A belongs to the class C;; r, 7.s.r) if

(a) for any integer n > 1 and any pair of projections p, q € Mn(A) with [p] = [q] inko(A), p® 1,\,,r (@) and qEBerO(n)(;)

are Murray-von Neumann equ1valent and moreover, if p € M ( Jand ¢ € M ( ) and [p] — [q] > O, then there exists
p e Mn+r0(n)(A) suchthatp’ < p @ 1y, o) and p’ is equivalent to q ® 1Mr >
(b) if k > 1, and x € Ko(A) such that —n[13] < kx < n[1;] for some mteger n > 1, then

~T(n, 1] < x < T(n, K1z);

(c) the canonical map U(M ( ))/Uo(M ( )) = Ky(A) is surjective;
(d) if u € UM, ( )) and [u] =0 in 1(1( ), then u @ 1Mr m € Uo(Mpyr,(n (A))

() cer(Mm(Z)) <Rforallm>1 (see 2.15 of [24], for example).
If A has stable rank one, and (a) to (f) hold, then they hold with rp =r; = 0.

Let A be a unital C*-algebra and let x € A. Suppose that ||x*x — 1|| < 1/2 and ||xx* — 1|| < 1/2. Then x is invertible and
x|x|~! is a unitary. Let us use [x] to denote x|x|~'. We will use this notation in the next statement (see (3.15)).

Theorem 3.14 (cf. 5.3 of [33], Theorem 3.1 of [23], Theorem 4.15 of [11], 5.9 of [34], and Theorem 7.1 of [36]). Let A be a
non-unital separable amenable C*-algebra which satisfies the UCT, let ro,11 : N — Z,, T : N x N — N be three maps, let

s,R > 1 be integers, and let F : A, \ {0} - NxR,\{0} and L : U(MOO(Z)) — R, be two additional maps. For any € > 0 and
any finite subset F C A, there exist § > 0, a finite subset G C A, a finite subset P C K(A), a finite subset Y C U(My,(A)), a
finite subset H € A, \ {0}, and an integer K > 1 satisfying the following condition: For any two G-§-multiplicative contractive
completely positive linear maps ¢, ¥ : A — B, where B € Cy ;, 1.5.r, and any G-§-multiplicative contractive completely positive
linear map o : A — M(B) (for any integer | > 1) which is (uniformly) T-#-full and such that

cel([gp(u) [ (u*)]) < L(u) for all u e U, and (3.15)
[Pllp=[¥]lP, (3.16)

(see 1.1 of [23] and [42] for the definition of cel) there exists a unitary U € M1+1<1( B) such that
IAdU o (¢ @ ox)(a) — (Y @ ox)a)|| < e for all a e F, (3.17)

where
K

—
ok =0 Do D--- Do :A— Mg(B).

Proof. Let us also use ¢ and ¢ for ¢ ® idy,, and ¢ ® idy,,, respectively. Fix A, ro, 11, T, s, R, F, and L as described above.
Suppose that the conclusion of the theorem is false for these data. Then there exist &g > 0 and a finite subset 7 C A such
that there are a sequence of positive numbers (8,,) with 8, N\ 0, an increasing sequence (G,) of finite subsets of A such that
(U, Gn is dense in A, an increasing sequence (P,) of finite subsets of K(A) such that (U, Pn = K(A), an increasing sequence
(Uy) of finite subsets of U(Muo(A)) such that |, ¢4 N U(Mp(A)) is dense in U(M(A)) for each integer m > 1, an increasing
sequence (H,) of finite subsets of A‘+ \ {0} such that, if a € H, and fi,2(a) # 0, then fi2(a) € Hny1, and |J,, Hy is dense
in A', and (use 3.6) has dense intersection with the unit ball of each closed two-sided ideal of A, a sequence of integers
(k(n)) with limy,_, o k(n) = 400, a sequence of unital C*-algebras B, € Gy ;, 15z two sequences of G,-8,-multiplicative
completely positive contractive maps ¢, ¥, : A — B, such that

[@nllp,= [¥nllp, and cel([¢n(u)][Yn(u™)]) < L(u), for all u € Uy, (3.18)

a sequence of G,-8,-multiplicative completely positive contractive linear maps o, : A — My (B,) which are F-7,-full
and satisfy, foreachn=1,2, ...,

inf{sup [|v; (¢n(a) ® (on)xm(@))vn — (¥n(@) @ (onm(@)Il : a € F} = &o, (3.19)

where the infimum is taken among all unitaries v, € Mk(,,;,;:](Bn) and (o )k : A = Mimymy(Bn) is as above.

Set My (By) = B, @y B, = Co, []7o; B, = C, and C/Co = Q(C), and denote by = : C — Q(C) the quotient map.
Consider the maps @, ¥, S : A — C defined by @(a) = (¢n(a))n>1, ¥(a) = (Yn(a))n=1, and S(a) = (oq(a))n>1, a € A. Note
that 7 o &, w o ¥ and 7 o S are homomorphisms. Consider also the truncations @™ @™ sm . 4 [T,=m B, defined
by q)(m)( a) = (¢n(a))nzm, wM(a) = (Yn(a Dn=m,» and StM(a (@) = (ou(a))nzm, a € A.

For each u € 4, we have u € My, (A) for some mteger L(m) > 1. When n > m, by hypothesis, there exists a
continuous path of unitaries {u,(t):t € [O 11} € Mm)(B;,) such that

un(0) = [dn(u)], un(1) = [Yn(u)] and cel({un(t)}) < L(u).
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It follows from Lemma 1.1 of [23] that, for all n > m, there exists a continuous path {U(t) : t € [0, 1]} C Uo(]_[n>m B;)
such that U(0) = ([¢n(u)])n>m and U(1) = ([¥n(u)])a>m. This in particular implies that

(™)™ )] € UpMym([ [ B,)) and [ 0 1y = [ 0 ¥l (3:20)

n=m

By (3.18), for all n > m,

[Pnllpn= [¥mllPy,- (3.21)
By hypothesis and by [23], Ko(C) = [], Ko(Bj,), it follows that
(@™o n= ¥ ™lginpn, M=1,2,.... (3.22)

In particular,
[T 0 ®luo = [ 0 ¥so. (3.23)

Now let X, € Pm N Ko(A, Z/kZ) for some k > 2. Denote by X, € K;(A) the image of xo under the map
Ko(A, Z/kZ) — Ki(A). We may assume that X, € Pp, for some my > m. By (3.20), [@Mm))(%y) = [WMO)](Xo). Set
Yo = [@"](xo) — [¥™](X). Then yo € Ko(([T,2m, By)> Z/kZ) must be in the image of Ko([] B,), which may be
identified with I<0(l_[n>m0 B,)/KKo(T ] B)) (see [23]). However, by (3.21),

n=my -n

n>mg -n

Yo € ker w(()k ,
where g/f(()k) : I<o(l_[n>m0 " L/KZ) — anmo Ko(B;,, Z/kZ) is as in 4.1.4 of [31]. By [23], yo = 0. In other words,
[ )(x0) = [¥"](x0).
which implies that
[ o @lkya.z/kzy= [ 0 ¥llkyaz/kzy, k=2,3,. (3.24)

Now let x; € Ky(A, Z/kZ). Then x; € P, for some m > 1. Denote by X; € Ky(A) the image of x; under the
map Ki(A, Z/KZ) — Ko(A). There is m; > m such that X; € Pp,. By (3.22), [@™)](Xy) = [¢™)](X). Put y; =
[@™D])(x1) — [¥™)(x1). Then y1 € Ki([T,_pn, Bp)/KKi([T,_n, B) (see [23]). However, by (3.20), y1 € kery " (see 4.1.4
of [31]). It follows from [23] that y; = 0. In other words,

[@](x1) = [#™](xy).
Thus,

[ o @Ik az/kz)= [ o ¥k (a,z/k2)- (3.25)
Combining (3.20), (3.23), (3.24), and (3.25), we have

[r o @] = [m o ¥] in Hom,(K(A), K(Q(C))),

where C =[] .For each a € #,, € AL \{O} any (b,) € C}, and any n > 0, since o, is F-H,-full, for all n > m, there
are x; ,(a) € By, Wlth IXinll <M(a),i=1, 2 ., N(a), where F(a) = M(a) x N(a), such that

N(a)

I Xin(@) on(@in(@) = byll < 1.

i=1
Define x(i, a) = (x; n(a)). Then x(i, a) € C. It follows that

1) x(i, @)™ (@i, a) = (bp)uzmll < 1.

This shows that 7 o S(a) is a full element of Q(C) for any 0 # a € |, Hx. Let I be an ideal of Q(C) and consider the
pre-image

J={aeA:mwoS(a)el}.

By the choice of (#,), ] = {0}. It follows that the map 7 oS : A — Q(C) is full.
By Lemma 3.10, there exists a separable sub-C*-algebra D € Q(C) such that 7 0 S(A), 7 0 @(A), w o W (A) C D, the map
woS:A— Dis full, and

[ o @] = [ o ¥] in Hom,(K(A), K(D)).
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Since A satisfies the UCT, by [12], [x o @] = [7 o ¥] in KL(A, D). Then, by Theorem 3.12 (as at the end of the proof of
Theorem 3.12), there exist an integer K > 1 and a unitary V € My 1(Q(C)) such that
V¥ o @(a)® X(a))V — (r oW (a)® X(a))|| < &o/4, a€F

where, as above,
K

Y@a)=mwoSa)drmoS@d---®moS(a), acA.

Therefore, there exists a sequence of unitaries (v,) C M;:I(/C ) and an integer Ny such that k(n) > K for all n > N; and

lv;(én(a) @ (0n)k(@)vn — (Ya(@) ® (on)k(@))ll < €0/2, aeF,

where
K

(on)k(a) = on(a) ® on(a) @ - - - D ow(a), ae€A.
This contradicts (3.19). O

Remark 3.15. Suppose that Ky(A) NP = {z1, 23, . .., zm}. Then, by choosing sufficiently large 7, we can always choose
U = {wy, ws,..., wnt so that [wj] = z,i = 1,2,...,m. In other words, we do not need to consider unitaries in

~

Up(Muo(A)). In particular, if K;(A) = {0}, then we can omit the condition (3.15). Moreover, if B is restricted in the class of
C*-algebras of real rank zero, then one can choose L = 27 + 1 and (3.15) always holds if P is sufficiently large. In other
words, in this case, condition (3.15) can also be dropped.

Let By be a C*-algebra with a strictly positive element ey and B = e,(Mk1(Bo))ey, where e, € Mg1(Bo)s+ and e, >
(Zf:l(eo@eﬁ) and {e;; : 0 < i,j < K} is a matrix unit for M. Let By = e{Be;, where e; € (eo ® €9,0)Mx+1(Bo)(€o ® €0,0)..-
We may view B; C By. Suppose By € Cy, ;.75 Suppose that ¢, : A - By C Bando : A — By C B are as in
Theorem 3.14 (¢ and ¢ are G-§-multiplicative, and o is T-H-full in By), and that cel([¢(u)] [y (u*)]) < L(u) for all u e

(viewing ¢ and i as maps to By instead of B;) and (3.16) holds. Then there exists u € B such that

lu*diag(¢(a), ox(a))u — diag(yw(a), ox(a))|| < & for all a € F, (3.26)

where og(a) = diag(o(a), ..., o(a)), where o(a) repeats K times (see also below).

Corollary 3.16. Let A be a non-unital separable amenable C*-algebra which is KK-contractible and let T : A \ {0} —
N x Ry \ {0} be a map. For any ¢ > 0 and any finite subset F C A, there exist § > 0, a finite subset G C A, a finite subset
H C Ay \ {0} and an integer K > 1 satisfying the following:

Let By be any C*-algebra with a strictly positive element ey and B = e,M_1(Bo)ey, where e, € Mg1(Bg), ep > Zﬁ;l(eo@)en)
and {e;j : 0 < i,j < K} is a matrix unit for My 1. Let By = e1Be;, where e; € (eg ® €g,0)Mk+1(Bo)(eo ® €o,0),.. For any two
G-6-multiplicative contractive completely positive linear maps ¢, : A — By, and any G-8-multiplicative contractive
completely positive linear map o : A — By which is also T-H-full in By, there exists a unitary U € B such that

IAdU o (¢ ® ox)(a) — (Y ® ox)a)|| < e for all a e F, (3.27)

where, as earlier,

K
e e
ok =0Po P ---Po A — MK(BQ)CB.
Proof. In Theorem 3.14, the only reason that the restriction has to be placed on B is for the computation of the K-theory
of the maps ¢ and . More precisely, the restriction is used to obtain
[ o @] =[m o ¥] in Hom,(K(A), K(Q(C)))

in the proof of 3.14. Since A is KK-contractible, K(A) = {0}. Hence [ o @] = [ o ¥] = 0. Note that, since KK(A, A) = 0,
A satisfies the UCT. O

Lemma 3.17. If a separable C*-algebra B is KK-contractible, then AQ B is KK-contractible for any separable amenable C*-algebra
A.

Proof. Since B is KK-contractible, i.e., idg ~yx Op, there is a continuous path (in the strict topology) of pairs (qb;L s o0 ),
t € [0, 1], where

¢ :B—> MB®K), telo0,1],
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are homomorphisms such that

é(a)— ¢ (1) eBRKL, tel0,1], aeB,

(¢9 - ¢ ) =(ids,0) and (¢}, ¢;)=(0,0).
Let A be a separable amenable C*-algebra. Consider the two families of elements

P (a®b)=a®¢ (b)) cARMBRK)CMAR®B®K), acA, beB, tel0,1].

(Nuclearity of A implies that the two tensor products are unambiguous.) Then dﬁti(a ®b), t € [0, 1], are continuous paths
(in the strict topology) in M(A ® B ® K), and

O (a®b)— @ (a®b) = a® (¢ (b) — ¢ (b)) cA®BEK.

Moreover, (CD()*, @) = (idags, 0) and (451*, @) = (0,0). Therefore, idagg ~xx O, i.e., A ® B is KK-contractible, as
asserted. O

4. An isomorphism theorem

Recall that a non-unital C*-algebra A is said to have almost stable rank one if the closure of the set of invertible elements
in A contains A, and if this holds also for each hereditary sub-C*-algebra of A in place of A (see [44]).
Recall also that if A € D is a separable simple C*-algebra, then A ‘Ivlas (Blackadar) strict comparison for positive elements,

A has stable rank one, and the map from Cu(A) to LAff, (T(aAa) ) is an isomorphism of ordered semigroups (for any
non-zero element a € Ped(A)) (see 11.8 and 11.3 of [17])

In what follows, if A is a C*-algebra, we use A! for the unit ball of A. We will use the following reformulation of
Definition 2.5 given by 11.10 of [17] when Ky(A) = {0}.

Proposition 4.1 (11.10 and 10.8 of [17]). Let A be a separable C*-algebra in D with Ko(A) = {0}. Let the strictly positive
element e € A with |le|| < 1 and the number 1 > f. > 0 be as in 2.5. Thereisamap T : Ay \ {0} — N x R, \ {0} with the
following property: For any finite subset 7o C A, \ {0}, any ¢ > 0, any finite subset ¥ C A, any b € A, \ {0}, and any integer
n > 1, there are F-e-multiplicative completely positive contractive maps ¢ : A — A and { : A — D for some sub-C*-algebra
D =D ® ey € My(D) C A such that vs(e) is strictly positive in D and T-Fo U {fy,4(e)}-full as a map A — D,

n

X = (@)@ Y(X)@Y(X) D --- @Y (X)) <& for all x € FU e}, (4.1)
D eco, ¢p(e) < b, ¢p(A) L My(D), (4.2)
#(e) < w(e) and tofija(y(e)) > fe for all t € T(D). (4.3)

Definition 4.2. Let A be a C*-algebra with T(A) # @ such that 0 ¢ T(A) . There is an affine map rag : Asa — Aff(T(A) )
defined by

ra(a)t) = a(r) = t(a), T €T(A)", a € As,.

Denote by A% the space rag(Asa.), AL = rag(A;) and AY% = ra(A}).

Theorem 4.3. Let A and B be two separable simple amenable C*-algebras in the class D with continuous scale. Suppose that
both A and B are KK-contractible. Then A = B if and only if there is an affine homeomorphism y : T(B) — T(A). Moreover, the
isomorphism ¢ : A — B can be chosen such that ¢r = y, where ¢ is the map from T(B) to T(A) induced by ¢.

Proof. By Theorem 2.8, there exists a simple C*-algebra C = lim,,_, (G, 1,), where each C, is a finite direct sum of copies
of W and 1, maps strictly positive elements to strictly positive elements, which has continuous scale, and is such that

T(A) = T(C).

It suffices to show that A = C. (By symmetry, then also B = C.) We will use I" : T(C) — T(A) for the affine homeomorphism

given above. We will use the approximate intertwining argument of Elliott [ 14]. We would like recall that W is an inductive

limit of Razak algebras with injective connecting maps and the fact that A has stable rank one (see 11.5 of [17]). Fix two

sequences, {X1, X2, ..., Xn, ...} of Aand {y1, 2, ..., ¥n, ...} of C, which are dense in the unit ball of A and B, respectively.
Step 1: Construction of L.

Fix a finite subset 7; € A and ¢ > 0. Without loss of generality, we may assume that x; € 7; € A
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Since A has continuous scale, A = Ped(A) (3.3 of [32]). Choose a strictly positive element a; € A, with |ag] = 1 and
fa, > 0 as in Definition 2.5. We may assume, without loss of generality, that

gy =yag =y, ag > y*y and ap > yy* for all y € Fy. (4.4)

Let T : AL \ {0} - N x R, \ {0} with T(a) = (N(a), M(a)) (a € A+ \ {0}) be as given by Proposition 4.1 (11.10 and 10.8
of [17]).

Let §; > 0 (in place of §), let G; € A (in place of G) be a finite subset, let H1 o € A4 \ {0} (in place of #) be a finite
subset, and let K; > 1 (in place of K) be an integer as given by 3.16 for the above T, £/16 (in place of ¢), and F;. We may
assume that §; < &.

Without loss of generality, we may assume that 7y U#H;9 C G; € Al

Choose by € A \ {0} with d;(by) < 1/8(K; + 1).

It follows from Proposition 4.1 that there are G;-§;/64-multiplicative completely positive contractive maps ¢ : A — A
and ¥ : A — D for some D =D ®e; 1 € D® Myk,+1 S A with D € ¢ such that (D ® Mk, +1)¢o(A) = 0 and

2K1+1
X — (o @ Yo ® Yo ® - - @ Yo)(x)|| < minfe/128,8,/128} for all x € Gy, (45)
$o(ao) < bo, ¢olao) < Yo(ao), (4.6)

Yo(ao) is strictly positive in D, and, moreover, ¥ is T-H1,0 U {f1/a(ao)}-full as a map from A to D.
By (4.6), replacing ¢o by f;(do(ao0))¢of,(do(ao)) for some sufficiently small », applying a result of Rerdam (see also
Lemma 3.2 of [17]), as A has stable rank one (see 11.5 of [17]), one may assume that there is a unitary wy € A such that

wyo(a)wo € DAD. (4.7)
Define ¢y : A — A by ¢y(a) = diag(go(a), Yo(a)) for all a € A. Let D1y = My (D) and Dy, = Mok, 11(D). Let
Jj1: D — My, (D) be defined by

2K,
jild)=d®d®---@d for all deD.
Let
142K,

doo = ¥0(a0) ® ¥o(a0) @ - - - @ Yo(ao) € D ;.

Let 11 : D/m — A denote the embedding map, and let Cu™ (1) : Cu”(D’m) — Cu™(A) denote the induced map.

By 6.2.3 of [43], Cu™(A) = LAff (T(A)) (see also 7.3 and 11.8 of [17]). This also holds with C in place of A. Let
'~ : Cu”(A) — Cu™(C) be the isomorphism given by I"(f)(z) = f(I'(r)) for all f € LAff (T(A)) and = € T(A) (see
7.3 of [17]). By Theorem 1.0.1 of [43], there is a homomorphism h} : D} ; — C such that

Cu™(h}) =TI~ oCu™(11), in particular, (h}(dgy)) = I~ o Cu™ (11)({dgp))- (4.8)
Write hy = (h})Ip, ,, and C" = {c € C : chy(d) = hy(d)c = 0 for all d € Dy 1}. Note that
2K,

hi(Yo(a) @0 0@ --- @ 0)eC’ for all a€A.
Define hy : A— C’ by
2K
hy(a) = 1 (Yo(a) ®0D 0@ - @ 0) for all a € A.
Define L; : A — C by
2K
Li(a) = hy(a) & hi(Yo(a) & vo(a) @ - - - @ Yo(a)) for all a € A. (4.9)

Note that L; is G1-§1/64-multiplicative (see (4.5)).

Step 2: Construct H; and the first approximate commutative diagram.

It follows from Theorem 1.0.1 of [43], as A has stable rank one (by 11.5 of [17]), that there is a homomorphism
H : C — A such that

Cu™(H)=(I")". (4.10)
Note that (by (4.10), (4.6) and the definition of hy)
(H o hy(ao)) < (¥o(ao)) (4.11)
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in the C*-algebra A. Choose 81/4 > 1o > 0 such that
Ilfao (H © hg(ao))x — xII, lIx — xfyo(H o hy(ap))ll < min{e/128, §;/128} (4.12)

for all x € H o hy(G1). Again, since A has stable rank one (11.5 of [17]), by a result of Rerdam (see also 3.2 of [17]), there
is a unitary ug € A such that

usfyo (H o hy(ao))uo € Voo(ao)Avroo(do)= DAD, (4.13)

where
2Kq

——
Yoo(a) = Yo(a) OB OB --- B0 € My, (D) S A for all aeA

Set A | = usfy, (H o hy(ao))uoAuyf,,(H o hy(ao))uo. Define H' : A — Ay | C DAD by
H'(a) = ug(fy,(H o hy(ao)))H o hy(a)(f,,(H o hy(ag)))ue for all a € A.
Note that H' is a G;-8;/32-multiplicative completely positive contractive map. Moreover, by (4.12),
| Adug o H o hy(a) — H'(a)|| < min{e/128,8;/128} for all a € G;. (4.14)
Consider the homomorphisms Ad ug o H o hy o j; and 17 o j; (or rather 14 |Dl,1°jl)- Then, by (4.8) and (4.10),
Cu™(Adug oH o hy 0j;) = Cu™ (11 0j1). (4.15)

Put A" = {a € A:a L Ay,}. Then A’ is a hereditary sub-C*-algebra of A. Thus A" € D and Ko(A") = 0. Note that we may
view both 11 0j; and Ad ug o H o hy 0j; as maps into A’ (recall hy(A) L hq(D1,1)). By Theorem 3.3.1 of [43] (as any hereditary
sub-C*-algebra of A has stable rank one) and by (4.15), there exists a unitary u; € A’ such that

lui(Adug o H o hy o ji(x))us — 171 0 j1(x)|| < min{e/16, §;/16} for all x € ¥(G1). (4.16)

Writing u; = A +z with z € A’, we may view u; is a unitary in A. Note that, for any b € Aj ;, ujbu; = b. In particular, for
any a € A,

Adu; o H'(a) = H'(a) for all a € A. (4.17)

Note that the map 1" o yo : A — DAD is T-H;,0 U {f1/4(ao)}-full (see the last remark of 3.11), where ¢ : D — DAD is the
embedding. By Corollary 3.16, there is u; € A (see (4.7)) such that

IAduz o (H'(a) ® 11 0 ji 0 Yo(a)) — (do(a) ® 11 01 o Yro(a))ll < &/16 (4.18)

for all a € 7. Recall that H o Ly(a) = H o hy(a) @ H o hy o j; o yo(a) for a € A (see (4.9)). Combining with (4.14), (4.16),
and (4.17), we have

||Ad (uouluz) oHo Ll(a) —Ad U o (H’(a) Dn Oj] o lpo(a))” < 8/128 + 8/16 (419)
for all a € F;. On the other hand, by (4.5),

llida(a) — (¢p(a) @ 1101 o Yo(a))|l < &/16 for all a € F;. (4.20)
Put U; = uguqu,. By (4.20), (4.18), and (4.19), we conclude that
|lida(a) — AdU; o H o L1(a)|| < ¢ for all a € Fy. (4.21)

Put H; = Ad U; o H (note that H; is a homomorphism). Then we have the diagram

id
A—S+

| A

C

which is approximately commutative on the subset F; to within ¢.
Step 3: Construct L, and the second approximately commutative diagram.
We first return to C. Define A : Cl’q \ {0} — (0, 1) by
A(a) = (1/2)inf{z(a) : T € T(C)} (4.22)

(Recall that T(C) is compact, by 5.3 of [17] since C has continuous scale.)
Fix any 77 > 0 and a finite subset S; € C. We may assume that y; € S; € C! and L(F;) € Sy.
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Let Go.c C C (in place of G), H1,1 C}r \ {0} (in place of %), and H1 C Csq (in place of #;) be finite subsets, and
82 > 0 (in place of §) and y; > 0 (in place of y) be real numbers as provided by 7.8 of [17] for C, ,/16 (in place of &),
and S; (in place of F), as well as A above.

Without loss of generality, we may assume that S; U#H;, € Goc € CL.

Fix &, > 0 (with &; < £/2) and a finite subset 7, such that {x;, x,} UH(S;)U F; € F,. We may assume that 7, C Al.
Let

yo = min{y;, inf{A(@) : a € H1.1 U H12}}
Fix a strictly positive element a; of A with |a;| = 1. We may assume, without loss of generality, that
amy=ya, =y, a; >y*y and a; > yy* for all y € 7. (4.23)

Let the map T : A, \ {0} - N x R, \ {0} with T(a) = (N(a), M(a)) (a € A, \ {0}), be as in 4.1 (see 11.10 and 10.8 of [17])
as mentioned in Step 1.
Let &, > 0 (in place of §), let G, € A (in place of G) be a finite subset, let %, € A, \ {0} (in place of ) be a finite
subset, and let K; > 1 (in place of K) be an integer as given by 3.16 for the above T, £1/16 (in place of ¢), and 7.
Without loss of generality, we may assume that Hy(G2,¢), H1(H1,1 U H1.2), H20 S G2 C A' and 8, < min{8y, yo, §1/2}.
Choose K, > K; such that 1/K, < y/8. Choose b, o € A1 \ {0} with

dr(bz,o) < ]/S(Kz =+ 1). (4.24)

It follows from Proposition 4.1 (11.10 and 10.7 of [17]) that there are G,-§,/64-multiplicative completely positive
contractive maps ¢,0 : A — Aand ¥, : A — D, for some D; =D, ® e1; € Dy ® Myk,+1 € A with D, € Cg such that
(D2 ® M, +1)¢2.0(A) = 0,

Wyt 1
X — (¢2,0(%) B V2.0(x) B Y20(x) B - - & ¥20(x))|l < min{e;/128,8,/128}, x € G, (4.25)
¢2,0(a1) < bao, ¢20(ar) < ¥ olar), (4.26)

and v o(ay) is strictly positive in D,, and, moreover v, o is T-Ha,0 U {fi/4(a1)}-full in D,. As in Step 1, we may assume
that there is a unitary w; € A such that

wT¢>2,o(ao)w1 € D,AD, (see (4.7)). (427)

Define ¢, : A — A by ¢, o(a) = ¢20(a) ® Y20(a) for all a € A. Let Doy = My, (D2) and D) ; = My, +1(D2). Let
jz : Dz — MZKZ(DZ) be defined by

2K:
r—’;
jo(d) = diag(d, d, ..., d) for all d € D,.
Set
2Ky +1
dy 00 = V2.0(a1) @ ¥20(a1) D - - - @ Y2 0(a1) € DS ;.

With 1, : D,Z,l — A the inclusion map, consider the induced map Cu™ (i) : Cu“(D’ZJ) — Cu”(A). It follows from
Theorem 1.0.1 of [43] (as C has stable rank one) that there is a homomorphism h;, : D’z,] — C such that

Cu™(hy) = I'" o Cu™(12), in particular, (hy(d} ) = 1"~ o Cu™(12)((d} o)) (4.28)
Let hy = (h})Ip, ;- Denote by C” = {c € C : chy(d) = ha(d)c =0, for all d € D, 1}. Note that
2Ky

———
hy(Y20(a) 0D OB --- & 0)eC”, for all a€A.
Define h; , : A — C” by
2K,
N
h) o(@) = hy(Y20(@) ® 0B 0@ --- @ 0), for all acA.
Define L, : A — C by, for all a € A,

2Ky

Ly(a) = h o(a) @ ha(Y2,0(a) ® Yr2,0(@) ® - - - ® Y2,0(a)) = hj (@) @ hy 0 jo(Yr2,0). (4.29)
By (4.28), (4.25), (4.26), and 1/K; < y0/8, we have, for all a € G,

[T(hz 0 j2(V2,0(a))) — I'(z)(@)l = |I'(7)(2(v2,0(a))) — I'(z)@)l < v0/128 + yo/8. (4.30)
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It follows (see (4.29)) that
Iz(Ly(a)) — I'(z)(a)l < y0/128 + y0/8 + 10/8, for all a€ G, and for all = € T(C). (4.31)
Since Cu™(H;) = Cu™(H) = (I"")~!, I'(z)(H;(x)) = t(x) for all x € C and t € T(C). Thus
supf{|t o Ly o Hi(x) — t(x)| : T € T(C)} < o< y1, for all x € H11UHq,. (4.32)
This implies that, in particular,
(L) o Hy(b)) > A(b), b e Hys. (4.33)

Note also that, by construction of C, Ko(C) = K;(C) = {0}, and so we may apply 7.8 of [17]. In this way, by (4.32) and
(4.33), we obtain a unitary V; € C such that

|Ad V; o Ly o Hy(a) — idc(a)|| < n1/2, for all a € S. (4.34)
Set L, = Ad V; o L,. We have the diagram
A L> A
Ly \L / le
Hy
c——¢(,
id
with the upper triangle approximately commuting on 7; to within ¢ and the lower triangle approximately commuting
on S to within 7;. Also note that L, is G,-85/64-multiplicative.

Step 4: Show that the process continues.
We will repeat the argument of Step 2.

Recall
Cu~(H)=(I"")"L. (4.35)
Thus
(H o hj o(a1)) < (V2.0(a1)) (4.36)

in the C*-algebra A, where hj ; = AdV; o h) ;. Put hy = Ad V; o h,.
Choose 8;/4 > 11 > 0 such that

Ilfai (H © h o(a))x = x|I, [1x — xf,,,(H o hj o(a1))ll < min{e,/128, §,/128} (4.37)

for all x € H o ), ((G,). Since A has stable rank one, by a result of Rerdam (see also 3.2 of [17]), there is a unitary uy o € A
such that

u3 ofy; (H 0 hy o(a1))iz.0 € ¥2,00(a1)AV2,00(a1) = D2AD,, (4.38)

where

2%,
¥2.00(a1) = (Y2,0(a1) 000D --- & 0).

Set Ay, = U5 ofy, (H o hj o(a1))uz,0Au; ofy, (H o hj o(a1))uz 0. Note that A is a hereditary sub-C*-algebra of A. Define
H" :A— A/Z,O C D2AD2 by

H"(a) = u5 o(fy, (H o h o(a1))H o hj o(a)(f,, (H o hy o(a1)))uz,e for all a € A.

Note that H” is a G,-8}/32-multiplicative completely positive contractive map. Moreover, by (4.37),
[Aduz,0 o H o hy o(a) — H"(a)|| < min{e,/128, 8,/128} for all a € G,. (4.39)
Consider the two homomorphisms Adu, g o H o h o j, and 1, o j,. Then, by (4.28) and (4.32),
Cu™(Aduy o Hohy oj;)=Cu™ (1 o ja). (4.40)

PutA” ={a€A:a L A} Note that we may view both 1 o j and Ad i o o H o hj o j, as maps into A”. It follows from
Theorem 3.3.1 of [43], as A”, a hereditary subalgebra, has stable rank one, that there exists a unitary u, ;1 € A” such that

||u§,1(Ad Uz o Hohy oja(x))uz1 — 12 0 ja(x)|| < min{e,/16, 85/16} for all x € Yz 0(G2). (4.41)



18 G.A. Elliott, G. Gong, H. Lin et al. / Journal of Geometry and Physics 158 (2020) 103861

Writing u; 1 = A + z’ for some z’ € A”. Therefore we may view u,; as a unitary in A. Note that, for any b € D,AD,,
u;‘Jbuz,l = b. In particular, for any a € A,

Adu, 1 o H'(a) = H"(a) for all a € A. (4.42)

Note that the map 1” o ¥, o : A — D,AD; is T-H1,0 U {f1/4(a1)}-full (see the last remark of 3.11), where 1" : D, — D,AD;
is the embedding. By Corollary 3.16, there is a unitary u; ; € A (see (4.27)) such that

[Aduz2 o (H"(a) ® 13 0 j2 0 ¥2,0(a)) — (¢5.0(@) D j2 © Y2.0(a))|| < €2/16 (4.43)

for all a € F5. Recall that H o L,(a) = H o h/z’,o(a) @ H o hy oji o Yo(a) for a € A (see (4.29)) and the line after (4.36).
Combining with (4.39), (4.41), and (4.42), we have

1A (uz,0t2,112.2) 0 H 0 L(a) — Ad uz o (H"(a) @ 1 0 jz 0 Yra.0(a))[| < £2/128 + £2/16, (4.44)
for all a € 7. On the other hand, by (4.25),

llida(a) — (¢5,0(a) @ j2 © Y2,0(a))ll < &2/16 for all a € 7. (4.45)
Set U, = Uy gllz,1Uz2. By (4.45), (4.43), and (4.44), we conclude that

llida(a) — AdU; o H o Ly(a)|| < &, for all a € 7. (4.46)
Thus, we have expanded the diagram above to the diagram

A id A id A

| Sl

C——C
id

)

where H, := AdU, o H (which is a homomorphism), with the last triangle approximately commuting on /5 to within
&(< g/2).

After continuing in this way (to construct L3 and so on), the Elliott approximate intertwining argument (see [14],
Theorem 2.1) shows that A and C are isomorphic. O

Corollary 4.4. Let A be a non-unital simple separable amenable C*-algebra with continuous scale and satisfying the UCT.
Suppose that A € D and Ko(A) = Ker pa, where p, is the canonical map Ko(A) — Aff(T(A)). Suppose that B € Dy satisfies
the UCT, has continuous scale and satisfies Ko(B) = K{(B) = {0}, and suppose that there is an affine homeomorphism
y : T(B) — T(A). Then there is an embedding ¢ : A — B such that ¢r = y.

Proof. Since ker p4 = Ko(A), then, in the previous proof, I" (extended to be zero on Ky(A)) now gives a homomorphism
from Cu™(A), which is equal to Ko(A)ULAff (T(A)), by 6.2.3 of [43] and 7.3 of [17], to Cu™(C), where C is a simple inductive
limit of Razak algebras with continuous scale such that T(A) = T(C). Note that it follows from Theorem 4.3 that C = B. We
simply omit the construction of H; and keep Step 1 and Step 3 (in the (new) first step now we ignore anything related
to Step 2). A one-sided Elliott intertwining yields a homomorphism from A to C. O

5. Tracial approximation and non-unital versions of some results of Winter

Lemma 5.1 (Prop. 2.1 of [55]). Let A be a simple C*-algebra (with or without unit) belonging to the reduction class R, and
assume that A has strict comparison.
Let F be a finite dimensional C*-algebra, and let

¢:F—>Aand ¢;:F > A for all ieN (5.1)

be c.p.c. order-zero maps such that for each c € F, and f € CJ((O, 1]),

Jim Sgg)lf(f@)(C) —f(¢i)c))l =0 and (5.2)
lim sup [If(#:)(c)ll < IF(@)C)Il- (53)

It follows that there are contractions

sieMyQ®A for all i e N
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such that
lim [|s;(14 ® ¢(c)) — (e1,1 ® pi(c))sill =0 for all c € F and (5.4)
ill“ol l(e1.1 ® ¢i(c))sis; — e1,1 @ ¢i(c)| = 0. (5.5)

(See 4.2 of [56] for the definition of f(i) where i is an order zero map.)
Proof. The proof is the same as for Proposition 2.1 of [55] (the argument does not require the C*-algebra to be unital;
the hypothesis of strict comparison is sufficient for the argument to proceed). O

The following lemma is a slight modification of 4.2 of [54].

Lemma 5.2. Let A be a separable C*-algebra with nuclear dimension at most m. Let (e,) be an increasing approximate unit
for A. Then there is a sequence of (m + 1)-decomposable completely positive approximations

~ b~
A—>F"0F'e @F"eC —>A j=12..

(ie., each q7>j|Fu) is of order zero) such that, foreachj=1,2,...,
j

G(E)SA 1=0,1,....m, (5.6)
(f)jlc(l(c) =1; —en, for some en; in the approximate unit (e,), and (5.7)
Jim lgys@) —al =0, lim 69" (1)a — §"9; (@I =0, 1=0,1,....m, acA, (58)

where (;5;') and 1/7].(” are the restriction of ¢; to Fj(l) and the projection of ¥; to Fj('), respectively.

Proof. Let F C A be a finite set of positive elements with norm one, and let & > 0 be arbitrary. Each element a € F may
be written as m(a) - 13 + x(a), where m : A — C is the canonical quotient map and x(a) € A. Let {e,} be an approximate
identity of A with e,,1e, = eyen1, n = 1,2, .... Choose N such that

llexx(a)ey — x(a)|| < &/4 and ||x(a)|| < 2 for all a € F. (5.9)
Set e = ey, and, for a € 7, d’ = n(a) - 1; + exx(a)ey. It follows that a — a’ € A. Moreover,

la—d| <e/4, de=ed, and (¢ —m(d) 13)(1—e)=0 (5.10)
/

~ . . . 1,1 1 1
where 7 : A — C is the canonical quotient map. Denote by 7’ the set of such d'. Let 7; = {e2d'e2,e2(a—d')e2 : a €

F,a € F'}. Then choose a factorization

AV S FOGED g ... gFm _% o 4

such that
lp(w(x)) — x|| < e/4 for all x € Fy, (5.11)
and the restriction of ¢ to each direct summand F®, 1 =0, 1, ..., m, is of order zero.
Then, define maps
ViAsars ylezae?)®r(a) e FO@FV @ ... @ F™)@C, and (5.12)
$:FOeFV@...@ F™) @ C > (a, 1) ~ ¢(a)+ A(1 —e). (5.13)
For any a € 7, one has,
I$(¥(a) — all = lIg(¥(a)) + d(¥(a —a)) —d —(a—d)|
< llp((a) = d'll + g(¥(a—a)) —(a—a)|
= ¢ (d) —d | + llp(¥(a—d) —(a—d)|  (recalla—a €A)
< lg((a) —d'll +¢/4 (see (5.11))
= llp((eaed)) + n(a)1~e)—d|| +e/4
< ||e%a/e% +rd)1—e)—d|+e/2<¢ (see (5.10)).
It is clear that the restriction of ¢ to each direct summand F) of FO 9 FV @ ... F™ g C, 1 =0, 1, ..., m, has order

Zero.
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Since F and ¢ are arbitrary, one obtains the (m + 1)-decomposable completely positive approximations (ij, &j),
j=1,2,..., which satisfy (5.6) and (5.7) of the lemma. _ _

In the same way as in the proof of Proposition 4.2 of [54], ¥; and ¢; can be modified to satisfy (5.8). Indeed, consider
the maps

Ui A am 51 1)t e BP0 F @ 0 FM) @ C,

where the inverse is taken in the hereditary sub-C*-algebra generated by 1/7(1;), and
b FOF @ - o F™) @ C 5 ar (1 ad(17)?) € A

Then the proof of Proposition 4.2 of [54] shows that
Jim 16°9;°(@) = "0} ()és@l =0, aeA 1=0.1,....m

Note that (1) = 1¢. One has that 7(13)Cr(13) = C, and the restriction of&b to C is the map A — A(1—e). It follows
that the decompositions (v}, ¢;) satisfy the requirements of the lemma. O

Definition 5.3. In the next statement, denote by S a fixed class of non-unital separable amenable C*-algebras C such that
T(C) # @ and 0 ¢ T(C)". If C € S and ec € C is a strictly positive element, define A;(C) = inf{d.(ec) : T € T(C)" }, where
d.(ec) = lim,_¢ z(f:(ec)).

Suppose that C = U2 C is a simple C*-algebra such that C; C C,y1 and C, € S, n € N. Suppose that C has continuous
scale. In the following statement we assume that there are e, € G, with |e,|| = 1 satisfy

(1) {en} forms an approximate identity for C and d;(e;) > 1 — 1/n for all t € T(G) for all m > n.

This, in fact, is always the case when G, € S and C has continuous scale. Let ¢, € C, be a strictly positive element
with ||c,|| = 1. Then ¢ = Z cn/2”+1 is a strictly positive element of C. Thus {c'/¥} forms an approximate identity for
C. Since C has continuous scale, t(c'/*) /' 1 uniformly on T(C). Put d, = Y cj/Zf“ Then dY* < d}/*" if n < m and

k < ki. Note that dl/k € C,. It follows that a choice of subsequence of the form {d } forms an approximate identity. So,
passing to a subsequence, we relabel it as ¢, € C,. Note that t(c,) — 1 uniformly to 1 on T(C). We may assume that
t(cy) > 1 —1/2n for all t € T(C). One then shows that, for each fixed n, there is N(n) > n such that 7(c,) > 1 — 1/n for
all T € T(Gy) for all m > N(n), using a weak* compactness argument. This, by passing to another subsequence, implies
(1) holds.

Note also condition (1) implies that A,(C;) > 1— 1/n.

The following is a non-unital version of 2.2 of [55].

Theorem 5.4. Let A be a stably projectionless separable simple C*-algebra in R with dimp,.A = m < oo.

Fix a positive element e € AL with 0 < e < 1 such that t(e), t(fi/2(e)) = 1o > 0 for all T € T(A). Let C = Uﬁil C, be
a non-unital simple C*-algebra with continuous scale, where C, C C,.1 and C, € S which also satisfies condition (1) in 5.3.
Suppose that there is an affine homeomorphism I" : T(C) — T(A) and suppose that there are sequences of completely positive
contractive maps oy, : A — C and homomorphisms p, : C — A such that

nlim llon(ab) — ox(a)oy(b)|| =0, a,b €A, (5.14)
nlirgo sup{|t ooz(a) — I'(t)a)| : t € T(C)} =0, a€A, (5.15)
lim sup{|t(pn o op(a)) — t(a)| : T € T(A)} =0, ae€A, and (5.16)

oy(e) is strictly positive in C for alln € N.

Then A has the following property: For any finite set ¥ C A and any ¢ > 0, there are a projection p € My mﬁ)(A
sub-C*-algebra S € pMygn42)(A)p with S € S, and an F-e-multiplicative completely positive contractive map L : A — S such
that

(1) Ip, 1gmy2y @ alll <&, ae F,
2) (14m+2) ® a)p €e S,aeF
3) IL(a) — p(1am+2) @ A)pll < &, a € F,
4) p~eq1in My m+2)(A)
5) T(L(e)), (fi2(L(e))) > Tro/32(m + 2) for all T € T(Mymy2)(A)),
6) (14m+2) — P)Magn+2) (A 14gm42) — P) € R, and
)

7) t(fi/a(L(e))) = (3r0/8)As(Cy) for all t € T(S).

—~ o~ o~ o~ o~ —~

Proof. Since A has finite nuclear dimension, one has that A = A ® 2 [54] for the unital case and [49] for the non-unital
case). Therefore, A has strict comparison for positive elements (Corollary 4.7 of [47]).
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The proof is essentially the same as that of Theorem 2.2 of [55]. We give the proof in the present very much analogous
situation for the convenience of the reader. Let e € A, with |le|| = 1, T(e) > ro, and ©(f1/2(e)) > 1o for all T € T(A).

Let (e;) be an (increasing) approximate unit for A. Since A € R, and since A is also assumed to be projectionless,
one may assume that sp(e;) = [0, 1]. Since dimp,(A) < m, by Lemma 5.2, there is a system of (m + 1)-decomposable
completely positive approximations

~ Y b~
A—=rF"eFe oF"eoC—=A4 j=12..

such that
#(F")C A, 1=0,1,....m, and (5.17)
#ilc(1c) = 1z — ¢, (5.18)
where e; is an element of (e;).
Write

¢ =¢jl,o and "V =glc, 1=0.1,....m
J

As in Lemma 5.2, one may assume that

Jim 16"y (e — ¢’y @l =0, 1=01,....m aeA (5.19)

Note that ¢(l) F(” — A is of order zero, and the relation for an order zero map is weakly stable (see (P) and (P1) of 2.5

of [30]). On the other hand, if i is large enough, then o; o ¢>( satisfies the relation for order zero to within an arbitrarily
small tolerance, since o; will be sufficiently multiplicative. lt follows that there are order zero maps

] F ] C
(p;,i) : J( :

lim [1§{3(c) — oi(¢ (N = 0. ceF.

We will identify C with S; = pi(C) € A, 0; : A — C with pjo0; : A — S; C A and ¢}, with p; o §\. There is a positive
linear map (automatically order zero)

¢J(T+l) C>1m 1z —oile) € §,‘ =C*S;, 1) < Z, ieN.

Note that
Fit ) = ale" o). re ™ =c, (5.20)

where one still uses o; to denote the induced map A— SN,
Note that foreach[=10,1,...,m,

lim f()(c) = aif (8NN = 0. ¢ € (F)r. f € Col(0. 1])s
(see the comment before the proof of 5.1 for the notation f((}}y’i)) and f(q)}]))) and hence, from (5.16),

lim sup |7(f(${))(c) = f(@{" W)l =0, ce(F), feCol(0,1]);.

=00 7€T(A)

Also note that
lim sup [If(@ )OI < IF@"N). ¢ € (F). f € Col(0, 11)s-

1—00

Applying Lemma 5.1 to (&;’?)ieN and ¢ng) for each1 =0, 1, ..., m, we obtain contractions

si1 € Ma(A) S My(A), i€ N,

such that
lim 15314 ® ¢,"(c)) — (11 @ Fi3(c)s 3 =0, c € F. and (5.21)
lim fl(er1 ® Gj(0))s(s)" — 11 @ G(0)] = 0. (5.22)

Note that sp(e;) = [0, 1]. Put Co = Co((0, 1]). Define
Aj(f) = inf{z(f(e;)) : T € T(A)} for all f € (Co)+ \ {0} (5.23)
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Since A is assumed to have continuous scale, T(A) is compact and A]‘(f) > 0 for all f € (Co)+ \ {0}. For I = m + 1, since
sp(e;) = [0, 1], by considering A; for each j, since i is chosen after j is fixed, by applying A.16 in the Appendix, one obtains
unitaries

sj(.f?ﬂ) €A, ieN,

such that
. +1 +1
lim ||s](.T )Ej — U,-(Ej)Sj(-j? I =o,
1—00
and hence
1 +1)
11m ||s(er (5 —e) — (17 — oiej))s; s = o.

By (5.18) and (5.20), one has
‘lim ||S§Z1+1)¢jgm+1 (c) — ¢(m+1)( )s m+1)|| =0, ce Fj(m+1) —C.
1— 00

m+l)

Considering the elemente;; ® s ( ) e My ® A, and still denoting it by Sii . we have
11m IIs (m+1)(14 ®¢]§m+l)(c)) (e ¢(m+1( ))s m+1)” 0, ce Fj(l)
and
(e11 ® G NS T =11 @ BT (c).
Therefore,
lim 51 @ ¢°(c) — (er1 @ $NN =0, ceF 1=01,.. ,m+1 (5.24)
lim fi(er1 ® G(e)sii(si)" — Gl =0, ce K 1=0.1,....m+1. (5.25)

Let &; :A— Cand 0i - € — A denote the unital maps induced by o; : A — C and p; : C — A, respectively.
Consider the contractions

S0 = (e € Ma @A), 1=0,1,....m+1, j=12,....
By (5.24) and (5.25), these satisfy

5 (14 @1y (c)) = (1.1 ® p5 () (c)))s; and

(e11® p oG (g (NS (s\")" = (e1.1 ® p o 5(¢\ (),
where

5 Fo = [TC/DT and 5 [[C/DT - A
are the homomorphisms induced by 6; and p;, and the map
71 (Ao = (Ao )

is the embedding induced by the canonical embedding ¢ A (Z)oo.
Let

7 Aco = (Ao )oo
denote the homomorphism induced by the composed map
56 : Ase — (A)oos
Foreachl=0,1,...,m+ 1, let
PO ]_[ F /@F — Ay and (5.26)

‘A HF(I)/@ F (5.27)

denote the maps induced by d)}l) and 1//}”.
Consider the contraction

0= (5) € (My ® Ao )
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Then
(1, 019009 (@) = (e11 ® 7" (@)%Y, aeA, and
(er.1 ® 7" V()G = (e11 ® 79" 9 a)).
By (5.19), one has
$"9O130a) = ¢y V(a), aeA

In particular,

1

@ (13)24(a) € C(V P (A)),
and hence
(1, ® @9 O(17))2 X1 ® W) = $°(14 @ PP V(15)? ()
= (e11 ® 7(@VPO(17)7 ()5
= (e11 ® 7@ @PPO(17))7 5O

= (e11 ® P((@)))er1 ® PPy O(17))2 )50, (5.28)
Set
m+1 .
=) e ®(er1 ® e vP(1z)25")
=0
m+1 : N
=) e ® (14 @' "(17))2) € Mpy2(C) ® My(C) ® (Asg )ox-
1=0
Then
m+1 o
0t =Y e ® (11 ® 7T (17) = e ® 11 ® P(13).
1=0

Thus, v is an partial isometry. Moreover, for any a € A,

m+1
(e ® L @T(@) = Y €11 ® (V(14 @ 760 (17)? (14 ® U(0)))
I=
m+01 o .
=Y en®(e11 ® pa))er: ® 7Y (15)250))  (by (5.28))
1=
’ m+1 o ]
= (e11®e11 @ 7)) e ®er @ p(¢"¥ (17)25")
1=0

= (e1,1 ®e1,1 ® y(«(a))v.
Hence
T*5(Insz ® 14 @ 1(a)) = 7*(e11 ® 1.1 @ 71(a))D = (Imyz ® 14 @ 1())0*D, a € A.
Then, for any finite set G C A and any § > 0, there are i € N and v; € Mp,42(C) ® My(C) ® A such that

vivy = e 1 ®e1 ®pi(ls) =er1®er1 ® 13, (5.29)
v vi, Imt2 ® 1a®al|| < § for all aeg, (5.30)
v/ vi(Imi2 ® 14 @ a) — vi*(e1,1 ® e1.1 @ pidi(a))vill < § for all a e G and (5.31)
7(p;i o gi(e)), T(fi/2(pi o oi(e))) = 1519/16 for all T € T(A). (5.32)

Define «; : §, — M2 @ My ® A by
ki(s) = vi*(e1,1 ® e11 ® pilS))vi.
Note that
Ki(Si) € Mtz @ My ® A.
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Then «; is an embedding; and on setting p; = 1,5, = v;'v;, one has

(i) pi~ e 1 ®e1 ® 13,
(i) Ipi, Im2 ® 14 ®@alll <8, a €,
(iii) pi(lms2 ® 14 @ a)p; €5 «i(Si), a € G.

Note that A is Z-stable (by [54]) and hence has strict comparison (by [47]). Let e € (14m+2) — Pi)Mam+2)(A)(1agm+2) — Pi)
be a strictly positive element. By (i), d:(e) = t(lagnt2) — Pi) = T(lagme2) — €11 @ €11 ® 1) for all © € T(A), where
T is naturally extended to A. Since A and Maym2)(A) have continuous scale, T +— d. is continuous on T(A). Hence
(1agm+2) — Pi)Mym42)(A)( 1am+2) — pi) also has continuous scale (see 5.4 of [17]) and is still in the reduction class R (so
condition (6) holds).

Define L; : A — «i(S;) by Li(a) = vi*(e1,1 ® e1,1 ® pi(oi(a)))v; for all a € A. Then

(iv) IILi(a) = pi(1am+2) ® a)pill <158 for all a € g and
o

(v) T(Li(e)), T(f1/2(Li(e))) = 64m+2) for all © € T(Mym12)(A)).
Let 7; € T(k;(S;)). Then 7;0L; is a positive linear functional. Let f be a weak *-limit of {r;oL;}. Note that, for any 1/2 > & > 0,
since A has continuous scale, there is e4 € A with |le4|| = 1 such that 7(es) > 1 —¢/2 for all ¢ € T(A). By (5.16) (see also
(5.29)), we may assume that t; o Li(ea) > 1 — ¢ for all large i. It follows that f(e4) > 1 — e. Hence ||| > 1 — ¢ for any
1/2 > & > 0.1t follows that f is a state of A. Then, by (5.14) and (5.16), t is a tracial state of A. Therefore, with sufficiently
small § and large G (and sufficiently large i), by also (5.32), we may assume that

t(f1/a(Li(e))) = 7rp/8 for all t e T(k;(S;)). (5.33)

Since «;(S;) = C, we may write «;(S;) = U;‘;] Sin,» Where each S;, = C, and, by condition (1) of 5.3, there exists a
positive element ec € S;1 C Si, with |lec|| = 1 such that t(ec) > As(C;)/2 for all t € T(S;,) for all n > 1. Since each S; ,
is amenable, there exist completely positive contractive maps @, : «;i(S;) — Si., such that

lim ||®a(s) —s|| = 0 for all s € (S;) and ||@nlec) — ec|l < 1727+, (5.34)

n—oo
We assert that, for all sufficiently large n,

t(f1/4(@y o Li(e))) > (3ro/8)As(Cy) for all t € T(S;,). (5.35)
Otherwise, there exists a sequence (n(k)) and t; € T(S; ) such that

tr(f1/4(Puqry 0 Li(e))) < (3ro/8)As(C1). (5.36)
Note that, since ec € S; n(k), t+1 I5;.n0 € T(Si nk))- Let to be a weak™ limit of {ty o @y }. Then, by (5.36),

to(f1/a(Li(e))) < (3r0/8)As(Cy). (5.37)

Note that ty(ec) > As(C7)/2 for all k. Thus, by (5.34), one computes that to(ec) > A5(Cq)/2. It follows that ¢ty is a trace of §;
with |tg]| > As(C1)/2. Then, by (5.33),

to(f1/a(Li(e))) = (710/8)(A(C1)/2). (5.38)
This contradicts (5.37) and so the assertion (5.35) holds. We then define L = &, o L; for some sufficiently large n (and i).

The conclusion of the theorem follows from (i),(ii), (iii), (iv), (v), and (5.35). O

Lemma 5.5. Let A be a stably projectionless simple separable C*-algebra with almost stable rank one (recall that by definition
this includes hereditary sub-C*-algebras). Suppose that A has continuous scale and has strict comparison for positive elements.
Suppose also that the map 1 : W,(A) — LAff, (T(A)) is surjective. Suppose that there are 1 > n > 0 and 1 > A > 0 such
that every hereditary sub-C*-algebra B with continuous scale has the following property:

Let ro > 0 and let ag € By be a positive element with |lap|| = 1 with t(ag) > ro and t(fi2(ap)) = 1o > 0 for all
© € T(B). Suppose that, for any ¢ > 0, any finite subset 7 C B, there are F-e-multiplicative completely positive contractive
maps ¢ : B — B/, where B’ is a hereditary sub-C*-algebra of B, and  : B — D for some sub-C*-algebra D C B, and D 1 B,
such that

Ix — (¢(x) + ¥ ()l < & for all x € FU{ao}, (5.39)
d:(¢(ao)) < 1—n for all T € T(A), (5.40)
T'(¢(ao)), '(fi2(p(a0))) = 10 — & for all 7" € T(B), (5.41)
D e cyle cy), (5.42)
t(¥(ao)) = ron for all T € T(B), (5.43)
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t(f17a(¥(ap))) = roA for all t € T(D). (5.44)
Then A € D (or Dy).

Proof. Let by € A, \ {0} with ||bg|| = 1. Choose k > 1 such that
(1 —n/2) < inf{d,(bo) : T € T(A)}. (5.45)

Choose a strictly positive element ap € A with |lag|| = 1 such that t(ap), t(fi/2(a0)) > 1 — 1/64 for all T € T(A). Put
ro = 1—1/64 and put f, = (r9/2)A.
Fix 1 > ¢ > 0. Put &1 = min{roe/2(k + 1), ron/4(k + 1)}. We choose §; > 0 small enough such that

Ifor(@') = for (D)l < €1, (5.46)

whenever ||’ — b'|| < §; for any 0 < a’, b’ < 1 in any C*-algebra, where ¢’ € {1/2, 1/4}.
Fix a finite subset 7 C Al. Let §; = min{8;/2(k + 1), £1/2(k + 1)}. Choose some g € Co((0, 1]) with 0 < g < 1 and let
= g(ap) such that a; > ag and

laixa; — x| < §,/64 for all x € FU {ap}. (5.47)

Let 7; be a finite subset containing 7 U {a;, fi/4(a;), fi,2(a;) : 1= 0, 1}.

By hypothesis, there are 7;-8,/64-multiplicative completely positive contractive maps ¢; : A — B/, where B’ is a
hereditary sub-C*-algebra of A, and v/; : A — D; for some sub-C*-algebra D; € A such that D; € ¢ (or € Cg/ » D1 L ¢/(A),
and

X — (@(%) + ¥1(x))|| < 82/16 for all x € F, (5.48)
d.(¢j(a0)) < 1—n for all t € T(A), (5.49)
T'(¢7(a0)), T'(fi/2(#7(a0))) = 10 — 82/16 for all v’ € T(B') (5.50)

T(¥1(ao)), T(fi2(¥1(ao))) > ron for all © € T(A), (5.51)

t(fi/a(¥1(ap))) = roA for all t € T(Dy). (5.52)

We have, by (5.47),
¢ (a1)p1(x)¢i(ar) — ¢ (x)ll < 82/8 for all x € 7. (5.53)
Therefore, for some o > 0,
I ()@ (X (¢1(a1)) — $1(X)]| < 62/4 for all x € Fy. (5.54)
By 7.2 of [17], there exists 0 < e < 1 such that

fo (@) < e < fo($1(@r) (5.55)

and d.(e) is continuous on mw, where 0 < ¢’ < o /4. Define ¢y : A— A by

#1(a) = e'?p)(a)e'/? for all a € A. (5.56)

We also have
e'2(¢1(a1) — 0'/2), )" < e pi(ar)e? <. (5.57)
But

e = e'/’f(¢i(an)e!’? < eX((2/0")¢i(ar) — 0'/2)1 ) (5.58)

= (2/0" e (¢1(a1) = 0'/2)4)e"?). (5.59)

Combining these two inequalities, we conclude that d,(¢:(a;)) = d.(e) for all t € T(A). In particular, d.(¢1(a)) is
continuous on T(A). By (5.54), we have

l¢7(a) — ¢p1(a)ll < 82/4 for all a € 7. (5.60)
By the choice of §;, we have

If1/2(¢1(a0)) — fr2(1(@0))ll < &1 (5.61)
It follows that

' (fi2(P1(ag))) = 1o — 82/16 — &1 for all =’ € T(B'). (5.62)

Put By = ¢1(a1)A¢1(ay). Then by 5.4 of [17] By has continuous scale. Note ¢; maps A into B;. We also have
lx — (¢p1(x) + Y1(x))|| < §2/2 for all x € Fy. (5.63)
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Moreover, since B; C B/, we have B; L D4, and

T'(¢1(ao)), T'(f12(P1(a0))) = 19 — 82/16 — g for all v’ € T(By). (5.64)

Since By € D (or in Dy), we can repeat the process above for By. Therefore we may now apply the hypothesis to By in
place of A, and continue the process and stop at stage k.

In this way, we obtain hereditary sub-C*-algebras By, By, . . ., By, and sub-C*-algebras D1, D, .. ., Dy such that Bi; C B;,
Bi L Dy, Diyq € Bi, D; € ¢ (or 08/), Fi-8,/16 - 27 _multiplicative completely positive contractive maps ¢iy; : Bi — Biy1
and ¥, : B = Dj;1 such that

Fir1 = {i(%); x € Fi, 6, f12(6), fia(c;), j =0, 1},
where g =@¢jopi_10---0¢i(q),j=0,1,i=1,2,..., k-1,

X = ($is1(x) ® Yiga (X))l < 82/2" for all X € Fiyq (as in (5.63)), (5.65)

do(pir1(cio)) < (1 — )T for all T € T(A), (as in (5.49), see also (5.56)), (5.66)

(@ir1(6i0)), T'(f1/2(Pira(Cio))) = (ro — (i + 1)(82/16 + &1)) (5.67)
for all " € T(Bi;1) (as in (5.62)),

T(Yir1(cio)) > (ro — (i + 1)(82/16 + &1))n for all T € T(B;) (as in (5.51)), (5.68)

t(fr/a(¥ir1(cio))) = (ro — (i + 1)(82/16 + £1))A for all t € T(Diy1) (as in (5.52)), (5.69)

and B;, has continuous scale,i = 1, 2, ..., k— 1. Note that (ro —k(8,/16+¢1)) > ry/2. Let D = @fﬂ Diandlet¥ :A— D
be defined by

Y(a) = (Y1(a)) © ¥2(91((a)) ® - - - ® Yu(r—1 0 - - - 0 p1(a))) for all a € A.
By (5.65), with @ = ¢ odr_10---¢1:A— By,

X — (D(x)® ¥(x))|| < e for all x € F, (5.70)
t(fija(¥(ao))) = (ro/2)A = fo for all t € T(D), (5.71)
We also have D € ¢}, or D € CJ.
Moreover,

d.(®(ap)) < (1 —n)k for all T e T(A).
This implies, by (5.45), that
@(ap) < bo, (5.72)

since A is assumed to have strict comparison for positive elements. By (5.70), (5.71), and (5.72), we conclude that A is in
Dorin Dy O

Definition 5.6 (10.1 of [17]). Let A be a non-unital and o -unital simple C*-algebra. A is said to be tracially approximately
divisible in the non-unital sense if the following property holds:

For any ¢ > 0, any finite subset 7 C A, any b € A, \ {0}, and any integer n > 1, there are o-unital sub-C*-algebras
Ao, Aq of A such that

dist(x, By) < ¢ for all x € F,
where Bd CB:= Ao D Mn(Al) CA, Ao 1 Mn(A1),
n
——
By = {(X0, X1, X1, ..., X1) : Xo € Ao, X1 € Ay} (5.73)

and ag < b, where aq is a strictly positive element of Ay.

Theorem 5.7. Let A be a stably projectionless separable simple C*-algebra in the class R with dimy,c,A = m < oo.

Suppose that every hereditary sub-C*-algebra B of A with continuous scale has the following properties: Let ez € B be a
strictly positive element with |eg|| = 1 and t(eg) > 1— 1/64 for all T € T(B). With C the unique non-unital simple C*-algebra
C in Mo N R such that T(C) = T(B), for each affine homeomorphism y : T(B) — T(C), there exist sequences of completely
positive contractive maps o, : B— C and homomorphisms p, : C — B such that

nlim llon(ab) — op(a)on(b)|| =0 for all a,b € B, (5.74)
nlirgo sup{|t o on(a) — y " (t)(a)| : t € T(C)} =0 for all a €A, (5.75)
nlim sup{|t(pon o on(b)) — t(b)| : T € T(B)}= 0. (5.76)

Suppose also that every hereditary sub-C*-algebra A is tracially approximately divisible. Then A € Dy.
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Proof. By [49] (see also [54]), A ® 2 = A’ for every hereditary sub-C*-algebra A" of A. It follows from [44] that A has
almost stable rank one. Let B be a hereditary sub-C*-algebra with continuous scale. Then B has finite nuclear dimension
(see [57]). By [49] again, B is Z-stable. It follows from 6.6 of [19] that the map from Cu(A) to LAff, (T(B)) is surjective.
Note that the map from W(A), to LAff, , (T(A)) is surjective. We will apply Theorem 5.4 and Lemma 5.5.

Fix a strictly positive element e € B with |le|| = 1. Since B has continuous scale, we may assume there is ¢ € B,
with |le'|| = 1 such that fiy(e)e’ = e’ = fix(e)e’ and d.(fij2(€')) > 1 — 1/64(m + 2) for all T € T(B). Let 1 > & > 0,
F C B be a finite subset. and let b € B, \ {0}. Choose by € B, \ {0} and 64(m + 2)(bo) < (b) in Cu(A). Since we assume
that A is tracially approximately divisible (see (5.6)), there are ey € B, and a hereditary sub-C*-algebra Ay of B such that
€0 L Magny2)(Ao), €0 < bo and

dist(x, B1.4) < £/64(m + 2) for all x € FU {e},
where B; g C Bs := egBeg ® Mym12)(Ao) € B and
4(m+2)
Bia={X0® X1 ®x1D---DBX1): X0 € €yBep, x1 € Ap}. (5.77)

Without loss of generality, we may further assume that 7 U {e’} C By 4. Let P : By — My(m+2)(Ao) be the projection map
and PV : Mymi2)(A0) — Ao = Ao ® eqq be defined by P(a) = (14, ® e11)a(1a, ® e11), Where {ej}ym2)xam-2) 1S a
system of matrix unit. Therefore, we may assume, without loss of generality, that |leopx — xeg|| < £/64(m + 2), and there
is e1 € Mym42)(Ag) with 0 < ey < 1 such that [le.x — xeq|| < ¢/64(m + 2) and |e;P(x) — P(x)|| < &/64(m + 2) for all
x e FU{e, €, fisa(e), fija(e), fij2(e')}. Moreover, since the map from W(A),. to LAff, , (T(A)) is surjective, as in the proof of
5.5 (when 7.2 of [17] is applied), without loss of generality, we may assume that Ay has continuous scale. Write

4(m+2)

X=X +X1Dx1D---Dxq.
4(m+2)

Let 71 = {x; : x € FU{€, fi,2(¢')}}. Note that we may write X; @ x; @ --- B X1 = X1 ® lgm42). Then dimy,Ag = m
(see [57]). Also, Ap is a non-unital separable simple C*-algebra which has continuous scale. We may then apply 5.4 to Ag
with S = R,,. By 2.8, in 5.4, we may choose C = U;’; W, where each W, is a finite direct sum of W's, W, C W;;1 and
strictly positive elements of W, are strictly positive elements of W, for all n. Since (see 9.6 of [17]) W = | ; Rk, where
Ry C Rpy1, strictly positive elements of R, are strictly positive elements of Ry 1, and each Ry is Razak algebra (as in 2.3),
where As(Ry) — 1, as k — oo (see for As in 5.3, and also (2.2)), we may write C = U,f‘;] Cn, where G, C Cpyq, strictly
positive elements of G, are strictly positive elements of C,, 1. Moreover, A;(C,) > 1/2 for all n. Put ro = (1—1/64(m+ 2)).
Choose ng = 7/32(m+2) and A = 3/16. Thus, by applying 5.4, we have, with ¢(b) = (E—p)b(E —p) for all b € My(n2)(Ao),
where E = 1M4(m+2)m~0), and p € Mym42)(Ao) is a projection given by 5.4, and L : Ap — D; is an Fy-e-multiplicative
completely positive contractive map

IX ® lagmy2) — (P1(x ® lagm2)) + L(x))|| < &/4 for all x € Fq, (5.78)
d.(¢d1(e)) <1 —1/4(m + 2) for all T € T(Ag), (5.79)
t'(¢1(e)), T'(fi2(¢1(e))) = ro — &/4 for all " € T((1 — p)Mygmy1)(Ao)(1 — p)), (5.80)
Dy € 3, D1SpMygm2)(Ao)p, (5.81)
t(L(P(e))) = romo for all T € T(Mymy2)(Ao)) and (5.82)
t(f1/a(L(PM(e)))) > roA for all t € T(Dy). (5.83)

Let By = (1 — p)Maim+1)(A0))(1 — p) @ egBeg and ¢ : B — By be defined by ¢(b) = ¢1(e1be;) + egbey for b € B. Define
Ly : B— Dy by L;(b) = L(PM(e}/*be}*)). Then both L, and ¢ is F-s-multiplicative. Put ) = 79/2 < Then, in
addition to (5.83) and (5.81),

lx — (¢(x) + Li(x))]| < € for all x € F,

d.(¢(e)) <1—n for all T € T(B),

t'(¢1(e)), T'(fi2(¢a(e))) = 7 — e for all T’ € T(By),

t(L(e)) = ron for all T € T(B).
Note this holds for every such B. Thus, the hypotheses of 5.5 are satisfied. We then apply 5.5. O

1o
T+e/64(m+2)"

6. The C*-algebra VW and UHF-stability

Definition 6.1 (12.1 of [17]). Let A be a non-unital separable C*-algebra. Suppose that t € T(A). Recall that r was said to
be a W-trace in [17] if there exists a sequence of completely positive contractive maps (¢,) from A into W such that

lim |¢n(ab) — ¢n(a)pn(b)|| =0 for all a, b € A, and
n—oo
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t(a) = nlerolo Tw(pn(a)) for all a € A, (6.1)

where 1y, is the unique tracial state on W.

The following two statements (6.2, and 6.3) are taken from [17] (and the proofs are straightforward).

Proposition 6.2 (12.4 of [17]). Let A be a separable simple C*-algebra with a W-tracial state t € T(A). Let 0 < ay < 1 be
a strictly positive element of A. Then there exists a sequence of completely positive contractive maps ¢, : A — W such that
¢n(ap) is a strictly positive element,

lim ||¢n(a)pn(b) — ¢pn(ab)|| =0 for all a, b€ A and
7(a) = lim 1y o ¢yp(a) for all a € A, (6.2)
n—oo
where 1y, is the unique tracial state of W.

Theorem 6.3 (12.2 of [17]). Let A be a separable simple C*-algebra with A = Ped(A). If every tracial state T € T(A) is a W-trace,
then Ko(A) = kerpp.

Proposition 6.4. Let A be a separable C*-algebra with A = Ped(A) such that every tracial state T of A is quasidiagonal. Let
Y € Dy be a simple C*-algebra which is an inductive limit of C*-algebras in C; such that Ko(Y) = kerpy, and Y has a unique
trace, which is bounded. Then all tracial states of A ® Y are W-tracial states. In particular, all tracial states of A ® W are
W-tracial states.

Proof. Let T € T(A). Denote by t the unique tracial state of Y. We will show 7 ® t is a W-trace onAQ® Y.

By 8.12 of [17], Y is an inductive limit of 1-dimensional non-commutative CW complexes (C*-algebras in Cy) with
K1(Y) = {0}. For each n, there is a homomorphism h, : M,(Y) — W (by Theorem 1.0.1 of [43]) such that h, maps a
strictly positive element of M,(Y) to a strictly positive element of W. Consider 7y, € T(W). Then 1y, o h;, is a tracial state
of Y. Therefore t ® try(a) = 1y, o hy(a) for all a € M,(Y). Moreover, foranya € M, and b € Y,

trp(a)t(b) = tyy o hp(a ® b),

where tr, is the normalized trace on M,, n =1, 2, ....
Since t is quasidiagonal, there is a sequence v, : A — My, of completely positive contractive maps such that

lim ||¢,(ab) — ¥u(a)yn(b)] =0 for all a, b€ A and (6.3)
t(a) = lim trypy o Yn(a) for all a € A. (6.4)
n—oo

Define ¢, : AQY — W by ¢u(a ® b) = hym)(¥n(a) ® b) for all a € A and b € Y. Then ¢, is completely positive
contractive map and, foranyae Aand b ey,

(r @)@ ®b) = lim trygn(Yn(@)e(b) (65)
= 1im 7y o hin(¥n(a) © b) = lim (n(a @ b)), (6.6)

Therefore T ® t is a W-trace. O

Theorem 6.5. Let A be a simple separable C*-algebra with finite nuclear dimension which has bounded scale and is such that
Ko(A) = ker ps and every tracial state is a W-trace. Suppose that every hereditary sub-C*-algebra of A with continuous scale
is tracially approximately divisible. Then A € Dy. (In particular, A® U € Dy for any UHF-algebra U.)

Proof. By [49], A is Z-stable. By Remark 5.2 of [17], A has a non-zero hereditary sub-C*-algebra Ay with continuous scale.
Then M(Ap) also has continuous scale for every integer k > 1. Since A has bounded scale, it is isomorphic to a hereditary
sub-C*-algebra of My (Ao ) for some possibly large k. Since My(Ao) has the same properties as assumed for A, it then follows
from 8.6 of [17] that, to prove that A is in Dy, we may assume that A has continuous scale.

It follows from Theorem 2.8 that there is a simple C*-algebra B = lim,_, (B, 1), where each B, is a finite direct
sum of copies of W and 1, ., maps strictly positive elements to strictly positive elements, each B, has bounded scale, and
T(B) = T(A). Denote by y : T(A) — T(B) the affine homeomorphism. By [53], we may assume that B = lim,_, o(Ry, tn),
where each R, is a Razak algebra and 1, is injective. It follows from Corollary A.27 of the Appendix that there exists a
homomorphism p : B— A which induces vy, i.e.,

t(p(b)) = y(z)(b) for all b € B and 7 € T(A). (6.7)
Let (tn,00)r : T(B) — T(B,) be the continuous affine map such that, for t € T(B),
t 0 Inoo(b) = (tn,00)r(t)(b)
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forall b € By, n=1,2,.... Recall that TOW) = {1y}, where 1y, is the unique tracial state of W.

Fix a strictly positive element ay € A. Fix ¢ > 0 and a finite subset 7 C A, since B = limy,_, (B, 1,) and T(B,) has
finitely many extremal traces, then, as is standard and easy to see, there are an integer n; > 1 and a continuous affine
map « : T(B,,) — T(A) such that, for t € T(B),

sup |« o (in;,00)7(T)(f) — y‘l(r)(f)| <e¢/3 for all f e F. (6.8)
T€T(B)
Write B,, = W; @ W, @ - - - @ Wy, where each W; = W. Denote by tw,, Tw,, - . ., Tw,, the unique tracial states on W;,
and 6; = k(7w;), i =1, 2, ..., m. By the assumption, there exists, for each i, a sequence of completely positive contractive
maps ¢n; : A — W; such that
lim ||@n,i(a)pn,i(b) — ¢ni(ab)|| =0 for all a,b € A, and (6.9)
n—oo
Gi(a) = lim tw, o ¢ i(a) for all a € A. (6.10)
n—oo
Moreover, by 6.2, we may assume that ¢, ;(ap) is strictly positive. Define ¢, : A — By, by
®n(a) = ¢n,1(a) ® ¢n2(a) D - - - BPnm(a), ac€A. (6.11)
Then
lim sup {|t(¢n(a)) —«(r)(a)]} =0 for all a € A. (6.12)

N—>00 1€T(Bn, )

Define o, : A — B by

on(a) = 1n;,00 0 Pn(a), ac€aA. (6.13)

Note that oy(ap) is a strictly positive element. We also have that
lim |lop(ab) — on(a)on(b)l| =0, a, b € A. (6.14)

Moreover, for any t € T(B) and any f € F,
ly ' (@)F) — T o ou()l < Iy~ (2)f) — & © (tny.00)r(T)(F) (6.15)
+ Ik 0 (tny, 00 1(T)f) — T 0 on(f) (6.16)
< &/3+ |k 0 (tn;,00 (7)) — T 0 1ny,00 © Pn(f)] (6.17)
< ¢/3+ sup {|t(gn(f)) — «(T)H)I} (6.18)
teT(Bnl)

By (6.12), there exists N > 1 such that, for all n > N,

sup {|y 1 (@)f) — T o ou(f)|} < 2¢/3 for all f € F. (6.19)
T7€T(B)

Thus the map o, satisfies (5.74) and (5.75). By (6.7) and (6.19), for all n > N,
sup {[t(f) — t(p o on(M} = SLTlg){It(f) —y(@Non(f)I} < ¢ for all f e F.
TE

T€T(A)

Thus (5.76) also holds (with p = p,). Therefore, by 5.7, A € Dy. O

Theorem 6.6. Let A be a non-unital separable simple C*-algebra with finite nuclear dimension and with A = Ped(A). Suppose
that T(A) # @. Then AQ W € Dy.

Proof. By Lemma 3.17, AQ W is KK-contractible. Therefore A® W satisfies the UCT. Since W has finite nuclear dimension,
so also does A ® W. Hence by [50], every tracial state is quasi-diagonal. It follows by 6.4 that every tracial state of A® W
is a W-trace. We also have Ko(A ® W) = {0}. Let b € (A ® W),.. Since W has a unique tracial state, by 11.8 of [17],
WAQW) = LAffb,o+(T(A)w). Therefore, there are a € A and b; € My(W); such that b ~ a ® b;. Put B = b(A ® W)b and
B; = (a® b1)(A® W)a® by). Then B & B;. Note that b;Wb; = W. It follows that B; = aAa ® W. But W ® Q = W. This
implies that B, is tracially approximately divisible. Therefore B is tracially approximately divisible. Then 6.5 applies. O

Added in proof: The condition of finite nuclear dimension in 6.6 can be much weakened to the condition that A is
amenable. Since A ® W is Z-stable, by a recent preprint of J. Castillejos and S. Evington, arXiv:1901.11441, it has finite
nuclear dimension, as kindly pointed out by the referee.

Corollary 6.7. Let A be a simple separable finite C*-algebra such that A ® Z has finite nuclear dimension. Then the C*-algebra
AQ®W belongs to the class Mg, and so AQW is isomorphic to an inductive limit of C*-algebras in R,,. in particular, WQW = W.
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Proof. By 6.6, A® W € Dy and, by 3.17, A® W is KK-contractible. Then 4.3 applies. O

Lemma 6.8. Let A be a separable simple C*-algebra in R with finite nuclear dimension which is KK-contractible and assume
that all tracial states of A are W-traces. Let M, and M, be two UHF algebras, where p and q are relatively prime supernatural
numbers. Then, there exist an isomorphism ¢ : AQM, — AQM, ®M, and a continuous path of unitaries u; € M(AQM, ®M,),
1<t < oo, such that u; = 1 and

[lim ufa®r1)u =¢a®r), acA, reM,.
—00

Proof. Note that every hereditary sub-C*-algebra B of AQ M, and A® Q is tracial approximately divisible, since M, and Q
are strongly self-absorbing. By the assumption and 6.5, AQ M, and A®Q are in Dy. It follows from 4.3 that AQ M, = A®Q.
Let£ :A® M, — A® Q be an isomorphism. It is well known that any isomorphism ¥ : Q — Q ® M, is asymptotically
unitarily equivalent to the embedding Q — Q ® M, given by r — r ® 1, for all r € Q (see, for instance, [31]). Therefore
there exists a continuous path of unitaries v; € Q ® M, such that v1 = 1 and

[l_l)ngo vi(r @ 15)ve = ¥(r) for all r € Q.
Define 1 :A®Q - A®Q M, by p1(a®r)=a® y(r)forall a € Aand r € Q. Therefore

tl_i)rgj(l,; ® V) b® 1,)(1a @ v;) = ¢1(b) for all be A® Q. (6.20)
Define ¢ : A®@M, > A®@M, @M, by ¢ = (6" ®idy,) o ¢1 0 & and let u; = £71(14 ® v), where & : M(A® M, ® M,) —

M(A ® Q ® M,) is the extension of § ® idy, : A® M, ® M; -~ A® Q ® M,. Note that u; = 1, since v = 1 and {u} is a
continuous path of unitaries in M(A ® M, ® M,). Suppose thata e Aand r € M,. So {(a ® r) € A® Q. Then we have

lim (0@ r® 1 = Jim E(1© ) (¢ @ idy,XE@® N © 1) E (o w)
= (¢ @idy, ) lim (14 ® 1})(E(@ @ 1) @ 1)(14 @ uy)))
=5 620e-1 @ idy, (¢1(5(a® 1)) = pa®r)

as desired. O

Theorem 6.9. Let A be a non-unital separable simple C*-algebra in R with finite nuclear dimension which is KK-contractible
and such that every trace is a W-trace. Then A= A® Q.

Proof. It follows from [49] that A = A ® Z. Decompose A ® Z as an inductive limit of copies of A ® Z, ;, where p, q are
two relatively prime supernatural numbers such that M, ® M, = Q. By Corollary 3.4 of [52], in order to show that A is
Q-stable, it is enough to show that A ® Z, , is Q-stable. Note that

A® Z,,=1{f €C([0,1],AQM, ®M,): f(0) eA®M, ® 1, (1) €eA® 1, ® M,}.
Applying Lemma 6.8 to both endpoints, one obtains isomorphisms

o AOM, > AQM, ®M;, ¢1:AQM; > AR®M, ®M,,
together with a continuous path of unitaries u; € M(A® M, ® M), 0 < t < 1, such that u% =1,

}ilrg)uf(a ®r1ur =¢¢o(a®r), aecA, reM,
and

}51} U(a®1,®ru =¢(a®r), acA, reM,.

Define the continuous field map ¢ : A® 2, ; — C([0, 1],A® M, ® M,) by
D)) = uf(thue, te€l0,1],

where @(f)(0) and &(f)(1) are understood as ¢o(f(0)) and ¢1(f(1)), respectively. Then the map & is an isomorphism
(the inverse is ®~1(g)(t) = ug(t)uf, t € (0,1), @7'(g)0) = ¢, (g(0)), and &~} (g)(1) = ¢;'(g(1))), and hence
A® Z,, = ([0,1],A® M, ® M,). Since the trivial field C([0, 1],A ® M, ® M,) is Q-stable, one has that A ® 2, , is
Q-stable, as desired. O

7. The case of finite nuclear dimension

Let A be a non-unital separable C*-algebra. Since A® Q is unital, we may view A/é_a as a sub-C*-algebra of A® Q
with the unit 13g,. In the following corollary we use 1 for the embedding from A ® Q to A® Q as well as from A® Q
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t0A® Q. Since K;(Q) = {0}, from the six-term exact sequence in K-theory, one concludes that the homomorphism

Lo Ko(A® Q) — Ko(A® Q) is injective.
We will use this fact and identify x with 1,4(x) for all x € Ko(A ® Q) in the following corollary.

Lemma 7.1. Let A be a non-unital separable C*-algebra and let (yr,) be a sequence of approximately multiplicative completely
positive contractive maps from A® Q to Q. Then ¢, = yr, o1 is a sequence of approximately multiplicative completely positive

contractive maps from A into Q, where 19 :A — A® Q is the embedding defined by a — a ® 1 for all a € A.
Conversely, if (¢,) is a sequence of approximately multiplicative completely positive contractive_maps from A to Q, then,
there exists a sequence of approximately multiplicative completely positive contractive maps (V) : A® Q — Q such that

lim ||¢n(a) — ¥ o19(a)|| =0 for all a € A.
n—oo
Moreover, if lim sup ||¢n(a)|| # O for some a € A and if {e,} is an approximate unit, then, we can choose 1, such that

tr(¥n(1)) = du(@n(en)) for all n.

Proof. We prove only the second part. Write Q = U,fil M, with the embedding j, : B, := Mpy — Mp ® Mpy1 = Mnt1y,
n = 1,2,.... Without loss of generality, we may assume that ¢, maps A into B,, n = 1,2, .... Consider ¢,(a) =
¢n(e,1,/2ae,!,/2), n = 1,2,.... Choose p, to be the range projection of ¢,(e,) in B,. Define v/ : A® Q - Q®Q by
Yra®1ly)=¢(a)®1g forallac A ¥ (1®r)=p, ®r forall r € Q. Then

lim ||[¢/(a® 1) — ¢p(a) ® 1| = 0 for all a € A.
n—oo
Moreover, tr(y/;(1)) = du(¢n(en)) for all n. There is an isomorphism h : Q ® Q — Q such that h o 1y is approximately

unitarily equivalent to idg, where 13 : a = a ® 1¢ is the embedding. By choosing some unitaries u, € Q, we can choose
Y =Adusohoyy,n=1,2,.... O

The following is a non-unital version of Lemma 4.2 of [16].
Lemma 7.2. Let A be a non-unital simple separable amenable C*-algebra with T(A) # @ which has bounded scale and which
satisfies the UCT. Fix a strictly positive element a € A, with ||a|| = 1 such that
t(fij2(a)) = d for all T € T(A) . (7.1)
For any ¢ > 0 and any finite subset F of A, there exist § > 0, a finite subset G of A, and a finite subset P of Ko(A) with the
following property. Let V¥, ¢ : A — Q be two G-§-multiplicative completely positive contractive maps such that
[¥1l»= [¢]lp and (7.2)
tr(fi2(¥(a))) = d/2 and tr(fi2(¢(a))) = d/2, (7.3)

where tr is the unique tracial state of Q. Then there are a unitary u € Q and an F-e-multiplicative completely positive
contractive map L : A — C([0, 1], Q) such that

ool =1y, mol=Aduo¢. (7.4)
Moreover, if
|tr o Yr(h) — tro ¢p(h)| < &'/2 for all h € H, (7.5)

for a finite set H C A and &' > 0, then L may be chosen such that
|trom; o L(h) —tromgoL(h)| <& for all h e % and t € [0, 1]. (7.6)
Here, r; : C([0, 1], Q) — Q is the point evaluation at t € [0, 1].

Proof. Let T : A} \ {0} — N xR, \ {0} be given by 5.7 of [17] (with above d and a). In the notation in 3.13, Q € Co,t,1.2,
where t : N x N — N is defined to be t(n, k) = n/k for all n,k > 1. Now Cg .12 is fixed. We are going to apply
Theorem 3.14 together with Remark 3.15 (note that Q has real rank zero and K;(Q) = {0}).

Let F C A be a finite subset and let ¢ > 0 be given. We may assume that a € F and every element of 7 has norm at
most one. Write 71 = {ab:a,b € F} U F.

Let §; > O (in place 8), G; (in place of G) and #4(in place of H), P, and K be as assured by Theorem 3.14 for F; and
e/4 as well as T (in place of F). (As stated earlier we will also use Remark 3.15 so that we drop L and condition (3.15).)
Since K;(Q) = {0} and Ko(Q) = Q, we may choose P C Ky(A).

We may also assume that 7y U#H; € Gy and K > 2.

Now, let G, C A (in place of G) be a finite subset and let §, > 0 (in place of 8;) given by 5.7 of [17] for the above #;
and T.
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Let § = min{e/4, §1/2, 8,/2} and G = G; U G,. Without loss of generality, we may assume that G € Al.

Since Q = Q ® Q, we may assume, without loss of generality, that ¢(a), ¥(a) € Q ® 1 for all a € A. Pick mutually
equivalent projections eg, ey, €3, ..., eax € Q satisfying lefo e; = 1q. Then, consider the maps ¢;, i : A — Q ® €;Qe;,
i=0,1,...,2K, which are defined by

di(a) =¢p(a)®e; and Yi(a) =Y(a)Qe;, acA,
and consider the maps
P11 =0 = D91 DD, Po =Y =YoDY1D - DV
and
Q=D - DI 1BV D--- DY, i=1,2,...,2K.
Since e; is unitarily equivalent to ey for all i, one has
[¢illp= [¥illp, 0 =<ij=<2K.
and in particular,
[¢illp= [¥illp, i=0,1,..,2K. (7.7)
Note that, for eachi =0, 1, ..., n, ®; is unitarily equivalent to
Vid(PoDd1 D D Pin1 © Vip1 ®Yir2a ® -+ D Yrax),
and &;, is unitarily equivalent to
Pi® (o @P1 D DPio1 D Vi1 ®Yit2 @ -+ D Yax).

Using (7.3), on applying 5.7 of [17], we obtain that maps ¢; and v; are T-H-full in e;Qe;, i =0, 1,2, ..., 2K.
In view of this, and (7.7), applying Theorem 3.14 (and its remarks), we obtain unitaries u; € Q,i =0, 1, ..., 2K, such
that

|Pis1(a) — @i(a)|| < €/4, a < F;, where (7.8)

@OZZQOZW and @lgr]Z:Aduio---OAdU]OAdUOO@iJA, l:O,l,,ZK
Putt; =i/(2K+1),i=0,1,...,2K + 1, and define L : A — C([0, 1], Q) by

ol = (2K + 1)(tipr — )@ + (2K + 1)(t — t)Pir1, t €[t tipq], i=0,1,...,2K.
By construction,
mool=®y=vy and mol=d, =Adu,o---oAdusoAdugode. (7.9)

Since @;, i = 0,1,...,2K, are g-8-multiplicative (in particular F-¢/4-multiplicative), it follows from (7.8) that L is
F-e-multiplicative. By (7.9), L satisfies (7.4) with u = uy - - - ujug.

Moreover, if there is a finite set # such that (7.5) holds, it is then also straightforward to verify that L satisfies (7.6),
as desired. O

Remark 7.3. If A is KK-contractible, then the assumption that A satisfies the UCT can of course be dropped.

Theorem 7.4. Let A be a non-unital simple separable amenable C*-algebra with Ky(A) = Tor(Ko(A)) which satisfies the UCT.
. AW,
Suppose that A = Ped(A). Then every trace in T(A) is a W-trace.

Proof. It suffices to show that every tracial state of A is a W-trace. It follows from [50] that every trace is quasidiagonal.
For a fixed t € T(A), there exists a sequence of approximately multiplicative completely positive contractive maps (¢,)
from A into Q such that

lim tro ¢,(a) = t(a) for all a € A.

n—oo

By Lemma 7.1, we may assume that ¢, = ¥, o1, where 1: A — A® Q is the embedding defined by 1(a) = a ® 14 for all
acAand ¥, : A® Q — Q is a sequence of approximate multiplicative completely positive contractive maps.
Therefore it suffices to show that every tracial state of A® Q is a W-trace. Set A; = A ® Q. Then Ky(A;) = {0}.
Fix1>¢>0,1> ¢ >0, afinite subset 7 C A; and a finite # C A;. Put 7; = F U H. Without loss of generality, we
may assume that 7; C A}. Note that A is non-unital. Choose a strictly positive element a € A, with |la|]] = 1. We may
also assume that

t(fij2(a)) > d > 0 for all = € T(A)" (for some d > 0).
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Let 1 > § > 0, G C A; be a finite subset as provided by 7.2 for A; (in place of A), d/2 (in place of d), /16 (in place of
¢), and F1. (Note since Ko(A1) = {0}, the required set P in 7.2 does not appear here.)
let Gg = GUFyand let 1 = ¢-¢'-§/2. Let T € T(A;). Since t is quasidiagonal, there exists a G;-g;-multiplicative
completely positive contractive map vy : Ay — Q such that
|t(b) — trov(b)| < &'/16 for all b€ GU F, and (7.10)
tr(fi2(v(a))) > 2d/3. (7.11)
Choose an integer m > 3 such that
1/m < min{e,/64, d/8}.

Let eq, €3, ..., emt1 € Q be a set of mutually orthogonal and mutually equivalent projections such that

m+1

Ze,- =1¢ and tr(e;) =

i=1
Let ¥; : Ay > (1®6€;)(Q ® Q)1 ® e;) be defined by v;(b) = ¥(b)®e;,i=1,2,...,m+ 1. Set

— i=1,2,...,m+ 1.
m+1

m m+1
D wi=w and Y yi=vy.
i=1 i=1
Identify Q ® Q with Q. Note that
tr(f12(¥i(a))) = d/2, i=0,1. (7.12)

Moreover,

1
[T o Wy(b) — T o Wy(b)| < o——" < min{e;/64, d/8} for all b € A;.

Again, keep in mind that Ky(A;) = {0}. Applying 7.2, we obtain a unitary u € Q and a F;-¢/16-multiplicative completely
positive contractive map L : A — C([0, 3/4], Q) such that

mgol =Y, 7T3/4OL:AdLlO'~I/1. (713)
Moreover,
[trom o L(h) —tromgoL(h)] < 1/m < &'/64, he F, t €[0,3/4]. (7.14)

Here, 7; : C([0, 3/4],Q) — Q is the point evaluation at t € [0, 3/4]. There is a continuous path of unitaries {u(t) : t €
[3/4, 1]} such that u(3/4) = u and u(1) = 1q. Define L; : Ay — C([0,1],Q) by 7 oLy = m oL for t € [0, 3/4] and
o Ly = Adu; o Wq for t € (3/4,1]. Ly is a F1-¢/16-multiplicative completely positive contractive map from A; into
C([0, 11, Q). Note now

mgpoli =¥, and mi ol =¥; and (7.15)
|tr o 7, o L(h) — tr o ¥;(h)| < &'/64 for all h € H. (7.16)
Fix an integer k > 2. Let «; : My = Mym41) (i = 0, 1) be defined by
m m+1
ko(C) = (CBCD - BCDO), and k() =(CHCD D) (7.17)

for all ¢ € My. Define

Co = {(f, c) : C([0, 1], Mkgm+1)) @ My : f(0) = ko(c) and f(1) = xk1(c)}.
and set

G®Q=0C.

Note that ¢, € Cg and C; is an inductive limit of Razak algebras C;, ® M. Moreover Kyo(C;) = K;(C;) = {0}. Put
Po = Z:Z] 1o ® e;. Define kp : Q — po(Q ® Q)po to be the unital homomorphism defined by ko(a) = a ® Zlm:] e
and kq1(a) =a® 1 foralla € Q.

Then one may write

G ={(f,c) e ([0, 1],Q)® Q : f(0) = ko(c) and f(1) = k1(c)}.

Note that iy o ¥(b) = Wy(b) for all b € Ay and kq o ¥(b) = Wy(b) for all b € A;. Thus one can define @’ : A; — C; by
@'(b) = (L1(b), ¥ (b)) for all b € A;.
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Then @’ is a F;-¢/16-multiplicative completely positive contractive map such that
|tr(mr; o @'(h)) — tro yr(h)| < &’/4 for all h € H. (7.18)

Let i denote Lebesgue measure on [0, 1]. There is a homomorphism I : Cu™(C;) — Cu~ (W) (see [43]) such that
T'(f)tyw) = (u @ tr)(f) for all f € Aff(T(C;)), where tyy is the unique tracial state of W. By [43], there exists a
homomorphism A : C; — W such that

1
Tw o AM((f, €)) =/ tr(f(t))dt for all (f,c) € Cy. (7.19)
0
Finally, let @ = A o @’. Then @ is a F;-e-multiplicative completely positive contractive map from A, into W. Moreover,
one computes that

It o ®(h) — t(h)| < & for all h e H, (7.20)

as desired. O

Theorem 7.5. Let A and B be non-unital separable simple (finite) C*-algebras with finite nuclear dimension and with non-zero
traces. Suppose that both A and B are KK-contractible. Then A = B if and only if there is an isomorphism (scale preserving
affine homeomorphism) I" : (T(B), X3) = (T(A), Xy).

Moreover, there is an isomorphism ¢ : A — B such that ¢ induces I'.
Proof. Let I" : (T(B), ) — (T(A), X4) be an isomorphism. By 2.9, we may assume that B € M, (an inductive limit of
Razak algebras). Recall that A is Z-stable (by [49]). Let a € Ped(A), with ||a|| = 1 such that Ay = aAa has continuous scale

(see 5.2 of [17]). Then T(Ap) is a metrizable Choquet simplex and is a base for the cone T(A). Let b € B, be such that

dr(y(b) = d.(a) for all T € T(A).

Set bBb = By. Then I' gives an affine homeomorphism from T(Ag) onto T(Bo). It follows from 7.4 that every tracial state
of Ag or By is a W-trace. By 6.9, Ag and By are tracially approximately divisible. It follows from 6.5 that Ag, By € Dy. Then,
by 4.3, there is an isomorphism ¢ : Agp — By such that ¢; gives I'|r,) and by By [7], this induces an isomorphism
é:A® K — B® K. Fix a strictly positive element aq € A with ||ag|| = 1 such that

~

d:(ag) = Zs(r), 1 €T(A).

Set ¢(ag) = bo. Then ¢ gives an isomorphism from A to B; := bo(B ® K)bo. Let by € B be a strictly positive element, so
that

~

d.(b1) = Xp(z), T €T(B).
Then

d:(b1) = d:(bo), 7 €T(B).

Since B is a separable simple C*-algebra with stable rank one, this implies there exists an isomorphism ¢, : By — B such
that (¢1)r = idgy,, (see Theorem 3 of [9]; this also follows from [41] as B is an inductive limit of Razak algebras—see
also [43]). Then the composition ¢; o ¢|4 gives the required isomorphism. O

Corollary 7.6. Let A, B be simple separable KK-contractible finite C*-algebras with finite nuclear dimension. If there is a

homomorphism & : (T(B), Xp) — (T(A), X4), then there is a C*-algebra homomorphism ¢ : A—B such that ¢, = &.

Proof. In view of 7.5 and 2.9, this follows from the classification of limits of Razak algebras [41]. O
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Appendix

This section, mainly contributed by Huaxin Lin, removes the necessity of assuming that A has stable rank one in
Theorem 7.5 and Corollary 7.6.

The main purpose of this appendix is to prove Corollary A.27. The existence of a map as stated in A.27 was proved
in [43] under the additional assumption that A has stable rank one. It is needed in the proof of 6.5.

Appendix A.1 of the appendix also contains some results of independent interest. In particular, Corollary A.8, together
with the construction of models in [15], establishes the range of the Elliott invariant for Jiang-Su stable separable simple
exact C*-algebras.

A.1. Strict comparison in A

Definition A.1. Let B be a C*-algebra with T(B) # @ and let S C T(B) be a subset. Suppose that a € (B® K), is such that
d.(a) < +oo for all T € T(B). Define

ws(a) = inf{sup{d.(a) — t(c):t €S} :ceaB®K)a, 0 <c <1} (A1)

Let us note that, when S is compact, ws(a) = 0 if and only if d.(a) is continuous on S. Also note that if a,b € (B® K).,
0 <a,b < 1anda < b, then there exists a sequence x, € B® K such that x}x, — a and x,x;; € b(B ® K)b. It follows,
forany 1> 8§ > 0, fs(x3x,) — fs(a). Note that t(fs(x}x,)) = t(fs(xnx})) for any v € T(B). We conclude that, if a < b, there
exists a sequence {cx} in b(B ® K)b, with 0 < ¢, < 1 such that

Jim sup(jr(c) - T(fiul@)l : T € T(B)} = 0.

Consequently, if we further assume d.(a) = d.(b), then ws(a) > ws(b). Note that, if a ~ b, then d.(a) = d.(b). Hence,
when a ~ b, we have ws(a) = ws(b). N

Now let A be a C*-algebra with T(A) # ¢ and with compact T(A). Let a € (A ® K); be such that d,(a) < oo for all
T € T(A). We will write w(a) for wra)(a), namely,

w(a) = inf{sup{d.(a) — t(c): T € T(A)} : c € a(K@ Kla, 0 <c<1}. (A.2)
As mentioned above, if b € (Z@ K)s,0<b<1landa~b,in A® K, then w(a) = w(b).

Lemma A.2. Let A be a separable stably projectionless simple C*-algebra such that M, (A) almost has stable rank one for every
integer r > 1 and QT(A) = T(A) which has strict comparison for positive elements and has continuous scale. Suppose that
Cu(A) = LAff, (T(A)). Suppose also that a € M,;(A) with 0 < a < 1 for some integer r > 1 and 0 < (7 (a)), wherewr : A — C
is the quotient map. Suppose further that

inf{d.(a) : T € T(A)} > 4w(a). (A3)
Then, for any d > 2w(a) and w(a)/2 > &y > O, there is b € M, (A), with b < a such that
2w(a) < d.(b) < d for all T € T(A) (A4)

and, for any 0 < ¢ < inf{d.(b) : t € T(A)}, there is also a; € M,(Z)Jr such that

w(a)=n(d), b®a <d,

with (a') = (a), d.(a;) > d.(a) — d for all T € T(A), and a; also has the following property: if {c,} € M;(A),. is an increasing
sequence such that ¢, € a1(A ® K)a; and t(c,) / d.(aq), then, for some ng > 1,

d.(a1) — t(cp) < w(a) + &g + € for all T € T(A) and for all n > ny. (A5)
Proof. We first consider the case that (a) is not represented by a projection. There exists an invertible matrix y € M;(C),
such that y'/2x(a)y!/? = p is a projection. Let Y € M,(C- 13); be the same invertible scalar matrix. Then 7 (Y/2ay/2) = p.

It is clear that (a) = (Y'/?aY'/?) and we may replace a by Y'/2aY'/2. So we assume that 7 (a) = p.
Choose 19 > 0 such that, for 0 < n < 7,

d.(a) — t(f,(a)) < w(a)+ & for all T € T(A). (A.6)

Let (e;) be an approximate identity for aM,(A)a such that e, e, = e,, n=1,2,....
There exists ng > 1 such that

d.(a) — t(ep) < w(a) + g for all = € T(A) and for all n > nyp. (A7)
By a standard compactness argument, for a fixed ny + 1, there exists no > n; > 0 such that

7(fy,(a)) > T(epy43) for all T e T(A). (A.8)
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Let (e; ) be an approximate identity for f,, (a)M,(A)f,,(a) with ej ze1 n41 = €15, n = 1,2, .... By the same compactness
argument, we have eq , for some n such that
7(e1,n) > T(eny43) for all T € T(A). (A.9)

It follows that e,;1» < €q,41. Since A has almost stable rank one, one has

wreny 2w < f;,2(a) (A.10)

for some unitary w € M;(A)™ (see the last part of Lemma 3.2 of [ 17]). Choose a strictly positive function g1 ,,, € Co((0, 1])+
such that gy ,,(t) = 1,if t > 11/4, and g; ,,(t) is linear on [0, n,/4). In particular, f,, 2815, = f;,/2- Put " = g; 5, (a). Note
7(a’) = w(a) and (a’) = (a). Note also that

0 < wrep,w < wWepgr1w < wrenyiow < fyy2(a) < a’ and (A11)
d-(a") — t(w*esw) < w(a) + & for all 7 € T(A). (A.12)
In particular, d.(w*e,,w) > 5w/2 for all t € T(A). There exists by € M,(A); with
dz(bo) = 2w(a) + min{(3/4)(d — 2w(a)), (3/4)(T(w en,w) — 2w(a))}
for all T € T(A). Note that d.(by) € Aff(T(A)). We have
d.(bo) < d;(w*eq,w) for all 7 € T(A). (A.13)

Since M,(A) almost has stable rank one, by 3.2 of [17], one concludes that there exists b’ € w*e,,wM,(A)w*e,,w such
that d.(b') = d,(bg) for all T € T(A). Note that b’'a’ = b’. Let ¢ > 0. Since d.(bp) is continuous on T(A) and T(A) is compact,
there exists §o > 0 such that

t(fs(bg)) > d.(bo) — min{(d — 2w(a))/2, ¢/4} for all T € T(A) (A.14)
and 0 < § < 6.
Put b = f5,(b'), by = f5,2(b’) and by = f5,4(b’). Note that b < b; < b, < w*e,,+1w. Note also that
2w(a) < d.(b) < d and 0 < d.(by) — t(b) < ¢/4 for all T € T(A). (A.15)

So (A.4) holds. Put a; = a’ —by. Note that @b = b. So a; @b < ay. Since n(a) = n(a'), (w(a,)) = (7 (a)). Let p, be the open
projection corresponding to a, p,, the open projection corresponding to a; and py be the open projection corresponding
to b’ in M,(A)**. Note that p, is the same as the open projection corresponding to a’. Then p, > pa, > pa — P,

d-(a1) = ©(pa,) = ©(pa — Pr) = T(par) — T(Py') (A.16)
=1(py) — do(b") > d.(a) —d and (A17)
d-(a1) = ©(pa;) < ©(pa — b) < ©(pa — pr) + ¢/4 (A.18)

< t(pa) — t(py) + €/4 = d.(a) — d(b') + €/4 for all T € T(A). (A.19)

If ¢, is as stated, then 7(c;) /* t(pq, ). Therefore, on T(A), which is compact, by a standard compactness argument, there
is ny > 1 such that

t(weny1w) — di(b') < 7(cn) < T(pq,) = de(ar) (A.20)
for all T € T(A) and for all n > ny. It follows from (A.19), (A.12) and (A.20) that

d-(a1) — w(cn) < do(d’) — z(cn) (A.21)

< ((v(w*eng+1w) + w(a) + &) — d.(b') + £/4) — (v(w*eny1w) — d- (b)) (A22)

= w(a)+ & + ¢/4 for all T € T(A). (A.23)

~

Now we consider the case that (a) is represented by a projection p € M,(A). We may write p = a; + by, where
a; € Mp(A) and by € Mp(C - 13) is a scalar matrix. In particular, d.(p) is continuous on T(A). Therefore w(p) = 0. Let
d > 0. We may assume that d < 1/2. Since Cu(A) = LAff, (T(A)), choose an element by < A such that d.(by) = d/4 for all
T € T(A). Note that pbyg = by and d.(bg) is continuous. Now with w(p) = 0, with a = p, and with this new bg, the rest of
the proof above (beginning with by as constructed) applies. O

Lemma A.3. Let A be a separable stably projectionless simple C*-algebra such that My(A) has almost stable rank one for all
integers n > 1 and QT(A) = T(A) which has strict comparison for positive elements and has continuous scale. Suppose also that
Cu(A) = LASf(T(A)). Let a, b € M, (A),. Suppose that (r(a)) < (w(b))(< oo), where = : A — C is the quotient map, and

d.(a) + 4w(b) < dy(b) for all T € T(A). (A24)

Then a < b.
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Proof. If (a) is represented by a projection, then d.(a) is continuous. So
inf{d;(b) — d.(a) : T € T(A)} > 4w(b). (A.25)

Otherwise, fix 1/2 > n; > 0. By applying 7.1 of [17], there exist n; > 1, > 0 and a continuous function f : T(A) — R*
such that

d-((a—m)+) < f(r) < de((@a = n2)4) < de(b) for all T € T(A). (A.26)
Then
inf{d.(b) — d.(a) : T € T(A)} > inf{d.(a) — f(7): T € T(A)} > 0. (A.27)
Thus, in both cases,
d = inf{d.;(b) — d.(a) : T € T(A)} > 4w(b). (A.28)
By applying A.2, one obtains non-zero and mutually orthogonal elements by € M;(A), and by, b’ € Mr(:z\')Jr such that
bo+by < b, (b') = (b), w(b1) = =(D), (A.29)
2w(a) < d.(bg) <d/2, d.(by)> d.(b)—d/2 for all T € T(A). (A.30)

and, for any ¢, € M,(A), with ¢, € bl(Z® K)by and d.(c,) /" d.(by) on T(A), there exists ny > 1 such that
d.(by) — d.(c;) < w(b) 4+ (1/64)inf{z(bg) : T € T(A)} for all T € T(A). (A.31)

Moreover, (7 (b1)) = (r(b)). Replacing b by b’, without loss of generality, we may assume that by + by < b.

Put dy = inf{z(bg) : T € T(A)}. _

There exists an invertible matrix y; € M,(C), such that y}/zn(bl)y}/z = p; is a projection. Let Y; € M;(A) denote the
scalar matrix such that 7(Y;) = y;. Note that (Y]mb]Y]/z) = (by), Y:/zcnYl/2 < Yll/zblYl/2 and d.(Y'2c,Y'/?) = d,(cy).
So, replacing b; by Y:/zblYVz, we may assume that 7(b;) = p;. Similarly, we may assume that 7(a) = p, is also a
projection. There is a scalar matrix U € M,(A) such that 7(U*aU) < p,. Without loss of generality, we may assume that

D2 = p1.
We may further assume that there are integers 0 < m, < m; such that

m;
p;i = diag(1,1,...,1,0,...,0), i=1,2. (A.32)
m;

S ~
Let P; = diag(13, 1z, ..., 13,0, ...,0) € M,(A) so that n(P;) = p;, i = 1, 2.
Note (b; — 1/n), < by and d.((b; — 1/n),) / d.(by), so by (A.31), for some §; > 0,

d.(b1) — d.(fs(b1)) < w(b) + dy/64 for all T € T(A) (A.33)
and all 0 < § < &;.
Let (e,;) be an approximate identity for A such that e,e;11 = epr1€p, =€, n=1,2,.... Put
E, = diag(ep, en, ..., en) € M(A), n=1,2,.... (A.34)

Then (E,) is an approximate identity for M,(A) and PE, = E,P;,i=1,2,andn=1,2,....
We have b}/zEﬁb}/z /" by (in the strict topology). Let ¢, = E;,b1E,, n = 1, 2, .. .. It follows that d.(c,;) " d.(b;) on T(A).
By the construction of by, there exists ng > 1 such that

de(by) — d=(by*EZby/*) = dr(by) — d:(ca) < w(b) + do/64 (A35)

for all € T(A) and for all n > ny.
One then computes, by (A.30) and (A.35), that, for n > ny,

d.(a) < d.(c,) for all T € T(A). (A.36)
On the other hand, since 7 (b1) = 7 (P;) and 7(a) = 7w (P,),

Jim )1(Exb1Ei + (1 — Ee)P1(1 — E)) — br|l = 0 and (A37)
— 00
Jim )I(Exaki + (1 — EP2(1 — Ei)) —all = 0. (A.38)

Put x, = Exb{E; + (] — Ek)P1(1 — Ek) and Yk = ExaEy + (1 — Ek)Pz(] — Ek), k=1,2,.... Since
kliﬂgo Ifs; 2(xk) — f5,2(b1)l = O, (A.39)
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we may assume, without loss of generality, for all k > 1, that

7(fs,2(%k)) = ©(fs,/2(b1)) — do/64 for all T € T(A). (A.40)
It follows by (A.33) (with § = §;/2) that

7(fs,/2(xk)) > d¢(b1) — w(b) — 3do /64 for all t € T(A). (A.41)
Since A has continuous scale, there is kg > ng such that

(1 —e,) < dp/64 for all T € T(A) and for all n > ko. (A42)
It follows that, for k > kg,

(f3,2(X)) < do(xi) < do(c) + do/64 (A43)

= d,(b;”*E?*b)/*) 4 do/64 < d,(by) + do/64 for all T € T(A). (A44)

Let g5, € Co((0, 11)1 with 1 > g(¢t) > 0 for all t € (0, 1/4), g,(t) = t for t € (0, 81/16), g, (t) = 1 for t € (81/16,61/8)
and g, (t) = 0 if t > 8;/4.
Since gs, (% )fs, 2(xk) = 0, by (A.43), we conclude that, for k > ko,

dr(gs,(xk)) + T(fs; 2(xk)) < de(x) < d(b1) + do/64 for all T € T(A). (A45)
Then, by (A.41),
d.(gs,(%)) < (di(b1) — (fs,/2(%k))) + do/64 (A.46)
< w(b) + 3dy/64 + dy/64 = w(b) + dy/16 (A47)
for all T € T(A) and for all k > ky. Moreover, since m(xy) = w((1 — E,)P1(1 — E,)) = p; for all n,
85, (xk) € Mr(A). (A48)
It should be noted and will be used later that, for any 0 < x < 1,
X < fs(x) +g5,(x) for all 0 <& < &;/8. (A.49)
Fix an n > 0. Then there exists ki > ko + 2 such that, since limy_ |[yx — al| =0,
(a—n)y S Yk = ExaEx + (1 — Ex)P2(1 — Ey). (A.50)
Note that this holds regardless of whether (a) is represented by a projection or not. Fix any n > ko > nyg,. By (A.36),
d.(ExaEy) = d.(a'*E}a'?) < d,(a) < d.(c,) for all T € T(A) (A51)
and for any k. Since A has strict comparison,
EyaEr<c, (A.52)

for any n > kg and any k. Choose k > max{k;, n} + 2. In particular, E, and (1 — Ej) are mutually orthogonal. Then
(@a—n)y < Y S Exaky + (1 — Ex)Po(1 — Ey) (A53)
o+ (1 = Ex)Pa(1 — Ex) < ¢ + (1 = E)P1(1 — Eg) (A.54)

¢+ P1(1— E)*Py < ¢y + P1(1— Eq)°Py (A.55)

= cn+ (1 = Ep)P1(1 — Ep) = xp. (A.56)

In other words,

A

(a—n)y <x, for all n> k. (A.57)
Choose n > ko such that (note that, by (A.37), x, — by as n — 00) f;, ;2(xn)<b1. By (A.49),

(xn) = (fo,2(%n) + 85, (%n)) = (fo,/2(%n)) + (85, (xn)) (A58)

< (b1) + (gs;(xn))- (A.59)

By (A.47) and (A.30) and the strict comparison of A,

(g5,(%n)) < bo. (A.60)
Combining (A.57), (A.58) and (A.60)

((a—mn)+) < (b1) + (bo) = (b1 + bo) < (b). (A61)

Since this holds for any > 0, we conclude that

ash O (A62)
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Corollary A4. Let A and a be as in A.3. Suppose that b € Mr(Z) is such that d.(b) is continuous on T(A) and suppose that
(m(a)) < (m(b)) and

d.(a) < d.(b) for all T € T(A). (A.63)
Then a < b.

Definition A.5. Let A be a separable simple stably projectionless C*-algebra with continuous scale and with strict
comparison. Suppose also that M;;(A) has almost stable rank one for all m > 1, QT(A) = T(A) and Cu(A) = LAff, (T(A)). In
what follows we will continue to denote by 7 the quotient map from A — C and its extension from Mm(A) — M, for all
m > 1, as well as from A® K — K. Let S(A) be the sub-semigroup of Cu( ) generated by (a) € Cu(A) and those x € Cu(A)
which is equal to the supremum of an increasing sequence ((a,)), where d.(a,) € Aff, (T(A)) and (7 (a,)) < +o0, and (x)
is not represented by a projection. If (a) € Cu(A), we will write {a)” for the function d.(a) on T(A).

For each (a) € S(Z), note that (r(a)) = j(a) is either an integer or co. Let
L(A) = {(f,n) : f € LAff.(T(A)), n € NU {0} U {co}}.

We also define (f, n) < (g, m) if f < g and n < m. Define I'y({(a)) : S(Z) — L(Z) by Iy({a)) = ({a)’, j(a)).
For any C*- algebra B, as a tradition, we use V(B) for the semigroup of Murray-von Neumann equivalence classes of
projections in B® K.

Theorem A.6. Let A be a stably projectionless simple C*-algebra such that M,(A) has almost stable rank one for all r > 1,
QT(A) = T(A), A has continuous scale, and Cu(A) = LAff, (T(A)). Then I : S(A) — L(A) is an ordered semigroup isomorphism.
For any x = (a),y = (b) € V(A) S(A), if x < y for all T € T(A) and (m(a)) < (m(b)), then x < y. Moreover, if x is not
represented by a projection, then X < y and (r(a)) < (r(b)) imply that x < y.
Furthermore, if (a)” < (b)"and (z(a)) < (w(b)), and if (b) € S(A) and (a) € Cu(A) is any element which is not represented
by a projection, then x < y.

Proof. We will leave the additive part to the reader. We first note that Ij|cya) is an ordered semigroup isomorphism
to {(f, 0) : f € LAff, (T(A))} (Note that we also use the fact that A is stably projectionless). It is then also clear that Iy is
order preserving.

Claim 1. If (a) € A), (b) € S(A )and (b)" € Aff(T(A)) (ie., (b)"is continuous), and if I'h({a)) < Iy({b)), then {a) < (b),
provided that (a) is not represented by a projection.
If (a) € Cu( ), then, since A is stably projectionless, for any ¢ > 0,
((a—e)y) < (b)" (A.64)
Note that (7 (b)) < oco. Note also ((a — €);) < w(a). It follows from A.3 (and A.4) that
(a—e)y $b. (A.65)

Therefore a < b. This proves Claim 1.

Claim 2. If (a), (b) € S(A), To((a)) = Ib((b)) and (b)" € Aff.(T(A)), Then (a) = (b).

Note that (a)” = (b)" (so both continuous). If j(a) = j(b) = 0, then this follows from the fact that Ip|cyn) is an
isomorphism. So we assume j(a) = j(b) # 0. By Claim 1, {a) < (b) < (a). So (a) = (b).
Now assume that a € (A ® K),, (a) is not represented by a projection, (b) € S(A) and

(a)"=< (b)" and (r(a)) < (m(b)). (A.66)
Write (b,) < (by+1) and b = sup{(b,)}, where (b,)" are continuous and (7 (b,)) < oco. Then

((a—e);) "< (b)" and (m((a—e)y)) < o0 (A67)
(for any ¢ > 0). Since (a) is not represented by projections, for any sufficiently small &£ > 0,

((a—e)s) < {(a—e/2),) < (b)" (A68)
On the compact set T(A), one finds an integer k > 1 such that

((a—€)4)" < (b)" and (7((a — )1)) < (w(bi)). (A.69)
It then follows from A.3 that

((a—e)y) < () < (b). (A70)
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Therefore
(a) < (b). (A71)

This also implies that if I'h(a) = I'o(b) then (a) = (b). In particular, I} is the injective and the inverse restricted to the
image is also order preserving.

To complete the proof of the first part the statement, it remains to show that the map is surjective. Note that
Cu(A) = LAff(T(A)). Therefore elements with the form (f, 0) are in the image of I.

Let f € Aff (T(A)) and m € N. Choose mg > 1 such that f(t) — my < 0 for all t € T(A). Put y = mg — f(t) € Aff,.(T(A)).

We then borrow the proof of surjectivity in 6.2.3 of [43] but we also use A.3 with possibly nonzero w(b).

Choose a; € My, (A) such that a; = 2y. For each large n > 2, y <« (1 + 1/n)y. Thus there exists a; € My, (A)+ such
that, for some 8, > 0,

Y < {(an —8n)4)" < (an)" < (1 + 1/n)y. (A.72)
Note that A has strict comparison as Cu(A) = LAff, (T(A)). Therefore we may assume that a,, < a; ((a;)" = y). In particular,
we may assume that m, = my, n =1, 2, .... We may also assume that m; > mg. We may further assume that ||a,|| = 1,
n=12,...

Since a, € My, (A)+ and A is stably projectionless, we may assume that sp(a,) = [0, 1]. Consider the commutative sub-
C*-algebra generated by a, and T, - Then it is isomorphic to C([0, 1]). Denote by c;, a function in the sub-C*-algebra
which is zero at 1, strictly positive on [0, §,/2), zero elsewhere and |[cs, || = 1. Note ¢;, € Mml(z) and 7 (cs,) = IMm1 (in
M, (C)). Let g, be also in the sub-C*-algebra which is given by a non-zero positive continuous function with support in
(8n/2, 8n). Note that g, # 0. We may assume that ||g,|| < 1.

Then
(Csn) + (&n) + (@ = 8n)y) = mi(173) = (c5,) + (an). (A73)
We compute that
—(1+1/n)y < ({cs,) — mi(17))" < ((c5,) — mi(13)) + (gn) < —v. (A74)
Therefore
my(13)" = (1+ 1/n)y < (Cs,)" < (C5,)"+ (8n)" < m1(13)"— . (A75)

Note that, for each n, w(cs,) < y/n, since both y and (13) are continuous. For each ny there exists ny+; > ny such that
7y /Mksr < (gn,)" Hence

(Cn ) < mi(17) =y — Ty /M1 (A.76)
Therefore, there exists a subsequence {ny} such that

(Con )"+ 60(Cy, ) < {Cay )"+ 6Y /i (A77)

< m{17)" =y — ¥ /M1 < (cankﬂ): k=1,2,.... (A.78)

It follows from A.3 that (C,gnk> < (c,;nkH Y k=1,2,....Letc € Cu(x) such that ¢ = sup{c(;nk}. Since Con, € Mml(x) and

n(cank) = 1Mm1, we conclude that ¢ < 1Mm1 and (7 (c)) = my. We also have

(€)= mi(13)" = y = (my — mo)(17)"+ . (A.79)
Note that
To({c)) = ((m1 — mo){13)"+ f, m1). (A.80)

If mg —m > 0, then there exists apo € Mi(A); for some | > 1 such that {(ago)” = (Mo —m){13)" Put ¢; = co @ ago. If m = my,
keep ¢ = ¢;. Then

~

Io({c1)) = (F + (my — m)(13)", my). (A81)
If my = m, then Ip({cy)) = (f, m). f m; —m > 0, we have
my —m)(1z)" < (my — m)(13)"+f. (A.82)
Since (my — m)(13)"+ f € Aff(T(A)), by A.4, we conclude that
(17) = {c1). (A.83)
(

my — m){1z) + (c2) = (c1). (A.84)
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It follows that (7 (c;)) = m. Note that I'p({cz)) = (f, m). To see that we can choose c; so that it is not represented by a
projection, choose an integer k > 1 such that f > 1/k on T(A). Choose c; so that (c}) = (f — 1/k,m) and c; 0 € (A ® K)+
such that d;(c;0) = 1/k. Now ¢; = ¢, @ ¢, cannot be represented by a projection but I'y(cz) = (f, m).

Now let f € LAff,(T(A)) and m € N U {oo}. Choose a sequence (f,) in LAff, (T(A)) with f; 7 f and m, , m, where
m, < oo, n = 1,2,.... As in the previous paragraph, choose x, € S(A) with I'y(x,) = (fu, m,) such that they are not
represented by projections. By what has been proved, x, < x,,1, n = 1,2, .... Put x = sup{x,}. Then it is easy to check
that Ip(x) = (f, m).

This shows that Iy is surjective.

For the last part of the statement, let (w(a)) < (mw(b)). Suppose that y = (b) is represented by a projection p and

~

x = {a) is not represented by a projection, and (a)” < (b)". Then, for any & > 0,

((a—e))" <y (A.85)
Then since y is now continuous, by A.4,

((a—e)y) =v. (A.86)

It follows that x < y.

Now suppose that x is represented by a projection and X < y. If y is also represented by a projection, then by A.4,
x<y.

It remains to check the case that (a) is represented by a projection and y is not, and {a)" < J, as well as {7(a)) <
Cu(r )(y). Note that since (a) is represented by a projection, (x(a)) < oco. In this case, there exists an increasing sequence
({(bs)) in Aff,(T(A)) such that y = sup{(b,)}. Since (a)"is continuous, one finds b, such that {a)" < (b,)" for some large n.
We may also assume that (7 (b,)) > (a)". Now (b,)" € Aff(T(A)). From what has been proved, (a) < y. This completes the
proof. O

Corollary A.7. Let A be a stably projectionless simple C*-algebra such that M,(A) almost has stable rank one for all r > 1,
QT(A) = T(A), A has strict comparison for positive elements and has continuous scale, and Cu(A) = LAff, (T(A)). Then Ky(A)
has the following property: for any x € Ko(A), there exists T € T(A) such that pa(x)(t) = 0.

Proof. Since A is stably projectionless, by [4], A is stably finite (see also Theorem 1.2 of [37]). It follows from [6] that

T(A) # @. Let x = [p] — [q], where p, g € M,(A) are projections such that [z (p)] = [ (q)], where & : M;(A) — M,(C) is
the quotient map. Suppose that ps(x)(t) > 0 for all T € T(A). Then,

7(p) > t(q) for all t € T(A). (A.87)
By Theorem A.6,
qsp. (A.88)

~

Thus, there is a projection p’ < p such that [p’'] = [q]. Put P = p—p’. Then P is a non-zero projection in M,(A), as 7(P) > 0
for all T € T(A). Since (p’) < n(p) and [7(p')] = [7(q)] = [7(p)], without loss of generality, we may assume that

7(P) = 0. (A.89)

This implies that P € M;(A), which is impossible. By considering —x, we conclude that it is also impossible to have
pa(x)(t) < 0 for T € T(A).

If there were no 7 such that ps(x)(r) = O, then there would be t{,7; € T(A) such that ps(x)(t1) = t; > O,
pax)(t2) = to < 0.Then 0 < @ = 6/(t; — t1) < 1. Put v = at; + (1 — a)rp € T(A). Then pa(x)(tr) = 0. This
implies there is T € T(A) such that ps(x)(z) =0. O

Corollary A.8. Let A be a separable, exact, Z-stable simple C*-algebra, where Z is the Jiang-Su algebra. Suppose that x € Ko(A)
is such that t(x) > 0 for all non-zero traces t of A. Then x is represented by a projection p € A® K.

Proof. Since A is assumed to be exact, QT(A) = T(A). Also, since A is Z-stable, by Lemma 6.5 of [19], Cu(A) = LAff+(T(A)).
It follows from [44] that M,,(A) almost has stable rank one as M;(A) is Z-stable. Moreover, there is a non-zero a € Ped(A),
(see 5.2 of [17]) such that C = aAa has continuous scale. By Brown’s theorem [7], C ® K = A® K. It follows from A.7 that
we may assume that A ® K has a non-zero projection e. Then, by Brown’s theorem [7] again, A ® K = B ® K, where B is
the hereditary sub-C*-algebra generated by e. Now since B is unital and B ® K is Z-stable, by [21] (see also 4.6 of [47]),
Ko(B) is weakly unperforated. Thus x > 0 and it is represented by a projection. O

Corollary A.9. Let A be a stably projectionless simple C*-algebra such that M,(A) has almost stable rank one for all r > 1,
QT(A) = T(A), A has finitely many extremal traces, Ped(A) = A, and Cu(A) = LAff(T(A)). Then Cu(A) = V(A) u L(A).
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Proof. Since Ped(A) = A and A has finitely many extremal traces, d.(e4) is continuous on T(A) for any strictly positive
element e, € A. Since A has strict comparison, A has continuous scale (see the proof 5.4 of [17], for example). Since T(A)
has only finitely many extreme points, any finite affine function on T(A) is continuous, and so, for any integer r > 1, and
any a € M,(A), (a)” € Aff(T(A)). Therefore, if x € Cu(A) is not represented by a projection, then x € S(A). In other words,

Cu(A) = V(A) U S( ). Thus, the corollary follows from A.6. O

Corollary A.10. Let A be a stably projectionless simple C*-algebra with continuous scale and with stable rank one such that
QT(A) = T(A), and Cu(A) = LAff, (T(A)). Then Cu(A); = S(A) and Iy is an ordered semigroup isomorphism from Cu(A) onto
L(A). Moreover, Cu(A) = V(A) U L(A).

Remark A.11. Let A be a stably projectionless simple C*-algebra which is Z-stable such that QT(A) = T(A). Then, by [44],
M, (A) (for all r > 1) almost has stable rank one. A combination of [47,48], and [19] shows that A also satisfies the rest of
the conditions of A.6.

There are several other immediate consequences of A.6 and related facts about Cu™ (see [43]). Let A be as A.6.

(i) Then the canonical map o 4 : Cu(A) — Cu™(A) is injective. To see this, let (a), (b) € Cu(A). If (a) +k[13] = (b)+k[1;],
then (ay’ = (b). Since Cu(A) = Laff, (T(A)), (a) = (b). _

(ii) Let x, € S(A) with x, < xp41, n = 1,2, .... Then sup, x, € S(A). This follows from the definition immediately.

(iii) As indicated in the proof of A.6, if (p) € V(A) and x € S(A) \ {0}, then (p) +x € S(A).

(iv) Denote by S™(A) = {(a) — (w(a)) - [1;] : (a) € S(A), (w(a)) < oo} as a sub-semigroup of Cu™(A) (see [43]). Then,
by A.6, Cu(A) C S™(A).

Let x = (a),y = (b) € S( ) such that (7 (a)) = n and (x(b)) = m, where n, m are nonnegative integers. Suppose that
Xx—n=y—m.Thenx+m=y+nand (w(a))+m=n+m = (x(y))+n.If x = 0, by (iii), y = 0. Let us assume neither are
zero. It follows from (iii) that x+m(1) and y+n(1) are not represented by projections. By A.6, x+m(1) = y+n(1). It follows
that x—n(1) = y—m(1) in Cu™(A). Therefore we may write S™(A) = LAff(T(A)) = {f —g : f € LAff,(T(A)), g € Aff(T(A))}
(see [43] for the notation).

(v) Let ¢y : Cu™(A) — Cu” (A) be the natural map. Then, by A.6, ¢} is injective on S™(A). In fact, let x —n(1), y —m(1) €
S™(A), such that, for some integer k > 0,

x+m(1) + k(1) = y + n(1) + k(1) € S(A) C Cu(A). (A.90)
Then

X+m+k=y+n+k and (z(a)) + m+ k= (w(b)) +n+k. (A91)
It follows that

X+m=y+n and (7w(a)) + m = (7w (b)) + n. (A.92)

As (iv), we may assume neither x nor y are zero. Since x + m(1) and y + n(1) are not represented by projections, by A.6,
x+n{l) =y +m(1). Thus x —n(1) =y — m(1) in S~(A) C Cu~(A).
(vi) Exactly the same argument shows that S(A) maps to Cu™ (A) injectively. Let us denote this map by (5". Let us also
set S~ (A) {x —n(1;) : xeS(A) neNU{0}} CCu(A ) SoS(A CS”(A) -
(vii) Note that V(A)|_|S( ) maps into Ko(A)US™ (A) Let us identify N C V( ) with N- (13.) The map above maps NLIS(A)
into Z LI S™(A) injectively.

A.2. An existence theorem and some uniqueness theorems

The following is a variation of a result of Pedersen and Regrdam [39].

Lemma A.12. Let A be a non-unital C*-algebra and let x € Aand 1 > § > B > y > 0. Suppose that there exists y € GL(A)
such that ||x — y|| < y. Then there is a unitary u € A with the form u = 1+ z, where z € A, such that

ufs(Ix]) = vfs(IxI), (A.93)

where x = v|x| is the polar decomposition of x in A**.

Proof. This is a modification of the proof of Pedersen in [39]. We will follow the proof and keep the notation of [39] and
point out where to make the changes.

In Lemma 1 of [39], write A = A + A, where A’ € 2 for some A # 0. Let 7 : % — C denote the quotient map
with kerm = 2L If T € 2 and ||T — A|| < y, then ||7(A)|| < y. It follows that |A| < y. There is a continuous path
{g1(t) : t € [|Al, y1)} such that g;(JA]) = A*71, g1(y) = y~! and |g;(t)] = y~!. We define a complex valued function



G.A. Elliott, G. Gong, H. Lin et al. / Journal of Geometry and Physics 158 (2020) 103861 43

g’ € C([0, ||A|l]) as follows:

AU ift e [0, |A]];
gt)y= &) ifte vl (A.94)
=1 ift e (y, o0).
This g’ will replace the function g in the proof of Lemma 1 of [39]. Put

B = (g (T*NA™'(1 = /)TN + VF(TD) (A.95)
with f as described in [39]. Note that fg'(t) = 0ift € [0,y], fg'(t) = t71ift € [B,00), and tf(t)g'(t) = f(t)
if t € [0, 00). Exactly as in the proof of [39], one has BEg = VEg. Set C = f(|T|) — A*Vg'(IT|)f(IT|). We still have
fAT) = ITIV*Vg'(IT)f(IT). Therefore
C=fUT) —A"VE'(TFTI) = (T* — A" )V(fg")IT). (A.96)
The same estimate yields
ICI < IT* — A*[[Ifg'lle < IT —Ally ™" < 1. (A97)

As in the proof of Lemma 1 of [39], this implies that B defined above is invertible and BEB = VEg. Note that 7 (B) =
A*A*~1 = 1. In other words B = 1 4 z’ for some z € 2. As in [39], B also satisfies the conclusion of Lemma 2 of [39],
ie, FgB*1 = FgV.
Define h(t) = (t — B) v 0. Then Bh(|T)) = BEgh(|T|) = VEgh(|T|) = Vh(|T|). Let Ay be as in Lemma 3 of [39] with B
defined above. Then the conclusion of Lemma 3 of [39] holds.
Then, as in Lemma 4 of [39], one obtains By € 2 with 7(By) = 1 defined as B defined with g; instead of gy as we
demonstrated above. The same computation provides
Bo — Vfo(ITI) = (20)"(IT*DAS (1 — fo)(ITI) (A.98)
= (o) 'UT*NB*"(h + &) '(ITI(T = fo)(IT. (A.99)
Exactly as in the proof of Lemma 4 of [39], we have ByEs = FsBy = FsV = VE;. Since By is invertible, we have the polar

decomposition By = U|B,| in 2. Note that 7(U) = 1 since 7 (By) = 1. Hence U = 1 + z for some z € 2. As in Theorem 5
of [39], UEs = VEs. Then Ufs(|T|) = Vfs(|T|). The lemma follows. O

Corollary A.13. Let A be a non-unital C*-algebra which almost has stable rank one. Then, for any x € A and any & > 0, there
is a unitary u € A with form u = 1+ y for some y € A such that
lulx] —x|| < e. (A.100)

Proof. We have ||f;/s(|x|)x — x| < /4. Since A almost has stable rank one, by A.12, there exists a unitary u € A with the
form u = 1+ z for some z € A such that

lufes(1x]) — vfess(IxDIl < /4, (A.101)
where x = v|x| is the polar decomposition in A**. It follows that

lulx] = xII < lulx| — ufe/s(IxDIxI 4 [lufe/s(1xDIx] — vfe/s(1xDIx]] (A.102)

+ lvfess(IXDIX] — vix|l| < &. O (A.103)

Lemma A.14 (Theorem 3.3.1 of [43]). Let B be a simple C*-algebra which has almost stable rank one. Then, for any finite subset
F and ¢ > O, there exists a finite subset G C Cu(C) such that, for any two homomorphisms ¢1, ¢, : C := Co((0, 1]1) — B, if

Cu(¢1)(f) < Cu(¢2)(g) and Cu(¢2)([f) < Cu(¢1)(g) for all f,g € G with f K g, (A.104)
there exists a unitary u € B such that
lu e (flu — p1(F)Il <& for all f e F. (A.105)

Proof. The lemma is based on the fact that ¢ and ¢ are approximately unitarily equivalent if Cu(¢) = Cu(y) (see the
proof of “(iii) implies (i)” in “Proof of Theorem 1.3” in [44]).

The actual proof is almost the same as that of 3.3.1 of [43]. Let us present the details.

Let us point out what is the difference. In the proof of 3.3.1 of [43], consider (b¢) € [1c B¢ and let ¢ > 0. Since each
B¢ almost has stable rank one, by A.13, there is u¢ € Bg such that ug = 1 + z; for some z; € B with ||zg]| < 2 and

luglbg| — bell < &. (A.106)
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Note that (ug) € 1+ [ Bc. Since elements with polar decomposition, in the sense of being the (non-unique) product of
a unitary and a positive element, are in the closure of the invertible elements, this implies that (with notation as in the
proof of 3.3.1 of [43]) both [[. B¢ and B almost have stable rank one. The rest of the proof then can proceed just as in
the proof of 3.3.1 of [43] (note that we only compute Cu(¢) and Cu(y) which is easier). O

Remark A.15. A direct proof of the lemma above could also be obtained using [39] directly.

Corollary A.16. Let C = Co((0, 1]) and let A : C%1\ {0} — (0, 1) be an order preserving map. Then, for any ¢ > 0 and any
finite subset ¥ C C, there exist a finite subset H; C Ci \ {0}, a finite subset H, < Csq, and y > 0 satisfying the following
condition: for any two homomorphisms ¢, ¢, : C — A for some A which is separable, simple, exact, stably projectionless, and
has continuous scale, almost stable rank one, and the property that the map Cu(A) — LAff . (T(A)) is an ordered semigroup
isomorphism such that

t(¢;)a) > A(a) for all a € Hy and for all T € T(A) and (A.107)
|T(1(b)) — t(d2(b))| < y for all b € Hy and for all T € T(A), (A.108)

there exists a unitary u € A such that
lu*g2(flu — 1)l <& for all feF.

Proof. The proof of this is the combination of A.14 and the proof of 7.8 of [17]. O

Remark A.17. Let «, 8 : Cu(Cp((0, 1])) — Cu(A) be two morphisms in Cu. Recall the pseudo-metric d,, introduced in [8]:

du(e, B) = inf{r € R" : a((er4r)) < B({er)) and B((ersr)) < a((er)), t € RT), (A.109)

where e;(x) = (x — t) is a function on (0, 1].

If ¢, ¥ : Co((0, 1]) — A are two homomorphisms, define d,,(¢, ¥) = d,,(Cu(¢), Cu(¥/)). Let J (0, 1] be any relatively
open interval («, ) N (0, 1]. Define, for each r > 0, J. = {t € (0, 1] : dist(J, t) < r}. For each J fix a positive function ¢,
which is strictly positive on J and zero elsewhere. To be more symmetric than the definition of d,,, one can also define
the following metric:

Du(¢, ¥) = inf{r e R" : ¢(e)) < ¥(e,), v(e) < bley,), J S (0,11} (A.110)

(see some related discussion in [27]). Then D,, is a metric (see the proof of Proposition 2 of [45]). If Cu(A) has the weak
cancellation, d,, is a metric (Proposition 2 of [45]), and d,, and D,, are equivalent.

Another version of A.14 can be stated as follows:

(A): For any & > 0 and any finite subset 7 C C, there exists § > 0 with the following property: if D, (¢, ¥) < 8, then
there exists a unitary u € A such that

luw*o(flu — ()|l < e for all f e F, (A111)

and, if, furthermore, Cu(A) has weak cancellation, D,,(¢, ¥) < & can be replaced by d,,(¢, ¥) < & (with possibly a different
8).

Suppose that A is a stably projectionless simple C*-algebra with T(A) # @. Consider any x+z < y+z forx,y, z € Cu(A),
where x # y. Suppose that b € (A®K) is such that (b) = y+zand 0 < b < 1.Then, forany 1/2 > § > 0, f5,2(b)—f5(b) > 0.
Therefore d.(x 4+ z) < d.(y + z) for all T € QT(A). Thus d.(x) < d.(y) for all T € QT(A). If A is also assumed to have strict
comparison, then x < y. This implies that Cu(A) has weak cancellation. As shown in Proposition 2 of [45], d,, is then a
metric.

Proposition A.18. Let C = Cy((0, 1]). Then, for any ¢ > 0, any o > 0, and any finite subset ¥ C C, there exists § > 0
satisfying the following condition: Suppose that A is a stably projectionless simple C*-algebra with continuous scale which almost
has stable rank one and suppose that ¢, : C — A are homomorphisms. If d,,(¢, V) < &, then there exists y' : C — A such
that w o' = 7 o ¢,

' (F) = vl <& and dy(, ¥') <o, (A.112)

where 7 : A — C is the quotient map.

Proof. Let: : (0, 1] — (0, 1] denote the identity map which we view as a generating element of Co((0, 1]). Fix0 < n < /2
and a finite subset G C Cy((0, 1]). There exists 8’ > 0 such that, if [t — t’| < &', then

llg(t) —g(t)|| < n for all g eg. (A.113)
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If dy,(¢, ¥) < &, then it is easy to see that || (p()) — w (¥ (1))l < &. Let A1, A € (0, 1] such that 7 (¢(¢)) = A1 and
(Y (1)) = Ay. Then |A; — Ao| < &'. There exists a continuous map j : (0, 1] — (0, 1] such that

|](t) — t| <& and ]()»2) =M.
Define ¥’ : Co((0, 1]) — A by ¥'(f) = ¥(f o). Then 7 (¥'(1)) = A1 = w(¢(1)). Moreover

Iv(g) = ¥'(@)l = llv(g —gojll <n for all geg. (A.114)
If o > 0 is given one can choose large G and sufficiently small n so that
du(¥(f), ¥'(f)) < o /2. (A.115)

We also can choose § = min{§’, 0 /2}. O

Remark A.19. Let ] = («, 8] (or I = [«, B)). Let A be a stably projectionless simple C*-algebra which almost has stable
rank one. Fix a homeomorphism h; : (o, 8] — (0, 1] given by h(t) = ;’f‘; for t € (a, B], or (hy(t) = % fort € [a, B).) If
¢ : Co(I) = A is a homomorphism, denote by ¢ o h} : Co((0, 1]) — A the homomorphism defined by ¢ o hf(f) = ¢(f o h)
for all f € Co((0, 11).

Suppose now there are two homomorphisms ¢, ¥ : Co(I) — A. Define

Du.i(¢, ¥) = Du(¢ o hi, ¥ o hf) and dy i(¢, V) = du(¢ o h}', ¥ o hy). (A.116)

Put 4(t) = t —a,if I = («,p] and y(t) = B — ¢, if I = [a, B). Now assume that 0 < B —a < 1. Put
filt) = (B —a)t € Co((0, 1]). Then ¢; = foh. Let F C Cy(0, 1]. Then g o} = g ofi o h for each g € F. Let A € (0, 1]. Define
fi.(t)= At for t € (0, 1].

For any ¢ > 0, there is a finite subset K € (0, 1] such that, forany 0 < 8 —« < 1, with I = («, 8] or I = [«, B), for
eachge F,|lgoy —gof,oh| <e/2forsome A e K.Let G, e ={gof, : g € F, A € K}. Then, by (A) of A.17, we have
the following:

(B): Let ¢ > 0, let 7 C Cp((0, 1]) be a finite subset, Let 5 > 0 be given by (A) in A.17 for ¢/2 and G, . Suppose
I =(a,Blorl =[a,B)with0 < 8 —a < 1. Then, for any homomorphisms ¢, ¥ : Co(I) — A such that D,, ;(¢, ¥) < 4,
there exists a unitary u € A such that

lu*y(Flu—o(f)l <e for all f e{y,goy:g e F} (A.117)
Furthermore, if Cu(A) has weak cancellation, D,, ; above could be replaced by d,, ;.
Lemma A.20. Let A be a stably projectionless simple C*-algebra with continuous scale which almost has stable rank one.

Suppose also that A has strict comparison for positive elements and that QT(A) = T(A). For any ¢ > 0 and any finite subset
F C C, there exists § > 0 satisfying the following condition: If ¢, ¢ : Co((0, 1]) — A are two homomorphisms such that

dy (e, ¥) < 4. (A.118)
then there exists a unitary u € A such that
lu*y(Fu— ol < & for all feF. (A.119)
Moreover, (A.119) also holds, without assuming A has strict comparison, on replacing (A.118) by
Dy(¢,¥) < 8. (A.120)

Proof. By A.18, without loss of generality, we may assume that 7 o ¢ = 7 oV, where 7 : A — C is the quotient map.
Let ¢ : (0, 1] — (0, 1] denote the identity map which we view as a generator of Cy((0, 1]). Fix ¢ > 0. Put a = ¢(¢) and
b = v(1). It suffices to establish the case that 7 = {¢}.

Choose o9 = ¢/256. We will prove the last part of the statement first. The first part will follow, since, by A.17, with
the assumption that A has strict comparison, Cu(A) has weak cancellation. It follows that d,, and D,, are equivalent. Let
Fo = {L’fa }.

’ By (B) Oof A.19, we obtain 1/2 > §, > 0 with the following property: for any interval I = [«, 8) or [ = («, ] with
0<pB—a<1andif¢’, ¢ :Cl) — A are two homomorphisms such that D,,(¢’, /') < 8o, then there exists a unitary
U’ € A such that

(Y (Fu' — @' (F)ll < &/64 for all f e Fo, (A.121)

where Fy = {4}, fo,/2(¢})} and where ¢ is the function defined in A.19,

Put § = (e¢/4)5¢ > 0. Let ¢, ¢ : Co((0, 1]) - A be two homomorphisms which satisfy (A.118) for 4.

Now suppose that w(a) = m(b) = A for some A € (0,1]. Let x = a —A-13andy = b — A - 1;. Note
that sp(x),sp(y) C [—A, 1 — AL Iff € GCo([—A,0)) @ Co((0,1 — A]) C C([—A,1 — A]), then f(0) = 0. Therefore
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w(f(x)) = n(f(y)) = 0. Define two homomorphisms ¢1, 1 : Co([—A, 0)) ® Co((0, 1 — A]) — A by ¢1(f) = f(x) and
V1(f) = f(y) for all f € Go([—A, 0)) ® Co((0, T — A]).

Define c_ € Co([—A, 0)) ® Co((0, 1 —A]) by c_(t) = max(—t, 0) (c_(t) = —t in[—A,0)and c_(t) = 0in (0, 1 — A]), and
c+(t) = max(t, 0). Then ¢1(c+(x)) = (a — A)4, ¢1(c_(x)) = (a — A)—, and yr1(c+) = (b — 1)+ and P1(c_(x)) = (b — A)-. Let
D1+ = D1lco0,1-21) V1,4 = Yilcoo,1-21) D1— = D1lcor=2.0) and Y1 — = ¥rilcy—r.0))-

Note that
Ifo(c_)e— —c_|| < &/64, |lc_fs(c-)—c_]| < €&/64, and (A.122)
Ifo(ci)er —cill < €/64, llefo(cy) —cill < &/64 (A.123)
for all 0 < o < oy. Let us also assume that, for all 0 < o < oy,
Ifs(c2)2c —c_|| < €/64, |lc_fo(c_)V? —c_| < &/64, and (A.124)
Ifs(ci) ey — eyl < /64, Nefo(c)? — eyl < £/64. (A.125)

Let us consider the case A > ¢/2 and A < 1 —&/2 first. Let I, = (0, 1 — A] and I_ = [—A, 0). Recall that h; (t) = &
and hy_(t) = ’Tt (see A.19). Therefore the condition that D, (¢, ¥) < § = (¢/4)8o implies (see A.19) that

D1, (@14, ¥1.4) = Du(¢ps o hj,, ¢4 o hf) < o. (A.126)
Note this holds in Cu(A). We also have that
Dy.i_(¢1,—, ¥1,-) < o- (A.127)

Put 7} = {f5y2(c-), c_} and 7 = {f,2(c4), c+}. By the choice of 8y, there are unitaries uy, u, € A such that
luf o1 (fFlui — ()l < /64 for all feF, i=1,2. (A.128)

By replacing u; by oju; for some o; € T, we may assume that 7(u;) = 1,i = 1, 2. Put z = ¢1(fy2(c= ) ur 91 (frp(c2)V3) +
H1(fog2(c) V2 ¥r1(fr(c4)/?) € A. Keep in mind that ¢q(c; )¢1(c—) = 0 and ¥1(c4)1(c—) = 0. Then we have

lz*p1(f)z — Y1(F)Il < &/16 for all f € 7. (A.129)
We also have, by (A.128)

Y1 (fog (€)1 (g 2 (€= Va1 (g (€)'7?) (A.130)

2 164 Y1 fog (€22 )0 (o 12 )1 (frg (€2)'72) = 1 (frp (€2)). (A131)
Similarly,

Y1 (oo (€)1 Fo 24 D ¥ra (Frg (€4)'7) R j6a Y1 (C4)- (A132)

It follows from Lemma 5 of [39] (see also A.13 here for convenience) that there exists a unitary u € A such that
lulz| —z]| < &/64. (A.133)
Combining this with (A.129), (A.130) and (A.132), we estimate that
w1 (Fu — (Il < e for all f e F. (A.134)
Thus, there exists a unitary w € A such that lw*xw — y|| < e. Then
wraw = w(x + 213w ~. y + w*(A13)w = b. (A.135)

For the case A > 1 — ¢/2, note that we have reduced the general case (of this) to the case F = {¢}. Choose a 1-1
continuous function h : (0, 1] — (0, A] such that

lh—¢| <e&/2 and ||t —hot| < &/2. (A.136)

Consider the composed maps ¢; = ¢ o h and Y, = ¢ o h. This reduces the problem to the case A = 1. So there exists
only one interval [—1, 0). In this case we can choose § depending only on ¢/2 not on A.
In the case L < ¢/2, one has a unitary u € A such that ||[u*¢(cy)u — ¥1(cy)|| < &/64. Then

U P()u Rgpp U P1(C U Rg6a Ya(Ch) Repp ¥(1). O (A.137)

Corollary A.21. Let C = Cy([0, 1)) ® K and let A be a stably projectionless simple C*-algebra such that M,(A) almost has
stable rank one for each m > 1 and suppose that A has strict comparison for positive elements and that QT(A) = T(A). Then,
for any ¢ > 0 and any finite subset F C C there exists § > 0 satisfying the following:
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Let ¢, ¥ : C— A® K be two homomorphisms such that d,, (¢, ¥) < 8. Let Co = Co([0, 1)) = Co([0, 1)) ® eq; S C denote
the 1-1 corner. If ¢(Co), ¥ (Co) € A®eqy, then for any ¢ > 0 and any finite subset 7 C C, there exists a unitary U € (AQ K)~
such that

IU*p(c)U — ¥(c)ll <& for all c € F, (A.138)
n
where U = diag(u, u,...,u,1,1,...), whereu € U(Z)for some n > 1.

Proof. We will write M;(Co([0, 1))) as a sub-C*-algebra of C, Mn(Z) as a sub-C*-algebra of A ® K and M,(A) as a
sub-C*-algebra of A ® K for all integers n > 1. Let ¢ > 0 and F C C be a finite subset. Without loss of generality,
we may assume that 7 € M,(C). Furthermore we may write 7 = {(¢;j)uxn : Cij € G}, where g C ( is a finite subset. We
will apply A.20 with &/n? in place of ¢ and G in place of F. Choose § as provided for £/n? and G (in place of F) in A.20.
Suppose that d,(¢, ¥) < 6. N

Define ¢y = ¢|¢, and ¥1 = ¥|,. By A.20, there exists a unitary u € A such that

lu*¢1(a)u — ¥1(a)|| < &/n® for all a e g. (A.139)

We may assume that 7(u) = 1, where & :A — Cis the quotient map. Define

n

U = diag(u,u,...,u,1,1,...).
Then U € (A ® K)~. Moreover,
NU*@(c)U — ¢r(c)|| <e for all ce F. O (A.140)

Corollary A.22. Let C = Cy((0, 1]) with a strictly positive element e, and A be a stably projectionless simple C*-algebra with
continuous scale such that M,(A) almost has stable rank one (m > 1). Suppose also that A has strict comparison for positive
elements and that QT(A) = T(A). ~

(a) Then, for any y : Cu(C) — Cu(A) which is an ordered semigroup homomorphism in Cu such that (e;) < (13), there
exists a homomorphism ¢ : C — A such that Cu(¢) = y.

(b) Let ¢, ¥ : C — A be two unital homomorphisms such that Cu(¢) = Cu(yr). Then Cu” (¢) = Cu™ ().

Proof. For part (a), for any integer n > 1, by Theorem 4 of [45], there exists homomorphism ¢, : C_— A such

that d,(Cu(yr,), y) < 1/2" By Corollary A.21, one obtains a sequence of homomorphisms ¢, : C — A such that

dw(Cu(ey), y) — 0 and (¢(c))p2, is a Cauchy sequence for all ¢ € C. Let ¢ be the limit homomorphism. Then Cu(¢) = y.
For part (b) follows from Corollary A.21 immediately. O

Definition A.23. Let R = Ry , be the Razak algebra as below:

R=Ry, ={f e My(C([0,1])): f(0) = - 1y, , and f(1) = - 1y, @ € C}. (A.141)
Put
0,1 O
D = {f € Ma(Co([0, 1)) : f(0) = ( 0 a) ;o € ChL
Then R is the unitization of D. Denote by ¢~, ¥~ : D — A the unital extension of ¢ and . Consider
Co = If € Mu(Gol[0, 1) £(1) = (O'gl a(ot)) . a(t) € Co([0, ). (A142)

Then Co = (Cy([0, 1)). Note also that Cy C D is a full hereditary sub-C*-algebra Let jo : Co([0, 1)) — Co C D be the
embedding. By Brown'’s theorem (see [7]), there is an isomorphism s : C; ® K = D ® K. Note, from the construction
in [7], the isomorphism s (given by partial isometry in My(M(D ® K))) has the property that Cu(s) = Cu(jo). This was
discussed in 4.3 of [43]. Let ec be a strictly positive element of s(Co([0, 1)) ® e1,1) and e, be a strictly positive element of
Co®e1 CD®ey; CD® K. Then (ec) = (ec,) in D ® K. Since D ® K has stable rank one, by [9] (see also 1.7 of [35]),
there is a partial isometry w € (D ® K)** such that wa, aw* € D ® K for all a € s(Co([0, 1)) ® e1.1) and w*aw € Cy ® e 1.
Denote by s(e; 1) the range projection of s(Co([0, 1)) ® e;.1). Then s(e1.1) € M(s(Co([0, 1))) ® K). Also w*s(e;;)w = ey g,
where eq; is the range projection of Cy C D. Clearly e;; € M(D) C M(D ® K). Denote by pp the range projection of
D®ejq.Let P =1—ppin M(D ® K). Then we may write 1 —ej;; = ((1p —€1,1) ® 1) ® (1,1 ® P) which is Murray-Von
Neumann equivalent to ((1Ip —e11)® 1)@ (e1,; ® 1) = 1p ® 1 in M(D ® K). Note also 1 — s(eq1) is also Murray-Von
Neumann equivalent to 1, as s(Co ® K) = D ® K. It follows that there is a partial isometry W; € M(D ® K) such that
WiW; = (1 —s(eq,1)) and WiW5 =1 — 41 (see also Lemma 2.5 of [7]). Define W = W; @ w. Then W e M(D® K) is a
unitary. Set j = Ad W o s. Note Cu(j) = Cu(idc, ). The additional feature is that j(Co([0, 1))) C D.
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For any homomorphism ¢ : D—B (for some C*-algebra B), denote by ¢ again for the extension from D® K—B®
Define ¢, = ¢ 0j: Co([0, 1)) ® K - B® K. If ¥ : R — A (for any C*-algebra) is a homomorphism let ¢/~ : D = R —
be the extension. We will use ¢, ;== ¢~ 0j: (([0,1))® K = A® K.

K.
A

With the definition above, we present the following lemma:

Lemma A.24. Let D be as in A.23 and let A be a stably projectionless simple C*-algebra such that My,(A) almost has stable
rank one for every m > 1, has strict comparison and QT(A) = T(A). Then, for any n > 0 and any finite subset S C D, there
exists 8o > O satisfying the following condition:

For any two unital homomorphisms ¢, ¥ : D— A4 if

duw(dcy» V) < o, (A.143)
then there exists a unitary u € A such that
lu*y(Flu — o)l <n for all f esS. (A.144)

Proof. Fix n > 0 and finite subset S C D. We may assume that S = {g+r-15:g € G,r € K}, where G C D is a finite
subset and K is a finite subset of C. Letj : Co([0, 1))@ K — D®XK be the isomorphism defined in A.23. Let ¥ = jil(g)&Note
J(Co([0, 1))®eq1) C D. Let 8o > 0 be given for » (in place of ¢) and F by A.21. Consider ¢ o, Y oj : Co([0, 1))®K — AR K.
By applying A.21, there exist a unitary u € A and an integer n > 1 such that

U@ 0 j(fIU — ¥ oj(f)ll <n for all f e F, (A.145)
n
where U = diag(u, u, ..., u, 1, 1,...). This implies that
U (g)U — ¥(g)ll < n for all g €g. (A.146)
Since ¢(g), ¢(g) € A for all g € G, we actually have
lu*ep(gu — ¥(g)l <n for all g eg. (A.147)

Since both ¢ and v are unital and u*r - 13u = r - 13, we finally conclude that (A.144) holds. O

Theorem A.25. Let R be a Razak algebra and let A be a separable stably projectionless simple C*-algebra with continuous scale
such that M;(A) almost has stable rank one for every n > 1. Suppose that A also has strict comparison for positive elements
and QT(A) = T(A). Let y : Cu(R) — NUS(A) C Cu(A) (see A.5 and (vii) of A.11) be an ordered semigroup homomorphism
in Cu with y((1z)) = (1) such that y|cyr)C Cu(A) and y({a)) # 0 for all {a) # 0 in Cu(R) We also assume that y maps
elements which cannot be represented by projections to the sub-semigroup S(A). Then there exists a homomorphism ¢ : R — A
such that Cu(¢p) = ¥ |cu(r)-

Proof. We will keep notation in A.23. In what follows denote by 7 : A — Caswellas 7 : D — C for the quotient maps.
By the assumption above, we Cu(r) o ¥ |cyr)= 0.
Since R = D D is a hereditary sub-C*-algebra of R. It follows that Cu(D) is an ordered sub-semigroup of Cu( ). Note

also D ® K = Cy([0, 1)) ® K. We specify a strictly positive element ep(t) = 8(0) 61” 1 (1 E t)) (for t € [0, 1]), where

g(t) = 2tif ¢ € [0,1/2] and g(t) = 2(1 —t) for t € (1/2, 1]. Note y({ep)) < (1a). By part (a) of A.22, there is a
homomorphism ¢¢ : Co([0, 1)) ® K — A ® K such that Cu(¢¢c) = y o Cu(j). Then ¥ :==¢coj ' :DRK - A® K is a
homomorphism such that Cu(¢c 0j~1) = ¥ |cup)-

Define e, = ¥ (fin(ep)), n = 1,2, .. .. Note y({ep)) < y({15) = (1;). It follows from Proposition 2.4 of [46] that there
exists x, € A® K such that

en =X 1zx,, n=1,2,.... (A.148)

Put y, = 1Axn Let y, = Un |yn| be the polar decomposition of y, in ( )** Then vpa € A®Kforallae e,,(?i@ K)e, and
vhav, € Aforalla e en(A®IC)en, n=12,...Define y, : D — A by ¥(d) = vie,(d)e,v, for all d € D. Since D is

semiprojective, there exists, for each large n, a homomorph1sm h, : D — A such that

lim ||h,(d) — ¥,(d)|| =0 for all d € D. (A.149)
n—oo

Define h; : D—>A by defining h,(15 + d) = 13 + hp(d). It is a unital homomorphism.
Since lim,_, « llej¥(d)e, — ¥ (d)|| = 0, it is easy to compute that

Jim d,, (Cu((hy )y ), Culdey)) = (A.150)



G.A. Elliott, G. Gong, H. Lin et al. / Journal of Geometry and Physics 158 (2020) 103861 49

Let 7, C D be finite subsets such that Fn C Fnig and U2 | F, is dense in D. It follows from A.24 that there exist a
subsequence {n} and a sequence of unitaries u, € A such that,

1A tgs1 © iy, ,(d) — Ad it 0 hy (d)]| < 1/2% for all d € Ay, k=1,2,.... (A.151)

It follows that (Aduy o hnk( a))y2, a Cauchy sequence for each d € D. Let H(a) be the limit. Then H defines a unital

homomorphism from DtoA. By (A.150), Cu(H¢,) = Cu(¢c). Since D® K = Co([0, 1)) ® K, we then have Cu(H|p) = ¥ |cup)

Since Cu(s) o ¥|cury= 0, if Cu(H) = y, then H|rC A. Therefore it remains to show Cu(H) = y. To show that, we will
apply part (b) of A.22.

It follows by [53] that there is a separable simple C*-algebra B which is an inductive limit of Razak algebras with
continuous scale_such that T(B) = T(A). Note that B has stable rank one and Ko(B) = {0}. By 6.2.3 of [43] (see also
7.3 of [17]), Cu(B) = N u L(B). It follows by A.6 there is an ordered semigroup isomorphism y;, : L( ) — S(A) This
extends to an ordered semigroup isomorphism y3 : Cu(B) — Nl.lS(A). It then extends an ordered semigroup isomorphism
yg : Cu”(B) = Z U S™(A) defined by yg(m) = m and y, (x — k(13)) = ys(x) — k(13). (Recall that B has stable rank one

and, by 3.16 of [43], Cu(E) embedded into Cu”™ (B) and, by (v1) of A.11 S( A) embedded into S~ (A).) Moreover it induces an
isomorphism 3~ : Cu™(B) — S™(A). Let yb_l, 173 T and yBN be the inverse maps of y;, y and yp-~.

Define y. : Cu™ (D) — S~(A) by y~({a) — n(15)) = y({a)) — n(1x) for all @ € Cu(D) which are not represented by
projections (recall also V(D) N and Ko(D) = Ko(Co([0, 1))) = {0}.) and n = (m(a)) < oo. This extends y |cyp). We can
also deflne y~ o Cu” (D) — Z U S”(A) (see A.11) by y~(m(15)) = m(1;) and yN((a) — k(1 )) y({a)) — k(15) for all
(a) € A which are not represented by pl‘O]ecth[lS Note, in fact, since both D and A are unital, ¥~ is uniquely determined
by y (see 3.1 of [43]). Note that ¥~ |cy~ D)= ¥~, ¥ Tlewdy= v and y~|cup)= ¥ lcup). Recall that Nl.lS(A) = Cu(B), Note that,
by the assumption, y~, y~ are ordered sgmigroup homomorphlsms in Cu.

Note D is a 1-dimensional NCCW and B has stable rank one. By Theorem 1.0.1 of [43], there is a unital homomorphism
Wyp : D — B such that Cu™ (W) = ()/B”)‘l oy™.

Let D; = H(D) and let ip, : D — A be the embedding. Denote also 1p, : 51 S A the unital extension. Since y is strictly
positive, 1p, oH|p is an isomorphism. Then there exists a homomorphlsm ¥p, : D1 — B such that Cu(¥p,) = VB OCU(IDl)
Let ¥ 11 ¥|p,(D1) — D be the inverse of ¥p,. Then Cu(¥p, oH|p) = y5 oJ/Icu .In particular, Cu(¥y poj) = y5 Loy oCu(j).
It follows from part (b) of A.22 that Cu™ (¥ 0j) = Cu™ (¥, oH oj). Note that j is also an isomorphism from Cy([0, 1)) R K
onto D ® K. It follows that Cu™(¥p, o H|p) = Cu™(¥ylp). In other words, Cu™(¥p, o H|p) = (]/I;)‘1 o ¥ lcu~ ). Since
‘1’51] o ¥p, oH = H, it follows that

Cu™(H)lcw~ )= ¥~ lcw~ ()= ¥~ (A.152)

where Cu™(H) : Cu:(B) — CuN(Z) is the map induced by H.
Now let x € Cu(D) with (7(x)) = n < oo. Then

Cu(H)(x) = Cu™(H)(x — n(13)) + Cu™(H)(n(15)) (A.153)
= y~(x —n{1p) +n(lz) =y (x —n{1p)) + y " (n(13)) (A.154)
=y (%) = y(x). (A.155)

It follows that Cu(H) = y. O

Theorem A.26. Let A be a separable simple stably projectionless C*-algebra with continuous scale such that M,,(A) has almost
stable rank one for all m > 1. Suppose that QT(A) = T(A) and Cu(A) = LAff, (T(A)). Suppose also that B is a simple C*-algebra
which is an inductive limit of Razak algebras with injective connecting maps, with continuous scale and with T(A) = T(B). Then
there exists a homomorphism ¢ : B — A which maps strictly positive elements to strictly positive elements and which induces
the identification T(A) = T(B).

Proof. Let us construct the required homomorphism ¢.

Note Cu(A) = LAff,(T(A)) and Cu(B) = LAff,(T(B)). Denote by A : T(A) — T(B) the affine homeomorphism. Then A
induces an ordered semigroup isomorphism Xq : Cu(B) — Cu(A) in Cu.

Fix strictly positive elements ez of B and es of A, respectively. Then Ao(({ep)) < (ea). Consider the sub-semigroup
S = S(A) C Cu(A) defined in A.5. Note that, by A.10, Cu(B) N U L(B) By A.6, this induces an ordered semigroup
isomorphism A; : Cu(B) — NU S(A) - Cu( ) with A;((15)) = (13) (see also (vii) of A.11). Write B = limy_, oo(Ry, tn)
(see [53]), where each 1, is injective. Let y; : Cu(R,) — Cu(A) be given by A; o Cu(1;,). Note that y,11 o Cu(ty) =
and Vn(<1R,.>) = (13). It follows from A.25 that there is a unital homomorphism ¢, : R, — A such that Cu(¢,) = Yn and
®nlr,C A,n=1,2,....Note also Cu(¢ns1 0 1,) = Cu(¢py), n = 1,2, .... We also have y,(Cu(R,)) C Cu(A). If x € Cu(Ry) is
not represented by a projection, neither Cu(1, », )(x). It follows that y,(x) C S(A), n=1,2,....

Let (e,) be a decreasmg sequence of positive numbers with Z 1&n < 00. Let 7, C R, be finite subsets such that
1,(Fn) € Foyr1,n=1,2, ..., and we assume that Un 1 In,o(Fn) 18 dense in B. By A.24, there exists a sequence of unitaries
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u, € A such that
|Ad ty 0 ¢ni1(b) — Ad o pa(b)|| < 1/2" for all b € 7, (A.156)

n=1,2,....Then (Adu,o¢,(b));2, is a Cauchy sequence in A for each b € B. Let ¢(b) be the limit (for each b € B). Then ¢
is a homomorphism from B to A such that Cu(¢) = A;. From the definition of 1, we see that ¢ meets the requirement. 0

Corollary A.27. Let A be a separable simple C*-algebra which has finite nuclear dimension and continuous scale. Then there
exist a simple C*-algebra B which is an inductive limit of Razak algebras with injective connecting maps and with T(A) = T(B)
and a homomorphism ¢ : B — A which maps strictly positive elements to strictly positive elements and which induces the
identification T(A) = T(B).

Proof. First, the existence of such a C*-algebra B with T(B) = T(A) is given by 2.8. It follows from [54] that A is Z-stable
and has strict comparison for positive elements. Moreover, by [44], M, (A) (for every integer r > 1) and A® K have almost
stable rank one. By Lemma 6.5 of [19], Cu(A) = LAff, (T(A)). Thus A.26 applies. O
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