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a b s t r a c t

We present a classification theorem for separable amenable simple stably projectionless
C∗-algebras with finite nuclear dimension whose K0 vanish on traces which satisfy the
Universal Coefficient Theorem. One of C∗-algebras in the class is denoted by Z0 which
has a unique tracial state, K0(Z0) = Z and K1(Z0) = {0}. Let A and B be two separable
amenable simple C∗-algebras satisfying the UCT. We show that A ⊗ Z0 ∼= B ⊗ Z0 if
and only if Ell(A⊗Z0) = Ell(B⊗Z0). A class of simple separable C∗-algebras which are
approximately sub-homogeneous whose spectra having bounded dimension is shown to
exhaust all possible Elliott invariant for C∗-algebras of the form A⊗Z0, where A is any
finite separable simple amenable C∗-algebras.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Recently some sweeping progresses have been made in the Elliott program [11], the program of classification of
eparable amenable C∗-algebras by the Elliott invariant (a K -theoretical set of invariant) (see [20,58] and [14]). These
re the results of decades of work by many mathematicians (see also [20,58] and [14] for the historical discussion there).
hese progresses could be summarized briefly as the following: Two unital finite separable simple C∗-algebras A and B
ith finite nuclear dimension which satisfy the UCT are isomorphic if and only if their Elliott invariant Ell(A) and Ell(B) are

somorphic. Moreover, all weakly unperforated Elliott invariant can be achieved by a finite separable simple C∗-algebras in
CT class with finite nuclear dimension (In fact these can be constructed as so-called ASH-algebras—see [20]). Combining
ith the previous classification of purely infinite simple C∗-algebras, results of Kirchberg and Phillips [46] and [26], now
ll unital separable simple C∗-algebras in the UCT class with finite nuclear dimension are classified by the Elliott invariant.
This research studies the non-unital cases.
Suppose that A is a separable simple C∗-algebra. In the case that K0(A)+ ̸= {0}, then A⊗ K has a non-zero projection,

ay p. Then p(A⊗K )p is unital. Therefore if A is in the UCT class and has finite nuclear dimension, then p(A⊗K)p falls into
he class of C∗-algebras which has been classified. Therefore isomorphism theorem for these C∗-algebras is an immediate
onsequence of that in [20] (see section 8.4 of [39]) using the stable isomorphism theorem of [4].
Therefore this paper considers the case that K0(A)+ = {0}. Simple C∗-algebras with K0(A)+ = {0} are stably

rojectionless in the sense that not only A has no non-zero projections but Mn(A) also has no non-zero projections for
every integer n ≥ 1. However, as one may see in this paper, K0(A) could still exhaust any countable abelian groups as well
as any possible K1(A). In particular, the results in [20] cannot be applied in the stably projectionless case. It is entirely
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ew situation. If one views C∗-algebra theory as the study of non-commutative topological spaces, then unital C∗-algebras
orrespond to the compact spaces and non-unital ones correspond to non-compact spaces. However, stably projectionless
imple C∗-algebras may be viewed as non-commutative topological spaces which are not even locally compact. This causes
reat difficulties. Different methods have to be developed. In fact, the current paper is mostly independent of [20].
In [15], we introduce a class of stably projectionless simple C∗-algebras D (see 3.9). We also introduced the notion of

eneralized tracial rank one for stably projectionless simple C∗-algebras. These are separable stably projectionless simple
∗-algebras which are stably isomorphic to C∗-algebras in D (see 3.9). If A is stably isomorphic to one in D, we will write
TR(A) ≤ 1. Some study of the structure of these C∗-algebras were also presented in [15]. For example, among other things,
e show that C∗-algebras have stable rank one. Let A and B be two stably projectionless simple amenable C∗-algebras
atisfy the UCT. Suppose that K0(A) = K1(A) = K0(B) = K1(B) = {0}. In the first part of this research (see [16]), we show
that A ∼= B if and only if Ell(A) ∼= Ell(B) (see [16]). In this case the Elliott invariant is reduced to Ell(A) = (T̃ (A),ΣA)
(see 2.10). Combining the above mentioned results, this also gives a classification for separable stably finite projectionless
simple C∗-algebras with finite nuclear dimension in the UCT class with trivial Ki-theory.

In the current paper, we study the general case that K -theory of C∗-algebras are non-trivial. We give the following
theorem:

Theorem 1.1 (See 13.2). Let A and B be two separable simple amenable C∗-algebras which satisfy the UCT. Suppose that
gTR(A) ≤ 1 and gTR(B) ≤ 1 and K0(A) = ker ρA and K0(B) = ker ρB. Then A ∼= B if and only if

Ell(A) ∼= Ell(B). (e1.1)

Among all stably projectionless separable simple C∗-algebras, one particularly interesting one is W , a separable
C∗-algebra with only one tracial state such that K0(W) = K1(W) = {0}. W is also an inductive limit of sub-homogeneous
C∗-algebras (see [47]). It was shown in the first part ([15] and [16]) of this research that if A is a separable simple
C∗-algebra in the UCT class, with finite nuclear dimension, with a unique tracial state and zero Ki(A), then A ∼= W .

In this part of the research, another stably projectionless simple C∗-algebra Z0 with a unique tracial state plays a
rominent role. This C∗-algebra has the property that K0(Z0) = Z and K1(Z0) = {0}. As abelian groups, Ki(Z0) = Ki(C),
= 0, 1. Therefore, by the Künneth Formula, for any separable C∗-algebra A, Ki(A⊗Z0) = Ki(A), as abelian group, i = 0, 1.
oreover, if the tracial state space of A is not empty, then T (A ⊗ Z0) = T (A), since Z0 has only one tracial state. As
onsequence of our main results, Z0⊗Z0 ∼= Z0. Moreover, we show that if A is a separable simple C∗-algebra in the UCT
lass, with finite nuclear dimension, unique tracial state, K1(A) = {0} and K0(A) = ker ρA ∼= Z, then A ∼= Z0 (see 15.7).
herefore we are particularly interested in Z0-stable C∗-algebras, i.e., those C∗-algebras with the property that A⊗Z0 ∼= A.
It should be noted that the condition that K0(A) = ker ρA ensures that A is stably projectionless. There are cases that

0(A)+ = {0} but K0(A) ̸= ker ρA which will be dealt in a subsequent paper. However, we prove the following theorem:

heorem 1.2 (See 15.8). Let A and B be two separable simple C∗-algebras with finite nuclear dimension which satisfies the
CT. Then A⊗ Z0 ∼= B⊗ Z0 if and only if

Ell(A⊗ Z0) ∼= Ell(B⊗ Z0). (e1.2)

(Added in September, 2020: the condition that A and B have finite nuclear dimension could be replaced by the condition
hat A and B are amneable, as A ⊗ Z0 and B ⊗ Z0 are both Z-stable and hence both have finite nucler dimension by a
esult of J. Castillejos and S. Evington, arXiv:1901.11441)

When A and B are infinite, then both A ⊗ Z0 and B ⊗ Z0 are purely infinite simple. This case is covered by
irchberg–Phillips classification theorem (see [26] and [46]).
We also present models for C∗-algebras stably isomorphic to C∗-algebras in D. These model C∗-algebras are locally

pproximated by sub-homogeneous C∗-algebras whose spectra have dimension no more than 3. We show that these
∗-algebras exhaust all possible Elliott invariant for separable Z0-stable C∗-algebras as stated as follows (see also 7.12):

heorem 1.3 (See 8.4). Let A be a finite separable simple amenable C∗-algebra. Then there exists a stably projectionless simple
∗-algebra B which is locally approximated by sub-homogeneous C∗-algebras and which is stably isomorphic to a C∗-algebra
n D such that

Ell(A⊗ Z0) = Ell(B). (e1.3)

Finally, let us point out, if A is a separable simple C∗-algebra with keρA = K0(A) in the UCT class, then A has finite
uclear dimension implies that gTR(A) ≤ 1 (see 15.5) (the converse also holds by the classification theorem). Therefore
he conditions gTR(A) ≤ 1 and gTR(B) ≤ 1 in Theorem 1.1 can be replaced by finite nuclear dimension when traces vanish
n K0(A) and K0(B). In fact, we have the following:

heorem 1.4 (See 15.6). Let A and B be two finite separable simple C∗-algebras with finite nuclear dimension which satisfy
he UCT. Suppose that K0(A) = ker ρA and K0(B) = ker ρB. Then A ∼= B if and only if Ell(A) ∼= Ell(B).

The paper also includes an Appendix which shows every separable and amenable C∗-algebra in D is Z-stable which
s based on [42]. This research is also benefited from previous results related to the classification of simple projectionless
∗
-algebras (such as [47,49,50,55], and [57], as well as many others).
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. Preliminaries

efinition 2.1. Let A be a unital C∗-algebra and let x ∈ A. Suppose that ∥xx∗ − 1∥ < 1 and ∥x∗x− 1∥ < 1. Then x|x|−1 is
unitary. Let us use ⌈x⌉ to denote x|x|−1.
Denote by U(A) the unitary group of A and denote by U0(A) the normal subgroup of U(A) consisting of those unitaries

hich are path connected with 1A. Denote by CU(A) the closure of the commutator subgroup of U(A).
If u ∈ A is a unitary, then ū is the image of u in U(A)/CU(A), and if U ⊂ U(A) is a subset, then U = {ū : u ∈ U}.

Definition 2.2. Let A be a C∗-algebra. Denote by A1 the unit ball of A.
Let B be another C∗-algebra and let ϕ : A→ B be a completely positive linear map. Suppose that r ≥ 1 be an integer.

This map induces a completely positive linear map ϕ⊗ idMr : A⊗Mr → B⊗Mr . Throughout this paper, we will use notation
ϕ instead of ϕ ⊗ idMr whenever it is convenient.

Let A be a non-unital C∗-algebra and let ϕ : A→ B (for some C∗-algebra B) be a linear map. Sometime in the paper, we
will continue to use ϕ for the unital extension from Ã to B̃, whenever it is convenient.

Definition 2.3. Let A be a C∗-algebra. Denote by T (A) the tracial state of A (which could be an empty set). Let Aff(T (A))
be the space of all real valued affine continuous functions on T (A). Let T̃ (A) be the cone of densely defined, positive lower
semi-continuous traces on A equipped with the topology of point-wise convergence on elements of the Pedersen ideal
Ped(A) of A. Let B be another C∗-algebra with T (B) ̸= ∅ and let ϕ : A → B be a homomorphism. We will use then
ϕT : T (B)→ T (A) for the induced continuous affine map.

Let r ≥ 1 be an integer and τ ∈ T̃ (A). We will continue to use τ on A⊗Mr for τ ⊗ Tr, where Tr is the standard trace
on Mr . Let S ⊂ T̃ (A) be a convex subset. Define (see [49])

Aff(S)+ = {f : C(S,R)+ : f affine, f (τ ) ≥ 0}, (e2.1)
Aff+(S) = {f : C(S,R)+ : f affine, f (τ ) > 0 for τ ̸= 0} ∪ {0}, (e2.2)

LAfff (S)+ = {f : S → [0,∞) : ∃{fn}, fn ↗ f , fn ∈ Aff(S)+}, (e2.3)

LAfff ,+(S) = {f : S → [0,∞) : ∃{fn}, fn ↗ f , fn ∈ Aff+(S)}, (e2.4)

LAff(S)+ = {f : S → [0,∞] : ∃{fn}, fn ↗ f , fn ∈ Aff(S)+}, (e2.5)
LAff+(S) = {f : S → [0,∞] : ∃{fn}, fn ↗ f , fn ∈ Aff+(S)} and (e2.6)
LAff∼(S) = {f1 − f2 : f1 ∈ LAff+(S) and f2 ∈ Aff+(S)}. (e2.7)

For most part of this paper, S = T̃ (A) or S = T (A) in the above definition will be used. Moreover, LAffb,+(T̃ (A)) is the
subset of those bounded functions in LAfff ,+(T̃ (A)).

Definition 2.4. Let A be a C∗-algebra with T (A) ̸= ∅. Let πA : Ã → C be the quotient map and s : C → Ã be the
homomorphism such that π ◦ s = idC. Recall that we also use πA for the induced homomorphism πA⊗ idMr : Mr (Ã)→ Mr
and use s for the induced homomorphism s⊗ idMr : Mr → Mr (Ã) for all integer r ≥ 1. Let ρA : K0(A)→ Aff(T (A)) be the
order preserving homomorphism defined by ρ([p] − [s ◦ πA(p)])(τ ) = τ (p− s ◦ πA(p)) for any projections in Mr (Ã) for all
integer r ≥ 1.

Suppose that A is non-unital and separable, and T̃ (A) ̸= {0}. Suppose that there exists a ∈ Ped(A)+ which is full. Let
Aa = aAa. Then T (Aa) ̸= ∅. We define

ker ρA = {x ∈ K0(Aa) : ρA(x) = 0} (e2.8)

Here we also identify K0(Aa) with K0(A) using the Brown’s stable isomorphism theorem [4].
Suppose that A is unital and has stable rank one. Then we have (by [56] and [21]) the following splitting short exact

sequence (we will fix one such Jc)

0 −→ Aff(T (A))/ρA(K0(A)) −→ U(A)/CU(A) ⇄
κA1
Jc K1(A) −→ 0. (e2.9)

If u ∈ U0(A) and {u(t) : t ∈ [0, 1]} is a piece-wise smooth and continuous path of unitaries in A such that u(0) = u and
(1) = 1. Then, for each τ ∈ T (A),

DA(u)(τ ) =
1

2π i

∫ 1

0
τ (

du(t)
dt

u(t)∗)dt (e2.10)

odulo ρA(K0(A)) induces (independent of the path) an isomorphism (denote by D̄A) from U0(A)/CU(A) onto Aff(T (A))/
ρA(K0(A)) as mentioned above (see also 2.15 of [20]).

Now suppose that A is a non-unital separable C∗-algebra and Ped(A) = A with T (A) ̸= ∅. Suppose that ker ρA = K0(A).
hen

Aff(T (Ã))/ρA(K0(Ã)) = Aff(T (Ã))/Z. (e2.11)
3
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efinition 2.5. Let A be a non-unital C∗-algebra. We say that A has almost stable rank one (see [50] and [15]) if, for each
n, the invertible elements in any nonzero hereditary C∗-subalgebra B̃ of Mn(Ã) is dense in B, i.e., for any b ∈ B and any
> 0, there exists an invertible element x ∈ B̃ such that ∥b− x∥ < ε.

roposition 2.6 (cf. Theorem 3 of [8]; See also 1.5 of [36]). Let A be a σ -unital C∗-algebra which has almost stable rank one
nd let a, b ∈ A+ \ {0} such that a ∼ b in Cuntz semigroup. Then there is a partial isometry w ∈ A such that w∗x, xw ∈ A and
ww∗x = xww∗ = x for all x ∈ aAa, wy, yw∗ ∈ A for all y ∈bAb and w∗aw is a strictly positive element of bAb.

Proof. Let H1 = aA and H2 = bA be Hilbert A-modules. By 3.3 of [50], there is a Hilbert A-module isomorphism ϕ :

H1 → H2. Since a1/2 ∈ aA, ϕ(a1/2)ϕ(a1/2)∗ is a strictly positive element of bAb and ϕ(a1/2)∗ϕ(a1/2) = ⟨ϕ(a1/2), ϕ(a1/2)⟩H2 =

a1/2, a1/2⟩H1 = a. Consider H = H1 ⊕ H2, a1 = diag(a, 0) and b1 = diag(0, b) ∈ M2(A). Let {ei,j}1≤i,j≤2 be a matrix unit for
2. Set B = (a1 + b1)M2(A)(a1 + b1). There is T1 ∈ LM(K (H)) = LM(B) (see Theorem 1.5 of [27]) such that T1(x1 ⊕ x2) =

0⊕ϕ(x1) for all (x1, x2) ∈ H . Put T = e1,2T . Then Tx = ϕ(x) for all x ∈ H1 and a1/2T ∗Ta1/2 = ϕ(a1/2)∗ϕ(a1/2) = a. Moreover
aT ∗ = ϕ(a1/2)ϕ(a1/2)∗ is a strictly positive element in bAb and Ta1/2 ∈ A. Write Ta1/2 = v|a1/2T Ta1/2| = v|a| as polar
ecomposition in A∗∗. One then checks that w := v∗ satisfies the requirement. □

efinition 2.7. Let A be a unital separable amenable C∗-algebra. For any finite subset U ⊂ U(A), there exists δ > 0 and
finite subset G ⊂ A satisfying the following: If B is another unital C∗-algebra and if L : A → B is a G-δ- multiplicative
ompletely positive contractive linear map, then ⌈L(u)⌉ is a well defined element in U(B)/CU(B) for all u ∈ U . We may
assume that [L]|S is well defined, where S is the image of U in K1(A) (see, for example, 2.12 of [20]). Let G(U) be the
ubgroup generated by U . Suppose that 1/2 > ε > 0 is given. By Appendix in [38], we may assume that there is a
omomorphism L† : G(U)→ U(B)/CU(B) such that

dist(L†(ū), ⌈L(u)⌉) < ε for all u ∈ U . (e2.12)

Moreover, as in Definition 2.17 of [20], we may also assume that

L‡((G(U) ∩ U0(A))/CU(A)) ⊂ U0(B)/CU(B). (e2.13)

It follows that κB
1 ◦ L

‡(u) = [L] ◦ κA
1 ([u]) for all u ∈ G(U), where κA

1 and κB
1 are defined as in (e2.9) (see Definition 2.17

of [20]). In what follows, when 1/2 > ε > 0 is given, whenever we write L†, we mean that δ is small enough and G is
large enough so that L† is defined, (e2.12) and (e2.13) hold (see 2.17 of [20]). Moreover, for an integer k ≥ 1, we will also
se L† for the map on some given subgroup of U(Mk(A))/CU(Mk(A)) induced by L⊗ idMk . In particular, when L is a unital
omomorphism, the map L† is well defined on U(Mk(A))/CU(Mk(A)).
If A is not unital, L† is defined to be L̃†, where L̃ : Ã→ B̃ is the unital extension of L.

efinition 2.8. Let 1 > ε > 0. Define

fε(t) =

⎧⎪⎨⎪⎩
0, if t ∈ [0, ε/2];
t−ε/2
ε/2 , if t ∈ (ε/2, ε];

1 if t ∈ (ε,∞).
(e2.14)

efinition 2.9. Let A be a C∗-algebra and let a ∈ A+. Suppose that T̃ (A) ̸= {0}. Recall that

dτ (a) = lim
ε→0

τ (fε(a))

with possible infinite value. Note that fε(a) ∈ Ped(A)+ for any ε > 0. Therefore τ ↦→ dτ (a) is a lower semi-continuous
ffine function on T̃ (A) (to [0,∞]). Suppose that A is non-unital. Let a ∈ A+ be a strictly positive element. Define

ΣA(τ ) = dτ (a) for all τ ∈ T̃ (A).

It is standard and routine to check that ΣA is independent of the choice of a. The lower semi-continuous affine function
ΣA is called the scale function of A. (see 2.3 of [15]).

Definition 2.10. Let C1 and C2 be two cones. A cone map γ : C1 → C2 is an additive map such that γ (0) = 0, γ (rc) = rγ (c)
for all r ∈ R+.

Let A be a stably projectionless simple C∗-algebras such that K0(A) = ker ρA. Then the Elliott invariant is defined as
follows:

Ell(A) = (K0(A), K1(A), T̃ (A),ΣA).

Suppose that B is another stably projectionless simple C∗-algebras such that K0(B) = ker ρB. Then we write

Ell(A) ∼ Ell(B),
=

4
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f there are group isomorphisms κi : Ki(A)→ Ki(B), i = 0, 1, a cone homeomorphism κT : T̃ (A)→ T̃ (B), i.e., κT is 1−1 and
nto, κT and κ−1 are both cone maps which are continuous (regarding topology of point-wise convergence on elements
n Ped(A)), and ΣA(τ ) = ΣB(κT (τ )) for all τ ∈ T̃ (A). In the case that A has continuous scale, then one can simplify Ell(A) to

Ell(A) = (K0(A), K1(A), T (A)).

efinition 2.11. Let A and B be C∗-algebras with T (A) ̸= ∅ and T (B) ̸= ∅ and both have stable rank one. Let κ ∈ KL(A, B),
κT : T (B) → T (A) be an affine continuous map and κu : U(Ã)/CU(Ã) → U(B̃)/CU(B̃) be a continuous homomorphism.
We say (κ, κT , κu) is compatible, if ρB(κ(x))(t) = ρA(x)(κT (t)) for all x ∈ K0(A) and t ∈ T (B), κ(κA

1 (w̄)) = κB
1 (κu(w̄)) for all

w̄ ∈ U(Ã)/CU(Ã) and DB̃(z)(t) = DÃ(w)(κT (t)) for all t ∈ T (B), where w ∈ U0(A), z ∈ U0(B) such that z̄ = κu(w̄) for all
w ∈ U0(A), where κA

1 (and κB
1 ) are as in (e2.9).

Definition 2.12. Let A and B be two separable C∗-algebras and let ϕn : A→ B be a sequence of linear maps. We say that
{ϕn} is approximately multiplicative, if

lim
n→∞
∥ϕn(a)ϕn(b)− ϕn(ab)∥ = 0 for all a, b ∈ A. (e2.15)

Recall that τ is said to be a W-trace in [15] if there exists a sequence of approximately multiplicative completely
positive contractive linear maps {ϕn} from A into W such that

τ (a) = lim
n→∞

τW (ϕn(a)) for all a ∈ A,

where τW is the unique tracial state on W .

Definition 2.13. Throughout this paper, Q will be the universal UHF-algebra with K0(Q ) = Q and [1Q ] = 1.

Definition 2.14. Let B be a class of C∗-algebras and let A be a separable C∗-algebra. We say A is locally approximated by
C∗-algebras in B, if, for ε > 0 and any finite subset F ⊂ A, there exists a C∗-subalgebra B ∈ B such that dist(a, B) < ε for
all a ∈ F .

Definition 2.15. Let A be a C∗-algebra with T (A) ̸= ∅. Suppose that A has a strictly positive element eA ∈ Ped(A)+ with
∥eA∥ = 1. Then 0 ̸∈ T (A)

w
, the closure of T (A) in T̃ (A) (see section 5 of [15]). Define

λs(A) = inf{dτ (eA) : τ ∈ A}.

et A be a C∗-algebra with T (A) ̸= {0} such that 0 ̸∈ T (A)
w
. There is an affine map raff : As.a. → Aff(T (A)

w
) defined by

raff(a)(τ ) = â(τ ) = τ (a) for all τ ∈ T (A)
w

and for all a ∈ As.a.. Denote by Aq
s.a. the space raff(As.a.) and Aq

+ = raff(A+).

efinition 2.16 (See 2.5 of [28]). Let A be a σ -unital, nonunital, non-elementary, simple C∗-algebra and {en} be an
pproximate identity such that en+1en = en for all n. We say A has continuous scale if, for any a ∈ A+ \ {0}, there
xists n0 ≥ 1 such that em − en ≲ a for all m ≥ n ≥ n0.

efinition 2.17 (5.5 of [15]). Let A be a separable C∗-algebra, let B be a non-unital C∗-algebra and let L : A → B be a
ositive linear map. Let F : A+ \ {0} → N × R+ \ {0}. Suppose that H ⊂ A+ \ {0} is a subset. We shall say that L is
-H-full, if, for any a ∈ H, for any b ∈ B+ with ∥b∥ ≤ 1, any ε > 0, there are x1, x2, . . . , xm ∈ B such that m ≤ N(a) and
∥xi∥ ≤ M(a), where (N(a),M(a)) = F (a), and

∥

m∑
i=1

x∗i L(a)xi − b∥<ε. (e2.16)

his term is consistent with the uniformly F-H-fullness (3.11 of [16]) since F does not depend on ε.

. Non-commutative 1-dimensional complices, revisited

efinition 3.1 (See [17] and [12]). Let F1 and F2 be two finite dimensional C∗-algebras. Suppose that there are two (not
necessary unital) homomorphisms ϕ0, ϕ1 : F1 → F2. Denote the mapping torus Mϕ1,ϕ2 by

A = A(F1, F2, ϕ0, ϕ1) = {(f , g) ∈ C([0, 1], F2)⊕ F1 : f (0) = ϕ0(g) and f (1) = ϕ1(g)}.

Denote by C the class of all C∗-algebras of the form A = A(F1, F2, ϕ0, ϕ1) and all finite dimensional C∗-algebras. These
C∗-algebras are called Elliott–Thomsen building blocks as well as one dimensional non-commutative CW complexes.
5
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Recall that C0 is the class of all A ∈ C with K0(A)+ = {0} such that K1(A) = 0, and C(0)
0 the class of all A ∈ C0 such

hat K0(A) = 0. Denote by C′, C′0 and C0′
0 the class of all full hereditary C∗-subalgebras of C∗-algebras in C, C0 and C0

0 ,
respectively.

Recall that R denotes the class of finite direct sums of Razak algebras and M0 denotes the class of all simple inductive
limits of C∗-algebras in R (with injective connecting maps) (see 6.1 and 9.5 of [15] and also 10.1, 16.2 and 16.5 of [18]).

3.2. Let F1 = MR1 (C)⊕MR2 (C)⊕ · · · ⊕MRl (C), let F2 = Mr1 (C)⊕Mr2 (C)⊕ · · · ⊕Mrk (C) and let ϕ0, ϕ1 : F1 → F2 be (not
necessary unital) homomorphisms, where Rj and ri are positive integers. Then ϕ0 and ϕ1 induce homomorphisms

ϕ0∗, ϕ1∗ : K0(F1) = Zl
−→ K0(F2) = Zk

by matrices (aij)k×l and (bij)k×l, respectively, and
∑l

j=1 aijRj ≤ ri for i = 1, 2, . . . , k. We may write C([0, 1], F2) =
⊕

k
j=1C([0, 1]j,Mrj ), where [0, 1]j denotes the jth interval.

Theorem 3.3. Let A be a full hereditary C∗-subalgebra of a C∗-algebra in C. Then cer(u) ≤ 2 + ε if u ∈ U0(Ã). Moreover, if
u ∈ CU(Ã) then, for any ε > 0, there exists a continuous path {u(t) : t ∈ [0, 1]} ⊂ CU(Ã) with u(0) = u, u(1) = 1Ã and
length({u(t) : t ∈ [0, 1]}) ≤ 4π + ε. In particular, cel(u) ≤ 4π .

Proof. Let e ∈ B := A(F1, F2, ϕ0, ϕ1) with ∥e∥ = 1 and A = eBe. Let u ∈ U0(Ã) and let ε > 0. Without loss of generality,
e may assume that ε < 1

4max{R(i)rj:1≤i≤l,1≤j≤k}
.

It follows 8.8 of [15] that e is approximately unitarily equivalent (in B̃) to another positive element e′ which has the
ollowing form e′ = (g, a) ∈ B such that

gj := g|[0,1]j=
rj∑

i=1

λi,jpi,j, j = 1, 2, . . . , k, (e3.1)

here λ1,j, λ2,j, . . . , λrj,j ∈ C([0, 1]) and p1,j, p2,j, . . . , prj,j ∈ C([0, 1],Mrj ) are mutually orthogonal rank one projections.
It follows that ⟨e′⟩ = ⟨e⟩ in the Cuntz semi-group. Since B has stable rank one, by [7], A is isomorphic to C := e′Be′.

herefore, without loss of generality, we may assume that u ∈ C̃ . Note that, for any f ∈ C([0, 1])+,

f (e′)|[0,1]j=
rj∑

i=1

f (λi,j)pi,j, j = 1, 2, . . . , k. (e3.2)

Write u =
∏m

i=1 exp(
√
−1ai), where each ai = αi · 1Ã + xi with αi ∈ R and xi ∈ Cs.a., i = 1, 2, . . . ,m. Let δ > 0. There

s 1/2 > η > 0 such that ∥fη(e′)xifη(e′)− xi∥ < δ, i = 1, 2, . . . ,m. By choosing δ small enough, we have that

∥u−
m∏
i=1

exp(
√
−1αi · 1C̃ + fη(e′)xifη(e′))∥ < ε/4. (e3.3)

To simplify notation, without loss of generality, we may further assume that fη(e′)xifη(e′) = xi, i = 1, 2, . . . ,m. Let δ1 > 0.
t follows from 8.9 of [15] that there is e′′ ≤ fη(e′) such that

∥e′′ − fη(e′)∥ < δ1 (e3.4)

nd e′′Ce′′ ∈ C. With sufficiently small δ1, we may assume that

∥u−
m∏
j=1

exp(iαj · 1C̃ + e′′xje′′)∥ < ε/3. (e3.5)

Put v =
∏m

j=1 exp(
√
−1αj ·1C̃+e′′xje′′). We may now view v ∈ D̃, where D = e′′Ce′′. Since D̃ ∈ C (see 6.2 of [15]), it follows

rom 5.19 of [39] that there are b1, b2 ∈ D̃s.a. such that ∥v − exp(ib1) exp(ib2)∥ < ε/3. Note that, if we view v ∈ U0(Ã),
1, b2 may be viewed as elements in C̃s.a. since e′′ ≤ fη(e′). This follows that cer(A) ≤ 2+ ε.
Now suppose that u ∈ CU(Ã). There exists v ∈ CU(Ã) such that ∥u − v∥ < ε/4, v =

∏m1
s=1 vs, and vs =

vs,1vs,2 · · · vs,r(s)v
∗

s,1v
∗

s,2 · · · v
∗

s,r(s), where each vs,i ∈ U(Ã), s = 1, 2, . . . ,m1. Write vs,i = βs,i · 1Ã + zs,i, where βs,i ∈ C
with |βs,i| = 1 and zs,i ∈ A. For any δ2 > 0, with sufficiently small η > 0, we may assume that

∥zs,i − fη(e′)zs,ifη(e′)∥ < δ2/16m1(
m1∑
i=1

r(s)), 1 ≤ i ≤ r(s), 1 ≤ s ≤ m1. (e3.6)

So we may assume that

∥zs,i − e′′zs,ie′′∥ < δ2/8m1(
m1∑

r(s)), 1 ≤ i ≤ r(s), 1 ≤ s ≤ m1. (e3.7)

i=1

6
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t follows that there is a unitary in ws,i ∈ C · 1Ã + e′′Ae′′ such that

∥vs,i − ws,i∥ < δ2/4m1(
m1∑
i=1

r(s)), 1 ≤ i ≤ r(s), 1 ≤ s ≤ m1. (e3.8)

ut ws = ws,1ws,2 · · ·ws,r(s)w
∗

s,1w
∗

s,2 · · ·w
∗

s,r(s) and w =
∏m1

s=1ws. With sufficiently small δ2, we may assume that

∥w − v∥ < ε/4. (e3.9)

ow v ∈ CU(C ·1Ã+e′′Ae′′). As mentioned above, C ·1Ã+e′′Ae′′ ∈ C. By 3.16 of [20], in C ·1Ã+e′′Ae′′, there is a continuous
path {u(t) : t ∈ [1/2, 1]} ⊂ CU(C · 1Ã + e′′Ae′′) such that u(1/2) = w and u(1) = 1Ã which has the length no more than
π + ε/16π . Note v ∈ CU(Ã) and

∥w − u∥ < ε/2, or ∥uw∗ − 1∥ < ε/2. (e3.10)

rite uw∗ = exp(
√
−1d) for some d ∈ Ãs.a.. Then ∥d∥ < 2 arcsin(ε/4). Note that uw∗ ∈ CU(Ã). Therefore, for each

rreducible representation π of Ãs.a., Trπ (d) = 2m′π for some integer m′, where Trπ is the standard trace on π (Ã). Since
e choose ε < 1

4max{R(i)rj:i,j}
, Trπ (d) = 0. It follows that τ (d) = 0 for all τ ∈ T (Ã). Define u(t) = exp(

√
−1(1 − 2t)d)w for

∈ [0, 1/2]. Note that u(t) is in CU(Ã) for all t ∈ [0, 1] with u(0) = u, u(1) = 1 and total length no more than 4π + ε. □

3.4. Let A = A(F1, F2, ϕ0, ϕ1) ∈ C, where F1 = MR1 (C)⊕MR2 (C)⊕ · · · ⊕MRl (C), F2 = Mr1 (C)⊕Mr2 (C)⊕ · · · ⊕Mrk (C).
Recall that the irreducible representations of A, are given by

k∐
i=1

(0, 1)i ∪ {ρ1, ρ2, . . . , ρl} = Irr(A),

where (0, 1)i is the same open interval (0, 1). Any trace τ ∈ T (A) is corresponding to (µ1, µ2, . . . , µk, s1, s2, . . . , sl), where
µi are nonnegative measures on (0, 1)i and sj ∈ R+ and we have

∥τ∥ =

k∑
i=1

∫ 1

0
dµi +

l∑
j=1

sj.

Let t ∈ (0, 1)i and δt be the canonical point measure at point t with measure 1, then

lim
t→0

δt = (µ1, µ2, . . . , µk, s1, s2, . . . , sl) and lim
t→1

δt = (µ1, µ2, . . . , µk, s′1, s
′

2, . . . , s
′

l)

with µj = 0, sj = aij ·
Rj
ri

and s′j = bij ·
Rj
ri
, where (aij)k×l = ϕ0∗ and (bij)k×l = ϕ1∗ as in 3.2. Let

λ = min
i
{

∑l
j=1 aijRj

ri
,

∑l
j=1 bijRj

ri
}.

A direct calculation shows that if τn ∈ T (A) converge to τ in weak* topology, then ∥τ∥ ≥ λ · lim sup ∥τn∥. In notation of
.15, we have

λs(A) = λ. (e3.11)

Evidently, the number λ above is the largest positive number satisfying the following conditions

ϕ0∗([1F1 ]) ≥ λ · [1F2 ], ϕ1∗([1F1 ]) ≥ λ · [1F2 ] in K0(F2).

In the notation of 2.3, both affine spaces Aff(T̃ (A)) and Aff(T(A)) can be identified with the subset of
k⨁

j=1

C([0, 1]j,R)⊕ Rl
=

k⨁
j=1

C([0, 1]j,R)⊕ (R⊕ R⊕ · · · ⊕ R)  
l copies

consisting of (f1, f2, . . . , fk, g1, g2, . . . , gl) satisfying the condition

fi(0) =
1
ri

l∑
j=1

aijgj · Rj and fi(1) =
1
ri

l∑
j=1

bijgj · Rj.

he positive cone Aff(T̃ (A))+ is the subset of Aff(T̃ (A)) consisting all elements of those elements (f1, f2, . . . , fk, g1, g2, . . . , gl)
with fi(t) ≥ 0 and gj ≥ 0 for all i, j, t . Set R∼ = R ∪ {∞}, R∼

+
= R+ ∪ {∞}. Then LAff(T̃ (A))+ (LAff∼(T̃ (A)), respectively) is

identified with the subset of
k⨁

LSC([0, 1]j,R∼+)⊕ (R∼
+
)l (or

k⨁
LSC([0, 1]j,R∼)⊕ (R∼)l) (e3.12)
j=1 j=1

7
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onsisting of (f1, f2, . . . , fk, g1, g2, . . . , gl) satisfying the same condition

fi(0) =
1
ri

l∑
j=1

aijgj · Rj and fi(1) =
1
ri

l∑
j=1

bijgj · Rj.

3.5. Suppose that A = A(F1, F2, ϕ0, ϕ1) is not unital. Let ei,F2 = (ei,1, ei,2, . . . , ei,k) ∈ F2 be a projection such that
F2 − ϕi(1F1 ) = ei,F2 , i = 0, 1. Put F2,i = ei,F2F2ei,F2 , i = 0, 1. Define ϕ′i : C → F2,i by ϕ′i (λ) = λei,F2 , i = 1, 2. Define
∼

1 = F1 ⊕ C and ϕ∼i : F
∼

1 → F2 by ϕ∼i (a⊕ λ) = ϕi(a)⊕ λei,F2 , i = 0, 1. Then Ã = A(F∼1 , F2, ϕ
∼

0 , ϕ
∼

1 ).
In what follows, we will use notations Z∼ = Z ∪ {∞}, and Z∼

+
= Z+ ∪ {∞}. Let B = A(F1, F2, ϕ0, ϕ1). Let a ∈ B+,

efine ra ∈ LAff(T̃ (A))+ by ra(τ ) = dτ (a) = limn→∞ τ (a1/n). When one identifies LAff(T̃ (A))+ with the subspace of
k
j=1 LSC([0, 1]j,R

∼
+
)⊕ (R∼

+
)l as in 3.4, ra ∈

⨁k
j=1 LSC([0, 1]j,

1
rj
Z∼
+
)⊕

⨁l
i=1(

1
Ri
Z∼
+
). (Recall that map ϕi,∗ : K0(F1) = Zl

→

K0(F2) = Zk (i = 0, 1), induced by ϕi : F1 → F2 is given by the matrix (aij)k×l and (bij)k×l with nonnegative integer entries,
which can be extended to maps (still denoted by ϕi,∗) from (Z∼)l to (Z∼)k.) If we identify each 1

rj
Z (or 1

Ri
Z respectively)

with Z by identifying 1
rj
with 1 ∈ Z (or by identifying 1

Ri
with 1 ∈ Z), ra is identified with

(
(f1, f2, . . . , fk), (j1, j2, . . . , jl)

)
∈

k⨁
j=1

LSC([0, 1]j,Z∼+)⊕ (Z∼
+
)l

which satisfy

(f1(0), f2(0), . . . , fk(0)) = ϕ0,∗(j1, j2, . . . , jl) and (f1(1), f2(1), . . . , fk(1)) = ϕ1,∗(j1, j2, . . . , jl).

Let LSC([0, 1],R∼) be the set of lower-semicontinuous functions from [0, 1] to R∼. We will use the notation
LSC([0, 1], (R∼)k)

⨁
(ϕ0,∗,ϕ1,∗)

(R∼)l to denote the subset of LSC([0, 1], (R∼)k)
⨁

(R∼)l consisting of elements
(
(f1, f2, . . . , fk),

j1, j2, . . . , jl)
)
∈ LSC([0, 1], (R∼)k)

⨁
(R∼)l satisfying

(f1(0), f2(0), . . . , fk(0)) = ϕ0,∗(j1, j2, . . . , jl) and (f1(1), f2(1), . . . , fk(1)) = ϕ1,∗(j1, j2, . . . , jl).

Let LSC([0, 1], (R∼
+
)k)

⨁
(ϕ0,∗,ϕ1,∗)

(R∼
+
)l (LSC([0, 1], (Z∼)k)

⨁
(ϕ0,∗,ϕ1,∗)

(Z∼)l, or LSC([0, 1], (Z∼
+
)k)

⨁
(ϕ0,∗,ϕ1,∗)

(Z∼
+
)l

espectively) be the subset of LSC([0, 1], (R∼)k)
⨁

(ϕ0,∗,ϕ1,∗)
(R∼)l consisting of the above elements with fi(t) and ji ∈ R∼

+

∈ Z∼ or ∈ Z∼
+

respectively). If we insist not take the value +∞, then we will use the notation LSCf instead of LSC . So the
ets LSCf ([0, 1], (R+)k)

⨁
(ϕ0,∗,ϕ1,∗)

(R+)l and LSCf ([0, 1], (Z+)k)
⨁

(ϕ0,∗,ϕ1,∗)
(Z+)l can also be defined similarly.

Now let B ∈ C0. Let C be a full hereditary subalgebra of B. Using the rank function in 3.17 of [20] and applying 3.18
f [20], the map r : ⟨a⟩ ↦→ ra gives an injective semi-group homomorphism from W (C) to LSCf ([0, 1], (Z+)k)

⨁
(ϕ0,∗,ϕ1,∗)

Z+)l (see also 3.18 of [20]) which extends to an order injective semi-group homomorphism from Cu(C) to LSC([0, 1],
Z∼
+
)k)

⨁
(ϕ0,∗,ϕ1,∗)

(Z∼
+
)l. Note C̃ ∈ C. Also note that Cu∼(C) (see [49]) is the semigroup of the formal differences f − n[1C̃ ],

ith n ∈ Z+ and f ∈ Cu(C̃) such that Cu(πC )(f ) = [n], where Cu(πC ) is the map induced by the quotient map πC : C̃ → C.
ith the help of discussion of 8.8 of [15], it is straight forward to check the following:

roposition 3.6. Let C ∈ C ′0. Then

W (C) = LSCf ([0, 1], (Z+)k)
⨁

(ϕ0,∗,ϕ1,∗)

(Z+)l and (e3.13)

Cu(C) = LSC([0, 1], (Z∼
+
)k)

⨁
(ϕ0,∗,ϕ1,∗)

(Z∼
+
)l. (e3.14)

oreover (see [49] for the definition of Cu∼)

Cu∼(C) = K0(C) ⊔ LSC([0, 1], (Z∼)k)
⨁

(ϕ0,∗,ϕ1,∗)

(Z∼)l. (e3.15)

Since C is stably projectionless, it follows that the order Cu∼(C) is determined by Cu(C).

efinition 3.7. Fix an integer a1 ≥ 1. Let α = a1
a1+1

. For each r ∈ Q+ \ {0}, let er ∈ Q (see 2.13) be a projection with
r(er ) = r . Let Q̄r := (1⊗ er )(Q ⊗ Q )(1⊗ er ). Define qr : Q → Q̄r by a ↦→ a⊗ er for a ∈ Q . We will also use qr to denote
any homomorphism from B to B⊗ erQer (or to B⊗ Q ) defined by sending b ∈ B to b⊗ er ∈ B⊗ erQer ⊂ B⊗ Q .

For r = α = a1
a1+1

, one can identify Q with Q ⊗Ma1+1, then the projection eα is identified with 1Q ⊗ diag(1, . . . , 1  
a1

, 0).

Let

R(α, 1) = {(f , a) ∈ C([0, 1],Q ⊗ Q )⊕ Q : f (0) = q (a) and f (1) = a⊗ 1 }.
α Q

8
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ote that an element (f , a) is full in R(α, 1) if and only if a ̸= 0 and f (t) ̸= 0 for all t ∈ (0, 1). Let aα = (f , 1) be defined
s follows. Let

f (t) = (1− t)(1⊗ eα)+ t(1⊗ 1) for all t ∈ (0, 1). (e3.16)

ote that aα is a strictly positive element of R(α, 1), moreover, for any 1/2 > η > 0, fη(aα) is full. C∗-algebra R(α, 1) and
α will appear frequently in this paper.
Let LSC([0, 1],R∼) ⊕α R∼ (or LSCf ([0, 1],R+) ⊕α R+ respectively) be the subset of LSC([0, 1],
∼) ⊕ R∼ (or LSCf ([0, 1],R+) ⊕ R+ respectively) consisting of elements (f , x) such that f (0) = αx and f (1) = x. The
ank function r : ⟨a⟩ ↦→ r(a) = dτ (a) gives maps from W (R(α, 1)) to LSCf ([0, 1],R+) ⊕α R+ and from Cu(R(α, 1)) to
SC([0, 1],R∼

+
)⊕α R∼

+
which are order semi-group homomorphisms. But these maps are only surjective not injective.

Recall thatW (Q ) and Cu(Q ) can be identified with the semi-groups R+ \ {0} ⊔ Q+ and R∼
+
\ {0} ⊔ Q+, where the second

opy of Q is identified with K0(Q ) and R∼
+
\{0} identified with the rank functions of non-projection and non-zero positive

lements. If s ∈ Q ⊂ R, we will use [s] for the corresponding element in K0(Q ). With the order in Cu(Q ), in R∼⊔Q, t < [t]
or t ∈ Q ⊂ R and [t] ∈ K0(Q ) = Q. But s > [t] if s > t as in R∼. The addition on R ⊔ Q is defined by s+ [r] = s+ r and
s] + [r] = [s+ r].

A function f : [0, 1] → R∼ ⊔ Q is called lower-semicontinuous if, for each t0 ∈ [0, 1], and if f (t0) = [r] ∈ K0(Q ), there
xists δ > 0 such that f (t) ≥ f (t0) for all t ∈ (t0−δ, t0+δ)∩[0, 1], or, if f (t0) = r ∈ R∼, for any non zero ε ∈ R∼

+
\{0}⊔Q+,

there exists δ > 0 such that

f (t)+ ε ≥ f (t0) for all ∈ [0, 1] ∩ (t0 − δ, t0 + δ) \ {t0},

where the order is in R∼ ⊔ Q mentioned above.
Let LSC([0, 1],R∼ ⊔ Q) be the set of all lower-semicontinuous functions. Let LSC([0, 1],R∼⊔Q)⊕αR∼⊔Q be the subset

of LSC([0, 1],R∼⊔Q)⊕R∼⊔Q consisting of elements (f , x) such that f (0) = αx and f (1) = x. (Here we define α[r] = [αr].
Note that α is rational.) The sets LSC([0, 1], (R∼\{0}⊔Q)+)⊕α (R∼\{0}⊔Q)+ and LSCf ([0, 1], (R\{0}⊔Q)+)⊕α (R\{0}⊔Q)+
can be defined similarly. Then we have the following fact.

Corollary 3.8. Let A = R(α, 1) for some 1 > α > 0. Then

W (A) = LSCf ([0, 1], (R \ {0} ⊔ Q)+)⊕α (R \ {0} ⊔ Q)+, (e3.17)

Cu(A) = LSC([0, 1], (R∼ \ {0} ⊔ Q)+)⊕α (R∼ \ {0} ⊔ Q)+ and (e3.18)
Cu∼(A) = LSC([0, 1],R∼ ⊔ Q)⊕α R∼ ⊔ Q. (e3.19)

Note, with (e3.19), map r can be extended to an order semi-group homomorphism from Cu∼(A) to LSC([0, 1],R∼)⊕αR∼
defined by r(f (s), a) = (r(f (s)), r(a)), where r(t) = t for all t ∈ R∼ and r([t]) = t for all t ∈ Q.

Definition 3.9 (cf. 8.1 and 8.2 of [15]). Recall the definition of class D and D0.
Let A be a non-unital simple C∗-algebra with a strictly positive element a ∈ A with ∥a∥ = 1. Suppose that there exists

1 > fa > 0, for any ε > 0, any finite subset F ⊂ A and any b ∈ A+ \ {0}, there are F-ε-multiplicative completely positive
contractive linear maps ϕ : A→ A and ψ : A→ D for some C∗-subalgebra D ⊂ A with D ∈ C0′

0 (or C′0), D ⊥ ϕ(A), and

∥x− (ϕ(x)+ ψ(x))∥ < ε for all x ∈ F ∪ {a}, (e3.20)
c ≲ b, (e3.21)
t(f1/4(ψ(a))) ≥ fa for all t ∈ T (D), (e3.22)

where c is a strictly positive element of ϕ(A)Aϕ(A). Then we say A ∈ D0 (or D).
Note, by Remark 8.11 of [15], D can always be chosen to be in C0 (or C0

0 ).
When A ∈ D and is separable, then A = Ped(A) (see 11.3 of [15]). Let a ∈ A+ with ∥a∥ = 1 be a strict positive element.

ut

d = inf{τ (f1/4(a)) : τ ∈ T (A)}. (e3.23)

hen, for any 0 < η < d, fa can be chosen to be d−η (see Remark 9.8 of [15]). One may also assume that f1/4(ψ(a)) is full
n D. Furthermore, there exists a map: T : A+ \ {0} → N×R (a ↦→ (N(a),M(a)) for all a ∈ A+ \ {0}) which is independent
of F and ε such that, for any finite subset H ⊂ A+ \{0}, we can further require that ψ is T -H-full (see 8.3 and 9.2 of [15]).
For any n ≥ 1, one can choose a strictly positive element b ∈ A with ∥b∥ = 1 such that f1/4(b) ≥ f1/n(a). Therefore, if A
as continuous scale, d can be chosen to be 1, if the strictly positive element is chosen accordingly.
Let A be a separable stably projectionless simple C∗-algebra. Recall that A has generalized tracial rank at most one and

rite gTR(A) ≤ 1, if there exists e ∈ Ped(A)+ with ∥e∥ = 1 such that eAe ∈ D (see 11.6 of [15]).

efinition 3.10. Let A ∈ D as defined 3.9. If, in addition, for any integer n, D = Mn(D1) for some D1 ∈ C0 such that

ψ(x) = diag(

n  
ψ1(x), ψ1(x), . . . , ψ1(x)) for all x ∈ F, (e3.24)

here ψ : A→ D is an F-ε-multiplicative completely positive contractive linear map, then we say A ∈ Dd.
1 1

9
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Note that here, as in 8.3 and 9.2 of [15], the map T mentioned in 3.9 is also assumed to exist and fa can be also chosen
s d− η for any η > 0 with d as in (e3.23) for a certain strictly positive element a.

emark 3.11. It follows from 10.4 and 10.7 of [15] that, if A ∈ D0, then A ∈ Dd. Moreover, D1 can be chosen in C(0)
0 , and

f A ∈ D, then D1 can be chosen in C0. If A is a separable simple C∗-algebra in D and A is tracially approximate divisible
in the sense of 10.1 of [15]), then A ∈ Dd.

roposition 3.12. Let A be a non-unital simple C∗-algebra which is tracially approximate divisible. Then every hereditary
∗-subalgebra is also tracially approximate divisible. Consequently, if A ∈ Dd, then every hereditary C∗-subalgebra is in Dd.

roof. Let B ⊂ A be a hereditary C∗-subalgebra. Fix ε > 0, a finite subset F ⊂ B, a nonzero element b ∈ B+ and an
nteger n ≥ 1. By choosing a member be in an approximate identity of B, without loss of generality (with an error within,
ay ε/2), we may assume that xbe = bex = x for all x ∈ F .
Since A is tracially approximate divisible, there are C∗-subalgebras A0 and A1 of A such that

dist(x, Cd) < ε for all x ∈ F, (e3.25)

here Cd ⊂ C ⊂ A, C = A0 ⊕Mn(A1),

Cd = {(y0, diag(
n  

y1, y1, . . . , y1)) : y0 ∈ A0, y1 ∈ A1},

and where a0 ≲ b, where a0 is a strictly positive element of A0.
Let B0 be the C∗-subalgebra generated by beabe for all a ∈ A0 and let B1 be the C∗-subalgebra generated by becbe for

all c ∈ A1. Then B0 and B1 are C∗-subalgebras of B. Since B0 ⊂ bea0beAbea0be, bea0be is a strictly positive element of B0.
oreover, bea0be ≲ a0 ≲ b. Put

Bd
1 = {(x0,

n  
x1, x1, . . . , x1) : x0 ∈ B0, x1 ∈ B1}, (e3.26)

d
1 ⊂ B3, where B3 = B0 ⊕Mn(B1). For each x ∈ F , let yx = (y0,x, y1,x, . . . , y1,x) ∈ Cd such that ∥x− yx∥ < ε/2. Then

∥x− beyxbe∥ < ε for all x ∈ F . (e3.27)

ote that beyxbe ∈ Bd
1. This proves the first part of the statement. If A ∈ Dd, then, B ∈ D for any hereditary C∗-subalgebra

B, by 8.6 of [15]. By the first part of the statement, B is tracially approximately divisible. Therefore B ∈ Dd. □

Proposition 3.13. Let A ∈ D be with continuous scale and let e ∈ A+ with ∥e∥ = 1 be a strictly positive element, and
1 > fe > 0 be as in 3.9. Then, for any finite subset F ⊂ A, any ε > 0, any b ∈ A+ \ {0} and any integer n ≥ 1, there are
F-ε-multiplicative completely positive contractive linear maps ϕ : A→ A and ψ : A→ Mn(D) for some C∗-subalgebra D ∈ C0
with Mn(D) ⊂ A and ϕ(A) ⊥ Mn(D) such that

∥x− (ϕ(x)⊕ ψ(x))∥ < ε for all x ∈ F ∪ {e}, (e3.28)
ϕ(e) ≲ b, (e3.29)
t(f1/4(ψ(e))) ≥ fe/2 for all t ∈ T (D). (e3.30)

Proof. Fix ε > 0, b and F as described in the statement. Let η = inf{τ (b) : τ ∈ T (A)
w
} > 0. Choose e0 ∈ A+ with

∥e0∥ = 1 such that ∥e0ee0 − e∥ < ε/16. Without loss of generality, we may also assume that e0f = fe0 = f for all f ∈ F .
It follows from 11.8 of [15] that the map from Cu(A) to LAffb+(T (A)

w
) is an isomorphism. Therefore there is e0,1 ∈ A+

such that n⟨e0,1⟩ = ⟨e0⟩ and ⟨e0⟩ = ⟨b⟩, where b = diag(e0,1, e0,1, . . . , e0,1) (e0,1 repeated n times) in Mn(A)+. By 11.5
of [15], A has stable rank one. It follows that e0Ae0 and bMn(A)b are isomorphic. In particular, e0Ae0 ∼= Mn(e0,1Ae0,1).
Therefore, without loss of generality, (replacing e0 by another strictly positive element in e0Ae0), we may also write that
e0 =

∑n
i=1 e0,i, where {e0,1, e0,2, . . . , e0,n} are mutually orthogonal and there exists wi ∈ A such that w∗i wi = e0,1 and

iw
∗

i = e0,i, i = 1, 2, . . . , n.
Since A is stably projectionless, without loss of generality, we may assume that sp(e0) = [0, 1]. Then elements e0,i and

wi generate a C∗-subalgebra C which is isomorphic to C0((0, 1]) ⊗ Mn which is semi-projective. Let G1 = {e0,i,wi : 1 ≤
i ≤ n}.

Put δ0 = min{ε/16(n + 1), η/2(n + 1), fe/4(n + 1)}. Choose δ1 > 0 such that for any G1-δ1-multiplicative completely
positive contractive linear map L from C to a C∗-algebra B, there is a homomorphism ϕ′ : C → B such that

∥ϕ′(g)− L(g)∥ < δ0/4 for all g ∈ G1. (e3.31)

Put F = F ∪ G ∪ {ab : a, b ∈ F ∪ G }.
1 1 1

10
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Fix a positive number ε1 < min{δ0, δ1/2}/(4(n + 1)). Since A ∈ D, there are F2-ε1-multiplicative completely positive
contractive linear maps ϕ : A → A and ψ0 : A → B for some C∗-subalgebra B ⊂ A with B ∈ C0 such that ϕ(e) ≲ b,
(A) ⊥ B,

∥x− (ϕ(x)⊕ ψ0(x))∥ < ε1 for all x ∈ F1 ∪ {e, e0}, (e3.32)
t(f1/4(ψ(e))) ≥ fe for all t ∈ T (B). (e3.33)

y the choice of G1 and δ1, we obtain a homomorphism h : C → B such that

∥h(g)− ψ0(g)∥ < δ0/4 for all g ∈ G1. (e3.34)

et e′i = h(ei) and vi = h(wi), i = 1, 2, . . . , n. Let B′ = h(e0)Bh(e0). Since h is a homomorphism and e′, vi ∈ B′,
′ ∼= Mn(e′1Be

′

1). Set D = e′1Be
′

1. Define ψ : A→ B′ by ψ(a) = h(e0)ψ(a)h(e0). One checks

τ (ψ(e)) ≥ fa/2 for all τ ∈ T (B′) (e3.35)

and ψ is F-ε-multiplicative. Moreover,

∥x− (ϕ(x)⊕ ψ(x))∥ < ε for all x ∈ F . □ (e3.36)

4. The unitary group

Lemma 4.1. Let A be a non-unital C∗-algebra and let e1, e2 ∈ A+ with ∥ei∥ = 1 (i = 1, 2) such that

e1e2 = e2e1 = 0

and there is a unitary u ∈ Ã such that u∗e1u = e2. Suppose that w = 1Ã0
+ x0 ∈ Ã0 is a unitary with x0 ∈ A0, where

A0 = e1Ae1. Then w1 = 1+ x0 + u∗x∗0u ∈ CU(Ã), cel(w1) ≤ π and cer(w1) ≤ 1+ ε.

roof. Let B be the C∗-subalgebra of A generated by A0 and ue2. Note that u∗A0u = e2Ae2. One can define a map from
M2(e1Ae1) = M2(e21Ae

2
1) to B by

M2(e1Ae1) ∋
(
e21a11e

2
1 e21a12e

2
1

e21a21e
2
1 e21a22e

2
1

)
↦→ e21a11e

2
1 + e21a12e1ue2 + e2u∗e1a21e21 + e2u∗e1a22e1ue2.

t is easy to verify that this is an isomorphism by using e1e2 = e2e1 = 0 and u∗e1u = e2. Therefore B ∼= M2(A0) ∈ B.
onsider M2(Ã0). Put p1,1 = 1Ã0

. We view p1,1 as the open projection associated to A0. Let p2,2 = u∗p1,1u. Since 1Ã0
+ x0

s a unitary, we have

(p11 + x∗0)(p11 + x0) = (p11 + x0)(p11 + x∗0) = p11.

efine, for t ∈ [0, 1],

X(t) = ((cos(tπ/2))p1,1 + (sin(tπ/2))p1,1u+ (sin(tπ/2))u∗p1,1 + (cos(tπ/2))p2,2)+ ((1Ã)− p1,1 − p2,2).

efine

W (t) = (1+ x0)X(t)(1+ x∗0)X(t)
∗ for all t ∈ [0, 1].

et X ′(t) = X(t) − ((1Ã) − p1,1 − p2,2) ∈ M2(Ã0) (by identifying p11u with
(
0 1
0 0

)
, u∗p11 with

(
0 0
1 0

)
, and p22 with

0 0
0 1

)
). Set

W ′(t) = (p1,1 + p2,2 + x0)X ′(t)(p1,1 + p2,2 + x∗0)X
′(t)∗ ∈ M2(Ã0).

e have

X ′(0) = p1,1 + p2,2 and X ′(1) = p1,1u+ u∗p1,1.

hen

W ′(0) = p1,1 + p2,2 and W ′(1) = (p1,1 + x0)+ (p2,2 + u∗x∗0u).

Let π : M2(Ã0)→ M2 be the quotient map. Then π (W ′(t)) = 1M2 for all t ∈ [0, 1]. This implies that W ′(t) ∈ M̃2(A0) for
ll t ∈ [0, 1]. It follows that W (t) ∈ U(Ã) for all t ∈ [0, 1]. Note that W (0) = 1Ã and W (1) = 1 + x0 + u∗x∗0u. Moreover,
ne computes that (since each W (t) ∈ U0(Ã)),

cel({W (t)}) ≤ π.
11
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t follows that cer(W (1)) ≤ 1+ ε. Moreover

1+ x0 + u∗x∗0u = (1+ x0)u∗(1+ x∗0)u.

It follows that 1+ x0 + u∗x0u ∈ CU(Ã). □

The following is a variation of a lemma of N. C. Phillips

Lemma 4.2 (Lemma 3.1 of [37]). Let H > 0 be a positive number and let N ≥ 2 be an integer. Then, for any non-unital
C∗-algebra which has almost stable rank one, any positive element e0 ∈ A+ with ∥e0∥ = 1, and u = λ · 1Ã0

+ x′0 ∈ Ã0 (where
x′0 ∈ A0 and |λ| = 1) such that celÃ0 (u) ≤ H, where A0 = e0Ae0. Suppose that there are mutually orthogonal positive elements
e1, e2, . . . , e2N ∈ A⊥0 such that e0 ∼ ei, i = 1, 2, . . . , 2N. Then there exists z ∈ CU(Ã) with cel(z) ≤ 2π and cer(z) ≤ 2 + ε
uch that

∥u′ − λ · z∥ < 2H/N,

here u′ = λ · 1Ã + x′0.

roof. Since celÃ0 (u) ≤ H , there are u0, u1, . . . , uN ∈ Ã0 such that

u0 = u, uN = 1Ã0
and ∥ui − ui−1∥ < H/N, i = 1, 2, . . . ,N. (e4.1)

Write ui = λi · 1Ã0
+ x′i , where x′i ∈ A0, i = 1, 2, . . . ,N . In particular, x′N = 0. It follows from (e4.1) that (λ0 = λ)

|λi − λi−1| < H/N, i = 1, 2, . . . ,N.

et v = v0 = λ̄u = 1Ã0
+ λ̄x′0 and vi = λ̄iui = 1Ã0

+ λ̄ix′i , i = 1, 2, . . . ,N . Put xi = λ̄ix′i , i = 0, 1, . . . ,N . We have xN = 0
nd vN = 1Ã0

. Now

∥vi − vi−1∥ = ∥λ̄iui − λ̄i−1ui−1∥ < 2H/N, i = 1, 2, . . . ,N. (e4.2)

Let

ε0 = 2H/N − sup{∥vi − vi−1∥ :, i = 1, 2, . . . ,N}.

hoose 1 > δ > 0 such that

∥xi − fδ(e0)xifδ(e0)∥ < ε0/16N, i = 0, 1, 2, . . . .,N.

ut B0 = fδ(e0)Afδ(e0). There is a unitary wi ∈ 1Ã0
+ B0 such that

∥vi − wi∥ < ε0/4N, i = 0, 1, . . . ,N.

Write wi = 1Ã0
+ yi, where yi ∈ B0 and yN = 0. Since A has almost stable rank one, there are unitaries Ui ∈ Ã such that

U∗i fδ/2(e0)Ui ∈ eiAei, i = 1, 2, . . . , 2N.

Let

X1 = 1Ã + y0 +
N∑
i=1

U∗2i−1y
∗

i U2i−1 +

N∑
i=1

U∗2iyiU2i (e4.3)

X2 = 1Ã + y0 +
N∑
i=1

U∗2i−1y
∗

i−1U2i−1 +

N∑
i=1

U∗2iyiU2i and (e4.4)

X3 = 1Ã +

N∑
i=1

U∗2i−1yiU2i−1 +

N∑
i=1

U∗2iy
∗

i U2i. (e4.5)

Note that X1 ∈ U(Ã). Since yN = 0, as in 4.1, for i = 2, 3, we have

Xi ∈ CU(Ã), cel(Xi) ≤ π and cer(Xi) ≤ 1+ ε. (e4.6)

Moreover

∥X1 − X2∥≤ sup{∥y∗i − y∗i−1∥ :, i = 1, 2, . . . ,N} (e4.7)

< ε0/4N + sup{∥vi − vi−1∥ :, i = 1, 2, . . . ,N} (e4.8)

Furthermore,
1Ã + y0 = X1X3. (e4.9)

12
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ut z = X2X3. Then, by (e4.6),

z ∈ CU(Ã), cel(z) ≤ 2π and cer(z) ≤ 2+ ε.

oreover,

∥λ̄ · u′ − z∥ ≤ ∥(1Ã − 1Ã0
)+ v0 − (1Ã + y0)∥ + ∥(1Ã + y0)− z∥ (e4.10)

< ε0/8N + ε0/4N + sup{∥vi − vi−1∥ :, i = 1, 2, . . . ,N} < 2H/N. □ (e4.11)

heorem 4.3 (cf. Theorem 6.5 of [33]). Let A be a non-unital separable simple C∗-algebra in D and let u ∈ U0(Ã) with
= λ · 1 + x0, where λ ∈ C with |λ| = 1 and x0 ∈ A. Then, for any ε > 0, there exists a unitary u1, u2 ∈ Ã such that

1 has exponential length no more than 2π , u2 has exponential rank 3 and

∥u− u1u2∥ < ε.

oreover, cer(A) ≤ 5+ ε.

roof. Let 1/2 > ε > 0. Let u′ = λ̄ · u. Let v0, v1, . . . , vn ∈ U0(Ã) such that

v0 = u′, vn = 1 and ∥vi − vi−1∥ < ε/32, i = 0, 1, . . . , n− 1.

rite vi = λi · 1+ xi, where |λi| = 1 and xi ∈ A, i = 1, . . . , n− 1, and v0 = 1+ x̃0, where x̃0 = λ̄x0. Note that xn = 0.
As demonstrated in the proof of 4.2, we may assume that there is a strictly positive element e ∈ A+ such that ∥e∥ = 1

such that

fη(e)xi = xifη(e) = xi, i = 0, 1, 2, . . . , n, (e4.12)

for some η > 0. Let

G1 = {e, fη(e), fη/2(e), x̃0, xi, 0 ≤ i ≤ n}.

Put

d = inf{dτ (e) : τ ∈ T (A)
w
} > 0.

Without loss of generality, we may assume that τ (f1/2(e)) ≥ d/2 for all τ ∈ T (A)
w
.

Note that we may assume that A is infinite dimensional. Hence we may choose mutually orthogonal positive non-zero
elements c0, c1, . . . , cn+1 such that c0 ∼ ci (1 ≤ i ≤ n+ 1) and

dτ (c0) < d/5(n+ 1) for all τ ∈ T (A). (e4.13)

Let δ > 0 and let G ⊃ G1 be a finite subset of A. Since A ∈ D, there are A0 and D ⊂ A with D ∈ C′0 and A0 ⊥ D,
G-δ-multiplicative completely positive contractive linear maps ϕ0 : A→ A0 and ϕ1 : A→ D, such that

∥x− (ϕ0(x)⊕ ϕ1(x))∥ < δ for all x ∈ G (e4.14)
ϕ0(e) ≲ c0, (e4.15)
τ (f1/4(ϕ1(e))) ≥ d/4 for all τ ∈ T (A)

w
. (e4.16)

y choosing smaller δ and larger G, we may assume the following: there are yi ∈ ϕ0(fη/2(e))Aϕ0(fη/2(e)) such that 1+ y0,
i · 1+ yi are unitaries with yn = 0 such that ∥ϕ0(xi)− yi∥ < ε/32, i = 1, 2..., n, and ∥ϕ0(x̃0)− y0∥ < ε/32. Consequently,

∥yi − yi+1∥ < ε/16, ∥(λi · 1+ yi)− (λi · 1+ yi−1)∥ < ε/16, (e4.17)

= 0, 1, . . . , n. Moreover, there is z1 ∈ fη/2(ϕ1(e))Dfη/2(ϕ1(e)) such that 1Ã + z1 is a unitary and

∥v0 − (1Ã + y0 + z1)∥ < ε/16. (e4.18)

ut u′1 = 1+ y0, u′2 = 1+ z1 and u2 = λu′2. Then

∥u− u′1 · u2∥ < ε/4.

Put B0 = ϕ0(fη/2(e))Aϕ0(fη/2(e)). Let wi = λi · 1B̃0
+ yi, i = 0, 1, . . . , n. Then wn = 1B̃0

, w0 = 1 · 1B̃0
+ y0 and

∥wi − wi−1∥ < ε/16, i = 1, 2, . . . , n.

This implies that w0 ∈ U0(B̃0) and H := cel(w0) ≤ nπε/8. By (e4.13) and (e4.16), there are mutually orthogonal elements
c ′i ∈ A⊥0 , with c ′i ∼ c0, i = 0, 1, . . . , n+ 1. Then, by (e4.15) and by Lemma 4.2, cel(u′1) ≤ 2π + 2H/n < 2π + πε/8. On the
other hand, by 3.3, cer(u2) ≤ 2+ ε. Lemma then follows. □

Theorem 4.4. Let A be a separable simple C∗-algebra in D and let u ∈ CU(Ã). Then u ∈ U0(Ã) and cel(u) ≤ 6π .
13
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roof. Let π : Ã→ C be the quotient map. Since u ∈ CU(Ã), π (u) = 1. So we write u = 1+ x0, where x0 ∈ A.
Let 1/2 > ε > 0. There are v1, v2, . . . , vk ∈ U(Ã) such that

∥u− v1v2 · · · vk∥ < ε/32,

and vi = aibia∗i b
∗

i , ai, bi ∈ U(Ã). It is standard that v1v2 · · · vk⊕ 1M4k ∈ U0(M4k+1(Ã)). Since Ã has stable rank one (see 11.5
of [15] and 15.5 of [18]), by [48], v1v2 · · · vk ∈ U0(Ã). It follows that u ∈ U0(Ã). Put u0 = v1v2 · · · vk. Let H = cel(u0).

Write ai = λi + xi and bi = µi + yi, where |λi| = |µi| = 1 and xi, yi ∈ A, i = 1, 2, . . . , k.
The rest of the proof is similar to that of 4.3. We will repeat some of the argument. we may assume that there is a

strictly positive element e ∈ A+ such that ∥e∥ = 1 and

fη(e)xi = xifη(e) = xi, fη(e)yi = yifη(e) = yi, i = 0, 1, 2, . . . , k, (e4.19)

for some η > 0. Let

G1 = {e, fη(e), fη/2(e), xi, yi, 0 ≤ i ≤ k}.

Put

d = inf{dτ (e) : τ ∈ T (A)
w
} > 0.

Without loss of generality, we may assume that τ (f1/2(e)) ≥ d/2 for all τ ∈ T (A)
w
.

Choose n ≥ 1 such that

4H/n < ε/64k.

There are mutually orthogonal elements c0, c1, . . . , cn+1 in A such that c0 ∼ ci and dτ (c0) < εd/n64k for all τ ∈ T (A). Let
> 0 and let G ⊃ G1 be a finite subset of A.
Since A ∈ D, there are A0 and D ⊂ A with D ∈ C′0 and A0 ⊥ D, G-δ-multiplicative completely positive contractive linear

maps ϕ0 : A→ A0 and ϕ1 : A→ D, such that

∥x− (ϕ0(x)⊕ ϕ1(x))∥ < δ for all x ∈ G (e4.20)
ϕ0(e) ≲ c0, (e4.21)
τ (f1/4(ϕ1(e))) ≥ d/4 for all τ ∈ T (A)

w
. (e4.22)

By choosing smaller δ and larger G, we may assume the following: there is x′0 ∈ ϕ0(fη/2(e))Aϕ0(fη/2(e)) such that 1+ x′0
s a unitary, cel(p + x′0) ≤ 2H , where p is the unit of unitization of B̃, where B = ϕ0(fη/2(e))Aϕ0(fη/2(e)), and there are
z, zi, x′i, y

′

i ∈ fη/2(ϕ1(e))Dfη/2(ϕ1(e)) such that λi + a′i and µi + b′i are unitaries, and

∥(1+ z)− (1+ z1)(1+ z2) · · · (1+ zk)∥ < ε/16 and ∥u0 − (1+ x′0 + z)∥ < ε/16, (e4.23)

where

1+ zi = (λi · 1+ x′i)(µi · 1+ y′i)(λi · 1+ x′i)
∗(µi + y′i)

∗, i = 1, 2, . . . , k.

In particular, (1+ z1)(1+ z2) · · · (1+ zk) ∈ CU(C̃), where C = fη/2(ϕ1(e))Dfη/2(ϕ1(e)). It follows from 3.3 that

cel((1+ z1)(1+ z2) · · · (1+ zk)) ≤ 4π.

s in the proof of 4.3, using (e4.21), by applying 4.2, we have

cel(1+ x′0) ≤ 4H/n+ 2π + ε < 2π + 2ε.

t follows that

cel(u) < 6π. □

roposition 4.5 (cf. Theorem 4.6 of [21]). Let A be a separable simple C∗-algebra with continuous scale and let e ∈ A+ \ {0}.
hen the map ıe : U0(ẽAe)/CU(ẽAe) → U0(Ã)/CU(Ã) is surjective. If, in addition, A has stable rank one, then the map is also

injective.

Proof. The proof is almost identical to that of the unital case (see Theorem 4.6 of [21]).
First, we claim that, for any h ∈ As.a., there exists h′ ∈ (eAe)s.a. such that τ (h′) = τ (h) for all τ ∈ T (A). Let h = h+− h−.
Put A0 = eAe. By Proposition 5.6 of [15], there are xi, yj ∈ A (1 ≤ i ≤ n and 1 ≤ j ≤ m) such that

n∑
x∗i exi = h+ and

m∑
y∗j eyj = h−. (e4.24)
i=1 j=1

14
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h′ :=
n∑

i=1

e1/2x∗i xie
1/2
−

m∑
j=1

e1/2y∗j yje
1/2
∈ A0. (e4.25)

oreover, τ (h′) = τ (h) for all τ ∈ T (A). This proves the claim.
To show ıe is surjective, let u ∈ U0(Ã) with u =

∏l
j=1 exp(i2πhj) with hj ∈ Ãs.a.. Write hj = αi · 1Ã + h′j , where αj ∈ R

ith |αj| = 1 and h′j ∈ As.a.. By the claim that there exists h′0,j ∈ (A0)s.a. such that τ (h′0,j) = τ (h′j) for all τ ∈ T (A).

et h0,j = αj · 1Ã0
+ h′0,j, j = 1, 2, . . . , l. Put w =

∏l
j=1 exp(ih0,j). Then w ∈ U0(Ã0). Put v =

∏l
j=1 exp(ih̃0,j), where

˜0,j = αj · 1Ã + h′0,j, j = 1, 2, . . . , l. Then v ∈ U0(Ã). Moreover, ıe(w̄) = v̄. Since

DÃ(v)(τ ) =
l∑

j=1

τ (h̃0,j) =
l∑

j=1

τ (h̃j) = DÃ(u)(τ ) (e4.26)

or all τ ∈ T (Ã), by Lemma 3.1 of [56], ıe(w̄) = ū. This proves that ıe is surjective.
To see it is injective, let eA ∈ A be a strictly positive element of A with ∥eA∥ = 1. Since A has continuous scale, by (the

roof of) Proposition 5.6 of [15], there exists an integer K ≥ 1 such that

K ⟨a0⟩ > ⟨eA⟩ (e4.27)

in Cuntz semi-group). Since A has stable rank one, without loss of generality, we may write A ⊂ MK (A0). Put E0 = 1Ã0
.

et u ∈ Ã0 with u = λ · E0 + x for some λ ∈ C with |λ| = 1 and x ∈ (A0)s.a.. Write w = λ · 1Ã + x. Then ıe(ū) = w̄. Suppose
hat w ∈ CU(Ã). Write E = 1MK (Ã0)

and w′ = λ · E + x. Then w′ ∈ CU(MK (Ã0)). However, since Ã0 has stable rank one, it
ollows from Theorem 4.6 of [21] that ū ∈ CU(Ã0). This shows that ıe is injective. □

emma 4.6. Let A be a non-unital and σ -unital simple C∗-algebra of stable rank one with continuous scale. Suppose that there
s H > 0 such that, for any hereditary C∗-subalgebra B of A, cel(z) ≤ H for any z ∈ CU(B̃). Suppose that there are two mutually
rthogonal σ -unital hereditary C∗-subalgebras A0 and A1 (of A) with strictly positive elements a0 and a1 with ∥a0∥ = 1 and
a1∥ = 1, respectively. Suppose that x ∈ A0 and suppose that for some λ ∈ C with |λ| = 1, w = λ+ x ∈ U0(Ã). Suppose also
hat there is an integer K ≥ 1 such that

Kdτ (a0) ≥ 1 for all τ ∈ T (A). (e4.28)

et u = λ · 1Ã0
+ x. Suppose that, for some η ∈ (0, 2],

dist(w̄, 1̄) ≤ η in U0(Ã)/CU(Ã).

hen, if η < 2, one has

celÃ0 (u) < (
Kπ
2
+ 1/16)η + H and dist(ū, 1̄Ã0

) < (K + 1/8)η,

and if η = 2, one has

celÃ0 (u) <
Kπ
2

cel(w)+ 1/16+ H.

roof. Let L = cel(w). Since A is simple and has stable rank one, u ∈ U0(Ã0).
First consider the case that η < 2. Let c ∈ CU(Ã) such that

∥c − w∥ ≤ η.

hoose η

32K (K+1)π > ε > 0 such that ε + η < 2. Choose h ∈ Ãs.a. such that with ∥h∥ ≤ 2 arcsin( ε+η2 ) such that

w exp(ih) = c. (e4.29)

Thus

DÃ(w exp(ih)) = 0̄ (in Aff(T (Ã))/ρÃ(K0(Ã))). (e4.30)

t follows that

|DÃ(w)(τ )| ≤ 2 arcsin(
ε + η

2
). (e4.31)

ut h = α · 1Ã + h0, where α ∈ R with |α| ≤ 2 arcsin( ε+η2 ) and h0 ∈ As.a.. As in the proof of surjectivity of ıe in 4.5, there
s h′ ∈ (A ) such that τ (h′ ) = τ (h ) for all τ ∈ T (A). Put h′′ = α · 1 + h′ . Moreover, τ (h′′) = τ (h) for all τ ∈ T (Ã).
0 0 s.a 0 0 0 Ã 0 0

15
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herefore

DÃ(w exp(ih′′0))(τ ) = 0̄. (e4.32)

t follows from 4.5 that

DÃ0
(u exp(ih00)) = 0̄ (in Aff(T (Ã0))/ρÃ0 (K0(Ã0))), (e4.33)

here h00 = α · 1Ã0
+ h′0. By (e4.28), ∥τ |A0∥ ≥ 1/K . Then, by (e4.31), in Ã0, one computes

|DÃ0
(u)| ≤ K2 arcsin(

ε + η

2
). (e4.34)

hus there is v ∈ CU(Ã0) and h1 ∈ Ãs,a. such that

u = v exp(2π ih1) and ∥h1∥ ≤ K2 arcsin(
ε + η

2
). (e4.35)

herefore

cel(u) ≤ H + K2 arcsin(
ε + η

2
) ≤ H + K (ε + η)

π

2
(e4.36)

≤ H + (K
π

2
+

1
64(K + 1)

)η. (e4.37)

ne can also compute that

dist(ū, 1̄Ã0
) ≤ K (ε + η) ≤ Kη +

η

32(K + 1)π
.

This proves the case that η < 2.
Now suppose that η = 2. Define R = [cel(w)+ 1]. Note that cel(w)

R < 1. Put w′ = λ · 1MR+1 + x. It follows from 4.2 that

dist(w′, 1MR+1 ) <
cel(w)
R+ 1

(e4.38)

ut K1 = K (R+ 1). To simplify notation, replacing A by MR+1(A), without loss of generality, we may now consider that

K1dτ (a0) ≥ 1 and dist(w̄, 1̄) <
cel(w)
R+ 1

. (e4.39)

hen we can apply the case that η < 2 with η = cel(w)
R+1 . □

5. A uniqueness theorem for C∗-algebras in D

roposition 5.1. Let A be a separable amenable C∗-algebra. Let ε > 0 and F ⊂ A be a finite subset. Then there exist δ > 0
nd a finite subset G ⊂ A satisfy the following: Suppose that there are two mutually orthogonal C∗-subalgebras A0 and A1 and

two F-ε/2-multiplicative completely positive contractive linear maps ϕ0 : A→ A0 and ϕ1 : A→ A1 such that

∥x− (ϕ0(x)⊕ ϕ1(x))∥ < ε/2 for all x ∈ F

and suppose that there is ψ : A→ B (for any C∗-algebra B) which is a G-δ-multiplicative completely positive contractive linear
map. Then there exist a pair of mutually orthogonal C∗-subalgebras B0 and B1 of B and F-ε-multiplicative completely positive
ontractive linear maps ψ0 : A→ B0 ⊂ B and ψ1 : A→ B1 ⊂ B such that

∥ψ0(x)− ψ ◦ ϕ0(x)∥ < ε and (e5.1)
∥ψ1(x)− ψ ◦ ϕ1(x)∥ < ε for all x ∈ F . (e5.2)

Proof. Fix 1/2 > ε > 0 and a finite subset F ⊂ A. Let {Bn} be any sequence of C∗-algebras and let ϕn : A→ Bn be any
sequence of completely positive contractive linear maps such that

lim
n→∞
∥ϕn(a)ϕn(b)− ϕn(ab)∥ = 0 for all a, b ∈ A. (e5.3)

Let B∞ =
∏
∞

n=1 Bn, Bq = B∞/⊕∞n=1Bn and Π : B∞ → Bq be the quotient map. Define Φ : A → B∞ by Φ(a) = {ϕn(a)}
for all a ∈ A. Then Π ◦ Φ : A→ Bq is a homomorphism. Suppose A0 and A1 are in the statement of the proposition. Let
a0 ∈ (A0)+ with ∥a0∥ = 1 and a1 ∈ (A1)+ with ∥a1∥ = 1 be strictly positive elements of A0 and A1, respectively. Then
a0a1 = a1a0 = 0. Therefore there are b(0), b(1) ∈ B∞ such that b(0)b(1) = b(1)b(0) = 0 and such that Π(b(i)) = Π ◦Φ(ai),
i = 0, 1 (see, for example, 10.1.10 of [41]). Write b(i) = {b(i)}. Let B = b(i)B b(i), i = 0, 1. Then B and B are mutually
n n,i n n n n,0 n,1
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rthogonal. Since A is amenable, there is a completely positive contractive linear map Ψ : A→ B∞ such that Ψ = Π ◦Φ .
efine ψ ′n : A→ Bn by

ψ ′n(a) = b(i)n ϕn(a)b
(i)
n for all a ∈ A. (e5.4)

et ψ0 = ψ
′
n ◦ ϕ0 and ψ1 = ψ

′
n ◦ ϕ0. If n is sufficiently large, then ψ0 and ψ1 can be F-ε-multiplicative. Moreover, if n

ufficiently large,

∥ψ0(a)− ϕn ◦ ϕ0(a)∥ < ε for all a ∈ F and (e5.5)
∥ψ1(a)− ϕn ◦ ϕ1(a)∥ < ε for all a ∈ F . (e5.6)

If the proposition fails, then such {ϕn} could not exist for some choice of {Bn}, ε and F . This proves the proposition. □

5.2. Fix a map T(n, k) : N× N→ N. Let A ∈ D. Denote by DT(n,k) the class of C∗-algebras in D ∩ C(r0,r1,T ,s,R) with r0 = 0,
1 = 0, T = T(n, k), s = 1 and R = 7, as defined in 3.13 of [16].

Note if A ∈ D, then A has stable rank one (see 11.5 of [15]) (so r0 = 0 and r1 = 0 in 3.14 of [15]) and by 4.4,
er(Mn(Ã)) ≤ 6 + ε (R ≤ 7) for all n. If A is also Z-stable, then K0(Ã) is weakly unperforated. Thus A ∈ DT(n,k) for
(n, k) = n for all (n, k) ∈ N× N (see 5.5).
In the Appendix to this paper, we show that every amenable C∗-algebra in D are Z-stable. In fact, it is shown that

0(A) is always weakly unperforated in the appendix of [16] for all A ∈ D. Therefore A ∈ DT(n,k) for the above T.

heorem 5.3. Fix T(n, k). Let A be a non-unital separable simple C∗-algebra in Dd with continuous scale which satisfies the
CT. Let T : A+ \ {0} → N× (R+ \ {0}) be a map. For any ε > 0 and any finite subset F ⊂ A, there exist δ > 0, γ > 0, η > 0,
finite subset G ⊂ A, a finite subset H1 ⊂ A+ \ {0}, a finite subset P ⊂ K (A), a finite subset U = {v1, v2, . . . , vm0} ⊂ U(Ã)

such that {[v1], [v2], . . . , [vm0 ]} = P ∩K1(A), and a finite subset H2 ⊂ As.a. satisfy the following: Suppose that ϕ1, ϕ2 : A→ B
are two G-δ-multiplicative completely positive contractive linear maps which are T-H1-full (see 2.17), where B ∈ DT(n,k) with
continuous scale such that

[ϕ1]|P = [ϕ2]|P , (e5.7)
|τ ◦ ϕ1(h)− τ ◦ ϕ2(h)| < γ for all h ∈ H2 and τ ∈ T (B) and (e5.8)
dist(⌈ϕ1(vi)⌉, ⌈ϕ2(vi)⌉) < η for all vi ∈ U (recall 2.1for ⌈−⌉). (e5.9)

Then there exists a unitary w ∈ B̃ such that

∥Adw ◦ ϕ1(a)− ϕ2(a)∥ < ε for all a ∈ F . (e5.10)

roof. Fix a finite subset F and 1/4 > ε > 0. As pointed out in 5.2, B ∈ C(0,0,T(n,k),1,7) for all B ∈ D = DT(n,k), where
(n, k) = n for all (k, n). Without loss of generality, we may assume that F ⊂ A1.
Since A has the continuous scale, T (A) is compact (see 5.3 of [15]). Fix a strictly positive element a0 ∈ A+ with ∥a0∥ = 1.
e may assume, without loss of generality, that

a0y = ya0 = y, a0 ≥ y∗y and a0 ≥ yy∗ for all y ∈ F and (e5.11)
τ (f1/4(a0)) ≥ 1− ε/212 for all τ ∈ T (A). (e5.12)

et T1 : A+ \ {0} → N × (R+ \ {0}) with T1(a) = (N(a),M(a)) (a ∈ A+ \ {0}) be the map described after (e3.23) in 3.10
nd 3.9 (see also 8.3 and 10.8 of [15]) (in place of T ). Suppose that T (a) = (NT (a),MT (a)) for a ∈ A+ \ {0}.
Define T2, T3 : A+ \ {0} → N× (R+ \ {0}) by T2(a) = (N(a), (4/3)M(a)) and T3(a) = (NT (a)N(a), (8/6)(MT (a)+ 1)M(a))

or all a ∈ A+ \ {0}. Define L(u) = 8π for all u ∈ U(Ã).
Let δ1 > 0 (in place of δ), let G1 ⊂ A (in place of G) be a finite subset, let H1,0 ⊂ A+ \ {0} (in place of H) be a finite

ubset, P1 ⊂ K (A) (in place of P) be a finite subset, let U1 ⊂ U(Ã) (in place of U) be a finite subset and let K1 ≥ 1 (in
lace of K ) be an integer given by 3.14 and 3.15 of [16], or by 7.9 (together with 7.13 of [18]) for the above T3 (in place
f F ), ε/16 (in place of ε) and F and L with L(u) = 8π . We assume that a0, f1/16(a0), f1/8(a0) and f1/4(a0) ∈ F ∪H1,0 (with
0 = r1 = 0, T = T (k, n) above, s = 1 and R = 7).

We may also assume that δ1 is sufficiently small and G1 is sufficiently large that [Li]|P is well-defined, and

[L1]|P= [L2]|P ,

rovided that Li is G1-2δ1-multiplicative and

∥L1(x)− L2(x)∥ < δ1 for all x ∈ G1.

ithout loss of generality, we may also assume that

F ∪H ∪ {xy : x, y ∈ F} ⊂ G ⊂ A1.
1,0 1

17
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C

W

hoose b0 ∈ A+ \ {0} with

dτ (b0) < 1/210(2K1 + 1) for all τ ∈ T (A). (e5.13)

Choose also a larger finite subset G′1 of A and a smaller δ′1 so that

∥⌈L(u)⌉ − L(u)∥ < min{1/4, ε · δ1/210
}/8π for all u ∈ U1 and (e5.14)

∥f1/8(L(a0))− L(f1/8(a0))∥ < 1/210(K1 + 1) (e5.15)

provided that L is a G′1-δ
′

1-multiplicative completely positive contractive linear map (to any other C∗-algebra).
We may assume that 0 < δ′1 ≤

ε·δ1
212(K1+1)

. For each v ∈ U1, there is α(v) ∈ C and a(v) ∈ A such that

v = α(v) · 1Ã + a(v), |α(v)| = 1 and ∥a(v)∥ ≤ 2. (e5.16)

Let Ω = {a(v) : v ∈ U1}. We may also assume that G′1 ⊃ G1 ∪ F ∪ H1,0 ∪ {xy : x, y ∈ G1} ∪ Ω . It follows from 3.10
and 3.9 (see also 8.3 and 10.8 of [15]) that there are G′1-δ

′

1/64-multiplicative completely positive contractive linear maps
ϕ0 : A→ A and ψ0 : A→ D for some M2K1+1(D) ⊂ A with D ∈ C′0 and A ⊥ M2K1+1(D) such that

∥x− (ϕ0(x), diag(

2K1+1  
ψ0(x), ψ0(x), . . . , ψ0(x)))∥ < min{ε/K1212, δ′1/128K1} for all x ∈ G′1, (e5.17)

a′00 ≲ b0 and τ (f1/4(ψ0(a0))) ≥ 1− ε/210 for all τ ∈ T (D), (e5.18)

and ψ0(a0) is strictly positive, where a′00 is a strictly positive element of ϕ0(a0)Aϕ0(a0). Moreover, ψ0 is T1- H1,0-full in
DAD.

We compute that, by (e5.12), (e5.17) and (e5.15),

2τ (f1/8(ψ0(a0))) ≥ 3/4K1 for all τ ∈ T (A). (e5.19)

e also compute that (see (e5.12), (e5.13), (e5.17) and (e5.18)), for all τ ∈ T (A),

τ (f1/4(ϕ0(a0)), diag(

2K1+1  
f1/4(ψ0(a0)), f1/4(ψ0(a0)), . . . , f1/4(ψ0(a0)))) > 1− ε/29. (e5.20)

Let A00 = (ϕ0(a0), ψ0(a0))A(ϕ0(a0), ψ0(a0)) and let ϕ00 : A→ A00 be defined by

ϕ00(x) = ϕ0(x)⊕ ψ0(x) for all x ∈ A.

Let a00 = a′00 ⊕ ψ0(a0) ∈ A00 be a strictly positive element of A00.
By choosing even possibly smaller δ′1 and larger G′1, if necessary, we may assume that [ϕ00]|P1 is well defined and

denote P2 = [ϕ00](P1). Moreover, we may also assume, without loss of generality, that

[L′]|P2= [L
′′
]|P2 , (e5.21)

if

∥L′(x)− L′′(x)∥ < δ′1 for all x ∈ G′1

and L′ and L′′ are G′1-δ
′

1-multiplicative completely positive contractive linear maps. We may also assume that

∥fδ′ (a00)ϕ00(x)− ϕ00(x)∥ < δ′1/2
10 and (e5.22)

∥fδ′ (a00)ϕ00(x)fδ′ (a00)− ϕ00(x)∥ < δ′1/2
10 for all x ∈ G′1 (e5.23)

for some 1/64 > δ′ > 0. Furthermore,

∥fδ′ (ψ0(a0))ψ0(x)− ψ0(x)∥ < δ′1/2
10 and (e5.24)

∥fδ′ (ψ0(a0))ψ0(x)fδ′ (ψ0(a0))− ψ0(x)∥ < δ′1/2
10 for all x ∈ G′1. (e5.25)

It follows from (e5.19) that a′00 ≲ b0 ≲ f1/8(ψ0(a0)) and, by 3.1 of [15], there exists x0 ∈ A such that

fδ′/256(a′00)(x
∗

0f1/8(ψ0(a0))x0) = fδ′/256(a′00). (e5.26)

Let g ∈ C0((0, 1])+ be such that ∥g∥ = 1, g(t) = 0 for all t ∈ (0, δ′/64) and t ∈ (δ′/8, 1].
Put (keep in mind that A is projectionless and simple)

σ0 = inf{τ (g(a00)) : τ ∈ T (A)} > 0. (e5.27)

Let D̄ = M2K1 (D). Let j1 : D→ M2K1 (D) = D̄ be defined by

j (d) = diag(d, d, . . . , d) for all d ∈ D.
1

18
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L
et ı1 : D̄ → A be the embedding. Let ε1 = min{ε/210, δ1/210, δ′1/2
10
}. Choose a finite subset G′2 ⊂ D̄ which contains⨁2K1

i=1 πi ◦ ψ0(G′1), where πi :
⨁2K1

i=1 D→ D is the projection to the ith summand. Let ed ∈ D+ with ∥ed∥ = 1 such that

∥f1/4(ed)y− y∥ < ε1/16 and ∥yf1/4(ed)− y∥ < ε1/16 (e5.28)

for all y ∈ ψ0(G′1). Let ēd = diag(
2K1  

ed, ed, . . . , ed). Without loss of generality, we may assume that ēd, f1/4(ēd) ∈ G′2.
Define ∆ : Dq,1

+ \ {0} → (0, 1) by, for d ∈ D1
+
\ {0},

∆(d̂) = min{inf{τ ◦ ı1 ◦ j1(d) : τ ∈ T (A)},min{
1

210M(d)2N(d)
: d ∈ d̂}}. (e5.29)

For ε1, choose ε2 > 0 (in place of δ) associated with ε1/16 (in place of ε) and 1/16 (in place of σ ) required by Lemma 3.3
of [15]. Without loss of generality, we may assume that ε2 < ε1.

Let Gd (in place of G) be a finite subset, Pd ⊂ K0(D̄) (in place of P) be a finite subset, H1,d ⊂ (D̄)1
+
\ {0} (in place of H1)

be a finite subset, H2,d ⊂ (D̄)s.a. (in place of H2) be a finite subset, δd > 0 (in place of δ), γd > 0 (in place of γ ) required
by Theorem 7.8 of [15] for C = D̄, ε2/4 (in place of ε), G′2 (in place of G) and ∆ above.

By (e5.14), there is a finite subset U2 ⊂ U (̃A00) such that, for any w ∈ U1, there is w′ ∈ U2 with

∥ϕ00(w)− w′∥ < min{1/4, ε1/210
}/8π. (e5.30)

For each w′ ∈ U2, there is α(w′) ∈ C with |α(w′)| = 1 and a(w′) ∈ A00 with ∥a(w′)∥ ≤ 2 such that

w′ = α(w′) · 1Ã00
+ a(w′).

Define

Ω0 = {a(w′) : w′ ∈ U2}.

Note that by viewing Ã00 as a C∗-subalgebra of Ã, we may also view U2 as a subset of Ã.
Let

G2 = {a00, fδ′/4(a00), g(a00), x0, x∗0} ∪ G′1 ∪ ϕ0(G
′

1) ∪ ψ0(G′1)∪G
′

2 ∪ Gd ∪H1,d ∪H2,d ∪Ω0 ⊂ A00,

H1 = {a00, fδ′/4(a00), f1/4(a0), f1/4(ψ0(a0)), g(a00)} ∪H1,0 ∪ ψ0(H1,0)∪H1,d,

H2 = H1 ∪H2,d, K2 = 28 max{M(a)2N(a)2 : a ∈ H1},

σ00 =
σ0

K2
, δ2 =

min{δ1/16, δd/4, γ /2, η/2, δ′/256, σ00/4}
4(K1 + 1)

,

P = P1 ∪ P2 ∪ (j1)∗0(Pd) ∪ {[w′] : w′ ∈ U2},

γ =
γd · δ

′
· σ00

128(K1 + 1)
,

η = 1/210(K1 + 1)K2, and U = U1 ∪ U3
Now let G0 (in place of G) and δ0 (in place of δ) be as required by 5.1 for G2 (in place of F) and δ2 (in place of ε). Since

D̄ is weakly semi-projective, we may choose even large G0 and smaller δ0 such that there is a homomorphism Φ from D̄
such that

∥L(x)−Φ(x)∥ < δ2/2 for all x ∈ G2 ∩ D̄

for any G0-δ0-multiplicative completely positive contractive linear mapL from D̄. We also assume that

∥L(fδ′/4(a00))− fδ′/4(L(a00))∥ < min{δ2/2, δ′/32}, (e5.31)

∥L(g(a00))− g(L(a00))∥ < min{δ2/2, δ′/32}, (e5.32)
τ (g(L(a00))) > (1/2)σ00 for all τ ∈ T (C) and (e5.33)

τ (fδ′/128(L(a′00))) < 1/16(2K1 + 1) for all τ ∈ T (C) (e5.34)

τ (f1/8(L(ψ0(a0)))) ≥ 1/K2 for all τ ∈ T (C) (since f1/4(ψ0(a0)) ∈ H1) (e5.35)

for any G0-δ0-multiplicative completely positive contractive linear map L from A to C which is also T -H1-full (used for
(e5.33) and (e5.35)), where C is any C∗-algebra with T (C) ̸= ∅.

Let G = G2 ∪ G0 and δ = min{δ0/2, δ2/2}.
Now suppose that ϕ1, ϕ2 : A→ B satisfy the assumption of the theorem for the above chosen G, δ, γ , P , η, H1, H2 and

U (for T ).
Let ϕi,0 = ϕi ◦ ϕ00, i = 1, 2. Let ψ ′i,1 : D̄→ B be defined by (ϕi)|D̄. By applying 5.1 without loss of generality, we may

assume that there are two pairs of hereditary C∗-subalgebras B , B and B′ and B′ , with B ⊥ B and B′ ⊥ B′ such that
0 1 0 1 0 1 0 1
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1(A00) ⊂ B0 and ψ1,1(D̄) ⊂ B1, ϕ2(A00) ⊂ B′0 and ψ2,1(D̄) ⊂ B′1, and ϕi|A00 is G2-δ2-multiplicative, ψ1,1 : D̄ → B1 and
ψ2,1 : D̄→ B′1 are homomorphisms such that

∥ψ ′i,1(x)− ψi,1(x)∥ < δ2/2 for all x ∈ G2 ∩ D̄, i = 1, 2. (e5.36)

e may further assume, by (e5.26) (and x0 ∈ G2),

fδ′/128(ϕ1(a′00)) ≲ ψ1,1(f1/16(ψ0(a0))). (e5.37)

Choose b00 ∈ B+ such that τ (b00) ≥ 1/2 for all τ ∈ T (B). Since both ϕ1, ϕ2 are T -H1-full, ψ1,0 and ψ2,0 are
(4/3)T -(ψ0(H1,0) ∪H1,d)-full. We then compute that

τ (ψi,0(x)) ≥ ∆(x̂) for all x ∈ H1,d and for all τ ∈ T (B). (e5.38)

Then, by the choice of P , H2,d and γ , by applying 7.8 of [15] we obtain a unitary U ′1 ∈ B̃ such that

∥AdU ′1 ◦ ψ2,1(x)− ψ1,1(x)∥ < ε2/4 for all x ∈ G′2. (e5.39)

In particular,

∥AdU ′1 ◦ ψ2,1(ēd)− ψ1,1(ēd)∥ < ε2/4. (e5.40)

By applying Lemma 3.3 of [15], there is a unitary U ′′1 ∈ B̃ such that

AdU ′′1 ◦ AdU
′

1 ◦ ψ2,1(x) ∈ ψ1,1(ēd)Bψ1,1(ēd) for all x ∈ ψ2,1(ēd)Bψ2,1(ēd) and (e5.41)

∥(U ′′1 )
∗cU ′′1 − c∥ < (ε1/16)∥c∥ for all c ∈ ψ2,1(ēd)Bψ2,1(ēd). (e5.42)

ut U1 = U ′1U
′′

1 . Then we have

AdU1 ◦ ψ2,1(f1/4(ēd)xf1/4(ēd)) ∈ ψ1,1(ēd)Bψ1,1(ēd) for all x ∈ A and (e5.43)

∥AdU1 ◦ ψ2,1(x)− ψ1,1(x)∥ < ε1/4 for all x ∈ j1 ◦ ψ0(G′1). (e5.44)

Let B′ = (AdU1 ◦ ψ2,1(f1/4(ēd)))B(AdU1 ◦ ψ2,1(f1/4(ēd))) and let

Bp = {b ∈ B : bx = xb = 0 for all x ∈ B′}. (e5.45)

y the choice of H2 and the assumption (e5.8), for all τ ∈ T (B),

|τ (ϕ1,0(fδ′/4(a00)))− τ (ϕ2,0(fδ′/4(a00)))| < min{γ /2, δ2/2}, (e5.46)

ith (e5.31) in mind, by the assumption, we have that

∥fδ′/4(ϕi(a00))− ϕi(fδ′/4(a00))∥ < min{δ2/2, δ′/32} and (e5.47)

∥g(ϕi(a00))− ϕi(g(a00))∥ < min{δ2/2, δ′/32}, (e5.48)

i = 1, 2. We then compute that, by (e5.31), by the choice of H2 and γ , and by (e5.33),

τ (fδ′/4(ϕ2(a00))) ≤ min{δ2/2, δ′/32} + τ (ϕ2(fδ′/4(a00))) (e5.49)

≤ min{δ2/2, δ′/32} + γ + τ (ϕ1(fδ′/4(a00))) (e5.50)

< min{δ2/2, δ′/32} + γ +min{δ2/2, δ′/32} (e5.51)
+τ (fδ′/4(ϕ1((a00)))) (e5.52)

< τ (g(ϕ1(a00)))+ τ (fδ′/4(ϕ1((a00)))) (e5.53)

≤ τ (fδ′/64(ϕ1(a00))) (e5.54)

for all τ ∈ T (B). It is important to note that

U∗1 fδ′/2(ϕ2(a00))U1, fδ′/64(ϕ1(a00)) ∈ Bp.

Also note that Bp is a hereditary C∗-subalgebra of B. Since B has strictly comparison for positive elements and B has stable
rank one, by 3.2 of [15], there is a unitary U ′2 ∈ B̃p such that

(U ′2)
∗U∗1 fδ′/2(ϕ2(a00))U1(U ′2) ∈ fδ′/128(ϕ1(a00))Bfδ′/128(ϕ1(a00)) := B00. (e5.55)

rite U ′2 = α · 1B̃p + z with z ∈ Bp and α ∈ C with |α| = 1. Put U2 = α · 1B̃ + z. Then (e5.55) still holds by replacing U ′2
y U2. Moreover,

U∗xU = x (e5.56)
2 2
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or any x ∈ B′. In particular,

∥U∗2 (AdU1 ◦ ψ2,1(x))U2 − ψ1,1(x)∥ < ε1/4+ ε1/16 = 5ε1/16 (e5.57)

for all x ∈ j1 ◦ ψ0(G′1).
Put ϕ′2,0 = AdU2 ◦ AdU1 ◦ ϕ2,0 and define ϕ′′2,0 : A→ B00 by

ϕ′′2,0(x) = U∗2U
∗

1 fδ′/2(ϕ2(a00))ϕ2,0(x)fδ′/2(ϕ2(a00))U1U2 for all x ∈ A. (e5.58)

y (e5.22), ψ ′′2,1 is G′1-δ
′

1/2
4-multiplicative completely positive contractive linear map. Define ϕ′1,0 : A→ B00 by

ϕ′1,0(x) = fδ′/2(ϕ1(a00))ϕ1,0(x)fδ′/2(ϕ1(a00)) for all x ∈ A (e5.59)

hich is also G′1-δ
′

1/2
4-multiplicative completely positive contractive linear map. Now both ϕ′1,0 and ϕ′′2,0 are completely

positive contractive linear maps from A into B00. Note that B is separable and simple and has stable rank one. From the
assumption, (e5.22) and (e5.21), we have

[ϕ′′2,0]|P= [ϕ2,0]|P= [ϕ1,0]|P= [ϕ
′

1,0]|P . (e5.60)

It follows from the choice of U2 and assumption (e5.9) (as well as (e5.22) and (e5.46) among others) that

dist(⌈ϕ′′2,0(v)⌉, ⌈ϕ
′

1,0(v)⌉) < η + δ′1/2
4 for all v ∈ U1 (e5.61)

s elements in U(B̃)/CU(B̃). It follows from (e5.35) that

τ (fδ′/128(ϕ1(a00))) > τ (fδ′/128(ϕ1(ψ0(a0)))) ≥ 1/K2 for all τ ∈ T (B). (e5.62)

It follows from 4.6 that, in U(B̃00), for all v ∈ U1,

celB̃3 (⌈ϕ
′′

2,0(v)⌉⌈ϕ
′

1,0(v)⌉∗) < (
K2π

2
+

1
16

)(η + δ2)+ 6π (e5.63)

≤ 7π < L(v). (e5.64)

Now let ψ̃d = ψ1,1 ◦ diag(ψ0, ψ0) and B2 = ψ̃d(A)Bψ̃d(A). Let b′00 ∈ B00 be a strictly positive element with ∥b00′∥ = 1
and let b2 ∈ B2 be a strictly positive element with ∥b2∥ = 1. It follows from (e5.37) that

b′00 ≲ b2. (e5.65)

Recall that ψ1,1 and ψ2,1 are assumed to be homomorphisms which are T -ψ0(H1,0)-full. Since ψ0 is T1-H1,0-full in D, ψ̃d
s also T3-H1,0-full in B2. Recall that

ψ1,1(j1 ◦ ψ0(x)) = diag(

K1  
ψ̃d(x), ψ̃d(x), . . . , ψ̃d(x)) for all x ∈ A. (e5.66)

ow we are ready to apply the stable uniqueness theorem 3.14 of [16]. By that theorem, viewing B2 as a hereditary
∗-subalgebra of B, there exists a unitary U3 ∈ ˜MK1+1(B2) such that

∥U∗3 (ϕ
′′

2,0(x)⊕ ψ1,1(j1 ◦ ψ0(x)))U3 − (ϕ′1,0(x)⊕ ψ1,1(j1 ◦ ψ0(x)))∥ < ε/16 (e5.67)

or all x ∈ F . It follows from (e5.28), (e5.59), (e5.22) and (e5.58) that

∥U∗3 (ϕ
′

2,0(x)⊕ ψ1,1(j1 ◦ ψ0(x)))U3 − (ϕ1,0(x)⊕ ψ1,1(j1 ◦ ψ0(x)))∥ (e5.68)

< ε/16+ ε1/4+ δ1/28 < ε/8 (e5.69)

or all x ∈ F . Since both ϕ′2,0(x)⊕ ψ1,1(j1 ◦ ψ0(x)) and ϕ1,0(x)⊕ ψ1,1(j1 ◦ ψ0(x)) are in B, and since B has stable rank one,
ne easily finds a unitary U ′3 ∈ B̃ such that the above holds using U ′3 in stead of U3 but with ε/7 instead of ε/8.
Put U4 = U1U2U ′3. It follows from (e5.17), (e5.57), (e5.36) and the above that, for all x ∈ F ,

∥AdU4 ◦ ϕ2(x)− ϕ1(x)∥
≤ ∥U∗4ϕ2(ϕ00(x)⊕ j1 ◦ ψ0(x))U4 − ϕ1(ϕ00(x)⊕ j1 ◦ ψ0(x))∥ + 2min{ε/128, δ′1/128}
< ∥(U ′3)

∗(ϕ′2,0(x)⊕ ψ1,1(j1 ◦ ψ0(x)))U ′3 − (ϕ1,0(x)⊕ ψ1,1(j1 ◦ ψ0(x)))∥
+5ε1/16+ δ2/2+ ε/64

< ε/7++5ε1/16+ δ2/2+ ε/64 < ε. □ (e5.70)

emark 5.4. It is easy to see that, with (e5.8), we may assume that [vi] ̸= {0} (see (e2.9)).

The following follows from A6 and A7 of the appendix of [16]. We keep here since the proof is much simpler.
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roposition 5.5. Let A be a non-unital separable stably projectionless exact simple C∗-algebra with continuous scale which is
Z-stable and T (A) ̸= ∅. Then K0(Ã) is weakly unperforated, i.e., if x ∈ K0(Ã) with kx ∈ K0(Ã)+ \ {0} for some integer k ≥ 1,
hen x ∈ K0(Ã)+. Furthermore, if p, q ∈ Ms(Ã) (for some s ≥ 1) are two projections such that τ (q) < τ (p) for all τ ∈ T (Ã),
hen q ≲ p.

roof. Put A1 = Ã⊗ Z . Note that, since A is Z-stable, A1 = Ã. Let B = Ã ⊗ Z and let ı : A1 → B be the embedding.
hen ı∗0 : K0(A1) → K0(B) is an isomorphism. Let πA : A1 → C and πz : B → Z be the quotient maps. Note that
z ◦ ı = ıC,Z ◦ πA, where ıC,Z is the embedding from C to Z . Let t0 be the tracial state of A1 which vanishes on A⊗Z = A
nd tz be the tracial state of Z . Note T (A1) = T (A) ∪ {t0} and T (B) = T (A) ∪ {tz ◦ πz}.
Let x ∈ K0(A1) such that kx > 0 in K0(A1) for some integer k ≥ 1. Suppose that p, q ∈ Ms(A1) are two projections such

hat [p]−[q] = x in K0(A1). Suppose that k[p]−k[q] is realized by a projection r ∈ Mn(Ã). If πA(r) = 0, then r ∈ Mn(A) which
s contradicted with A being stable projectionless. That is r is a full projection in A1. Hence, for all τ ∈ T (A1), τ (r) > 0.
hat is τ (p) > τ (q) for all τ ∈ T (A1). It follows that τ (ı(p)) > τ (ı(q)) for all τ ∈ T (B). Also pMs(A ⊗ Z)p ̸= {0}. Note
̸∈ Ms(A⊗Z) since A is stably projectionless. Therefore the ideal generated by p in Ms(B) contains q. Since B is Z-stable,
y 4.10 of [52], q ≲ p in Ms(B). Therefore there is a projection p1 ≤ p in Ms(B) such that [p1] = ı∗(x). There is a unitary
∈ Z such that w∗πz(p1)w = 1Mk , where 1Mk ∈ Ms(C) is a scalar matrix of rank k ≤ s. Since K1(Z) = {0}, there exists a

nitary W ∈ Ms(B) such that πz(W ) = w. Then W ∗p1W − 1Mk ∈ kerπz = Ms(A⊗ Z). Let e = W ∗p1W . Then e ∈ Ms(A1).
e compute that [e] = x in K0(A1). This implies that x > 0 and K0(A1) is weakly unperforated. □

emark 5.6. In Theorem 5.3, if both ϕ1 and ϕ2 map strictly positive elements to strictly positive elements, then, by the
irtue of 5.7 of [15], the fullness condition can be replaced by τ (f1/2(ϕ1(e))), τ (f1/2(ϕ2(e))) ≥ d for some given 1 > d > 0
nd a strictly positive element e ∈ A. for all τ ∈ T (B). If furthermore, ϕ1 and ϕ2 are assumed to be homomorphisms, then,
◦ ϕi are tracial states of T (A) for all τ ∈ T (B). Therefore, the fullness condition can be dropped.

. C∗-algebras of the form B ⊗ W

The main purpose of this section is to prove Theorem 6.9.
The following is known (in particular, the case that n = 1).

emma 6.1. Let B be a C∗-algebra and n ≥ 1 be an integer. Let u ∈ 1Mn(B̃) + Mn(B). Suppose that u ∈ U0(Mn(B̃)). Then
here exists a continuous path {u(t) : t ∈ [0, 1]} ⊂ U0(Mn(B̃)) such that u(0) = u, u(1) = 1Mn(B̃) and ϕ(u(t)) = 1Mn(B̃) for all
∈ [0, 1], where ϕ : Mn(B̃)→ Mn is the quotient map.
Moreover, one may write u =

∏m
k=1 exp(ihj) for some hj ∈ Mn(B̃)s.a. with ϕ(hj) = 0 (and ϕ(exp(ihj)) = 1Mn(B̃)),

= 1, 2, . . . ,m (for some m ≥ 1).

roof. Let {w(t) : t ∈ [0, 1]} be a continuous path of unitaries such that w(0) = u and w(1) = 1Mn(B̃). Let
¯ (t) = ϕ(w(t)) ∈ Mn. Let w′(t) ∈ Mn ⊂ Mn(B̃) be the same scalar matrix as w̄(t) with ϕ(w′(t)) = w̄(t). Note that
′(0) = 1Mn(B̃) = w′(1). Define u(t) = w(t)(w′(t))∗. Then u(0) = u and u(1) = 1Mn(B̃). Moreover ϕ(u(t)) = 1Mn(B̃) for all
∈ [0, 1].
To see the last part, one chooses a partition 0 = t0 < t1 < · · · tm = 1 of [0, 1] such that ∥u(tj−1)u(tj)∗ − 1∥ < 1.

efine hj =
1

2π i log(u(tj−1)u(tj)
∗), j = 1, 2, . . . ,m. Then u =

∏m
j=1 exp(ihj). Note that ϕ(u(tj)) = 1Mn(B̃), whence ϕ(hj) = 0,

= 1, 2, . . . ,m. □

emma 6.2. Let B be a C∗-algebra and u = 1B̃+x ∈ B̃ be a unitary, where x ∈ B. Suppose that diag(u, 1Mm(B̃)) ∈ U0(Mm+1(B̃)).
Let v = 1C + x ⊗ 1Q ∈ C, where C = B̃⊗ Q . Then v ∈ U0(C). Moreover, there exists a continuous path of unitaries
{v(t) : t ∈ [0, 1]} ⊂ C such that v(0) = v, v(1) = 1C and π (v(t)) = 1C for all t ∈ [0, 1], where π : C → C is the
quotient map.

Proof. By 6.1, there exists a continuous path of unitaries {u(t) : t ∈ [0, 1]} ⊂ U0(M̃m+1(B)) such that

u(0) = diag(u, 1Mm(B̃)), u(1) = 1Mm+1(B̃)
and π (u(t)) = 1Mm+1 , (e6.1)

where π : B̃→ C is the quotient map. Write u(t) = 1m+1(B̃) + x(t), where {x(t) : t ∈ [0, 1]} ⊂ Mm+1(B) is a continuous
path such that x(t)+ x(t)∗ + x(t)∗x(t) = 0, x(t)+ x(t)∗ + x(t)x∗(t) = 0 and x(1) = 0.

Let e1, e2, . . . , em+1 ∈ Q be mutually orthogonal and mutually equivalent projections such that
∑m+1

i=1 ei = 1Q . Put

Ei = 1m+1 ⊗ ei = diag(
m+1  

ei, ei, . . . , ei) ∈ Mm+1(B̃⊗ Q ), i = 1, 2, . . . ,m+ 1. (e6.2)

efine

w = 1 + x(0)⊗ e = 1 + x⊗ e , i = 1, 2, . . . ,m. (e6.3)
i C i C i
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u = w1w2 · · ·wm+1. (e6.4)

Let Xi ∈ Mm+1(B̃⊗ Q ) be a unitary such that

XiEiX∗i = 1B̃⊗Q = 1C . (e6.5)

ote that Xi(x(t)⊗ ei)X∗i ∈ B⊗ Q . Define wi(t) = 1C + Xi(x(t)⊗ ei)X∗i ∈ C for t ∈ [0, 1], i = 1, 2, . . . ,m+ 1. Then

wi(t)∗wi(t) = 1C + Xi(x(t)⊗ ei)X∗i + Xi(x∗(t)⊗ ei)X∗i + Xi(x(t)x∗(t)⊗ ei)X∗i (e6.6)

= 1C + Xi(x(t)+ x∗(t)+ x(t)x∗(t))X∗i = 1C . (e6.7)

Similarly,

w∗i (t)wi(t) = 1C , i = 1, 2, . . . ,m+ 1. (e6.8)

So {wi(t) : t ∈ [0, 1]} ⊂ U0(C) with wi(0) = wi and wi(1) = 1C . Moreover,

π (wi(t)) = 1 for all t ∈ [0, 1], i = 1, 2, . . . ,m+ 1. (e6.9)

Define v(t) = w1(t)w2(t) · · ·wm+1(t) for t ∈ [0, 1]. Then

v(t) ∈ U(C), v(0) = w1(0)w2(0) · · ·wm+1(0) = 1C + x = u and v(1) = 1C . □ (e6.10)

Theorem 6.3. Let B be a C∗-algebra and C = B̃⊗W . Then U(Mm(C)) = U0(Mm(C)) for all integer m ≥ 1. Moreover, if
u=1C + x is a unitary in C for some x ∈ B⊗W , then there exists a continuous path of unitaries {u(t) : t ∈ [0, 1]} ⊂ C such
that π (u(t)) = 1 for all t ∈ [0, 1], where π : C → C is the quotient map.

Proof. Note K1(W) = {0}. Therefore K1(B⊗W) = {0}.
Let u ∈ U(Mm(C)). Write u = w + x, where w ∈ Mm is a scalar unitary and x ∈ Mm(C). By considering w∗u, without

loss of generality, we may assume u = 1Mm + x for some x ∈ Mm(C). Hence (by 6.1) there exists a continuous path
{w(t) : t ∈ [0, 1]} ⊂ 1Mn+m(C)+Mn+m(B⊗W) such that w(0) = diag(u, 1n) and w(1) = 1n+m for some integer n ≥ 1. Since
W ∼= W ⊗ Q and Q is strong self absorbing, without loss of generality, we may assume that u = 1Mm(C) + x ⊗ 1Q . Thus
6.2 applies. This proves the second part of the lemma. To see the first part, we let m = 1. □

Lemma 6.4. Let B be a C∗-algebra and let q ∈ Mm(C̃) be a projection, where C = B ⊗W , such that πC (q) = p ∈ Mm(C), a
projection matrix, where πC : C̃ → C is the quotient map. Then there exist an integer r1 ≥ r ≥ 0 and a unitary w ∈ Mm+r1 (C̃)
such that w(q⊕1r )w∗ = P⊕1r , where P is the matrix in Mm(C ·1C̃ ) which is the same matrix as p. Moreover, πC (w) = 1m+r1 .

Proof. Since W is KK -contractible, K0(B⊗W) = {0}. Therefore, for some large r1 ≥ r ≥ 0, there is w1 ∈ Mm+r1 (C̃) such
that

w1(q⊕ 1r )w∗1 = P ⊕ 1r . (e6.11)

Note πC (w1)(P ⊕ 1r )πC (w1)∗ = P ⊕ 1r , where we identify these elements with matrices with scalar entries. Write
W = πC (w1) as a unitary matrix with scalar entries. Note that W (P⊕1r )W ∗ = P⊕1r . Let w = W ∗w1. Then, πC (w) = 1m+r1
and

w(1⊕ 1r )w∗ = P ⊕ 1r . □ (e6.12)

Lemma 6.5. Let B be a C∗-algebra and u = 1B̃ + x ∈ U0(B̃), where x ∈ B. Then, for any ε > 0, there exists m ≥ 1 such that
there exists a continuous path of unitaries {y(t) : t ∈ [0, 1]} ⊂ 1Mm+1 +Mm+1(B) such that y(0) = diag(u, 1Mm ), y(1) = 1Mm+1
and length({y(t) : t ∈ [0, 1]}) ≤ 4π + ε.

Moreover, let C = B̃⊗ K and v = 1C + z ∈ U0(C) for some z ∈ C. Then, for any ε > 0, there exists a continuous path
of unitaries {v(t) : t ∈ [0, 1]} such that v(0) = v, v(1) = 1C , Π(v(t)) = 1 for all t ∈ [0, 1] and cel(v(t)) ≤ 4π + ε, where
Π : C → C is the quotient map. Consequently, v ∈ U0(C) and cel(v) ≤ 4π + ε.

Proof. By 6.1, we may assume that there exists a continuous path of unitaries {u(t) : t ∈ [0, 1]} ⊂ B̃ such that
u(t) = 1B̃ + x(t), where x(t) ∈ B such that u(0) = u and u(1) = 1B̃. Note that {x(t) : t ∈ [0, 1]} is continuous, x(0) = x and
x(1) = 0. Moreover, for all t ∈ [0, 1],

x(t)+ x(t)∗ + x(t)x∗(t) = 0 and x(t)+ x(t)∗ + x(t)∗x(t) = 0. (e6.13)

Fix 1/4 > ε > 0. There is a partition 0 = t0 < t1 < · · · tn = 1 such that

∥x(t)− x(t )∥ < ε/2 for all t ∈ [t , t ], i = 0, 1, 2..., n− 1. (e6.14)
i i i+1
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Put D = M2n+1(B). Then

Z0 = 1D̃ + diag(x(0), x∗(0), x(t1), x∗(t1), . . . , x(tn−1), x∗(tn−1), 0) ∈ D̃. (e6.15)

Put yi = x(ti)+ x∗(ti), i = 0, 1, . . . , n− 1. Then, by (e6.13),

Z0Z∗0 = 1D̃ + diag(y0 + x(0)x∗(0), y0 + x(0)∗x(0), y1 + x(t1)x∗(t1), y1 + x(t1)∗x(t1), . . . , 0)
= 1D̃.

Similarly, Z∗0 Z0 = 1D̃. In other words, Z0 is a unitary in D̃. Put, for t ∈ [0, 1],

V (t) =
(
cos(tπ/2) − sin(tπ/2)
sin(tπ/2) cos(tπ/2)

)
(e6.16)

Note that V (t) is a unitary inM2(B̃), V (0) = 1M2(B̃)
and V (t)∗V (t) = 1M2(B̃)

. Putwi(t) = V (t)diag(1B̃+x(ti), 1B̃)V
∗(t)diag(1B̃, 1B̃

+ x∗(ti)), t ∈ [0, 1] and i = 0, 1, . . . , n− 1. Note that

wi(0) = diag(1B̃ + x(ti), 1B̃ + x∗(ti)), and wi(1) = diag(1B̃, 1B̃), i = 0, 1, . . . , n− 1. (e6.17)

Let ϕ : M2(B̃)→ M2 be the quotient map. We also have

ϕ(wi(t)) = ϕ(V (t))diag(1, 1)ϕ(V ∗(t))diag(1, 1) = diag(1, 1). (e6.18)

Define

Z(t) = diag(w0(t), w1(t), . . . , wn−1(t), 1B̃) (e6.19)

Then Z(0) = Z0, Z(1) = 1D̃. Moreover, by (e6.18),

πD(Z(t)) = 1πD(D̃),

where πD : D̃→ C is the quotient map. Note that {Z(t) : t ∈ [0, 1]} is a continuous path of unitaries in D̃. It is standard
to compute that length({Z(t) : t ∈ [0, 1]}) = 2π . Put

Z−1 = 1D̃ + diag(x(0), x∗(t1), x(t1), x∗(t2), x(t2), . . . , x∗(tn), x(tn)). (e6.20)

By (e6.14),

∥Z0 − Z−1∥ < ε. (e6.21)

There exists a continuous path of unitaries {Z−1(t) : t ∈ [0, 1]} ⊂ D̃ such that Z−1(0) = Z−1, Z−1(1) = Z0 and
length({Z−1(t) : t ∈ [0, 1]}) ≤ 2 arcsin(ε/2). Define

ωi(t) = V (t)diag(1B̃ + x∗(ti), 1B̃)V
∗(t)diag(1B̃ + x(ti), 1B̃)

for t ∈ [0, 1] and i = 1, 2, . . . , n. Then, similar to some computation above, {ωi(t) : t ∈ [0, 1]} ⊂ M2(B̃) is a continuous
path of unitaries such that ωi(0) = 1M2(B̃)

, ωi(1) = diag(1B̃ + x∗(ti), 1B̃ + x(ti)) and

ϕ(wi(t)) = ϕ(V (t))diag(1, 1)ϕ(V ∗(t))diag(1, 1) = diag(1, 1) for all t ∈ [0, 1], (e6.22)

i = 1, 2, . . . , n. Define

Z−2(t) = diag(1B̃ + x(0), ω1(t), ω2(t), . . . , ωn(t)) for all t ∈ [0, 1]. (e6.23)

Then {Z−2(t) : t ∈ [0, 1]} ⊂ U0(D̃) is a continuous path such that

Z−2(0) = 1D̃ + x(0) = 1D̃ + x = diag(u, 12n) (e6.24)

Z−2(1) = 1D̃ + diag(x(0), x∗(t1), x(t1), . . . , x∗n(tn), xn(tn)) = Z−1. (e6.25)

Moreover, length({Z−2(t) : t ∈ [0, 1]}) ≤ 2π . Now define

y(t) =

⎧⎨⎩
Z−2(3t) if t ∈ [0, 1/3]
Z−1(3(t − 1/3)) if t ∈ [1/3, 2/3]
Z(3(t − 2/3)) if t ∈ [2/3, 1].

(e6.26)

Now {y(t) : t ∈ [0, 1]} ⊂ U0(D̃), y(0) = Z−2(0) = diag(u, 12n) and y(1) = Z(1) = 1D̃. Moreover, for any 1/4 > ε > 0,

length({y(t) : t ∈ [0, 1]}) ≤ 4π + 2 arcsin(ε/2). (e6.27)

This proves the first part of the statement. The second part follows the same way. □
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heorem 6.6. Let {Bn} be a sequence of C∗-algebras and C =
∏
∞

n=1(Bn ⊗W ⊗ K). Then K1(C) = {0}. Moreover K1(E) = {0},
here E =

∏
∞

n=1(Bn ⊗W ⊗ K)∼.

roof. Let u ∈ Mm(C̃). Let πC : C̃ → C be the quotient map and let z = πC (u) ∈ Mm(C) be a unitary matrix. Denote by
the same scalar unitary matrix (as z) in Mm(C1C̃ ). Replacing u by Z∗u, without loss of generality, we may assume that
∈ 1Mm(C̃) + Mm(C). To simplify notation, without loss of generality, we may further assume that u ∈ 1C̃ + C . We write
= {un}, where un = 1(Bn⊗W⊗K)∼n + xn and where xn ∈ Bn ⊗W ⊗ K, n = 1, 2, . . ..
By applying 6.5, we obtain, for each n, a continuous path of unitaries vn(t) ∈ 1(Bn⊗W⊗K)∼+Bn⊗W⊗K with vn(0) = un

nd vn(1) = 1(Bn⊗W⊗K)∼ and cel(vn(t)) < 5π . Thus, we obtain (see Lemma 1.1 of [19]) a sequence of equi-continuous
aths of unitaries {wn(t) : t ∈ [0, 1]} ⊂ 1(Bn⊗W⊗K)∼+Bn⊗W⊗K with wn(0) = un and wn(1) = 1(Bn⊗W⊗K)∼ , n = 1, 2, . . ..
efine

u(t) = {wn(t)} ⊂ 1C̃ + C . (e6.28)

hen {u(t) : t ∈ [0, 1]} is a continuous path of unitaries in 1C̃ + C such that u(0) = u and u(1) = 1C̃ . Thus K1(C) = {0}.
If u ∈ U(E), we write u = {un}, where un ∈ U((Bn ⊗W ⊗ K)∼). Denote by πn : (Bn ⊗W ⊗ K)∼ → C the quotient map.

et λn = πn(un). Then λn ∈ T. Consider the unitary Z = {λn} ∈ U(E). Then Z ∈ U0(E). Now consider v = uZ∗. Then v ∈ C̃ .
hus the above shows that K1(E) = {0}. □

emma 6.7. Let Bn be a sequence of C∗-algebras and let C =
∏
∞

n=1 Bn ⊗W . Then Ki(C) is divisible and the map from Ki(C)
o Ki(C,Z/kZ) is zero, i = 0, 1 and k = 2, 3, . . ..

roof. Let ψ : Q ⊗ Q → Q be an isomorphism. Since W ⊗ Q ∼= W , we may write C =
∏
∞

n=1 Bn ⊗ W ⊗ Q . Define
: C → C ⊗ Q by Φ({an}) = {an} ⊗ 1Q for all {an} ∈ C . It is an injective homomorphism. Let Ψ : C ⊗ Q → C be a

omomorphism defined by Ψ ({(bn ⊗ rn) ⊗ r}) = {bn ⊗ ψ(rn ⊗ r)} for all {bn ⊗ rn} ∈ C , where bn ∈ Bn ⊗W and rn ∈ Q .
enote by Φ̃ : C̃ → C̃ ⊗ Q and Ψ̃ : C̃ ⊗ Q → C̃ the extensions.
Fix z ∈ K0(C). We will show that, for any integer k ≥ 2, there exists y ∈ K0(C) such that ky = z. Without loss of

enerality, we may assume that z = [p] − [q], where p ∈ Mr (C) is a matrix with scaler entries and q = p + x, where
∈ Mr (C)s.a, and both p and q are projections. Let D be a separable C∗-subalgebra of C such that Mr (D) contains x. Let
: D→ C be the embedding. Consider Φ(D). Then, Φ(D) ⊂ D1 := {ι(d)⊗ r : d ∈ D, r ∈ Q } ∼= D⊗ Q . Note, for each ε > 0
nd each finite subset F ⊂ Q , there exists a unitary u ∈ Q such that

u∗ψ(y⊗ 1Q )u ≈ε y for all y ∈ F . (e6.29)

ow write x = {(x(n)i,j )r×r}. For each n, i, j, there are a(n)i,j,k ∈ Bn ⊗W and r (n)i,j,k ∈ Q , k = 1, 2, . . . ,N(i, j, n), such that

∥x(n)i,j −
∑
k

a(n)i,j,k ⊗ r (n)i,j,k∥ < 1/(4n+1(∥x∥ + 1)r2), 1 ≤ i, j ≤ r. (e6.30)

Let Mn = max{∥ani,j,k∥ : 1 ≤ k ≤ N(i, j, n)}. Therefore there is a unitary un ∈ Q such that

∥u∗nψ(r (n)i,j,k ⊗ 1Q )un − r (n)i,j,k∥ < 1/(4n(∥x∥ + 1)N(i, j, n)Mnr2), 1 ≤ i, j ≤ r, n = 1, 2, . . . . (e6.31)

et u = {1B̃n ⊗ un} and U = diag(
r  

u, u, . . . , u). Then u∗{bn}u ∈ C for all {bn} ∈ C . In other words, Ad u : C → C is an
automorphism. Moreover

∥U∗(Ψ ◦Φ(x))U − x∥ < 1/4. (e6.32)

Let H1 = Ad u ◦ Ψ : C ⊗ Q → C and H2 = H1 ◦ Φ : C → C . Put ı1 = ı ⊗ idQ : D1 := D ⊗ Q → C ⊗ Q . Recall that
p, q ∈ Mr (D̃) and p − q = x ∈ Mr (D). Thus [p] − [q] also defines an element z ′ ∈ K0(D) and z = ι∗0(z ′) in K0(C). Since
Φ(D) ⊂ D1 ∼= D⊗ Q , we may regard Φ|D as a map from D to D1— let us denote it by Φ ′, that is Φ ′ : D→ D1 is the same
map as Φ|D= Φ ◦ ι but with different codomain algebra D1 (instead of C ⊗ Q ). Formally, we have Φ|D= ι1 ◦Φ ′. Then

Φ∗0(z) = Φ∗0(ι∗0(z ′)) = (Φ|D)∗0(z ′) = (ι1 ◦Φ ′)∗0(z ′) = (ι1)∗0(Φ ′∗0(z
′)).

By Künneth formula, K0(D1) is divisible. Therefore there is y′ ∈ K0(D1) such that Φ ′
∗0(z

′) = ky′ ∈ K0(D1). That is
Φ∗0(z) = (ι1)∗0(ky′) = k(ι1)∗0(y′). Hence (H2)∗0(z) = (H1)∗0(Φ∗0(z)) = ky, where y = (H1)∗0((ι1)∗0(y′))∈ K0(C). That is,
(H2)∗0(z) divisible by k.

Since p = (λi,j)r×r , where λi,j ∈ C. (by (e6.32)),

H̃2(p) = U∗pU = p and ∥(H̃2)(q)− q∥ = ∥H2(x)− x∥ < 1/4, (e6.33)

where we use H̃2 : C̃ → C̃ for the unitization of H2 : C → C and its induced map H̃2 : Mr (C̃)→ Mr (C̃). It follows that

(H2)∗0(z) = z in K0(C). (e6.34)

Hence z is divisible by k. This shows that K (C) is divisible. It follows that K (C)/kK (C) = {0} for all k ≥ 2.
0 0 0
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A similar argument shows that K1(C) is also divisible. □

Lemma 6.8. Let A be a separable C∗-algebra and let ϕn : A → Bn ⊗ W be a sequence of approximately multiplicative
ompletely positive contractive linear maps. Then there exists a sequence of integers {m(n)} satisfying the following condition:
ut C =

∏
n(Mm(n)(Bn ⊗ W)) and C0 =

⨁
∞

n=1 Mm(n)(Bn ⊗ W). Then [π ◦ ({ϕn})] = 0 in HomΛ(K (A), K (C/C0)), where
π : C → C/C0 is the quotient map and where we view ϕn maps A into Mm(n)(Bn ⊗W) (as ϕn(a) = diag(ϕn(a), 0, . . . , 0)).

Proof. Let K0(A) = {x1, x2, . . . , xn, . . .}. Put Dn = (Bn⊗W)∼. Suppose that, without loss of generality, that [ϕn(xi)] is well
defined, for all i ≤ n. We may write xi = [pi] − [qi] ∈ K0(A), where pi ∈ Mr(i)(C) is a projection and qi = pi + bi and
bi ∈ Mr(i)(A)s.a.. By 6.4, for any i ≤ n, there are integers r(i, n)′ and m(n)′ = r(i) + r(i, n)′, and a unitary ui,n ∈ Mm(n)′ (Dn)
with πd,n(ui,n) = 1m(n)′ , where πd,n : Mm(n)′ (Dn)→ Mm(n)′ is the quotient map, such that

∥u∗i,n(ϕn(pi)⊕ 1r(i,n)′ )ui,n − (ϕn(qi)⊕ 1r(i,n)′ )∥ < 1/2n+1 (e6.35)

for all large n. Note that {ui,n} ∈ (
∏

n Mm(n)′ (Bn ⊗W))∼. It follows that, for any i ≥ 1, there exists k(i) ≥ i such that

[{ϕn(xi)}n≥k(i)] = 0 in K0(
∏

n≥m(k)

Mm(n)′ (Bn ⊗W)). (e6.36)

Thus, for any x ∈ K0(A), [π ′({ϕn(x)})] = 0, where π ′ :
∏

n Mm(n)′ (Bn ⊗W)→
∏

n Mm(n)′ (Bn ⊗W)/⊕nMm(n)′ (Bn ⊗W) is the
quotient map.

Let K1(A) = {g1, g2, . . . , gn, . . .} and zi ∈ Md(i) be a unitary so that [zi] = gi, i = 1, 2, . . .. Let Gm = {g1, g2, . . . , gm}. By
the first part of 6.5, there exist l(i) ≥ 1, k1(i) ≥ i and m(n)′′ = d(i)+ l(i, n) such that

[{⟨ϕn(zi)⟩}n≥k1(i)] = 0 in K1(
∏

n≥k1(i)

Mm(n)′′ (Bn ⊗W)), (e6.37)

by viewing ϕn as a map from A into Mm(n)′′ (Bn⊗W). Let m(n) = max{m(n)′,m(n)′′}, n = 1, 2, . . .. Put C =
∏
∞

n=1 Mm(n)(Bn⊗

W). Then (π ◦ {ϕn})∗j = 0 (j = 0, 1) as we view {ϕn} as a map from A to C , where π : C → C/C0 is the quotient map.
Fix an integer k ≥ 2 and a finite subset F ′ ⊂ K0(A,Z/kZ), we may assume that the image of F ′ is in Gi = {g1, g2, . . . , gi}.
Then, by the following commutative diagram

K0(A) →→

[{ϕn}n≥k1(i)]

↓↓

K0(A,Z/kZ) →→

[{ϕn}n≥k1(i)]

↓↓

K1(A)

[{ϕn}n≥k1(i)]

↓↓
K0(C ′) →→ K0(C ′,Z/kZ) →→ K1(C ′)),

(e6.38)

here C ′ =
∏

n≥k1(i)
Mm(n)(Bn ⊗W), since [{ϕn}n≥k1(i)]|Gi= 0, [{ϕn}n≥k1(i)]|F ′⊂ K0(C ′)/kK0(C ′). However, by 6.7, K0(C ′)/kK0

C ′) = 0. It follows that [π ({ϕn})]|F ′= 0. It follows that

[π ({ϕn})]|K0(A,Z/kZ)= 0, k = 2, 3, . . . . (e6.39)

xactly the same argument shows that

[π ({ϕn})]|K1(A,Z/kZ)= 0, k = 2, 3, . . . . (e6.40)

his implies that

[π ◦ ({ϕn})] = 0 in HomΛ(K (A), K (C/C0)), (e6.41)

here C0 =
⨁
∞

n=1 Mm(n)(Bn ⊗W). □

We would like to recall Definition 2.17 for definition of T -H-fullness (see also 5.5 of [15]).

heorem 6.9. Let A be a non-unital separable amenable C∗-algebra which satisfies the UCT and let T : A+\{0} → N×R+\{0}
e a map. For any ε > 0 and any finite subset F ⊂ A, there exist δ > 0, a finite subset G ⊂ A, a finite subset
⊂ A+ \ {0} satisfying the following condition: For any two G-δ-multiplicative contractive completely positive linear maps
, ψ : A → B ⊗ W , where B is any σ -unital C∗-algebra, and any G-δ-multiplicative contractive completely positive linear
ap σ : A → Ml(B ⊗ W) (for any integer l ≥ 1) which is also T-H-full, there exist integers N1,N2 ≥ 1 and a unitary
∈ M1+N1 l+N2 (B⊗W)∼ such that

∥AdU ◦ ((ϕ ⊕ S )(a)⊕ 0 )− ((ψ ⊕ S )(a)⊕ 0 )∥ < ε for all a ∈ F, (e6.42)
N1 N2 N1 N2
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here

SK (f ) = diag(

K  
σ (a), σ (a), . . . , σ (a)) for all a ∈ A

or integer K ≥ 1 and where 0N2 = diag(

N2  
0, 0, . . . , 0).

Proof. This follows from the proof of 3.14 of [15]. Suppose that the conclusion of the theorem is false, then there exist
ε0 > 0 and a finite subset F ⊆ A such that there are a sequence of positive numbers (δn) with δn ↘ 0, an increasing
equence (Gn) of finite subsets of A such that

⋃
n Gn is dense in A, an increasing sequence (Hn) of finite subsets of A1

+
\ {0}

uch that, if a ∈ Hn and f1/2(a) ̸= 0, then f1/2(a) ∈ Hn+1, and
⋃

n Hn is dense in A1, and has dense intersection with the
nital ball of each closed two-sided ideal of A, two sequences of Gn-δn-multiplicative completely positive contractive maps
n, ψn : A→ Bn a sequence of unital Gn-δn-multiplicative completely positive contractive linear maps σn : A→ Ml(n)(Bn)
hich are F-Hn-full and satisfy, for each n = 1, 2, . . .,

inf{sup ∥v∗n (ϕn(a)⊕ Sk1(n)(a)⊕ 0k2(n))vn − (ψn(a)⊕ Sk1(n)(a)⊕ 0k2(n))∥ : a ∈ F} ≥ ε0, (e6.43)

here the infimum is taken among all k1(n), k2(n) → ∞, and all unitaries vn ∈ Mk1(n)l(n)+1+k2(n)(Bn), and Sk1(n) : A →
k1(n)l(n)(Bn) is as above.
Let {m(n)} be as in 6.8. Set Mm(n)l(n)(Bn) = B′n,

⨁
∞

n=1 B
′
n = C0,

∏
∞

n=1 B
′
n = C , and C/C0 = Q (C), and denote by

π : C → Q (C) the quotient map. Consider the maps Φ,Ψ , S : A → C defined by Φ(a) = (ϕn(a))n≥1, Ψ (a) = (ψn(a))n≥1,
nd S(a) = (σ̄n(a))n≥1 for all a ∈ A, where

σ̄n(a) = diag(

m(n)  
σn(a), σn(a), . . . , σn(a)) for all a ∈ A. (e6.44)

Note that π ◦ Φ , π ◦ Ψ and π ◦ S are homomorphisms. Consider also the truncations Φ(m),Ψ (m), S(m)
: A→

∏
n≥m B′n

defined by Φ(m)(a) = (ϕn(a))n≥m, Ψ (m)(a) = (ψn(a))n≥m, and S(m)(a) = (σ̄n(a))n≥m.
It follows from 6.8 that

[π ◦Φ] = [π ◦ Ψ ] in HomΛ(K (A), K (C/C0)). (e6.45)

We will show that σ̄n is T -Hn-full in Mm(n)l(n)(Bn ⊗W). Let T (a) = (N(a),M(a)) ∈ N×R \ {0} for all a ∈ A+ \ {0}. Fixed
ny nonzero element 0 ≤ a ≤ 1 in Hn. Let b ∈ Mm(n)l(n)(Bn ⊗W)+ with ∥b∥ ≤ 1, and ε1 > 0. Since Bn is σ -unital, there
xists 0 ≤ e ≤ 1 in Bn ⊗W such that

∥b− b1/2(1m(n)l(n) ⊗ e)b1/2∥ < ε1/2. (e6.46)

hoose ε1/2 > η > 0 such that

∥b− b1/2(1m(n)l(n) ⊗ (e− η)+)b1/2∥ < ε1. (e6.47)

ince σn is T -Hn-full, by also applying 3.1 of [15], there are x1, x2, . . . , xN(a) ∈ Ml(n)(Bn⊗W) with ∥xi∥ ≤ M(a), 1 ≤ i ≤ N(a)
uch that (e− η)+ ⊗ 1l(n) =

∑N(a)
i=1 x∗i σn(a)xi. Therefore (identifying σ̄n(a) with 1m(n) ⊗ σn(a))

∥

N(a)∑
i=1

b1/2(1m(n) ⊗ xi)∗σ̄n(a)(1m(n) ⊗ xi)b1/2 − b∥ < ε1.

This shows that σ̄n is T -Hn-full in Mm(n)l(n)((B⊗W)). As in the proof of 3.14 of [15], this implies π ◦ {σ̄n} is full in C/C0.
Then, by the proof 3.14 of [15], there exists an integer K ≥ 1 and there exists a unitary v ∈ MKm(n)l(n)+m(n)l(n)(C/C0)

uch that

∥v∗diag(π ◦Φ(a),Σn(a))v − diag(π ◦Φn(a),Σn(a))∥ < ε0/4 for all a ∈ F,

here

Σn(a) = diag(

K  
π ◦ σ̄n(a), π ◦ σ̄n(a), . . . , π ◦ σ̄n(a)).

Lifting this to C , one obtains, for all sufficiently large n ≥ 1, a unitary un ∈ MKm(n)l(n)+m(n)l(n)((Bn ⊗W)∼) such that

∥u∗ndiag(ϕn(a)⊕ 0m(n)l(n)−1, σ̄n(a))un − diag(ψn(a)⊕ 0m(n)l(n)−1, σ̄n(a))∥ < ε0/2 for all a ∈ F .

By replacing un by another unitary wn, if necessary, we have, for all sufficiently large n ≥ 1,

∥u∗ndiag(ϕn(a), σ̄n(a)⊕ 0m(n)l(n)−1)un − diag(ψn(a), σ̄n(a)⊕ 0m(n)l(n)−1)∥ < ε0/2, (e6.48)

for all a ∈ F .
This contradicts (e6.43). Lemma follows. □
27
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emma 7.1. Let A be an AF algebra and ϕ1, ϕ2 : A → Q be two unital homomorphisms with (ϕ1)∗0 = (ϕ2)∗0. Let n be a
ositive integer. Define Bi (i = 1, 2) to be the C∗-subalgebra of C([0, 1],Q ⊗Mn+1)⊕ A given by

Bi = {(f , a) ∈ C([0, 1],Q ⊗Mn+1)⊕ A :
f (0) = ϕi(a)⊗ diag(

n  
1, . . . , 1, 0)

f (1) = ϕi(a)⊗ diag(1, . . . , 1, 1  
n+1

)} (e7.1)

for i = 1, 2. Then B1 ∼= B2.

Proof. Since both A and Q are AF algebras and (ϕ1)∗0 = (ϕ2)∗0, there is a unitary path {u(t)}0≤t<1 such that ϕ2(a) =
imt→1 u(t)ϕ1(a)u(t)∗ (see [34]). Define the isomorphism ψ : B1 → B2 by sending (f , a) ∈ B1 to (g, a) ∈ B2, where g is
iven by

g(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u(|2t − 1|)⊗ 1n+1)f (t)(u(|2t − 1|)⊗ 1n+1)∗ if t ∈ (0, 1),

ϕ2(a)⊗ diag(

n  
1, . . . , 1, 0) if t = 0,

ϕ2(a)⊗ diag(1, . . . , 1  
n

, 1) if t = 1.

t is straight forward to verify that g is continuous, that (g, a) ∈ B2, and that ψ defines a desired isomorphism. □

Definition 7.2. Let G0 and G1 be two countable abelian groups. Let A be a unital AH-algebra with TR(A) = 0, unique
tracial state, K1(A) = G1 and K0(A) = Q⊕ G0 with ker ρA = G0 and [1A] = (1, 0).

There is a unital homomorphism s : A → Q such that s∗0(r, g) = r for (r, g) ∈ Q ⊕ G0. Fix a unital embedding
j : Q → A with j∗0(r) = (r, 0) for r ∈ Q. (Note that both j ◦ s and s ◦ j induce the identity maps on T (A) and T (Q )
respectively. Furthermore the homomorphism j and s identify the spaces T (A) and T (Q ))

Fix an integer a1 ≥ 1. Let α = a1
a1+1

. For each r ∈ Q+ \ {0}, let er ∈ Q be a projection with tr(er ) = r . Let
Q̄r := (1⊗er )(Q ⊗Q )(1⊗er ). Define qr : Q → Q̄r by a ↦→ a⊗er for a ∈ Q . We will also use qr to denote a homomorphism
from B to B⊗ erQer (or to B⊗ Q ) defined by sending b ∈ B to b⊗ er ∈ B⊗ erQer ⊂ B⊗ Q .

We fix an isomorphism Q ⊗ Q → Q which will be denoted by ιQ . Moreover the composition of the maps which first
aps a to a⊗ 1Q and then to Q via ιQ is approximately inner. In fact every unital endomorphism on Q is approximately

nner. If we identify Q with Q ⊗ 1Q in Q ⊗ Q then ιQ is an approximately inner endomorphism.
For each 1 > r > r ′ > 0, we assume that er ≥ er ′ . Fix 1 > r > 0, define ιQr : Q̄r → Qr := erQer by ιQr = Ad vr ◦ ιQ |Q̄r ,

where v∗r (ι
Q (1⊗ er ))vr = er .

Let

R(α, r) = {(f , a) ∈ C([0, 1],Q ⊗ Qr )⊕ Q : f (0) = a⊗ erα and f (1) = a⊗ er}.

(Recall that R(α, 1) has been defined in 3.7.)
Let

A(W , α) = {(f , a) ∈ C([0, 1],Q ⊗ Q )⊕ A : f (0) = qα ◦ s(a) and f (1) = s(a)⊗ 1Q }.

We also note that (f , a) is full in A(W , α) if and only if a ̸= 0 and f (t) ̸= 0 for all t ∈ (0, 1).
Let M+ denote the set of nonnegative regular measures on (0, 1). As in 3.4, trace spaces T̃ (A(W , α)) and T̃ (R(α, 1)) are

isomorphic, and each τ ∈ T̃ (R(α, 1)) ∼= T̃ (A(W , α)) corresponds to (µ, s) ∈M+(0, 1)× R+. Furthermore we have

∥τ∥ = ∥µ∥ + s =
∫ 1

0
dµ + s.

Note that in the weak topology of T̃ (A(W , α)) (or T̃ (R(α, 1))), under the above identification, one has that

lim
t→0

(δt , 0) = (0, α) ∈M+(0, 1)× R+ and lim
t→1

(δt , 0) = (0, 1) ∈M+(0, 1)× R+,

where δt is the unit measure of the point mass at t .
The affine space Aff(T̃(A(W , α))) and Aff(T̃(R(α, 1))) can be identified with

{(f , x) ∈ C([0, 1],R)⊕ R : f (0) = α · x and f (1) = x}, (e7.2)

a subspace of C([0, 1],R)⊕ R.
Let

A(W , α, r) = {(f , a) ∈ C([0, 1],Q ⊗ Q )⊕ A : f (0) = q ◦ s(a) and f (1) = q ◦ s(a)}.
r rα r
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Define ϕA,R,α : A(W , α)→ R(α, 1) by

ϕA,R,α((f , a)) = (f , s(a)) for all (f , a) ∈ A(W , α).

Define s̃j : C([0, 1],Q ⊗ Q )→ C([0, 1],Q ⊗ Q ) by

s̃j(f )(t) = ((s ◦ j)⊗ idQ )(f (t)).

Define ϕR,A,α : R(α, 1)→ A(W , α, 1) by

ϕR,A,α((f , a)) = (s̃j(f ), j(a)) for all (f , a) ∈ R(α, 1).

ote that

s̃j(f )(0) = ((s ◦ j)⊗ idQ )(a⊗ eα) = s ◦ j(a)⊗ eα and (e7.3)

s̃j(f )(1) = ((s ◦ j)⊗ idQ )(a⊗ 1) = s ◦ j(a)⊗ 1. (e7.4)

Also

qα ◦ s ◦ j(a) = s ◦ j(a)⊗ eα.

In particular, ϕR,A,α does map R(α, 1) into A(W , α, 1). Moreover ϕR,A,α is injective and map the strictly positive element
α to a strictly positive element (with the same form–see 3.7).
With the identification of both Aff(T̃(A(W , α))) and Aff(T̃(R(α, 1))) with the same subspace of C([0, 1],R) ⊕ R, the

omomorphism ϕA,R,α and ϕR,A,α induce the identity map on that subspace at the level of Aff(T̃ (−)) maps. They also
nduce the identity maps at level of trace spaces, when we identify the corresponding trace spaces. In particular, ϕ∗A,R,α :
˜(R(α, 1)) → T̃(A(W , α)) (or ϕ∗R,A,α : T̃(A(W , α)) → T̃(R(α, 1)), respectively) takes the subset T(R(α, 1)) to the subset
(A(W , α)) (or takes T(A(W , α)) to T(R(α, 1)), respectively)
Fix α, r ∈ Q+ \ {0}. There are unitaries uα,r , u1,r ∈ Q̄r such that

u∗α,r (eα ⊗ er )uα,r = (ιQr )
−1(erα) and u∗1,r (1⊗ er )u1,r = (ιQr )

−1(er ) = 1⊗ er .

Note that u1,r can be chosen to be 1Q̄r .) There is a continuous path of unitaries {u(t) : t ∈ [0, 1]} in Q̄r such that
(0) = uα,r and u(1) = u1,r .
Let v(t) = 1⊗ u(t) ∈ Q ⊗ Q̄r for t ∈ [0, 1]. Note if f (t) ∈ Q ⊗ Q , then

v(t)∗(f (t)⊗ er )v(t) ∈ Q ⊗ Q̄r for all t ∈ (0, 1).

Let ϕR,r : R(α, 1)→ R(α, r) be defined by

ϕR,r ((f , a)) = (idQ ⊗ ι
Q
r ) ◦ Ad v ◦ qr (f , a).

Note that, for t ∈ (0, 1),

(idQ ⊗ ι
Q
r ) ◦ Ad v(t) ◦ qr (f )(t) = (idQ ⊗ ι

Q
r ) ◦ Ad v(t)(f (t)⊗ er ) (e7.5)

= (idQ ⊗ ι
Q
r )(v(t)

∗(f (t)⊗ er )v(t)) ∈ Q ⊗ Qr , (e7.6)

(idQ ⊗ ι
Q
r ) ◦ Ad v(0) ◦ qr (f )(0) = (idQ ⊗ ι

Q
r ) ◦ Ad v(0)(a⊗ eα ⊗ er ) (e7.7)

= (idQ ⊗ ι
Q
r )(a⊗ (ιQr )

−1(eαr )) (e7.8)

= a⊗ eαr and (e7.9)

(idQ ⊗ ι
Q
r ) ◦ Ad v(1) ◦ qr (f )(1) = (idQ ⊗ ι

Q
r ) ◦ Ad v(1)(a⊗ 1⊗ er ) (e7.10)

= (idQ ⊗ ι
Q
r )(a⊗ (ιQr )

−1(er )) (e7.11)

= a⊗ er . (e7.12)

Evidently, when we identify T̃(R(α, r)) and T̃(R(α, 1)) with M+(0, 1)×R+, the map ϕ∗R,r is the identity map and takes the
subset T(R(α, r)) to the subset T(R(α, 1)).

Define s(2,3) : Q ⊗ Q ⊗ Q → Q ⊗ Q ⊗ Q by

s(2,3)(x⊗ y⊗ z) = x⊗ z ⊗ y

for all x, y, z ∈ Q . To make the notation clearer, we will often write the above x ⊗ z ⊗ y as (x ⊗ z) ⊗ y, later. Define a
homomorphism ι̃Q : R(α, 1)⊗ Q → R(α, 1) by

ι̃Q (f ⊗ b, a⊗ b) = (((ιQ )⊗ idQ ) ◦ s(2,3)(f ⊗ b), ιQ (a⊗ b))

for (f , a) ∈ R(α, 1) and b ∈ Q .
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Note, at t = 0,

(ιQ ⊗ idQ ) ◦ s(2,3)(f ⊗ b)(0) = (ιQ ⊗ idQ ) ◦ s(2,3)(a⊗ eα ⊗ b) (e7.13)

= (ιQ ⊗ idQ )((a⊗ b)⊗ eα) (e7.14)

= ιQ (a⊗ b)⊗ eα; (e7.15)

nd, at t = 1,

(ιQ ⊗ idQ ) ◦ s(2,3)(f ⊗ b)(1) = (ιQ ⊗ idQ ) ◦ s(2,3)(a⊗ 1⊗ b) (e7.16)

= (ιQ ⊗ idQ )((a⊗ b)⊗ 1) (e7.17)

= ιQ (a⊗ b)⊗ 1. (e7.18)

Let m ≥ 2 be an integer. Viewing Mm as a unital C∗-subalgebra of Q , Put ιMm = ιQ |Q⊗Mm . Define ι̃Mm : R(α, 1)⊗Mm →

(α, 1) by ι̃Mm = ι̃Q |R(α,1)⊗Mm . Note also that (recall (e3.16))

ι̃Q (aα ⊗ 1Q ) = aα and ι̃Mm (aα ⊗ 1Mm ) = aα. (e7.19)

e need one more map. Let ψAw : A(W , α)→ C([0, 1],Q )⊕ A be defined by

ψAw (f , a) = (g, a),

where g(t) = s(a) for all t ∈ [0, 1]. Define ψAw ,r : A(W , α)→ C([0, 1],Q ⊗ Qr )⊕ A by

ψAw ,r ((f , a)) = (qr (g), a)

with g(t) = s(a) (and qr (g) = qr ◦ s(a)). Note that ψAw ,r (aα) = (1 ⊗ er , 1) is the unit of C([0, 1],Q ⊗ Qr ) ⊕ A. It follows
that ψAw ,r maps strictly positive elements to strictly positive elements.

When we identify T̃(A(W , α)) with M+(0, 1) × R+, and T̃(C([0, 1],Q ⊗ Qr )⊕ A) with M+[0, 1] × R+, the map ψ∗Aw ,r
is given by

ψ∗Aw ,r (µ, s) = (0, s+
∫ 1

0
dµ),

which takes T(C([0, 1],Q ⊗ Qr )) to T(A(W , α)).
Warning: C([0, 1],Q ⊗ Qr )⊕ A ̸= A(W , α).
One more notation: define Pf : (f , a)→ f and Pa : (f , a) = a.
Now let α < β < 1. Let us choose x such that β(1/2+ x) = (α/2+ x). So

x =
(1/2)(β − α)

1− β
> 0.

Let

y = 1/2+ x =
1
2
+

(1/2)(β − α)
(1− β)

=
(1− α)
2(1− β)

.

Let r1 = (1/2)(1/y) = (1−β)
(1−α) and r2 = x(1/y) = (β−α)

(1−α) . Then

αr1 + r2 = (1/y)(1/2+ x) = β and r1 + r2 = (1/y)(1/2+ x) = 1.

Define ΦAw ,α,β : A(W , α)→ A(W , β) by

Pa(ΦAw ,α,β ((f , a))) = a and
Pf (ΦAw ,α,β ((f , a))) = diag(Pf ◦ ϕR,r1 ◦ ϕA,R,α((f , a)), Pf ◦ ψAw ,r2 ((f , a))).

One computes that, for t ∈ (0, 1),

Pf (ϕR,r1 ◦ ϕA,R,α((f , a)))(t) = (idQ ⊗ ι
Q
r1 ) ◦ Ad v(t) ◦ qr1 (f )(t) (e7.20)

= (idQ ⊗ ι
Q
r1 )(v(t)

∗f (t)⊗ er1 )v(t) (e7.21)

∈ Q ⊗ Qr1 ⊂ Q ⊗ Q and (e7.22)

Pf (ψAw ,r2 ((f , a)))(t) = qr2 (s(a)) = s(a)⊗ er2 ∈ Q ⊗ Q . (e7.23)

At t = 0,

Pf (ϕR,r1 ◦ ϕA,R,α((f , a))(0)) = (idQ ⊗ ι
Q
r1 ) ◦ Ad v(0) ◦ qr1 (f )(0) (e7.24)

= (id ⊗ ιQ ) ◦ Ad v(0)(s(a)⊗ e ⊗ e ) (e7.25)
Q r1 α r1
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= (idQ ⊗ ι
Q
r1 )(a⊗ (ιQr1 )

−1(eαr1 )) (e7.26)

= s(a)⊗ eαr1 . (e7.27)

Hence

Pf (ΦAw ,α,β ((f , a)))(0) = diag(s(a)⊗ eαr1 , s(a)⊗ er2 ) (e7.28)

= s(a)⊗ eαr1+r2 = s(a)⊗ eβ . (e7.29)

t t = 1,

Pf (ϕR,R,r2 ◦ ϕA,R,α((f , a))(1)) = (idQ ⊗ ι
Q
r1 ) ◦ Ad v(1) ◦ qr1 (f )(1) (e7.30)

= (idQ ⊗ ι
Q
r1 ) ◦ Ad v(1)(s(a)⊗ 1⊗ er1 ) (e7.31)

= (idQ ⊗ ι
Q
r1 )(s(a)⊗ (ιQr1 )

−1(er1 )) (e7.32)

= s(a)⊗ er1 . (e7.33)

ence

Pf (ΦAw ,α,β ((f , a)))(1) = diag(s(a)⊗ er1 , s(a)⊗ er2 ) (e7.34)

= s(a)⊗ er1+r2 = s(a)⊗ 1. (e7.35)

Therefore, indeed, ΦAw ,α,β defines a homomorphism from A(W , α) to A(W , β). It is injective. We also check that
Aw ,α,β (aα) is a strictly positive element of A(W , β) (recall (e3.16)).
Furthermore Φ∗Aw ,α,β : T̃(A(W , β))(

∼=M+(0, 1)× R+)→ T̃(A(W , α))(∼=M+(0, 1)× R+) is given by

Φ∗Aw ,α,β (µ, s) = (r1µ, r2(
∫ 1

0
dµ)+ s),

hich takes T(A(W , β)) to T(A(W , α)).
Fix any a ∈ A+ with ∥a∥ = 1. Define f (t) = (1 − t)(s(a) ⊗ eα) + t(s(a) ⊕ 1). Then (f , a) ∈ A(α, 1) is a full positive

lement. Note that ΦAw ,α,β ((f , a)) is also a full positive element.
Let m,m′ be two positive integers such that m|m′. Let m′

m = a+ 1. Let F2 = Mm′ (C), F1 = Mm(C), and ϕ0, ϕ1 : F1 → F2
e defined by

ϕ0(x) = diag(x, . . . , x  
a

, 0), and ϕ0(x) = diag(x, . . . , x  
a+1

).

Denote that

A(m,m′) = A(F1, F2, ϕ0, ϕ1) = {(f , x) ∈ C([0, 1],Mm(C)⊗Ma+1(C))⊕Mm(C) :
f (0) = x⊗ diag(1, . . . , 1  

a

, 0) f (1) = x⊗ diag(1, . . . , 1  
a+1

)}.

hen A(m,m′) ∈ C0
0 with λs(A(m,m′)) = a

a+1 .
In [25], the author constructed a simple inductive limit W = limW ′′i = lim(A(mi, (ai + 1)mi), ωi,j) such that

K0(W) = 0 = K1(W) and T (W) = {pt}, In the construction, one has ai + 1 = 2(ai−1 + 1) and mi = aimi−1. Consequently
limi→∞ ai = ∞. From the construction in [25], the map ωi,j takes strictly positive elements to strictly positive elements,
and ω∗i,j maps tracial state space T (W ′′j ) to tracial state space T (W ′′i ). Furthermore, Ai ∈ C0

0 with λs(Ai) =
ai

ai+1
→ 1 as

i→∞.
Note that W ⊗ Q ∼= W . Identify Q ⊗ Mm and Q ⊗ Ma+1 with Q , we can identify A(m, (a+1)m)⊗Q with R(α, 1) for

α = a/(a+ 1). Moreover, W = lim(W ′n = R(αn, 1), ı′W ,n), where ı′W ,n : R(αn, 1)→ R(αn+1, 1) are injective. Again, we have
hat (ı′W ,n)

∗ takes T (R(αn+1, 1)) to T (R(αn, 1)).
Let C be a unital AF-algebra so that T (C) = T . We write C = limn→∞(Fn, ıF ,n), where dim(Fn) <∞ and ıF ,n : Fn → Fn+1

are unital injective homomorphisms.
Let W be as before. Write

WT = W ⊗ C .

Then T (WT ) = T and WT has continuous scale.
Suppose that

Fn =
k(n)⨁

Mni .
i=0
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y identifying R(αn, 1) with R(αn, 1)⊗Mni and R(αn, 1)⊗ Q , we may write that

WT = lim
n→∞

(Wn, ın),

where Wn is a direct sum of k(n) summand of R(αn, 1) : Wn =
⨁k(n)

i=0 R(αn,1)(i), where α1 < α2 < · · · < 1. Again, we have
that ı∗n takes T (Wn+1) to T (Wn).

We write

Wn = R0,n

⨁
Dn,

where R0,n = R(αn, 1)(0) and

Dn =

k(n)⨁
i=1

R(αn,1)(i).

In the case that Wn has only one summand, we understand that Wn = R0,n and Dn = {0}. We also use

P0,n : Wn → R0,n and P1,n : Wn → Dn

for the projection map, i.e., P0,n(a⊕ b) = a and P1,n(a⊕ b) = b for all a ∈ R0,n and b ∈ Dn.
Consider

Bn = Wn ⊕M(n!)2 (A(W , αn)), n = 1, 2,

Let rn = 1
2n+1k(n)

, n = 1, 2, . . ..
Let us define a homomorphism Ψn,n+1 : Bn → Bn+1 as follows.
On M(n!)2 (A(W , αn)) define Ψn,n+1,A,A : M(n!)2 (A(W , αn))→ M((n+1)!)2 (A(W , αn+1)) by

Ψn,n+1,A,A(a) = diag(ΦAw ,αn,αn+1 (a),

((n+1)!)2−(n!)2  
0, 0, . . . , 0 ) for all a ∈ M(n!)2 (A(W , αn))

and define Ψn,n+1,A,W : M(n!)2 (A(W , αn))→ R0,n+1 ⊗ ernQern by

Ψn,n+1,A,W = qrn ◦ ı
′

W ,n ◦ ι̃
M(n!)2 ◦ (ϕA,R,αn ⊗ idM(n!)2

).

(Recall that ι̃Q : R(α, 1) ⊗ Q → R(α, 1) is an isomorphism and ι̃Mm : R(α, 1) ⊗ Mm → R(α, 1) is defined by
ι̃Mm = ι̃Q |R(α,1)⊗Mm .) It is injective.

On Wn define Ψn,n+1,W ,W : Wn → R0,n+1 ⊗ (1− ern )Q (1− ern )⊕ Dn+1 ⊂ Wn+1 by, for a ∈ R0,n, b ∈ Dn,

Ψn,n+1,W ,W ((a⊕ b)) = Ψ 0
n,n+1,W ,W ((a⊕ b))⊕ Ψ 1

n,n+1,W ,W ((a⊕ b)) =
q1−rn ((P0,n+1 ◦ ın,n+1(a))⊕ (P0,n+1 ◦ ın,n+1(b)))

⊕P1,n+1 ◦ ın,n+1(a)⊕ P1,n+1 ◦ ın,n+1(b). (e7.36)

Suppose that a, b ≥ 0. Then, for any t ∈ T (Wn+1),

t(Ψn,n+1,W ,W (a⊕ b)) ≥ (1− rn)t(ın,n+1(a⊕ b)). (e7.37)

Define Ψn,n+1,W ,A : R0,n → M((n+1)!)2 (A(W , αn+1)) by

Ψn,n+1,W ,A(a) = diag(0,

((n+1)!)2−(n!)2  
(ϕR,A,αn+1 ◦ ı

′

W ,n)(a), . . . , (ϕR,A,αn+1 ◦ ı
′

W ,n)(a)).

Now if (a⊕ b)⊕ c ∈ Wn ⊕ A(W , αn) (with a ∈ M(n!)2 (R0,n), b ∈ Dn, and c ∈ A(W , αn), define

Φn,n+1((a⊕ b)⊕ c) = d⊕ c ′,

here

d = ι̃Q
(
Ψn,n+1,A,W (c)⊕ Ψ 0

n,n+1,W ,W (a⊕ b)
)
⊕Ψ 1

n,n+1,W ,W (a⊕ b) ∈ Wn+1

(Ψn,n+1,A,W (c) ∈ R0,n+1 ⊗ (ernQern ),Ψ
0
n,n+1,W ,W (a⊕ b) ∈ R0,n+1 ⊗ (e1−rnQe1−rn ), and Ψ 1

n,n+1,W ,W (a⊕ b)∈Dn+1) and

c ′ = diag(Ψn,n+1,A,A(c),Ψn,n+1,W ,A(a)) ∈ M((n+1)!)2 (A(W , αn+1)).

Since all partial maps of Φn,n+1 take the strictly positive elements to the strictly positive elements in corresponding
corners, Φn,n+1 itself takes strictly positive elements to strictly positive elements. This also implies that Φ∗n,n+1(T (Bn+1)) ⊂
T (Bn). Note also that Φn,n+1 maps full elements to full elements and it is injective.

Define

BT = lim
n→∞

(Bn,Φn,n+1).
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emark 7.3. In the construction above, C∗ algebras A and Q are Z-stable, one can also choose the homomorphism
: A→ Q and j : Q → A to be of the form s′ ⊗ idZ : A⊗ Z → Q ⊗ Z and j′ ⊗ idZ : Q ⊗ Z → A⊗ Z respectively, when
ne identifies A ∼= A ⊗ Z and Q ∼= Q ⊗ Z . Then R(α, 1), A(W , αn), Wn, Bn are all Z-stable. One can also make the map
n,n+1 : Bn ⊗ Z → Bn+1 ⊗ Z to be of form of Φ ′ ⊗ idZ . In such a way, we will have that BT is Z-stable.
By section 4 of [13], one can write A = limn→∞(An, ϕn), where each An = Mk(n)(C(Xn)), where each Xn is a finite CW

omplex with dimension no more than 3. Let s : A→ Q be at the beginning of 7.2. Then, by the proof of 4.7 (and using
.29) of [13], there exists a sequence of Ml(n) ⊂ Q and homomorphisms sn : An → Ml(n) such that, for each fixed m,

lim
n→∞

s ◦ ϕm,∞(a) = lim
n→∞

sn ◦ ϕm,n(a) for all a ∈ Am. (e7.38)

This also follows from the following. Note s∗i(Gi) = 0, i = 0, 1. Since K1(Q ) = {0} and K0(Q ) = Q which is divisible, by
Theorem 3.9 of [23], for each fixed m, there exists a sequence of homomorphisms ψk : Am → Q such that ψk(Am) has
inite dimension and limk→∞ ψk(a) = s ◦ ϕm,∞(a) for all a ∈ Am. Since finite dimensional C∗-algebras are semiprojective,
ne also obtains (e7.38). Then for any finite set F ⊂ A(W , α) and any ε > 0, there is a C∗-algebra of the form

Dn
′
=

{
(f , a) ∈ C([0, 1],Ml(n) ⊗Ml(n))⊕ An : f (0) = sn(a)⊗ diag(1, . . . , 1  

αl(n)

, 0),

f (1) = sn(a)⊗ diag(1, . . . , 1  
l(n)

)
}

uch that F ⊂ε D′n, where αl(n) is an integer. Put Dn = D′n ⊕Wn. Then that Dn is a sub-homogeneous C∗-algebras with
-dimensional spectrum. Moreover, Dn ∈ D2 defined in 4.8 of [20].
Hence BT has the decomposition rank at most three. (In fact, one can prove that BT is an inductive limit sub-

homogeneous C∗-algebras with spectrum having dimension no more than 3, but we do not need this fact.)

Lemma 7.4. Suppose that a ∈ (Wn)+. Then, for any integer k ≥ 1 and any t ∈ T (Wn+k),

t(Ψn,n+k,W ,W (a)) ≥ (1−
k−1∑
j=0

rn+j)t(ın,n+k(a)). (e7.39)

roof. Note τ ◦ Φn+1,n+2 is in T (Wn+1) for all τ ∈ T (Wn+2). Thus this lemma follows from (e7.37) and induction
mmediately. □

emma 7.5. Let n ≥ 1 be an integer. There is a strictly positive element e′0 ∈ Wn with ∥e′0∥ = 1 such that ın,∞(e′0) is a strictly
positive element. Moreover, for any a ∈ (Wn)+ \ {0}, there exist n0 ≥ n, x1, x2, . . . , xm ∈ Wn0 such that

m∑
i=1

x∗i ın,n0 (a)xi = ın,n0 (e
′

0).

Moreover,

t(ın,m(e′0)) ≥ 7/8 for all t ∈ T (Wm) and for all m ≥ n0,

and τ (ın,∞(e′0)) > 15/16 for all τ ∈ T (WT ).

Proof. To simplify the notation, without loss of generality, we may let n = 1. Since WT is simple, pick a strictly positive
element in e′0 ∈ (W1)+ with ∥e′0∥ = 1 so that e′ = ı1,∞(e′0) is a strictly positive in WT . By replacing e′0 by g(e′0) for some
g ∈ C0((0, 1])+ we may assume that

τ (e′0) > 15/16 for all τ ∈ T (WT ).

There is an integer n′0 ≥ 1 such that

t(ı1,n(e′0)) ≥ 7/8 for all n ≥ n′0 and t ∈ T (Wn). (e7.40)

Note that this implies that

t(ı1,n(fη(e′0))) ≥ 3/4 for all n ≥ n0 and t ∈ T (Wn) (e7.41)

whenever 1/16 > η > 0.
Fixed a ∈ (W1)+ \ {0}. Since WT is simple, there exist n0 ≥ n′0 ≥ 1 and x′1, x

′

2, . . . , x
′

m′ ∈ Wn0 such that

∥

m′∑
(x′i)
∗ı1,n0 (a)x

′

i − ı1,n0 (e
′

0)∥ < 1/128. (e7.42)

i=1
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t follows from Lemma 2.2 of [51] that there are y′1, y
′

2, . . . , y
′
m ∈ Wn0 such that

m′∑
i=1

(y′i)
∗ı1,n0 (a)y

′

i = ı1,n0 (fη(e
′

0)) (e7.43)

or some 1/16 > η > 0. By (e7.41), ı1,n0 (fη(e
′

0)) is full in Wn0 . Therefore there are x1, x2, . . . , xm ∈ Wn0 such that
m∑
i=1

x∗i ı1,n0 (a)xi = ı1,n(e′0). □ (e7.44)

Proposition 7.6. BT is a simple C∗-algebra.

Proof. It suffices to show that every element in (BT )+ \ {0} is full in BT . It suffices to show that every non-zero positive
element in ∪∞n=1Φn,∞(Bn) is full. Take b ∈ ∪∞n=1Φn,∞(Bn) with b ≥ 0 and ∥b∥ = 1. To simplify notation , without loss of
generality, we may assume that there is b0 ∈ B1 such that Φ1,∞(b0) = b.

Write b0 = b00 ⊕ b0,1, where b00 ∈ (W1)+ and b0,1 ∈ (A(W , α1))+.
First suppose that b00 ̸= 0.
By applying 7.5, one obtains an integer n0 > 1, x1, x2, . . . , xm ∈ Wn0 such that

m∑
i=1

x∗i (ı1,n0 (b00))xi = ı1,n0 (e
′

0). (e7.45)

Let M = max{∥xi∥ : 1 ≤ i ≤ m}. The above implies that

t(ı1,n0 (b00)) ≥
7

8mM2 for all t ∈ T (Wn0 ). (e7.46)

Let PW ,m : Bm → Wm and PA,m : Bm → M(m!)(A(W , αm)) be the projections (m ≥ 1). Then, by 7.4,

t(PW ,n0 (Φ1,n0 (b00))) ≥ t(Ψ1,n0,W ,W (b00)) (e7.47)

≥ (1−
n0−1∑
j=0

r1+j)t(ı1,n0 (b00)) (e7.48)

≥ (1−
n0−1∑
j=0

r1+j)(
7

8mM2 ) for all t ∈ T (Wn0 ). (e7.49)

t follows that PW ,n0 (Φ1,n0 (b00)) is full in Wn0 . Put b′00 = PW ,n0 (Φ1,n0 (b00)). By applying 7.4 again, one concludes that
W ,n0+1 ◦Φn0,n0+1(b

′

00) is full in Wn0+1.
Since b′00 is full in Wn0 , P0,n0 (b

′

0) is full in R0,n0 = R(αn0 , 1). Since ϕR,A,αn+1 ◦ ı
′

W ,n maps full elements of Rαn0 ,1 to full
lements in A(W , αn0+1), PA,n0+1 ◦Φn0,n0+1(b

′

00) is full in M(n+1)!(A(W , αn0+1)). It follows that Φn0,n0+1(b
′

00) is full in Bn0+1.
Note that what has been proved: for any b′ ∈ (Wn)+ \ {0}, there is m0 ≥ 1 such that Φn,m0 (b

′) is full in Bm0 . Therefore
n,m(b′) is full in Bm for all m ≥ m0.
In particular, this shows that Φn,∞(b00) is full. Therefore b ≥ Φn,∞(b00) is full.
Now consider the case that b00 = 0. Then b1,0 ̸= 0. Since Ψ1,2,A,W is injective, PW ,1(Φ1,2(b1,0)) ̸= 0. Applying what has

een proved, Φ2,∞(PW ,1(Φ1,2(b1,0))) is full in BT . But

Φ1,∞(b1,0) ≥ Φ2,∞(PW ,1(Φ1,2(b1,0))).

his shows that, in all cases, b is full in BT . Therefore BT is simple. □

roposition 7.7. BT ∈ D0 and T (BT ) = T . In particular, BT has continuous scale. Moreover BT is locally approximated by
ub-homogeneous C∗-algebras with spectrum having dimension no more than 3, has finite nuclear dimension, Z-stable and
as stable rank one.

roof. Let us first show that T (BT ) = T . Recall T̃ (A) is the set of all lower semi-continuous traces on A and T (A)
s the set of tracial states on A. In the rest of the proof, for all C∗ algebras A = Bn and A = Wn, we have that
< αn ≤ inf{dτ (a) : τ ∈ T (A)

w
}, and that all traces τ ∈ T̃ (A) are bounded trace.

Note the homomorphisms Φn,n+1 : Bn → Bn+1 and ın,n+1 : Wn → Wn+1 induce maps Φ∗n,n+1 : T̃ (Bn+1)→ T̃ (Bn)
and ı∗n,n+1 : T̃ (Wn+1)→ T̃ (Wn). From the construction above, (see also [25]), since Φn,n+1 and ın,n+1 map strictly positive
elements to strictly positive elements,Φ∗n,n+1 and ı∗n,n+1 take tracial states to tracial states. That is,Φ∗n,n+1 : T (Bn+1) ⊂ T (Bn)
and ı∗n,n+1 : T (Wn+1) ⊂ T (Wn). Consequently for any τ ∈ T̃ (Bn+1) (or τ ∈ T̃ (Wn+1)), we have ∥Φ∗n,n+1(τ )∥ = ∥τ∥ (or
∥ı∗ (τ )∥ = ∥τ∥).
n,n+1
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Hence we have the following inverse limit systems of compact convex spaces:

T (B1)
w

T (B2)
wΦ∗1,2←← T (B3)

wΦ∗2,3←← · · · · · ·←← lim
←

T (Bn)
w
,←←

T (W1)
w

T (W2)
wı∗1,2←← T (W3)

wı∗2,3←← · · · · · ·←← lim
←

T (Wn)
w
.←←

Here we write that

lim
←

T (Bn)
w
= {(τ1, τ2, . . . , τn, . . .) ∈ ΠnT (Bn)

w
: Φ∗n,m(τm) = τn},

which is a subspace of the product space ΠnT (Bn)
w
with product topology. On the other hand, since all the map Φ∗n,m are

ffine map, lim← T (Bn)
w
has a natural affine structure defined by

t(τ1, τ2, . . . , τn, . . .)+ (1− t)(τ ′1, τ
′

2, . . . , τ
′

n, . . .) = (tτ1 + (1− t)τ ′1, τ2 + (1− t)τ ′2, . . . , τn + (1− t)τ ′n),

or any (τ1, τ2, . . . , τn, . . .), (τ ′1, τ
′

2, . . . , τ
′
n, . . .) ∈ lim← T (Bn)

w
and t ∈ (0, 1).

Note that each element in lim← T (Bn)
w

is given by (τ1, τ2, . . . τn, . . . , ) with Φ∗n,m(τm) = τn, for m > n. This element
decides a unique element τ ∈ T̃ (B) defined by τ |Bn= τn. However, since ∥τn∥ ≥ αn and limn αn = 1, τ ∈ T (BT ). On the
other hand, each element τ ∈ T (BT ) defines a sequence {τn = τ |Bn∈ T̃ (Bn)}n. Since ∪nBn is dense in B, ∥τ∥ = limn→∞ ∥τn∥.
rom ∥Φ∗n,n+1(τ

′)∥ = ∥τ ′∥ for any τ ′ ∈ T̃ (Bn+1), we know that ∥τn∥ = ∥τn+1∥. Consequently ∥τn∥ = ∥τ∥ = 1 for all n.
Hence τn ∈ T (Bn) ⊂ T (Bn)

w
. Consequently, T (BT ) = lim← T (Bn)

w
. Similarly, T (WT ) = lim← T (Wn)

w
. (Note that the

ap T (BT ) → T (Bn)
w

from the reverse limit is the same as Φ∗n,∞ : T (BT ) → T (Bn)
w
, the restrict map. That is, τ ∈ T (BT )

corresponds to the sequence

(Φ∗1,∞(τ ),Φ∗2,∞(τ ), . . . ,Φ∗n,∞(τ ), . . . , ) = (τ |B1 , τ |B2 , . . . , τ |Bn , . . .).

In other words, the homeomorphism between T (BT ) and lim← T (Bn)
w
also preserve the convex structure.)

Similarly, we also have the following inverse limit systems of the topological cones:

T̃ (B1) T̃ (B2)
Φ∗1,2←← T̃ (B3)

Φ∗2,3←← · · · · · ·←← T̃ (BT ) ,←←

T̃ (W1) T̃ (W2)
ı∗1,2←← T̃ (W3)

ı∗2,3←← · · · · · ·←← T̃ (WT ) .←←

(Again, the reverse limit is taking in the category of topological space in weak* topology, but it automatically preserves
cone structure)

Let πn : Bn = Wn ⊕M(n!)2 (A(W , αn))→ Wn be the projection and let Φ̃n,n+1 = Φn,n+1|Wn , then we have the following
not commutative) diagram:

B1
Φ1,2 →→

π1

↓↓

B2
Φ2,3 →→

π2

↓↓

B3
Φ3,4 →→

π3

↓↓
W1

ı1,2 →→

Φ̃1,2
↗↗

W2
ı2,3 →→

Φ̃2,3

↗↗

W3
ı3,4 →→ .

Even though the diagram is not commutative, from the construction, it induces an approximate commuting diagram

T̃ (B1) T̃ (B2)
Φ∗1,2←←

Φ̃∗1,2

↙↙

T̃ (B3)
Φ∗2,3←←

Φ̃∗2,3

↙↙

· · · · · ·←← T̃ (BT )←←

T̃ (W1)

π∗1

↑↑

T̃ (W2)
ı∗1,2←←

π∗2

↑↑

T̃ (W3)
ı∗2,3←←

π∗3

↑↑

· · · · · ·←← T̃ (WT ) .←←

That is

|
(
Φ̃∗n,n+1(π

∗

n+1(τ ))
)
(g)−

(
ı∗n,n+1(τ )

)
(g)| ≤ k(n)rn∥g∥∥τ∥ for all g ∈ Wn, τ ∈ T̃ (Wn+1); and

|
(
π∗n (Φ̃

∗

n,n+1(τ ))
)
(f )−

(
Φ∗n,n+1(τ )

)
(f )| ≤

( 1
(n+ 1)2

+ k(n)rn
)
∥f ∥∥τ∥ for all f ∈ Bn, τ ∈ T̃ (Bn+1).

(Note that k(n)r = 1 .)
n 2n+1
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Note that from the above, for τn+1 ∈ T̃ (Wn+1) if τn = ı∗n,n+1(τn+1), then

∥π∗n+1(τn+1)∥ ≥ (1−
1

2n+1 )∥τn∥ (e7.50)

o, we have the following fact:
f (τ1, τ2, . . . , τn, . . . , ) ∈ ΠnT̃ (Wn+1) satisfies τn = ı∗n,n+1(τn+1), then

lim
n→∞
∥τn∥ = lim

n→∞
∥π∗n (τn)∥.

The approximate intertwining induces an affine homeomorphisms Π : T̃ (WT )→ T̃ (BT ) as follows.
For each τ ∈ T̃ (WT ), for fixed n, we define a sequence of {σn,m}m>n ⊂ T̃ (Bn) by

σn,m =
(
Φ∗n,m ◦ π

∗

m ◦ ı
∗

m,∞

)
(τ ) ∈ T̃ (Bn).

Recall that each element in T̃ (Bn) is a bounded trace, whence it is a positive linear functional of Bn. From the above
inequalities for approximately commuting diagram, one concludes that {σn,m}m>n is a Cauchy sequence (in norm) in the
dual space of Bn.

For each n, let τn = limm→∞ σn,m. Evidently, from the inductive system above, Φ̃∗n,n+1(τn+1) = τn. Hence the sequence
(τ1, τ2, . . . , τn, . . .) determines an element τ ′ ∈ T̃ (BT ). Let Π(τ ) = τ ′. From (e7.50) and the above mentioned fact, we
now that Π preserves the norm and Π maps T (WT ) to T (BT ) Moreover, it is clear that Π is also an affine map on T (WT ).
We can define Π ′ : T̃ (BT )→ T̃ (WT ) in exactly same way by replacing Φ∗n,m by ı∗n,m, replacing π

∗
m by Φ̃∗m,m+1, and ı∗m,∞

y Φ∗m+1,∞.
We now show that both Π and Π ′ are continuous on T (WT ) and T (BT ), respectively. Let {sλ} ⊂ T (WT ) be a net

hich converges to s ∈ T (WT ) point-wisely on WT . Write sλ = (sλ,1, sλ,2, . . . , sλ,n, . . .) and s = (s1, s2, . . . , sn, . . .). Since
λ,n = ı∗n,n+1(sλ,n+1) and sn = ı∗n,n+1(sn+1), for each n, sλ,n converges to sn on Wn. Write Π(sλ) = (τλ,1, τλ,2, . . . , τλ,n, . . .)
nd Π (s) = (τ1, τ2, . . . , τn, . . .). Then, by the definition,

τλ,n = lim
m→∞

σλ,n,m = lim
m→∞

(
Φ∗n,m ◦ π

∗

m ◦ ı
∗

m,∞

)
(sλ) (e7.51)

= lim
m→∞

(
Φ∗n,m ◦ π

∗

m

)
(sλ,m) and (e7.52)

τn = lim
m→∞

σn,m = lim
m→∞

(
Φ∗n,m ◦ π

∗

m ◦ ı
∗

m,∞

)
(s) (e7.53)

= lim
m→∞

(
Φ∗n,m ◦ π

∗

m

)
(sm). (e7.54)

For b ∈ Bn and m > n,(
Φ∗n,m ◦ π

∗

m

)
(sλ,m)(b) = sλ,m(πm ◦Φn,m(b)) and (e7.55)(

Φ∗n,m ◦ π
∗

m

)
(sm)(b) = sm(πm ◦Φn,m(b)). (e7.56)

et ε > 0 and let F ⊂ Bn be a finite subset. We may assume that F is in the unit ball of Bn.
There exists m0 ≥ 1 such that, for all m ≥ m0,

|sλ,n(πm ◦Φn,m(b))− τλ,n(b)| < ε/3 and (e7.57)

|sn(πm ◦Φn,m(b))− τn(b)| < ε/3 (e7.58)

or all b in the unit ball of Bn.
Since sλ,n → sn on Bn point-wisely, There exists λ0 such that, for all λ > λ0,

|sλ,n(πm0 ◦Φn,m0 (b))− sn(πm0 ◦Φn,m0 (b))| < ε/3 (e7.59)

or all b ∈ F . It follows that, when λ > λ0, for all b ∈ F ,

|τλ,n(b)− τn(b)| ≤ |τλ,n(b)− sλ,n(πm0 ◦Φn,m0 (b))| (e7.60)

+ |sλ,n(πm0 ◦Φn,m0 (b))− sn(πm0 ◦Φn,m0 (b))| (e7.61)

+ |sn(πm0 ◦Φn,m0 (b))− τn(b)| < ε/3+ ε/3+ ε/3 = ε. (e7.62)

his verifies that Π(sλ) converges to Π(s) on Bn for each n. Since ∪n=1Bn is dense in BT , it is easy to see that Π(sλ)
onverges to Π(s) point-wisely. It follows that Π is weak*-continuous on T (WT ). A similar argument verifies that Π ′ is
eak*-continuous on T (BT ). From the definition, one can also verify that Π and Π ′ are inverse each other. Consequently,
hey induce the homeomorphism between T (WT ) and T (BT ). Hence T (BT ) = T (WT ) = T .

From Remark 7.3, we know that BT is locally approximated by sub-homogeneous C∗-algebras with spectrum having
imension no more than 3, has finite nuclear dimension and Z-stable. It follows from a theorem of Rørdam (see 3.5
f [15]) that BT has strictly comparison for positive elements. Since T is compact, it follows from 5.3 of [15] that BT has
ontinuous scale.
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It remains to show that BT ∈ D0. Since BT has continuous scale, to prove BT ∈ D0. let a ∈ A+ be a strictly positive
element with ∥a∥ = 1. Without loss of generality, we may assume that τ (f1/2(a)) ≥ 15/16 for all τ ∈ T (BT ). We choose a
such that a = (aa, aw) ∈ B1 = A(W , α1)⊕W1 such that

t(aw) > 3/4, t(f1/2(aw)) > 3/4 for all t ∈ T (W1). (e7.63)

hoose fa = 5/16. Let b ∈ A+ \ {0} and let F ⊂ BT be a finite set and ε > 0. Let δ > 0. With out lose of generality, we
may assume F ∪ {a, b} ⊂ Bn for n large enough, and let Λ : BT → Bn be a completely positive contractive linear map such
that

∥Λ(b)− b∥ < min{ε/2, δ} for all b ∈ F . (e7.64)

We choose δ so small that

∥f1/2(Λ(a))−Λ(f1/2(a))∥ < 1/16 and ∥f1/2(Λ(a))−Λ(f1/2(a))∥ < 1/16. (e7.65)

Let PA : Bn → M(n!)2 (A(W , αn)) and PW : Bn → Wn be the canonical projections. We choose n ≥ 1 such that

1
(n+ 1)2

< inf{τ (b) : τ ∈ T (BT )}/2. (e7.66)

We will choose the algebra D ∈ C0
0 to be D = Ψn,n+1,W ,A(Wn) ⊕ Wn+1 and the map ϕ : BT → BT and ψ : BT → D be

efined by

ϕ = Φn+1,∞ ◦ Ψn,n+1,A,A ◦ PA ◦Λ and

ψ = Ψn,n+1,W ,A ◦ PW ◦Λ⊕ diag(Ψn,n+1,A,W ◦ PA ◦Λ,Ψn,n+1,W ,W ◦ PW ◦Λ).
ut

ψ ′ = Ψn,n+1,W ,A ◦ PW ⊕ diag(Ψn,n+1,A,W ◦ PA,Ψn,n+1,W ,W ◦ PW ) (e7.67)

from Bn to D. Since Ψn,n+1,W ,A is injective on Wn, D ∈ C0
0 . Since Φn,∞ is injective, we will identify D with Φn,∞(D). With

his identification, we have

∥x− diag(ϕ(x), ψ(x))∥ < ε for all x ∈ F . (e7.68)

t follows from 7.4 that

PW (Φ1,n(f1/2(a))) ≥ Φ1,n(aW ) and (e7.69)

t(PW (Φ1.n(f1/2(a)))) ≥ t(Φ1,n(f 1/2(aW ))) ≥ (1−
n−1∑
j=0

r1+j)t(ı1,n(f1/2(aW ))) (e7.70)

or all t ∈ T (Wn). Since t ◦ ı1,n is a tracial state on W1 as proved above, by (e7.63),

t(PW (Φ1,n(f1/2(a)))) ≥ (1/2)(3/4) = 3/8 for all t ∈ T (Wn). (e7.71)

ince Ψn,n+1,W ,A sends strictly positive elements of Wn to those of Ψn,n+1,W ,A(Wn), any t ′ ∈ T (Ψn,n+1,W ,A(Wn)) gives a tracial
tate of Wn, therefore

t ′(Ψn,n+1,W ,A(PW (Φ1,n(f1/2(a))))) ≥ 3/8 for all τ ′ ∈ T (Ψn,n+1,W ,A(Wn)). (e7.72)

or any t ∈ T (Wn+1), by applying (e7.63) again,

t(Ψn,n+1,W ,W (PW (f ))) ≥ (1−
n∑

j=0

r1+j)t(ı1,n+1(f1/2(aW ))) ≥ (1/2)(3/8) = 3/8. (e7.73)

ombining (e7.72) and (e7.73), we have that

t(ψ ′(Φ1,n(f1/2(a)))) ≥ t(ψ ′(PW (Φ1,n(f1/2(a))))) ≥ 3/8 for all t ∈ T (D). (e7.74)

t follows that, for all t ∈ T (D),

t(f1/2(ψ(a))) ≥ t(ψ ′(Φ1,n(f1/2(a)))) ≥ t(ψ ′(PW (Φ1,n(f1/2(a)))))− 1/16 ≥ 5/16 = fa. (e7.75)

n the other hand, from the construction, for any c ∈ Ψn,n+1,A,A(M(n!)2 (A(W , αn)))+ with ∥c∥ ≤ 1,

τ (c) ≤
1

(n+ 1)2
for all τ ∈ T (M((n+1)!)2 (A(W , αn+1))). (e7.76)

herefore, for any integer m ≥ 1,

τ (ϕ(a)1/m) <
1

for all τ ∈ T (BT ). (e7.77)

(n+ 1)2
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onsequently, by (e7.66),

dτ (ϕ(a)) ≤
1

(n+ 1)2
< inf{dτ (b) : τ ∈ T (BT )} (e7.78)

ince we have proved that BT has strict comparison for positive elements, (e7.78) implies that

ϕ(a) ≲ b. (e7.79)

t follows from 3.9, (e7.68), (e7.79) and (e7.75) that BT ∈ D0. Since BT ∈ D0, it follows from 11.5 of [15] that BT has stable
ank one. This completes the proof of this proposition. □

roposition 7.8. K0(BT ) = ker ρBT = G0 and K1(BT ) = G1.

roof. Let I = C0
(
(0, 1),Q ⊗ Q

)
be the canonical ideal of A(W , αn). Then the short exact sequence

0→ I → A(W , αn)→ A→ 0

nduces six term exact sequence

K0(I) →→ K0(A(W , αn)) →→ K0(A)

∂

↓↓
K1(A)

↑↑

K1(A(W , αn))←← K1(I).←←

Note that K0(I) = {0} and K1(I) = K0(Q ) = Q. Moreover, K0(A) = Q⊕ G0 and K1(A) = G1. The map ∂ : K0(A)→ K1(I) ∼=
0(Q ⊗ Q ) is given by ∂ = (1 − αn)s∗0 (defined by ∂(x) = (1 − αn)s∗0(x) ∈ Q for all x ∈ K0(A)) as the difference of
wo induced homomorphisms at the end points (recall that s∗0(r, g) = r for all (r, g) ∈ Q ⊕ G0, see the beginning of
.2). Then one checks (1− αn)s∗0 is surjective as K1(I) = Q. From the six-term exact sequence above, one computes that
0(A(W , αn)) = ker ∂ = ker s∗0 = G0 = ker ρA and K1(A(W , αn)) ∼= K1(A) = G1. We also note that ∂ gives an isomorphism
n Q. Recall Bn = Wn ⊕M(n!)2 (A(W , αn)). Since K∗(W ) = {0}, one has

K0(Bn) = ker ρBn = ker ρM(n!)2 (A(W ,αn))
= ker ρA = G0, and (e7.80)

K1(Bn) = K1(M(n!)2 (A(W , αn))) = K1(A) = G1. (e7.81)

enceΦn,n+1,∗ : K∗(Bn)→ K∗(Bn+1) is completely decided by its partial mapΦ ′ : M(n!)2 (A(W , αn))→ M((n+1)!)2 (A(W , αn+1)).
lso this partial map sends (f , a) ∈ M(n!)2 (A(W , αn)) to (g, diag(a, 0, . . . , 0)) ∈ M((n+1)!)2 (A(W , αn+1)), where g =

Pf (ΦAw ,αn,αn+1 ((f , a))) is as in Definition 7.2. Therefore Φ ′ maps M(n!)2 (I) to M((n+1)!)2 (I) and it induces a homomorphism
Φ ′′ : M(n!)2 (A) → M((n+1)!)2 (A) which is given by a ↦→ diag(a, 0, . . . , 0) for all a ∈ M(n!)2 (A). The latter map induces the
identity map id on Ki(A), i = 0, 1. Thus we have the following commutative diagram:

0 →→

↘↘

K0(A(W , αn)) →→

Φ′
∗0
↓↓

G0 ⊕ Q
id

↙↙

∂

↓↓

0 →→ K0(A(W , αn+1)) →→ G0 ⊕ Q

∂

↓↓
G1

↑↑

K1(A(W , αn+1))←← Q0←←

G1

↑↑

id

↗↗

K1(A(W , αn))

Φ′
∗1

↑↑

∼=←← Q .0←←
id

↖↖

This commutative diagram shows that Φ ′
∗0 is the identity map on G0 and Φ ′

∗1 is the identity map on G1. Since Ki(W ) = {0},
his shows that (Φn,n+1)i : Ki(Bn) → Ki(Bn+1) (i = 0, 1) is the identity map for each n. It follows that K0(BT ) = G0 and
K1(BT ) = G1. □

Lemma 7.9. Let G0 be a torsion free abelian group and let A be the unital AF algebra with

(K0(A), K0(A)+, [1A]) =
(
Q⊕ G0, (Q⊕ G0)+, (1, 0)

)
,

where (Q⊕ G0)+ = {(r, g) : r ∈ Q+ \ {0}, g ∈ G0} ∪ {(0, 0)}. Let γ : K0(A)→ K0(Q ) be given by sending (r, x) ∈ Q⊕ G0 to
r ∈ Q = K (Q ). Then one can write AF inductive limits A = lim (A , ϕ ) with injective ϕ and Q = lim (M (C), ψ )
0 n n n,m n,m n l(n) n,m
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uch that there are injective homomorphisms sn : An → Ml(n)(C) satisfying the following conditions:
(1) (sn)∗ : K0(An)→ K0(Ml(n)(C)) is surjective;
(2) sn+1 ◦ ϕn,n+1 = ψn,n+1 ◦ sn and the commutative diagram

A1
ϕ1,2 →→

s1
↓↓

A2
ϕ2,3 →→

s2
↓↓

A3
ϕ3,4 →→

s3
↓↓

· · · · · · A

Ml(1)
ψ1,2 →→ Ml(2)

ψ2,3 →→ Ml(3)
ψ3,4 →→ · · · · · · Q

nduces s : A→ Q satisfy s∗ = γ .

roof. By the classification theory of AF algebras due to Elliott, there is a one-sided intertwining

F1
ϕ′1,2 →→

α1

↓↓

F2
ϕ′2,3 →→

α2

↓↓

F3
ϕ′3,4 →→

α3

↓↓

· · · · · · A

Mm(1)

ψ ′1,2 →→ Mm(2)

ψ ′2,3 →→ Mm(3)

ψ ′3,4 →→ · · · · · · Q ,

hich induces a homomorphism α : A → Q with α∗ = γ , where Fn are finite dimensional C∗-algebras, all
homomorphisms αn, ϕ′n,n+1 and ψ ′n,n+1 are unital and injective. We need to modify the diagram to make the condition (1)
holds.

We will define subsequence Fkn and for each n construct a matrix algebra Ml(n), unital injective homomorphisms
sn : Fkn → Ml(n), ξn : Ml(n) → Mm(kn) and βn−1 : Mm(kn−1) → Ml(n) (if n > 1) to satisfy the following conditions:

(i): (sn)∗ : K0(Fkn )→ K0(Ml(n)) is surjective;
(ii): ξn ◦ sn = αkn and βn−1 ◦ αkn−1 = sn ◦ ϕ′kn−1,kn .
Let k1 = 1. By identifying K0(Mm(k1)) with Z, there is a positive integer j|m(k1) such that (αk1 )∗(K0(Fk1 )) = j · Z. Let

l(1) = m(k1)
j . Choose a homomorphism s1 : Fk1 → Ml(1) to satisfy that (s1)∗ =

(αk1 )∗
j : K0(Fk1 ) → K0(Ml(1)) = Z (which

s surjective). Note that for any finite dimensional C∗ algebra F and a matrix algebra Mk, a homomorphism β : F → Mk
s injective if and only if β∗(K0(F )+ \ {0}) ⊂ K0(Mk)+ \ {0}. Hence the injectivity of αk1 implies the injectivity of s1.
et ξ ′1 : Ml(n) → Mm(kn) be any unital embedding. Then (ξ ′1 ◦ s1)∗ = (αk1 )∗. There is a unitary u ∈ Mm(k1) such that
Adu ◦ ξ ′1 ◦ s1 = αk1 . Define ξ1 = Adu ◦ ξ ′1 to finish the initial step n = 1 for the induction.

Suppose that we have already carried out the construction until step n. There is a kn+1 such that

(ψ ′kn,kn+1 )∗(K0(Mm(kn))) ⊂ (αkn+1 )∗(K0(Fkn+1 )) ⊂ K0(Mm(kn+1)).

Again, there is a positive integer j|m(kn+1) such that

(αkn+1 )∗(K0(Fkn+1 )) = j · Z ⊂ Z(= K0(Mm(kn+1))).

Let l(n + 1) = m(kn+1)
j . As what we have done in the case for kn = k1, there are two injective unital homomorphisms

n+1 : Fkn+1 → Ml(n+1) and ξn+1 : Ml(n+1) → Mm(kn+1) such that ξn+1 ◦ sn+1 = αkn+1 . Note that ξn+1 has to be injective as
l(n+1) is simple. Since the map (ψ ′kn,kn+1 )∗ : K0(Mm(kn)) → K0(Mm(kn+1)) factors through K0(Ml(n+1)) by (ξn+1)∗, one can

ind a homomorphism β ′n : Mm(kn) → Ml(n+1) such that (ξn+1)∗ ◦ (β ′n)∗ = (ψ ′kn,kn+1 )∗. Since (ξn+1)∗ is injective, we know
hat (β ′n ◦αkn )∗ = (sn+1 ◦ϕ′kn,kn+1 )∗. Hence we can choose a unitary u ∈ Ml(n+1) such that Adu ◦β ′n ◦αkn = sn+1 ◦ϕ′kn,kn+1 . In
articular, β ′n is injective. Choose βn = Adu ◦β ′n, we conclude that the inductive construction of Fkn , Ml(n), sn : Fkn → Ml(n),
ξn : Ml(n) → Mm(kn) and βn−1 : Mm(kn−1) → Ml(n) to satisfy (i) and (ii) for all n. (Warning: we do not require that
ξn ◦ βn−1 = ψ

′

kn−1,kn
.)

Finally, let An = Fkn , ϕn,n+1 = ϕ′kn,kn+1 and ψn,n+1 : Ml(n) → Ml(n+1) be defined by ψn,n+1 = βn ◦ ξn. Therefore both
n,n+1 and ψn,n+1 are injective. Then

sn+1 ◦ ϕn,n+1 = βn ◦ αkn = βn ◦ ξn ◦ sn = ψn,n+1 ◦ sn.

ince m(kn)|l(n+ 1), we have lim(Ml(n), ψn,m) = Q . □

Lemma 7.10. Let G0 be torsion free and A be the AF algebra as in 7.9 with K0(A) = Q ⊕ G0. Let a be a positive integer
and α = a

a+1 . Let A(W , α) be defined in 7.2. Then A(W , α) is an inductive limit of a sequence of C∗-algebras Cn ∈ C0 with
s(CN ) = α and with injective connecting maps.
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roof. Let s : A→ Q be as in 7.9. By Lemma 7.1, A(W , α) is isomorphic to the C∗-subalgebra of C([0, 1],Q ⊗Ma+1)⊕ A
defined by

C =
{
(f , x) ∈ C([0, 1],Q ⊗Ma+1)⊕ A : f (0) = s(x)⊗ diag(

a  
1, . . . , 1, 0),

f (1) = s(x)⊗ diag(1, . . . , 1  
a

, 1)
}
.

et A = limn(An, ϕn,m) with injective ϕn,m, Q = limn(Ml(n)(C), ψn,m), and sn : An → Ml(n)(C) be described as in 7.9.
vidently C is an inductive limit of

Cn =
{
(f , x) ∈ C([0, 1],Ml(n)(C)⊗Ma+1)⊕ An :

f (0) = sn(x)⊗ diag(

a  
1, . . . , 1, 0),

f (1) = sn(x)⊗ diag(1, . . . , 1  
a

, 1)
}
,

ith connecting homomorphism Φn,n+1 : Cn → Cn+1 given by

Φn,n+1(f , x) = (g, y) for (f , x) ∈ Cn,

here g(t) = (ψn,n+1 ⊗ ida+1)(f (t)) and y = ϕn,n+1(x). Since both ϕn,n+1 and ψn,n+1 are injective, so is Φn,n+1. The short
xact sequence

0→ C0
(
(0, 1),Ml(n)(C)⊗Ma+1

)
→ Cn → An → 0

nduces the six term exact sequence of K-theory. Since (sn)∗0 : K0(An)→ K0(Ml(n)(C)) is surjective, exactly as the beginning
f proof of Proposition 7.8, we have K0(Cn) = ker ((sn)∗0) ⊂ K0(An) and K1(Cn) = 0. From a standard calculation (see section
of [20]), we know that K0(Cn)+ = ker(sn)∗0 ∩K0(An)+. On the other hand, since sn is injective, ker (sn)∗0 ∩K0(An)+ = {0}.

n fact, if x ∈ ker (sn)∗0 ∩ K0(An)+ \ {0}, then there exists a projection p ∈ Mr (An) such that [p] = x. However, since sn is
njective, sn(p) = q is a non-zero projection in Mr (Ml(n)) which is a non-zero element in K0(Ml(n)), whence x ̸∈ ker((sn)∗0).
his proves that K0(Cn)+ = {0}. Thus Cn ∈ C0. Since sn are unital, from the very definition (see Definition 3.5), we have
s(Cn) = α. □

Summarize the above, we obtain the following main theorem of this section:

heorem 7.11. Let G0, G1 be any countable abelian groups and T be any compact metrizable Choquet simplex, then there is
simple C∗-algebra B ∈ D0 with continuous scale such that K0(B) = ker(ρB) = G0, K1(B) = G1 and T (B) = T .
Furthermore, if, in addition, G0 is torsion free and G1 = 0, then B = limn→∞(Cn, ın) with each Cn ∈ C0, and ın map strictly

positive elements to strictly positive elements. Moreover, B is locally approximated by C∗-algebras in C0.

Proof. We only need to prove the additional part. But in this case, by Lemma 7.10, we know all Bn in the construction of
inductive limit of B in 7.2 are inductive limits of C∗-algebras in C0 with injective connecting maps. Therefore B is locally
approximated by C∗-algebras in C0 and B ∈ D. Since the C∗-algebras in C0 are semi-projective, B itself is an inductive limit
of C∗-algebras in C0. □

Corollary 7.12. Let G0, G1 be any countable abelian groups. Let T̃ be a topological cone with a base T which is a metrizable
Choquet simplex and let γ : T → (0,∞] be a lower semi-continuous function and γ̃ : T̃ → [0,∞] be the extension of γ
defined by γ̃ (sτ ) = sγ (τ ) for any s ∈ R+ and τ ∈ T . Then there exist a non-unital simple C∗-algebra A, which is stably
isomorphic to a C∗-algebra with the form BT (in 7.7) which is in D0 such that

(K0(A), K1(A), T̃ (A),ΣA, ρA) ∼= (G0,G1, T̃ , γ̃ , 0)

(Note that ρA = 0 is equivalent to K0(A) = ker(ρA).)

Proof. Let B be the C∗-algebra in 7.11 with K0(B) = ker(ρB) = G0, K1(B) = G1 and T (B) = T . There is a positive element
see 6.2.1 of [49], for example) a ∈ B⊗K such that dτ (a) = γ (τ ) for all τ ∈ T = T (B). Let A = a(B⊗ K)a. Then A is stably
isomorphic to B ∈ D0 and

(K0(A), K1(A), T̃ (A),ΣA, ρA) ∼= (G0,G1, T̃ , γ̃ , 0). □

Remark 7.13. We would like to recall the following facts:
Let A be a separable C∗-algebra with T (A) ̸= ∅ and Ped(A) = A. Then T (A) forms a base for the cone T̃ (A). It follows from

3.3 of [43] and 3.1 of [44] that T̃ (A) forms a vector lattice. Therefore, if T (A) is compact, then T (A) is always a metrizable
Choquet simplex.

Definition 7.14. In what follows we will use BT for the class of C∗-algebras with the form BT . Note that if A ∈ BT then A
is Z-stable with weakly unperforated K0(A) (see 5.5).
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. C∗-algebras Z0 and class D0

efinition 8.1. Let Z0 = BT be as constructed in the previous section with G0 = Z and G1 = {0} and with unique tracial
state. Note also Z0 is Z-stable.

From Theorem 7.11 and Corollary 7.12, we have the following fact.

Proposition 8.2. Z0 is locally approximated by C∗-algebras in C0. In fact that Z0 = limn→∞(Cn, ın), where each Cn ∈ C0, ın
aps strictly positive elements to strictly positive elements.

(See 15.7 for the uniqueness of Z0.)

emma 8.3. Let A be a separable exact simple C∗-algebra with continuous scale. Then A⊗ Z0 also has continuous scale and
⊗ Z0 is Z-stable.

roof. Since Z0 is Z-stable, so is A ⊗ Z0. Therefore, by [52], A ⊗ Z0 is purely infinite or is stably finite. Since every
eparable purely infinite simple C∗-algebra has continuous scale [28], we assume that A⊗Z0 is stably finite. In particular,
(A⊗Z0) ̸= ∅. Since Z is unital, it is easy to see that A⊗Z has continuous scale. It follows that T (A) is compact. Since Z0
as a unique tracial state, T (A⊗ Z0) is also compact. The lemma follows if we also assume that A is exact by 5.3 of [15].
owever, the proof 5.3 of [15] also shows that T (A⊗ Z0) is compact.
For general cases, let B = A ⊗ Z . We may write A ⊗ Z0 = B ⊗ Z0. We also note that B has strict comparison (by

heorem 4.5 of [52]).
Let {en} be an approximate identity for B such that en+1en = enen+1 = en, n = 1, 2, . . . Let {bn} be an approximate

dentity for Z0 such that bn+1bn = bnbn+1 = bn, n = 1, 2, . . .. It follows that cn = en ⊗ bn is an approximate identity for
B⊗ Z0 such that

cn+1cn = (en+1en)⊗ (bn+1bn) = en ⊗ bn = cn, n = 1, 2, . . . . (e8.1)

Fix any d ∈ B⊗ Z0. Put

σ = inf{dτ (d) : τ ∈ T (B⊗ Z0)} > 0. (e8.2)

Since B has continuous scale, there exists an integer n0 ≥ 1 such that

τ (en − em) < σ/4 for all τ ∈ T (B) (e8.3)

when n > m ≥ n0. Let tZ be the unique tracial state of Z0. There is n1 ≥ 1 such that

tZ (bn − bm) < σ/4 for all n > m ≥ n1. (e8.4)

We have, for n > m ≥ n0 + n1,

cn − cm = en ⊗ bn − em ⊗ bm = (en − em)⊗ bn + (em ⊗ bn − em ⊗ bm) (e8.5)
= (en − em)⊗ bn + (em ⊗ (bn − bm)) (e8.6)

Therefore, for n > m ≥ n0 + n1,

(τ ⊗ tZ )(cn − cm) < σ/2 for all τ ∈ T (B). (e8.7)

By the strict comparison for positive element, the above inequality implies that cn − cm ≲ d. It follows that A ⊗ Z0 has
continuous scale. □

Now we are ready to state the following theorem which is a variation of 7.12:

Theorem 8.4. For any separable finite simple amenable C∗-algebra A, there is a C∗-algebra B which is stably isomorphic to a
C∗-algebra of the form BT in D0 such that Ell(B) ∼= Ell(A⊗ Z0)

Proof. Note that, by 6.2.3 of [49] (see also 7.3 of [15]), one may write

Cu∼(Z0) = Z ⊔ LAff∼
+
(T̃ (Z0)) and Cu∼(W) = LAff∼

+
(T̃ (W)). (e8.8)

Since both Z0 and W are monotracial, LAff∼
+
(T̃ (Z0)) = LAff∼

+
(T̃ (W)). Since K0(Z0) = kerρZ0

, one has an ordered semi-
group homomorphism Λ : Z⊔ LAff∼

+
(T̃ (Z0))→ LAff∼

+
(T̃ (W)) which maps Z to zero and identity on LAff∼

+
(T̃ (Z0)) = R∼

+
. In

particular, Λ maps 1 to 1. It follows from 8.2 and [49] that there is a homomorphism ϕz,w : Z0 → W which maps strictly
positive elements to strictly positive elements. Let tZ and tW be the unique tracial states of Z0 and W , respectively. Then
t ◦ ϕ = t , since Z has only one tracial state.
W z,w Z 0
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Since Z ⊗ Z0 ∼= Z0, without loss of generality, we may assume that A is Z-stable. Let a ∈ Ped(A)+ be such that aAa
as continuous scale (see 5.2 of [15]). Put B = aAa⊗Z0. It is easy to verify that B is a hereditary C∗-subalgebra of A⊗Z0.
very tracial state of B has the form τ ⊗ tZ , where τ ∈ T (aAa). Fix τ ∈ T (aAa), then

(τ ⊗ tz)(a⊗ z) = τ (a)tZ (z) = τ (a)(tW ◦ ϕz,w(z)) for all a ∈ A and z ∈ Z0. (e8.9)

Let ψ = idA ⊗ ϕz,w : A ⊗ Z0 → A ⊗W and let s = τ ⊗ tz ∈ T (B). Then, by (e8.9), s = (τ ⊗ tW ) ◦ ψ . Since W satisfies
he UCT, by the Künneth formula [54], Ki(aAa⊗W) = 0, i = 0, 1. Therefore, for any x ∈ K0(B), s(x) = 0. This implies that
ker ρB = K0(B). Since A is separable, simple and B is a hereditary C∗-subalgebra of A⊗ Z0, by [4], (A⊗ Z0)⊗ K ∼= B⊗ K.
t follows that K0(A⊗ Z0) = ker ρA⊗Z0 .

Note that (see 7.13) T (B) is a metrizable Choquet simplex. By 7.12, there is a C∗-algebra C which is stably isomorphic
o a C∗-algebra of the form BT in D0 such that Ell(C) ∼= Ell(A⊗ Z0). □

Theorem 8.5. Let A be a separable C∗-algebra which is stably isomorphic to a C∗-algebra in D0. Then K0(A) = ker ρA.

Proof. Without loss of generality, we may assume that A ∈ D0. By 12.3 of [15], it suffices to show that every tracial state
of A is a W-trace. By 12.2 of [15], it suffices to produce a sequence of completely positive contractive linear maps {ϕn}
from A into Dn ∈ C0′

0 such that

lim
n→∞
∥ϕn(ab)− ϕn(a)ϕn(b)∥ = 0 for all a, b ∈ A and

τ (a) = lim
n→∞

tn(ϕn(a)) for all a ∈ A, (e8.10)

where tn ∈ T (Dn).
This, of course, follows directly from the definition of D0. In fact, in the proof of 9.1 of [15] ϕ1,n would work (note,

we assume that A ∈ D0 instead in D, therefore C∗-algebras Dn ∈ C0′
0 instead in C′0). Note also that, 9.1 of [15] shows that

QT (Q ) = T (A). Thus (e8.10) follows from (e.9.9) of [15]. □

Theorem 8.6. Let A be a separable simple C∗-algebra in D with continuous scale. Then the map from Cu(A) to LAff+(T (A)) is
a Cuntz semigroup isomorphism.

Proof. This follows from 11.8 of [15] (see 15.8 of [18]) immediately (since T (A)
w
= T (A), as A is assumed to have

continuous scale). □

Corollary 8.7. Let A be a separable simple C∗-algebra in D. Then Cu∼(A) = K0(A) ⊔ LAff∼
+
(T̃ (A)).

Proof. Note, by 11.5 of [15], A has stable rank one. This follows from 8.6 (see 7.3 of [15]). □

Theorem 8.8. Let A be a separable simple C∗-algebra in D with ker ρA = K0(A). Then A ∈ D0. Moreover, There exists eA ∈ A+
with ∥eA∥ = 1 and 0 < σ0 < 1 which satisfy the following: For any ε > 0, η > 0 and any finite subset F ⊂ A, there are
F-ε-multiplicative completely positive contractive linear maps ϕ : A→ A and ψ : A→ D for some C∗-subalgebra D ∈ R (see
3.1) with ϕ(A) ⊥ D such that

∥x− (ϕ(x)⊕ ψ(x))∥ < ε for all x ∈ F, (e8.11)
dτ (ϕ(eA)) < η for all τ ∈ T (A) and (e8.12)
t(f1/4(ψ(eA))) ≥ 1− σ0 for all t ∈ T (D). (e8.13)

Proof. We may assume, without loss of generality, that A has continuous scale, by considering a hereditary C∗-subalgebra
of A (see 11.9 of [15]). We will use the facts that C∗-algebras in D have stable rank one and strict comparison as well as
have the property described in 8.7.

Let eA ∈ A be a strictly positive element with ∥eA∥ = 1. Note that dτ (eA) is now assumed to be continuous on T̃ (A).
Fix any integer m ≥ 2, by 8.7, there is a positive element e00 ∈ A such that dτ (e00) = (1/m)dτ (eA) for all τ ∈ T̃ (A).
Moreover, as in the proof of 3.13, A ∼= Mm(e00Ae00). Let Λ0,m : Cu∼(A) → Cu∼(A) be defined by (Λ0,m)|K0(A)= idK0(A) and
(Λ0,m)|LAff∼

+
(T̃ (A))= (1/m) idLAff∼

+
(T̃ (A)). Then, since K0(A) = ker ρA, one sees that Λ0,m is a morphism in Cu.

Claim. For any C∗-subalgebra D′⊂A with D′ ∈ C0, there is a homomorphism j0,D′ : D′ → A0 := e00Ae00 such that
Cu∼(j0,D′ ) = Λ0,m ◦ Cu∼(ιD′ ). To see the claim, note that A0 has stable rank one (see 11.5 of [15]) and Λ0,m ◦ Cu∼(ιD′ ) is
a morphism in Cu. Then, by Theorem 1.0.1. of [49], such homomorphism j0,D′ exists.

Let 1 > σ0 > 0. We may assume that τ (eA) ≥ 1− σ0/64 for all τ ∈ T (A). Suppose also that τ (f1/2(eA)) > 1− σ0/32 for
all τ ∈ T (A). Let f = 1 − σ0/4. Let ε > 0 and let F ⊂ A be a finite subset. Let σ0/32 > η > 0. Choose m ≥ 2 such that
1/m < min{σ /212, η/2}.
0
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Let T = T (A). Let WT be the separable simple amenable C∗-algebra with Ki(WT ) = {0}, i = 0, 1, and T (WT ) = T
s in 2.8 of [16]. Therefore LAff∼

+
(T̃ (WT )) = LAff∼

+
(T̃ (A)). Let Γ : LAff∼

+
(T̃ (WT )) → LAff∼

+
(T̃ (A)) be the order semi-group

somorphism. By 8.7, Cu∼(A) = K0(A)⊔ LAff∼+(T̃ (A)). Since K0(A) = ker ρA, the map Γ −1
′

: Cu∼(A)→ Cu∼(WT ) which maps
0(A) to zero and Γ −1

′

|LAff∼
+
(T̃ (A))= (m−1m )Γ −1 is a morphism in Cu.

Fix 0 < ε1 < min{ε/4, σ/210
} and a finite subset F1 ⊃ F . There are F1-ε1-multiplicative completely positive

contractive linear maps ϕ0 : A→ A and ψ : A→ D for some C∗-subalgebra D ⊂ A such that ϕ0(A) ⊥ D,

∥x− (ϕ0(x)⊕ ψ(x))∥ < ε1/4 for all x ∈ F1 ∪ {eA}, (e8.14)
D ∈ C0(see 3.11), dτ (ϕ0(eA)) < η for all τ ∈ T (A) and (e8.15)
t(f1/4(ψ(eA))) ≥ 1− σ0/16 for all t ∈ T (D). (e8.16)

Let ıD : D→ A be the embedding. Consider Γ −1
′

◦Cu∼(ıD). Then, by [49], there exists a homomorphism ψ1 : D→ WT such
that Cu∼(ψ1) = Γ −1

′

◦Cu∼(ıD). Let ed ∈ D be a strictly positive element of D with ∥ed∥ = 1 and let W1 = ψ1(ed)WTψ1(ed).
y [49] again, there exists a homomorphism ψw,a : WT → A such that Cu∼(ψw,a) = Γ .
Note that ⟨ψw,a ◦ ψ1(ed)⟩ ≤ (1/n)⟨eA⟩. By the claim above, we may assume that there also exists a homomorphism

D : D→ A such that Cu∼(jD) = Λ0,m ◦ Cu∼(ιD) and jD(D) ⊥ ψw,a ◦ ψ . Put Ψ := jD ⊕ ψw,a ◦ ψ1. Then Cu∼(ıD) = Cu∼(Ψ ).
By [49], there exists a sequence of unitaries un ∈ Ã such that

lim
n→∞
∥ıD(g)− u∗nΨ (g)un∥ = 0 for all g ∈ D. (e8.17)

et δ > 0, G ⊂ D be a finite subset, and en = Ψ (ed). Choose 1/4 > σ > 0 such that

∥fσ (ed)gfσ (ed)− g∥ < δ/2 for all g ∈ G. (e8.18)

y (e8.17), with sufficiently small δ, by Prop.1 of [8], there is n0 ≥ 1 and unitaries vn ∈ Ã, for all n ≥ n0,

∥ıD(g)− v∗n fσ (en)Ψ
′(g)fσ (en)vn∥ < ε1 for all g ∈ G and v∗n fσ (en)vn ∈ DAD. (e8.19)

ut Φ ′ : D→ A by Φ ′(c) = v∗n0ψw,a ◦ ψ1(c)vn0 for all c ∈ D, and ϕ : A→ A by ϕ(a) = ϕ0(a)⊕ v∗n fσ (ed)jD(a)fσ (ed)vn for all
a ∈ A. Let W0 = v

∗
n0ψw,a(W1)vn0 . By the choice of m and by (e8.16), we may also assume that

t(f1/4(Φ ′(ψ(eA)))) > 1− σ0/8 for all t ∈ T (W0). (e8.20)

ote W0 ⊥ ϕ(A)Aϕ(A). Moreover, with sufficiently small δ and large G,

∥x− (ϕ(x))⊕Φ ′(ψ(x))∥ < ε for all x ∈ F . (e8.21)

Note that W0 = ∪
∞

n=1Fn ⊗W , where Fn ⊂ Fn+1 are finite dimensional C∗-algebras, and W = ∪∞n=1Rn, where Rn ∈ R. Since
is semiprojective, there exists a sequence of homomorphisms ψ0,n : D→ Rn such that

lim
n→∞
∥ψ0,n(g)−Φ ′(g)∥ = 0 for all g ∈ D. (e8.22)

hen, passing to a subsequence, applying a weak*-compactness argument, if necessarily, we may assume that, for all
ufficiently large n,

t(f1/4ψ0,n(ψ(eA))) > 1− σ0/8 ≥ f ≥ for all t ∈ T (Rn), (e8.23)

oreover,

∥x− (ϕ(x))⊕ ψ0,n(ψ(x))∥ < ε for all x ∈ F .

he lemma then follows. □

roposition 8.9. Let A be a separable simple C∗-algebra and B be a separable simple C∗-algebra which is tracially approximate
ivisible (see definition 10.1 of [15]). Suppose that both A and B have continuous scale, and B has strict comparison. Let C = A⊗B

(minimal tensor product) be such that C has continuous scale and also has strict comparison. Then A⊗B is tracially approximate
divisible.

Proof. Let ε > 0, let F ⊂ A ⊗ B be a finite subset, let c ∈ (A ⊗ B)+ \ {0} and let n ≥ 1 be an integer. Without loss of
generality, we may assume that

F = {a⊗ b : a ∈ FA and b ∈ FB},

where FA ⊂ A and FB are finite subsets. We may further assume that ∥a∥, ∥b∥ ≤ 1 for all a ∈ FA and b ∈ FB. Since A⊗ B
is simple and T (C) is compact, as C has continuous scale,

inf{dτ (c) : τ ∈ T (C)} = d > 0. (e8.24)

Choose b ∈ B \ {0} with ∥b ∥ = 1 such that d (b ) < d/2 for all τ ∈ T (B).
0 + 0 τ 0
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Since B has tracially approximate divisible property, there are C∗-subalgebras B0 and B1 of A such that

dist(b,Dd) < ε/2 for all y ∈ FB, (e8.25)

here Dd ⊂ D ⊂ B which has the form

Dd = {d0 ⊕ diag(

n  
d1, d1, . . . , d1) ∈ B0 ⊕Mn(B1) : d0 ∈ B0, d1 ∈ B1},

here D = B0 ⊕Mn(B1). Moreover, be0 ≲ b0, where be0 is a strictly positive element of B0.
Now let A0 = A⊗ B0, A1 = A⊗ B1 and A3 = A0 ⊕Mn(A1). Also let Ad = A⊗ Dd. Then

dist(x, Ad) < ε for all x ∈ F . (e8.26)

We also compute that

ea ⊗ be0 ≲ ea ⊗ b0 ≲ c. (e8.27)

his implies that C is tracially approximate divisible. □

roposition 8.10. BT ⊗ Z0 ∈ D0.

roof. C∗-algebra BT has finite nuclear dimension and so does Z0. By Proposition 2.3 of [60], BT ⊗ Z0 has finite nuclear
imension. By 8.3, BT ⊗Z0 has continuous scale and Z-stable. Therefore, by [52], it has strict comparison. It follows from
.9 and 3.12 that every hereditary C∗-subalgebra has tracially approximate divisible property. It follows from 6.5 of [16]
hat every tracial state of BT ⊗ Z0 is a W-trace. It follows from 6.6 of [16] that BT ⊗ Z0 is in D0. □

In the Appendix (A.10), we will show that

heorem 8.11 (A.10). Let A be a separable amenable C∗-algebra in D. Then A⊗ Z ∼= A.

efinition 8.12. By [49], there exists a homomorphism ϕw,z :W → Z0 which maps the strictly positive elements to strictly
ositive elements, Since K0(Z0) = ker ρZ0 , by 8.2 and by [49], there exists also a homomorphism ϕz,w :Z0 → W which
aps the strictly positive elements to strictly positive elements. Note as in the proof of 8.4 we also have tZ = tW ◦ ϕz,w
nd tW = tZ ◦ ϕw,z , where tZ and tW are the unique tracial states of Z0 and W respectively.
There exist also an isomorphism ϕw21 : M2(W) → W and an isomorphism ϕz21 : M2(Z0) → Z0 such that

ϕz21)∗0 = idK0(Z0). We will fixed these four homomorphisms.

efinition 8.13. Let κo
0 : K0(Z0)→ K0(Z0) be a homomorphism by sending x to −x for all x ∈ K0(Z0) = ker ρZ0 . Denote

lso by κo the automorphism on Cu∼(Z0) such that κo
|K0(Z0)= κo

0 and identity on LAff∼(T̃ (Z0)) which maps function 1
o function 1. It follows from [49] that there is an endomorphism j⊛

′

: Z0 → Z0 such that Cu∼(j⊛
′

) = κo and j⊛
′

(a) is a
trictly positive element of Z0 for some strictly positive element a. By [49] again, j⊛

′

(Z0) is isomorphic to Z0, say, given
y j : j⊛

′

(Z0)→ Z0. Then j⊛ = j ◦ j⊛
′

is an automorphism. The automorphism j⊛ will be also used in later sections.

emma 8.14. Define Φ, Ψ : Z0 → M2(Z0) by

Φ(a) = diag(a, j⊛(a)) and Ψ (a) = (ϕwz ⊗ idM2 )(diag(ϕzw(a), ϕzw(a))) for all a ∈ Z0.

hen Φ is approximately unitarily equivalent to Ψ , i.e., there exists a sequence of unitaries {un} ⊂ M̃2(Z0) such that

lim
n→∞

Ad un ◦Φ(a) = (ϕwz ⊗ idM2 ) ◦ diag(ϕzw(a), ϕzw(a)) for all a ∈ Z0.

n particular, j⊛
∗0(x) = −x for x ∈ K0(Z0).

Moreover ϕz21 ◦Φ is approximately unitarily equivalent to ϕz21 ◦ Ψ .

roof. Using 6.1.1 of [49] (see also 7.3 of [15]), one computes that

Cu∼(Φ) = Cu∼(Ψ ).

t follows from [49] that Φ is approximately unitarily equivalent to Ψ . □

. E(A,B)

efinition 9.1. Let A be a separable amenable C∗-algebra and let B be another C∗-algebra. We use B⊢ for the C∗-algebra
btained by adding a unit to B (regardless B has a unit or not). We will continue to use the embedding ϕwz . : W → Z0.

ithout causing confusion, we will identify W with ϕwz(W) from time to time.
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An asymptotic sequential morphism ϕ = {ϕn} from A to B is a sequence of approximately multiplicative completely
ositive contractive linear maps ϕn : A → B⊢ ⊗ Z0 ⊗ K which satisfies the following condition: there is α ∈
omΛ(K (A), K (B⊢⊗Z0⊗K)) and there are two sequences of approximately multiplicative completely positive contractive

linear maps hn, h′n : A→ C · 1B⊢ ⊗ Z0 ⊗ K such that, for any finite subset P ∈ K (A), there exists n0 ≥ 1 such that

[ϕn]|P+[hn]|P= α|P+[h′n]|P for all n ≥ n0. (e9.1)

et ϕ = {ϕn} and ψ = {ψn} be two asymptotic sequential morphisms from A to B. We say ϕ and ψ are equivalent and
rite ϕ ∼ ψ if there exist two sequences of approximately multiplicative completely positive contractive linear maps
n, h′n : A→ C · 1B⊢ ⊗ Z0 ⊗ K and a sequence of unitaries un ∈

˜B⊢ ⊗ Z0 ⊗ K such that

lim
n→∞
∥u∗ndiag(ϕn(a), hn(a))un − diag(ψn(a), h′n(a))∥ = 0 for all a ∈ A.

enote by ⟨ϕ⟩ the equivalence class of asymptotic sequential morphisms represented by ϕ, and by E(A, B) the set of all
quivalence classes of asymptotic sequential morphisms from A to B.
Consider the split short exact sequence

0→ B⊗ Z0 ⊗ K
ı
−→B⊢ ⊗ Z0 ⊗ K

π

⇄sC · 1B⊢ ⊗ Z0 ⊗ K→ 0.

t gives the following split short exact sequence:

0→ KL(A, B⊗ Z0)
[ı]
−→KL(A, B⊢ ⊗ Z0)

[π ]

⇄[s]KL(A,C · 1B⊢ ⊗ Z0)→ 0. (e9.2)

Define λB : HomΛ(K (A), K (B⊢ ⊗ Z0))→ HomΛ(K (A), K (B⊗ Z0)) by

λB(x) = x− [s] ◦ [π ](x) for all x ∈ KL(A, B⊢ ⊗ Z0). (e9.3)

Note that

s ◦ π ◦ gn = gn

for any completely positive contractive linear map gn : A→ C · 1B⊢ ⊗ Z0 ⊗ K ⊂ B⊢ ⊗ Z0 ⊗ K.
Let ⟨ϕ⟩ ∈ E(A, B) be represented by {ϕn} and let α be as in (e9.1). Then, for any fixed finite subset P ⊂ K (A),

λB ◦ ([ϕn]|P+[hn]|P−[h′n]|P ) = [ϕn]|P−[s ◦ π ◦ ϕn]|P= λB ◦ α|P (e9.4)

for all n ≥ n0(P) for some integer n0(P). If {ψn} is another representation of ⟨ϕ⟩, then, there exist two sequences of
approximately multiplicative completely positive contractive linear maps gn, g ′n : A→ C · 1B⊢ ⊗ Z0 ⊗ K and a sequence
of unitaries un ∈

˜B⊢ ⊗ Z0 ⊗ K such that

lim
n→∞
∥u∗ndiag(ϕn(a), gn(a))un − diag(ψn(a), g ′n(a))∥ = 0 for all a ∈ A.

Thus there is an integer n1(P) ≥ 1 such that

[ϕn]|P+[gn]|P = [ψn]|P+[g ′n]|P and (e9.5)

[s ◦ π ◦ ϕn]|P+[gn]|P = [s ◦ π ◦ ψn] + [g ′n]|P for all n ≥ n1(P). (e9.6)

Therefore

([ψn]|P−[s ◦ π ◦ ψn]|P ) = ([ϕn]|P+[gn]|P−[g ′n]|P ) (e9.7)

−([s ◦ π ◦ ϕn]|P+[s ◦ π ◦ gn]|P−[s ◦ π ◦ g ′n]|P ) (e9.8)

= [ϕn]|P−[s ◦ π ◦ ϕn]|P= λB ◦ α|P (e9.9)

for all n ≥ max{n0(P), n1(P)}. Thus βA : E(A, B)→ HomΛ(K (A), K (B⊗Z0⊗K)) given by βA(⟨ϕ⟩) = λB ◦α, is well defined.
If ϕ and ψ are two asymptotic sequential morphisms from A to B, we define ϕ⊕ψ by (ϕ⊕ψ)(a) = diag(ϕ(a), ψ(a)) for

all a ∈ A. Here we identify M2(K) with K in the usual way. We define ⟨ϕ⟩+⟨ψ⟩ = ⟨ϕ⊕ψ⟩. This clearly defines an addition
in E(A, B). Let ⟨ψ⟩ ∈ E(A, B) be represented by {ψn} whose images are in C · 1B⊢ ⊗ Z0 ⊗ K. Then, for any ⟨ϕ⟩ ∈ E(A, B),
⟨ϕ ⊕ {ψn}⟩ = ⟨ϕ⟩. In other words that E(A, B) is a semigroup with zero represented by zero asymptotic morphism. Note,
if A is unital, then E(A, B) = {0}, as there are only zero asymptotic sequential morphisms from A to B⊢ ⊗ Z0 ⊗ K.

Definition 9.2. Denote C = B⊢ ⊗ Z0 ⊗K. Let C∞ = l∞(C)/c0(C). If ϕ = {ϕn} is an asymptotic sequential morphism, then
we may view ϕ as a homomorphism from A to C∞. Two asymptotic sequential morphisms ϕ and ψ are homotopy if there
is a homomorphism H : A→ C([0, 1], C∞) such that π0 ◦ H = ϕ and π1 ◦ H = ψ , where πt : C([0, 1], C∞)→ C∞ is the
oint-evaluation at t ∈ [0, 1]. Since we assume that A is amenable, there exists a completely positive contractive linear
ap L : A→ C([0, 1], l∞(C)) such that Π ◦ L = H , where Π : l∞(C)→ C∞ is the quotient map. Denote by Pn : l∞(C)→ C

the nth coordinate map. Define Φ ′n = Pn ◦ L, n = 1, 2, . . .. Define ϕ′n = π0 ◦Φ
′
n and ψ ′n = π1 ◦Φ

′
n. Note that

lim ∥ϕn(a)− ϕ′ (a)∥ = 0 and and lim ∥ψn(a)− ψ ′ (a)∥ = 0 for all a ∈ A. (e9.10)

n→∞ n n→∞ n
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T

T

herefore we may assume, without loss of generality, as far as in this section, that ϕn and ψn are homotopy for each n.
Fix a finite subset F ⊂ A and ε > 0. There is a partition 0 = t0 < t1 < · · · tm = 1 such that

∥πt ◦ L(a)− πti ◦ L(a)∥ < ε/2 for all a ∈ {cd, c, d : c, d ∈ F}. (e9.11)

Since Π ◦ L = H , there is n0 > 1 such that πti ◦Pn ◦ L is F-ε/2-multiplicative for all a, b ∈ F for all n ≥ n0, i = 0, 1, . . . ,m.
It follows from (e9.11) that πt ◦ Pn ◦ L is F-ε-multiplicative. In other words, ϕn and ψn are connected by a path of
F-ε-multiplicative completely positive contractive linear maps for all large n.

Definition 9.3. We now fixed a separable amenable C∗-algebra A satisfying the UCT with the following property: There
is a map T : A+ \ {0} → N × R+ \ {0} and a sequence of approximately multiplicative completely positive contractive
linear maps ϕn : A → W such that, for any finite subset H ⊂ A+ \ {0}, there exists an integer n0 ≥ 1 such that ϕn is
T -H-full (see 5.5 of [15] and 7.8 of [18]) for all n ≥ n0.

For the rest of this section, A is as above.

Lemma 9.4. Let {ϕn} be an asymptotic sequential morphism from A to B⊢⊗Z0⊗K such that the image of ϕn are all contained
in B⊢ ⊗W ⊗ K. Then ⟨{ϕn}⟩ = 0.

Proof. Let ε > 0 and F ⊂ A be a finite subset. Let T be given in 9.3. Write T (a) = (N(a),M(a)) for all a ∈ A+ \ {0}. We
will apply 6.9.

Let δ > 0, G be a finite subset, H ⊂ A+ \ {0} be a finite subset and let K ≥ 1 be an integer as required by 6.9 for T .
Suppose that ϕn : A→ B⊢⊗W⊗K is a G-δ-multiplicative completely positive contractive linear map. We may assume,

without loss of generality, that the image of ϕn lies in Mk(n)(B⊢ ⊗W). Choose an asymptotic sequential morphism {ψn}

from A to W given by 9.3. We may assume that ψn is G-δ-multiplicative and is T -H-full. Let ψ0 : W → C · 1B⊢ ⊗W ⊗ K
be the homomorphism defined by ψ0(a) = 1 ⊗ a ⊗ e1,1, where e1,1 is a rank one projection of K. By replacing {ψn} by
{ψ0 ◦ ψn}, we assume that the image of ψn are in C · 1B⊢ ⊗W ⊗ K. Define ψ̄n : A→ Mk(n)(W) by

ψ̄n(a) = diag(

k(n)  
ψn(a), ψn(a), . . . , ψn(a)) for all a ∈ A.

By viewing ψ̄n as a map from A to Mk(n)((C · 1B⊢ )⊗W), it is easy to check that ψ̄n is T -H-full in Mk(n)((C · 1B⊢ )⊗W) (see
the proof of 6.9).

Then, by 6.9, there exist an integer K and a unitary v ∈ M(K+1)k(n)(B⊢ ⊗W)∼ ⊂ M(K+1)k(n)(B⊢ ⊗ Z0)∼ such that

∥v∗diag(ϕn(a),Ψn(a))v − diag(0,Ψn(a))∥ < ε for all a ∈ F,

where Ψn(a) = ψ̄n(a)⊗ 1K . Lemma then follows. □

Proposition 9.5. E(A, B) is an abelian group.

Proof. Define an endomorphism ι⊛ on B⊢ ⊗ Z0 ⊗ K by

ι⊛(a⊗ b⊗ c) = a⊗ j⊛(b)⊗ c for all a ∈ B⊢, b ∈ Z0 and c ∈ K

(see 8.13 for the definition of j⊛). Let ϕ = {ϕn} be an asymptotic sequential morphism from A to B⊢ ⊗ Z0 ⊗ K. Let
ψn : A→ B⊢ ⊗ Z0 ⊗ K be defined by

ψn(a) = ι⊛ ◦ ϕn(a) for all a ∈ A.

Define H :B⊢ ⊗ Z0 ⊗ K→ M2(B⊢ ⊗ Z0 ⊗ K) by

H(a⊗ b⊗ c) = a⊗ (ϕwz ⊗ idM2 )(diag(ϕzw(b), ϕzw(b)))⊗ c for all a ∈ B⊢, b ∈ Z0 and c ∈ K.

It follows from 8.14 that there exists a sequence of unitaries {un} ⊂
˜B⊢ ⊗ Z0 ⊗ K such that

Ad un ◦ H(ϕn(x)) = lim
n→∞

diag(ϕn(x), ψn(x)) for all x ∈ A.

It follows that {ϕn ⊕ ψn} is approximately unitarily equivalent to {H ◦ ϕn}. By 9.4, ⟨ϕn ⊕ ψn⟩ = 0. □

Definition 9.6. Fixed A as in 9.3, we will consider E(A, B) for separable C∗-algebra B, and denote E(A, B) by EA(B). Suppose
that B and C are separable C∗-algebras and h : B → C is a homomorphism. Define h∗ : = EA(h) : EA(B) → EA(C) by
EA(h)(⟨ϕ⟩) = ⟨{h ◦ ϕn}⟩, where {ϕn} is a representation of ⟨ϕ⟩ and where we also use h for h∼ ⊗ idZ0⊗K. This gives a
homomorphism from the abelian group EA(B) to the abelian EA(C). Clearly EA(idB) = idEA(B). If D is another C∗-algebra and
h1 : C → D is a homomorphism, then one checks that EA(h1 ◦ h) = EA(h1) ◦ EA(h).

heorem 9.7. E(A,−) = EA(−) is a covariant functor from separable C∗-algebras to abelian groups which is homotopy
invariant and stable, i.e., E (D) = E (D⊗ K).
A A
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roof. From 9.5 and 9.6, EA(−) is a covariant functor from separable C∗-algebras to abelian groups. It is obviously stable.
e will show it is homotopy invariant.
Fix a C∗-algebra B. Set C = B⊢ ⊗ Z0 ⊗ K. Let ϕ and ψ be two homotopy asymptotic sequential morphisms from A to

C . Let δ > 0 and G ⊂ A.
Fix a large integer n. As discussed in 9.2, we may assume that there exists G-δ-multiplicative completely positive

contractive linear map Ln : A→ C([0, 1], C) which is such that π0 ◦ Ln = ϕn and π1 ◦ Ln = ψn.
Let ε > 0 and F ⊂ A be a finite subset.
Let F1 be a finite subset which contains F . Let P : 0 = t0 < t1 < · · · < tk = 1 be a partition such that

∥πt ◦ Ln(g)− πti ◦ Ln(g)∥ < ε/4 for all g ∈ F1 (e9.12)

or all t ∈ [ti−1, ti+1], i = 1, 2, . . . , k. Put γi = πti ◦ Ln, i = 0, 1, 2, . . . , k. Define Φn,Ψn,Φ
′
n,Ψ

′
n : A→ M2k+1(C) as follows.

Φn(a) = diag(γ0(a), ι⊛ ◦ γ1(a), γ1(a), . . . , ι⊛ ◦ γk(a), γk(a)), (e9.13)
Φ ′n(a) = diag(γ0(a), ι⊛ ◦ γ0(a), γ1(a), . . . , ι⊛ ◦ γk−1(a), γk(a)), (e9.14)

Ψ ′n(a) = diag(γk(a), ι⊛ ◦ γ0(a), γ0(a), . . . , ι⊛ ◦ γk−1(a), γk−1(a)), (e9.15)

Ψn(a) = diag(γk(a), ι⊛ ◦ γ1(a), γ1(a), . . . , ι⊛ ◦ γk(a), γk(a)) (e9.16)

for all a ∈ A. We estimate that, by (e9.12),

∥Φn(g)−Φ ′n(g)∥ < ε/4 and ∥Ψn(g)− Ψ ′n(g)∥ < ε/4 for all g ∈ F1. (e9.17)

There is also a unitary u ∈ M2k+1(C̃) such that

∥Ad u ◦Φ ′n(g)− Ψ
′

n(g)∥ < ε/4 for all g ∈ F1. (e9.18)

It follows that

∥Ad u ◦Φn(f )− Ψn(f )∥ < 3ε/4 for all f ∈ F . (e9.19)

Define Θ : A→ M2k(C) by

Θ(a) = diag(ι⊛ ◦ γ1(a), γ1(a), . . . , ι⊛ ◦ γk(a), γk(a))

for all a ∈ A. Then (e9.19) becomes

∥Ad u ◦ diag(ϕn(g),Θ(g))− diag(ψn(g),Θ(g))∥ < 3ε/4 for all g ∈ F1. (e9.20)

On the other hand, by 8.14, there exists a homomorphism H : B⊢ ⊗ Z0 ⊗ K → B⊢ ⊗ W ⊗ K and G-δ-multiplicative
completely positive contractive linear map Γn : A→ C such that

∥H ◦ Γn(g)−Θ(g)∥ < ε/8 for all g ∈ F1 (e9.21)

(Γn = diag(γ1, γ2, . . . , γk)). Finally, we obtain that

∥Ad u ◦ diag(ϕn(f ),H ◦ Γn(f ))− diag(ψn(f ),H ◦ Γn(f ))∥ < ε

for all f ∈ F . Since the image of H ◦ Γn are in B⊢ ⊗W ⊗ K, the above implies that ⟨ϕ⟩ = ⟨ψ⟩. □

The proof of the following is essentially the same as that in 6.1.4 of [30].

Proposition 9.8. If

0→ J
j
→D

π
→D/J → 0 (e9.22)

is a split short exact sequence of separable C∗-algebras, then

E(A, J)
j∗
−→E(A,D)

π∗
−→E(A,D/J)

is exact in the middle.

Proof. Suppose that ⟨ϕ⟩ ∈ E(A, J) which can be represented by an asymptotic sequential morphism {ϕn} which maps A
to J⊢ ⊗ Z0 ⊗ K. Then π ◦ j ◦ ϕn has image in C · 1(D/J)⊢ ⊗ Z0 ⊗ K. It follows from the definition that π∗ ◦ j∗ = 0.

Now assume that ⟨ϕ⟩ ∈ E(A,D) which is represented by {ϕn}. Without loss of generality, we may assume that
imϕn ∈ Mk(n)(D⊢ ⊗ Z0) for some sequence {k(n)}.

Suppose that π∗(⟨ϕ⟩) = 0. Thus we may assume that there exist two asymptotic sequential morphisms hn, h′n : A→
C · 1(D/J)⊢ ⊗ Z0 ⊗ K and a sequence of unitaries un ∈ ((D/J)⊢ ⊗ Z0 ⊗ K)∼ such that

lim ∥u∗diag(π ◦ ϕn(a), hn(a))un − h′ (a)∥ = 0 for all a ∈ A. (e9.23)

n→∞ n n
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y the proof of 9.5, by adding ι⊛ ◦ h′n (to both terms), we may assume that [h′n]|P= 0 for all n ≥ n0. We also assume that
here exists α ∈ HomΛ(K (A), K (D⊢ ⊗ Z0)) such that, for any finite subset P ⊂ K (A) and for all n ≥ n0 (for some n0 ≥ 1),

[ϕn]|P+[hn]|P= [JD] ◦ λD ◦ α|P+[h′′n]|P (see (e9.3) for the definition of λD), (e9.24)

here {h′′n} is a sequence approximately multiplicative completely positive contractive linear maps from A to C · 1(D)⊢ ⊗

0 ⊗ K, and we also view hn and h′n as maps from A to C · 1(D)⊢ ⊗ Z0 ⊗ K, and where JD : D ⊗ Z0 → D⊢ ⊗ Z0 is the
mbedding. Thus, combining with (e9.24), [π ] ◦ (λD(α)) = 0.
Denote ΠD/J : ((D/J)⊢ ⊗ Z0 ⊗ K)∼ → C the quotient map. Without loss of generality, we may assume that

m (ϕn ⊕ hn), im h′n ⊂ MK (n)(C · 1(D/J)⊢ ⊗ Z0). We may further assume that K (n) = 2k(n). We may view diag(un, u∗n) ∈
(D/J)⊢⊗Z0⊗K)∼. Replacing un by diag(un, u∗n), we may assume that un ∈ U0(((D/J)⊢⊗K)∼). Therefore, we may assume
hat there exists a unitary zn ∈ U((D⊢ ⊗ Z0 ⊗ K)∼) such that π (zn) = un.

By identifying C ·1(D/J)⊢⊗Z0⊗K with C ·1D⊢⊗Z0⊗K and C ·1J⊢⊗Z0⊗K, we may view hn, h′n : A→ C ·1D⊢⊗Z0⊗K
s well as hn, h′n : A→ C · 1J⊢ ⊗ Z0 ⊗ K, whichever it is convenient.
Let Π : l∞(D⊢ ⊗ Z0 ⊗ K)→ l∞(D⊢ ⊗ Z0 ⊗ K)/c0(D⊢ ⊗ Z0 ⊗ K) be the quotient map. Let

U = {zn}, Z = Π(U),Φ = {ϕn}, H = {hn},H ′ = {h′n},

here we view Φ,H,H ′ : A→ l∞(D⊢ ⊗ Z0 ⊗ K). Then, by (e9.23)

Z∗(Π (Φ(a)⊕ H(a)))Z −Π ◦ H ′(a) ∈ l∞(J⊢ ⊗ Z0 ⊗ K)/c0(J⊢ ⊗ Z0 ⊗ K)

or all a ∈ A. Since Π ◦ H ′(a), Π ◦ H(a) ∈ C · 1J⊢ ⊗ Z0 ⊗ K, it follows that

Z∗(Π (Φ(a)⊕ 0))Z ∈ l∞(J⊢ ⊗ Z0 ⊗ K)/c0(J⊢ ⊗ Z0 ⊗ K)

or all a ∈ A. Since A is amenable, by [6], there exists a completely positive contractive linear map L = {ln} : A→ J⊢⊗Z0⊗K
uch that Π ◦ L = AdU ◦ (Φ). Also

lim
n→∞
∥diag(ln(a), hn(a))− z∗n (diag(ϕn(a), hn(a)))zn∥ = 0 for all a ∈ A. (e9.25)

ince (e9.22) is split exact, by Proposition 5.2 of [31], there is a unique β ∈ HomΛ(K (A), K (J⊗Z0)) such that [j]◦β = λD◦α.
t follows (by (e9.24) and (e9.25)) that, viewing ln as maps from A to J⊢⊗Z0⊗K, there exist two sequences of approximately
multiplicative completely positive contractive linear maps Hn,H ′′n : A→ C · 1J⊢ ⊗ Z0 ⊗K, for any finite subset P ⊂ K (A),
such that, for all n ≥ n1 (for some n1 ≥ 1),

[ln]|P+[Hn]|P= [JJ ] ◦ β|P+[H ′′n ]|P (JJ : J ⊗ Z0 → J⊢ ⊗ Z0 is the embedding).

So ⟨{ln}⟩ is an asymptotic sequential morphism in E(A, J) and (by (e9.25)) j∗⟨{ln}⟩ = ⟨ϕn⟩ which implies that ⟨ϕ⟩ is in the
j∗(E(A, J)). □

Proposition 9.9. EA(−) is split exact.

Proof. This is standard from 9.7 and 9.8 (see [22]). Let

0→ J
j
−→D

π
−→D/J → 0

be a short exact sequence of separable C∗-algebras.
Let us first assume that D/J is contractible. Then by 9.7, EA(D/J) = {0}. It follows from 9.8 that j∗ gives a surjective

map from EA(J) onto EA(D).
For C∗-algebra C , denote by S(C) = C0((0, 1), C). Then, by 9.7,

EA(D/J) = 0 = EA(S(D/J))

Put

S(D,D/J) = {(a, b) ∈ D⊕ C0([0, 1),D/J) : π (a) = b(0)} and (e9.26)
Z(J,D) = {x ∈ C([0, 1],D) : x(0) ∈ J}. (e9.27)

We have the following exact sequence:

0 = EA(S(D/J)) −→ EA(S(D,D/J)) −→ EA(D). (e9.28)

Define π ′ : Z(J,D)→ C0([0, 1),D/J) by π ′(f )(t) = π (f )(1− t) for t ∈ [0, 1). Note π ′(f )(1) = π (f )(0) = 0 for all f ∈ Z(J,D).
Define χ : Z(J,D)→ S(D,D/J) by

χ (f ) = (f (1), π ′(f )) for all f ∈ Z(J,D).

One obtains the short exact sequence:

0→ C ([0, 1), J)→ Z(J,D)→ S(D,D/J)→ 0.
0
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his gives the following exact sequence:

0 = EA(C0([0, 1), J)) −→ EA(Z(J,D)) −→ EA(S(D,D/J)). (e9.29)

rom (e9.28) and (e9.29), it follows that composition map EA(Z(J,D))→ EA(S(D,D/J))→ EA(D) is injective.
However, Z(J,D) is homotopically equivalent to J . Moreover, one sees that the composition J → Z(J,D)→ S(D,D/J)→
coincides with j. It follows that j∗ is injective.
Thus we show that, when D/J is contractible, j∗ is an isomorphism from EA(J) onto EA(D).
In general, let ı : J → S(D,D/J) be defined by ı(b) = (b, 0) for b ∈ J . Then S(D,D/J)/ı(J) ∼= C0([0, 1),D/J) which is

ontractible. So, from what has been proved, ı∗ is an isomorphism.
To see that EA(−) is split exact, consider the short exact sequence of separable C∗-algebras:

0→ J
j
−→D

π

⇄sD/J → 0.

y 9.8,

EA(J)
j
−→EA(D)

π
−→EA(D/J)

s exact in the middle. Since π ◦ s = idD/J , we check that π∗ ◦ s∗ = (idD/J )∗.
It remains to show that j∗ is injective. Using the exact sequence

EA(S(D/J))→ EA(S(D,D/J))→ EA(D),

nd identifying EA(J) with EA(S(D,D/J)), we see that ker j∗ ⊂ im (ı1)∗ where ı1 : S(D/J)→ S(D,D/J) is the embedding.
Let

I = {(s(b(0)), b) ∈ S(D,D/J) : b ∈ C0([0, 1),D/J)},

here s is the split map given above. Since π ◦ s = idD/J , I ∼= C0([0, 1),D/J) which is contractible. On the other hand,
m ı1 ⊂ I . Therefore (ı1)∗ = 0. Thus ker j∗ = 0. In other words, j∗ is injective. □

0. An existence theorem

efinition 10.1. Fix A as in 9.3. We assume that A satisfies the UCT. There is a homomorphism βB
A from EA(B) to KL(A, B)

efined as follows.
We will identify KL(A, C) with HomΛ(K (A), K (C)) for any separable C∗-algebra C (see [10]). Let ⟨ϕ⟩ ∈ EA(B) := E(A, B)

e represented by an asymptotic morphism {ϕn}. Recall (see 9.1) that βA(⟨ϕn⟩) = λB ◦ α is well defined which defines a
omomorphism βB

A : EA(B) → KL(A, B). Consequently βB
A is a morphism which maps C∗-algebra B to the abelian group

omΛ(K (A), K (B ⊗ Z0)). If B and C are two C∗-algebras and h : B → C is a homomorphism we have the following
commutative diagram:

EA(B)
EA(h) →→

βBA
↓↓

EA(C)

βCA
↓↓

HomΛ(A, B⊗ Z0 ⊗ K)
[h]
→→ HomΛ(A, C ⊗ Z0 ⊗ K).

t follows that

β : EA(−)→ HomΛ(K (A), K (−⊗ Z0))

is a natural transformation.

Theorem 10.2. The transformation βA maps EA(B) onto HomΛ(A, B ⊗ Z0) for each separable C∗-algebra B, if A satisfies the
UCT.

Proof. By a theorem of Higson (Theorem 3.7 of [22]), since EA(−) is a covariant functor from separable C∗-algebras to
belian groups which is homotopy invariant, stable and split exact (Section 8), there is a unique transformation

α : KK (A,−)→ EA(−)

uch that αA([idA]KK ) = ⟨idA⟩. Let γ : KK (A,−) → KL(A,−) be the natural transformation induced by Γ : KK (A, B) →
KL(A, B). We have

βA ◦ αA([idA]) = [idA]KL,

where β is defined in 10.1. Since γ ([idA]) = [idA], (the first [idA] is in KK (A, A) and the second is in KL(A, A)), by the
niqueness of Higson’s theorem (3.7 of [22]),

β ◦ α = γ .

ince γ (KK (A, B)) = Hom (A, B⊗ Z ⊗ K), if A satisfies the UCT, β : E (B)→ KL(A, B) must be surjective for each B. □
Λ 0 A A
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emma 10.3. Let B a non-unital and separable simple C∗-algebra with continuous scale. Let ϕ0, ϕ1, ϕ2 : W → M(B)/B be
homomorphisms with ϕ0 nonzero. Then, for any ε > 0, and any finite subset F ⊂ W , there exists a unitary U ∈ M2(M(B))
uch that

∥π (U)∗diag(ϕ1(a), ϕ0(a))π (U)− diag(ϕ2(a), ϕ0(a))∥ < ε for all a ∈ F .

roof. It follows from [28] that M(B)/B is simple and purely infinite.
Fix a strictly positive element aW ∈ W with ∥aW∥ = 1. Let b0 = ϕ0(aW ) and let B0 = b0(M(B)/B)b0.
Since W and B0 are both simple, there is a map T : W+ \ {0} → N×R+ \ {0} such that ϕ0 : W → B0 is T -W+ \ {0}-full.

Let W0 = ϕ0(W). So b0 ∈ W0.
Let H ⊂ W+ \ {0} be a finite subset and K ≥ 1 be an integer as required by Cor. 3.16 of [16] for the above given T ,

ε/2 (in place of ε) and F .
Note that W ⊗ Q ∼= W . Moreover, the map from W to W ⊗ 1Q which maps a to a⊗ 1Q then to W is approximately

nner. To simplify notation, without loss of generality, we may assume that ϕ0 : W → W0 ⊗ Q has the form ϕ0(a)⊗ 1Q .
et e1, e2, . . . , eK ∈ Q be mutually orthogonal and mutually equivalent projections such that

∑K
i=1 ei = 1Q . Define

0,i : W → W0 ⊗ ei by

ϕ0,i(a) = ϕ0(a)⊗ ei for all a ∈ W.

ut B0,1 = (b0 ⊗ e1)(M(B)/B)(b0 ⊗ e1).
Let b1 = ϕ1(aW ), b2 = ϕ2(aW ) ∈ M(B)/B. Since W is projectionless, sp(aW ) = [0, 1]. Thus, since W is simple, b1 cannot

be invertible in M(B)/B. Let D1 = b1Ab1. By Pedersen’s double orthogonal complement theorem (Theorem 15 of [45]),
there is a projection E1 ∈ M(B)/B such that 1M(B)/B − E1 ∈ D⊥ is not zero and E1b1 = b1E1 = b1. Similarly, one obtains
a projection E2 ∈ M(B)/B such that 1M(B)/B − E2 ̸= 0 and E2b2 = b2E2 = b2. Using the fact that M(B)/B is purely infinite
imple again, one obtains a unitary w1 ∈ M(B)/B such that

w∗1E2w1 ≤ E1.

Thus, without loss of generality, replacing ϕ2 by Adw1 ◦ ϕ2, one may assume that E2 ≤ E1.
Since M(B)/B is purely infinite and simple, E1 ≲ p′0 for some projection p′0 ∈ B0. Thus we obtain a unital hereditary

C∗-subalgebra B00 ⊂ M(B)/B such that, we may view that ϕ1, ϕ2 : W → B00 and ϕ0,1 : W → B00 is a T -W+ \ {0}-full.
Moreover, we view

ϕ0(a) = diag(

K  
ϕ0,1(a), ϕ0,1(a), . . . , ϕ0,1(a)) for all a ∈ W.

urthermore, MK+1(B00) is a unital C∗-subalgebra of M2(M(B)/B) such that 1MK+1(B00) is not the unit of M2(M(B)/B). By
pplying 3.16 of [16], there is a unitary u ∈ MK+1(B00) ⊂ M2(M(B)/B) such that

∥u∗(diag(ϕ1(a), ϕ0(a)))u− diag(ϕ2(a), ϕ0(a))∥ < ε for all a ∈ F .

ince 1M2 − 1MK+1(B00) ̸= 0 and M2(M(B)/B) is purely infinite and simple, there exists a unitary v ∈ (1M2 −

MK+1(B00))(M(B)/B)(1M2 − 1MK+1(B00)) such that u ⊕ v ∈ U0(M2(M(B)/B)). Thus we may assume that u is a unitary in
0(M2(M(B)/B)). Hence there is a unitary U ∈ M2(M(B)) such that π (U) = u. □

10.4 (Construction of ϕW ). Let B be a non-unital separable simple C∗-algebra with stable rank one, with T (B) ̸= ∅ and
ith continuous scale.
Let {en} ⊂ B⊗ Z0 be an approximate identity with

en+1en = enen+1 = en for all n ∈ N.

e may assume that en+1 − en ̸= 0 for all n ≥ 1. Choose k(n) ≥ 1 such that

inf{dτ (e4n − e4n−1) : τ ∈ T (B⊗ Z0)} >
1

k(n)
, n = 1, 2, . . . .

ote that
∑
∞

n=1
1

k(n) < 1. Put Bn := (e4n − e4n−1)(B⊗ Z0)(e4n − e4n−1). Fix a strictly positive element aw ∈ W with
∥aw∥ = 1.

It follows from [49] that there is a homomorphism ϕ0,n : W → Bn such that

dτ (ϕ0,n(aw)) =
1

for all τ ∈ T (B).

k(n)
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et ϕeven, ϕodd, ϕW : W → M(B⊗ Z0) be defined by

ϕeven =

∞∑
n=1

ϕ0,2n, ϕodd =

∞∑
n=1

ϕ0,2n+1 and (e10.1)

ϕW =

∞∑
n=1

ϕ0,n = diag(ϕeven, ϕodd). (e10.2)

roposition 10.5. Let B be a non-unital separable simple C∗-algebra with stable rank one, with T (B) ̸= ∅ and with continuous
cale. Fix an integer k ≥ 1. Let jw,z : W → Mk(Z0) be an embedding which maps strictly positive elements to strictly positive
lements and d : Z0 → C · 1Mk(B̃)

⊗ Z0 ⊂ Mk(B̃ ⊗ Z0) ⊂ M(Mk(B ⊗ Z0)) be the embedding defined by d(z) = 1 ⊗ z for all
z ∈ Z0.

Let ε > 0 and F ⊂ W be a finite subset. Then there is an integer K ≥ 1 and a unitary u ∈ MK+1(M(Mk(B⊗Z0))) such that

∥u∗diag(dK ◦ jw,z(a), 0)u− (dK ◦ jw,z(a)⊕ ϕodd(a))∥ < ε for all a ∈ F,

here

dK (z) = diag(

K  
d(z), d(z), . . . , d(z)) for all z ∈ Z0.

Proof. The proof has the same spirit as that of 10.3. Keep in mind that B has continuous scale. Therefore M(Mk(B⊗ Z0))
as only one (closed) ideal Mk(B⊗ Z0) (see [28]). Since W is simple and d ◦ jw,z maps a strictly positive element to that
f C · 1Mk(B̃)

⊗ Z0 which is not in Mk(B⊗ Z0), d ◦ jw,z(a) is full in M(Mk(B⊗ Z0)) for every a ∈ W+ \ {0}. There is a map
: W+ \ {0} → N× R+ \ {0} such that d ◦ jw,z is T -W+ \ {0}-full in M(Mk(B⊗ Z0)).
Let K ≥ 1 be the integer required by Cor. 3.16 of [16] for ε/2 (in place of ε), F and T . By applying 3.16 of [16] (and

onsidering ϕodd and zero map), one obtains (note that M(Mk(B⊗Z0)) is unital) a unitary v ∈ MK+1(M(Mk(B⊗Z0))) such
that

∥u∗diag(dK ◦ jw,z(a), 0)u− (dK ◦ jw,z(a)⊕ ϕodd(a))∥ < ε for all a ∈ F . □

emma 10.6. For any ε > 0, there is δ > 0 satisfying the following: for any e ∈ A+ with ∥e∥ ≤ 1 and any a ∈ A with
a∥ ≤ 1,

∥e1/2ae1/2 − ea∥ < ε

henever ∥ea− ae∥ < δ.

In the following statement and the proof we keep notations in 10.4 and 10.5.

heorem 10.7. Let A be a non-unital separable amenable C∗-algebra. Let ε > 0 and F ⊂ A be finite subset.
There exists δ > 0 with δ < ε/2, a finite subset G ⊂ A with F ⊂ G and an integer K ≥ 1 satisfying the following: For

ny G-δ-multiplicative completely positive contractive linear map ϕ : A → Mk(B̃ ⊗ Z0) (for any non-unital separable simple
C∗-algebra B with continuous scale and any integer k ≥ 1) such that if there are homomorphisms ψz,w : Mk(Z0) → W and
ψw,z : W → Mk(C · 1B̃ ⊗ Z0) ∼= Mk(Z0) which map strictly positive elements to strictly positive elements such that

∥π ◦ (ϕ(a))− ψw,z ◦ ψz,w ◦ π ◦ (ϕ(a))∥ < δ for all a ∈ G,

where π : Mk(B̃ ⊗ Z0) → Mk(C · 1B̃ ⊗ Z0) is the quotient map, then there exist an F-ε-multiplicative completely positive
contractive linear map L0 : A → MK+2(Mk(B ⊗ Z0)) and an F-ε-multiplicative completely positive contractive linear map
L1 : A→ MK+2(Mk(B̃⊗ Z0)) such that

∥L0(a)⊕ L1(a)− ϕ(a)⊕ dK ◦ s ◦ ϕπ (a)∥ < ε for all a ∈ F,

where ϕπ = ψw,z ◦ ψz,w ◦ π ◦ ϕ, s : Mk(C · 1B̃ ⊗ Z0)→ Mk(B̃⊗ Z0) is the nature embedding, and furthermore, the following
are true:

(1) L0(a) = p1/2m (ϕ(a)⊕ dK ◦ s ◦ ϕπ (a))p1/2m for all a ∈ A

for some m ≥ m0, where {pm} is an approximate identity for MK+2(Mk(B⊗ Z0)) and,
(2) there are G-δ-multiplicative completely positive contractive linear map L00 : A → W and L0,0(F)-ε/2-multiplicative

completely positive contractive linear map Lw,b : W → MK+2(Mk(B̃⊗ Z0)) such that L1 = Lw,b ◦ L00.

Proof. Fix 1/2 > ε > 0 and a finite subset F ⊂ A. We may assume that F ⊂ A1.
Let G = {ab : a, b ∈ F} ∪ F . Let {en} ⊂ Mk(B) be an approximate identity as described in 10.4. Let δ1 > 0 (in place of

δ) be in 10.6 for ε/64.
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Let δ = min{δ1/212, ε/212
}. We view Mk(B̃⊗Z0) as a C∗-subalgebra of M(Mk(B⊗Z0)). Suppose that ϕ : A→ Mk(B̃⊗Z0)

is G-δ-multiplicative completely positive contractive linear map. Suppose that there are homomorphisms ψz,w : Mk(Z0)→
W and ψw,z : W → Mk(C · 1B̃ ⊗ Z0) such that

∥π ◦ ϕ(a)− (ψw,z ◦ ψz,w ◦ π ◦ (ϕ(a)))∥ < δ for all a ∈ G. (e10.3)

Recall that ϕπ = ψw,z ◦ψz,w ◦π ◦ϕ. Put ϕW
= ψz,w ◦π ◦ϕ. Thus ψw,z ◦ϕW

= ϕπ . Let K be the integer in 10.5 associated
with δ (in place of ε) and ϕW (G) ⊂ W (in place of F).

By applying 10.3, we obtain a unitary U1 ∈ MK+2(M(Mk(B⊗ Z0))) such that

∥Π (U1)∗Π ◦ ϕW (ϕW (a))Π(U1)− diag(Π ◦ dK+1 ◦ ψw,z ◦ ϕW (a)),Π ◦ ϕodd(ϕW (a))∥ < δ (e10.4)

for all a ∈ G, where Π : MK+2(M(Mk(B⊗ Z0)))→ MK+2(M((Mk(B⊗ Z0))/(Mk(B⊗ Z0)))) is the quotient map.
Let s : Mk(C · 1B̃ ⊗ Z0)→ Mk(B̃⊗ Z0) be the embedding such that

π ◦ s(a) = a for all a ∈ Mk(C · 1B̃ ⊗ Z0).

Consider L1,1 : A→ (M(Mk(B⊗ Z0))) defined by L1,1 = ϕW ◦ ϕW and L′1,0 : A→ MK+2(M(Mk(B⊗ Z0))) defined by

L′1,0(a) = diag(d′K+1 ◦ s ◦ ψw,z ◦ ϕ
W (a)), ϕodd(ϕW (a)) for all a ∈ A,

where notation d′m(c) means the following:

d′m(c) = diag(
m  

c, c, . . . , c).

By 10.5, there is another unitary U2 ∈ MK+2(M(Mk(B⊗ Z0))) such that

∥U∗2 L
′

1,0(a)U2 − diag(d′K+1 ◦ s ◦ ψw,z ◦ ϕ
W (a), 0)∥ < δ for all a ∈ G. (e10.5)

Define a homomorphism L1,0 : A→ MK+1(Mk(B̃⊗ Z0)) by

L1,0(a) = d′K+1 ◦ s ◦ ϕ
π (a) for all a ∈ A.

Put Φ = ϕ ⊕ d′K ◦ s ◦ ϕ
π and U = U1U2. By (e10.4) and (e10.5), for each a ∈ G, there exist b(a), b′(a) ∈ MK+2(Mk(B⊗ Z0))

ith ∥b(a)∥ ≤ 1, ∥b′(a)∥ ≤ 1 such that

∥U∗L1,1(a)U − L1,0(a)+ b(a)∥ < 2δ and (e10.6)

∥U∗L1,1(a)U −Φ(a)+ b′(a)∥ < 2δ for all a ∈ G. (e10.7)

Put ēn = diag(
K+2  

en, en, . . . , en), n = 1, 2, . . .. Let pn = U∗ēnU , n = 1, 2, . . .. Then {pn} is an approximate identity for
K+2(Mk(B⊗ Z0)). Let S = N \ {4n− 1, 4n : n ∈ N}. If m ∈ S,

(1− pm)(p4n − p4n−1) =
{
(p4n − p4n−1) if m < 4n− 1;
0 if m > 4n

and (e10.8)

pm(1− pm)(p4n − p4n−1) = 0 for all m∈ S. (e10.9)

There is N ≥ 1 such that, for any m ≥ N and m ∈ S,

∥(1− pm)(U∗L1,1(a)U)− (1− pm)L1,0(a)∥ < 4δ, (e10.10)

∥(U∗L1,1(a)U)(1− pm)− L1,0(a)(1− pm)∥ < 4δ, (e10.11)

∥(1− pm)(U∗L1,1(a)U)− (1− pm)Φ(a)∥ < 4δ and (e10.12)

∥(U∗L1,1(a)U)(1− pm)−Φ(a)(1− pm)∥ < 4δ for all a ∈ G. (e10.13)

Note that, by the construction of ϕW and (e10.9), if m ∈ S,

(1− pm)(U∗L1,1(a)U) = (U∗L1,1(a)U)(1− pm) (e10.14)

= (1− pm)(U∗L1,1(a)U)(1− pm) for all a ∈ A. (e10.15)

It follows from (e10.10)–(e10.14), for all m ≥ N and m ∈ S,

∥pmΦ(a)−Φ(a)pm∥ < 8δ and ∥(1− pm)L1,0(a)− L1,0(a)(1− pm)∥ < 8δ for all a ∈ G. (e10.16)

y the choice of δ1 and 10.6, for all a ∈ G,

∥p1/2m Φ(a)p1/2m − pmΦ(a)∥ < ε/64 and (e10.17)

∥(1− p )1/2L (a)(1− p )1/2 − (1− p )L (a)∥ < ε/64. (e10.18)
m 1,0 m m 1,0
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oreover, the map a ↦→ (1− pm)(U∗L1,1(a)U) is G-δ-multiplicative. By (e10.18) and (e10.10), a→ (1− pm)1/2L1,0(a)(1−
pm)1/2 is F-ε-multiplicative. Define

L(a) = pmΦ(a)+ (1− pm)(U∗L1,1(a)U) for all a ∈ A.

Then, by (e10.12),

∥L(a)−Φ(a)∥ < 4δ for all a ∈ G. (e10.19)

onsequently,

∥L(ab)− L(a)L(b)∥ < 8δ for all a, b ∈ F . (e10.20)

e compute that

L(ab) = pmΦ(ab)+ (1− pm)(U∗L1,1(ab)U) for all a, b ∈ A, (e10.21)

nd, for all a, b ∈ G, by (e10.9), (e10.15) and (e10.16),

L(a)L(b) = (pmΦ(a)+ (1− pm)(U∗L1,1(a)U))(pmΦ(b)+ (1− pm)(U∗L1,1(b)U))
= pmΦ(a)pmΦ(b)+ ((1− pm)((U∗L1,1(a)U))(1− pm)(U∗L1,1(b)U))
≈8δ+δ pmΦ(a)Φ(b)pm + (1− pm)(U∗L1,1(ab)U).

ombining this with (e10.21), (e10.20)

∥pmΦ(ab)− pmΦ(a)Φ(b)pm∥ < 8δ + 8δ + δ = 17δ for all a, b ∈ F . (e10.22)

herefore (see 10.6)

∥p1/2m Φ(ab)p1/2m − p1/2m Φ(a)p1/2m p1/2m Φ(b)p1/2m ∥ < 17δ + 3ε/64 < ε/16. (e10.23)

efine L0(a) = p1/2m Φ(a)p1/2m and L1(a) = (1 − pm)1/2L1,0(a)(1 − pm)1/2. By (e10.23), L0 is F-ε-multiplicative. By (e10.19),
e10.10), (e10.12), and the choice of δ1, we finally have

∥(L0(a)+ L1(a))−Φ(a)∥ < ε for all a ∈ F .

et L00 = ϕW
: A→ W and Lw,b : W → MK+2(Mk(B̃⊗Z0)) be defined by Lw,b(b) = (1− pm)1/2(d′K ◦ s ◦ψw,z(b))(1− pm)1/2

or b ∈ W . Then L1 = L00 ◦ Lw,b. □

heorem 10.8. Let A be a non-unital separable amenable C∗-algebra which satisfies the UCT and satisfies the condition in 9.3
nd let B be a separable simple C∗-algebra with continuous scale. For any α ∈ KL(A, B), there exists an asymptotic sequential
orphism {ϕn} from A into B⊗ Z0 ⊗ K such that

[{ϕn}] = α.

roof. Let P ⊂ K (A) be a finite subset. Let ε > 0 and F ⊂ A be a finite subset. We assume that any F-ε-multiplicative
ompletely positive contractive linear map L from A, [L]|P is well-defined.
If follows from 10.2 that there exist sequences of approximately multiplicative completely positive contractive linear

aps Φn : A→ B⊢ ⊗ Z0 ⊗ K and Ψn : A→ C · 1B⊢ ⊗ Z0 ⊗ K such that, for any finite subset Q ⊂ K (A),

[Φn]|Q= α|Q+[Ψn]|Q

for all sufficiently large n, where Ψn = s ◦ π ◦ Φn (without loss of generality) and π : B⊢ ⊗ Z0 ⊗ K→ C · 1B⊢ ⊗ Z0 ⊗ K
be the quotient map. Fix a sufficiently large n.

Let {ei,j} be a system of matrix unit for K and let E be the unit of the unitization of 1B⊢ ⊗ Z0. By considering maps
↦→ (E ⊗

∑k
i=1 ei,i)Φn(a)(E ⊗

∑k
i=1 ei,i) and maps a ↦→ (E ⊗

∑k
i=1 ei,i)Ψn(a)(E ⊗

∑k
i=1 ei,i), without loss of generality, we

ay assume that the image of Φn is in Mk(B⊢⊗Z0) and that of Ψn is also in Mk(C ·1B⊢ ⊗Z0) for some sufficiently large k.
Define ı⊛ : B⊢ ⊗Z0 ⊗K→ B⊢ ⊗Z0 ⊗K by defining ı⊛(b⊗ z ⊗ k) = b⊗ j⊛(z)⊗ k for all b ∈ B⊢, z ∈ Z0 and k ∈ K (see

8.13 for j⊛). Note that

s ◦ π (Φn ⊕ s ◦ π ◦ i⊛ ◦Φn) = Ψn ⊕ s ◦ π ◦ i⊛ ◦Φn.

Let δ > 0 and let G ⊂ A be a finite subset.
It follows from virtue of 8.14, replacing Φn by Φn ⊕ s ◦ π ◦ i⊛ ◦ Φn and replacing Ψn by Ψn ⊕ s ◦ π ◦ i⊛ ◦ Φn, and by

implementing a unitary in unitization of Mk(C · 1B⊢ ⊗ Z0), we may assume that

∥π ◦Φn(g)− ϕw,z ◦ ϕz,w ◦ π (Φn(a))∥ < δ for all g ∈ G.

and Ψn = s ◦ π ◦Φn approximately factors through W , in particular, [Ψn]|P= 0. In other words,

[Φ ]| = α| . (e10.24)
n P P
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y applying 10.7, we obtain an integer K ≥ 1, F-ε-multiplicative completely positive contractive linear maps L0,n : A→
Mk(B⊗ Z0), L1,n : A→ M(K+2)k(B⊢ ⊗ Z0) and L2,n : A→ M(K+1)k(B⊢ ⊗ Z0) such that

∥L0,n(a)⊕ L1,n(a)−Φn(a)⊕ L2,n(a)∥ < ε for all a ∈ F, (e10.25)

where L1,n and L2,n factor through W . In particular,

[L1,n]|P= [L2,n]|P= 0. (e10.26)

It follows that, using (e10.24) and (e10.25)

[L0,n]|P= α|P . (e10.27)

Choose ϕn = L0,n (for all sufficiently large n). □

11. Existence theorem for determinant maps

Lemma 11.1. Let A be a stably projectionless simple C∗-algebra such that Cu(A) = LAff+(T̃ (A)) with strict comparison for
positive elements and with continuous scale. Suppose a, b ∈ A⊗ K+. Then ⟨a⟩ ≪ ⟨b⟩ (⟨a⟩ is compact contained in ⟨b⟩) if and
only if, there exists δ > 0, for any t ∈ T (A), there exists a neighborhood O(t) ⊂ T (A) such that

dt (b) > dτ (a)+ δ for all τ ∈ O(t). (e11.1)

Proof. The proof of ‘‘if’’ part is a standard compactness argument (see, for example 5.4 of [38]). Recall that T (A) is compact
in this case (see [32]). Suppose that (e11.1) holds. Let fn ∈ LAff+(T̃ (A)) such that fn ↗ sup fn ≥ ⟨b⟩. Then, for each t ∈ T (A),
there exist nt such that

f(nt )(t) > dt (b)− δ/8. (e11.2)

Since each fnt is lower semi-continuous, there is a neighborhood U(t) ⊂ O(t) such that

f(nt )(τ ) > dt (b)− δ/4 for all τ ∈ U(t). (e11.3)

It follows that

fnt (τ ) > dt (b)− δ/4 > dτ (a)+ δ/2 for all τ ∈ U(t). (e11.4)

There are finitely many such U(t1),U(t2), . . . ,U(tm) covers T (A). Put n0 = max{nti : 1 ≤ i ≤ m}. Then, if τ ∈ U(tj),

fn0 (τ ) > fntj (τ ) > dτ (a)+ δ/2. (e11.5)

This implies that fn0 > ⟨a⟩ in LAff+(T̃ (A)), which means ⟨a⟩ ≪ ⟨b⟩.
For the converse, as in Lemma 2.2 of [5] (see 7.2 of [15]), there exists a sequence of continuous fn ∈ Aff+(T (A)) such that

fn ↗ b. Let gn = fn − 1
n . Then gn ↗ b. The assumption that ⟨a⟩ ≪ ⟨b⟩ implies that, for some n0 ≥ 1, ⟨a⟩ < gn0 = fn0 −

1
n0

n Cu(A). Hence

fn0 (τ ) > dτ (a)+
1
n0

for all τ ∈ T (A). (e11.6)

ince fn0 is continuous, for each t ∈ T (A), there is a neighborhood O(t) such that

fn0 (t) > dτ (a)+
1

2n0
for all τ ∈ O(t). (e11.7)

herefore

dt (b) ≥ fn0 (t) > dτ (a)+
1

2n0
for all τ ∈ O(t). □ (e11.8)

heorem 11.2. Let A be a stably projectionless simple exact C∗-algebra with strictly comparison for positive elements, with
table rank one and with continuous scale such that Cu(A) = LAff+(T̃ (A)). Fix 1 > α > 0 and 1 > η ≥ 3/4. Let

hη ∈ {f ∈ C([0, 1],R) : f (0) = αf (1)}

such that hη is strictly increasing on [0, η], 0 ≤ hη ≤ 1, hη(0) = 0 = hη(1), and hη(η) = 1.
Let c ∈ A+ with ∥c∥ = 1 and b ∈ cAc+ with ∥b∥ = 1. Suppose that there is a non-zero homomorphism ϕ : R(α, 1)→ cAc.
Then, for any ε > 0, there exists a homomorphism ψ : R(α, 1)→ B := cAc such that

sup{|τ (ψ(hη))− τ (b)| : τ ∈ T (A)} < ε.
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roof. Let ε > 0. Since A is stably projectionless, we may assume that sp(b) = [0, 1].
Note that (hη)|[0,η]: [0, η] → [0, 1] is a bijection. Define h−1η : [0, 1] → [0, η] to be the inverse of (hη)|[0,η]. Note that

η ◦ h−1η = id[0,1]. For each f ∈ C([0, 1],R)+, define γ (f )(τ ) = τ (f ◦ h−1η (b)) for all τ ∈ T (A).
The γ above gives an affine continuous map from C([0, 1],R) → Aff(T (A)). Note that Aff(T̃ (R(α, 1))) and LAff

T̃ (R(α, 1)))+ are identified with

{(f , s) ∈ C([0, 1],R)⊕ R : f (0) = sα and f (1) = s} = {f ∈ C([0, 1],R) : f (0) = αf (1)}
and LSC([0, 1],R∼

+
)⊕α R∼

+

(see 3.7), respectively. Let γ1 = γ |Aff(T̃ (R(α,1)))+ . Then

γ1(hη)(τ ) = τ (hη ◦ h−1η (b)) = τ (b). (e11.9)

t induces an order semi-group homomorphism γ1 : LAff(T̃ (R(α, 1)))+ → LAff(T̃ (A))+. Note γ1 takes continuous functions
o continuous functions. Let r : Cu(R(α, 1)) → LAff(T̃ (R(α, 1)))+ be the rank function defined in 3.7. Define an order
emi-group homomorphism γ2 : Cu(R(α, 1))→ LAff+(T̃ (A)) by

γ2(⟨(f , s)⟩) = (1− ε/4)γ1(r((f , s)))+ (ε/4)Cu(ϕ)((f , s)). (e11.10)

We verify that γ2 is a morphism in Cu. Since the rank function r preserves the suprema of increasing sequences, it is
asy to check that γ2 also preserves the suprema of increasing sequences. Suppose that ⟨f ⟩ = ⟨(f , sf )⟩ ≪ ⟨g⟩ = ⟨(g, sg )⟩
n Cu(R(α, 1)). There is a sequence of cn ∈ Cu(R(α, 1)) such that r(cn) is continuous and r(cn) ↗ r(⟨(g, sg )⟩) (see 3.7 and
.8). Note that cn can be identified with an element in LSC([0, 1], (R∼ \ {0} ⊔Q)+)⊕α (R∼ \ {0} ⊔Q)+, at each point t , we
dentify r(cn)(t) with the corresponding values of cn(t) in R∼

+
—that is, [s] ∈ Q+ is regarded as s ∈ R+. Put c = supn r(cn).

hen c = r(⟨a⟩). For any ε1 > 0, (1+ ε1)r(c) ≥ r(⟨g⟩). Since ⟨f ⟩ ≪ ⟨g⟩, there exists n0 ≥ 1 such that

(1+ ε1)r(cn0 ) ≥ r(⟨f ⟩). (e11.11)

his, in particular, implies that r(⟨f ⟩) is a bounded function.
Now let zn ∈ Cu(R(α, 1)) such that zn ↗ sup zn ≥ γ2((g, sg )). By 11.1, there exists δ > 0 such that, for each t ∈ T (A),

here is a neighborhood U(t) such that

dt (ϕ(g)) > dτ (ϕ(f ))+ δ for all τ ∈ U(t). (e11.12)

hoose 0 < ε1 < ε · δ/16(M + 1). Then, for some n0 ≥ 1,

(1− ε/4)(1+ ε1)γ1(r(cn0 )) > (1− ε/4)(1+ ε1)γ1(r(⟨f ⟩)). (e11.13)

ince r(cn0 ) is continuous, γ1(r(cn0 )) is also continuous. Therefore, for each t ∈ T (A), there is a neighborhood O(t) such
hat

(1− ε/4)γ1(r(cn0 ))(t) > (1− ε/4)γ1(r(⟨f ⟩))(τ )− ε1 for all τ ∈ O(t). (e11.14)

ut N(t) = O(t) ∩ U(t). Then, by (e11.12) and (e11.14) as well as (e11.10),

γ2(⟨g⟩)(t) > γ2(r(⟨f ⟩))(τ )+ εδ/2 for all τ ∈ N(t). (e11.15)

t follows from 11.1 that γ2(⟨f ⟩)≪ γ2(⟨g⟩). This shows that γ2 is a morphism in Cu. Since K0(R(α, 1)) = {0}, it induces a
orphism γ∼2 : Cu

∼(R(α, 1))→ Cu∼(A) (see 7.3 of [15]).
It follows from [49] that there exists a homomorphism ψ : R(α, 1)→ B = cAc such that

dτ (ψ(g)) = γ2(⟨g⟩)(τ ) for all τ ∈ T (A) (e11.16)

nd for all g ∈ R(α, 1)+. There is f ∈ R(α, 1)+ such that dτ (f ) = τ (hη) for all τ ∈ T (R(α, 1)) (see 3.4). Therefore

dτ (ψ(f )) = lim
n→∞

τ (ψ(f 1/n)) = lim
n→∞

τ ◦ ψ(f 1/n) (e11.17)

= dτ◦ψ (f ) = (τ ◦ ψ)(hη) for all τ ∈ T (A). (e11.18)

hen, by (e11.10) and (e11.16),

|dt (ψ(f ))− γ1(r(f ))(t)| < ε/4 for all t ∈ T (R(α, 1)). (e11.19)

ince γ1(r(f )) = γ1(ĥη), we estimate that

sup{|τ ◦ ψ(hη)− τ (b)| : τ ∈ T (A)} < ε.

The lemma follows. □
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11.3. Let A be the AH-algebras of real rank zero with unique tracial state as associated with BT in Section 6. So
T = limn→∞(Bn,Φn). Write

Bn = Wn ⊕ En and En = M(n!)2 (A(W , αn)), n = 1, 2, . . . .

e may write A = ∪∞n=1Cn, where Cn = Cn,1 ⊕ Cn,2, Cn,1 ⊕ Cn,2 ⊂ Cn+1,1 ⊕ Cn+1,2 and Cn,1 is a circle algebra and Cn,2 is
a homogeneous C∗-algebra with torsion K1. In fact, Cn,2 may be written as Mr(n)(C(Xn)), where Xn is a finite CW complex
with dimension no more than 3 and r(n) ≥ 6 (see [13]). In particular (by [48]), K1(Cn,2) = U(Cn,2)/U0(Cn,2). We use
jn : Cn → Cn+1 for the embedding.

Fix a finitely generated subgroup F0 ⊂ K1(BT ). We may assume that F ′0 ⊂ K1(Bn) such that (Φn,∞)∗1(F ′0) = F0. Write
Bn = En ⊕Wn, where En = M(n!)2 (A(W , αn)). We also write

Ck,1 = Mr(k(1))(C(T))⊕Mr(k(2))(C(T))⊕ · · ·Mr(k(mf ))(C(T)).

with the identity of each summand being pj, j = 1, 2, . . . , k(mf ) = mf ,—here we denote mf by k(mf ) to emphasise
that it corresponds to Ck. We choose n ≥ 1 so that n ≥ mf . Put F ′′1 = π ′n∗1(F

′

0), where π ′n : Bn → A defined by
π ′n(a⊕b) = π (a) for all a ∈ M(n!)2 (A(W , αn)) and b ∈ Wn, where πn : M(n!)2 (A(W , αn))→ M(n!)2 (A) is the quotient map. Note
that πn∗1 : K1(Bn) → K1(A) is an isomorphism. We may assume that F ′′1 ⊂ (jk,∞)∗1(K1(Ck)). Let F̃ = π−1n∗1((jk,∞)∗1(K1(Ck)))
and F = (Φn,∞)∗1(F̃ ). (Here, we identify K1(M(n!)2 (A)) with K1(A) and K1(M(n!)2 (Ck)) with K1(Ck).)

The subgroup F may be called the standard subgroup of K1(BT ).
In what follows tr is the unique tracial state on Q . We will define an injective homomorphism jF ,u : F → U(BT )/CU(BT ).

We identify ˜A(W , αn) with the following C∗-algebra (recall s : A→ Q is defined in the beginning of 7.2):

{(fλ, a) ∈ C([0, 1],Q ⊗ Q )⊕ A : fλ(0) = (s(a− λ)⊗ eαn )+ λ · 1Q⊗Q and fλ(1) = s(a− λ)⊗ 1Q + λ · 1Q⊗Q },

where λ ∈ C and a− λ = a− λ · 1A ∈ A. Note that (f , 1A), where f (t) = 1Q ⊗ 1Q , is added to A(W , α).
Write F = Zk(mf ) ⊕ Z/k1Z⊕ · · ·Z/kmtZ. Put m = k(mf ) + k(mt ). Let x1, x2, . . . , xk(mf ) be the free cyclic generators for

Zk(mf ) and x0,j be cyclic generators for each Z/kjZ, j = 1, 2, . . . , k(mt ), respectively.
Fix unitaries z ′1, z

′

2, . . . , z
′

k(mf )
, z ′0,1, z

′

0,2, . . . , z
′

0,k(mt ) ∈ Ck such that [z ′i ] = xi, i = 1, 2, . . . , k(mf ) and [z ′0,j] = x0,j,
j = 1, 2, . . . , k(mt ) = mt . Note that (z ′0,j)

kj ∈ U0(Cn,2). We may choose z ′0,j so that (z ′0,j)
kj ∈ CU(Cn,2). We further assume

that z ′j = diag(z(0)j , 1, . . . , 1), where z(0)j is the standard unitary generator for C(T), j = 1, 2, . . . , k(mf ).
We write s(z ′j ) = exp(ih′j,0) exp(ih

′

j,1), where h′j,0, h
′

j,1 ∈ s(pj)Qs.a.s(pj). (Note that here we use the fact that the exponen-
tial rank for Q is 1+ε (see [29])). Let h′′j,0, h

′′

j,1 ∈ R such that h′′j,l = tr(h′j,l), l = 0, 1. Put zj = z ′j exp(−2iπh
′′

j,1) exp(−2iπh
′′

j,0),
j = 1, 2, . . . ,m(k). Then [zj] = [z ′j ] = xj. Note that s(zj) = exp(2iπhj,0) exp(2iπhj,1) such that hj,0, hj,1 ∈ (s(pj)Qs(pj))s.a.
and tr(hj,0) + tr(hj,1) = 0, j = 1, 2, . . . , k(mf ). We also choose z0,j and s(z0,j) = exp(ihj,0,0) exp(ihj,0,1) such that
tr(hj,0,0)+ tr(hj,0,1) = 0, and [z0,j] = x0,j.

Define uj = (fj, zj) as follows.

fj(t) = (s(zj)⊗ eαn )⊕ ((exp(i2tπhj,0) exp(i2tπhj,1))⊗ (1− eαn )) for all t ∈ [0, 1]. (e11.20)

Note that

fj(0) = (s(zj)⊗ eαn )⊕ (1⊗ (1Q − eαn )) and (e11.21)

fj(1) = (s(zj)⊗ eαn )⊕ ( exp(i2πhj,0) exp(i2πhj,1)⊗ (1− eαn )) = s(zj)⊗ 1Q . (e11.22)

In fact

fj(t) = exp(2iπdj,0(t)) exp(2iπdj,1(t)), (e11.23)

where

dj,0(t) = hj,0 ⊗ eαn + thj,0 ⊗ (1Q − eαn ) and (e11.24)

dj,1(t) = hj,1 ⊗ eαn + thj,1 ⊗ (1Q − eαn ). (e11.25)

In particular, (fj, zj) ∈ ˜A(W , αn) and uj ∈ U( ˜A(W , αn)), j = 1, 2, . . . , k(mf ).
Write uj = ζj + µ(uj), where ζj ∈ A(W , αn) and µ(uj) is a scalar. Since dj,0, dj,1 ∈ A(W , αn)s.a., µ(uj) = 1. In particular,

(f , zj) ∈ ˜A(W , αn) and uj ∈ U( ˜A(W , αn)), j = 1, 2, . . . , k(mf ).

Let u0,j = (f0,j, z0,j) ∈ ˜A(W , αn) be defined as follows:
f0,j(t) = exp(2iπdj,0,0(t)) exp(2iπdj,0,1(t)), (e11.26)
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here

dj,0,0(t) = hj,0,0 ⊗ eαn + thj,0,0 ⊗ (1Q − eαn ) and (e11.27)

dj,0,1(t) = hj,0,1 ⊗ eαn + thj,0,1 ⊗ (1Q − eαn ). (e11.28)

ne has, for some ζ0,j ∈ A(W , αn),

u0,j = ζ0,j + 1 ˜A(W ,αn)
.

The map Ju,F ,n : F̃ → U(B̃n)/CU(B̃n) defined by xj ↦→ uj and x0,j ↦→ u0,j is an injective homomorphism and define
u,F : F → U(B̃T )/CU(B̃T ) by identifying ūj with Φn,∞(uj) and ū0,j with Φn,∞(u0,j). It should be noted, by our choice,
ju0,j = 0.

11.4. We keep notation used in 11.3. Define

En,k = {(f , a) ∈ M(n!)2 (C([0, 1],Q ⊗ Q ))⊕M(n!)2 (Ck) : f (0) = s(a)⊗eαn and f (1) ∈ s(a)⊗ 1Q },

n = 1, 2, . . ., where s : M(n!)2 (Ck) → M(n!)2 (Q ) is the restriction of s : M(n!)2 (A) → M(n!)2 (Q ) to M(n!)2 (Ck) ⊂ M(n!)2 (A). Fix
ε > 0 and a finite subset F ⊂ BT . Without loss of generality, we may assume that F ⊂ Bn. Denote by FAw

= qEn (F),
where qEn : Bn → En = M(n!)2 (A(W , αn)) is the projection map. Let

Ck,1 =

k(mf )⨁
i=1

Mr(k(i))(C(T)).

Now write u1, u2, . . . , uk(mf ) ∈ Ẽn which represent the free generators of K1(En,k). We may assume that πn(uj) = zj, the
unitary generator for Mr(k(j))(C(T)), j = 1, 2, . . . , k(mf ), and where πn : En → M(n!)2 (A) is the quotient map. We also assume
that zj and uj have the form (e11.20).

Fix ε/2 > δ > 0 and a finite subset G′ ⊂ Ck with G′ ⊃ πn,k(FAw), where πn,k : En,k → M(n!)2 (Ck) is the quotient map.
Choose a finite subset F1 ⊃ FAw such that πn,k(F1) ⊃ G′.

We also assume that there is an G′-δ-multiplicative completely positive contractive linear map L : A→ Ck such that

∥L(a)− a∥ < δ/4 for all a ∈ G′, (e11.29)

where we also use L to denote L ⊗ idM(n!)2
: M(n!)2 (A) → M(n!)2 (Ck). Choose δ > δ0 > 0 such that, for any (f , a) ∈ F1, if

|t − t ′| < 2δ0,

∥f (t)− f (t ′)∥ < δ/16 for all t, t ′ ∈ [0, 1]. (e11.30)

Define L̃ : En → En,k as follows: L̃((f , a)) = (g, L(a)), where

g(t) =

⎧⎪⎨⎪⎩
((1− 2t/δ0)s(L(a))⊗ eαn +

2t
δ0
s(a)⊗ eαn ) for all t ∈ [0, δ0/2],

f ( t−δ0/21−δ0
) for all t ∈ (δ0/2, 1− δ0/2],

1−t
δ0/2

s(a)⊗1Q +
t−(1−δ0/2)

δ0/2
s(L(a))⊗ 1Q for all t ∈ (1− δ0/2, 1].

ne verifies that L̃ is an F1-δ/2-multiplicative completely positive contractive linear map from En into En,k.
We now assume that αn < αn+1. Let r1 =

1−αn+1
1−αn

and r2 =
αn+1−αn
1−αn

. Let 1 > η > 3/4 and µj ≥ 0, j = 1, 2, . . . , k(mf ).
Let ωj = µj/tr(s(pj)), j = 1, 2, . . . , k(mf ).

Fix a continuous increasing surjective function g1 : [0, η] → [0, 1] such that g1(0) = 0, g1(η) = 1 and decreasing
surjective function g2 : [η, 1] → [0, 1] such that g2(η) = 1, g2(1) = 0. Define h|[0,η]= g1 and h|[η,1]= g2. In particular,
h = (0) = 0 and h(1) = 0.

Define a homomorphism ϕ
f
c,R : M(n!)2 (Ck,1)→ M(n!)2 (C([0, 1],Q )⊗ er2 ) such that

ϕ
f
c,R(zj)(t) = s(zj) exp(i2π (ωj/r2)h(t))s(pj)⊗ er2 for all t ∈ [0, 1]. (e11.31)

Define ϕc,R = ϕ
f
c,R|M(n!)2 (Ck,1)

⊕(ϕt
c,R)|M(n!)2 (Ck,2)

: M(n!)2 (Ck)→ M(n!)2 (C([0, 1],Q )⊗ er2 ), where

ϕt
c,R(a)(t) = s(a)⊗er2 for all t ∈ [0, 1]. (e11.32)

Let ϕA,R : En → M(n!)2 (C([0, 1],Q )⊗ er2 ) be defined by ϕA,R((f , a)) = ψc,R ◦ L ◦ πA(a) for all a ∈ En and where
πA : M(n!)2 (A(W , αn))→ M(n!)2 (A) is the quotient map.

Now define a completely positive contractive linear map Ψ : En → M(n!)2 (A(W , αn+1)) as follows. We will use some of
the notation in Section 7. Define (see Section 7 for the notation)

P (Ψ ((f , a))) = L(a) and (e11.33)
a
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Pf (Ψ ((f , a))) = diag(Pf ◦ ϕR,r1 ◦ ϕA,R,αn (L̃(f , a)), (ϕA,R(f , a)))

= diag(Pf ◦ ϕR,r1 ◦ ϕA,R,αn (g, L(a)), (ϕA,R(f , a))). (e11.34)

ote that

Pf (Ψ (f , a))(0) = diag(s(L(a))⊗ eαnr1 , s(L(a))⊗ er2 ) = s(L(a))⊗ eαn+1 and (e11.35)

Pf (Ψ (f , a))(1) = diag(s(L(a))⊗ er1 , s(L(a))⊗ er2 ) = s(L(a))⊗ 1Q . (e11.36)

Let

Wj(t) = (exp(i2πhj,0)) exp(i2πhj,1)⊗ eαnr1 ⊕ (exp(i2π thj,0)) exp(i2π thj,1)⊗ (er1 − eαnr1 )
+s(zj) exp(i2π (ωj/r2)h(t))s(pj)⊗ er2 , j = 1, 2, . . . , k(mf ).

Let E ′n+1 := M(n!)2 (A(W , αn+1)), then in Ẽ ′n+1 (with large G′),

∥Ψ (uj)− (Wj, zj)∥ < δ, j = 1, 2, . . . , k(mf ). (e11.37)

(Here the unitalization of Ψ is also denoted by Ψ .) Therefore there exists Hj,00 ∈ (E ′n+1)s.a. with ∥Hj,00∥ ≤ 2 arcsin(δ/2)
such that

⌈Ψ (uj)⌉ = exp(i2πHj,00)(Wj, zj), j = 1, 2, . . . , k(mf ). (e11.38)

Put

Hj,0(t) = hj,0 ⊗ (eαnr1 ⊕ er2 )⊕ thj,0 ⊗ (er1 − eαnr1 ), (e11.39)

Hj,1(t) = hj,1 ⊗ (eαnr1 ⊕ er2 )⊕ thj,1 ⊗ (er1 − eαnr1 ) and (e11.40)

Hj,2(t) = (ωj/r2)h(t)s(pj)⊗ er2 . (e11.41)

Noting h(0) = 0 and h(1) = 0, we see that Hj,l ∈ M(n!)2 (R(αn+1, 1)). Therefore

ϕA,R,αn+1 (⌈Ψ (uj)⌉) = exp(i2πHj,00) exp(i2πHj,0) exp(i2πHj,1) exp(i2πHj,2). (e11.42)

Note that (recall that tr(hj,0)+ tr(hj,1) = 0, j = 1, 2, . . . , k(mf )), for all t ∈ [0, 1],

tr(Hj,0 + Hj,1)(t) = 0 (e11.43)

We then compute that, for all t ∈ [0, 1],

tr(Hj,00 + Hj,0 + Hj,1 + Hj,2)(t) = tr(Hj,00)+ (ωj/r2)h(t) · tr(s(pj))tr(er2 ) (e11.44)

= tr(Hj,00)+ µjh(t). (e11.45)

It follows that, in E ′′n+1 = M(n!)2 (R(αn+1, 1)), for all t ∈ [0, 1],

|DE′′n+1
(ϕA,R,αn+1 (⌈Ψ (uj)⌉))(t)− µjh(t)| < δ. (e11.46)

Let

W0,j(t) = exp(i2πhj,0,0) exp(i2πhj,0,1)⊗ eαnr1 ⊕ exp(i2π thj,0,0) exp(i2π thj,0,1)⊗ (er1 − eαnr1 )
+s(zj)s(pj)⊗ er2 , j = 1, 2, . . . ,mt .

A similar computation shows that

|DE′′n+1
(ϕA,R,αn+1 (⌈Ψ (u0,j)⌉))(t)| < δ. (e11.47)

We will keep notations in 11.3 and 11.4 in the following statement.

Lemma 11.5. Let C be a non-unital separable simple C∗-algebra in D with continuous scale such that ker ρC = K0(C) and let
B = BT be as constructed in 7.2.

Let ε > 0, F ⊂ B be a finite subset, let P ⊂ K (B) be a finite subset and let 1/2 > δ0 > 0.
For any finitely generated standard subgroup F (see 11.3), any finite subset S ⊂ F , there exists an integer n ≥ 1 with the

following property:
for any finite subset U ⊂ U(B̃T ) such that U ⊂ JF ,u(F ) ⊂ JF ,u((Φn,∞)∗1(K1(En))) (see the end of 11.3) and Π(U) = S, where
: U(B̃)/CU(B̃)→ K1(B) is the quotient map, for any homomorphism
γ : JF ,u((Φn,∞)∗1(K1(En)))→ Aff(T (C̃))/Z, such that γ |TorJu,F ((Φn,∞)∗1(K1(En)))= 0 and any c ∈ C+ with ∥c∥ = 1, there exists

-ε-multiplicative completely positive contractive linear map Φ : BT → cCc such that

[Φ]|P= 0 and dist(Φ†(z̄), γ (z̄)) < δ0 for all z ∈ U (e11.48)
(in U0(C̃)/CU(C̃) ∼= Aff(T (C̃))/Z).

(here we assume dist(Φ†(z̄), ⌈Φ(z)⌉) < δ /4 for all z ∈ U–see 2.7 for the definition of Φ†).
0
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roof. Fix ε > 0, F and P as described by this lemma. Fix δ1 > 0, a finite subset G ⊂ BT . We assume that F ⊂ G. Choose
n0 ≥ 1 such that there exists finite subset G′ ⊂ Bn0 such that, for any b ∈ G, there exists b′ ∈ G′ such that

∥b−Φn,∞(b′)∥ < δ1/64. (e11.49)

We assume that δ1 < min{δ0/16, ε/16}.
Choose k ≥ 1 as in 11.3 and write F = Zmf ⊕ Z/k1Z⊕ · · ·Z/kmtZ. Fix a set of generator S of F .
To simplify notation, without loss of generality, we may assume that G ⊂ Φn0,∞(G′). We also assume, without loss of

generality, that P ⊂ [Φn0,∞](Bn). Let P ′ ⊂ K (Bn0 ) be a finite subset such that P ⊂ [Φn0,∞](P
′).

Let U ⊂ JF ,u(F ) and, let zj and uj, j = 1, 2, . . . ,mf , and z0,j, and u0,j, j = 1, 2, . . . ,mt , be as described in 11.3. Without
loss of generality, we may assume that U = {ū1, ū2, . . . , ūmf , ū0,1, . . . , ū0,mt }.

We also assume that there exists a completely positive contractive linear map L : BT → Bn such that, for all n ≥ n0,

∥L(Φn,∞(b′))− b′∥ < δ1/64 for all b′ ∈ G′ (e11.50)

e further assume that δ1 is sufficiently small and G is sufficiently large so that [L′]|P is well defined for any G-δ1-
ultiplicative completely positive contractive linear map from BT . Moreover, L′† can be defined so that dist(L′†(z̄), ⌈L′(z)⌉)
δ0/4 for all z ∈ U (see 2.7).
Choose δ = δ1

16(mf+mt+2)
and choose n ≥ n0 +mf +mt + 2 as in 11.4 associated with δ/64 (in place ε) and G (in place

of F).
Choose non-zero elements ci,l ∈ cCc+ which are mutually orthogonal, i = 1, 2, . . . ,mf , l = 1, 2.
Choose 1 > η0 > 0 such that

η0 ≤ inf{dτ (cj,l) : τ ∈ T (C)}, 1 ≤ j ≤ mf and l ∈ {1, 2}.

Choose gj,+, gj,− ∈ Aff(T (C))+ and λj,+, λj,− ∈ R+ such that

0 < gj+(τ ) ≤ η0, 0 < gj−(τ ) ≤ η0 for all τ ∈ T (C) and (e11.51)

γ (ūj) = λj,+gj+ − λj,−gj−, j = 1, 2, . . . ,mf . (e11.52)

Let Pn : Bn → En be the projection map, and let G′′ ⊂ En be a finite subset such that G′′ ⊃ P(G′).
Define ϕ′j,l : M(n!)2 (A(W , αn))→ M(n!)2 (R(αn+1, 1)) be as defined (denoted by ϕA,R,αn+1 ◦Ψ there) in 11.4 (with µj = λj,+

nd µi = 0 if i ̸= j (for ϕ′j,1); and with µj = λj,− and µi = 0 if i ̸= j (for ϕ′j,2)) such that

⌈ϕ′j,l(uj)⌉ = exp(
√
−12πHj,00) exp(

√
−12πHj,0) exp(

√
−12πHj,1) exp(

√
−12πHj,2,l), (e11.53)

here Hj,00,Hj,0,Hj,1,Hj,2,l ∈ M(n!)2 (R(αn+1, 1)), l = 1, 2, such that

tr(Hj,00(t)+ Hj,0(t)+ Hj,1(t)+ Hj,2,l(t)) = tr(Hj,00(t))+ tr(Hj,2,l)(t), l = 1, 2, (e11.54)

tr(Hj,2,1)(t) = λ+h(t), tr(Hj,2,2)(t) = λ−h(t) and (e11.55)

|tr(Hj,00(t))| < δ/4 (e11.56)

for all t ∈ [0, 1], where h(t) is C([0, 1])+ such that h(0) = 0, h(3/4) = 1, h(1) = 0, h(t) is strictly increasing on [0, 3/4]
and strictly decreasing on [3/4, 1]. Moreover ϕ′j,l is G′′-δ/8(mf )-multiplicative,

⌈ϕ′j,l(ui)⌉ = exp(2π
√
−1Hi,00) exp(2π

√
−1Hi,0) exp(2π

√
−1Hi,1), if i ̸= j and (e11.57)

[ϕ′j,l]|Q = 0, (e11.58)

where Q = [Pn ◦Φn,∞](P ′). (Note that Ki(R(αn+1, 1)) = {0}, i = 0, 1). Note since C ∈ D, for each j, there exists a non-zero
homomorphism ϕ′′j,l : M(n!)2 (R(αn+1, 1))→ Cj,l := cj,lCcj,l, j = 1, 2, . . . ,mf . It follows from 11.2 that there is, for each j and
l, a homomorphism ϕ′′j,l : M(n!)2 (R(αn+1, 1))→ Cj,l such that

sup{|τ ◦ ϕ′′j,1(h)− gj,+(τ )| : τ ∈ T (C)} < δ/2 and (e11.59)

sup{|τ ◦ ϕ′′j,2(h)− gj,−(τ )| : τ ∈ T (C)} < δ/2. (e11.60)

Let ϕj,l = ϕ′′j,l ◦ ϕ
′

j,l : En → Cj,l. Recall ϕ′j,l is of the form ϕA,R,αn+1 ◦ Ψ , we compute that (also using (e11.43) and (e11.46),
and, see 2.1 for the notation ⌈ · ⌉),

DC̃ (
2∑

l=1

⌈ϕj,l(uj)⌉) ≈2δ1/16(mf ) (λj+gj,+ − λj−gj,−) (in Aff(T (C̃))/Z) (e11.61)

= γ (ūj) (in Aff(T (C̃))/Z) (e11.62)

D (⌈ϕ (u )⌉) ≈ 0 (in Aff(T (C̃))/Z), i ̸= j. (e11.63)
C̃ j,l i 2δ1/16(mf )
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imilarly, using (e11.47), we have

DC̃ (
2∑

l=1

(⌈ϕj,l(u0,i)⌉)) ≈2δ1/16(mf ) 0 (in Aff(T (C̃))/Z). (e11.64)

Now define Φ ′ : En →
⨁mf

j=1(
⨁2

l=1 Cj,l) by Φ ′ =
∑mf

j=1(
∑2

l=1 ϕj,l). From the above estimates,

dist(Φ†(z̄), γ (z̄)) < δ0 for all z ∈ U . (e11.65)

oreover, since Φ ′ factors through M(n!)2 (R(αn+1, 1)),

[Φ ′]|Q= 0. (e11.66)

efine Φ = Φ ′ ◦ Pn ◦ L. We check that Φ meets the requirements. □

emma 11.6. Let C be a non-unital separable C∗-algebra. Suppose that u ∈ U(Ms(C̃)) (for some integer s ≥ 1) with [u] ̸= 0
in K1(C) but uk

∈ CU(Ms(C̃)) for some k ≥ 1. Suppose that πC (u) = e2iπθ for some θ ∈ (Ms)s.a., where πC : Ms(C̃)→ Ms is the
uotient map. Then sk · tr(θ ) ∈ Z, where tr is the tracial state of Ms.
Let B be a stably projectionless simple separable C∗-algebra with ker ρB = K0(B) and with continuous scale. For any ε > 0,

here exist δ > 0 and finite subset G ⊂ C satisfying the following: If L1, L2 : C → B are two G-δ-multiplicative completely
ositive contractive linear maps such that [L1](u) = [L2](u) in K1(B), then

dist(⌈L1(u)⌉, ⌈L2(u)⌉) < ε, (e11.67)

here u is as in the first paragraph.

roof. Write u = e2
√
−1πθ
+ ζ , where ζ ∈ Ms(C) and θ ∈ (Ms)s.a.. Therefore, if uk

∈ CU(Ms(C̃)), then sktr(θ ) ∈ Z.
Note Li is originally defined on C and the extension Li : Ms(C̃)→ Ms(B̃) has the property that Li(u) = e2

√
−1πθ
+ Li(ζ ),

i = 1, 2. To simplify notation, without loss of generality, we may assume that ⌈L1(u)⌉ · ⌈L2(u∗)⌉ ∈ U0(Ms(B̃)). Note that

πB(⌈L1(u)⌉ · ⌈L2(u∗)⌉) = e2
√
−1πθe−2

√
−1πθ
= 1

(where πB : Ms(B̃)→ Ms is the quotient map). By 6.1, we may write

⌈L1(u)⌉ · ⌈L2(u∗)⌉ =
n∏

j=1

exp(2
√
−1πhj) for all some h1, h2, . . . , hn ∈ Ms(B̃)s.a with

πB(hj) = 0 and πB(exp(2
√
−1πhj)) = 1 for all j. (e11.68)

t follows from 14.5 of [35] that, by choosing small δ and large G (independent of L1 and L2) there is h0 ∈ Ms(B̃)s.a. such
hat ∥h0∥ < min{1, ε}/4s(k+ 1) and

((exp(2iπh0))(
n∏

j=1

exp(2iπhj)))k ∈ CU(Ms(B̃)). (e11.69)

y (e11.68), πB(exp(2ih0)) ∈ CU(Ms). Then st0(h0) ∈ Z. However, since ∥h0∥ < 1/4s(k + 1), t0(h0) < 1/4s(k + 1). This
mplies that t0(h0) = 0. Note also U0(B̃)/CU(B̃) = Aff(T (B̃))/Z. Therefore (by (e11.69)), there is an integer m ∈ Z such that,
or any τ ∈ T (B̃),

kτ (
n∑

j=1

hj + h0/k) = m. (e11.70)

or any τ0 ∈ T (B) and any 0 < α < 1, t = ατ0 + (1− α)t0 is a tracial state of B̃. Then (by (e11.68)),

kt(
n∑

j=1

hj + h0/k) = kατ0(
n∑

j=1

hj)+ ατ0(h0/k)) = m. (e11.71)

o kατ0(
∑n

j=1 hj + h0/k) = m for any 0 < α < 1. It follows that

τ0(
n∑

hj + h0/k) = 0 for all τ0 ∈ T (B̃). (e11.72)

j=1

60



G. Gong and H. Lin Journal of Geometry and Physics 158 (2020) 103865

I

T

1

P
o
e

P
a
i
f
c
(

t follows that

|τ (
n∑

j=1

hj)| < ε/2(k+ 1) for all τ ∈ T (B̃). (e11.73)

hus (e11.67) holds. □

2. Construction of homomorphism

roposition 12.1. Let A be a separable simple C∗-algebra in D. Suppose that ker ρA = K0(A). Then there exists a sequence
f approximately multiplicative completely positive contractive linear maps {ϕn} from A to W which maps strictly positive
lements to strictly positive elements.

roof. Fix τ ∈ T (A). Define γ : T (W)→ T (A) by γ (tW ) = τ , where tW is the unique tracial state of W . Then γ induces
n order semi-group homomorphism from LAff(T̃ (A)) onto LAff(T̃ (W)). Since ker ρA = K0(A) and K0(W) = 0, this in turn
nduces a homomorphism Γ : Cu∼(A)→ Cu∼(W) (see 7.3 of [15]). Fix a strictly positive element a0 ∈ A with ∥a∥ = 1. Let
a0 > 0 be the associated number (see 3.9). There exists a sequence of approximately multiplicative completely positive
ontractive linear maps ψn : A→ Dn such that ψn(a0) is a strictly positive element of Dn, t(f1/4(a0)) ≥ fa0 for all t ∈ T (Dn),
where Dn is the same as constructed in the proof of 9.1 of [15] and ψn is the same as ϕ1,n). Moreover,

lim
n→∞

sup{|τ (a)− τ ◦ ψn(a)| : τ ∈ T (A)
w
} = 0 for all a ∈ A

(see the proof of 9.1 of [15]). In particular, this implies that limn→∞ ∥ψn(x)∥ = ∥x∥ for all x ∈ A. For each n, let ın : Dn → A
be the embedding.

Let λn = Γ ◦ (Cu∼(ın)). It follows from [49] that there is a homomorphism hn : Dn → W such that

Cu∼(hn) = λn, n = 1, 2, . . . .

By passing a subsequence if necessary, we may assume that

lim
n→∞
∥hn ◦ ψn(ab)− hn ◦ ψn(a)hn ◦ ψn(b)∥ = 0 for all a, b ∈ A.

By using an argument used in the proof of 12.4 of [15], we may also assume that hn ◦ψn(a0) is a strictly positive element
of W . □

Remark 12.2. In the absence of the condition K0(A) = ker ρA, the proof of 12.1 shows that the conclusion of 12.1 holds
if the assumption is changed to that A has at least one non-zero W-trace. The proof of Proposition 12.1 also shows that
every tracial state of simple C∗-algebras in D with K0(A) = ker ρA is a W-trace. Proposition 12.1 can also be obtained from
the proof of 8.8.

The following is a number theory lemma which may be known.

Lemma 12.3. Let a1, a2, . . . , an be non-zero integers such that at least one of them is positive and one of them is negative.
Then, for any d ∈ Z, if a1x1 + a2x2 + · · · + anxn = d has an integer solution, then it must have a positive integer solution.

Proof. We will prove it by induction. Suppose that a, b ∈ Z such that a > 0 and b < 0. Suppose also there are x0, y0 ∈ Z
such that ax0 + by0 = d. Then, for any integer m ∈ Z, and any x = x0 + bm and y = y0 − am,

a(x0 + bm)+ b(y0 − am) = d. (e12.1)

Thus, by choosing negative integer m with large |m|, both x0 + bm and y0 − am are positive. This proves the case n = 2.
Suppose the lemma holds for n − 1 with n ≥ 3. Without lose of generality, let us first assume that a1 and a2 have

different signs. Suppose {x01, x
0
2, . . . , x

0
n} is an integer solution for a1x1+ a2x2+ · · ·+ anxn = d, Let k = a1x01+ a2x02+ · · ·+

an−1x0n−1. Now we divided it into two cases:
Case 1: k and an have opposite signs. By induction assumption there are positive integers x′1, x

′

2, . . . , x
′

n−1 such that

k = a1x′1 + a2x′2 + · · · + an−1x′n−1, (e12.2)

since a1a2 < 0 and n ≥ 3. On the other hand, by applying the case n = 2, we have integers x > 0 and y > 0 such that
kx+ any = d.

Let xi = xx′i for i ∈ {1, 2...n− 1} and xn = y to get desired positive integer solution for
n∑

i=1

xiai = x
n−1∑
i=1

x′iai + any = d. (e12.3)

Case 2: k and a have the same sign.
n
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By the induction assumption there are positive integers: x′1, x
′

2, . . . , x
′

n−1 such that

−k = a1x′1 + a2x′2 + · · · + an−1x′n−1 (e12.4)

(recall a1a2 < 0). On the other hand, applying the case n = 2 (note that −k and an have opposite signs), we have x > 0
and y > 0 such that −kx+ any = d. Finally let xi = xx′i for i ∈ {1, 2...n− 1} and xn = y to get the desired positive integer
solution. □

12.4. Recall that, from 7.2, Z0 is an inductive limit of Bm = Wm⊕M(m!)2 (A(W , αm)) and recall that K0(Z0) = Z and K1(Z0) =
{0}. Let Em = M(m!)2 (A(W , αm)) be as in 7.2. For any m, K0(Em) = Z and K1(Em) = {0}. Let id : K0(Z0) ∼= K0(Em) be the
somorphism. Then it induces a unique element in KK (Z0, Em) and will be denote by id. Let zZ = [1] ∈ Z = K0(Z0) be the
enerator of K0(Z0). Suppose that C is a separable amenable C∗-algebra satisfies the UCT. Denote by κZ0 ∈ KK (C ⊗Z0, C)
he element such that (κZ0 )∗i : Ki(C ⊗Z0)→ Ki(C)⊗ Z = Ki(C) is the isomorphism with (κZ0 )∗i(x⊗ zZ) = x for x ∈ Ki(C),
iven by Kunneth’s formula, i = 0, 1.

emma 12.5. Let C be a separable amenable C∗-algebra which satisfies the condition in 9.3 and which satisfies the UCT. There
xists a sequence of approximate multiplicative completely positive contractive linear maps ϕn : C⊗Z0 → C⊗Mk(n) (for some
ubsequence {k(n)}) which maps strictly positive elements to strictly positive elements such that

[ϕn]|P= (κZ0 )|P , (e12.5)

here κZ0 ∈ KK (C⊗Z0, C) is an invertible element which induces (κZ0 )∗i, for every finite subset P ⊂ K (C) and all sufficiently
arge n.

roof. Let ε > 0 and let F ⊂ C be a finite subset.
Without loss of generality, we may assume that [L]|P is well-defined for any F-ε-multiplicative completely positive

ontractive linear map from C . We may also assume that P generates the subgroup

GP ⊂ K0(C)
⨁

K1(C)
⨁ ⨁

i=1,0

m⨁
j=1

Ki(C,Z/jZ) for some m ≥ 2.

Let δ > 0 and G ⊂ A be a finite subset. Let A be a unital simple AF-algebra with K0(A) = Q ⊕ Z and with ker ρA = Z.
rite

A = ∪∞n=1Fn,

here 1A ∈ Fn ⊂ Fn+1 is a sequence of finite dimensional C∗-algebras. Recall that there is an identification of K0(Z0) with
er ρA ∼= Z ⊂ K0(A). Therefore there are sequences of pair of projections pn, qn ∈ Fn such that

(jn,∞)∗0([pn] − [qn]) = zZ,

here jn,∞ : Fn → A is the embedding and zZ is [1] in Z ∼= ker ρA. Without loss of generality we may assume that

[pn] ̸= [qn] ∈ K0(Fn) for all n ≥ 1. (e12.6)

rite

Fn = Mk1 ⊕Mk2 ⊕ · · ·Mkl .

ote that l ≥ 3 (see 7.7.2 of [2]). Let Pi : Fn → Mki be the projection map. Let xi = [Pi(pn)] − [Pi(qn)] ∈ Z = K0(Mki ),
= 1, 2, . . . , l. Then some of xi > 0 and some of xi < 0. Otherwise, we may assume that

xi ≥ 0 for all i ∈ {1, 2, . . . , l}. (e12.7)

hen [pn] − [qn] ≥ 0 for all n. It follows that, for all k ≥ 1,

(jn,n+k)∗0([pn] − [qn]) ≥ 0 and (jn,∞)∗0([pn] − [qn]) ≥ 0. (e12.8)

hat is (jn,∞)∗0([pn] − [qn]) ∈ K0(A)+. This contradicts the fact that (jn,∞)∗0([pn] − [qn]) = zZ.
Note that, as constructed in Section 6, with A above,

Z0 = lim
m→∞

(Em ⊕Wm), (e12.9)

here Wm is a single summand of the form R(αm, 1) for some 0 < αm < 1 and Em = M(m!)2 (A(W , αm)). Note that
i(Wm) = {0}, i = 0, 1, and K0(A(W , αm)) = Z and K1(A(W , αm)) = {0}. Let id ∈ KK (Z0, Em) be as described in 12.4. Let
00 ∈ KK (C ⊗ Z0, C ⊗ Em) be the invertible element given by [idC ] and id.
By (e12.9), there exists a G-δ-multiplicative completely positive contractive linear map Φ : C ⊗ Z0 → C ⊗ Em (for

ufficiently large m) such that

[Φ]| = (κ )| (e12.10)
P 00 P
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hich maps strictly positive elements to strictly positive elements. Consider the short exact sequence

0→ C0((0, 1),Q )→ Em → M(m!)2 (A)→ 0.

Let ϕqa : Em → M(m!)2 (A) be the quotient map. Note that (ϕqa)∗0 gives an isomorphism from Z = K0(A(W , αm)) onto
er ρA. Let ϕq : C ⊗ Em → C ⊗ M(m!)(A) be defined by idC ⊗ ϕqa. Let ϕ1 : C ⊗ Z0 → C ⊗ M(m!)2 (A) be defined by
ϕ1 = ϕq ◦ Φ . For any δ1 > 0 and finite subset FA ⊂ M(m!)2 (A), there is a unital FA-δ1-multiplicative completely positive
map, ΦA : M(m!)2 (A) → M(m!)2 (Fn) such that [ΦA]|ker ρA is injective. Note that ΦA maps strictly positive elements of A to
strictly positive elements of Fn. Recall

Fn = Mk1 ⊕Mk2 ⊕ · · ·Mkl

and xi = [Pi(pn)] − [Pi(qn)] ∈ Z, i = 1, 2, . . . , l. Without loss of generality, we may assume that

xi > 0 for i = 1, 2, . . . ,m+, xi < 0 for i = m+ + 1, . . . , l′, and xi = 0 for 1 = l′ + 1, . . . , l. (e12.11)

We claim that x1, x2, . . . , xl′ are relatively prime. If not, xi = Nx′i , for some integer x′i , i = 1, 2, . . . , l, for some N ≥ 2. Then
N(jn,∞)∗0((x′1, x

′

2, . . . , x
′

l)) = zZ. This is impossible since K0(A) = Q ⊕ Z and zZ = [1] in the summand Z. It follows from
12.3 that there are positive integers N1,N2, . . . ,Nl such that

l∑
i=1

Nixi = 1. (e12.12)

Let r =
∑

i=1 Niki. Define ı : M(m!)2 (Fn)→ M(m!)2 (Mr ) by

ı((f1, f2, . . . , fl)) =
l⨁

i=1

ıi(fi), (e12.13)

where ıi : Mki → Mr is defined by

ıi(fi) = diag(

Ni  
fi, fi, . . . , fi) for all fi ∈ Mki , i = 1, 2, . . . , l. (e12.14)

Let κZ0 ∈ KL(C ⊗ Z0, C) be defined by, for j = 2, 3, . . .,

κZ0 (x⊗ zZ) = x for all x ∈ Ki(C ⊗ Z0)⊕ Ki(C ⊗ Z0,Z/jZ), i = 0, 1. (e12.15)

Note that (ı∗0)([pn] − [qn]) = [1] ∈ Z = K0(M(m!)2r ). Let L = (idC ⊗ ı) ◦ (idC ⊗ΦA) ◦ ϕ1 : C ⊗Z0 → C ⊗M(m!)2r . By choosing
δ and δ1 sufficiently small and G and GA sufficiently large, L is F-ε-multiplicative. Moreover, we compute that

[L]|P= [κZ0 ]|P . □

Lemma 12.6. Let A and B be separable simple C∗-algebras in D with K0(A) = ker ρA and K0(B) = ker ρB, respectively, which
have continuous scale and satisfy the UCT. Suppose that there is κ ∈ KL(A, B) and an affine continuous map κT : T (B)→ T (A).
Then, there exists a sequence of approximate multiplicative completely positive contractive linear maps ϕn : A→ B such that

[{ϕn}] = κ and (e12.16)
lim
n→∞

sup{|τ ◦ ϕn(a)− κT (τ )(a)|} = 0 for all a ∈ As.a.. (e12.17)

Proof. Let ε > 0, η > 0, F ⊂ A be a finite subset and H ⊂ As.a be a finite subset.
Fix a finite subset P ⊂ K (A). We may assume that, for some m ≥ 1,

P ⊂ K0(A)
⨁

K1(A)
⨁

(
m⨁
j=1

K0(A,Z/jZ)
⨁

K1(A,Z/jZ)).

oreover, m!x = 0 for all x ∈ Tor(K0(A)) ∩ P . Let G0,P be the subgroup generated by K0(A) ∩ P . We may write
0,P := F0 ⊕ G0, where F0 is free and G0 is torsion. In particular, m!x = 0 for all x ∈ G0.
Choose δ > 0 and finite subset G ⊂ A so that [L]|P is well defined for any G-δ-multiplicative completely positive

ontractive linear map L from A. We may assume that δ < ε and F ∪ H ⊂ G. Since both A and B have continuous scale,
(A) and T (B) are compact (5.3 of [15]). Choose a0 ∈ A+ such that ∥a0∥ = 1 and

dτ (a0) < min{η, δ}/4 for all τ ∈ T (A). (e12.18)

et e ∈ A be a strictly positive element of A with ∥e ∥ = 1 such that τ (e ) > 15/16 for all τ ∈ T (A).
0 0 0
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Since A ∈ D0 (see 8.8), by 10.7 of [15], there are G-δ/4-multiplicative completely positive contractive linear maps
0 : A→ ϕ0(A)Aϕ0(A) and ψ0 : A→ D ⊂ A with D ∈ C(0)

0 and Mm!(D) ⊥ ϕ0(A) such that

∥x− (ϕ0(x)⊕ diag(

m!  
ψ0(x), ψ0(x), . . . , ψ0(x)))∥ < δ/16 for all x ∈ G, (e12.19)

ϕ0(e0) ≲ a0, (e12.20)
t(f1/4(ψ0(e0))) > 1/4 for all t ∈ T (D). (e12.21)

et Ψ0 : A→ Mm!(D) ⊂ A be defined by

Ψ0(a) = diag(

m!  
ψ0(x), ψ0(x), . . . , ψ0(x)) for all a ∈ A. (e12.22)

et P1 = [ϕ0](P) and P2 = [Ψ0](P). Put P3 = P ∪ P1 ∪ P2. Note that, since Ki(D) = {0} (i = 0, 1), Ψ0|P∩Ki(A)= 0, i = 0, 1.
Moreover, by (e12.22),

[Ψ0]|P∩Ki(Z/jZ)= 0, i = 0, 1, j = 2, . . . .,m. (e12.23)

Set

d = inf{dτ (ϕ0(e0)) : τ ∈ T (A)}. (e12.24)

We also have

[ϕ0]|F0= [idA]|F0 . (e12.25)

Let G1 = G ∪ ϕ0(G). Choose 0 < δ1 < δ and finite subset G1 ⊂ A such that [L′]|P4 is well defined for any
G1-δ1-multiplicative completely positive contractive linear map from A.

It follows from 10.8, 12.1 and 12.5 that there exists a G1-δ1/4-multiplicative completely positive contractive linear map
L : A→ B⊗MK for some integer K such that

[L]|P3= κZ0 ◦ (κ
−1
Z0
◦ κ)|P3= κ|P3 , (e12.26)

where κZ0 ∈ KK (B⊗ Z0, B) is as in 12.4 with B = C . Without loss of generality, we may assume that G1 ⊂ A1.
Let b0 ∈ B with ∥b0∥ = 1 such that

τ (b0) < min{η, δ1, d}/16(K + 1) for all τ ∈ T (B). (e12.27)

Let eb ∈ B⊗MK be a strictly positive element of B⊗MK such that

τ (eb) > 7/8 for all τ ∈ T (B⊗MK ). (e12.28)

Let Q ⊂ K (B) be a finite subset which contains [L](P4). We assume that

Q ⊂ K0(B)
⨁

K1(B)
⨁ ⨁

i=0,1

m1⨁
j=1

Ki(B,Z/jZ) (e12.29)

for some m1 ≥ 2. Moreover, we may assume that m1x = 0 for all x ∈ Tor(G0,b), where G0,b is the subgroup generated by
Q ∩ K0(B). Without loss of generality, we may assume that m|m1.

Let Gb ⊂ B⊗ MK be a finite subset and 1/2 > δ2 > 0 be such that [Φ]|Q is well defined for any Gb-δ2-multiplicative
completely positive contractive linear map Φ from B ⊗ MK . Note also, by 8.8, B ∈ D0. There are Gb-δ2-multiplicative
completely positive contractive linear maps ϕ0,b : B⊗MK → ϕ0,b(B⊗MK )(B⊗MK )ϕ0,b(B⊗MK ) and ψ0,b : B⊗MK → Db,
M(m1)!(Db) ⊂ B⊗MK with Db ∈ C(0)

0 such that

∥b− (ϕ0,b(b), diag(

(m1)!  
ψ0,b(b), ψ0,b(b), . . . , ψ0,b(b)))∥ < min{δ2, ε/16, η/16} for all b ∈ Gb (e12.30)

and ϕ0,b(eb) ≲ b0 and t(ψ0,b) > 3/4 for all t ∈ T (Db). (e12.31)

Note that K1(Db) = {0} = K0(Db). Moreover, as in (e12.19) and (e12.23), we may also assume that

[ψ0,b]|Tor(G0,b)= 0 and [ψ0,b]|Q∩Ki(B,Z/jZ)= 0, j = 2, 3, . . . ,m1. (e12.32)

herefore

[ϕ0,b]|Tor(G0,b)= [idB]|Tor(G0,b), [ϕ0,b]|Q∩K1(B)= [idB]|Q∩K1(B) and (e12.33)

[ϕ0,b]|Q∩Ki(B,Z/jZ)= [idB]|Q∩Ki(B,Z/jZ), j = 2, 3, . . . ,m1. (e12.34)

et G be the subgroup generated by P and let κ ′ = κ − [ϕ ] ◦ [L] ◦ [ϕ ] be defined on G .
P 0,b 0 P
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Then, by (e12.26), (e12.33) and (e12.34), we compute that

κ ′|G0,P= 0, κ ′|P∩K1(A)= 0 and (e12.35)

κ ′|P∩Ki(A,Z/jZ)= 0, j = 2, 3, . . . ,m. (e12.36)

Let ı : Mm!(D)→ A be the embedding.
Let κ♯T : Aff(T (A)) → Aff(T (B)) be given by κT . This induces an order semigroup homomorphism κ̃T

: LAff+(T̃ (A)) →
LAff+(T̃ (B)). By 8.6 and 11.1, one checks easily that κ♯T is a Cuntz semigroup homomorphism and a morphism in Cu.

Let γ ′ : Cu(Mm!(D)) → LAff+(T̃ (B)) be the Cuntz semi-group homomorphism given by γ ′ = κ
♯

T ◦ Cu(ı). Put
γ : Cu(Mm!(D))→ LAff+(T̃ (B)) defined by γ (f ) = (1−min{η, η0}/2(m!))γ ′(f ) for all f ∈ Cu(Mm!(D)).

Let γ0 : Cu∼(Mm!(D))→ Cu∼(B) be the morphism induced by γ (note K0(Mm!(D)) = {0} and see also 7.3 of [15]).
By applying 1.0.1 of [49], one obtains a homomorphism hd : Mm!(D)→ B such that

(hd)∗0 = γ00 and τ ◦ hd(c) = γ (̂c)(τ ) for all τ ∈ T (B) and c ∈ (Mm!(D))s.a. (e12.37)

Define h : A→ B by h = hd ◦ Ψ0. Then

[h]|P= κ ′|P , [h]|P∩K1(A)= 0 and [h]|P∩Ki(Z/jZ)= 0, i = 2, 3, . . . ,m. (e12.38)

Moreover,

τ (h(a)) = γ (Ψ̂0(a)) for all a ∈ A and τ ∈ T (B). (e12.39)

Let ed ∈ Mm!(D) be a strictly positive element with ∥ed∥ = 1. Then, by (e12.24),

dτ (hd(ed)) < 1− d for all τ ∈ T (B). (e12.40)

It follows from (e12.27) that

dτ (h(ed))+ dτ (ϕ0,b(e0)) < 1 for all τ ∈ T (B). (e12.41)

Note that B has stable rank one (see 11.5 of [15] and 15.5 of [18]). By omitting a conjugating unitary in B without loss of
generality, we may assume that ϕ0,b ◦ L⊕ h maps A into B. Put Φ = ϕ0,b ◦ L⊕ h. Then Φ is G-δ-multiplicative. Moreover,
we compute that

[Φ]|P= κ|P and sup{|τ (Φ(x))− κT (τ )(x)| : τ ∈ T (BT )} < η for all x ∈ H. (e12.42)

The lemma then follows. □

Lemma 12.7. Let A be a non-unital simple separable C∗-algebra in D with K0(A) = ker ρA and with continuous scale which
satisfies the UCT. Let BT be as in 7.2. Suppose that there is κ ∈ KL(BT , A), an affine continuous map κT : T (A) → T (BT )
and a continuous homomorphism κuc : U(B̃T )/CU(B̃T )→ U (̃A)/CU (̃A) such that (κ, κT , κuc) is compatible. Then there exists a
sequence of approximate multiplicative completely positive contractive linear maps ϕn : BT → A such that

[{ϕn}] = κ (e12.43)
lim
n→∞

sup{|τ ◦ ϕn(a)− κT (τ )(a)|} = 0 for all a ∈ (BT )s.a. and (e12.44)

lim
n→∞

dist(κuc(z), ϕ†
n(z)) = 0 for all z ∈ U(B̃T )/CU(B̃T ). (e12.45)

Proof. Let ε > 0, let η > 0 and let σ > 0, let P ⊂ K (BT ) be a finite subset, let Su ⊂ U(B̃T )/CU(B̃T ) be a finite subset, let
⊂ (BT )s.a. be a finite subset and let F ⊂ BT be a finite subset.
Without loss of generality, we may assume that F ⊂ (BT )1, and, [L′]|P and (L′)†|Su are well-defined for any

-ε-multiplicative completely positive contractive linear map from BT .
Let G1 ⊂ K1(BT ) be the subgroup generated by P ∩ K1(BT ).
Fix δ > 0 and a finite subset G ⊂ BT . We assume that δ < min{ε/2, η/4, σ/16}. To simplify notation, without loss of

enerality, we may assume that G1 ⊂ F ⊂ (Φn0,∞)∗1(K1(Bn0 )) for some n0 ≥ 1, where F is a finitely generated standard
ubgroup of K1(BT ) (see 11.3). We also choose n0 larger than that required by 11.5 for δ (in place of ε) G (in place of F)
P and σ/16 (in place of δ0). Without loss of generality, we may write

Su = Su,1 ⊔ Su,0, (e12.46)

here Su,1 ⊂ JF ,u(F ) and Su,0 ⊂ U0(B̃T )/CU(B̃T ) = Aff(T (B̃T ))/Z and both Su,1 and Su,0 are finite subsets. For w ∈ Su,0, write

w =

l(w)∏
exp(
√
−12πhw,j), (e12.47)
j=0
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here hw,0 ∈ R and hw,j ∈ (BT )s.a., j = 1, 2, . . . , l(w). Let

Hu = {hw,j : 1 ≤ j ≤ l(w), w ∈ Su,0} and M = max{
l(w)∑
i=0

∥hw,j∥ : w ∈ Su,0}. (e12.48)

To simplify notation further, we may assume that G1 = F .
Write G1 = Zmf ⊕Tor(G1) and Zmf is generated by cyclic and free generators x1, x2, . . . , xmf . Let Tor(G) be generated by

x0,1, x0,2, . . . , x0,mt . Let u1, u2, . . . , umf , u1,0, u2,0, . . . , umt ,0 ∈ U(B̃T ) be unitaries such that [ui] = xi, i = 1, 2, . . . ,mf , and
[uj,0] = x0,j, j = 1, 2, . . . ,mt . Let πu : U(B̃T )/CU(B̃T )→ K1(BT ) be the quotient map and let Gu be the subgroup generated
by Su,1. Since (κ, κT , κu) is compatible, without loss of generality, we may assume that πu(Gu) = {x1, x2, . . . , xmf } ∪

{x0,1, x0,2, . . . , x0,mt } and Su,1 = {ū1, ū2, . . . , ūmf , ū1,0, ū2,0, . . . , ūmt ,0} as described in 11.3, in particular, kjūj,0 = 0 in
(B̃T )/CU(B̃T ), j = 1, 2, . . . ,mt .
Let ϕn : BT → A be a sequence of approximately multiplicative completely positive contractive linear maps given by

2.6 such that

[{ϕn}] = κ and (e12.49)
lim
n→∞

sup{|τ ◦ ϕn(a)− κT (τ )(a)|} = 0 for all a ∈ (BT )s.a.. (e12.50)

Fix a strictly positive element eb ∈ BT with ∥eb∥ = 1 and τ (eb) ≥ 15/16 and τ (f1/2(eb)) ≥ 15/16 for all τ ∈ T (BT ).
Let Fb ⊂ BT be a finite subset which contains F ∪ H ∪ Hu. and let δb > 0. There are Fa-δb-multiplicative completely

positive contractive linear maps Φ0 : BT → Db ⊂ BT with Db ∈ C0
0 , Φ1 : BT → BT and Φ1(BT ) ⊥ Db such that

∥b− (Φ0(b)⊕Φ1(b))∥ < δb/2 for all b ∈ Fb and (e12.51)
0 < dτ (Φ0(eb)) < min{η, σ/16}/4(M + 1) for all τ ∈ T (BT ). (e12.52)

Note that K0(Db) = K1(Db) = {0}. Therefore, for any sufficiently large n,

[ϕn ◦Φ0]|P= 0, [ϕn ◦Φ1]|P= κ|P and (e12.53)
dτ (ϕn(Φ0(eb))) < min{η, σ/16}/2(M + 1) for all τ ∈ T (A). (e12.54)

Fix a sufficiently large n. Define λ = κ|Gu−(ϕn◦Φ1)†|Gu : Gu → U (̃A)/CU (̃A). Since (κ, κT , κu) is compatible, πu◦λ(ūi) = 0
and πu ◦ λ(ū0,j) = 0, i = 1, 2, . . . ,mf and j = 1, 2, . . . ,mt .

Let F1 = F ∪H. It follows from 11.5 that there exists F1-min{ε/4, η/4}-multiplicative completely positive contractive
linear map L : BT → cAc , where c = ϕn ◦Φ0(eb), such that

[L]|P= 0 and dist(L†(ūj), λ(ūj)) < σ/4, j = 1, 2, . . . ,mf . (e12.55)

Define Ψ : BT → A by

Ψ (a) = L(a)⊕ ϕn ◦Φ1(a) for all a ∈ BT . (e12.56)

hen Ψ is F-ε-multiplicative if n is sufficiently large. By (e12.52), by (e12.50) and by choosing sufficiently large n,

sup{|τ ◦ ϕn(a)− κT (τ )(a)|} < min{σ/16, η}/(M + 1) for all a ∈ Hu and (e12.57)
sup{|τ (Ψ (b))− κT (τ )(b)| : τ ∈ T (A)} < min{σ/16, η} for all b ∈ H. (e12.58)

It follows from (e12.53), (e12.55) and the definition of λ that

[Ψ ]|P= κ|P and dist(Ψ †(ūj), κuc(ūj)) < σ/2, j = 1, 2, . . . ,mf . (e12.59)

By 11.6, we may also have

dist(Ψ †(ūj,0), κuc(ūj,0)) < σ, j = 1, 2, . . . ,mt . (e12.60)

By the choice of M and Hu, (e12.52), and (e12.57), and by the assumption that (κ, κT , κuc) is compatible,

dist(Ψ †(w̄), κu,c(w̄)) < σ for all w ∈ Su,0. □ (e12.61)

Theorem 12.8. Let A be a separable amenable simple C∗-algebra in D0 with continuous scale which satisfies the UCT. Let BT be
as in 7.2. Suppose that there is κ ∈ KL(BT , A), an affine continuous map κT : T (A)→ T (BT ) and a continuous homomorphism
κuc : U(B̃T )/CU(B̃T )→ U (̃A)/CU (̃A) such that (κ, κT , κuc) is compatible. Then there exists a homomorphism ϕ : BT → A such
that

[ϕ] = κ, τ ◦ ϕ(a) = κT (τ )(a) for all a ∈ (BT )s.a. and ϕ†
= κuc . (e12.62)
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roof. Let eb ∈ BT be a strictly positive element of BT with ∥eb∥ = 1. Since A has continuous scale, without loss of
enerality, we may assume that

min{inf{τ (eb) : τ ∈ T (BT )}, inf{τ (f1/2(eb)) : τ ∈ T (BT )}} > 3/4. (e12.63)

et T : (BT )+ \ {0} → N× R+ \ {0} be given by Theorem 5.7 of [15].
By 12.7, there exists a sequence of approximately multiplicative completely positive contractive linear maps ϕn : BT →

such that

[{ϕn}] = κ (e12.64)
lim
n→∞

sup{|τ ◦ ϕn(a)− κT (τ )(a) : τ ∈ T (A)|} = 0 for all a ∈ (BT )s.a. and (e12.65)

lim
n→∞

dist(κuc(z), ϕ†
n(z)) = 0 for all z ∈ U(B̃T )/CU(B̃T ). (e12.66)

Let ε > 0 and F ⊂ BT be a finite subset.
We will apply 5.3. Note that K0(Ã) is weakly unperforated (see 5.5 and 8.11). δ1,1 > 0 (in place of δ), γ1 > 0 (in place

of γ ), η1 > 0 (in place of η), let G1,1 ⊂ BT (in place of G) be a finite subset, H1,1 ⊂ (BT )+ \ {0} (in place of H1) be a finite
subset, P1 ⊂ K (BT ) (in place of P), U1 ⊂ U(Ũ) (in place of U) with U = P ∩ K1(BT ) and let H1,2 ⊂ (BT )s.a. (in place of H2)
be as required by Theorem 5.3 for T , ε and F (with T (k, n) = n, see 5.2).

Without loss of generality, we may assume that H1,1 ⊂ (BT )1+ \ {0} and γ1 < 1/64.
Let G1,2 ⊂ BT (in place of G) be a finite subset and let δ1,2 > 0 be as required by Theorem 5.7 of [15] for the above

H1,1 (in place of H1). Let δ1 = min{δ1,1, δ1,2} and G1 = G1,1 ∪ G1,2.
Choose n0 ≥ 1 such that ϕn is G1-δ1/2-multiplicative, for all n ≥ n0,

[ϕn]|P1= κ|P1 , (e12.67)

sup{|τ ◦ ϕn(a)− κT (τ )(a)| : τ ∈ T (BT )} < γ1/2 for all a ∈ H1,2, (e12.68)

τ (f1/2(ϕn(ea))) > 3/8 for all τ ∈ T (BT ) and (e12.69)

dist(ϕ†
n(ū), κuc(ū)) < η/2 for all u ∈ U . (e12.70)

By applying 5.7 of [15], ϕn are all T -H1,1-full. By applying Theorem 5.3, we obtain a unitary un ∈ B̃T (for each n ≥ n0)
such that

∥u∗nϕn(a)un − ϕn0 (a)∥ < ε for all a ∈ F . (e12.71)

Now let {εn} be a decreasing sequence of positive elements such that
∑
∞

n=1 εn < ∞ and let {Fn} be an increasing
equence of finite subsets of BT such that ∪∞n=1Fk is dense in BT .
By what have been proved, we obtain a subsequence {nk} and a sequence of unitaries {uk} ⊂ B̃T such that

∥Ad uk+1 ◦ ϕnk+1 (a)− Ad uk ◦ ϕnk (a)∥ < εk for all a ∈ Fk, (e12.72)

k = 1, 2, . . .. Since ∪∞n=1Fk is dense in BT , by (e12.72), {Ad uk ◦ ϕnk (a)} is a Cauchy sequence. Let

ϕ(a) = lim
k→∞

Ad uk ◦ ϕnk (a) for all a ∈ BT . (e12.73)

Then ϕ : BT → A is a homomorphism which satisfies (e12.62). □

Lemma 12.9. Let A be a non-unital simple separable C∗-algebra in D with K0(A) = ker ρA and with continuous scale which
satisfies the UCT. Let BT be as in 7.2. Suppose that there is κ ∈ KL(A, BT ), an affine continuous map κT : T (BT )→ T (A) and a
continuous homomorphism κuc : U(Ã)/CU(Ã)→ U(B̃T )/CU(B̃T ) such that (κ, κT , κuc) is compatible. Suppose also that κ|K1(A)
is injective.

Then there exists a sequence of approximate multiplicative completely positive contractive linear maps ϕn : A → BT such
that

[{ϕn}] = κ, (e12.74)
lim
n→∞

sup{|τ ◦ ϕn(a)− κT (τ )(a)|} = 0 for all a ∈ As.a. and (e12.75)

lim
n→∞

dist(κuc(z), ϕ†
n(z)) = 0 for all z ∈ U(Ã)/CU(Ã). (e12.76)

Proof. Denote by Π : U(Ã)/CU(Ã) → K1(A) the quotient map and fix a splitting map Ju : K1(A) → U(Ã)/CU(Ã). Since
(κ, κT , κuc) is compatible, it suffices to show that there are {ϕn} which satisfies (e12.74) and (e12.75) and

lim
n→∞

dist(κuc(Ju(ζ )), ϕ†
n(Ju(ζ ))) = 0 for all ζ ∈ K1(A). (e12.77)

It follows from 12.6 that there exists {ϕn} which satisfies (e12.74) and (e12.75). Let G1 ⊂ K1(A) be a finitely generated
ubgroup.
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Choose some sufficiently large n, then ϕ†
n induces a homomorphism on the group Ju(G1). Since κ|K1(A) is injective and

κ, κT , κuc) is compatible, ϕ†
n |Ju(G1) has an inverse γ . Let Gb = ϕ

†
n(Ju(G1)) and let Πb : U(B̃T )/CU(B̃T ) → K1(BT ) be the

uotient map. Again, using the fact that (κ, κT , κuc) is compatible, (Πb)|Gb is injective. Let Jub : K1(BT )→ U(B̃T )/CU(B̃T ) be
homomorphism such that Πb ◦ Juc = idK1(BT ).
Put

λ0 = ((κuc ◦ γ ) ◦ Juc − (ϕn)† ◦ γ ◦ Juc)|Πb(Gb). (e12.78)

Then, since (κ, κT , κuc) is compatible, Πb ◦λ0 = 0. Therefore λ0 maps from Πb(Gb) to Aff(T (B̃T ))/ρBT (K1(B̃T )). However,
Aff(T (B̃T ))/ρBT (K1(B̃T )) is divisible. Therefore there is a homomorphism λ1 : K1(BT )→ Aff(T (B̃T ))/ρBT (K1(B̃T )) such that

(λ1)|Πb(Gb)= λ0. (e12.79)

ow defined Λ : U(B̃T )/CU(B̃T )→ U(B̃T )/CU(B̃T ) as follows.

Λ|
Aff(T (B̃T ))/ρBT (K1(B̃T ))

= id
Aff(T (B̃T ))/ρBT (K1(B̃T ))

, (e12.80)

Λ|Jub(K1(BT )) = λ1 ◦Πb + (idBT )
†. (e12.81)

Note that ([idBT ], (idBT )T ,Λ) is compatible. It follows from 12.7 that there exists a homomorphism ψn : BT → BT such
hat

[ψn] = [idBT ], (ψn)T = (idBT )T and ψ†
n = Λ. (e12.82)

ow let Φn = ψn ◦ ϕn. Then, for z ∈ Ju(G1), by (e12.78),

Φ†
n (z) = ψ

†
n ◦ ϕ

†
n(z) = λ1 ◦Πb ◦ ϕ

†
n(z)+ ϕ

†
n(z) (e12.83)

= λ0 ◦ ϕ
†
n(z)+ ϕ

†
n(z) = κuc(z). (e12.84)

he lemma follows immediately from this construction of Φn. □

emma 12.10. Let A be a non-unital simple separable C∗-algebra in D0 with continuous scale which satisfies the UCT. Let BT be
s in 7.2. Suppose that there is κ ∈ KL(A, BT ), an affine continuous map κT : T (BT )→ T (A), and a continuous homomorphism
uc : U(Ã)/CU(Ã)→ U(B̃T )/CU(B̃T ) such that (κ, κT , κuc) is compatible. Suppose also that κ|K1(A) is injective.
Then there exists a homomorphism ϕ : A→ BT such that

[ϕ] = κ, ϕT = κT and ϕ†
= κuc . (e12.85)

roof. The proof is exactly the same as that of 12.8 but applying 12.9 instead of 12.7. □

13. The isomorphism theorem for Z0-stable C∗-algebras

Theorem 13.1. Let A and B be two separable simple amenable C∗-algebras in D with continuous scale which satisfy the UCT.
Suppose that ker ρA = K0(A) and ker ρB = K0(B). Then A ∼= B if and only if

(K0(A), K1(A), T (A)) ∼= (K0(B), K1(B), T (B)). (e13.1)

Moreover, let κi : Ki(A) → Ki(B) be an isomorphism as abelian groups (i = 0, 1) and let κT : T (B) → T (A) be an affine
homeomorphism. Suppose that κ ∈ KL(A, B) which gives κi and κcu : U(Ã)/CU(Ã) → U(B̃)/CU(B̃) is a continuous affine
isomorphism so that (κ, κT , κcu) is compatible. Then there is an isomorphism ϕ : A→ B such that

[ϕ] = κ (i = 0, 1), ϕT = κT and ϕ†
= κcu (e13.2)

Proof. Note it follows from 8.8 that A, B ∈ D0. It follows from 7.11 that there is a non-unital simple C∗-algebra BT
constructed in Section 7 such that

K0(BT ) = K0(B), K1(BT ) = K1(B) and T (BT ) = T (B). (e13.3)

et κ ∈ KL(A, B) be an invertible element which gives κi (i = 0, 1). Let κT : T (B)→ T (A) be an affine homeomorphism. By
he assumption, (κ, κT ) is always compatible. Choose any κcu so that (κ, κT , κcu) is compatible. Note that there is always
t least one: κcu|Jc (K1(A))= Jc ◦ κ|K1(A)◦πcu, where πcu : U(Ã)/CU(Ã)→ K1(A) is the quotient map and κcu|Aff(T (A))/Z is induced

by κT .
Therefore it suffices to show that there is an isomorphism ϕ : A→ B such that (e13.2) holds. We will use the Elliott

ntertwining argument.
Let {Fa,n} be an increasing sequence of finite subsets of A such that ∪∞n=1Fa,n is dense in A, let {Fb,n} be an increasing

equence of finite subsets of B such that ∪∞n=1Fb,n is dense in B. Let {εn} be a sequence of decreasing positive numbers
uch that

∑
∞

ε < 1.
n=1 n
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Let ea ∈ A and eb ∈ B be strictly positive elements of A and B, respectively, with ∥ea∥ = 1 and with ∥eb∥ = 1. Note
hat dτ (ea) = 1 for all τ ∈ T (A) and dτ (eb) = 1 for all τ ∈ T (B).

It follows from 12.10 that there is a homomorphism ϕ1 : A→ B such that

[ϕ1] = κ, (ϕ1)T = κT and ϕ
†
1 = κcu. (e13.4)

ote that dτ (ϕ1(ea)) = 1. Therefore ϕ1 maps ea to a strictly positive element of B. It follows from 12.7 that there is a
homomorphism ψ ′1 : B→ A such that

[ψ ′1] = κ
−1, (ψ ′1)T = κ

−1
T and (ψ ′1)

†
= id†

A ◦ (ϕ
†
1)
−1. (e13.5)

Thus

[ψ ′1 ◦ ϕ1] = [idA], (ψ ′1 ◦ ϕ1)T = idT (A) and (ψ ′1 ◦ ϕ1)
†
= idU(Ã)/CU(Ã). (e13.6)

It follows from 5.3 (see also 5.6) that there exists a unitary u1,a ∈ Ã such that

Ad u1,a ◦ ψ
′

1 ◦ ϕ1 ≈ε1 idA on Fa,1. (e13.7)

Put ψ1 = Ad u1,a ◦ ψ
′

1. Then we obtain the following diagram

A
idA →→

ϕ1

↓↓

A

B
ψ1

↗↗

which is approximately commutative on the subset Fa,1 within ε1.
By applying 12.10, there exists a homomorphism ϕ′2 : A→ B such that

[ϕ′2] = κ, (ϕ′2)T = κT and (ϕ′2)
†
= id†

B ◦ (ψ
†
1 )
−1
= κcu. (e13.8)

hen,

[ϕ′2 ◦ ψ1] = [idB], (ϕ′2 ◦ ψ1)T and (ϕ′2 ◦ ψ1)† = idU(B̃)/CU(B̃). (e13.9)

t follows from 5.3 (and 5.6) that there exists a unitary u2,b ∈ B̃ such that

Ad u2,b ◦ ϕ
′′

2 ◦ ψ1 ≈ε2 idB on Fb,2 ∪ ϕ1(Fa,1). (e13.10)

ut ϕ2 = Ad u2,b ◦ ϕ2. Then we obtain the following diagram:

A
idA →→

ϕ1

↓↓

A

ϕ2

↓↓
B

ψ1

↗↗

idB
→→ B

with the upper triangle approximately commutes on Fa,1 within ε1 and the lower triangle approximately commutes on
Fb,2 ∪ ϕ1(Fa,1) within ε2. Note also

[ϕ2] = κ, (ϕ2)T = κT and (ϕ2)† = κcu. (e13.11)

We then continue this process, and, by the induction, we obtain an approximate intertwining:

A
idA →→

ϕ1

↓↓

A
idA →→

ϕ2

↓↓

A
idA →→

ϕ3

↓↓

· · · · · · A

B
idB
→→

ψ1

↗↗

B
idB
→→

ψ2

↗↗

B
idB
→→ · · · · · · B

By the Elliott approximate intertwining argument, this implies that A ∼= B and the isomorphism ϕ produced by the
above diagram meets the requirements of (e13.2). □

The following theorem and its proof gives the proof of Theorem 1.1.

Theorem 13.2. Let A and B be two stably projectionless separable simple amenable C∗-algebras with gTR(A) ≤ 1 and
gTR(B) ≤ 1 and which satisfy the UCT. Suppose that K0(A) = ker ρA and K0(B) = ker ρB. Then A ∼= B if and only if

(K0(A), K1(A), T̃ (A),ΣA) ∼= (K0(B), K1(B), T̃ (B),ΣB). (e13.12)
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roof. Let

Γ : (K0(A), K1(A), T̃ (A),ΣA)→ (K0(B), K1(B), T̃ (B),ΣB) (e13.13)

be an isomorphism. Let ΓT : T̃ (A)→ T̃ (B) be the cone homeomorphism such that

ΣB(ΓT (τ )) = ΣA(τ ) for all τ ∈ T̃ (A). (e13.14)

et eA ∈ Ped(A)+ such that ∥eA∥ = 1 such that A0 := eAAeA has continuous scale (see 5.3 of [15]). Choose b0 ∈ P(B)+ \ {0}
with ∥b0∥ = 1 such that B′ := b0Bb0 has continuous scale. Then T (A0) and T (B′) are metrizable Choquet simplices.
oreover T (A0) and T (B′) can be identified with

TA = {τ ∈ T̃ (A) : dτ (aA) = 1} and {s ∈ T̃ (B′) : ds(b0) = 1}, (e13.15)

espectively. Let g(t) = dΓ−1(t)(eA) ∈ LAfff (T̃ (B)). Since dτ (eA) is continuous and Γ −1 is a cone homeomorphism, g(t) is
ontinuous and g ∈ Aff+(T (B′)). Since Aff+(T (B′)) is compact, g is also bounded. By identifying B′⊗K with B⊗K, we find
positive element b00 = diag(b0, . . . , b0) ∈ B ⊗ K, where b0 repeats m times so that ds(b00) > g(s) on T (B′). Then g is
ontinuous on T (B′′), where B′′ := b00(B⊗ K)b00. It follows 8.6 that there is eB ∈ B′′

+
⊂ B ⊗ K with ∥eB∥ = 1 such that

ds(eB) = g|T (B′′). Since B has strictly comparison, B0 := eBBeB has continuous scale (see 5.3 of [15]). Let

TB = {t ∈ T̃ (B) : dt (eB) = 1}. (e13.16)

hen T (A0) = TB. It follows that Γ induces the following isomorphism

(K0(A0), K1(A0), T (A0)) ∼= (K0(B0), K1(B0), T (B0)). (e13.17)

t follows from 13.1 that there is an isomorphism ϕ0 : A0 → B0 which induces Γ on (K0(A0), K1(A0), T (A0)). By [4], ϕ0
ives an isomorphism from A0 ⊗ K onto B0 ⊗ K. Let a ∈ A+ with ∥a∥ = 1 be a strictly positive element. Then

â(τ ) = ΣA(τ ) for all τ ∈ T̃ (A). (e13.18)

et b ∈ (B0 ⊗ K)+ such that ϕ(a) = b. Then

dt (b) = lim
n→∞

t ◦ ϕ(a1/n) for all t ∈ T̃ (B). (e13.19)

ote ΣB(t) = dt (b). Since B is simple and has stable rank one, this implies that B ∼= b(B0 ⊗ K)b. The theorem follows. □

Corollary 13.3. Let A and B be in D0 which are amenable and satisfy the UCT. Then A ∼= B if and only if

Ell(A) ∼= Ell(B). (e13.20)

roof. Since A and B are in D0, by 8.5, K0(A) = ker ρA and K0(B) = ker ρB. Therefore Theorem 13.2 applies. □

Corollary 13.4. Let A be a stably projectionless simple separable amenable C∗-algebra which satisfies the UCT and gTR(A) ≤ 1.
uppose that K0(A) = ker ρA. Then A⊗ Z0 ∼= A.
In particular, Z0 ⊗ Z0 ∼= Z0.

Proof. Recall that K0(Z0) = Z = ker ρZ0 , K1(Z0) = {0} and T (Z0) has exactly one point. Let A0 = eAe for some e ∈ A+ \{0}
uch that A0 ∈ D. Since K0(A) = ker ρA, A0 ∈ D0, by 8.8. By 12.5 of [15] and 6.6 of [16] (or by 18.5 and 18.6 of [18]),
0 ⊗ Z0 ∈ D0. Therefore gTR(A⊗ Z0) ≤ 1. Moreover, K0(A⊗ Z0) ∼= K0(A) = ker ρA, K1(A⊗ Z0) ∼= K1(A), T̃ (A⊗ Z0) = T̃ (A)
nd ΣA = ΣA⊗Z0 . Thus 13.2 applies. □

4. A homotopy lemma

The purpose of this section is to present 14.14 which will be used in next section. The following is known, a proof for
the unital case can be found in 12.4 of [20]

Lemma 14.1. Let C be a separable C*-algebra, and let ∆ : Cq,1
+ \ {0} → (0, 1) be an order preserving map. There exists a map

T : C+ \{0} → R+ \{0}×N satisfying the following: For any finite subset H ⊂ C1
+
\{0} and any σ -unital C*-algebra A with the

strict comparison of positive elements which is quasi-compact, if ϕ : C → A is a unital contractive completely positive linear
map satisfying

τ ◦ ϕ(h) ≥ ∆(ĥ) for all h ∈ H for all τ ∈ T(A), (e14.1)

then ϕ is T -H-full.

Recall the class of sub-homogeneous C∗-algebras Dr is defined in 4.8 of [20]. The following is a non-unital version of
8.4 of [20] (see 5.2.7 of [39]).
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heorem 14.2. Let A0 be a non-unital C∗-algebra such that A := Ã0 ∈ Dr with finitely generated Ki(A) (i = 0, 1). Let F ⊂ A
be a finite subset, let ε > 0 be a positive number and let ∆ : Aq,1

+ \{0} → (0, 1) be an order preserving map. There exist a finite
subset H1 ⊂ A1

+
\ {0}, γ1 > 0, γ2 > 0, δ > 0, a finite subset G ⊂ A and a finite subset P ⊂ K (A), a finite subset H2 ⊂ A, a

inite subset U ⊂ Jc(K1(A)) (see (e2.9) in 2.4 for the definition of Jc) for which [U] ⊂ P satisfying the following: For any unital
G-δ-multiplicative contractive completely positive linear maps ϕ,ψ : A0 → C for some C ∈ C0 such that

[ϕ∼]|P= [ψ
∼
]|P , (e14.2)

τ (ϕ∼(a)) ≥ ∆(â), τ (ψ∼(a)) ≥ ∆(â), for all τ ∈ T (C) and a ∈ H1, (e14.3)

|τ ◦ ϕ∼(a)− τ ◦ ψ∼(a)| < γ1 for all a ∈ H2, and (e14.4)

dist((ϕ∼)†(u), (ψ∼)†(u)) < γ2 for all u ∈ U, (e14.5)

here exists a unitary W ∈ C̃ such that

∥W (ϕ∼(f ))W ∗ − (ψ∼(f ))∥ < ε, for all f ∈ F, (e14.6)

here ϕ∼, ψ∼ are the unital extension of ϕ and ψ from A to C̃ .

Proof. Without loss of generality, we may assume that A is infinite dimensional.
Since K∗(A) is finitely generated, there is n0 such that κ ∈ HomΛ(K (A), K (C)) is determined by its restriction to

K∗(A,Z/nZ), n = 0, . . . , n0.
Let H′1 ⊂ A+ \ {0} (in place of H1), δ1 > 0 (in place of δ), G1 ⊂ A (in place of G) be a finite subset and let P0 ⊂ K (A)

(in place of P) be a finite subset required by 4.4.5 of [39] (6.7 of [20]) for ε/32 (in place of ε), F and ∆. We may assume
that δ1 < ε/32 and (2δ1, G1) is a KK -pair (see the end of 2.12 of [20]).

Moreover, we may assume that δ1 is sufficiently small that if ∥uv − vu∥ < 3δ1, then the Exel formula

τ (bott1(u, v)) =
1

2π
√
−1

(τ (log(u∗vuv∗)))

olds for any pair of unitaries u and v in any unital C∗-algebra C with tracial rank zero and any τ ∈ T (C) (see Theorem 3.6
of [34]). Moreover if ∥v1 − v2∥ < 3δ1, then

bott1(u, v1) = bott1(u, v2).

Let g1, g2, . . . , gk(A) ∈ U(Mm(A)(A)) (m(A) ≥ 1 is an integer) be a finite subset such that {ḡ1, ḡ2, . . . , ḡk(A)} ⊂ Jc(K1(A))
and such that {[g1], [g2], . . . , [gk(A)]} forms a set of generators for K1(A). Let U = {ḡ1, ḡ2, . . . , ḡk(A)} ⊂ Jc(K1(A)) be a finite
subset.

Let U0 ⊂ A be a finite subset such that

{g1, g2, . . . , gk(A)} ⊆ {(ai,j) : ai,j ∈ U0}.

Let δu = min{1/256m(A)2, δ1/16m(A)2}, Gu = F ∪ G1 ∪ U0 and let Pu = P0∪{[g1], [g2], . . . , [gk(A)]}.
Let δ2 > 0 (in place of δ), G2 ⊂ A (in place of G), H′2 ⊂ A+ \ {0} (in place of H), N1 ≥ 1 (in place of N) be the finite

subsets and the constants as required by 7.3 of [20] for δu (in place of ε), Gu (in place of F), Pu (in place of P) and ∆ and
with ḡj (in place of gj), j = 1, 2, . . . , k(A) (with k(A) = r).

Let δ3 > 0 and let G3 ⊂ A ⊗ C(T) be a finite subset satisfying the following: For any G3-δ3-multiplicative contractive
completely positive linear map L′ : A⊗ C(T)→ C ′ (for any unital C∗-algebra C ′ with T (C ′) ̸= ∅),

|τ ([L′](β(ḡj)))| < 1/8N1, j = 1, 2, . . . , k(A). (e14.7)

Without loss of generality, we may assume that

G3 = {g ⊗ f : g ∈ G′3 and f ∈ {1, z, z∗}},

where G′3 ⊂ A is a finite subset containing 1A (by choosing a smaller δ3 and large G′3).
Let ε′1 = min{d/27N1m(A)2, δu/2, δ2/2m(A)2, δ3/2m(A)2} and let ε̄1 > 0 (in place of δ) and G4 ⊂ A (in place of G) be a

finite subset as required by 6.4 of [20] for ε′1 (in place of ε) and Gu ∪ G′3. Put ε1 = min{ε′1, ε
′′

1 , ε̄1}. Let G5 = Gu ∪ G′3 ∪ G4.
Let H′3 ⊆ A1

+
\ {0} (in place of H1), δ4 > 0 (in place of δ), G6 ⊂ A (in place of G), H′4 ⊂ As.a. (in place of H2), P1 ⊂ K (A)

(in place of P) and σ > 0 be the finite subsets and constants as required by Theorem 5.8 of [20] with respect to ε1/16
in place ε) and G5 (in place of F) and ∆.

Choose N2 ≥ N1 such that (k(A) + 1)/N2 < 1/8N1. Choose H′5 ⊂ A1
+
\ {0} and δ5 > 0 and a finite subset G7 ⊂ A

uch that, for any Mm and unital G7-δ5-multiplicative contractive completely positive linear map L′ : A → Mm, if
r ◦ L′(h) > 0 for all h ∈ H′5, then m ≥ 16N2.

Put δ = min{ε1/16, δ4/4m(A)2, δ5/4m(A)2}, G = G5 ∪ G6 ∪ G7, and P = Pu ∪ P1. Put

H1 = H′1 ∪H′2 ∪H′3 ∪H′4 ∪H′5
and let H = H′ . Let γ = σ and let 0 < γ < min{d/16N m(A)2, δ /9m(A)2, 1/256m(A)2}.
2 4 1 2 2 u
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Now suppose that C ∈ C0 and ϕ,ψ : A → C are two unital G-δ-multiplicative contractive completely positive linear
aps satisfying the condition of the theorem for the given ∆, H1, δ, G, P , H2, γ1, γ2 and U .
We write C = A(F1, F2, h0, h1), F1 = Mm1 ⊕Mm2 ⊕ · · · ⊕MmF (1) and F2 = Mn1 ⊕Mn2 ⊕ · · · ⊕MnF (2) . By the choice of H′5,

one has that

nj ≥ 16N2 and ms ≥ 16N2, 1 ≤ j ≤ F (2), 1 ≤ s ≤ F (1). (e14.8)

Let qF1,0 = h0(1F1 ) and qF1,1 = h1(1F1 ). Define h∼0 : F∼1 :=F1 ⊕ C → F2 by h∼0 ((a, λ)) = h0(a) ⊕ λ(1 − qF1,0) and
h∼1 ((a, λ)) = h1(a) ⊕ λ(1 − qF1,1). Then C̃ = A(F1 ⊕ C, F2, h∼0 , h

∼

1 ). Put π
C∼
: C̃ → C. Note that πC∼

◦ ϕ(a) = 0 =
πC∼
◦ ψ(a) for all a ∈ A0 ⊂ A, and that πC∼

◦ ϕ(1A∼ ) = 1C = πC∼
◦ ψ(1A∼ ). Hence

πC∼
◦ ϕ(a) = πC∼

◦ ψ(a) for all a ∈ A. (e14.9)

et 0 = t0 < t1 < · · · < tn = 1 be a partition of [0, 1] so that

∥πt ◦ ϕ
∼(g)− πt ′ ◦ ϕ

∼(g)∥ < ε1/16 and ∥πt ◦ ψ
∼(g)− πt ′ ◦ ψ

∼(g)∥ < ε1/16 (e14.10)

for all g ∈ G, provided t, t ′ ∈ [ti−1, ti], i = 1, 2, . . . , n.
Applying Theorem 5.8 of [20], one obtains a unitary wi ∈ F2 if 0 < i < n, w0 ∈ h0(F1), such that

∥wiπti ◦ ϕ
∼(g)w∗i − πti ◦ ψ

∼(g)∥ < ε1/16 for all g ∈ G5, (e14.11)

Also there is w′e ∈ F1 such that

∥(w′e)
∗πe ◦ ϕ(g)w′e − πe ◦ ψ(g)∥ < ε1/16 for all g ∈ G5. (e14.12)

Let π F∼
′

1 : h∼0 (F
∼

1 ) → C and let π ′ : h0(F∼1 ) → h0(F1) be the quotient maps. Put w0 = h0(w′e) ⊕ (1F2 − qF1,0),
wn = h1(w′e)⊕ (1F2 − qF1,1), w

′

0 = h0(w′e) and w
′
n = h1(w′e). Then

∥w∗i πti ◦ ϕ
∼(g)wi − πti ◦ ψ

∼(g)∥ < ε1/16 for all g ∈ G5, (e14.13)

i = 0 and i = n. Denote we = w
′
e ⊕ 1C ∈ F1 ⊕ C. Then w0 = h∼0 (we), wn = h∼1 (we).

By (e14.5), there is a unitary ω′j ∈ Mm(A)(C̃) such that ωj ∈ CU(Mm(A)(C̃)) and

∥⌈(ϕ∼ ⊗ idMm(A) (g
∗

j )⌉⌈(ψ
∼
⊗ idMm(A) )(gj)⌉ − ω

′

j)∥ < γ2, j = 1, 2, . . . , k(A). (e14.14)

By (e14.9) and (e14.14), we have ∥(πC∼
⊗idm(A))(ω′j)−1∥ < γ2. Set ωj = ω

′

j ·(π
C∼
⊗idm(A))(ω′j)

∗ (viewing (πC∼
⊗idm(A))(ω′j) ∈

Mm(A)(C) ⊂ Mm(A)(C̃)). Consequently, we have

∥⌈ϕ∼ ⊗ idMm(A) (g
∗

j )⌉⌈(ψ
∼
⊗ idMm(A) )(gj)⌉ − ωj∥ < 2γ2, j = 1, 2, . . . , k(A), (e14.15)

with an extra condition πC∼ idm(A)(ωj) = 1m(A)(C). As mentioned in 2.2, we will use πC∼ for πC∼
⊗ idm(A). (Note that we

now have wi as well as ωi in the proof.) Write

ωj =

e(j)∏
l=1

exp(
√
−1a(l)j )

for some self adjoint element a(l)j ∈ Mm(A)(C̃), l = 1, 2, . . . , e(j), j = 1, 2, . . . , k(A). In particular, one can choose a(l)j such
hat πC∼(a(l)j ) = 0 ∈ Mm(A)(C) (see 6.1). Write

a(l)j = (a(l,1)j , a(l,2)j , . . . , a
(l,nF (2))
j ) and ωj = (ωj,1, ωj,2, . . . , ωj,F (2))

n C([0, 1], F2) = C([0, 1],Mn1 )⊕ · · · ⊕ C([0, 1],MnF (2) ), where ωj,s =
∏e(j)

l=1 exp(
√
−1a(l,s)j ), s = 1, 2, . . . , F (2).

Then
e(j)∑
l=1

ns(ts ⊗ Trm(A))(a
(l,s)
j (t))

2π
∈ Z, t ∈ (0, 1),

where ts is the normalized trace on Mns , s = 1, 2, . . . , F (2). In particular,
e(j)∑
l=1

ns(ts ⊗ Trm(A))(a
(l,s)
j (t)) =

e(j)∑
l=1

ns(ts ⊗ Trm(A))(a
(l,s)
j (t ′)) for all t, t ′ ∈ (0, 1). (e14.16)

We also have

(1/2π )
e(j)∑
l=1

ms(tes ⊗ Trm(A))(πe(a
(l)
j ) ∈ Z, (e14.17)

where t is the tracial state on M . Note, for s = F (1)+ 1, one has π (a(l)) = πC∼(a(l)) = 0.
es ms e,s j j
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Let Wi = wi ⊗ idMm(A) , i = 0, 1, . . . ., n and We = we ⊗ idMm(A)(F1). Then it follows from (e14.11) and (e14.15) that

∥(πti (⌈ϕ
∼
⊗ idMm(A) )(g

∗

j )⌉)Wi(πti (⌈ϕ
∼
⊗ idMm(A) )(gj)⌉)W

∗

i − ωj(ti)∥ (e14.18)

< 3m(A)2ε1 + 2γ2 < 1/32. (e14.19)

We also have (with ϕe = πe ◦ ϕ
∼)

∥⌈(ϕe ⊗ idMm(A) )(g
∗

j )⌉(We(⌈ϕe ⊗ idMm(A) )(gj)⌉)W
∗

e − πe(ωj)∥ < 3m(A)2ε1 + 2γ2 < 1/32. (e14.20)

It follows from (e14.18) that there exist selfadjoint elements bi,j ∈ Mm(A)(F2) such that

exp(
√
−1bi,j) = ωj(ti)∗(πi(⌈ϕ∼ ⊗ idMm(A) )(g

∗

j )⌉)Wi(πi(⌈ϕ∼ ⊗ idMm(A) )(gj)⌉)W
∗

i , (e14.21)

nd be,j ∈ Mm(A)(F1 ⊕ C) such that

exp(
√
−1be,j) = πe(ωj)∗(πe(⌈ϕ∼ ⊗ idMm(A) )(g

∗

j )⌉)We(πe(⌈ϕ∼ ⊗ idMm(A) )(gj)⌉)W
∗

e , (e14.22)

and

∥bi,j∥ < 2 arcsin(3m(A)2ε1/2+ γ2), j = 1, 2, . . . , k(A), i = 0, 1, . . . , n, e. (e14.23)

Write

bi,j = (b(1)i,j , b
(2)
i,j , . . . , b

F (2)
i,j ) ∈ Mm(A)(F2) and be,j = (b(1)e,j , b

(2)
e,j , . . . , b

(F (1))
e,j , bF (1)+1e,j ) ∈ Mm(A)(F1 ⊕ C).

From πC∼(ωj) = 1 and definition of We and we, we know that bF (1)+1e,j = 0. We have that

h∼0 (be,j) = b0,j and h∼1 (be,j) = bn,j. (e14.24)

Note that

(πti (⌈ϕ
∼
⊗ idMm(A) (g

∗

j )⌉))Wi(πti (⌈ϕ
∼
⊗ idMm(A) )(gj)⌉)W

∗

i = πti (ωj) exp(
√
−1bi,j), (e14.25)

j = 1, 2, . . . , k(A) and i = 0, 1, . . . , n, e. Then,
ns

2π
(ts ⊗ TrMm(A) )(b

(s)
i,j ) ∈ Z, (e14.26)

where ts is the normalized trace on Mns , s = 1, 2, . . . , F (2), j = 1, 2, . . . , k(A), and i = 0, 1, . . . , n. We also have
ms

2π
(ts ⊗ TrMm(A) )(b

(s)
e,j) ∈ Z, (e14.27)

where ts is the normalized trace on Mms , s = 1, 2, . . . , F (1), j = 1, 2, . . . , k(A). Put

λ
(s)
i,j =

ns

2π
(ts ⊗ TrMm(A) )(b

(s)
i,j ) ∈ Z,

where ts is the normalized trace on Mns , s = 1, 2, . . . , n, j = 1, 2, . . . , k(A) and i = 0, 1, 2, . . . , n.
Put

λ
(s)
e,j =

ms

2π
(ts ⊗ TrMm(A) )(b

(s)
e,j) ∈ Z,

where ts is the normalized trace on Mms , s = 1, 2, . . . , F (1) and j = 1, 2, . . . , k(A). Denote

λi,j = (λ(1)i,j , λ
(2)
i,j , . . . , λ

(F (2))
i,j ) ∈ ZF (2), and λe,j = (λ(1)e,j , λ

(2)
e,j , . . . , λ

F (1)
e,j , 0) ∈ ZF (1)+1.

We have, by (e14.23), for j = 1, 2, . . . , k(A) and i = 0, 1, 2, . . . , n,

|
λ
(s)
i,j

ns
|< 1/4N1, s = 1, 2, . . . , F (2), |

λ
(s)
e,j

ms
|< 1/4N1, s = 1, 2, . . . , F (1), (e14.28)

efine α(0,1)
i : K1(A) → ZF (2) by mapping [gj] to λi,j, j = 1, 2, . . . , k(A), i = 0, 1, 2, . . . , n, and define α(0,1)

e : K1(A) →
F (1)
⊕ Z by mapping [gj] to (λe,j, 0), j = 1, 2, . . . , k(A). We write K0(A ⊗ C(T)) = K0(A) ⊕ β(K1(A)) (see 2.10 of [35] for

he definition of β). Define αi : K∗(A⊗ C(T))→ K∗(F2) as follows: On K0(A⊗ C(T)), define

αi|K0(A)= [πi ◦ ϕ]|K0(A), αi|β(K1(A))= αi ◦ β|K1(A)= α
(0,1)
i (e14.29)

nd on K1(A⊗ C(T)), define αi|K1(A⊗C(T))= 0, i = 0, 1, 2, . . . , n.
Also define αe ∈ Hom(K∗(A⊗ C(T)), K∗(F1 ⊗ C)), by

α | = [π ◦ ϕ∼]| , α | = α ◦ β| = α(0,1) (e14.30)
e K0(A) e K0(A) e β(K1(A)) e K1(A) e
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n K0(A⊗ C(T)) and (αe)|K1(A⊗C(T))= 0. Note that

(h∼0 )∗ ◦ αe = α0 and (h∼1 )∗ ◦ αe = αn. (e14.31)

Since A⊗ C(T) satisfies the UCT, the map αe can be lifted to an element of KK (A⊗ C(T), F1⊕C) which is still denoted by
αe. Then define

α0 = αe × [h∼0 ] and αn = αe × [h∼1 ] (e14.32)

in KK (A⊗ C(T), F2). For i = 1, . . . , n− 1, also pick a lifting of αi in KK (A⊗ C(T), F2), and still denote it by αi. We estimate
that

∥(w∗i wi+1)πti ◦ ϕ
∼(g)− πti ◦ ϕ

∼(g)(w∗i wi+1)∥ < ε1/4 for all g ∈ G5, (e14.33)

= 0, 1, . . . , n − 1. Let Λi,i+1 : C(T) ⊗ A → F2 be a unital contractive completely positive linear map given by the
air w∗i wi+1 and πti ◦ ϕ (by 6.4 of [20], see 2.8 of [35]). Denote Vi,j = ⌈πti ◦ ϕ

∼
⊗ idMm(A) (gj)⌉, j = 1, 2, . . . , k(A) and

= 0, 1, 2, . . . , n− 1.
Write

Vi,j = (Vi,j,1, Vi,j,2, . . . , Vi,j,F (2)) ∈ Mm(A)(F2), j = 1, 2, . . . , k(A), i = 0, 1, 2, . . . , n.

imilarly, write

Wi = (Wi,1,Wi,2, . . . ,Wi,F (2)) ∈ Mm(A)(F2), i = 0, 1, 2, . . . , n. (e14.34)

e have

∥WiV ∗i,jW
∗

i Vi,jV ∗i,jWi+1Vi,jW ∗i+1 − 1∥ < 1/16 (e14.35)

∥WiV ∗i,jW
∗

i Vi,jV ∗i+1,jWi+1Vi+1,jW ∗i+1 − 1∥ < 1/16 (e14.36)

and there is a continuous path Z(t) of unitaries such that Z(0) = Vi,j and Z(1) = Vi+1,j. Since

∥Vi,j − Vi+1,j∥ < δ1/12, j = 1, 2, . . . , k(A),

we may assume that ∥Z(t)− Z(1)∥ < δ1/6 for all t ∈ [0, 1]. We also write

Z(t) = (Z1(t), Z2(t), . . . , ZF (2)(t)) ∈ F2 and t ∈ [0, 1].

We obtain a continuous path WiV ∗i,jW
∗

i Vi,jZ(t)∗Wi+1Z(t)W ∗i+1 which is in CU(Mnm(A)) for all t ∈ [0, 1] and

∥WiV ∗i,jW
∗

i Vi,jZ(t)∗Wi+1Z(t)W ∗i+1 − 1∥ < 1/8 for all t ∈ [0, 1].

It follows that

(1/2π
√
−1)(ts ⊗ TrMm(A) )[log(Wi,sV ∗i,j,sW

∗

i,sVi,j,sZs(t)∗Wi+1,sZs(t)W ∗i+1,s)]

s a constant integer, where ts is the normalized trace on Mns . In particular,

(1/2π
√
−1)(ts ⊗ TrMm(A) )(log(Wi,sV ∗i,j,sW

∗

i,sWi+1,sVi,j,sW ∗i+1,s)) (e14.37)

= (1/2π
√
−1)(ts ⊗ TrMm(A) )(log(Wi,sV ∗i,j,sW

∗

i,sVi,jV ∗i+1,j,sWi+1,sVi,j,sW ∗i+1,s)). (e14.38)

ne also has

WiV ∗i,jW
∗

i Vi,jV ∗i+1,jWi+1Vi+1,jW ∗i+1 = (ωj(ti) exp(
√
−1bi,j))∗ωj(ti+1) exp(

√
−1bi+1,j) (e14.39)

= exp(−
√
−1bi,j)ωj(ti)∗ωj(ti+1) exp(

√
−1bi+1,j). (e14.40)

ote that, by (e14.14) and (e14.10), for t ∈ [ti, ti+1],

∥ωj(ti)∗ωj(t)− 1∥ < 2(m(A)2)ε1/16+ 2γ2 < 1/32, (e14.41)

= 1, 2, . . . , k(A), i = 0, 1, . . . , n− 1. By Lemma 3.5 of [40],

(ts ⊗ Trm(A))(log(ωj,s(ti)∗ωj,s(ti+1))) = 0. (e14.42)

t follows that (by the Exel formula (see [24]), using (e14.38), (e14.40) and (e14.42))

(t ⊗ Trm(A))(bott1(Vi,j,W ∗i Wi+1)) (e14.43)

= (
1

2π
√
−1

)(t ⊗ Trm(A))(log(V ∗i,jW
∗

i Wi+1Vi,jW ∗i+1Wi)) (e14.44)

= (
1
√ )(t ⊗ Trm(A))(log(WiV ∗i,jW

∗

i Wi+1,sVi,jW ∗i+1)) (e14.45)

2π −1
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= (
1

2π
√
−1

)(t ⊗ Trm(A))(log(WiV ∗i,jW
∗

i Vi,jV ∗i+1,jWi+1Vi+1,jW ∗i+1)) (e14.46)

= (
1

2π
√
−1

)(t ⊗ Trm(A))(log(exp(−
√
−1bi,j)ωj(ti)∗ωj(ti+1) exp(

√
−1bi+1,j))) (e14.47)

= (
1

2π
√
−1

)[(t ⊗ Trm(A))(−
√
−1bi,j)+ (t ⊗ Trm(A))(log(ωj(ti)∗ωj(ti+1))) (e14.48)

+(t ⊗ Trm(A))(
√
−1bi,j)] (e14.49)

=
1
2π

(t ⊗ Trm(A))(−bi,j + bi+1,j) (e14.50)

or all t ∈ T (F2). In other words,

bott1(Vi,j,W ∗i Wi+1) = −λi,j + λi+1,j (e14.51)

= 1, 2, . . . ,m(A), i = 0, 1, . . . , n− 1.
Define β0 = 0, β1 = [Λ0,1] − α1 + α0 + β0,

βi = [Λi−1,i] − αi + αi−1 + βi−1, i = 2, 3, . . . , n. (e14.52)

hen

β1([gj]) = Λ0,1([gj])− λ1,j + λ0,j = 0,
β2([gj]) = Λ1,2([gj])− λ2,j − λ1,j + β1([gj]) = 0 and
βi([gj]) = λi−1,i([gj])− λi,j − λi−1,j − βi−1([gj]) = 0, i = 3, . . . , n.

t follows 5.2.5 of [39] that there is ϱ ∈ HomΛ(K (A), K (F1 ⊗ C)) such that

ϱ(β(K1(A))) = 0 and
ϱ × ([h∼1 ] − [h

∼

0 ])|β(K (A))= βn|β(K (A)).

Define κ0 = α0 + β0 + ϱ × [h∼0 ], κi = αi + βi + ϱ × [h∼0 ], i = 1, 2, . . . , n. Note that, on β(K (A)),

κn = αn + βn + ϱ × [h∼0 ] = αn + ϱ × ([h∼1 ] − [h
∼

0 ])+ ϱ × [h
∼

0 ] (e14.53)

= αn + ϱ × [h∼1 ] = (αe + ϱ)× [h∼1 ], (e14.54)

and, by (e14.32), κ0 = α0 + ϱ × [h∼0 ] = αe × [h∼0 ] + ϱ × [h
∼

0 ]. We also have, for each j = 1, 2, . . . , k(A),

κi([gj]) = λi,j + (h∼0 )∗0 ◦ ϱ([gj]) = λi,j, i = 0, 1, . . . , n and
(ϱ + αe)([gj]) = λe,j.

Applying 7.4 of [20] (using (e14.28), (e14.3)), there are unitaries zi ∈ F2, i = 1, 2, . . . , n−1, and ze ∈ F1⊗C with ze = z ′e⊕1
uch that, for i = 1, 2, . . . , n− 1,

∥[zi, πti ◦ ϕ
∼(g)]∥ < δu for all g ∈ Gu, Bott(zi, πti ◦ ϕ

∼) = (κi)|β(K (A)), and (e14.55)

∥[ze, πe ◦ ϕ
∼(g)]∥ < δu for all g ∈ Gu and Bott(ze, πe ◦ ϕ

∼) = (ϱ + αe)|β(K (A)). (e14.56)

ut

z0 = h0(ze)⊗ (1F2 − h0(1F1 )) and zn = h1(ze)⊕ (1F2 − h1(1F1 )).

ote that, as above,

Bott(z0, π0 ◦ ϕ
∼) = κ0|β(K (A)) and Bott(zn, π0 ◦ ϕ

∼) = κn|β(K (A)).

Let

Ui = ziwiw
∗

i+1zi+1, i = 0, 1, . . . , n− 1. (e14.57)

Then, by (e14.55), (e14.56) and (e14.33),

∥[Ui, πti ◦ ϕ
∼(g)]∥ < 2δu + 2ε1/4 < δ1/2 for all g ∈ Gu. (e14.58)

We also compute that (using the choice of δ1 and (e14.52))

Bott(Ui, πti ◦ ϕ
∼) = Bott(zi, πti ◦ ϕ

∼)+ Bott(w∗i wi+1, πti ◦ ϕ
∼)

= Bott(zi+1, πti ◦ ϕ
∼) = κi + [Λi,i+1] − κi+1

= αi + βi + ϱ × [h0] + [Λi,i+1] − (αi+1 + βi+1 + ϱ × [h0])

= αi + βi + [Λi,i+1] − αi+1 − ([Λi,i+1] − αi+1 + αi + βi) = 0,
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= 0, 1, . . . , n− 1. Note that, by the assumption (e14.3),

ts ◦ πt ◦ ϕ(h) ≥ ∆(ĥ) for all h ∈ H′1, (e14.59)

here ts is the normalized trace on Mns , 1 ≤ s ≤ F (2). Then, by this, (e14.58), (e14.59) and by applying 6.7 of [20] we
obtain a continuous path of unitaries {Ui(t) : t ∈ [ti, ti+1]} ⊂ F2 such that Ui(ti) = 1F2 and U(ti+1) = zi(wi)∗wi+1z∗i+1 and

∥[Ui(t), πt ◦ ϕ
∼(f )]∥ < ε/32 for all f ∈ F, (e14.60)

i = 0, 1, . . . , n− 1. Now define W (t) = wiz∗i Ui(t) for t ∈ [ti, ti+1], i = 0, 1, . . . , n− 1. Then W (t) ∈ C([0, 1], F2) but also

W (0) = w0z∗0 = h∼0 (wez∗e ) and W (1) = wnz∗n = h∼1 (wez∗e ).

Therefore W ∈ C̃ . One then checks that, by (e14.10), (e14.60), (e14.55) and (e14.11),

∥W (t)(πt ◦ ϕ
∼)(f )W (t)∗ − (πt ◦ ψ

∼)(f )⊗ 1MN ∥ (e14.61)

< ∥W (t)(πt ◦ ϕ
∼)(f )W (t)∗ −W (t)(πti ◦ ϕ

∼)(f )W ∗(t)∥ (e14.62)

+∥W (t)(πti ◦ ϕ
∼)(f )W (t)∗ −W (ti)(πti ◦ ϕ

∼)(f )W (ti)∗∥ (e14.63)

+∥W (ti)(πti ◦ ϕ
∼)(f )W (ti)∗ − (wiπti ◦ ϕ

∼)(f )w∗i ∥ (e14.64)

+∥wi(πti ◦ ϕ
∼)(f )w∗i − πti ◦ ψ

∼(f )∥ (e14.65)

+∥πti ◦ ψ
∼(f )− πt ◦ ϕ

∼(f )∥ (e14.66)

< ε1/16+ ε/32+ δu + ε1/16+ ε1/16 < ε (e14.67)

for all f ∈ F and for t ∈ [ti, ti+1]. □

Definition 14.3. Let D be a non-unital C∗-algebra. Denote by C(T, D̃)o the C∗-subalgebra of C(T, D̃) generated by
C0(T \ {1})⊗ 1D̃ and 1C(T) ⊗ D. The unitization of C(T, D̃)o is C(T, D̃) = C(T)⊗ D̃. Let C be another non-unital C∗-algebra,
L : C(T, D̃)o → C be a completely positive contractive linear map and L∼ : C(T)⊗ D̃→ C̃ be the unitization. Denote by z
the standard unitary generator of C(T). For any finite subset F ⊂ C(T)⊗D, any finite subset Fd ⊂ D̃, and ε > 0, there exist
a finite subset G ⊂ D and δ > 0 such that, whenever ϕ : D→ C is a G-δ -multiplicative completely positive contractive
linear map (for any C∗-algebra C) and ∥[u, ϕ(g)]∥ < δ for all g ∈ G, there exists a F-ε-multiplicative completely positive
contractive linear map L′ : C(T)⊗ D̃→ C̃ such that

∥L′(z ⊗ 1)− u∥ < ε and ∥L′(1⊗ d)− ϕ∼(d)∥ < ε for all d ∈ Fd. (e14.68)

We will denote such L′ by Φu,ϕ .
Conversely, there exist a finite subset G′ ⊂ C(T, D̃)o and δ′ > 0, if L : C(T,D)o → C is G′-δ′-multiplicative completely

positive contractive linear map, there is a unitary u ∈ C̃ such that

∥L̃(z ⊗ 1)− u∥ < ε (e14.69)

and ϕ = L∼|1⊗D is a completely positive contractive linear map.

In what follows, we use A for the family of C∗-algebras which can be approximated by C∗-algebras D ∈ Dr for some
integer r ≥ 1, Note that BT ⊂ A.

Lemma 14.4. Let A = C(T) ⊗ D̃, where D ∈ A. Let F ⊂ A be a finite subset, let ε > 0 be a positive number and let
: Aq,1
+ \ {0} → (0, 1) be an order preserving map. There exist a finite subset H1 ⊂ A1

+
\ {0}, γ1 > 0, γ2 > 0, δ > 0, a

inite subset G ⊂ A, and a finite subset P ⊂ K (A), a finite subset H2 ⊂ A, a finite subset U ⊂ Jc(K1(A)) for which [U] ⊂ P
satisfying the following: For any unital G-δ-multiplicative contractive completely positive linear maps Φu,ϕ,Φv,ψ : A→ C̃ for
some amenable C ∈ Dd with continuous scale, where u, v ∈ U(C̃) and ϕ,ψ : D→ C are two Gd-δ-multiplicative completely
ositive contractive linear maps (Gd = {g : g ⊗ 1 ∈ G}) such that

[Φu,ϕ]|P= [Φv,ψ ]|P , (e14.70)

τ (Φu,ϕ(a)) ≥ ∆(â), τ (Φv,ψ (a)) ≥ ∆(â) for all τ ∈ T (C) and a ∈ H1, (e14.71)

|τ ◦Φu,ϕ(a)− τ ◦Φv,ψ (a)| < γ1 for all a ∈ H2 and (e14.72)

dist(Φ†
u,ϕ(y),Φ

†
v,ψ (y)) < γ2 for all y ∈ U, (e14.73)

here exists a unitary W ∈ C̃ such that

∥W (Φu,ϕ(f ))W ∗ − (Ψv,ψ (f ))∥ < ε, for all f ∈ F . (e14.74)
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roof. Let us first reduce the general case to the case that D ∈ Dr . Fix any finite subset Fd ⊂ D and any εd > 0, by 7.3,
here is Dn ∈ Dr such that

dist(x,Dn) < εd for all x ∈ Fd. (e14.75)

his effectively allows us to assume that D ∈ Dr . It should then be noted that C(T, D̃) ∈ Dr+1.
Now we assume that D ∈ Dr .
Let L = 8π , r0 = 0, r1 = 0, T(n, k) = n for all (n, k), s = 1 and R = 7. Let 1/2 > ε > 0 and F ⊂ A be a finite subset.

et ∆0 = ∆/2. Let F ′ : A+ \ {0} → R× N be given by 14.1 associated with ∆0.
Put A0 = C(T, D̃)o. Let FI ⊂ A0 be a finite subset such that, if x ∈ F , then x = λ+ y for some y ∈ FI .
Let δ0 > 0 (in place of δ), G0 ⊂ A0 (in place of G) be finite subset, P0 ⊂ K (A0) (in place of P), U0 ⊂ U(MN (A)) (for some

nteger N ≥ 1) H0 ⊂ (A0)+ \ {0} (in place of H) and K ≥ 1 be an integer required by Theorem 3.14 of [16] for A0, ε/16
in place of ε), FI (in place of F), L, F ′, (in place F ), as well as r0, r1, T , s and R above. As in 3.15 of [16], we can choose
U0 = {g1, g2, . . . , gk(A)} so that K1(A) ∩ P0 = {[g1], [g2], . . . , [gk(A)]}.

Let γ ′1 > 0, γ ′2 > 0, δ′ > 0, G′ ⊂ A, H′1 ⊂ (A)1
+
\ {0}, P ′ ⊂ K (A), U ′ ⊂ Jc(K1(A)) and H′2 ⊂ As.a. be finite subsets required

by 14.2 for min{δ0/4, ε/16} (in place of ε) G0 (in place of F) and for ∆0 (in place of ∆).
Put γ1 = γ ′1/4, γ2 =

1
2K+1 min{γ ′2/16, ε/64}, δ = min{δ′/16, δ0/16, γ1/16, γ2/16, ε/210

}, H1 = H′1, H2 = H2 and
= G′.
Now suppose that Φ1,Φ2 : A → C̃ are two G-δ-multiplicative completely positive contractive linear maps such that

1 = Φu,ϕ and Φ2 = Φv,ψ , where u, v and ϕ,ψ are as given. Moreover, Φ1,Φ2 satisfy the condition (e14.70), (e14.71),
e14.72), (e14.73) and (e14.73) for the above mentioned ∆, P , H1, H2, γ1, γ2 and U .

Since C ∈ Dd, there exist a sequence of positive elements {bn} of C , a sequence of C∗-subalgebras C0,n ∈ C0, two
equences of completely positive contractive linear maps ϕ0,n : A→ Bn and ϕ1,n : C → C0,n such that C0,n ⊥ Bn,

lim
n→∞
∥ϕi,n(ab)− ϕi,n(a)ϕi,n(b)∥ = 0 for all a, b ∈ C, (e14.76)

lim
n→∞
∥x− (ϕ0,n(x)⊕ diag(

K  
ϕ1,n(x), ϕ1,n(x), . . . , ψ1,n(x)))∥ = 0 for all x ∈ C (e14.77)

lim
n→∞

sup
τ∈T (C)

dτ (bn) = 0, t(f1/4(ϕ1,n(eC ))) ≥ 1/2 for all t ∈ T (C0,n), (e14.78)

and τ (f1/4(ϕ1,n(eC ))) > 1/2 for all τ ∈ T (C), (e14.79)

where eC ∈ C is a strictly positive element with ∥eC∥ = 1, Bn = bnCbn (see 9.2 of [15]). Put Cn = MK (C0,n), n = 1, 2, . . . It
should be noted that Cn ⊥ Bn, n = 1, 2, . . .. We may assume, without loss of generality, for all n,

sup
τ∈T (C)

dτ (bn) < min{γ1/64K , γ2/64K ,min{∆0(ĥ) : h ∈ H1}/4(K + 2)}. (e14.80)

Let ui, vi ∈ MN (C̃) (i = 1, 2, . . . , k(A)) be two unitaries such that

∥(Φ1 ⊗ idMN )(gi)− ui∥ < min{ε/28, γ2/8} and ∥(Φ2 ⊗ idMN )(gi)− vi∥ < min{ε/28, γ2/8}.

Let wi ∈ CU(C̃) be such that

∥uiv
∗

i − wi∥ < (5/4)γ2 and wi =

m(i)∏
j=1

wi,j, wi,j = w
∗

1,i,jw
∗

2,i,jw1,i,jw2,i,j, (e14.81)

where ws,i,j ∈ U(C̃), s = 1, 2, j = 1, 2, . . . ,m(i) and i = 1, 2, . . . , k(A). Let m = max{m(i) : 1 ≤ i ≤ k(A)}.
Write ws,i,j = αs,i,j + c(ws,i,j), where αs,i,j ∈ T ⊂ C and c(ws,i,j) ∈ C , j = 1, 2, . . . ,m(i). Note that ∥c(ws,i,j)∥ ≤ 2,

j = 1, 2, . . . ,m(i), i = 1, 2, . . . , k(A).

Define ψ1,n : A→ Cn by ψ1,n(a) = diag(

K  
ϕ1,n(a), ϕ1,n(a), . . . , ϕ1,n(a)) for all n. Put Ψj = ψ1,n ◦Φj : A→ Cn, j = 1, 2.

Let G2 = G ∪ {c(ws,i,j) : s = 1, 2, 1 ≤ j ≤ m(i), 1 ≤ i ≤ k(A)}. We can choose n large enough so that ψ0,n and ψ1,n are
2- δ

212mN2 -multiplicative. In particular, by (e14.73) and the choice of γ2,

dist(⌈ϕ∼0,n(ui)⌉, ⌈ϕ∼0,n(vi)⌉) ≤ γ
′

2/4 in U(B̃n)/CU(B̃n) and (e14.82)

dist(⌈ψ∼1,n(ui)⌉, ⌈ψ∼1,n(vi)⌉) ≤ γ
′

2/4 in U(C̃n)/CU(C̃n). (e14.83)

It is standard to check that, by choosing sufficiently large n, we may assume that Ψj are G-δ-multiplicative completely
positive contractive linear maps satisfying the following:

t ◦ Ψ1(h) ≥ ∆0(ĥ), t ◦ Ψ2(h) ≥ ∆0(ĥ) for all h ∈ H1, (e14.84)
|t ◦ Ψ (g)− t ◦ Ψ (g)| < γ ′ for all g ∈ H . (e14.85)
1 2 2 2
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ombining these with (e14.83), by applying 14.2, one obtains a unitary U1 ∈ C̃n such that

∥U∗1Ψ1(x)U1 − Ψ2(x)∥ < min{δ0/4, ε/4} for all x ∈ G0. (e14.86)

rite U1 = λ · 1C̃n + c(U1), where λ ∈ T ⊂ C and c(U1) ∈ Cn. Define V1 = λ · 1C̃ + c(U1). Then V1 ∈ U(C̃). Note, since
n ⊥ Cn, V ∗1 bV1 = b for all b ∈ Bn.
Let En = C0,nCC0,n and eEn be a strictly positive element with ∥eEn∥ = 1. Put Λ : A → C1,n ⊂ En by defining

(a) = Ad V1 ◦ ϕ1,n ◦ Φ1(a) for all a ∈ A0, By (e14.84), Λ is F ′-H1-full in C1,n. It follows it is F ′-H1-full in En. By (e14.80),
e may assume that bn ≲ eEn .
Let Li = ϕ0,n ◦Φi, i = 1, 2. By (e14.77), we assume that Li is also G-2δ-multiplicative and

∥Li(x)⊕ Ψi(x)−Φi(x)∥ < δ for all x ∈ G. (e14.87)

ince Ki(Cn) = {0}, i = 0, 1, we conclude that

[L1]|P= [Φ1]|P= [Φ2]|P= [L2]|P . (e14.88)

t follows from 4.4 and (e14.82) that, in Bn,

cel(⌈L1(z ⊗ 1)⌉⌈L2(z ⊗ 1)⌉∗) < 8π = L. (e14.89)

It follows from 3.14 of [16] that there exists a unitary W1 ∈ B̃ such that

∥W ∗1 (L1(a)⊕ S(a))W1 − (L2(a)⊕ S(a))∥ < ε/16, (e14.90)

where S(a) = diag(

K  
Λ(a),Λ(a), . . . ,Λ(a)) = V ∗1Ψ1(a)V1, for all a ∈ FI . Put W = V1W1. One then estimates, by (e14.87),

(e14.90) and (e14.86),

AdW ◦Φ1 ≈δ AdW ◦ (L1 ⊕ Ad V1 ◦ Ψ1) (e14.91)
≈ε/16 L2 ⊕ V1 ◦ Ψ1 ≈ε/4 L2 ⊕ Ψ2 ≈δ Φ2 on FI . (e14.92)

Therefore

∥AdW ◦Φ1(a)−Φ2(a)∥ < ε for all a ∈ F . □ (e14.93)

Lemma 14.5. Let A be a non-unital C*-algebra and T (A) ̸= ∅, let U be an infinite dimensional UHF-algebra and B ⊂ A be a
hereditary C∗-subalgebra of B. Suppose that there exists e ∈ A+ with ∥e∥ = 1 and eb = be = b for all b ∈ B. Then there is a
unitary w ∈ Ã⊗ U with the form w = exp(iπ (e⊗ h)) for some h ∈ Us.a. with τU (h) = 0 (where τU is the unique tracial state
of U) such that for any unitary u = λ+ x ∈ Ã with λ ∈ T ⊂ C and x ∈ B, one has, for any b ∈ B and f ∈ C(T),

τ (bf ((u⊗ 1)w)) = τ (b)τ (f (1A ⊗ exp(ih))) = τ (b)
∫
T
fdm (e14.94)

and for all τ ∈ T (A ⊗ U), where m is the normalized Lebesgue measure on T. Moreover, for any a ∈ B and τ ∈ T (A ⊗ U),
τ ((a⊗ 1)wj) = 0 if j ̸= 0. Furthermore, if A has continuous scale, then, for any ε > 0, and any N ≥ 1, one can choose e such
that

|τ ((u⊗ 1)w)j| < ε for all 0 < |j| ≤ N. (e14.95)

Proof. Denote by τU the unique trace of U . Then any trace τ ∈ T (A⊗ U) is a product trace, i.e.,

τ (a⊗ b) = τ (a⊗ 1)⊗ τU (b), a ∈ A, b ∈ U .

Pick a selfadjoint element h ∈ U such that the spectral measure of the unitary w0 = exp(ih) is the Lebesgue measure
(a Haar unitary). Moreover, sp(h) = [−π, π] and τ (h) = 0.

Then one has, for each n ∈ Z,

τU (wn
0) =

{
1, if n = 0,
0, otherwise.

Put w = exp(i(e ⊗ h)) ∈ Ã⊗ U . Thus w =
∑
∞

k=0
iek⊗hk

k! . Hence, for any τ ∈ T (A ⊗ U), one has, for each n ∈ Z, and any
b ∈ B (note that eb = be = b),

τ (b((u⊗ 1)w)n) = τ (b(un
⊗ 1)(e⊗ 1)(1⊗ wn

0)) = τ (bu
n
⊗ 1)τU (wn

0) =
{
τ (b), if n = 0,
0, otherwise;

and therefore

τ ((b⊗ 1)P(u⊗ 1)w) = τ (b)τ (P(1⊗ w)) = τ (b)
∫

P(z)dm

T
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or any polynomial P . Similarly, τ (bP(u⊗w)∗) = τ (b)
∫
T P(z̄)dm for any polynomial P . Since polynomials of z and z−1 are

dense in C(T), one has

τ ((b⊗ 1)f ((u⊗ 1)w)) = τ (b)τ (f (1⊗ w)) = τ (b)
∫
T
fdm, f ∈ C(T),

as desired.
For the second part of this lemma, assume that A has continuous scale. Then, for any δ > 0 and any integer N1 ≥ 1,

we can choose e1, e ∈ A+ such that 1 ≥ e ≥ e1, e1e = ee1 = e1 τ (ek) ≥ τ (e
N1
1 ) > 1 − δ for all τ ∈ T (A) and k ∈ N. Fix N

and ε > 0. A simple calculation shows the second part of the lemma follows by choosing sufficiently small δ and large
N1. □

Proposition 14.6. Let C be a non-unital amenable simple C∗-algebra and let U be an infinite dimensional UHF-algebra. For
any δ > 0, δc > 0, 1 > σ1, σ2 > 0, any finite subset G ⊂ C̃ ⊗ C(T), any finite Gc ⊂ C̃ , any finite subset H1 ⊂ C(T)+ \ {0}
and any finite subset H2 ⊂ (C ⊗ C(T))s.a. and any integer N ≥ 1, there exist δ1 > 0 and a finite subset G1 ⊂ C satisfying
the following: For any unital G1-δ1-multiplicative contractive completely positive linear map L : C → A and a unitary u ∈ Ã
with ∥[L(g), u]∥ < δ1 for all g ∈ G1, where A is another non-unital C∗-algebra with T (A) ̸= ∅ and with continuous scale,
there exists a positive element e ∈ A with ∥e∥ = 1 and h ∈ U satisfying the following: there are two unital G-δ-multiplicative
completely positive contractive linear maps L1, L2 : C̃ ⊗ C(T)→ B̃ such that

|τ (L1(f ))− τ (L2(f ))| < σ1 for all f ∈ H2, τ ∈ T (B), and (e14.96)

τ (g(u exp(
√
−1e⊗ h))) ≥ σ2(

∫
gdm) for all g ∈ H1, τ ∈ T (B), (e14.97)

here B = A⊗ U and m is the normalized Lebesgue measure on T, and

∥Li(g ⊗ 1C(T))− L∼(g)⊗ 1U∥ < δc for all g ∈ Gc, i = 1, 2, (e14.98)

∥L1(g ⊗ z j)− L∼(g)(u exp(
√
−1e⊗ h))j∥ < δc for all g ∈ Gc and (e14.99)

∥L2(g ⊗ z j)− L(g)∼ exp(
√
−1e⊗ h)j∥ < δc for all g ∈ Gc (e14.100)

and for all 0 < |j| ≤ N, where L∼ : C̃ → Ã is the unital extension of L. Moreover, τ (e⊗ h) = 0 for all τ ∈ A⊗ U.

Proof. Without loss of generality, we may assume that there are finite subsets Gc,Hc,1 ⊂ C̃ such that G = {c ⊗ 1C(T) :

∈ Gc} ∪ {1, 1C̃ ⊗ z, 1C̃ ⊗ z∗} and H2 = {c ⊗ 1C(T) : c ∈ Hc,1} ∪ {1⊗ b : b ∈ HT }, where HT ⊂ C(T)s.a.. We may assume
that 1C̃ ∈ Gc , 1C̃ ∈ Hc,1 and 1C(T) ∈ HT . We may also assume that ∥a∥ ≤ 1 for all a ∈ Gc ∪H2. Put

G0 = {cd⊗ gf : c, d ∈ Gc ∪Hc,1, g, f ∈ {z, z∗} ∪HT }.

Fix δ, δc > 0, σ1, σ2 > 0. Put ε = min{δ/4, δc/4, σ1/4, σ2/4}.
Let δ′1 > 0 and G0m ⊂ C̃ be a finite subset such that there is a G0-ε-multiplicative completely positive contractive linear

map L′ : C̃ ⊗ C(T) → D, for any C∗-algebra D and any G0m-δ′1-multiplicative completely positive contractive linear map
L′′ : C̃ → D, such that

∥L′(g ⊗ 1C(T))− L′′(g)∥ < ε for all g ∈ G0. (e14.101)

Let G1 = G0 ∪ G0m and δ1 = min{δ′1/4, ε/4}.
Now suppose that L : C̃ → Ã is a G1-δ1-multiplicative completely positive contractive linear map and u ∈ Ã is a unitary.

Without loss of generality, we may assume that there are positive elements e1, e ∈ A with ∥e1∥ = 1 = ∥e∥ such that

e1L(g) = L(g)e = L(g) for all g ∈ C, ee1 = e1e = e1 and τU (e1) > 1− ε. (e14.102)

Furthermore, without loss of generality, we may assume that L(c) = e1L(c)e1 for all c ∈ C . Let h ∈ U be as in 14.5. Let
v = exp(

√
−1e ⊗ h). Note that τU (ej) > 1 − ε for all j ∈ N. We can choose e so that both (e14.94) and (e14.95) hold.

This lemma then follows from an easy application of 14.5 and Lemma 2.8 of [35] (with L1 = Φv1,L and L2 = Φv2,L, where
v1 = u(exp(ie⊗ h)) and v2 = exp(ie⊗ h)). □

Corollary 14.7. Let C be a non-unital separable C∗-algebra. Suppose that there is an embedding ϕ : C → W . Then C(T, C̃)o
satisfies the condition in 9.3. Moreover, there exists an embedding Φ : C(T, C̃)o → W which maps strictly positive elements
to strictly positive elements.

Proof. Let {en} be an approximate identity for W such that en+1en = en fort all n. Let W1 = enWen Then there exists an
somorphism ψw : W → W1. Put ϕ0 = ψw ◦ ϕ. Therefore there is e ∈ W+ with ∥e∥ = 1 such that eϕ1(c) = ϕ1(c)e = ϕ1(c)
for all c ∈ C . Let U be a UHF-algebra of infinite type. Choose h ∈ Us.a. with sp(h) = [−π, π ] and tU (h) = 0, where tU is
the unique tracial state of U . Define x =

∑
∞ (

√
−1e⊗h)n

∈ W ⊗ U and u = 1 + x ∈ W̃ ⊗ U . Note that uϕ (c) = ϕ (c)u
n=1 n! W̃ 1 1
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or all c ∈ C . Define Ψ : C(T, C̃)→ W̃ ⊗ U by

Ψ (f ⊗ 1C̃ ) = f (u) for all f ∈ C(T) and Ψ (1C(T) ⊗ c) = ϕ1(c) for all c. (e14.103)

This gives a homomorphism Φ : C(T, C̃)o → W ⊗ U . By the proof of 14.5, we have, for all c ∈ C and f ∈ C(T),

(tW ⊗ tU )(Ψ (f ⊗ c)) = tW (ϕ1(c))
∫
T
fdm, (e14.104)

where m is the normalized Lebesgue measure on T. It follows that, for any f ∈ (C(T)⊗ C̃)+,

(tW ⊗ tU )(Ψ (f )) =
∫
T
tw(ϕ1(f (t)))dm. (e14.105)

This implies Φ is injective. Note that W ⊗ U ∼= W . By replacing W by Φ(C(T, C̃)o)WΦ(C(T, C̃)o), we may assume that Φ
maps strictly positive elements to strictly positive elements. It follows from 5.6 of [15] that C(T, C̃)o satisfies the condition
in 9.3. □

In what follows, if A is a unital C∗-algebra, u is a unitary and p is a projection in A such that ∥[p, u]∥ < δ for some
sufficiently small δ, then (1−p)+pu is close to a unitary with the form (1−p)+v, where v is a unitary in pAp. As before
this unitary may be chosen to be ⌈(1− p)+ pu⌉ (see 2.1). Moreover, when ⌈(1− p)+ pu⌉ is written we also assume that
∥[p, u]∥ is sufficiently small so the notation makes sense. Therefore, if L : A → B is a map which is η-F-multiplicative,
p ∈ Mn(Ã) is a projection and u ∈ B̃ is a unitary such that ∥[L(x), u]∥ < η for all x ∈ F for some sufficiently small η and
some large F ⊂ A, then L(p) is close to a projection and ∥[L(p), un]∥ < δ, where un = u⊗ 1Mn . So (e14.108) makes sense.
Similar items will appear again later.

Lemma 14.8. Let A ∈ A be a separable simple C∗-algebra with continuous scale. For any 1 > ε > 0 and any finite subset
F ⊂ A, there exist δ > 0, σ > 0, a finite subset G ⊂ A, a finite subset {p1, p2, . . . , pk, q1, q2, . . . , qk} of projections of MN (Ã)
(for some integer N ≥ 1) such that {[p1]− [q1], [p2]− [q2], . . . , [pk]− [qk]} generates a free subgroup Gu of K0(A), and a finite
subset P ⊂ K (A), satisfying the following:

Suppose that ϕ : A→ B⊗ V is a homomorphism which maps strictly positive elements to strictly positive elements, where
∈ D has continuous scale and V is a UHF-algebra of infinite type. If u ∈ U(B̃⊗ V ) is a unitary such that

∥[ϕ(x), u]∥ < δ for all x ∈ G, (e14.106)
Bott(ϕ, u)|P= 0, (e14.107)
dist(⌈((1− ϕ∼(pi))+ ϕ∼(pi)uN )((1− ϕ∼(qi))+ ϕ∼(qi)u∗N )⌉, 1̄) < σ and (e14.108)

dist(ū, 1̄) < σ, (e14.109)

(where uN = u⊗ 1MN ), then there exists a continuous path of unitaries {u(t) : t ∈ [0, 1]} ⊂ U0(B̃⊗ V ) such that

u(0) = u, u(1) = 1 (e14.110)
∥[ϕ(a), u(t)]∥ < ε for all a ∈ F and for all t ∈ [0, 1]. (e14.111)

Proof. Without loss of generality, one only has to prove the statement with assumption that u ∈ CU(B⊗ V ) as (e14.109)
is assumed. Since B⊗ V ⊗ V ∼= B⊗ V , to simplify notation, without loss of generality, we may assume that B = B⊗ V . In
particular, K0(B̃) is weakly unperforated (see 5.5).

In what follows we will use the fact that every C*-algebra in D has stable rank one (11.5 of [15]). We will also use z
for the generator unitary function on the unit circle. Let A2 = C(T)⊗ Ã and m is the normalized Lebesgue measure on the
unit circle T. Define

∆(ĥ) = (1/4) inf{
∫
T
τ (h(t))dm : τ ∈ T (A)} (e14.112)

for h ∈ (A2)1+ \ {0} (note, by the assumption, T (A) is compact). Let F1 = {x⊗ f : x ∈ F, f = 1, z, z∗}. To simplify notation,
without loss of generality, we may assume that F ⊂ A1. Let 1 > δ1 > 0 (in place of δ), G1 ⊂ A2 be a finite subset (in
place of G), 1/4 > γ1 > 0, 1/4 > γ2 > 0, P ′ ⊂ K (A2) (in place of P) be a finite subset, H1 ⊂ (A2)1+ \ {0} be a finite subset,

2 ⊂ (A2)s.a. be a finite subset and U ⊂ Jc(K1(A2)) (for some integer N ≥ 1) be a finite subset as required by 14.4 for ε/16
in place of ε), F1 (in place of F), ∆ and A2 (in place of A). Here we assume that [L]|P ′ is well defined whenever L is a
1-δ1-multiplicative completely positive contractive linear map from A2. Moreover,

[L1]|P ′= [L2]|P ′ , (e14.113)

f both L1 and L2 are G1-δ1-multiplicative completely positive contractive linear maps from A2 to a unital C∗-algebra and
L (g)− L (g)∥ < δ for all g ∈ G .
1 2 1 1
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Without loss of generality, we may assume that G1 = {z ⊗ 1Ã, 1C(T) ⊗ a : a ∈ G1A}, H1 = {h′ ⊗ 1Ã, 1C(T) ⊗ h′′ : h′ ∈
H1T and h′′ ∈ H1A}, H2 = {h1 ⊗ 1Ã, 1C(T) ⊗ h2 : h1 ∈ H2T and h2 ∈ H2A}, where H1T ⊂ C(T)1

+
\ {0}, H2T ⊂ C(T)s.a.,

G1,A ⊂ Ã, H1A ⊂ A1
+
\ {0} and H2A are finite subsets. Furthermore, we may also assume that elements in H1T and H2T are

polynomials of z and z∗ of degree no more than N1 and all coefficients with absolute values no more than M . In addition,
we assume that H1A ⊂ H2A. We may assume that P ′ = P1 ∪ β(P2) ∪ β([1Ã]), where P1,P2 ⊂ K (A) are finite subsets. We
further assume that

Bott(ϕ, v(0))|P2= Bott(ϕ, v(t))|P2 , (e14.114)

if ∥[ϕ(a), v(t)]∥ < δ1 for all a ∈ G1A and for any continuous path of unitaries {v(t) : t ∈ [0, 1]}.
We may further assume that,

U = U1 ∪ {1⊗ z} ∪ U2, (e14.115)

here U1 = {1C(T) ⊗ a : a ∈ U ′1 ⊂ U(Ã)} and U ′1 is a finite subset, U2 ⊂ U(MN (A2))/CU(MN (A2)) is a finite subset whose
lements represent a finite subset of β(K0(A)). So we may assume that U2 ∈ Jc(β(K0(A))).
We may even assume that U2 = U2f ⊔U2t , where U2f = {Jc(g1,f ), Jc(g2,f ), . . . ., Jc(gm(f ),f )} and U2t = {Jc(g1,t ), Jc(g2,t ), . . . ,

Jc(gm(t),t )}, where P ′ ∩ β(K0(A)) = {gi,f , gj,t : 1 ≤ i ≤ m(f ), 1 ≤ j ≤ m(t)}. Moreover, {g1,f , g2,f , . . . ., gm(f ),f } is a set of free
generators of a finitely generated free subgroup of β(K0(A)) and {g1,t , g2,t , . . . , gm(t),t} are generators for a finite subgroup
of β(K0(A)). Since Jc is a homomorphism, we may assume that there is an integer km ≥ 1 such that kmJc(gj,t ) = 0 in
U(MN (A2))/CU(MN (A2)). Since gi,f ∈ β(K0(A)), we may write that

gi,f = [(1⊗ (1− pi)+ z ⊗ pi)(1⊗ (1− qi)+ z∗ ⊗ qi)], i = 1, 2, . . . ,m(f ). (e14.116)

Write ps = (apsi,j)N×N and qs = (aqsi,j)N×N as matrices over Ã. Let wl = (bli,j)N×N be unitaries in MN (Ã) such that wl = Jc(gj,t ),
= 1, 2, . . . ,m(t).
We assume that (2δ1,P, G1) is a KL-triple for A2, (2δ1,P1, G1A) is a KL-triple for A (see 2.12 of [18], for example). We

may also choose σ1 and σ2 such that

0 < σ1 < (1/4)min{γ1/16, inf{∆(f̂ ) : f ∈ H1}}/4M(N + 1) and (e14.117)
σ2 = 1− γ2/16(N + 1)M. (e14.118)

Choose δ2 > 0 and a finite subset G2A ⊂ Ã (and denote G2 := {g ⊗ f : g ∈ G2A, f = {1, z, z∗}}) such that, for any two
unital G2-δ2-multiplicative contractive completely positive linear maps Ψ1,Ψ2 : C(T)⊗ Ã→ C̃ (any unital C∗-algebra C),
any G2A-δ2-multiplicative contractive completely positive linear map Ψ0 : Ã→ C̃ and unitary W ∈ C̃ (1 ≤ i ≤ k), if

∥Ψ0(g)− Ψ1(g ⊗ 1)∥ < δ2 for all g ∈ G2A (e14.119)
∥Ψ1(z ⊗ 1Ã)−W∥ < δ2 and ∥Ψ1(g)− Ψ2(g)∥ < δ2 for all g ∈ G2, (e14.120)

then (W = W ⊗ 1MN )

⌈(1− Ψ0(pi)+ Ψ0(pi)W )(1− Ψ0(qi)+ Ψ0(qi)W ∗)⌉ (e14.121)
≈ γ2

210
⌈Ψ1(((1− pi)+ z ⊗ pi)((1− qi)+ z∗ ⊗ qi))⌉, (e14.122)

∥⌈Ψ1(x)⌉ − ⌈Ψ2(x)⌉∥ < γ2/210 for all x ∈ U ′2, (e14.123)

Ψ1(((1− pi)+ z ⊗ pi)((1− qi)+ z∗ ⊗ qi)) (e14.124)
≈ γ2

210
Ψ1(((1− pi)+ z ⊗ pi))Ψ1(((1− qi)+ z∗ ⊗ qi)), (e14.125)

furthermore for d(1)i = pi, d
(2)
i = qi, there are projections d̄(j)i ∈ MN (C̃) and unitaries z̄(j)i ∈ d̄(j)i MN (C̃)d̄

(j)
i such that

Ψ1(((1− d(j)i )+ z ⊗ d(j)i )) ≈ γ2
212

(1− d̄(j)i )+ z̄(j)i and (e14.126)

d̄(j)i ≈ γ2
212

Ψ1(d
(j)
i ), z̄(1)i ≈ γ2

212
Ψ1(z ⊗ pi), and z̄(2)i ≈ γ2

212
Ψ1(qi ⊗ z∗), (e14.127)

where 1 ≤ i ≤ k, j = 1, 2.
Let δ3 > 0 and let G3 ⊂ C(T, Ã)o be a finite subset required by 11.6 for C = C(T, Ã)o, γ2/2 (in place of ε) and for all

unitaries in U2t . Without loss of generality, we may write G3 = G3A ∪ {1, z, z∗}, where G3A is a finite subset of A.
Choose δA = min{ε/16, δ1/16, δ2/16, σ1/4, σ2/4}/8M(N + 1)3 and

GA = F ∪ G1A ∪ G2A ∪H1A ∪H2A ∪ U ′1 ∪ {a
ps
i,j, a

qs
i,j, b

l
i,j : 1 ≤ s ≤, 1 ≤ l ≤ m(t), 1 ≤ i, j ≤ N}.

Let G′A ⊂ A be a finite subset such that every element a ∈ GA has the form a = λ + b for some λ ∈ C and b ∈ G′A. Let
G4 = G1 ∪ G2 ∪ G3 ∪H1 ∪H2 ∪ U1.

Let δ4 > 0 (in place of δ1) and a finite subset G5 (in place of G1) be as required by 14.6 for A (in place of C), δ1/4 (in
place of δ), δ (in place of δ ), σ , σ , H , H , G (in place of G), G (in place of G ) and N .
A c 1 2 1 2 4 A c 1
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By choosing even smaller δ4, without loss of generality, we may assume that G5 = {a⊗ f : g ∈ G5A and f = 1, z, z∗}
ith a large finite subset G5A ⊃ GA. Let G′5A ⊂ A be a finite subset such that every element g ∈ G5A has the form g = λ+ x

for some λ ∈ C and x ∈ G′5A.
Choose σ > 0 so it is smaller than min{σ1/16, ε/16, σ2/16, δ2/16, δ3/16, δ4/16, δA/4}.
Let δ = σ and G = G′5A ∪ GA.
Now suppose that ϕ : A → B is a homomorphism and u ∈ CU(B̃) which satisfy the assumption (e14.106)–(e14.108)

or the above mentioned δ, σ , G, P , pi, and qi. There is an isomorphism s : V ⊗ V → V . Moreover, s ◦ ı is approximately
nitarily equivalent to the identity map on V , where ı : V → V ⊗ V is defined by ı(a) = a⊗ 1 (for all a ∈ V ). To simplify

notation, without loss of generality, we may assume that ϕ(A) ⊂ B⊗ 1 ⊂ B⊗ V . Suppose that u ∈ U(B)⊗ 1V is a unitary
which satisfies the assumption. As mentioned at the beginning, we may assume that u ∈ CU(B)⊗ 1V .

Applying 14.6, we obtain e ∈ (B)+ with ∥e∥ = 1 and h ∈ Vs.a satisfying the conclusions of 14.6. Note that we may
assume, without loss of generality, that

eϕ∼(g) = ϕ∼(g)e for all g ∈ G3A ∪ G5A and (e14.128)
eϕ(g) = ϕ(g)e = ϕ(g) for all g ∈ G′3A ∪ G′5A. (e14.129)

In particular, for E = diag(
N  

e, e, . . . , e) and y = pi, qi, i = 1, 2, . . . ,m(f ),

(ϕ∼ ⊗ idMN )(y)E = E(ϕ∼ ⊗ idMN )(y). (e14.130)

Put v1 = u exp(ie ⊗ h) and v2 = exp(ie ⊗ h). Note that sp(h) = [−π, π] and tV (h) = 0 and where tV is the unique
racial state of V . Let L1, L2 : C(T)⊗ Ã→ B̃⊗ V be given by 14.6 such that

|τ (L1(f ))− τ (L2(f ))| < σ1 for all f ∈ H2, τ ∈ T (B), (e14.131)

τ (g(v1)) ≥ σ2(
∫

gdm) for all g ∈ H1, τ ∈ T (B), and (e14.132)

∥Li(c ⊗ 1C(T))− ϕ∼(c)⊗ 1V∥ < δA for all c ∈ Gc, i = 1, 2, (e14.133)

∥L1(c ⊗ z j)− ϕ∼(c)(u exp(
√
−1e⊗ h))j∥ < δA for all c ∈ Gc and (e14.134)

∥L2(c ⊗ z j)− ϕ(c)∼ exp(ie⊗ h)j∥ < δA for all c ∈ Gc (e14.135)

and for all 0 < |j| ≤ N1, where ϕ∼ : Ã→ B̃⊗ V . Note by (e14.133)–(e14.135), we may write L1 = Φv1,ϕ and L2 = Φv2,ϕ .
et u(t) = exp(

√
−13t(e⊗ h)) for t ∈ [0, 1/3]. Then

∥[ϕ(a), u(t)]∥ < δc for all a ∈ Gc . (e14.136)

In particular,

Bott(ϕ, v1)|P2= 0. (e14.137)

Exactly the same reason, we have that

Bott(ϕ, v2)|P2= 0. (e14.138)

This implies

[L1]|β(P2)= [L2]|β(P2). (e14.139)

We also have

[L1]|P1= [ϕ]|P1= [L2]|P1 and [v1] = [v2] = 0. (e14.140)

Therefore

[L1]|P ′= [L2]|P ′ . (e14.141)

Then, by (e14.132) and the choice of δA, we compute (as in (e14.94)) that

τ (Li(h)) ≥ ∆(ĥ) for all h ∈ H1, i = 1, 2. (e14.142)

We also have

dist(L†1(x), L
†
2(x)) < 2δA for all x ∈ U1 ∪ {z ⊗ 1Ã}. (e14.143)

Write V2 = diag(
N  

v2, v2, . . . , v2) and H = diag(

N  
h, h, . . . , h). As always, we will write ϕ∼(y) for ϕ∼ ⊗ idMN (y) for y = pi, qi,

i = 1, 2, . . . ,m(f ). By (e14.130),

ψ∼(p )V = exp(iψ∼(p )E ⊗ H) and ψ∼(q )V = exp(iψ∼(q )E ⊗ H), (e14.144)
i 2 i i 2 i
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= 1, 2, . . . ,m(f ). However,

τ (ψ(qi)E ⊗ H) = τ (ψ(qi)E)τV (H) = 0 for all τ ∈ T (B⊗ V ). (e14.145)

In the next few lines, 1 = 1MN . Therefore

ψ∼(pi)V2 + (1− ψ∼(pi)), ψ∼(qi)V2 + (1− ψ∼(qi)) ∈ CU(MN (B̃⊗ V )),

i = 1, 2, . . . ,m(f ). This implies that

L†2(x) = 1̄ for all x ∈ U2f . (e14.146)

with x = ((1− pi)+ pi⊗ z)((1− qi)+ qi⊗ z∗), one then computes from (e14.125) and from the assumption (e14.108) that

⟨L1(x)⟩ ≈γ2/210 (z̄(1)i ⊗ v2 + (1− p̄i))(z̄
(2)
i ⊗ v2 + (1− q̄i)) (e14.147)

= (z̄(1)i + (1− p̄i))(p̄iV2 + (1− p̄i)⊗ 1V )(z̄
(2)
i + (1− q̄i))(q̄iV2 + (1− q̄i)) (e14.148)

= (z̄(1)i + (1− p̄i))(z̄
(2)
i + (1− q̄i)) ≈σ 1̄. (e14.149)

where p̄i, q̄i, z̄
(1)
i , z̄

(2)
i are as above (see the lines below (e14.125)), replacing Ψ1 by L1. It follows that

dist(L†1(x), 1̄) < γ2/4 for all x ∈ {1⊗ z} ∪ U2f . (e14.150)

By the choice of δ3 and G4, and by applying 11.6, we also have

dist(⌈L1(wl)⌉, ⌈L2(w∗l )⌉) < γ2/2, l = 1, 2, . . . ,m(t). (e14.151)

Combining (e14.146), (e14.150) and (e14.151), we obtain that

dist(L†1(w), L†2(w)) < γ2 for all w ∈ U . (e14.152)

By (e14.141), (e14.131), (e14.142) and (e14.152), and by applying 14.4, we obtain a unitary W1 ∈ B̃⊗ V such that

∥W1
∗L2(f )W1 − L1(f )∥ < ε/16 for all f ∈ F1. (e14.153)

Therefore

∥[L1(a), W1
∗v2W1]∥ < ε/8 and ∥L1(a)−W1

∗L1(a)W1∥ < ε/8 for all a ∈ F (e14.154)
and ∥v1 −W1

∗v2W1∥ < ε/8. (e14.155)

Let v∗1W1
∗v2W1 = exp(

√
−1h1) for some h1 ∈ B̃s.a. such that ∥h1∥ ≤ 2 arcsin(ε/16). Now define u(t) = u exp(i3t(e⊗h)) for

∈ [0, 1/3], u(t) = u(1/3) exp(i3(t − 1/3)h1) for t ∈ (1/3, 2/3] and u(t) = u(2/3)W1
∗ exp(

√
−1(3(t − 2/3))(e⊗ h))W1 for

t ∈ (2/3, 1]. So {u(t) : t ∈ [0, 1]} is a continuous path of unitaries in B̃⊗ V such that u(0) = u and u(1) = 1B̃. Moreover,
we estimate, by (e14.106), (e14.154) and (e14.154) that

∥[ϕ(a), u(t)]∥ < ε for all a ∈ F . □ (e14.156)

Corollary 14.9. Let A ∈M0 with continuous scale. For any 1 > ε > 0 and any finite subset F ⊂ A, there exist δ > 0, a finite
subset G ⊂ A satisfying the following:

Let B = B1 ⊗ V , where B1 ∈ M0 with continuous scale which satisfies the UCT and V is UHF-algebras of infinite type.
Suppose that ϕ : A→ B is a homomorphism.

If u ∈ U(B̃) is a unitary such that

∥[ϕ(x), u]∥ < δ for all x ∈ G, (e14.157)

there exists a continuous path of unitaries {u(t) : t ∈ [0, 1]} ⊂ U(B̃) such that

u(0) = u, u(1) = 1B̃, (e14.158)

∥[ϕ(a), u(t)]∥ < ε for all a ∈ F and for all t ∈ [0, 1]. (e14.159)

Proof. Fix a finite subset G′ ⊂ A1 and ε′ > 0, there exist positive elements e′, e′′, e′′′ ∈ B\{0}with ∥e′∥ = 1 = ∥e′′∥ = ∥e′′′∥,
e′e′′ = e′′e′ = e′ such that e′′′e′ = e′e′′′ = 0, and

∥ϕ(g)e′ − ϕ(g)∥ < ε′/2 and ∥e′ϕ(g)− ϕ(g)∥ < ε′/2 for all g ∈ G′. (e14.160)

Let πB∼
: B̃→ C be the quotient map. Without loss of generality, we may assume that πB∼(u) = 1C. Since U(B̃) = U0(B̃),

we may write u =
∏m

i=1 exp(ihj0) for some hj0 ∈ B̃s.a.. Write hj,0 = rj + h′j0, where rj ∈ R and h′j0 ∈ Bs.a.. Note
that

∑m r = 2πk for k ∈ Z. Therefore u =
∏m exp(ih′ ). We may also assume, without loss of generality, that
j=1 j u u j=1 j0
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= 1 + x, where x ∈ e′′Be′′. It is easy to find an element h0 ∈ e′′′Be′′ such that τ (h0) =
∑m

j=1 τ (h
′

j0) for τ ∈ T (B). Let
u0(t) = exp(−

√
−1th0) for all t ∈ [0, 1]. Note that

uu0(0) = u and uu0(1) ∈ CU(B̃). (e14.161)

Moreover, by (e14.160),

∥ϕ(g)u0(t)− u0(t)ϕ(g)∥ < 2ε′ for all g ∈ G′ and for all t ∈ [0, 1]. (e14.162)

In other words, we have just reduced the general case to the case that u ∈ CU(B̃). In other words, we may assume that,
without loss of generality, that ū = 1̄.

Now we will apply 14.8. Note, from the above, we may assume (e14.109) holds. Since K0(A) = {0}, (e14.108)
automatically holds. Since both A and B are KK -contractible, (e14.107) also holds. □

Lemma 14.10. Let A ∈ BT have continuous scale. For any finite subset P ⊂ K (A), there exist δ0 > 0 and a finite subset G0 ⊂ A
satisfy the following: For any ε > 0, any finite subset F ⊂ A and any homomorphism ϕ : A→ B = B1⊗Q which maps strictly
positive elements to strictly positive elements, where B1 ∼= B1⊗Z0 ∈ D0 has continuous scale, suppose that u ∈ U(B̃) satisfies

∥[ϕ(g), u]∥ < δ0 for all g ∈ G0. (e14.163)

Then there exists another unitary v ∈ U(B̃) such that

∥[ϕ(g), v]∥ < min{ε, δ0} for all g ∈ G0 ∪ F and (e14.164)
Bott(ϕ, uv)|P= 0 and [uv] = 0 in K1(B). (e14.165)

Proof. Define ∆1(ĥ) = inf{τ (h) : τ ∈ T (A)} for h ∈ A1
+
\ {0}. Let ∆ = ∆1/2. Let T : A1

+
\ {0} → R+ \ {0} × N be the map

iven by ∆ as in 14.1. Let P be given.
Write A = ∪∞n=1An, where An = A(W , αn)⊕Wn as in Section 7. Without loss of generality, we may assume F ⊂ AN ′ for

some integer N ′ and P ⊂ [ı′](PN ′ ) for some finite subset PN ′ ⊂ K (AN ′ ), where ı′ : AN ′ → A is the embedding.
Let δ0 > 0 and let G0 ⊂ AN ′ be a finite subset satisfying the following: Bott(L, w)|P is well defined for any G0-δ0-

multiplicative completely positive contractive linear map L : A → C and any unitary w ∈ C̃ with ∥[L(g), w]∥ < 2δ0 for
all g ∈ G0. Moreover, if w′ is another unitary, we also require that

Bott(L, ww′)|P= Bott(L, w)|P+Bott(ϕ,w′)|P , (e14.166)

when ∥[L(g), w′]∥ < 2δ0 for all g ∈ G0.
Let ϕ and u be given satisfying the assumption for the above G0 and δ0.
Now fix ε > 0 and a finite subset F ⊂ A.
Let ε1 = min{δ0/4, ε/16} and F1 = F ∪ G0. Let δ1 > 0 (in place of δ), γ > 0, η > 0, G1 ⊂ A (in place of G) be a

finite subset, P1 ⊂ K (A) (in place P) be a finite subset, U ⊂ U(Ã) be a finite subset, H1 ⊂ A+ \ {0} be a finite subset, and
H2 ⊂ As.a. be a finite subset required by 5.3 for the above T (and for T(n, k) = n as K0(B̃1) is weakly unperforated). Let us
assume that P1 contains the set {[u] ∈ K1(A) ⊂ K (A) : u ∈ U}, by enlarger P1 if necessary.

Without loss of generality, we may assume that P1 ⊂ [ı](PN ) for some finite subset PN ⊂ K (AN ), where N ≥ N ′ and
: AN → A is the embedding. We assume that δ1 < δ0. Without loss of generality, by choosing large N , we may assume
hat G1∪H1∪H2 ⊂ (AN )1+. We may also assume that U ⊂ U(ÃN ). Write w = λw+α(w), where λw ∈ T ⊂ C and α(w) ∈ AN .
s in the remark of 5.3, we may assume that [w] ̸= 0 and [w] ∈ PN for all w ∈ U . Let Gu be the subgroup generated by
w : w ∈ U}. We may view Gu ⊂ Jc(K1(A)) (see the statement of 14.2). Moreover, for any G1-δ1-multiplicative completely
ositive contractive linear map L′ from AN to a non-unital C∗-algebraC induces a homomorphism λ′ : Gu → U(C̃)/CU(C̃)

(see 14.5 of [38]). Furthermore, since Ki(AN ) is finitely generated, i = 0, 1, we may assume, with even smaller δ1 and
larger G1, that [Φu′,L′ ]defines an element in KL(C(T, ÃN ), C̃), if ∥[L′(g), u′]∥ < δ1 for all g ∈ G1.

Set G = F1 ∪ G1 ∪ {α(w) : w ∈ U} and set a rational number

0 < σ0 < min{inf{∆(ĥ) : h ∈ H1}, γ /4}.

Choose δ = min{ε1/16, δ1/16, γ /16, η/16}. We may write u = 1B̃ + α(u), where α(u) ∈ B. Since B ⊗ Q ∼= B, Ki(B) is
divisible (i = 0, 1). Therefore KL(A, B) = Hom(K∗(A), K∗(B)) and there is κ ∈ KL(C(T, ÃN ), B̃) such that

[Φu,ϕ◦ı]|PN′∪β(PN′ )= κ|PN′∪β(PN′ ) and [u] = κ([z ⊗ 1ÃN
]). (e14.167)

Note that B ∼= B⊗Z0. Define ψb,w : B⊗Z0 → B⊗W by letting ψb,w(b⊗ a) = b⊗ψz,w(a) for all b ∈ B and a ∈ Z0, where
ϕz,w :Z0 → W is a homomorphism defined in 8.12. Note also W ⊗ Q ∼= W . There is a homomorphism ψσ ,W : W → W
such that dtW (ψσ ,W (eW )) = 1− σ0 and

tW (ψσ ,W (a)) = (1− σ0)tW (a) for all a ∈ W. (e14.168)

Let ϕw,z be as in 8.12. Note that tW = tZ ◦ ϕw,z and tZ = tW ◦ ϕz,w , where tW and tZ are tracial states of W and Z0,
respectively. Let ψb,σ : B→ B be defined by ψb,σ (b⊗ a) = b⊗ ϕw,z ◦ ψσ ,W ◦ ϕz,w(a) for all b ∈ B and a ∈ Z0. Note that

⊥
ψb,σ (B) ̸= {0}.
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Let ϕσ = ψb,σ ◦ ϕ and uσ ∈ B̃ satisfy α(uσ ) = ψb,σ (α(u)). Then, by (e14.168)

|τ ◦ ϕ(a)− τ ◦ ϕσ (a)| ≤ σ0|τ (a)| for all a ∈ A. (e14.169)

In particular,

τ ◦ ψσ (h) ≥ (1− σ0)τ (ϕ(h)) ≥ (1− σ0)∆1(ĥ) for all h ∈ (A+)1 \ {0}. (e14.170)

Choose two mutually orthogonal non-zero positive elements e1, e2 ∈ ψb,σ (B)⊥. Note that
2∑

i=1

τ (ei) < σ0 for all τ ∈ T (B). (e14.171)

Consider C∗-algebra C0 = C(T, ÃN )o. By 14.7, C(T, Ã)o satisfies the condition in 9.3. It follows from 10.8 that there
exists an asymptotic completely positive contractive linear maps Ln : C0 → B⊗Mk(n) such that

[L∼n ]|P∪β(P∪{[1C̃ ]})= κ
⊛
|P∪β(P∪{[1C̃ ]})

, (e14.172)

where k(n)→∞ and where

κ⊛
|K (AN )= κ|K (AN ) and κ⊛

|β(K (ÃN ))= −κ|β(K (ÃN )). (e14.173)

In particular,

κ⊛(β([1ÃN
])) = −κ(β([1ÃN

])) = −[u]. (e14.174)

For each n, there are two sequences of completely positive contractive linear maps ψ0,m : B⊗Mk(n) → B0,m ⊂ B⊗Mk(n)
and ψ1,m : B⊗Mk(n) → Dm ⊂ B⊗Mk(n) such that

lim
m→∞
∥x− (ψ0,m(x)⊕ ψ1,m(x))∥ = 0 for all x ∈ B⊗Mk(n), (e14.175)

lim
m→∞
∥ψi,m(ab)− ψi,m(a)ψi,m(b)∥ = 0 for all a, b ∈ B⊗Mk(n), i = 0, 1, (e14.176)

lim
m→∞

sup{dτ (eb,m) : τ ∈ T (B)} = 0, (e14.177)

where Dm ∈ C0
0 , B0,m ⊥ Dm, and eb,m ∈ B0,m is a strictly positive element of B0,m. Since Ki(Dm) = {0}, i = 0, 1, by

choosing sufficiently large n and m, put L′n = ψ0,m ◦ Ln, we may assume that L′∼n is G-δ/2-multiplicative (with embedding
ı : C0 → C(T, Ã)o) and

[L′∼n ◦ ı]|P∪β(P∪{[1ÃN ]})
= κ⊛
|P∪β(P∪{[1ÃN

]}). (e14.178)

Moreover, by (e14.177), we may assume that eb,m ≲ e0,1, where e0,1 ∈ B, e0,1e1 = e1e0,1 = e0,1. Since B has almost
table rank one, there is a unitary w1 ∈ B̃ such that Adw1 ◦ L′n(a) ∈ B0,e = e1Be1 for all a ∈ A. Put L′′n = Adw1 ◦ L′∼n . Let
0 ∈ B̃0,e such that u0 = 1 ˜B0,e + α(u0) for some α(u0) ∈ (B0,e)s.a. and

∥L′′n(z ⊗ 1ÃN
)− u0∥ < δ/16. (e14.179)

t follows from (e14.178) and (e14.174) that

[u0] = κ
⊛(β([1ÃN

])) = −[u] ∈ K1(B) (e14.180)

Define L : A→ B by (for some sufficiently large n as specified above)

L(a) = L′′n(a)⊕ ψb,σ ◦ ϕ(a) for all a ∈ A. (e14.181)

It is ready to check that L is G1-δ-multiplicative. Let λ′ : Gu → U(B̃)/CU(B̃) be a homomorphism induced by L. Let
λ = ϕ†

|U−λ
′. Since ψb,σ ◦ ϕ factors through B ⊗ W , [ψb,σ ◦ ϕ] = 0. By (e14.178) and (e14.167) and the fact that P1

contains the set {[u] ∈ K1(A) ⊂ K (A) : u ∈ U}, we know that [L]|{[u],u∈Gu}= [ϕ]|{[u],u∈Gu}. Consequently, the map λ maps
Gu into U0(B̃)/CU(B̃). Since U0(B̃)/CU(B̃) is divisible, we may extend λ to a map from Jc(K1(A)) into Aff(T (B̃))/Z. Choose
a non-zero element e0 ∈ B with e0e2 = e2e0 = e0 such that dτ (e0) is continuous on T (B). Let λT : T (e0Be0) → T (A)
e an affine continuous map defined by λT (t) = τA for all t ∈ T (e0Be0), where τA is a fixed trace in T (A). Define

cu : U(Ã)/CU(Ã) → U0(ẽ0Be0)/CU(ẽ0Be0) by λcu|Jc (K1(Ã))= λ and λcu|U0(Ã)/CU(Ã)= λ
♯

T , i.e., λcu(f )(t) = f (λT (t)) for all
∈ T (e0Be0). Define λK : K (A)→ K (e0Be0) by λK = 0. Then (λJ , λcu, λT ) is compatible. It follows from 12.8 that there exists

a homomorphism ϕcu : A→ e0Be0 such that ([ϕcu], ϕ
†
cu, (ϕcu)T ) = (λK , λcu, λT ). (Note that ϕc,u ⊥ L, since e1, e2 ∈ ψb,σ (B)⊥

and e1e2 = 0.)
Now define Φ : A→ B by Φ(a) = ϕcu(a)⊕ L(a) for a ∈ A. Then Φ is G1-δ-multiplicative,

τ ◦Φ(h) ≥ ∆(ĥ) for all h ∈ H , (by (e14.170)) (e14.182)
1
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∥τ ◦Φ(h)− τ ◦ ϕ(h)∥ < γ for all h ∈ H2, (e14.183)
[Φ]|P= [ϕ]|P and (e14.184)
Φ†(w̄) = λ(w̄)+ λ′(w̄) = ϕ†(w̄) for all w ∈ U . (e14.185)

Let v′ = 1B̃ + α(u0)+ ψb,σ (α(u)). By (e14.179), (e14.181), and [ψb,σ ◦ ϕ] = 0, We have

Bott(Φ, v′)|P= Bott(L′′n|A, u0)|P= [L′′n] ◦ β|P (e14.186)

Combining with (e14.178) and (e14.173), one obtains

Bott(Φ, v′)|P= κ⊛
◦ β|P = −κ ◦ β|P . (e14.187)

By (e14.182), Φ is also T -H1-full. By applying 5.3, we obtain a unitary W ∈ B̃ such that

∥W ∗Φ(f )W − ϕ(f )∥ < ε1 for all f ∈ F ∪ G0. (e14.188)

Let v = W ∗(1B̃ + α(u0)+ ψb,σ (α(u)))W . Then v is a unitary. It follows from (e14.180) that

[v] = −[u] (e14.189)

We have

∥[ϕ(f ), v]∥ < ε1 + δ for all f ∈ F ∪ G0. (e14.190)

Note that Bott(ϕ, v) = Bott(Φ, v′). Recall that from (e14.167), Bott(ϕ, u)|P= κ ◦β|P . By (e14.187) and (e14.189), we then
compute that

Bott(ϕ, uv)|P= Bott(ϕ, u)|P+Bott(ϕ, v)|P= 0 and [uv] = 0. □ (e14.191)

Remark 14.11. Lemma 14.10 still holds by replacing Q by any UHF-algebra of infinite type if Ki(A) is finitely generated.
It should be noted that δ0 and G0 are independent of ε and F .

Lemma 14.12. Let A ∈ BT have continuous scale. For any ε > 0 and any finite subset F ⊂ A, there exist δ > 0 and a
finite subset G ⊂ A satisfying the following: Suppose that ϕ : A → B ∼= B ⊗ W , where B ∈ D0 with continuous scale, is a
homomorphism which maps strictly positive elements to strictly positive elements and suppose that there is a unitary u ∈ B̃
such that

∥[ϕ(g), u]∥ < δ for all g ∈ G. (e14.192)

Then there exists a continuous path of unitaries {u(t) : t ∈ [0, 1]} ⊂ B̃ such that u(0) = u, u(1) = 1B̃ and

∥[ϕ(f ), u(t)]∥ < ε for all f ∈ F . (e14.193)

Proof. Note that, by 13.4, A ∼= A ⊗ Z0. We identify A with A ⊗ Z0. Let ϕw,z : W → Z0 be defined in 8.12. Let
ψw,a : A ⊗ W → A ⊗ Z0 defined by ψw,a(a ⊗ w) = a ⊗ ϕw,z for all a ∈ A and w ∈ W . Put A1 = A ⊗ W . Fix ε > 0
and a finite subset F ⊂ A.

Note T (A) = T (A⊗W) and ρÃ(K0(Ã⊗W)) = Z. It follows from 12.8 that there exists a homomorphism ha,w : A→ A⊗W
such that (ha,w)T = idT (A) and h†

a,w|Jc (K1(A))= 1̄ and h†
a,w|Aff(T (Ã))/Z= idAff(T (Ã))/Z .

Let F1 = ha,w(F). Choose Gw ∈ A⊗W and δW > 0 which are required by 14.9 for A⊗W ∈M0, F1 and ε/16.
Suppose that ψ : A→ B is a homomorphism which maps strictly positive elements to strictly positive elements and

suppose that there is a unitary v ∈ B̃ such that

∥[ψ(g), v]∥ < δW/2 for all g ∈ ψw,a(Gw) (e14.194)

and suppose that ψ† maps Jc(K1(A)) to 1̄.
Consider homomorphism ψ ′ : A→ B defined by ψ ′ = ψ◦ψw,a◦ha,w . Note that [ψ ′] = [ψ] in KL(A, B) (since B ∼= B⊗W)

and τ ◦ψ ′ = τ ◦ψ for all τ ∈ T (B) and ψ†
= (ψ ′)† (Note that (ψ ′)† maps Jc(K1(A)) to 1̄). Therefore, by 5.3 (and 5.6), there

is a unitary V ∈ B̃ such that

∥V ∗ψ ′(g)V − ψ(g)∥ < min{δW/2, ε/16} for all g ∈ ψw,a(Gw) ∪ F . (e14.195)

Define ψW : A⊗W → B by ψW = Ad V ◦ ψ ◦ ψw,a. Then

∥[ψW (g), v]∥ < δ for all g ∈ GW . (e14.196)

Note A ⊗W ∈ M0. It follows from 14.9 that there exists a continuous path of unitaries {v(t) : t ∈ [0, 1]} ⊂ U(B̃) with
v(0) = u and u(1) = 1B̃ such that
∥[ψW (g), v(t)]∥ < ε/16 for all g ∈ F1. (e14.197)
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herefore,

∥[Ad V ◦ ψ ′(f ), v(t)]∥ < ε/16 for all f ∈ F . (e14.198)

It follows from this and (e14.195) that

∥[ψ(f ), v(t)]∥ < ε/8 for all f ∈ F . (e14.199)

Now we consider the general case that ψ†(Jc(K1(A))) ̸= 1̄. Let

∆A(â) = inf{τ (a) : τ ∈ T (A)} for all a ∈ A1
+
\ {0} and (e14.200)

∆0(ĉ) = inf{(
∫

fdm)∆A(a) : c ≥ f ⊗ a, f ∈ C(T), a ∈ A} (e14.201)

for all c ∈ C(T, Ã)o, where m is the normalized Haar measure on T. Put ∆ = ∆0/2.
Put Ac = C(T, Ã)o. Let H1 ⊂ (Ãc)1+ \ {0} be a finite subset, γ1 > 0, γ2 > 0, δc > 0, G1 ⊂ Ãc (in place of G) and

P ⊂ K (Ãc), H2 ⊂ Ac and U ⊂ Jc(K1(Ãc)) be finite subsets with [U] ⊂ P be required by 14.4 for min{δW/4, ε/16} (in
place of ε) and ψa,w(GW ) (in place of F) and ∆. With smaller δc > 0, γi, without loss of generality, we may assume
that H1 = {g ⊗ 1Ã : g ∈ H1,T } ∪ {1C(T) ⊗ a : a ∈ H1,A}, and G1 = {g ⊗ 1Ã : g ∈ G1,T } ∪ {1C(T) ⊗ a : a ∈ G1,A},

2 = {g⊗1Ã : g ∈ H2,T }∪ {1C(T)⊗a : a ∈ H2,A}, where H1,T ,H2,T , G1,T ⊂ C(T), and H1,A,H2,A, G1,A ⊂ Ã are finite subsets.
Let G′ = G1,A ∪ F and δ′ = min{δc/2, δW/2, ε/16}. Let 0 < δ < δ′ and G ⊃ G′ be finite subset such that any G-δ-

multiplicative completely positive contractive linear map L′ from A to a C∗-algebra C and any unitary u′ ∈ C̃ with property
[L′(g), u′]∥ < 2δ for all g ∈ G gives a G1-δ-multiplicative completely positive contractive linear map from C(T, Ã) to C̃ .
Suppose that ϕ : A → B is a homomorphism which maps strictly positive elements to strictly positive elements and

u ∈ B̃ such that

∥[ϕ(g), u]∥ < δ for all g ∈ G. (e14.202)

Note that B⊗Q⊗Q ∼= B. We may assume that ϕ(A) ⊂ B⊗1Q⊗1Q and u ∈ B̃⊗1Q⊗1Q . Let {en} be an approximate identity
for A. Consider vn = u(exp(ien ⊗ h)), where h ∈ Q ⊗ 1Q with sp(h) = [−π, π] and tQ (h) = 0 and where tQ is the tracial
state of Q . Let pk, q1,k, q2,k ∈ 1Q ⊗ Q be mutually orthogonal projections with tQ (pk) = 1− 1/k, tQ (qi,k) = 1/2k,i = 1, 2,
and pk ⊕ q1,k ⊕ q2,k = 1Q ⊗ 1Q , k = 1, 2, . . .. Put Bk = B ⊗ pk, Bi,k = B ⊗ qi,k, i = 1, 2, k = 1, 2, . . .. By 12.8, there are
omomorphisms Ψi,k :A→ Bi,k such that τ (Ψi,k(a)) = (1/2k)τ (ϕ(a)) for all a ∈ A and

Ψ
†
1,k|Jc (K1(A))= −(1−

1
k
)ϕ†
|Jc (K1(A)) and Ψ

†
2,k|Jc (K1(A))= (1−

1
k
)ϕ†
|Jc (K1(A)), (e14.203)

k = 1, 2, . . .. Defineψ ′n,k : A→ Ck := Bk⊕B1,k byψ ′n,k(a) = ϕ(a)⊗pk⊕Ψ1,k(a) for all a ∈ A, and defineψn,k : A→ B⊗1Q⊗1Q
by ψn,k(a) = ψ ′n,k(a)⊕ Ψ2,k(a) for all a ∈ A, k = 1, 2, . . .. Write vn = λ+ α(vn) for some λ ∈ T and α(vn) ∈ B⊗ 1Q ⊗ 1Q .
Let vn,k = λ · 1C̃k

+ α(vn)(pk ⊕ q1,k) and wn,k = λ · 1B̃ + α(vn)(pk ⊕ q1,k). Choose a completely positive contractive linear
map Ln,k = Φwn,k,ψn,k : C(T, Ã)

o
→ B⊗ Q ⊗ Q induced by the unitary wn,k and ψn,k. Let Φvn,ϕ : C(T, Ã)

o
→ B⊗ Q ⊗ Q be

the one induced by vn and ϕ.
Note that U(B̃)/CU(B̃) = Aff(T (B̃))/Z. By applying 14.5, for all sufficiently large n and k (we then fix a pair n and k)

τ (Ln,k(h)) ≥ ∆0(ĥ)/2 = ∆(ĥ) for all τ ∈ T (B) and for all h ∈ H1, (e14.204)

|τ (Ln,k(h))− τ (Φvn,ϕ)(h)| < γ1 for all h ∈ H2 and (e14.205)

dist(L†n,k(w̄),Φ†
vn,ϕ

(w̄)) < γ2 for all w ∈ U . (e14.206)

It follows from 14.4 that there exists a unitary U ∈ ˜B⊗ Q ⊗ Q such that

∥U∗ψn,k(g)U − ϕ(g)∥ < min{δW/4, ε/16} for all g ∈ ψw,a(GW ) and (e14.207)

∥U∗wn,kU − vn∥ < min{δW/4, ε/16}. (e14.208)

Now consider AdU◦ψ ′n,k : A→ Dk := U∗CkU and the unitary U∗vn,kU ∈ D̃k. Note, by (e14.203), (AdU◦ψ ′n,k)
†
|Jc (K1(A))= 1̄.

So we reduce this case to the case that has been proved. Thus there is a continuous path of unitaries {V (t) : t ∈ [2/3, 1]} ⊂
D̃k such that V (2/3) = U∗vn,kU and V (1) = 1D̃k

and

∥[AdU ◦ ψ ′n,k(f ), V (t)]∥ < ε/8 for all f ∈ F . (e14.209)

Note that U∗wn,kU = λ ◦ 1B̃ + U∗α(vn,k)U . Write V (t) = λ(t) · 1D̃k
+ α(V (t)) for some λ(t) ∈ T and α(V (t)) ∈ Dk. Put

Z(t) = λ(t) · 1B̃ + α(V (t)). Then Z(2/3) = U∗wn,kU and Z(1) = 1B̃. Since B2,k ⊥ Ck, we have that

∥[AdU ◦ ψn,k(g), Z(t)]∥ < ε/8 for all f ∈ F . (e14.210)

By (e14.208), we may write v∗nU
∗wn,kU = exp(ib) for some b ∈ B̃s.a. with ∥b∥ ≤ 2 arcsin(ε/32). Define Z(t) =

vn exp(
√
−1(3(t − 1/3)b)) for t ∈ [1/3, 2/3). Then Z(1/3) = vn. We also have

∥[AdU ◦ ψ (g), Z(t)]∥ < ε/8 for all t ∈ [1/3, 1]. (e14.211)
n,k
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t follows that

∥[ϕ(g), Z(t)]∥ < ε/8+ ε/16 for all t ∈ [1/3, 1]. (e14.212)

Define Z(t) = u(exp(3
√
−1ten⊗ h)) for t ∈ [0, 1/3). Then Z(0) = u and {Z(t) : t ∈ [0, 1]} is a continuous path of unitaries

n B̃. Moreover,

∥[ϕ(g), Z(t)]∥ < ε for all g ∈ F and t ∈ [0, 1]. □ (e14.213)

heorem 14.13. Let A ∈ BT have continuous scale. Let P ⊂ K (A) be a finite subset, let {p1, p2, . . . , pk, q1, q2, . . . , qk} be
projections of Ms(Ã) (for some integer s ≥ 1) such that {[p1]−[q1], [p2]−[q2], . . . , [pk]−[qk]} ⊂ P generates a free subgroup
Gu0 of K0(A), let σ > 0, ε0 > 0 and F0 ⊂ A be a finite subset. There exist δ0 > 0 and G0 ⊂ A such that the following hold: For
any ε > 0, any finite subset F ⊂ A, any homomorphism ϕ : A→ B = B1⊗ Q which maps strictly positive elements to strictly
positive elements, where B1 ∼= B1 ⊗ Z0 ∈ D0 has continuous scale, and any unitary u ∈ U(B̃) such that

∥[ϕ(g), u]∥ < δ0 for all g ∈ G0, (e14.214)

there exists a continuous path of unitaries {v(t) : t ∈ [0, 1]} ⊂ U(B̃) such that

∥[ϕ(g), v(0)]∥ < ε for all g ∈ G0 ∪ F, (e14.215)
∥[ϕ(f ), v(t)]∥ < ε0 for all f ∈ F0, (e14.216)
Bott(ϕ, uv(1))|P= 0, [uv(1)] = 0 and (e14.217)
dist(⌈((1s − ϕ(pi))+ (uv(1))sϕ(pi))((1s − ϕ(qi))+ (uv(1))∗sϕ(qi))⌉, 1̄) < σ, (e14.218)

where 1s = 1Ms and (uv(1))s = uv(1)⊗ 1Ms .

roof. Define ∆1(ĥ) = inf{τ (h) : τ ∈ T (A)} for h ∈ A1
+
\ {0}. Let ∆ = ∆1/2. Let T : A1

+
\ {0} → R+ \ {0} × N be the map

iven by ∆ as in 14.1. Let ε0, σ , F0, P and {p1, . . . , pk, q1, q2, . . . , qk} ⊂ Ms(Ã) be given. In what follows, if v′ is a unitary,
v′s = v

′
⊗ 1Ms .

Write pl = (apli,j)s×s and ql = (aqli,j)s×s, where apli,j, a
ql
i,j ∈ Ã, 1 ≤ i, j ≤ s, 1 ≤ l ≤ k. Let Fp be a finite subset in A such that

apli,j, a
ql
i,j ∈ C · 1+ Fp.

In what follows, if L′ : A→ C ′ is a map, we will continue to use L′ for L′∼ : Ã→ C̃ ′ and L′ ⊗ idMs as well as L
′
∼
⊗ idMs

hen it is convenient. Moreover, 1s := 1Ms .
Let δ′0 > 0 and let G′0 ⊂ A be a finite subset satisfying the following: Bott(L, w)|P is well defined for any G′0-δ

′

0-
ultiplicative completely positive contractive linear map L : A → C and any unitary w ∈ C̃ with ∥[L(g), w]∥ < 2δ′0 for
ll g ∈ G0. Also, if w′ is another unitary, we also require that

Bott(L, ww′)|P= Bott(L, w)|P+Bott(ϕ,w′)|P , (e14.219)

hen ∥[L(g), w′]∥ < δ′0 for all g ∈ G′0. Moreover, for any G′0-δ
′

0-multiplicative completely positive contractive linear map
′ from A to a non-unital C∗-algebra C ′ induces a homomorphism λ′ : Gu → U(C̃)/CU(C̃) (see 14.5 of [38]). Furthermore,
sing 14.5 of [38] again, we assume that, for any unitary w′ ∈ Ms(C̃) with the property that ∥[L′(g), w′]∥ < 2δ′0 for all
∈ G′0, Φw′,L′ induces a homomorphism λL′,w′ from Gu0 to U(C̃)/CU(C̃) and, for 1 ≤ i ≤ k,

dist(⌈(1s − L′(pi)+ w′sL′(pi))(1s − L′(qi)+ (w′s)∗L′(qi))⌉, λL′,w′ ([pi] − [qi])) < σ/16, (e14.220)

where w′s = w
′
⊗ 1s. We may assume that δ′0 is smaller than δ0 in 14.10 and G′0 is larger than G0 in 14.10 for the above P .

Let δW > 0 and let GW ⊂ A be a finite subset required by 14.12 for min{ε0/4, δ′0/2} (in place of ε) and F0 ∪ G′0. Put
δ′′0 = min{δ′0/4, dW/4} and G′′0 = G′0 ∪ GW ∪ F0 ∪ Fp.

Let ε1 = min{δ′′0/4, ε0/16, σ/16}/2
10(s + 1)2. Let δ1 > 0 (in place of δ), γ > 0, η > 0, G1 ⊂ A (in place of G) be a

inite subset, P1 ⊂ K (A) (in place P) be a finite subset, U ⊂ U(Ã) be a finite subset, H1 ⊂ A+ \ {0} be a finite subset, and
H2 ⊂ As.a. be a finite subset required by 5.3 for ε1 (in place of ε) and G′′0 (in place of F) the above T (and T(n, k) = n).

We assume that δ1 < δ′′0 and that G1 ∪ H1 ∪ H2 ⊂ (A)1
+
. Write w = λw + α(w), where λw ∈ T ⊂ C and α(w) ∈ A.

As in the remark of 5.3, we may assume that [w] ̸= 0 and [w] ∈ P for all w ∈ U . Let Gu be the subgroup generated by
{w : w ∈ U}. We may view Gu ⊂ Jc(K1(A)) (see the statement of 14.2).

Note that B ∼= B⊗ Z0. Define ψb,W : B⊗ Z0 → B⊗W by letting ψb,W (b⊗ a) = b⊗ ϕz,w(a) for all b ∈ B and a ∈ Z0,
here ϕz,w : Z0 → W is a homomorphism defined in 8.12. Note that, by 6.8 of [16], B ⊗W is in M0 with continuous
cale.
Set G2 = G0 ∪ G1 ∪ {α(w) : w ∈ U} and set a rational number

0 < σ0 < min{inf{∆(ĥ) : h ∈ H1}, γ /4}.

Let {en} be an approximate identity for A such that en+1en = en and (enAen)⊥ ̸= {0} for all n. Define ψn(a) = ϕ(enaen) for all
a ∈ A. Then lim ∥ψ (a)−ϕ(a)∥ = 0 for all a ∈ A. Choose a sufficiently large n such that ψ | = ϕ| . Therefore, without
n→∞ n n P P
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oss of generality, we may assume that there are eA, e′A ∈ A+ with ∥e′A∥ = ∥eA∥ = 1 such that, with ψA(a) = ϕ(eAaeA)

eAg = geA = g for all g ∈ G2, e′AeA = eA, (e′AAe
′

A)
⊥
̸= {0} and ϕ|P= ψA|P . (e14.221)

hoose a pair of mutually orthogonal non-zero positive elements e0, e′0 ∈ (e′AAe
′

A)
⊥ such that

dτ (e0 + e′0) < σ0 for all τ ∈ T (A). (e14.222)

Choose an integer K ≥ 1 such that

1/K < min{σ0/4, inf{dτ (e0) : τ ∈ T (A)}} (e14.223)

and choose δ0 = min{ε1/16, δ1/16, γ /16, η/16}/64(s+ 1)3(K + 1)2. Put G0 = G2 ∪ {eA, e′A, e0, e
′

0}.
Now let ϕ and u be given satisfying the assumption for the above G0 and δ0. Let ε > 0 and F ⊂ A be a finite subset.

We may write u = 1B̃ + α(u), where α(u) ∈ B. Put Q = P ∪ β(P).
Note also W ⊗ Q ∼= W . Let eq ∈ Q be a projection with tU (eq) = 1/K , where tQ is the tracial state of Q . Define

ψ1/K ,W : W → W ⊗ Q by ψ1/K ,W (a) = a⊗ eq for all a ∈ W . Then

tW (ψ1/K ,W (a)) = (1/K )tW (a) for all a ∈ W. (e14.224)

Let ϕw,z be as in 8.12. Note that tW = tZ ◦ ϕw,z and tZ = tW ◦ ϕz,w , where tW and tZ are tracial states of W and Z0,
respectively. Let ψb,1/K : B → B be defined by ψb,1/K (b ⊗ a) = b ⊗ ϕw,z ◦ ψ1/K ,W ◦ ϕz,w(a) for all b ∈ B and a ∈ Z0. Let

b,w,1/K : B→ B⊗W ⊗ eq be defined by ψb,w,1/K (b⊗ a) = b⊗ ψ1/K ,W ◦ ϕz,w(a) for all b ∈ B and a ∈ Z0.
By applying 14.10, there is a unitary v1 ∈ B̃ such that

∥[ϕ(g), v1]∥ < min{δ0, ε} for all g ∈ F ∪ G0 and (e14.225)
Bott(ϕ, uv1)|P= 0 and [uv1] = 0. (e14.226)

ote that

∥[ϕ(g), uv1]∥ < δ0 +min{δ0, ε} for all g ∈ G0. (e14.227)

e may write uv1 = 1B̃ + α(uv1) for some α(uv1) ∈ B. Define ψ ′ : A → B by ψ ′(a) = ψb,1/K ◦ ϕ(a) for all a ∈ A.
sing (e14.223), by replacing ψ ′ by Adw1 ◦ ψ

′ for some unitary w1, we may assume that ψ ′(A) ⊂ B0 := e0,bBe0,b, where
0,b = ϕ(e0). Let v′2 = 1B̃ + ψb,1/K (α(uv1)), v2 = ((v′2)

∗)K and v′′2 = 1B̃0
+ ψb,1/K (α(uv1)). Note that [ψ ′]|P= 0, since it

factors through B⊗W . Moreover

Bott(ψ ′, v′′2 )|P= 0 and Bott(ψ ′, (v′′2 )
K )|P= 0. (e14.228)

Let λϕ,uv1 : Gu0 → U(Ms(B̃))/CU(Ms(B̃)) be the homomorphism induced by ϕ and uv1, via a map Φuv1,ϕ . Then (e14.226)
implies that λϕ,uv1 maps Gu0 to Aff(T (B̃))/Z (see also [21]). Let λψ ′,v′2 : Gu0 → Aff(T (B̃))/Z be the homomorphism induced
y Φv′2,ψ ′ . Since τ ◦ ψb,1/K (b) = (1/K )τ (b) for all b ∈ B and for all τ ∈ T (B), it is straightforward that we may write

λψ ′,v′2
([pi] − [qi]) = (1/K )λϕ,uv1 ([pi] − [qi]), (e14.229)

i = 1, 2, . . . , k. It follows that, by the choice of δ1 and δ2, since v2 = ((v′2)
∗)K ,

dist(ζ ′i , −(λϕ,uv1 ([pi] − [qi]))) < σ/16, (e14.230)

where ζ ′i = ⌈((1s − ψ ′(pi))+ (v2)sψ ′(pi))((1− ψ ′(qi)+ (v∗2 )sψ ′(qi)))⌉, i = 1, 2, . . . , k. As in the proof of 14.10, by applying
12.8, we obtain a homomorphism, ψcu : A→ e′b,0Be

′

b,0, where e′b,0 = ϕ(e
′

0), such that

[ψcu] = 0 in KL(A, B) and ψ†
cu = −(ψ

′)†. (e14.231)

Define ψ : A→ B by ψ(a) = ψcu(a)⊕ψ ′(a)⊕ ϕ(eAaeA) for all a ∈ A. Then ψ is G2-2δ2-multiplicative (see the last part
of (e14.221)),

τ ◦ ψ(h) ≥ ∆(ĥ) for all h ∈ H1, (e14.232)
|τ ◦ ψ(h)− τ ◦ ϕ(h)| < γ for all h ∈ H2, (e14.233)
[ψ]|P= [ϕ]|P and (e14.234)
ψ†(w̄) = −(ψ ′)†(w̄)+ ((ψ ′)†(w̄)+ ϕ†(w̄)) = ϕ†(w̄) for all w ∈ U . (e14.235)

By (e14.232), ψ is T -H1-full. By applying 5.3 (as K0(B̃) is weakly unperforated), we obtain a unitary U ∈ B̃ such that

∥U∗ψ(f )U − ϕ(f )∥ < ε1 for all f ∈ G′0. (e14.236)

Let v = v1U∗(v2)U . Then v is a unitary. We have

∥[ϕ(f ), v]∥ < 2ε + (K + 1)δ for all f ∈ G′ . (e14.237)
1 0 0
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e then compute that, by (e14.226), (e14.236) and (e14.228), and by the fact that ϕ(eA)v2 = v2ϕ(eA) = ϕ(eA),

Bott(ϕ, uv)|P = Bott(ϕ, uv1)|P+Bott(ϕ,U∗v2U)|P (e14.238)
= 0+ Bott(ψ, v2)|P (e14.239)
= 0+ Bott(ϕ(eA · eA), 1)+ Bott(ψ ′, v2)|P= 0. (e14.240)

Put Ψ = AdU ◦ ψ , ψ ′′ = AdU ◦ ψ ′ and u2 = U∗v2U . Put εs = s2ε1 and δ2 = (K + 1)δ0. We have (recall w′s = w
′
⊗ 1s)

(1s − ϕ(pi))+ (uv)sϕ(pi) (e14.241)

= (1s − ϕ(pi))+ (uv1u2)sϕ(pi) (e14.242)

≈εs (1s − ϕ(pi))+ (uv1)s(u2)sΨ (pi) (using (e14.236)) (e14.243)

≈2s2δ2 (1s − ϕ(pi))+ (uv1)sΨ (pi)(u2)sΨ (pi) (e14.244)

≈2εs (1s − ϕ(pi))(1s − Ψ (pi))+ (uv1)sϕ(pi)Ψ (pi)(u2)sΨ (pi) (e14.245)

≈2εs ((1s − ϕ(pi))+ (uv1)sϕ(pi))((1s − Ψ (pi))+ (u2)sΨ (pi)). (e14.246)

Similarly,

(1s − ϕ(qi))+ (uv)sϕ(qi) ≈6εs ((1s − ϕ(qi))+ (uv1)sϕ(qi))((1s − Ψ (qi))+ (u2)sΨ (qi)). (e14.247)

Put

Zi = ⌈((1s − Ψ (pi))+ (u2)sΨ (pi))((1s − Ψ (qi))+ (u2)∗sΨ (qi))⌉.

Then, since we have assumed that ψ ′(A) ⊂ e0,bBe0,b, one computes, by (e14.221), that

Zi = ζ ′i , i = 1, 2, . . . , k. (e14.248)

Then, in U(Ms(B̃))/CU(Ms(B̃)), for i = 1, 2, . . . , k, by (e14.246) and (e14.247),

⌈((1s − ϕ(pi))+ (uv)sϕ(pi))((1s − ϕ(qi))+ (uv)∗sϕ(qi))⌉ (e14.249)

≈12εs ⌈((1s − ϕ(pi))+ (uv1)sϕ(pi))Zi((1s − ϕ(qi))+ (uv1)∗sϕ(qi))⌉ (e14.250)

= ⌈((1s − ϕ(pi))+ (uv1)sϕ(pi))((1s − ϕ(qi))+ (uv1)∗sϕ(qi))⌉ Zi (e14.251)

≈ λϕ,uv1 ([pi] − [qi])Zi ≈σ/16 1̄. (see (e14.230)) (e14.252)

Now back to ψ ′. Let ϕ00 : A→ BW := B⊗W ⊗ eq be defined by ϕ00 = ψb,w,1/K ◦ ϕ. Then

∥[ϕ00(g), ((v′′2 )
∗)K ]∥ < 2Kδ0 < δ1/2 for all g ∈ G0. (e14.253)

y the choice of δW and GW and by applying 14.12, there exists a continuous path of unitaries {V (t) : t ∈ [0, 1]} in
˜B⊗W ⊗ eq such that V (0) = 1B̃W

, V (1) = (v′′∗2 )K and

∥[ϕ00(g), V (t)]∥ < min{ε0/4, δ′0/2} for all g ∈ F ∪ G′0. (e14.254)

Write V (t) = λ(t) · 1B̃W
+ α(V (t)) for some λ(t) ∈ T and α(V (T )) ∈ BW . Put

v(t) = v1U∗(λ(t) · 1B̃ + α(V (t)))U for all t ∈ [0, 1]. (e14.255)

Then we have

∥[ϕ(f ), v(t)]∥ < min{ε0, δ′′0 } for all f ∈ F0. (e14.256)

Note that v(0) = v1 and v(1) = v. So, (e14.216) holds. Also, by (e14.225), (e14.215) holds and, by (e14.240), (e14.217)
holds. Moreover, by the choice of ε and by (e14.252), (e14.218) also holds. □
1
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orollary 14.14. Let A ∈ BT have continuous scale. For any 1 > ε0 > 0 and any finite subset F0 ⊂ A, there exist δ > 0 and
a finite subset G ⊂ A satisfying the following:

For any ε > 0 and any finite subset F ⊂ A and any homomorphism ϕ : A→ B⊗ Q which maps strictly positive elements
o strictly positive elements, where B ∼= B⊗ Z0 ∈ D0 has continuous scale. If u ∈ U(B̃⊗ Q ) is a unitary such that

∥[ϕ(x), u]∥ < δ for all x ∈ G, (e14.257)

here exists a unitary v ∈ B̃⊗ Q such that

∥[ϕ(f ), v]∥ < ε for all f ∈ F, (e14.258)

nd there exists a continuous path of unitaries {u(t) : t ∈ [0, 1]} ⊂ U0(B̃⊗ Q ) such that

u(0) = uv, u(1) = 1 (e14.259)
∥[ϕ(a), u(t)]∥ < ε0 for all a ∈ F0 and for all t ∈ [0, 1]. (e14.260)

Proof. This is a combination of 14.13 and 14.8. Let ε0 > 0 and F0 be given. Let δ1 > 0, σ > 0, G1 ⊂ A be a finite
subset, let {p1, p2, . . . , pk, q1, q2, . . . , qk} be projections of MN (Ã) (for some integer N ≥ 1) such that {[p1] − [q1], [p2] −
[q2], . . . , [pk] − [qk]} generates a free subgroup Gu of K0(A), and P ⊂ K (A) be finite subset required by 14.8.

Let δ0 > 0 and G0 be required by 14.13 for min{δ1, ε0} (in place of ε0), σ and G1 ∪ F0 (in place of F0) and P and Gu.
Now suppose that ϕ and u satisfy the assumption for this pair of δ0 and G0. Let ε > 0 and F ⊂ A be given. Then, by

pplying 14.13, there is a unitary v ∈ B̃1 = B⊗ Q and a continuous path of unitaries {v(t) : t ∈ [0, 1/2]} ⊂ B̃1 such that
(0) = v,

∥[ϕ(f ), v]∥ < ε for all f ∈ F, (e14.261)
∥[ϕ(g), v(t)]∥ < ε0 for all g ∈ F0 (e14.262)
Bott(ϕ, uv(1/2))|P= {0}, [uv(1/2)] = 0 and (e14.263)
dist(⌈((1s − ϕ(pi))+ (uv(1/2))sϕ(pi))((1s − ϕ(qi))+ (uv(1/2))∗sϕ(qi))⌉, 1̄) < σ, (e14.264)

where 1s = 1Ms and (uv(1/2))s = uv(1/2)⊗1Ms . Note, since B is non-unital, it is easy to see that we may assume, without
loss of generality, that everything mentioned above lie in MN (B̃0), where B0 is a hereditary C∗-subalgebra of B so that
⊥

0 ̸= {0}. By the proof of 14.9, therefore one may assume uv(1/2) ∈ CU(B̃). It follows from 14.8 that there is a continuous
path of unitaries {u(t) : t ∈ [1/2, 1]} ⊂ B̃1 such that u(1/2) = uv(1/2), u(1) = 1B̃1

and

∥[ϕ(f ), u(t)]∥ < ε0 for all f ∈ F0 for all t ∈ [1/2, 1]. (e14.265)

Finally, define u(t) = uv(t) for t ∈ [0, 1/2]. □

15. Finite nuclear dimension

The following proposition follows from the definition immediately.

Proposition 15.1. Let A be a non-unital separable amenable simple C∗-algebra. Then A has tracially approximate divisible
property in the sense of 10.1 of [15] if and only if the following holds:

For any ε > 0, any finite subset F ⊂ A, any integer n ≥ 1 and any non-zero elements a0 ∈ A+ \ {0}, there are
mutually orthogonal positive elements ei, i = 0, 1, 2, . . . , n, elements wi, i = 1, 2, . . . , n, such that w∗i wi = e21, wiw

∗

i = e2i ,
i = 1, 2, . . . , n, e0 ≲ a0 and

∥x−
n∑

i=0

eixei∥ < ε and ∥wix− xwi∥ < ε, 1 ≤ i ≤ n, for all x ∈ F . (e15.1)

Theorem 15.2. Let A be a non-unital separable simple C∗-algebra with continuous scale and with finite nuclear dimension
which satisfies the UCT. Suppose that T (A) ̸= ∅ and every tracial state of A is a W-trace. Then A ∈ D0.

Proof. Since every tracial state of A is a W-trace, by 12.3 of [15] (see 18.3 of [18]), K0(A) = ker ρA. Suppose that A is
tracially approximately divisible. Then, since we assume that every tracial state of A is a W trace, by 3.12 of this paper
and 6.5 of [16] and the proof of 18.6 of [18], A ∈ D0. Therefore it suffices to show that A is tracially approximately divisible.

It follows from [57] that A ∼= A ⊗ Z . Put B = A ⊗ Z0, Bq = B ⊗ Q and Aq = A ⊗ Q . Pick a pair of relatively prime
supernatural numbers p and q such that Mp ⊗Mq = Q . Let

Zp,q = {f ∈ C([0, 1],Q ) : f (0) ∈ Mp and f (1) ∈ Mq} and (e15.2)

D⊗ Zp,q = {f ∈ C([0, 1],D⊗ Q ) : f (0) ∈ D⊗Mp and f (1) ∈ D⊗Mq} (e15.3)

for any C∗-algebra D. Note, by [53], Z is a stationary inductive limit of Z with trace collapsing connecting map.
p,q
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Let ε > 0, let F ⊂ A⊗Z , let a0 ∈ (A⊗Z)+ \ {0}, and let n ≥ 1 be an integer. Put η = inf{dτ (a0) : τ ∈ T (A⊗Z)}. Since
is assumed to have continuous scale, one may find a positive element fe ∈ A⊗ Z with ∥fe∥ = 1 such that

τ (fe) > 1− η/16(n+ 1)3 for all τ ∈ T (A⊗ Z). (e15.4)

e assume that fe ∈ F . Without loss of generality, we may also assume that F ⊂ A ⊗ Zp,q. We may further assume,
ithout loss of generality, that there is 0 < 1/2 < d0 < 1 such that

f (t) = f (1) for all t > d0 (e15.5)

nd for all f ∈ F . Note Aff(T (B)) = Aff(T (A)) and U(B̃)/CU(B̃) = U(Ã)/CU(Ã). There is a KK -equivalence κ ∈ KL(B, A)
which is compatible to the identifications κT : Aff(T (B))→ Aff(T (A)) and κcu : U(B̃)/CU(B̃)→ U(Ã)/CU(Ã) above. We will
consider the triple (κ, κT , κcu). Let ϕp : B ⊗ Mp → A ⊗ Mp and ϕq : B ⊗ Mq → A ⊗ Mq be isomorphisms given by 13.1
and induced by (κ ⊗ [idMp ], κT , κcu ⊗ (idMp )cu), and by (κ ⊗ [idMq ], κT , κcu ⊗ (idMq )cu). Let ψp : B⊗ Mp ⊗ Mq = B⊗ Q →
A⊗Mp ⊗Mq = A⊗ Q given by ψp = ϕp ⊗ idMq and let ψq = ϕq ⊗ idMp : B⊗ Q → A⊗ Q . Then

([ψq], (ψq)T , ψ†
q ) = ([ψp], (ψp)T , ψ†

p ). (e15.6)

Let F1 = {f (1) : f ∈ F} in A ⊗ Mp ⊗ Mq. Let G1,b = {ψ
−1
q (f ) : f ∈ F1} ⊂ B ⊗ Q . Fix an ε > 0. Put

C00 = C0((0, 1]) ⊕ Mn(C0((0, 1])) and Cg = {(f , 0), (0, f ⊗ ei,i), (0, f ⊗ e1,i) : 1 ≤ i ≤ n} form a set of generators, where
f ∈ C0((0, 1]) is the identity function on [0, 1] and {ei,j}1≤i,j≤n is a system of matrix units for Mn. It is well known that C00
is semi-projective. Let δc > 0 satisfy the following: if L : C00 → C ′ is a Cg-δc-multiplicative completely positive contractive
linear map for a C∗-algebra C ′, there exists a homomorphism hc : C00 → C ′ such that

∥hc(g)− L(g)∥ < min{ε, η}/64(n+ 1)3 for all g ∈ Cg . (e15.7)

Let ε0 = min{ε/(n+ 1)316, δc/4, η/(n+ 1)316}.
Let δ > 0 and G ⊂ A⊗Q be a finite subset required by 14.14 for ε0 and F1. Without loss of generality, we may assume

that G ⊂ (A⊗ Q )1 and F1 ⊂ G. Let ε1 = min{ε0/2, δ/4} and G1 = ψ
−1
q (G) ∪ G1,b ⊂ B⊗ Q .

It follows from 5.3 (see 5.6) that there exists a unitary u ∈ Ã⊗ Q such that

∥u∗ψp(g)u− ψq(g)∥ < ε1/4 for all g ∈ G1. (e15.8)

Write u = λ+α(u) for some α(u) ∈ A⊗Q . Choose e00, e01 ∈ (A⊗Q )+ with ∥e00∥ = ∥e01∥ = 1 such that e00e01 = e00 and
∥e00x−x∥ < ε1/16 and ∥x−xe00∥ < ε1/16 for all x ∈ G1 and x = α(u). We also assume that there is a non-zero e′00 ∈ A⊗Q
such that e′00e01 = 0. There is a unitary u1 ∈ C · 1Ã⊗Q + e00(A⊗ Q )e00 such that ∥u1 − u∥ < ε/8. Since A ⊗ Q ∈ D0, by
1.5 of [15], it has stable rank one. Thus there is a unitary u2 ∈ C · 1Ã⊗Q + e′00(A⊗ Q )e′00 such that [u2] = −[u] in K1(A).
ut u3 = uu2. Then, since e′00e01 = 0, by (e15.8),

∥u∗3ψp(g)u3 − ψq(g)∥ < ε1/2 for all g ∈ G1. (e15.9)

ut now u3 ∈ U0(Ã⊗ Q ). There is a continuous path of unitaries {u(t) : t ∈ [0, d]} ⊂ U(Ã⊗ Q ) such that u(0) = 1 and
(t) = u3 for all t ∈ [d, 1] and for some 0 < d0 < d < 1. Define

γ (f )(t) =
{
ψ−1p (u(t)f (t)u(t)∗) t ∈ [0, d];
(1−t)
1−d ψ

−1
p (u(d)f (d)u(d)∗)+ (t−d)

1−d ψ
−1
q (f (1)) t ∈ (d, 1].

(e15.10)

ote that γ (f ) ∈ B⊗ Zp,q. For f ∈ F , let g = ψ−1q (f (1)) = ψ−1q (f (d)), by (e15.9),

∥g − ψ−1p (u(d)ψq(g)u(d)∗)∥ < ε1/2. (e15.11)

n other words, if f ∈ F ,

∥ψ−1p (u(d)f (d)u(d)∗)− ψ−1q (f (1))∥ < ε1/2 (e15.12)

Let F2 = {γ (f ) : f ∈ F} ⊂ B ⊗ Zp,q. Note that B is a simple C∗-algebra and B ∼= B ⊗ Z0, B has tracially approximate
ivisible property (see 8.9). Since Zp,q is unital and B has tracially approximate divisible property, there exist mutually
rthogonal positive elements ei, i = 0, 1, 2, . . . , n, elements wi, i = 1, 2, . . . , n, in B⊗Zp,q such that w∗i wi = e21, wiw

∗

i = e2i ,
0ei = 0, i = 1, 2, . . . , n, and

∥x−
n∑

i=0

eixei∥ < ε1/4, ∥xwi − wix∥ < ε1/4, 1 ≤ i ≤ n for all x ∈ F2 and (e15.13)

dτ (e0) ≤ η/4 for all τ ∈ T (B⊗ Zp,q). (e15.14)

ince fe ∈ F , (e15.13) also implies that
n∑
τ (ei) ≥ 1− ε0/4− η/16n2 for all τ ∈ T (B⊗ Zp,q). (e15.15)
i=1
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ithout loss of generality, we may assume that ei(t) = ei(1) and wi(t) = wi(1) for all t ∈ [d1, 1] for some d1 > d > d0.
Let G2 = G1 ∪ {ei(1), wi(1) : 1 ≤ i ≤ n}. By applying 5.3 again, we obtain another unitary u4 ∈ Ã⊗ Q such that

∥u∗4(u
∗

3ψp(g)u3)u4 − ψq(g)∥ < ε1/16 for all g ∈ G2. (e15.16)

Therefore (see also (e15.9)), for any g ∈ G1,

∥[Ad u3 ◦ ψp(g), u4]∥ < ε1. (e15.17)

It follows from 14.14 that there exist a unitary u5 and a continuous path of unitaries {v(t) : t ∈ [d1, r]} in Ã⊗ Q (for
some 1 > r > d1) with v(r) = u4u5 and v(d1) = 1Ã⊗Q such that

∥[Ad u3 ◦ ψp(g), u5]∥ < ε1/16 for all g ∈ G2 and (e15.18)

∥[Ad u3 ◦ ψp(f ), v(t)]∥ < ε0 for all f ∈ F1 and t ∈ [d1, r]. (e15.19)

It follows from (e15.16) and (e15.18) that

∥v(r)∗(u∗3ψp(g)u3)v(r)− ψq(g)∥ < ε1/8 for all g ∈ G2. (e15.20)

Now define

b′i =

⎧⎨⎩
u∗(t)ψp(ei(t))u(t) t ∈ [0, d1],
v∗(t)u∗3ψp(ei(t))u3v(t) t ∈ [d1, r],
( (1−t)1−r v(r)

∗u∗3ψp(ei(1))u3v(r))+ (t−r)
1−r ψq(ei(1)) t ∈ (r, 1],

i = 0, 1, 2, . . . , n and (e15.21)

z ′i =

⎧⎨⎩
u∗(t)ψp(wi(t))u(t) t ∈ [0, d1],
v∗(t)u∗3ψp(wi(t))u3v(t) t ∈ [d1, r],
( (1−t)1−r v(r)

∗u∗3ψp(wi(1))u3v(r))+ (t−r)
1−r ψq(wi(1)) t ∈ (r, 1],

i = 1, 2, . . . , n. (e15.22)

rom the definition of ei and wi, and (e15.20) we have

∥(z ′i )
∗z ′i − (b′1)

2
∥ < ε1, ∥z ′i (z

′

i )
∗
− (b′i)

2
∥ < ε1, for all i ≥ 1 and ∥b′ib

′

l∥ < ε1 for all i ̸= l. (e15.23)

For the next few estimates, recall that f (t) = f (1) for all t ∈ [d0, 1], ei(t) = ei(1) for all t ∈ [d1, 1], and u(t) = u(d) for
all t ∈ [d, d1].

For t ∈ [0, d0], since γ (f ) ∈ F2, by (e15.13),

∥f (t)−
n∑

i=0

b′i(t)f (t)b
′

i(t)∥ < ε1 for all f ∈ F . (e15.24)

For t ∈ [0, d1], by the definition of γ (f ), by (e15.12), the definition of b′i , and (e15.13), we have

f (t) ≈ε1/2 u(t)∗ψp(γ (f (t)))u(t) ≈ε1/4
n∑

i=0

b′i(t)u(t)
∗ψp(γ (f (t)))u(t)b′i(t) (e15.25)

≈ε1/2

n∑
i=0

b′i(t)f (t)b
′

i(t) for all f ∈ F . (e15.26)

For t ∈ [d1, r], by (e15.5), (e15.9), (e15.19), and (e15.13), with g = ψ−1q (f (1)),

f (t) = f (1) ≈ε1 u∗3ψp(g)u3 ≈ε0 v(t)
∗u∗3ψp(g)u3v(t) (e15.27)

≈ε1/2 Ad u3v(t) ◦ ψp(γ (f (t))) ≈ε1/4 Ad u3v(t) ◦ ψp(
n∑

i=0

ei(t)γ (f (t))ei(t)) (e15.28)

≈ε1

n∑
i=0

b′i(t)f (t)b
′

i(t). (e15.29)

On [r, 1], by the above, and by (e15.20), as ei(1) ∈ G2,

f (t) = f (1) ≈3ε1

n∑
i=0

b′i(r)f (r)b
′

i(r) ≈4(n+1)ε1/8

n∑
i=0

b′i(t)f (t)b
′

i(t). (e15.30)

Coming all the four estimates above, we have that

∥f −
n∑

b′ifb
′

i∥ < (n+ 1)ε1 + ε0 < ε/16(n+ 1)2 for all f ∈ F . (e15.31)

i=0
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e also compute that

∥z ′i f − fz ′i∥ < 2ε1 + ε0, 1 ≤ i ≤ n, for all f ∈ F . (e15.32)

y the semi-projectivity of C00 and (e15.23), and choice of δc (ε1 < δc), we obtain bi, zj ∈ A ⊗ Zp,q, i = 0, 1, 2, . . . , n,
j = 1, 2, . . . , n, such that

∥bi − b′i∥ < min{ε, η}/(64n2) and ∥zj − z ′j∥ < min{ε, η}/(64n2), (e15.33)

bibl = 0 if i ̸= l, z∗i zi = b21, ziz∗i = b2i , (e15.34)

i, l = 0, 1, 2, . . . , n and j = 1, 2, . . . , n. By (e15.31) and (e15.32),

∥f −
n∑

i=0

bifbi∥ < ε and ∥zif − fzi∥ < ε, 1 ≤ i ≤ n, for all x ∈ F . (e15.35)

e also estimate, by (e15.15), that

τ (
n∑

i=1

bi) > 1− η/2 for all τ ∈ T (A⊗ Z). (e15.36)

t follows that dτ (b0) < η for all τ ∈ T (A ⊗ Z). This implies that b0 ≲ a0. Therefore A ⊗ Z has the tracial approximate
ivisible property (see 15.1). □

emma 15.3. Let A be a separable simple Z-stable C∗-algebra with continuous scale, and with T (A) ̸= ∅, and QT (A) = T (A).
et x ∈ ker ρA. Then there exists a homomorphism ψ : A → M4(A) which maps strictly positive elements to strictly positive
lements, ψ∗0(x) = 0 and (τ ⊗ Tr)(ψ(a)) = 4τ (a) for all a ∈ A and τ ∈ T (A). where Tr is the standard trace on M4.

roof. We first assume that A is stably projectionless. By A8 of the appendix of [16], there exists a projection p ∈ Mr (Ã)
uch that [p] = [1A] − x in K0(Ã) for some integer r > 0. By A6 of the appendix of [16], we may assume that p ∈ M2(Ã).
enote by 12 ∈ M2(Ã) the identity of M2(Ã). Put q = 12 − p. Note that p + q = 12. Write {eij}2×2 as the matrix unit for
2. By replacing p by Z∗pZ , where Z is a unitary matrix with scalar entires, we may assume that π (p) = e11, where π is

he map induced by the quotient map Ã→ C. Later we will also use π for the quotient map M2(M(A))→ M2(M(A)/A).
ote that we also have π (q) = e22.
We have τ (p) = τ (q) for all τ ∈ T (A). Let A1 = pM2(A)p and A2 = qM2(A)q. Let ap ∈ A1 and aq ∈ A2 be strict positive

element of A1 and A2, respectively. We also assume that 0 ≤ ap ≤ 1 and 0 ≤ aq ≤ 1. Then

dτ (ap) = τ (p) = τ (q) = dτ (aq) for all τ ∈ T (A). (e15.37)

ote that we assume that A is stably projectionless and Z-stable. Then, by Theorem 1.2 of [50], ap ∼ aq in Cu(A). Also,
y [50], A almost has stable rank one. By 2.6 there is a partial isometry w ∈ M2(A)∗∗ such that w∗a, aw ∈ M2(A) and
w∗a = aww∗ = a for all a ∈ A1 and wb, bw∗ ∈ M2(A) for all b ∈ A2 such that w∗apw := bq is a strictly positive element
f A2.
Moreover,

w∗(ap)1/nw = b1/nq for all n. (e15.38)

onsider W = pwq+ qw∗p. Then, for any a ∈ M2(A), W ∗a, aW ∈ M2(A). In fact, we may write

a = pap+ paq+ qap+ qaq

or any a ∈ M2(A). Then, for any a ∈ M2(A),

W ∗a = qw∗pap+ qw∗paq+ pwqap+ pwqaq ∈ M2(A) and aW ∈ M2(A). (e15.39)

Note that M2(A) is an ideal in M2(Ã) and p, q ∈ M2(Ã).) Therefore W ∈ M(M2(A)) = M2(M(A)). Since p+ q = 12, ap + bq
s a strictly positive element of M2(A). Hence a1/nq + b1/nq → 12 in the strict topology. We also have, by (e15.38),

W ∗(a1/np + b1/nq )W = w∗a1/np w + wb1/nq w∗ = b1/nq + w(w∗a1/nq w)w∗ (e15.40)

= b1/nq + (ww∗)a1/np (ww∗) = b1/nq + a1/nq . (e15.41)

It follows that W ∗W = 12. As W ∗ = W , W is a self adjoint unitary in M2(M(A)) and ϕ(a) = W ∗aW for all a ∈ A defines
an automorphism of M2(A). Note that a1/np converges strictly to the identity of M(A1). Note also

a1/np (ap + bq)1/2 = a1/np a1/2p → 1Ã1
(ap + bq)1/2 and (ap + bq)1/2a1/np → (ap + bq)1/21Ã1

(in norm). It follows that a1/np converges to a projection p′ ∈ M2(M(A)) strictly. Exactly the same argument shows that
1/n ′
bp converges strictly to a projection q ∈ M2(M(A)). Since ap+ bq is a strictly positive element of M2(A), this implies that
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′
+ q′ = 12. Since p ∈ M2(M(A)) and pa1/np = a1/np , p ≥ p′. Also pq′ = q′p = 0. Similarly q ≥ q′ and qp′ = p′q = 0. Since
+ q = 12 and p′ + q′ = 12, this implies that p = p′ and q = q′. Since W ∈ M2(M(A)), it follows that

W ∗pW = q. (e15.42)

We now show that W ∗M2(Ã)W = M2(Ã). Write

W =
(
w11 w12
w21 w22

)
. (e15.43)

ote that π (p) = e11 and π (q) = e22. SinceW is a self adjoint unitary, by (e15.42), π (W )∗e11π (W ) = e22, π (W )∗e22π (W ) =
11, and e11π (W ) = π (W )e22. Hence

π (w11) = 0 = π (w22). (e15.44)

n other words,

π (W ) =
(

0 π (w12)
π (w21) 0

)
. (e15.45)

hen, since W is a unitary,

π (W ∗)
(
0 1
1 0

)
π (W ) =

(
π (w∗21) 0

0 π (w∗12)

)
π (W ) =

(
0 π (w∗21w21)

π (w∗12w12) 0

)
=

(
0 1
1 0

)
.

ince e1,1, e2,2 and
(
0 1
1 0

)
generates M2, this implies that π (W ∗)sπ (W ) ∈ M2 for any scalar matrix s. Therefore

∗M2(Ã)W = M2(Ã). This extends ϕ from M2(Ã) to M2(Ã) as an isomorphism. It follows that ϕ∗0(2[1Ã]) = 2[1Ã]. Put
= ϕ∗0([1Ã])− [1Ã]. Then 2y = 0. Also

ϕ∗0(x) = ϕ∗0([1Ã] − [p]) = ϕ∗0([1Ã])− [q] (e15.46)

= (ϕ∗0([1Ã])− [1Ã])+[1Ã] − (2[1Ã] − [p]) (e15.47)

= y+ ([p] − [1Ã]) = y− x. (e15.48)

Define ψ : A→ M4(A) by

ψ(a) = diag(a, a, ϕ(a), ϕ(a)) for all a ∈ A. (e15.49)

Note that

ψ∗0(x) = 2x+ 2(y− x) = 2x− 2x = 0. (e15.50)

In case that A is not stably projectionless, let e ∈ Mm(A) be a nonzero projection. Put B = eMm(A)e. Then B is a unital
imple C∗-algebra with nonzero quasidiagonal traces. Then the conclusion follows from 5.5 of [9]. □

orollary 15.4. Let A be a separable simple C∗-algebra which is Z-stable and QT (A) = T (A) ̸= ∅. For any finitely generated
ubgroup G0 ⊂ ker ρA, there exist an integer m ≥ 1 and a homomorphism ψ : A → Mm(A) which maps strictly positive
lements to strictly positive elements, ψ∗0(x) = 0 for all x ∈ G0 and (τ ⊗ Trm)(ψ(a)) = mτ (a) for all a ∈ A and τ ∈ T (A),
here Trm is the standard trace on Mm.

roof. Let x1, x2, . . . , xk ∈ G0 be a set of generators of G0. We prove the corollary by induction. By 15.3, it holds for k = 1.
uppose that it holds for all integers 1 ≤ k′ < k. Let G0,1 ⊂ G0 which is generated by x1, x2, . . . , xk−1. By the inductive
ssumption, there exists a homomorphism ψ1 : A → Mm′ (A) which maps strictly positive elements to strictly positive
lements, (ψ1)∗0(x) = 0 for all x ∈ G0,1 and (τ ⊗ Trm′ )(ψ1(a)) = m′τ (a) for all a ∈ A.
Let y = (ψ1)∗0(xk) and B = Mm′ (A). Lemma 15.3 shows that there exists a homomorphism ϕ : B→ M4(B) such that ϕ

aps strictly positive elements to strictly positive elements, (ϕ)∗0(y) = 0 and (τ ⊗ Tr4)(ψ(b)) = 4τ (a) for all b ∈ A and
∈ T (B). Let m = 4m′. Define ψ : A→ Mm(A) by

ψ(a) = ϕ ◦ ψ1(a) for all a ∈ A. (e15.51)

hen (ψ)∗0(x) = 0 for all x ∈ G0. Lemma follows. □

heorem 15.5. Let A be a finite separable simple C∗-algebras with finite nuclear dimension which satisfies the UCT. Suppose
hat T (A) ̸= ∅ and K0(A) = ker ρA. Then gTR(A) ≤ 1.

roof. Note that, by [59], that A is Z-stable. It follows that there exists e ∈ A+ \ {0} such that eAe has continuous scale.

ithout loss of generality, we may assume that A = eAe. It follows from [58] that every tracial state of A is quasidiagonal.
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e will prove that every tracial state of A is a W-trace. Then 15.2 applies. We will follow exactly the same proof of 7.4
f [16].
As in the proof of 7.4 of [16], it suffices to show that every tracial state of A ⊗ Q is a W-trace. Therefore, from now

n, in this proof, we assume that A = A ⊗ Q . Let K0(A) = ∪∞n=1Gn, where Gn ⊂ Gn+1 is a sequence of finitely generated
ubgroups. Let P ⊂ K (A) be a finite subset and GP be the subgroup generated by P . We may assume that P∩K0(A) ⊂ Gn
for some integer n ≥ 1. It follows from 15.4 that there exists a homomorphism ϕn : A → A ⊗ Mm(C) → A ⊗ Q which
maps strictly positive elements to strictly positive elements, ϕ∗0(x) = 0 for all x ∈ Gn and τ (ϕ(a)) = τ (a) for all a ∈ A
and τ ∈ T (A ⊗ Q ). By [58], every tracial state of A ⊗ Q is quasidiagonal, there exists a sequence of completely positive
contractive linear maps ψk : A⊗ Q → Q such that

lim
k→∞
∥ψk(ab)− ψk(a)ψk(b)∥ = 0 and lim

k→∞
τ (ψk(a)) = τ (a) for all a, b ∈ A. (e15.52)

For each n choose k(n) such that Ln : A ⊗ Q → Q defined by Ln(a) = ψk(n) ◦ ϕn(a) for all a ∈ A has the property that
[Ln]|Gn= 0 and

lim
n→∞
∥Ln(ab)− Ln(a)Ln(b)∥ = 0 and lim

n→∞
trQ (Ln(a)) = τ (a) for all a ∈ A, (e15.53)

where trQ is the unique trace on Q . Since both A⊗Q and Q are divisible, and K1(Q ) = {0}, for any finite subset P ⊂ K (A),
[Ln]|P= {0} for all sufficiently large n.

By Lemma 7.2 and the proof of 7.4 of [16] there exists a sequence of completely positive contractive linear maps
Φn : A→ W such that

lim
n→∞
∥Φn(ab)−Φn(a)Φn(b)∥ = 0 and τ (a) = lim

n→∞
tW ◦Φn(a) for all a ∈ A. (e15.54)

To see this, let P ⊂ K (A) be a finite subset. Then [Ln]|P= 0 for all sufficiently large n. In the proof of 7.4 of [16] let us
eplace ψ there by Ln above. Since [Ln]|P= 0, we obtain [Ψ0]|P= [Ψ1]|P with Ln in place of ψ—namely, Ψ0 is defined
o be m copies of Ln (in place of ψ there) and Ψ1 is defined to be m + 1 copies of Ln (in place of ψ there). The fact
Ψ0]|P= [Ψ1]|P is used to connect Ψ0 and Ψ1. Thus, by the same proof of 7.4 of [16]), we can construct {Φn} as required.
his proves that every tracial state of eAe is a W-trace. It follows from 15.2 that eAe ∈ D0. □

Theorem 15.6. Let A1 and A2 be two separable simple C∗-algebras with finite nuclear dimension which satisfy the UCT. Suppose
that K0(Ai) = ker ρAi (i = 0, 1). Then A1 ∼= A2 if and only if

(K0(A), K1(A), T̃ (A),ΣA) ∼= (K0(B), K1(B), T̃ (B),ΣB). (e15.55)

Moreover, in case that T̃ (A) ̸= {0}, both A and B are stably isomorphic to one of BT constructed in Section 7.

Proof. Since A and B have finite nuclear dimension, A and B are both stably finite or purely infinite (which are the case
that T̃ (A) = T̃ (B) = {0}). By [26] and [46], we may assume that A and B are stably finite and by [3], T̃ (A), T̃ (B) ̸= {0}.

It follows from [57] that both A and B are Z-stable. Let eA ∈ A+ with ∥eA∥ = 1 and eB ∈ B+ with ∥eB∥ = 1 such that
both A0 := eAAeA and B0 := eBBeB have continuous scales (see 5.2 of [15]). It follows from 15.5 that both A0 and B0 are in
D0 which implies gTR(A) ≤ 1 and gTR(B) ≤ 1. Then Theorem 13.2 applies. □

orollary 15.7. Let A be a stably finite separable simple C∗-algebras with finite nuclear dimension which satisfies the UCT.
hen the following are equivalent:
(1) A is isomorphic to Z0;

(2) A has a unique tracial state, K0(A) = ker ρA = Z and K1(A) = {0} and
(3) A is stably projectionless and has a unique tracial state, K0(A) = Z and K1(A) = {0}.

roof. The equivalence of (1) and (2) follows from 15.6. It is obvious that (2) implies (3). If A is stably projectionless,
hen, by A8 of [16], K0(A) = Z = ker ρA. Therefore (3) implies (2). □

Finally we offer the following result (as Theorem 1.2).

heorem 15.8. Let A and B be two separable simple C∗-algebras with finite nuclear dimension which satisfy the UCT. Then
⊗ Z0 ∼= B⊗ Z0 if and only if

(K0(A), K1(A), T̃ (A),ΣA) ∼= (K0(B), K1(B), T̃ (B),ΣB). (e15.56)

We emphasise that there is no order on K0-groups. Also in case that T̃ (A) = {0}, we view ΣA = 0.)

roof. First, if A is infinite, it follows T̃ (A) = {0}. Moreover since A has finite nuclear dimension, it is purely infinite. Since
ll(A) ∼= Ell(B), T̃ (B) = {0}. So B is also not stably finite. As B has finite nuclear dimension, B is also purely infinite. Thus,
he infinite case is covered by the classification of non-unital purely infinite simple C∗-algebras (see [26] and [46]).
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We now assume both A and B are finite. We only need to show the ‘‘if’’ part.
Put A1 = A⊗ Z0 and B1 = B⊗ Z0. Then we have, ignoring the order structure on K0(A),

(K0(A1), K1(A1), T̃ (A1),ΣA1 ) = (K0(A), K1(A), T̃ (A),ΣA) (e15.57)

(K0(B1), K1(B1), T̃ (B1),ΣB1 ) = (K0(B), K1(B), T̃ (B),ΣB). (e15.58)

Let eA ∈ (Ped(A1))+ with ∥eA∥ = 1 and eB ∈ (Ped(B1))+ with ∥eB∥ = 1 such that A0 = Ped(A0) and B0 = Ped(B0), where
0 := eA(A1)eA and B0 := eB(B1)eB. It follows from Proposition 12.5 of [15] that all tracial states of A0 ⊗ Z0 and B0 ⊗ Z0

re W traces. It follows from 6.6 of [16] (see 17.6 and the proof of 18.6 of [18]) that A0 ⊗ Z0, B0 ⊗ Z0 ∈ D0. Note A0 and
B0 are hereditary C∗-subalgebras of A1 ⊗ Z0 and B1 ⊗ Z0, respectively. Note also A1 ⊗ Z0 ∼= A1 and B1 ⊗ Z0 ∼= B1, by
13.4. Therefore gTR(A1) ≤ 1 and gTR(B1) ≤ 1. Since A0, B0 ∈ D0, by 8.5, K0(A1) = ker ρA1 and K0(B1) = ker ρB1 . Thus the
theorem follows from (e15.57), (e15.58) and Theorem 13.2. □
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Appendix

In this appendix, we show that separable amenable C∗-algebra in D are Z-stable. The proof is a non-unital version of
Matui and Sato’s proof in [42] which is identical to the unital case with only a few modification. We will follow steps of
their proof as well as the notation in [42].

Lemma A.1 (cf. 2.4 of [42]). Let A be a separable simple C∗-algebra with continuous scale and with T (A) ̸= ∅ and let a ∈ A+\{0}.
Then there exists α > 0 such that

α lim inf
n→∞

inf
τ∈T (A)

τ (fn) ≤ lim inf
n→∞

inf
τ∈T (A)

τ (f 1/2n af 1/2n ) (eA.1)

for any central sequence (fn)n of positive contractions of A.

Proof. By 5.6 of [15], A is strongly uniformly full in A. Therefore there are M(a),N(a) > 0 such that, for b ∈ A+ with
∥b∥ ≤ 1 and for any ε > 0, there are xi ∈ A with ∥xi∥ ≤ M(a), i = 1, 2, . . . ,N(a) such that

∥

N(a)∑
i=1

x∗i axi − b∥ < ε. (eA.2)

Put α0 = M(a)2N(a) and α = 4
3α0

. Let {fn}n be given. We may assume that

lim inf
n→∞

inf
τ∈T (A)

τ (fn) = β > 0,

otherwise there is nothing to prove. Since A has continuous scale, there exists e ∈ A+ with ∥e∥ = 1 such that

τ ((1− e1/2)c(1− e1/2)) < β/8 for all τ ∈ T (A) (eA.3)

or any c ∈ A+ with ∥c∥ = 1. Then there are yi ∈ A such that ∥yi∥ ≤ M(a), i = 1, 2, . . . ,N(a) such that

∥

N(a)∑
i=1

y∗i ayi − e∥ < β/8, i = 1, 2, . . . . (eA.4)

ne also has that
τ ((1− e)fn) < β/8, n ∈ N. (eA.5)
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hen, keeping in mind that (fn)n is a central sequence,

β = lim inf
n→∞

inf
τ∈T (A)

τ (fn) ≤ lim inf
n→∞

inf
τ∈T (A)

τ (efn)+ β/8 ≤ lim inf
n→∞

inf
τ∈T (A)

N(a)∑
i=1

τ (y∗i ayifn)+ β/4

= lim inf
n→∞

inf
τ∈T (A)

N(a)∑
i=1

τ (y∗i a
1/2fna1/2yi)+ β/4 = lim inf

n→∞
inf
τ∈T (A)

N(a)∑
i=1

τ (f 1/2n a1/2yiy∗i a
1/2f 1/2n )+ β/4

≤ α0 lim inf
n→∞

inf
τ∈T (A)

τ (f 1/2n af 1/2n )+ β/4.

hus

3β/4 ≤ α0 lim inf
n→∞

inf
τ∈T (A)

τ (f 1/2n af 1/2n ). □ (eA.6)

efinition A.2 (2.1 of [42]). Let A be a separable C∗-algebra with T (A) ̸= ∅ and let ϕ : A → A be a completely positive
inear map. Suppose that T (A) is compact. Recall that ϕ is said to be excised in small central sequence if for any central
equence (en)n and (fn)n of positive contractions in A satisfying

lim
n→∞

sup
τ∈T (A)

τ (en) = 0 and lim
m→∞

lim inf
n→∞

inf
τ∈T (A)

τ (f mn ) > 0, (eA.7)

here exists sn ∈ A with ∥sn∥ ≤ ∥ϕ∥1/2 and n ∈ N such that

lim
n→∞
∥s∗nasn − ϕ(a)en∥ = 0 for all a ∈ A and lim

n→∞
∥fnsn − sn∥ = 0. (eA.8)

emma A.3 (2.5 of [42]). Let A be a separable simple C∗-algebra with T (A) ̸= ∅ with continuous scale. Suppose also that A has
he strict comparison for positive elements. Let (en)n and (fn)n be as (eA.7). Then for any a ∈ A+ with ∥a∥ = 1, there exists a
equence (rn)n in A such that

lim
n→∞
∥r∗n f

1/2
n af 1/2n rn − en∥ = 0 and lim sup

n→∞
∥rn∥ = lim sup

n→∞
∥en∥1/2. (eA.9)

roof. The proof of this is exactly the same as that of Lemma 2.5 of [42] using A.1 instead of 2.4 in [42]. □

roposition A.4 (2.2 of [42]). Let A be a separable amenable simple C∗-algebra with T (A) ̸= ∅ and with continuous scale.
uppose that A has strict comparison for positive elements. Let ω be a non-zero pure state of A, ci, di ∈ A, i = 1, 2, . . . ,N. Then
completely positive linear map ϕ : A→ A defined by ϕ(a) =

∑N
i,j=1 ω(d

∗

i adj)c
∗

i cj can be excised by small central sequences.

roof. Let ε > 0 and let F ⊂ A be a finite subset. It suffices to show that there exist sn ∈ A, n ∈ N, such that
sn∥ ≤ ∥ϕ∥1/2 + ε and

lim
n→∞
∥s∗nasn − ϕ(a)en∥ < ε and lim

n→∞
∥fnsn − sn∥ = 0. (eA.10)

et G = {d∗i adj : a ∈ F, 1 ≤ i, j ≤ N} and let δ = ε/N2.
By Proposition 2.2 of [1], there is a ∈ A+ with ∥a∥ = 1 such that ∥a(ω(x) − x)a∥ < δ for all x ∈ G. Let {en}n and {fn}n

e as in (eA.7). By 2.3 of [42], there is a central sequence {f̃n}n of positive contractions of A such that {f̃nfn}n = {fn}n in A∞
nd

lim
m→∞

lim inf
n→∞

inf
τ∈T (A)

τ (f̃ mn ) = lim
m→∞

lim inf
n→∞

inf
τ∈T (A)

τ (f mn ). (eA.11)

pplying A.3 to {en}n, {fn}n, and a2, we obtain rn ∈ A, n ∈ N, satisfying

lim
n→∞
∥r∗n f̃

1/2
n a2 f̃ 1/2n rn − en∥ = 0 and lim sup

n→∞
∥rn∥ ≤ 1. (eA.12)

efine

sn =
N∑
i=1

diaf̃ 1/2n rnci, n = 1, 2, . . . . (eA.13)

he rest of the proof is exactly the same as that of proof of Proposition 2.2 in [42] with one exception. We need to address
he norm of sn. Note that, by (eA.10),

∥s∗nbsn∥ ≤ ∥ϕ∥ + ε for all b ∈ A1
+
. (eA.14)

herefore by replacing sn by Ensn for some En ∈ A1
+

as subsequence of an approximate identity of A, we may assume
s ∥ ≤ ∥ϕ∥1/2. □
n
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emma A.5 (3.1 of [42]). Let A be a separable amenable simple non-elementary C∗-algebra, and let ω be a non-zero pure state
f A. Then any completely positive contractive linear map ϕ : A→ A can be approximated point-wisely in norm by completely
ositive contractive linear maps ψ of the from

ψ(a) =
N∑
l=1

N∑
i,j=1

ω(d∗i adj)c
∗

l,icl,j for all a ∈ A, (eA.15)

where cl,i, di ∈ A, l, i = 1, 2, . . . ,N.

Proof. The proof is identical to that of 3.1 of [42]. Unital condition can be easily removed. In the first place that
unital condition is mentioned, by using an approximate identity {en} of A, and consider ρ(en)−1/2ρ( · )ρ(en)−1/2 and
(ρ(en)1/2 · ρ(en)1/2) for some large n, we can assume that ρ(en) is the unit of MN , by considering a hereditary
∗-subalgebra of a full matrix algebras exactly the way as described in that proof. Then, since we assume that A is simple
nd non-elementary, π (A) does not contain any non-zero compact operators on H in the second paragraph of that proof.
o Voiculescu theorem applies. The rest of proof are unchanged. □

emma A.6. Let A ∈ D be separable C∗-algebra with continuous scale. Then, for any integer k ≥ 1, there exists an order zero
.p.c. map ψ : Mk → A∞ ∩ A′ such that

lim
n→∞

inf{|τ (cmn )− 1/k| : τ ∈ T (A)} = 0 for all m ∈ N, (eA.16)

here cn = ψ(e) and e ∈ Mk is a minimal rank one projection of Mk.

roof. This proof can be extracted from the proof of 10.4 of [15]. First keep in mind, by 9.4 of [15], A has strict comparison
or positive elements. In the case that A ∈ D0, this directly follows from 10.7 of [15]. In this case, by 10.7 of [15], there
re two sequences of C∗-subalgebras A0,n, Mk(Dn) of A, two sequences of completely positive contractive linear maps
(0)
n : A→ A0,n and ϕ(1)

n : A→ Dn ∈ C0′
0 with Mk(Dn) ⊥ A0,m satisfy the following:

lim
n→∞
∥ϕ(i)

n (ab)− ϕ(i)
n (a)ϕ(i)

n (b)∥ = 0 for all a, b ∈ A, i = 0, 1, (eA.17)

lim
n→∞
∥a− (ϕ(0)

n (a))⊕ diag(

k  
ϕ(1)
n (a), ϕ(1)

n (a), . . . , ϕ(1)
n (a))∥ = 0 for all a ∈ A, (eA.18)

lim
n→∞

sup
τ∈T (A)

dτ (cn) = 0, (eA.19)

τ (f1/4(ψ (1)
n (a0))) ≥ d for all τ ∈ T (Dn) (eA.20)

and ϕ(1)
n (a0) is a strictly positive element in Dn, where cn is a strictly positive element of A0,n and 1 > d > 0. It is easy to

see (see the proof of 9.1 of [15]) that

lim
n→∞

sup{|τ (a)− τ ◦ diag(

k  
ϕ(1)
n (a), ϕ(1)

n (a), . . . , ϕ(1)
n (a))| : τ ∈ T (A)} = 0 for all a ∈ A. (eA.21)

et e0,n and e1,n be approximate identities for A0,n and Dn, respectively. Define ej,l,n = f1/2l(ej,n), j = 0, 1, l ∈ N. Then

{e0,l,n}l and {e1,l,n}l are approximate identities for A0,n and Dn, respectively. Define ē1,l,n = diag(
k  

e1,m,n, e1,m,n, . . . , e1,m,n).
Put El,n = e0,l,n + ē1,l,n. Then since T (A) is compact, as we assume A has continuous scale, liml→∞ supτ∈T (A) τ (Em,n) = 1.

Therefore, by (eA.19), it is easy to choose a subsequence jn such that

lim
n→∞

sup
τ∈T (A)

|τ (em1,jn,n)− 1/k| = 0 for all m ∈ N, (eA.22)

and by (eA.18), {e1,jn,n} is a central sequence. Note that we identify e1,jn,n with diag(e1,jn,n,

k−1  
0, . . . , 0) ⊂ Mk(Dn). Put

e1,jn,n,i = diag(

i−1  
0, . . . , 0,, e1,jn,n,i, 0, . . . , 0), i = 1, 2, . . . , k. There are wi,n ∈ Mk(Dn) such that w∗i,nwi,n = e1,jn,n,1 and

i,nw
∗

i,n = e1,jn,n,i, i = 2, 3, . . . , k. Since A is stably projectionless, the C∗-subalgebra generated by e1,jn,n,i and wi,n is
somorphic to C0(C(0, 1],Mk). Note {wi,n} can be chosen to be central (by (eA.17) and (eA.18). Put cn = e1,jn,n. We obtain
completely positive contractive linear map ψ : Mk → A∞ ∩ A′.
In the case that A ∈ D, Mk(Dn) is replaced by Dn and (eA.18) is replaced by

lim ∥a− diag(ϕ(0)(a), diag(ϕ(1)(a)))∥ = 0 for all a ∈ A. (eA.23)

n→∞ n n
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ut, as in the proof of 10.4 of [15], the algebra D in that proof is Z-stable. Therefore, in the proof of 10.2 of [15], one has
hat (as (e.10.6) there)

∥[ϕn,m(x), y]∥ < ε/16K 2 for all x ∈ F (eA.24)

and y ∈ {d′′1/2, d′′, v′′, e′′j , w
′′

j , j = 1, 2, . . . , K }. Note that one can choose K = nk and using n copies of e′′j and w′′j , the
same argument above also produces the completely positive contractive linear map map ϕ from Mk. □

Lemma A.7. Let A be a separable amenable simple C∗-algebra in D with continuous scale. Then every completely positive
linear map ϕ : A→ A can be excised by small central sequences.

Proof. Let ϕ : A→ A be a completely positive contractive linear map (so we assume ∥ϕ∥ = 1 without loss of generality).
Let {en}n and {fn}n be as in A.2. By A.1, we may assume that there exist a pure state ω of A and cl,idi ∈ A, l, i = 1, 2, . . . ,N ,
such that

ϕ(a) =
N∑
l=1

N∑
i,j=1

ω(d∗i adj)c
∗

l,icl,j for all a ∈ A. (eA.25)

Set ϕl(a) =
∑N

i,j=1 ω(d
∗

i adj)c
∗

l,icl,j for all a ∈ A, l = 1, 2, . . . ,N . Thus ϕ =
∑N

l=1 ϕl. Note that Lemma 3.4 of [42] holds
for non-unital case, in particular, holds for the case A ∈ D which can also be directly proved by repeatedly using the
construction in A.6 in fnAfn. Therefore we also have a central sequence {fl,n}n, l = 1, 2, . . . ,N , of positive contractions in
such that {fnfl,n}n = {fl,n}, {fl,nfl′,n}n = 0, l ̸= l′, l = 1, 2, . . . ,N , in A∞ ∩ A′, and

lim
m→∞

lim sup
n→∞

inf
τ∈T (A)

τ (f ml,n) > 0. (eA.26)

Applying A.4 to ϕl, {en}n and {fl,n}n, we obtain a sequence {sl,n}n in A1 such that

lim
n→∞
∥s∗l,nasl,n − ϕl(a)en∥ = 0 and lim

n→∞
∥fnsl,n − sl,n∥ = 0. (eA.27)

Put sn =
∑N

l=1 sl,n. One estimates that (recall that ∥sl,n∥ ≤ 1)

∥fnsn − sn∥ ≤
N∑
l=1

∥fnsl,n − sl,n∥

≤

N∑
l=1

(∥fnsl,n − fnfl,nsl,n∥ + ∥fnfl,nsl,n − fl,nsl.n∥ + ∥fl,nsl,n − sl,n∥)

≤

N∑
l=1

(∥fn∥∥sl,n − fl,nsl,n∥ + ∥fnfl,n − fl,n∥∥sl,n∥ + ∥fl,nsl,n − sl,n∥)→ 0,

as n→∞. If l ̸= l′, then, since {fl,n}n is central and {fl,nfl′,n}n = 0 in A∞,

lim
n→∞
∥s∗l,nasl′,n∥ = lim

n→∞
∥s∗l,nfl,nafl′,nsl.n∥ = 0. (eA.28)

Therefore, for all a ∈ A,

lim
n→∞
∥s∗nasn − ϕ(a)en∥ = lim

n→∞
∥

N∑
l=1

s∗l,nasl,n − ϕl(a)en∥ = 0. □ (eA.29)

Definition A.8 (cf. 4.1 of [42]). Let A be a separable C∗-algebra with T (A) ̸= ∅ and with T (A) compact. We say A has
property (SI) if for any central sequence {en}n and {fn}n which satisfy (eA.7), there exists a central sequence {sn}n in A
such that

lim
n→∞
∥fnsn − sn∥ = 0 and {s∗nsn}n − {en}n ∈ A⊥, (eA.30)

where A⊥ = {{bn}n ∈ A∞ : {bn}nA = A{bn}n = 0}.

Lemma A.9. Let A be a separable amenable C∗-algebra in D with continuous scale. Then A has (SI).

Proof. Let {en}n and {fn}n be as in (eA.7). Then, by A.7, idA can be excised in small central sequences. Thus there is a
sequence s′n ∈ A1 such that limn→∞ ∥(s′n)

∗a(s′n)− aen∥ = 0 for all a ∈ A and limn→∞ ∥fnsn − sn∥ = 0. Fix an approximate
identity {dn} of A. By passing to s′nk , e

′
nk and fnk , if necessary, we may assume further that

lim ∥(s′ )∗dn(s′ )− dnen∥ = 0 and lim ∥fnd1/2 − d1/2fn∥ = 0. (eA.31)

n→∞ n n n→∞ n n
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efine sn = d1/2n s′n, n = 1, 2, . . .. Then

lim
n→∞
∥s∗nsn − dnen∥ = 0 and lim

n→∞
∥fnsn − sn∥ = lim

n→∞
∥d1/2n (fns′n − s′n)∥ = 0. (eA.32)

Moreover, for any a ∈ A, since {dn} is an approximate identity for A,

lim
n→∞
∥a(s∗nsn)− aen∥ ≤ lim

n→∞
∥a(s′n)

∗dn(s′n)− adnen∥ + lim
n→∞
∥adnen − aen∥ = 0. (eA.33)

It follows that {s∗nsn}n − {en}n ∈ A⊥. Moreover, for a ∈ A, by (eA.33),

lim
n→∞
∥[sn, a]∥2 = lim

n→∞
∥as∗nsna− a∗s∗nasn − s∗na

∗sna+ s∗na
∗asn∥ (eA.34)

= lim
n→∞
∥as∗nsna− a∗ena∥ = lim

n→∞
∥a(s∗nsn − en)a∥ = 0. (eA.35)

Therefore {sn}n is a central sequence. □

Theorem A.10. Every separable amenable C∗-algebra in D is Z-stable.

Proof. Let A ∈ D. It suffices to show that a non-zero hereditary C∗-subalgebra of A is Z-stable. Therefore, by 11.7 of [15],
we may assume that A has continuous scale.

Fix any integer k > 1. By Lemma A.6, we obtain a central sequence {ci,n}n in A, i = 1, 2, . . . , k, such that {ci,nc∗j,n}n =
δi,j{c21,n}n in A∞ and

lim
n→∞

sup
τ∈T (A)

|τ (cm1,n)− 1/k| = 0 for all m ∈ N. (eA.36)

Thus we obtain an order zero completely positive contractive linear map ϕ : Mk → A∞ ∩ A′ such that ϕ(e) = {c1,n}n
for a minimal projection e ∈ Mk. Let {dn} be an approximate identity for A. Then {dn}n is a central sequence. Then
{dn}n is the identity of A∞ ∩ A′/A⊥, where {dn}n is the image of {dn}n in A∞ ∩ A′/A⊥. We may choose such {dn} so that
{dn −

∑N
i=1 c

∗

i,nci,n}n ∈ (A∞)+. Note that, since A has continuous scale, limn→∞ supτ∈T (A) τ (dn) = 1. Let {en} be a central
equence of positive contraction such that {en}n = {dn −

∑k
i=1 c

∗

i,nci,n}n. As in A.6 {ci,n}n can be chosen so that

lim sup
n→∞

sup
τ∈T (A)

τ (en) = 0 (eA.37)

hich can also be computed directly from (eA.36). Then, we also have

lim
m→∞

lim inf
n→∞

inf
τ∈T (A)

τ (cm1,n) = 1/k. (eA.38)

y the property (SI), we obtain a central sequence {sn} in A1 such that

{s∗nsn}n − {en}n ∈ A⊥ and lim
n→∞
{c1,nsn}n = {sn}n in A∞. (eA.39)

Thus we obtain an order zero completely positive contractive linear map Φ : Mk → A∞ ∩ A′/A⊥ induced by ϕ and
s = {sn}n ∈ A∞ ∩ A′/A⊥ such that,

s∗s+Φ(1Mk ) = 1 and Φ(e)s = s in A∞ ∩ A′/A⊥ (eA.40)

This implies that A⊗ Z ∼= A as in the proof of (iv) H⇒ (i) in section 4 of [42], see also, for example, Proposition 5.3 and
5.6 of [57]. □

Remark A.11. More general result related to this appendix will appear elsewhere.
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