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1. Introduction

Recently some sweeping progresses have been made in the Elliott program [11], the program of classification of
separable amenable C*-algebras by the Elliott invariant (a K-theoretical set of invariant) (see [20,58] and [14]). These
are the results of decades of work by many mathematicians (see also [20,58] and [14] for the historical discussion there).
These progresses could be summarized briefly as the following: Two unital finite separable simple C*-algebras A and B
with finite nuclear dimension which satisfy the UCT are isomorphic if and only if their Elliott invariant Ell(A) and Ell(B) are
isomorphic. Moreover, all weakly unperforated Elliott invariant can be achieved by a finite separable simple C*-algebras in
UCT class with finite nuclear dimension (In fact these can be constructed as so-called ASH-algebras—see [20]). Combining
with the previous classification of purely infinite simple C*-algebras, results of Kirchberg and Phillips [46] and [26], now
all unital separable simple C*-algebras in the UCT class with finite nuclear dimension are classified by the Elliott invariant.

This research studies the non-unital cases.

Suppose that A is a separable simple C*-algebra. In the case that Ky(A), # {0}, then A ® K has a non-zero projection,
say p. Then p(A® K)p is unital. Therefore if A is in the UCT class and has finite nuclear dimension, then p(A® K)p falls into
the class of C*-algebras which has been classified. Therefore isomorphism theorem for these C*-algebras is an immediate
consequence of that in [20] (see section 8.4 of [39]) using the stable isomorphism theorem of [4].

Therefore this paper considers the case that Ko(A), = {0}. Simple C*-algebras with Ky(A);, = {0} are stably
projectionless in the sense that not only A has no non-zero projections but M,(A) also has no non-zero projections for
every integer n > 1. However, as one may see in this paper, Ko(A) could still exhaust any countable abelian groups as well
as any possible K;(A). In particular, the results in [20] cannot be applied in the stably projectionless case. It is entirely
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new situation. If one views C*-algebra theory as the study of non-commutative topological spaces, then unital C*-algebras
correspond to the compact spaces and non-unital ones correspond to non-compact spaces. However, stably projectionless
simple C*-algebras may be viewed as non-commutative topological spaces which are not even locally compact. This causes
great difficulties. Different methods have to be developed. In fact, the current paper is mostly independent of [20].

In [15], we introduce a class of stably projectionless simple C*-algebras D (see 3.9). We also introduced the notion of
generalized tracial rank one for stably projectionless simple C*-algebras. These are separable stably projectionless simple
C*-algebras which are stably isomorphic to C*-algebras in D (see 3.9). If A is stably isomorphic to one in D, we will write
gTR(A) < 1. Some study of the structure of these C*-algebras were also presented in [ 15]. For example, among other things,
we show that C*-algebras have stable rank one. Let A and B be two stably projectionless simple amenable C*-algebras
satisfy the UCT. Suppose that Ko(A) = K{(A) = Ko(B) = K1(B) = {0}. In the first part of this research (see [16]), we show
that A = B if and only if Ell(A) = ElI(B) (see [16]). In this case the Elliott invariant is reduced to Ell(A) = (T(A), X,)
(see 2.10). Combining the above mentioned results, this also gives a classification for separable stably finite projectionless
simple C*-algebras with finite nuclear dimension in the UCT class with trivial K;-theory.

In the current paper, we study the general case that K-theory of C*-algebras are non-trivial. We give the following
theorem:

Theorem 1.1 (See 13.2). Let A and B be two separable simple amenable C*-algebras which satisfy the UCT. Suppose that
gTR(A) < 1 and gTR(B) < 1 and Ky(A) = ker ps and Ky(B) = ker pg. Then A = B if and only if

Ell(A) = EII(B). (el.1)

Among all stably projectionless separable simple C*-algebras, one particularly interesting one is W, a separable
C*-algebra with only one tracial state such that Ko(W) = K1(W) = {0}. W is also an inductive limit of sub-homogeneous
C*-algebras (see [47]). It was shown in the first part ([15] and [16]) of this research that if A is a separable simple
C*-algebra in the UCT class, with finite nuclear dimension, with a unique tracial state and zero K;(A), then A = W.

In this part of the research, another stably projectionless simple C*-algebra 2, with a unique tracial state plays a
prominent role. This C*-algebra has the property that Ko(Z2) = Z and K;(2y) = {0}. As abelian groups, Ki(Zy) = K;(C),
i = 0, 1. Therefore, by the Kiinneth Formula, for any separable C*-algebra A, Ki(A® Zy) = K;(A), as abelian group, i = 0, 1.
Moreover, if the tracial state space of A is not empty, then T(A ® Z;) = T(A), since Z, has only one tracial state. As
consequence of our main results, Zy ® Zy = Z,. Moreover, we show that if A is a separable simple C*-algebra in the UCT
class, with finite nuclear dimension, unique tracial state, K;(A) = {0} and Ky(A) = ker pys = Z, then A = 2, (see 15.7).
Therefore we are particularly interested in Zp-stable C*-algebras, i.e., those C*-algebras with the property that A®Q 25 = A.

It should be noted that the condition that Ko(A) = ker p4 ensures that A is stably projectionless. There are cases that
Ko(A)+ = {0} but Ko(A) # ker ps which will be dealt in a subsequent paper. However, we prove the following theorem:

Theorem 1.2 (See 15.8). Let A and B be two separable simple C*-algebras with finite nuclear dimension which satisfies the
UCT. Then A ® 29 = B® Z if and only if

El(A ® 25) = El(B® 2). (e1.2)

(Added in September, 2020: the condition that A and B have finite nuclear dimension could be replaced by the condition
that A and B are amneable, as A ® Z; and B ® Z, are both z-stable and hence both have finite nucler dimension by a
result of J. Castillejos and S. Evington, arXiv:1901.11441)

When A and B are infinite, then both A ® Z;, and B ® Z, are purely infinite simple. This case is covered by
Kirchberg-Phillips classification theorem (see [26] and [46]).

We also present models for C*-algebras stably isomorphic to C*-algebras in D. These model C*-algebras are locally
approximated by sub-homogeneous C*-algebras whose spectra have dimension no more than 3. We show that these
C*-algebras exhaust all possible Elliott invariant for separable Z,-stable C*-algebras as stated as follows (see also 7.12):

Theorem 1.3 (See 8.4). Let A be a finite separable simple amenable C*-algebra. Then there exists a stably projectionless simple
C*-algebra B which is locally approximated by sub-homogeneous C*-algebras and which is stably isomorphic to a C*-algebra
in D such that

El(A ® Zo) = ElI(B). (e1.3)

Finally, let us point out, if A is a separable simple C*-algebra with keps = Ky(A) in the UCT class, then A has finite
nuclear dimension implies that gTR(A) < 1 (see 15.5) (the converse also holds by the classification theorem). Therefore
the conditions gTR(A) < 1 and gTR(B) < 1 in Theorem 1.1 can be replaced by finite nuclear dimension when traces vanish
on Ko(A) and Ky(B). In fact, we have the following:

Theorem 1.4 (See 15.6). Let A and B be two finite separable simple C*-algebras with finite nuclear dimension which satisfy
the UCT. Suppose that Ko(A) = Ker pa and Ko(B) = ker pg. Then A = B if and only if ElI(A) = ElI(B).

The paper also includes an Appendix which shows every separable and amenable C*-algebra in D is Z-stable which
is based on [42]. This research is also benefited from previous results related to the classification of simple projectionless
C*-algebras (such as [47,49,50,55], and [57], as well as many others).
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2. Preliminaries

Definition 2.1. Let A be a unital C*-algebra and let x € A. Suppose that ||xx* — 1|| < 1 and [x*x — 1| < 1. Then x|x| ™! is
a unitary. Let us use [x] to denote x|x| ™.

Denote by U(A) the unitary group of A and denote by Uy(A) the normal subgroup of U(A) consisting of those unitaries
which are path connected with 14. Denote by CU(A) the closure of the commutator subgroup of U(A).

If u € A is a unitary, then u is the image of u in U(A)/CU(A), and if &/ C U(A) is a subset, then &/ = {u : u € U}.

Definition 2.2. Let A be a C*-algebra. Denote by A! the unit ball of A.

Let B be another C*-algebra and let ¢ : A — B be a completely positive linear map. Suppose that r > 1 be an integer.
This map induces a completely positive linear map ¢ ®idy, : AQ M; — B® M;. Throughout this paper, we will use notation
¢ instead of ¢ ® idy, whenever it is convenient.

Let A be a non-unital C*-algebra and let ¢ : A — B (for some C*-algebra B) be a linear map. Sometime in the paper, we
will continue to use ¢ for the unital extension from A to B, whenever it is convenient.

Definition 2.3. Let A be a C*-algebra. Denote by T(A) the tracial state of A (which could be an empty set). Let Aff(T(A))
be the space of all real valued affine continuous functions on T(A). Let T(A) be the cone of densely defined, positive lower
semi-continuous traces on A equipped with the topology of point-wise convergence on elements of the Pedersen ideal
Ped(A) of A. Let B be another C*-algebra with T(B) # ¢ and let ¢ : A — B be a homomorphism. We will use then
¢r : T(B) — T(A) for the induced continuous affine map.

Let r > 1 be an integer and t € T(A). We will continue to use 7 on A® M, for = ® Tr, where Tr is the standard trace
on M;. Let S C T(A) be a convex subset. Define (see [49])

Aff(S)y = {f : C(S,R), : f affine, f(r) > 0} (

Aff (S) = {f : C(S,R), : f affine, f(t) > 0 for T # 0} U {0}, (
LAffe(S)y = {f : S = [0,00) : 3fu}. fo /' f, fo € AE(S)4}, (
LAff; ((S) = {f : S — [0,00) : fu}. fu /' f, fa € AFEL(S)}, (e2.4
LAFR(S), = {f : S — [0, 001 : 3{fu}, fu /' f. fu € AFE(S), ), (
LAff,(S) = {f : S — [0,00] : I{fu}, fu / f, fn € AffL(S)} and (
LAfE™(S) = {fi — f> : f1 € LAff.(S) and f, € Aff (S)}. (

For most part of this paper, S = T(A)or S = T(A) in the above definition will be used. Moreover, LAffb,+(1~'(A)) is the
subset of those bounded functions in LAff; | (T(A)).

Definition 2.4. Let A be a C*-algebra with T(A) # (. Let 7a : A — C be the quotient map and s : C — ]\ be the
homomorphism such that 7 os = id¢. Recall that we also use A for the induced homomorphism 74 @ idy, : Mr( )— M,
and use s for the induced homomorphism s ® idy, : M; — M;(A) for all integer r > 1. Let p4 : Ko(A) — Aff(T(A)) be the
order preserving homomorphism defined by p([p] — [s o wa(p)])(t) = t(p — s o wa(p)) for any projections in M, +(A) for all
integer r > 1.

Suppose that A is non-unital and separable, and T(A) # {0}. Suppose that there exists a € Ped(A), which is full. Let
A, = aAa. Then T(A;) # @. We define

ker pa = {x € Ko(Aq) : pa(x) = 0} (e2.8)

Here we also identify Ky(A,) with Ko(A) using the Brown’s stable isomorphism theorem [4].
Suppose that A is unital and has stable rank one. Then we have (by [56] and [21]) the following splitting short exact
sequence (we will fix one such J;)

0 —> Aff(T(A))/pa(Ko(A)) —> U(A)/CU(A) :J”f Ky(A) —> 0. (e2.9)

If u € Up(A) and {u(t) : t € [0, 1]} is a piece-wise smooth and continuous path of unitaries in A such that u(0) = u and
u(1) = 1. Then, for each 7 € T(A),

1 du(t)
Da(u)(z) = pyr (7 (£)")dt (e2.10)
i
modulo p4(Ko(A)) induces (independent of the path) an isomorphism (denote by D,) from Uy(A)/CU(A) onto Aff(T(A))/
pa(Ko(A)) as mentioned above (see also 2.15 of [20]).
Now suppose that A is a non-unital separable C*-algebra and Ped(A) = A with T(A) # @. Suppose that ker ps = Ko(A).
Then

Aff(T(A))/ pa(Ko(A)) = Aff(T(A))/Z. (e2.11)
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Definition 2.5. Let A be a non-unital C*-algebra. We say that A has almost stable rank one (see [50] and [15]) if, for each
n, the invertible elements in any nonzero hereditary C*-subalgebra B of M,(A) is dense in B, i.e,, for any b € B and any
& > 0, there exists an invertible element x € B such that ||b — x| < &.

Proposition 2.6 (cf. Theorem 3 of [8]; See also 1.5 of [36]). Let A be a o -unital C*-algebra which has almost stable rank one
and let a, b € A \ {0} such that a ~ b in Cuntz semigroup. Then there is a partial isometry w € A such that w*x, xw € A and
ww*x = xww* = x for all x € aAa, wy, yw* € A for all y ebAb and w*aw is a strictly positive element of bAb.

Proof. Let H; = aA and H, = bA be Hilbert A-modules. By 3.3 of [50], there is a Hilbert A-module isomorphism ¢ :
Hi — H,. Since a'/? € aA, p(a'/?)p(a'/?)* is a strictly positive element of bAb and ¢(a'/?)*¢(a'/?) = (p(a'/?), p(a"/?))y, =
(a2, a'?)y, = a. Consider H = H; & H,, a; = diag(a, 0) and b; = diag(0, b) € M(A). Let {e; j}1<i j<> be a matrix unit for
M;. Set B = (ay 4+ by)My(A)(a; + by). There is T; € LM(K(H)) = LM(B) (see Theorem 1.5 of [27]) such that Ty(x; ® x3) =
0@ (x;) for all (X1, xo) € H.Put T = ey »T. Then Tx = () for all x € H; and a'/?T*Ta"/? = ¢(a"/?)*p(a'/?) = a. Moreover
TaT* = @(a'/?)p(a'/?)* is a strictly positive element in bAb and Ta'/? € A. Write Ta'/? = v|a"/?TTa'/?| = v|a| as polar
decomposition in A**, One then checks that w := v* satisfies the requirement. O

Definition 2.7. Let A be a unital separable amenable C*-algebra. For any finite subset &/ C U(A), there exists § > 0 and
a finite subset G C A satisfying the following: If B is another unital C*-algebra and if L : A — B is a G-6- multiplicative
completely positive contractive linear map, then [L(u)] is a well defined element in U(B)/CU(B) for all u € ¢/. We may
assume that [L]|s is well defined, where S is the image of ¢/ in K;(A) (see, for example, 2.12 of [20]). Let G(i/) be the
subgroup generated by . Suppose that 1/2 > ¢ > 0 is given. By Appendix in [38], we may assume that there is a
homomorphism L' : G(t/) — U(B)/CU(B) such that

dist(LT(@), [L(u)]) < & for all u € . (e2.12)
Moreover, as in Definition 2.17 of [20], we may also assume that
LH((G(t1) N Up(A))/CU(A)) C Uo(B)/CU(B). (e2.13)

It follows that k% o L¥(u) = [L] o x%([u]) for all u € G(i/), where k7 and «¥ are defined as in (e2.9) (see Definition 2.17
of [20]). In what follows, when 1/2 > ¢ > 0 is given, whenever we write L", we mean that § is small enough and G is
large enough so that L' is defined, (e2.12) and (e2.13) hold (see 2.17 of [20]). Moreover, for an integer k > 1, we will also
use L for the map on some given subgroup of U(M(A))/CU(M(A)) induced by L ® idy,. In particular, when L is a unital
homomorphism, the map L is well defined on U(M(A))/CU(My(A)).

If A is not unital, L is defined to be L', where L : A — B is the unital extension of L.

Definition 2.8. Let 1 > ¢ > 0. Define

0, ift € [0, ¢/2];
fulty =3 52, ifte(e/2,6l; (€2.14)
1 ift € (g, 00).

Definition 2.9. Let A be a C*-algebra and let a € A,. Suppose that T(A) # {0}. Recall that
d-(a) = lim = (f.(a))

e—0

with possible infinite value. Note that f.(a) € Ped(A); for any & > 0. Therefore t > d.(a) is a lower semi-continuous
affine function on T(A) (to [0, oco]). Suppose that A is non-unital. Let a € A be a strictly positive element. Define

Zu(t) = dq(a) for all T e T(A).
It is standard and routine to check that X4 is independent of the choice of a. The lower semi-continuous affine function
X4 is called the scale function of A. (see 2.3 of [15]).

Definition 2.10. Let C; and C, be two cones. A cone map y : C; — C, is an additive map such that y(0) = 0, y(rc) = ry(c)
forallr € R;.

Let A be a stably projectionless simple C*-algebras such that Ko(A) = ker ps. Then the Elliott invariant is defined as
follows:

Ell(A) = (Ko(A), K1(A), T(A), Za).
Suppose that B is another stably projectionless simple C*-algebras such that Ky(B) = ker pg. Then we write

Ell(A) = ElI(B),
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if there are group isomorphisms «; : Ki(A) — Ki(B), i = 0, 1, a cone homeomorphism &7 : T(A) — T(B), i.e., k7 is 1—1 and
onto, k7t and «~! are both cone maps which are continuous (regarding topology of point-wise convergence on elements
in Ped(A)), and X4(t) = Xp(xr(7)) for all T € T(A). In the case that A has continuous scale, then one can simplify Ell(A) to

Ell(A) = (Ko(A), K1(A), T(A)).
Definition 2.11. Let A and B be C*-algebras with T(A) # ¥ and T(B) # ¥ and both have stable rank one. Let ¥ € KL(A, B),
kr : T(B) — T(A) be an affine continuous map and «, : U(A)/CU(A) — U(B)/CU(B) be a continuous homomorphism.
We say (k, kr, k) is compatible, if pp(x(x))(t) = pa(x)(xr(t)) for all x € Ko(A) and t € T(B), K(K'{\(ﬂ))) = /cf(/cu(ﬁ))) for all

w e U(A)/CU(A) and Di(z)(t) = Dz(w)(xr(t)) for all t € T(B), where w € Up(A), z € Up(B) such that Z = «,(w) for all
w € Ug(A), where % (and «?) are as in (e2.9).

Definition 2.12. Let A and B be two separable C*-algebras and let ¢, : A — B be a sequence of linear maps. We say that
{on} is approximately multiplicative, if

lim ||@n(a)pn(b) — @n(ab)|| = 0 for all a, b € A. (e2.15)
n—oo

Recall that 7 is said to be a W-trace in [15] if there exists a sequence of approximately multiplicative completely
positive contractive linear maps {¢,} from A into W such that

t(a) = lim 7y, (@pn(a)) forall a € A,

n—oo

where 1), is the unique tracial state on W.
Definition 2.13. Throughout this paper, Q will be the universal UHF-algebra with Ko(Q) = Q and [1¢] = 1.

Definition 2.14. Let B be a class of C*-algebras and let A be a separable C*-algebra. We say A is locally approximated by
C*-algebras in B, if, for ¢ > 0 and any finite subset F C A, there exists a C*-subalgebra B € B such that dist(a, B) < ¢ for
alla e 7.

Definition 2.15. Let A be a C*-algebra with T(A) # @. Suppose that A has a strictly positive element e4 € Ped(A), with

lleall = 1. Then 0 ¢ mw, the closure of T(A) in T(A) (see section 5 of [15]). Define
As(A) = inf{d.(ea) : T € A}.

Let A be a C*-algebra with T(A) # {0} such that 0 ¢ mu There is an affine map ra : Asq. — Aff(mw) defined by
rai(a)(t) = a(t) = (a) for all T € T(A)"

and for all a € A 4. Denote by A{, the space ryr(Asq.) and AL = ry(A4).

Definition 2.16 (See 2.5 of [28]). Let A be a o-unital, nonunital, non-elementary, simple C*-algebra and {e,} be an

approximate identity such that e, ie, = e, for all n. We say A has continuous scale if, for any a € A, \ {0}, there
exists ng > 1 such thate,, — e, < aforallm=>n > n,.

Definition 2.17 (5.5 of [15]). Let A be a separable C*-algebra, let B be a non-unital C*-algebra and let L : A — B be a
positive linear map. Let F : A, \ {0} — N x R, \ {0}. Suppose that # C A, \ {0} is a subset. We shall say that L is
F-H-full, if, for any a € #, for any b € B, with ||b|| < 1, any ¢ > 0, there are X1, X, ..., X € B such that m < N(a) and
lIxill < M(a), where (N(a), M(a)) = F(a), and

m
1) xiL(ax — bl <e. (€2.16)
i=1
This term is consistent with the uniformly F-#-fullness (3.11 of [16]) since F does not depend on &.

3. Non-commutative 1-dimensional complices, revisited

Definition 3.1 (See [17] and [12]). Let F; and F, be two finite dimensional C*-algebras. Suppose that there are two (not
necessary unital) homomorphisms ¢g, @1 : F; — F,. Denote the mapping torus M, ,, by

A=A(F1, F2, 90, 1) = {(f. g) € C([0, 1], F) @ F1 : f(0) = ¢o(g) and f(1) = ¢1(g)}-

Denote by C the class of all C*-algebras of the form A = A(F1, F2, ¢o, ¢1) and all finite dimensional C*-algebras. These
C*-algebras are called Elliott-Thomsen building blocks as well as one dimensional non-commutative CW complexes.
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Recall that ¢y is the class of all A € ¢ with Kyo(A); = {0} such that K;(A) = 0, and Cf)o) the class of all A € Cy such

that Ko(A) = 0. Denote by C’, ¢; and Cg/ the class of all full hereditary C*-subalgebras of C*-algebras in C, Cy and Cg,
respectively.

Recall that R denotes the class of finite direct sums of Razak algebras and M, denotes the class of all simple inductive
limits of C*-algebras in R (with injective connecting maps) (see 6.1 and 9.5 of [15] and also 10.1, 16.2 and 16.5 of [18]).

3.2. Let F; = Mg, (C)® Mg,(C)D - - - @ Mg (C), let F, = M, (C) ® M,,(C)® - - - ® M, (C) and let gg, ¢;: F; — F, be (not
necessary unital) homomorphisms, where R; and r; are positive integers. Then ¢, and ¢; induce homomorphisms
Pos, 911 1 Ko(F1) = ZH — Ko(Fy) = Z*

by matrices (a)ix1 and (by)ixi, respectively, and ZJ 1GiR; < rifori = 1,2,..., k. We may write C([0, 1], F;) =
C([O 1], Mr]) where [0, 1]; denotes the jth interval.

Theorem 3.3. Let A be a full hereditary C*-subalgebra of a C*-algebra in C. Then cer(u) < 2+ ¢ ifu € Uo(A). Moreover, if
u € CU(A) then, for any ¢ > 0, there exists a continuous path {u(t) : t € [0, 1]} C CU( ) with u(0) = u, u(1) = 1; and
length({u(t) : t € [0, 1]}) < 4m + &. In particular, cel(u) < 4m.

Proof. Let e € B := A(F1, Fa, o, g01) with |le] = 1 and A = eBe. Let u € Up(A) and let ¢ > 0. Without loss of generality,
we may assume that ¢ <

4 max{R(i)rj: 1<z<l 1<j<k}* 5
It follows 8.8 of [15] that e is approximately unitarily equivalent (in B) to another positive element ¢’ which has the
following form e’ = (g, a) € B such that
Tj
8 = g|[0’1]j: Zki,jpi,j, ]: 1,2, ...,k, (63.1)
i=1
where Aqj, Az, ..., Arij € C([0, 11) and p1, p2js - - - prj € c([o, 11, Mrj) are mutually orthogonal rank one projections.

It follows that (¢’) = (e) in the Cuntz semi-group. Since B has stable rank one, by [7], A is isomorphic to C := ¢'Be’.
Therefore, without loss of generality, we may assume that u € C. Note that, for any f € C([0, 1]),

Tj
f@oay= Y _fijpij, i=12,....k (€3.2)

i=1

Write u = ]_[:11 exp(+/ —1a;), where each a; = o - 1; + x; with; e Rand x; € G, i = 1,2,...,m. Let § > 0. There
is 1/2 > n > 0 such that ||f,(e')xif,(¢) — xill < 8,i=1,2,..., m. By choosing § small enough, we have that

m
lu — ] Jexp(v/=1ai - 1z + fy (€' ify (€Il < /4. (€3.3)
i=1
To simplify notation, without loss of generality, we may further assume that f,(e’)x;f,(e') = x, i = 1,2, ..., m. Let §; > 0.
It follows from 8.9 of [15] that there is e” < f,(e’) such that
lle” — fy(eNll < 81 (e3.4)
and e”’Ce” € C. With sufficiently small §;, we may assume that
m
lu — ] Jexpiey - 1¢ + €"xje")ll < /3. (e3.5)
j=1

Putv = 1_[]";1 exp(+/—1laj- 1z +€”x;e”). We may now view v € D, where D = e”Ce”. Since D € C (see 6.2 of [15]), it follows
from 5.19 of [39] that there are by, by € Dsa such that ||lv — exp(iby) exp(ib;)|| < &¢/3. Note that, if we view v € UO(Z\),
b1, b, may be viewed as elements in C; 4. since e” < f,(e). This follows that cer(A) < 2 +«.

Now suppose that u € CU( ). There exists v € CU( ) such that |ju — v| < ¢/4, v = H;":H vs, and vs =
Us,10s,2 "+ Us,r(s)Vs 1 Us 2 * * Us (s Where each vg; € UA), s = 1,2,...,my. Write vs; = fs; - 1; + 2, where f;; € C
with |,33,| =1and z;; € A. For any 8, > 0, with sufficiently small 77 > O we may assume that

my
lzoi — fy(€)zs.fy (€l < 82/16my(Y_r(s), 1<i<r(s), 1<s<my. (€36)

i=1
So we may assume that
mp
lzoi — €'z;i€" | < 82/8mi()_r(s)), 1<i<r(s), 1<s<m. (€3.7)
i=1
6
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It follows that there is a unitary in w,; € C - 1; + e”Ae” such that
my
lvgi — weill < 82/4mi(D r(s), 1<i<r(s), 1<s<my. (e38)
i=1
and w = '::11 ws. With sufficiently small §,, we may assume that

— * *
Put wy = ws,1Ws 2+ * - We r(s)We W -+ Wy r(s

lw—vll <e/4. (e3.9)

Now v € CU(C- 13 +e”Ae”). As mentioned above, C-1;+e”Ae” € C. By 3.16 of [20], in C- 1; +e”Ae”, there is a continuous
path {u(t) : t € [1/2,1]} C~CU((C - 15 + e”Ae”) such that u(1/2) = w and u(1) = 1; which has the length no more than
47 + ¢/167. Note v € CU(A) and

lw—ul <e&/2, or [uw*—1| <eg&/2. (e3.10)

Write uw* = exp(+/—1d) for some d € Asq. Then Id| < 2arcsin(a/4). Note that uw™* € CU(;\). Therefore, for each
irreducible representation 7 of As, Tr;(d) = 2m’z for some integer m’, where Tr, is the standard trace on 7(A). Since

we choose ¢ < m, Tr,(d) = 0. It follows that t(d) = O for all = € T(A). Define u(t) = exp(+~/—1(1 — 2t)d)w for

t € [0, 1/2]. Note that u(t) is in CU( ) forall t € [0, 1] with u(0) = u, u(1) = 1 and total length no more than 47 +¢. O

34. LetA = A(F], Fz, @Yo, (pl) e, where F] = MR]((C) D MRZ(C) D---D MRI(C), F2 = Mrl((c) (S Mrz(C) ®---D Mr,((c)-
Recall that the irreducible representations of A, are given by

L] 1iuter pa, ..., o} = Ir(A),

i=1
where (0, 1); is the same open interval (0, 1). Any trace t € T(A) is corresponding to (1, (2, - - ., Uk, S1, S2, - - - , S1), Where
(i are nonnegative measures on (0, 1); and s5; € R, and we have

ko1
=3 [ dui + s,
i=1 70 j=1

Let t € (0, 1); and §; be the canonical point measure at point ¢ with measure 1, then

. . / / /
}mgr?t:(m,uz,...,uk,sl,Sz,...,sl) and }m}&=(m,uz,...,uk,s],sz,...,sl)
— —

. R; R; .
with u; =0, s; = a; - # and sj/. = by - ?1’ where (aj)kx1 = @o« and (bjj)ix1 = @14 as in 3.2. Let

1 1
5 = min{ > =1 @R D iy bR }
i i ’ Ti

A direct calculation shows that if 7, € T(A) converge to 7 in weak* topology, then ||| > A - limsup ||z,]|. In notation of
2.15, we have

As(A) = A (e3.11)
Evidently, the number XA above is the largest positive number satisfying the following conditions
0o«([15,1) = A - [15,],  @1:([15]) = A - [15,] in Ko(F).
In the notation of 2.3, both affine spaces Aff(T(A)) and Aff(T(A)) can be identified with the subset of

k k
Do mer' =P 1, RS RORS --- BR)
: : —
| copies

consisting of (f1, fo, ..., fx, 81, &2, . . ., &) satisfying the condition

! 1
1 1
“n ZH @i - K, and fi= ?_] big - Ry

The positive cone Aff(T(A))+ is the subset of Aff(T(A)) consisting all elements of those elements (f1, f2, ..., fx, 81, &2, .. ., &)
with fi(t) > 0 and g; > 0 for all i, j, t. Set R™ = R U {oo}, R} = R U {oo}. Then LAff(T( )+ (LAff™(T(A)), respectively) is
identified with the subset of
k k
P Lsc(o, 11, k) @ (R (or EHISC((0, 1], R™) & (R™)) (€3.12)

i=1
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consisting of (f1, f2, ..., f, &1, &2, . . ., &) satisfying the same condition
1« 1
N E;a“gf'Rf and fit) = E;bijgf'Rj.

3.5. Suppose that A A(F1, F2, o, 1) is not unital. Let e;r, = (ej1,€;2,...,¢€k) € F, be a projection such that
11:2 — gﬂi(lpl) = €iF, i 0, 1. Put Fz,i = ei’szzei’Fz, i = O, 1. Define gﬂi/ :C —> Fz’,‘ by QDI»/()L) = )\.e,"pz, i=1,2. Define
F=F®Cand ¢ : F{" = F, by ¢, (a® A) = ¢;(a) ® rejf,, i =0, 1. Then A = A(F;, F2, 05, 7).

In what follows, we will use notations Z~ = Z U {oo}, and Z] = Z, U {oo}. Let B = A(F1, 2, @0, ¢1). Let a € B,
define r, € LAff(T(A))Jr by ro(t) = d.(a) = lim,_« 7(a/"). When one identifies LAff(T(A))Jr with the subspace of
@i, LSC([0, 111, RY) & (R} ) as in 3.4, 1, € B, LSC([0, 1];, rljz;) ® @ﬁzl(%z;). (Recall that map g¢; . : Ko(F;) = Z! —
Ko(Fy) = Z¥ (i = 0, 1), induced by ¢; : F; — F, is given by the matrix (au)kxl and (bjj)ix1 with nonnegative integer entries,
which can be extended to maps (still denoted by ¢; ) from (Z~) to (Z™~).) If we identify each 1Z (or fZ respectively)

with Z by identifying 1 with 1 € Z (or by identifying 3 with 1 € Z), r, is identified with
J i

((Firfor - i Gt - 0) € @D LSCUI0, 135, 27) @ (27)

which satisfy
(f](o)’fz(o)s o sfk(o)) = wO,*(jlstv oo ’jl) and (f](l)tfz(])s oo sfk(])) = g01,*(jlsj27 oo ajl)'

Let LSC([0, 1], R™) be the set of lower-semicontinuous functions from [0, 1] to R~. We will use the notation
LSC([0, 1], (R™)¥) )Digo.rn )( R™)" to denote the subset of LSC([0, 1], (R™)*) @(R™)' consisting of elements ( (1. f. ..., fi).
(1.J2s - -, 01) )€ LSC([0, 1], (R™)) D(R™)' satisfying

(f1(0), £2(0), . ﬁ<(0))=<po*01,12,..-,jz) and (fi(1 )fz( )s oo Ji(1)) = @14G1s b2, - -5 )

Let  LSC([0, 1], ( ")69 (oo BT (LSC([0, 11, ( EB(%* o Z7Y,or LSC([0, 11, (Z1)) Dy , 4, (25
respectively) be the subset of LSC([O 1], (R™)9) @ (00010 ~Y consisting of the above elements w1th fi(t) and j; € ]R
(eZ~oreZ; respectlvely) If we insist not take the value —|—oo then we will use the notation LSC; instead of LSC. So the
sets LSCy([0, 1] (R4 EBWO o1 )(R+) and LSC([0, 1], (Z+ ")@wo*wl (Z) can also be defined similarly.

Now let B € Cy. Let C be a full hereditary subalgebra of B. Using the rank function in 3.17 of [20] and applymg 3.18
of [20], the map r : (a) > r, gives an injective semi-group homomorphism from W(C) to LSC([0, 1], (Z, )¥) ®((ﬂ0,*s€01,*)
(Z+) (see also 3. 18 of [20]) which extends to an order injective semi-group homomorphism from Cu(C) to LSC([O, 1],

") G} (00010 I Note C € ¢. Also note that Cu™(C) (see [49]) is the semigroup of the formal differences f — n[1z],
w1th nezy andf € Cu(C) such that Cu(sc)(f) = [n], where Cu(sr¢) is the map induced by the quotient map ¢ : ¢ — C.
With the help of discussion of 8.8 of [15], it is straight forward to check the following:

Proposition 3.6. Let C € C|. Then

W(C) =ISGi([0, 11. (24 )) €D () and (e3.13)
(#0,%,#1,)
Cu(C) =1SC([0,11,(z7)) €D (z3). (€3.14)
(90,%,%1,%)
Moreover (see [49] for the definition of Cu™)
Cu™(C) = Ko(C) L LSC([O, 1], (Z™)) EB (z Y. (e3.15)
(90,%:91,%)

Since C is stably projectionless, it follows that the order Cu™~(C) is determined by Cu(C).

Definition 3.7. Fix an integer a; > 1. Let o = al"jr] {0}, let e, € Q (see 2.13) be a projection with

tre,)=r1.Let @, = (1Qe,)(Q ® Q)1 ®e,). Define g : Q — Q. by a > a® e, for a € Q. We will also use g, to denote
any homomorphism from B to B® e;Qe; (or to B® Q) defined by sendingb € Btob® e, €e B®e,Qe, C BRQ Q.
Forr=oa = one can identify Q with Q ® M, +1, then the projection e, is identified with 1o ® diag(1, ..., 1,0).
\‘/—z

aq +l’
ai

Let

R, 1) ={(f,a) € C([0,1],Q ® Q) Q : f(0) = go(a) and f(1)=a® 14}
8
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Note that an element (f, a) is full in R(«, 1) if and only if a = 0 and f(t) # 0 for all t € (0, 1). Let a, = (f, 1) be defined
as follows. Let

fO=1-t)1®e,)+t(1®1) forall t e (0,1). (e3.16)

Note that a, is a strictly positive element of R(ct, 1), moreover, for any 1/2 > n > 0, f,(a,) is full. C*-algebra R(c, 1) and
a, will appear frequently in this paper.

Let LSC([0,1],R™) @, R~ (or LSG([0,1],Ry) @, R4 respectively) be the subset of LSC([O, 1],
R™) @ R™ (or LSC:([0, 1], R}) & R, respectively) consisting of elements (f, x) such that f(0) = ax and f(1) = x. The
rank function r : (a) — r(a) = d.(a) gives maps from W(R(x, 1)) to LSCG;([0, 1], Ry) @y R4 and from Cu(R(«, 1)) to
LSC([0, 1], R}) @, R which are order semi-group homomorphisms. But these maps are only surjective not injective.

Recall that W(Q) and Cu(Q ) can be identified with the semi-groups R, \ {0} U Q, and R} \ {0} LI Q,, where the second
copy of Q is identified with Ko(Q) and R} \ {0} identified with the rank functions of non-projection and non-zero positive
elements. If s € Q C R, we will use [s] for the corresponding element in Ky(Q ). With the order in Cu(Q), in R~ UQ, t < [t]
fort e Q C Rand [t] € Ko(Q) = Q. But s > [t] if s > t as in R™. The addition on R LI Q is defined by s + [r] = s+ r and
[s1+[r1=[s+rl

A function f : [0, 1] — R~ U Q is called lower-semicontinuous if, for each ty € [0, 1], and if f(ty) = [r] € Ko(Q), there
exists 8 > 0 such that f(t) > f(to) for all t € (to—6, to+8)N[0, 1], or, if f(ty) = r € R™, for any non zero ¢ € RY\{0}LQ.,
there exists § > 0 such that

f(t)+e = f(to) forall € [0, 1]N(to — 8, to + 8) \ {to},

where the order is in R~ U Q mentioned above.

Let LSC([0, 1], R~ U Q) be the set of all lower-semicontinuous functions. Let LSC([0, 1], R~ LQ)®, R~ LQ be the subset
of LSC([0, 1], R~ uQ)P R~ LQ consisting of elements (f, x) such that f(0) = ax and f(1) = x. (Here we define «[r] = [ar].
Note that « is rational.) The sets LSC([0, 1], (R™\ {0}UQ); )®q (R™\{0}UQ) and LSC¢([0, 1], (R\ {0}LQ); ) Do (R\{0}LIQ)+
can be defined similarly. Then we have the following fact.

Corollary 3.8. Let A= R(«, 1) for some 1 > « > 0. Then
W(A) = LSG([0, 1], (R\ {0} U Q)4 ) ®q (R {0} L Q)4, (e3.17)
Cu(A) = LSC([0, 1], (R™\ {0} U Q)+) ®e (R™\ {0} L Q)+ and (e3.18)
Cu™(A) = LSC([0, 1], R™ L Q) &, R~ L Q. (e3. 19)

)®a

Note, with (e3.19), map r can be extended to an order semi-group homomorphism from Cu~(A) to LSC([0, 1], R™
defined by r(f(s), a) = (r(f(s)), r(a)), where r(t) =t for all t € R~ and r([t]) =t for all t € Q.

Definition 3.9 (cf. 8.1 and 8.2 of [15]). Recall the definition of class D and Dq.

Let A be a non-unital simple C*-algebra with a strictly positive element a € A with ||a|| = 1. Suppose that there exists
1> f4 > 0, for any € > 0, any finite subset ¥ C A and any b € A, \ {0}, there are F-¢-multiplicative completely positive
contractive linear maps ¢ : A— A and ¢ : A — D for some C*-subalgebra D C A with D € Cgl (or ¢3), D L ¢(A), and

lx — (p(x) + ¥ (x)|| < e forall x e FU{a}, (e3.20)
c<bh, (e3.21)
t(fi/a(¥(a))) > f, forall t € T(D), (e3.22)

where c is a strictly positive element of ¢(A)Ap(A). Then we say A € Dy (or D).

Note, by Remark 8.11 of [15], D can always be chosen to be in Cq (or Cg).

When A € D and is separable, then A = Ped(A) (see 11.3 of [15]). Let a € A, with ||a]| = 1 be a strict positive element.
Put

d = inf{z(fi/4(a)) : T € T(A)}. (e3.23)

Then, for any 0 < n < d, f, can be chosen to be d — n (see Remark 9.8 of [15]). One may also assume that f1,4(y/(a)) is full
in D. Furthermore, there exists a map: T : A; \ {0} - Nx R (a — (N(a), M(a)) for all a € A\ {0}) which is independent
of 7 and ¢ such that, for any finite subset # C A, \ {0}, we can further require that s is T-#-full (see 8.3 and 9.2 of [15]).
For any n > 1, one can choose a strictly positive element b € A with |[b|| = 1 such that fi,4(b) > fi/n(a). Therefore, if A
has continuous scale, d can be chosen to be 1, if the strictly positive element is chosen accordingly.

Let A be a separable stably projectionless simple C*-algebra. Recall that A has generalized tracial rank at most one and
write gTR(A) < 1, if there exists e € Ped(A), with |le|| = 1 such that eAe € D (see 11.6 of [15]).

Definition 3.10. Let A € D as defined 3.9. If, in addition, for any integer n, D = M;(D;) for some D; € Cp such that

n

¥(x) = diag(y(x), ¥1(x), ..., ¥1(x)) forall x € F, (e3.24)

where v : A — Dy is an F-e-multiplicative completely positive contractive linear map, then we say A € D%

9
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Note that here, as in 8.3 and 9.2 of [15], the map T mentioned in 3.9 is also assumed to exist and f, can be also chosen
as d — n for any n > 0 with d as in (e3.23) for a certain strictly positive element a.

Remark 3.11. It follows from 10.4 and 10.7 of [15] that, if A € Dy, then A € D?. Moreover, D; can be chosen in C((,O), and
if A € D, then Dy can be chosen in Cy. If A is a separable simple C*-algebra in D and A is tracially approximate divisible
(in the sense of 10.1 of [15]), then A € DY

Proposition 3.12. Let A be a non-unital simple C*-algebra which is tracially approximate divisible. Then every hereditary
C*-subalgebra is also tracially approximate divisible. Consequently, if A € DY, then every hereditary C*-subalgebra is in D"

Proof. Let B C A be a hereditary C*-subalgebra. Fix ¢ > 0, a finite subset 7 C B, a nonzero element b € B, and an
integer n > 1. By choosing a member b, in an approximate identity of B, without loss of generality (with an error within,
say €/2), we may assume that xb, = b.x = x for all x € F.

Since A is tracially approximate divisible, there are C*-subalgebras Ay and A; of A such that

dist(x, Cg) < ¢ forall x € F, (e3.25)
where C; C C C A, C = Ay & My(Ay),

n
. r—/\—
Ca = {(yo, diag(y1, ¥1, . .-, ¥1)) : Yo € Ao, Y1 € A1},

and where ay < b, where qq is a strictly positive element of Ag.

Let By be the C*-subalgebra generated by b.ab, for all a € Ay and let B; be the C*-subalgebra generated by b.cb, for
all c € Ay. Then By and By are C*-subalgebras of B. Since By C b.agb.Ab.agbe, b.apb. is a strictly positive element of By.
Moreover, b.agb, < ap < b. Put

n

By = {(Xo. X1, X1, ....X1) : Xo € Bo. X1 € By}, (3.26)
B‘f C B3, where B3 = By @ My(B1). For each x € F, let yx = (Jo.x Y1.x - - - » Y1.x) € Cq such that ||x — yx|| < &/2. Then
X — beyxbell < € forall x € F. (e3.27)

Note that b.y,b. € B‘f. This proves the first part of the statement. If A € DY, then, B € D for any hereditary C*-subalgebra
B, by 8.6 of [15]. By the first part of the statement, B is tracially approximately divisible. Therefore B € . O

Proposition 3.13. Let A € D be with continuous scale and let e € A, with |le| = 1 be a strictly positive element, and
1 > f. > 0 be as in 3.9. Then, for any finite subset ¥ C A, any ¢ > 0, any b € A, \ {0} and any integer n > 1, there are
F-e-multiplicative completely positive contractive linear maps ¢ : A — A and { : A — My(D) for some C*-subalgebra D € Cy
with Mp(D) C A and ¢(A) L My(D) such that

lx — (p(x) ® ¥(x) < e forall xe FU{e}, (e3.28)
p(e) < b, (e3.29)
t(fija(¥r(e))) > fe/2 for all t € T(D). (e3.30)

Proof. Fix ¢ > 0, b and F as described in the statement. Let n = inf{z(b) : 7 € Ww} > 0. Choose ey € A, with
lleo]l = 1 such that |legee; — e|| < £/16. Without loss of generality, we may also assume that eqf = feq = f for all f € F.
It follows from 11.8 of [15] that the map from Cu(A) to LAffb+(T(A)w) is an isomorphism. Therefore there is eg1 € A}
such that n{ep;) = (eg) and (ey) = (b), where b = diag(eg 1, €01, - . -, €0,1) (€o,1 repeated n times) in M,(A)+. By 11.5
of [15], A has stable rank one. It follows that epAey and bM,(A)b are isomorphic. In particular, epAeg = Mpy(eg.1Ae0,1).
Therefore, without loss of generality, (replacing ey by another strictly positive element in egAeg), we may also write that
e = ZL eo,;, Where {eg 1, €9, ..., €p,} are mutually orthogonal and there exists w; € A such that wjw; = ep; and
wiw;‘ 260,,*,1': 1,2,...,n.

Since A is stably projectionless, without loss of generality, we may assume that sp(ey) = [0, 1]. Then elements e ; and
w; generate a C*-subalgebra C which is isomorphic to Cy((0, 1]) ® M;,, which is semi-projective. Let G; = {eg;,w; : 1 <
i<n}.

Put 8o = min{e/16(n + 1), n/2(n + 1), f./4(n + 1)}. Choose §; > 0 such that for any G;-8;-multiplicative completely
positive contractive linear map L from C to a C*-algebra B, there is a homomorphism ¢’ : C — B such that

lo'(g) — L(g)Il < 8o/4 forall g € Gy. (e3.31)
Put Fy = FUG U{ab:a,be FUG}.

10
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Fix a positive number &; < min{dy, §1/2}/(4(n + 1)). Since A € D, there are F,-¢;-multiplicative completely positive
contractive linear maps ¢ : A — A and i : A — B for some C*-subalgebra B C A with B € Cy such that ¢(e) < b,
@(A) L B,

[ — (@(x) @ Yo(x))|l < & forall x € 71 U f{e, eo}, (e3.32)

t(fi/a(¥(e))) = fo forall t € T(B). (e3.33)
By the choice of G; and §;, we obtain a homomorphism h : C — B such that

lh(g) — Yo(g)ll < éo/4 forall g € G;. (e3.34)
Let ¢/ = h(e;) and v; = h(w;), i = 1,2,...,n. Let B = h(eg)Bh(eg). Since h is a homomorphism and €', v; € B,

1
B’ = My(€)Be}). Set D = e/ Be). Define v : A — B’ by yr(a) = h(eo)y(a)h(eg). One checks
(Y¥(e)) > fo/2 for all T € T(B) (e3.35)
and ¢ is F-e-multiplicative. Moreover,

Ix — (p(x) ® ¥(x))|]| <e forall xe F. O (e3.36)
4. The unitary group
Lemma 4.1. Let A be a non-unital C*-algebra and let ey, e, € Ay with |le] = 1 (i = 1, 2) such that

eie; = ee1 =0

and there is a unitary u € A such that u*eju = e,. Suppose that w = 1;\0 +x € Ap is a unitary with xo € Ao, where
Ap = ejAeqr. Then wi = 14 xo + u*xju € CU(A), cel(lwq) < and cer(wy) < 1+ e&.

Proof. Let B be the C*-subalgebra of A generated by Ag and ue,. Note that u*Agu = e,Ae,. One can define a map from
My(ejAer) = My(e2Ae?) to B by

2 2 2 2
ezdq1e etdaqpe
M2(€]A€1) =] ( 17115 171251

2. 2, 2 2
2 2 2 1) = ejanie; + ejaneque; + euteiazie] 4+ exutejaxeue;.
e1a21e7  e70ax2€]

It is easy to verify that this is an isomorphism by using e;e; = e;e; = 0 and u*equ = e,. Therefore B = M;(Ag) € B.
Consider M;(Ap). Put p11 = ]7\0‘ We view p;; as the open projection associated to Ag. Let p » = u*p;,1u. Since 1A0 + Xo
is a unitary, we have

(P11 + x5)(P11 + x0) = (P11 + X0)(P11 + X5) = P11
Define, for t € [0, 1],

X(t) = ((cos(tm /2))p1,1 + (sin(tw /2))p1,1u + (sin(tmw /2))u*py1 + (cos(tm /2))p22) + (1) — P11 — P2.2)-
Define

w(t)

(1 + x0)X(£)(1 + x5)X(¢)* for all t € [0, 1].

Let X'(t) = X(t) — ((13) — p1.1 — P2.2) € Ma(Ag) (by identifying p;;u with (8 é) u*py1 with (? 8) and py; with

(8 ?) ). Set

W'(t) = (p1.1 + P22 + X)X (t)(P1.1 + P22 + x5)X(£)" € Ma(Ap).
We have

X'(0) = p1,1 + p22 and X'(1) = pyau+u'p1s.
Then

W'(0) = p11 + P22 and W'(1) = (p1.1 + Xo) + (p2.2 + u*xpu).

Let 7 : My(Ag) — M, be the quotient map. Then = (W'(t)) = 1y, for all t € [0, 1]. This implies that W'(t) € M) for
all t € [0, 1]. It follows that W(t) € U(A) for all t € [0, 1]. Note that W(0) = 1; and W(1) = 1+ xo + u*xju. Moreover,
one computes that (since each W(t) € Uy(A)),

cel({W(t)}) < m.

11
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It follows that cer(W(1)) < 1 + &. Moreover
14 xo + u*xgu = (1 4 x0)u™(1 + x5)u.
It follows that 1+ xo + u*xou € CU(A). O
The following is a variation of a lemma of N. C. Phillips

Lemma 4.2 (Lemma 3.1 of [37]). Let H > 0 be a positive number and let N > 2 be an integer. Then, for any non-unital
C*-algebra which has almost stable rank one, any positive element ey € A, with |leg|| = 1, and u = A - 1 o T Xy € Ag (where

Xy € Ag and || = 1) such that cel,;o(u) < H, where Ay = egAey. Suppose that there are mutually orthogonal positive elements

€1,€, ..., € Aé such that eg ~ e;, i = 1,2, ...,2N. Then there exists z € CU(;\) with cel(z) < 2w and cer(z) <2+ ¢
such that

lu'—A-z| < 2H/N,
where u’ = A - 1; + x;,.
Proof. Since cel;,o(u) < H, there are ug, Uy, ..., Uy € ;\0 such that
Ug=1U, Uy = 1;10 and |lu; —ui—1]| <H/N, i=1,2,...,N. (e4.1)
Write u; = A; - 1;, + x;, where x; € Ag, i=1,2,..., N. In particular, x, = 0. It follows from (e4.1) that (o = 1)
|Ai — Ais1] <H/N, i=1,2,...,N.

Letv:voziuzl;\o—i-ixg and v; = Ay = 1AO+X1x§,i=1,2,...,N.Putxi=Lx;,iz0,1,...,N.WehavexN=0
and vy = 1;\O.Now

lvi — vicall = 1At — Ai_qui—q]] < 2H/N, i=1,2,...,N. (e4.2)
Let
&0 =2H/N — sup{|jv; —vi_1] :,i=1,2,...,N}.
Choose 1 > § > 0 such that
llx;i — fs(eo)xifs(eo)ll < €0/16N, i=0,1,2,....,N.
Put By = f;(eo)Afs(eo). There is a unitary w; € 15 + By such that
lvi — wi|| < & /4N, i=0,1,...,N.
Write w; = 1 i, TVir where y; € By and yy = 0. Since A has almost stable rank one, there are unitaries U; € A such that

Ui*fg/z(eo)ui € e,—Ae,-, i= 1,2,...,2N.

Let

N N

Xi=T1;+yo+ Z U3i1Yi Uaio1 + Z Uyyilai (e4.3)
i=1 =1
N N

X, = ];\ + Yo + Z U;-_ly?_ﬂ]z,;] + Z Uz*iyiUZi and (e4.4)
i=1 i=1

N N
X3 =1;+ Z Usi_1yiUaio1 + Z Usy; Ui, (e4.5)

i=1 i=1

Note that X; € U(A). Since yy = 0, as in 4.1, for i = 2, 3, we have

X; € CU(A), cel(X;) <m and cer(X;) <1+4e¢. (e4.6)
Moreover
X1 =Xl < sup{lly; —yiqll 5 i=1,2,...,N} (e4.7)
< &0/4N + sup{||v; — vi_1] :,i=1,2,...,N} (e4.8)
Furthermore,
1; + Yo = XiXs. (e4.9)

12
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Put z = X,X3. Then, by (e4.6),
z € CU(;\), cel(z) < 2w and cer(z) <2 +¢.
Moreover,
A =z < (15 — 14) + vo — (1 +Yo)ll + I(15 +yo) — I (e4.10)
< &9/8N + &9/4N + sup{||v; — vi_1] :,i=1,2,...,N} < 2H/N. O (e4.11)

Theorem 4.3 (cf. Theorem 6.5 of [33]). Let A be a non-unital separable simple C*-algebra in D and let u € Ug(A) with
u=XA-1+ xo, where A € C with |A| = 1 and xq € A. Then, for any ¢ > 0, there exists a unitary uq, u, € A such that
uy has exponential length no more than 27w, u, has exponential rank 3 and

lu —uuy| < e.

Moreover, cer(A) <5 + &.

Proof. Let 1/2 > ¢ > 0. Let u' = X - u. Let vy, vy, ..., vy € Up(A) such that
vo=u, v, =1 and |lv;j—vi_¢|| <&/32, i=0,1,...,n—1.
Write v; = A; - 1+ x;, where [A;{] = land x; €A, i=1,...,n— 1, and vy = 1+ Xo, where X, = Axo. Note that x, = 0.

As demonstrated in the proof of 4.2, we may assume that there is a strictly positive element e € A, such that |le] = 1
such that

filexi = xify(e) =%, i=0,1,2,...,n, (e4.12)
for some n > 0. Let

G1 = {e.fy(e), fyj2(€). %o, xi, 0 <i < n}.
Put

d = inf{d,(e) : T € T(A)"} > 0.
Without loss of generality, we may assume that t(f;2(e)) > d/2 forall T € mw.

Note that we may assume that A is infinite dimensional. Hence we may choose mutually orthogonal positive non-zero
elements co, €1, ..., Cpp1 Such that cg ~¢; (1 <i<n+1)and

d.(co) < d/5(n+ 1) for all T € T(A). (e4.13)

Let § > 0 and let G O Gy be a finite subset of A. Since A € D, there are Ay and D C A with D € C; and Ay L D,
G-§-multiplicative completely positive contractive linear maps ¢ : A — A and ¢; : A — D, such that

X — (po(x) ® p1(x))]l < & forall xe g (e4.14)
®o(e) < co, (e4.15)
t(fi/a(@1(e))) > d/4 for all T € T(A)". (e4.16)

By choosing smaller § and larger G, we may assume the following: there are y; € @o(f,/2(€))A@o(f,/2(€)) such that 1+ yo,
Ai- 1+y; are unitaries with y, = 0 such that |go(x;) —yill < €/32,i=1,2...,n, and |l¢o(X0) — Yoll < £/32. Consequently,

lyi — yirall < &/16, [(Ai- 1+ yi) — (Ai- T+ yia)ll < &/16, (e4.17)
i=0,1,...,n Moreover, there is z; € f,2(¢1(e))Df,,2(p1(e)) such that 1; + z; is a unitary and
lvo — (15 + Yo + z1)ll < &/16. (e4.18)

Put v} =14y, vy = 14z and u, = Auj. Then

lu—u)-u < e/4.

Put By = wo(fn/z(E))A(/)o(fﬂ/z(e)). Let wi = A; - 130 +y,i=0,1,...,n Then w, = 130, wog=1- ]BO + yo and
lwi — wi_q]| <€e/16, i=1,2,...,n.

This implies that wg € UO(EO) and H := cel(wg) < nmwe/8. By (e4.13) and (e4.16), there are mutually orthogonal elements
¢ e Aé, with ¢/ ~ co,i=0,1,...,n+ 1. Then, by (e4.15) and by Lemma 4.2, cel(u}) < 27 + 2H/n < 27 +m¢/8. On the
other hand, by 3.3, cer(u;) < 2 + ¢. Lemma then follows. O

Theorem 4.4. Let A be a separable simple C*-algebra in D and let u € CU(A). Then u € Uo(;\) and cel(u) < 6m.

13



G. Gong and H. Lin Journal of Geometry and Physics 158 (2020) 103865

Proof. Let 7 : A — C be the quotient map. Since u € CU(;\), m(u) = 1. So we write u = 1 + xo, where xg € A.
Let 1/2 > ¢ > 0. There are vy, vo, ..., v € U(A) such that

lu—vivy--- vl < /32,

and v; = aibia;b;, a;, b; € U(A). It is standard that vivy - - - v @ 1y, € UO(M4,<+1(/Z\)). Since A has stable rank one (see 11.5
of [15] and 15.5 of [18]), by [48], v1vs - - - vk € Ug(A). It follows that u € Up(A). Put ug = vivs - - - v Let H = cel(ug).
Write a; = A; + x; and b; = u; +y;, where |Aj| = |uijl = 1and x;,y; € A, i=1,2,...,k.
The rest of the proof is similar to that of 4.3. We will repeat some of the argument. we may assume that there is a

strictly positive element e € A, such that |e] = 1 and

fale)xi = xify(e) = xi, fy(elyi = yify(e) =yi, 1=0,1,2,....k (e4.19)

for some n > 0. Let

G1 = {e, fy(e), fya(€), xi, yi, 0 < i < k}.
Put
d = inf{d(e) : T € T(A)"} > 0.

Without loss of generality, we may assume that t(f;x(e)) > d/2 forall T € T(A)w.
Choose n > 1 such that

4H/n < ¢/64k.

There are mutually orthogonal elements cy, cy, .. ., 441 in A such that ¢y ~ ¢; and d;(cy) < ed/n64k for all t € T(A). Let
8 > 0 and let G D G; be a finite subset of A.

Since A € D, there are Ap and D C A with D € ¢; and Ay L D, g-§-multiplicative completely positive contractive linear
maps ¢g : A — Ag and ¢ : A — D, such that

Ix — (0o(x) ® p1(x))]l < & forall xe g (e4.20)
@o(e) < co, (e4.21)
t(fi/a(@i(e))) > d/4 for all T € T(A)". (e4.22)

By choosing smaller § and larger G, we may assume the following: ~there is x; € @o(fy/2(€))Apo(f,2(e)) such that 14 Xx;
is a unitary, cel(p + x;) < 2H, where p is the unit of unitization of B, where B = ¢q(f,,2(e))A¢o(f,,2(e)), and there are
z, zi, X}, ¥; € fy2(@1(e))Df,2(¢1(e)) such that A; + a; and u; + b} are unitaries, and

(1+2z)—(1+z1)(14+2)---(14+2z)l <&/16 and |lug — (14 x5 + 2)|| < &/16, (e4.23)
where

T4+zi= - T4Hx) (i - 1Hy)i - 1+x) (i +y)" i=1,2,... k.

In particular, (14 z;)(1425)- - - (1 + z¢) € CU(C), where C = fy2(@1(€))Dfy 2(@1(e)). It follows from 3.3 that
cel(1+z1)(1+2z2)--- (1 +2z)) <4m.

As in the proof of 4.3, using (e4.21), by applying 4.2, we have
cel(1+xy) < 4H/n+ 27 + & < 2w + 2e.

It follows that
cel(u) < 6mr. O

Proposition 4.5 (cf. Theorem 4.6 of [21]). Let A be a separable simple C*-algebra with continuous scale and let e € A \ {0}.

Then the map 1. : Ug(eAe)/CU(eAe) — Uy(A)/CU(A) is surjective. If, in addition, A has stable rank one, then the map is also
injective.

Proof. The proof is almost identical to that of the unital case (see Theorem 4.6 of [21]).

First, we claim that, for any h € A, there exists h’ € (eAe)s q. such that (W) = t(h) for all T € T(A). Let h = h, —h_.
Put Ap = eAe. By Proposition 5.6 of [15], there are x;, y; € A(1 <i<nand 1 <j < m) such that

n m
Zx;‘exi =h, and Zyj‘eyj =h_. (e4.24)
i=1 j=1

14
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Then
n m
W= Zel/zx;"xiel/z - Zel/zy;"yjel/z € Ap. (e4.25)

Moreover, t(h") = z(h) for all = € T(A). This proves the claim.

To show 1, is surjective, let u € UO(A) with u = ]_[]' 1 exp(thh ) with h; € As.q.. Write hj =a;-1; + h/ where oj € R

with |ej| = 1 and hi € Asq. By the claim that there exists hy; € (Ao)sq. such that r(h” ) = (h) for all T € T(A).

Let hoj = & - 13 + hy; j = 1.2,....L Put w = [];_, exp(iho;). Then w € Up(Ag). Put v = [];_
EOJ =aj- 13+ hOJ,] =1,2,...,L. Thenv € Uo(;\). Moreover, 1,(w) = v. Since

I I
= Z t(hoy) = Z t(hj) = Dz(u)(t) (e4.26)
j=1

T exp(iﬂo,j), where

for all T € T(A), by Lemma 3.1 of [56], t(w) = u. This proves that 1, is surjective.
To see it is injective, let e4 € A be a strictly positive element of A with |le4|| = 1. Since A has continuous scale, by (the
proof of) Proposition 5.6 of [15], there exists an integer K > 1 such that

K{ao) > (ea) (e4.27)

(in Cuntz semi-group). Since A has stable rank one, without loss of generality, we may write A C Mg (Ag). Put E; = 1

Let u € Ag with u = A - Eg + x for some A € C with [A] = 1and x € (Ag)s.q. Write w = A - 15 +x. Then 1,(u) = w. Suppose
that w € CU(A) Write E = 1MK(A0) and w’ = A-E +x.Then w € CU(MK(AO)) However, since AO has stable rank one, it

follows from Theorem 4.6 of [21] that u € CU(AO) This shows that 1, is injective. O

Lemma 4.6. Let A be a non-unital and o -unital simple C*-algebra of stable rank one with continuous scale. Suppose that there
is H > 0 such that, for any hereditary C*-subalgebra B of A, cel(z) < H for any z € CU(B). Suppose that there are two mutually
orthogonal o -unital hereditary C*-subalgebras Ay and Ay (of A) with strictly positive elements ao and a; with ||a|| = 1 and
llai|| = 1, respectively. Suppose that x € Ag and suppose that for some A € C with |A| = 1, w = A 4+ x € Up(A). Suppose also
that there is an integer K > 1 such that

Kd.(ap) > 1 for all T € T(A). (e4.28)
Let u =2 - 13 + x. Suppose that, for some n € (0, 2],

dist(w, 1) < n in Uy(A)/CU(A).
Then, if n < 2, one has

cel;lo(u) < (KTN + 1/16)n +H and dist(u, i;,o) < (K+1/8)n,
and if n = 2, one has

cel;,o(u) < I%Tcel(w) +1/16 + H.

Proof. Let L = cel(w). Since A is simple and has stable rank one, u € Uo(;\o).
First consider the case that n < 2. Let ¢ € CU(A) such that

lc —wl <n.
Choose m > ¢ > 0 such that ¢ + n < 2. Choose h € As.q. such that with lh|| < Zarcsm( 1) such that

w exp(ih) = c. (e4.29)
Thus

D;(w exp(ih)) = 0 (in Aff(T(A))/p;(Ko(A))). (e4.30)

It follows that
+1n

ID(w)()| < 2arcsin(=—1), (e4.31)

Put h = o - 13 4 ho, where « € R with |o| < 2 arcsin(%) and hy € A;,. As in the proof of surjectivity of 1, in 4.5, there
is hy € (Ag)s.q such that t(hy) = t(ho) for all T € T(A). Put hj = « - 1; + hy. Moreover, t(hy) = t(h) for all T € T(A).

15
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Therefore
Dj;(w exp(ihy))(t) = 0. (e4.32)
It follows from 4.5 that

Dy, (uexplihon)) = 0 (in AFK(T(A0))/ o3, (Kol(Ao))), (e4.33)

where hgg = « - 1A0 + hy. By (€4.28), |IT|a,ll = 1/K. Then, by (e4.31), in Ao, one computes

1D, (w)] < K2arcsin(: tny (e4.34)

Thus there is v € CU(;\O) and h; € As,a_ such that

u = vexp(2rihy) and | hq| < K2 arcsin(‘9 ; il ). (e4.35)
Therefore
cel(u) < H + K2arcsin( 1) < H + K(e + n)% (e4.36)
< H+KE 4 (e4.37)
= 2 Teak+ 1) '
One can also compute that
L= n
dist(u, 1; ) <K <K —_—
(W 1) < Kle+m) < Kn + o e

This proves the case that n < 2.
Now suppose that n = 2. Define R = [cel(w) + 1]. Note that % < 1.Put w' = A 1y, +x. It follows from 4.2 that

cel(w)
R+1
Put K1 = K(R + 1). To simplify notation, replacing A by Mg (A), without loss of generality, we may now consider that

dist(w’, Ty, ,) < (e4.38)

cel(w)

Kid;(ao) > 1 and dist(®, 1 .
1d:(a) = (w )<R+l

(e4.39)

: _ cel(w)
Then we can apply the case that n < 2 with n = R+“{ . O

5. A uniqueness theorem for C*-algebras in D

Proposition 5.1. Let A be a separable amenable C*-algebra. Let ¢ > 0 and F C A be a finite subset. Then there exist § > 0
and a finite subset G C A satisfy the following: Suppose that there are two mutually orthogonal C*-subalgebras Ay and A, and
two F-¢/2-multiplicative completely positive contractive linear maps ¢o : A — A and ¢ : A — A such that

lx — (¢o(x) ® @1(x))|| < &/2 forall x e F

and suppose that there is Y : A — B (for any C*-algebra B) which is a G-§-multiplicative completely positive contractive linear
map. Then there exist a pair of mutually orthogonal C*-subalgebras By and B, of B and F-e-multiplicative completely positive
contractive linear maps ¥y : A— By C B and v, : A— By C B such that

[¥0(x) — ¥ o o(X)I| < & and (e5.1)
[¥1(x) — ¥ o p1(X)|l < & forall x € F. (e5.2)

Proof. Fix 1/2 > ¢ > 0 and a finite subset 7 C A. Let {B,} be any sequence of C*-algebras and let ¢, : A — B, be any
sequence of completely positive contractive linear maps such that

lim ||@n(a)pn(b) — @n(ab)|| =0 for all a, b € A. (e5.3)
n—oo

Let B, = ]_[;";1 By, By = By /®52 1By and IT : B, — By be the quotient map. Define @ : A — B, by @(a) = {¢a(a)}
forall a € A. Then IT o @ : A — By is a homomorphism. Suppose Ag and A; are in the statement of the proposition. Let
ap € (Ap)+ with |lag|| = 1 and a; € (A1)+ with |a;]| = 1 be strictly positive elements of Ay and Ay, respectively. Then
apa; = a1a9 = 0. Therefore there are b(?, bV e B, such that b@p(" = pMp©® = 0 and such that [7(b?) = IT o ®(a;),

i=0,1 (see, for example, 10.1.10 of [41]). Write b® = {p}. Let Bni= b\"B,bY, i = 0, 1. Then By and B, ; are mutually
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orthogonal. Since A is amenable, there is a completely positive contractive linear map ¥ : A — By, such that ¥ = [To @.
Define ¢, : A — B, by

vi(a) = b, (a)pt? for all a € A. (e5.4)

Let Yo = v, o @o and Y1 = Y}, o . If n is sufficiently large, then v and v, can be F-e-multiplicative. Moreover, if n
sufficiently large,

lo(a) — ¢n o po(a)|| < e for all a € F and (e5.5)
lYr1(a) — ¢n o p1(a)|| < & forall a € F. (e5.6)

If the proposition fails, then such {¢,} could not exist for some choice of {B,}, € and F. This proves the proposition. O

5.2. Fixamap T(n, k) : N x N — N. Let A € D. Denote by Dy, 1) the class of C*-algebras in D N Cy, 1y, 7,5,r) With g = 0,
r1 =0, T=T(n, k),s=1and R =7, as defined in 3.13 of [16].

Note if A € D, then A has stable rank one (see 11.5 of [15]) (so rp = 0 and r; = 0 in 3.14 of [15]) and by 4.4,
cer(My(A)) < 6+ ¢ (R < 7) for all n. If A is also Z-stable, then Ky(A) is weakly unperforated. Thus A € Dy ) for
T(n, k) = n for all (n, k) € N x N (see 5.5).

In the Appendix to this paper, we show that every amenable C*-algebra in D are Z-stable. In fact, it is shown that
Ko(A) is always weakly unperforated in the appendix of [16] for all A € D. Therefore A € Dy i) for the above T.

Theorem 5.3. Fix T(n, k). Let A be a non-unital separable simple C*-algebra in D with continuous scale which satisfies the
UCT. Let T : A, \ {0} — N x (R \ {0}) be a map. For any ¢ > 0 and any finite subset F C A, there exist § > 0, y > 0, > 0,
a finite subset G C A, a finite subset Hy C Ay \ {0}, a finite subset P C K(A), a finite subset U = {vq, v, ..., Um,} C U(A)
such that {[v{], [v2], ..., [vm, ]} = PNK; (A), and a finite subset H, C A satisfy the following: Suppose that ¢, ¢; : A — B
are two g—é—multiplicative completely positive contractive linear maps which are T--full (see 2.17), where B € Dy k) With
continuous scale such that

[pdllp = [@21lp, (€5.7)
[T o@i(h) —towy(h)] < y forall he H, and t € T(B) and (e5.8)
dist([e1(vi)], Te2(vi)]) < n forall v; € U (recall 2.1for [—1). (e5.9)

Then there exists a unitary w € B such that

IAd w o p1(a) — pa(a)|| < & forall a e F. (e5.10)

Proof. Fix a finite subset 7 and 1/4 > ¢ > 0. As pointed out in 5.2, B € Cy,0,1(n,k),1,7) for all B € D = Dy 1), Where
T(n, k) = n for all (k, n). Without loss of generality, we may assume that 7 C Al.

Since A has the continuous scale, T(A) is compact (see 5.3 of [ 15]). Fix a strictly positive element ay € A, with ||ag|| = 1.
We may assume, without loss of generality, that

ayy =yap =Yy, ap >y*y and ag > yy* forall y € 7 and (e5.11)
t(fi/a(a)) > 1 —¢/2" forall © e T(A). (e5.12)

Let T; : Ay \ {0} = N x (R4 \ {0}) with Ty(a) = (N(a), M(a)) (a € A+ \ {0}) be the map described after (e3.23) in 3.10
and 3.9 (see also 8.3 and 10.8 of [15]) (in place of T). uppose that T(a) = (Nr(a), Mr(a)) for a € A, \ {0}.

Define T, T5 : Ay \ {0} — N x (R4 \ {0}) by T>(a) = (N(a), (4/3)M(a)) and T5(a) = (Nr(a)N(a), (8/6)(Mr(a) + 1)M(a))
for all a € A, \ {0}. Define L(u) = 8= for all u € U(A).

Let §; > O (in place of §8), let G; C A (in place of G) be a finite subset, let ;0 C A+ \ {0} (in place of #) be a finite
subset, P; C K(A) (in place of P) be a finite subset, let ¢; C U(A) (in place of &) be a finite subset and let K; > 1 (in
place of K) be an integer given by 3.14 and 3.15 of [16], or by 7.9 (together with 7.13 of [18]) for the above T3 (in place
of F), £/16 (in place of ¢) and F and L with L(u) = 8. We assume that ao, f1,16(a0), f1/8(a0) and fi,4(ag) € FUH1 o (with
ro=1r1=0,T =T(k,n)above,s =1and R=7).

We may also assume that §; is sufficiently small and G; is sufficiently large that [L;]|» is well-defined, and

[(Lillp= [L2]lp,

provided that L; is G1-28;-multiplicative and
ILi(x) — Ly(x)|| < 8; forall x € G.

Without loss of generality, we may also assume that
FUH10U{Xy:x,y e F} C G CA.
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Choose by € A, \ {0} with

d.(by) < 1/2902K; + 1) for all T € T(A). (e5.13)
Choose also a larger finite subset G} of A and a smaller & so that

ITL(u)] — L(u)|| < min{1/4, ¢ - 81/210}/871 for all u € ¢4; and (e5.14)

Ifi/8(La0)) = L(fis(ao))ll < 1/2"°(Ky + 1) (€5.15)

provided that L is a G}-87-multiplicative completely positive contractive linear map (to any other C*-algebra).
We may assume that 0 < §} < W‘?ﬂ) For each v € Uy, there is a(v) € C and a(v) € A such that
v=o(v) 13 +a(v), |le(v)l=1 and [la(v)| < 2. (e5.16)

Let 2 = {a(v) : v € U;}. We may also assume that G{ D GiUF U H; 0 U{xy : x,y € G1} U 2. It follows from 3.10
and 3.9 (see also 8.3 and 10.8 of [15]) that there are G;-8}/64-multiplicative completely positive contractive linear maps
@o:A— Aand vy : A— D for some Myk,41(D) C A with D € Cj and A L My, +1(D) such that

2K1+1
llx — (¢o(x), diag(WYo(x), Yo(X), ..., Yo(X)))| < min{e/K;2'%, 8/128K;} for all x € G, (€5.17)
aho < bo and t(fi/a(Yo(ao))) > 1 —¢/2" forall 7 € T(D), (e5.18)

and o(ao) is strictly positive, where ag, is a strictly positive element of go(ag)Apo(ao). Moreover, ¥ is T1- H1,0-full in
DAD.
We compute that, by (e5.12), (e5.17) and (e5.15),

2t(f1/8(Yolao))) > 3/4K, for all T e T(A). (e5.19)
We also compute that (see (e5.12), (e5.13), (e5.17) and (e5.18)), for all t € T(A),
2K +1
T(f1/4(@o(ao)), diag(fi/a(¥0(ao)), fi/a(¥o(ao)), - - -, fiya(¥o(ao)))) > 1 —e/2°. (e5.20)

Let Ago = (¢o(ao), Yo(ao))A(@o(ao), Yo(ao)) and let oo : A — Ago be defined by
Poo(X) = @o(x) ® Yo(x) for all x € A.

Let ago = agp, @ Yolag) € Ago be a strictly positive element of Agp.
By choosing even possibly smaller §; and larger g}, if necessary, we may assume that [¢g]|», is well defined and
denote P, = [¢oo](P1). Moreover, we may also assume, without loss of generality, that

[L/:”Pz: [L//]lpzv (65.21)

IL'(x) — L"(x)|| < 87 forall x € g}

and L’ and L” are G;-87-multiplicative completely positive contractive linear maps. We may also assume that

1fs (a00)poo(x) — poo(¥)ll < 87/2'° and (5.22)

IIfs: (a00)@oo(X)fs (a00) — woo(x)|l < 87/2'° forall x € g; (e5.23)
for some 1/64 > § > 0. Furthermore,

Ifi(Yo(ao))wo(x) — Yo(X)l < 8;/2'° and (e5.24)

IIfs (Woao)Wo(X)fs (Wo(ao)) — vo(x)Il < 8;/2™ for all x € g}. (€5.25)
It follows from (e5.19) that ay, < bo < fi/s(¥o(ao)) and, by 3.1 of [15], there exists xo € A such that

s r256(a00 ) (X5 f1/8(Wo(a0))%0) = fir j256(ago)- (e5.26)

Let g € Cy((0, 1])4 be such that ||g]| = 1, g(t) =0 forall t € (0,8 /64) and t € (8'/8, 1].
Put (keep in mind that A is projectionless and simple)

oo = inf{r(g(ag)) : T € T(A)} > 0. (e5.27)
Let D = Mo, (D). Let j; : D — Moy, (D) = D be defined by
ji(d) = diag(d, d, ..., d) forall d € D.
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Let 1; : D — A be the embedding. Let &; = min{e/2'°, §;/2'°, §;/21°}. Choose a finite subset G, C D which contains
EBlzf} i 0 Yo(Gy), where m; @i{} D — D is the projection to the ith summand. Let e; € D, with |eg|| = 1 such that

fi/alea)y — yll < €1/16 and ||yfija(eq) — yll < &1/16 (e5.28)
2K,
for all y € ¥o(G)). Let g = diag(eq, eq, . . ., eq). Without loss of generality, we may assume that &g, f1/4(eq) € G).
Define A : D"\ {0} — (0, 1) by, ford € D! \ {0},
~ 1 ~
A(d) = min{inf{l' ol O]l(d) T E T(A)}, m]n{m :d e d}} (6529)

For &1, choose &, > 0 (in place of §) associated with &;/16 (in place of ¢) and 1/16 (in place of o) required by Lemma 3.3
of [15]. Without loss of generality, we may assume that &, < &1. _
Let G4 (in place of G) be a finite subset, 7y C Ko(D) (in place of P) be a finite subset, #1 4 C (D)} \ {0} (in place of #1)

be a finite subset, #; 4 C (D)sq. (in place of #;) be a finite subset, §; > 0 (in place of §), y; > 0 (in place of y) required
by Theorem 7.8 of [15] for C = D, &,/4 (in place of ¢), G, (in place of ) and A above.
By (e5.14), there is a finite subset ¢, C U(Agg) such that, for any w € U, there is w' € U, with

llpoo(w) — w'|| < min{1/4, e1/2'°}/87. (e5.30)
For each w’ € U,, there is a(w’) € C with |a(w’)] = 1 and a(w’) € Agp With |la(w’)|| < 2 such that
w =a(w)- i, T a(w”).
Define
20 ={a(w'):w' €}
Note that by viewing Zoo as a C*-subalgebra of A, we may also view 4, as a subset of A.
Let
G2 = {aoo, fsrya(ao0), 8(aoo), Xo, X5} U G7 U 90(G7) U ¥o(G1)UG, U Gg U Hy g U Hz g U 20 C Ago,

H1 = {ao, f57a(ao0), f1/4(a0), f17a(¥o(ao)), g(ago)} U H1,0 U Yo(H1,0)UH1,4,
Hy = H1UHag, Ky =28 max{M(a)’N(a)*: a € H1},
% min{é1/16, 84/4, v /2,1/2, 8'/256, 00 /4}
O = —, =
0T 4Ky + 1)
P =P1UPU(j1)eo(Pa) U{[w]:w' € b},
_ Ya-8 - ono
V=18, + 1)
n=1/2"K; + 1)Ky, and U = 14; U U3
Now let Gy (in place of G) and dy (in place of §) be as required by 5.1 for G, (in place of F) and 4, (in place of ¢). Since

D is weakly semi-projective, we may choose even large Gy and smaller 8, such that there is a homomorphism @ from D
such that

IL(x) — @(x)|| < 82/2 forall xe G, ND

)

for any Go-8o-multiplicative completely positive contractive linear mapL from D. We also assume that

IL(fs'/4(a00)) — for7a(L(aoo))ll < min{8,/2, 8'/32}, (e5.31)
IL(g(ao0)) — g(L(aoo))ll < min{8,/2, 8"/32}, (e5.32)
7(g(L(ago))) > (1/2)ogo for all t € T(C) and (e5.33)
t(fg//123(L(060))) < 1/16(2K; + 1) for all = € T(C) (e5.34)
T(f18(L(¥0(a0)))) = 1/K, for all = € T(C) (since fi/4(Vo(ao)) € H1) (e5.35)

for any Gp-8p-multiplicative completely positive contractive linear map L from A to C which is also T-H1-full (used for
(e5.33) and (e5.35)), where C is any C*-algebra with T(C) # @.

Let G = G, U Gp and § = min{dy/2, 62/2}.

Now suppose that ¢1, ¢ : A — B satisfy the assumption of the theorem for the above chosen g, 8, y, P, n, H1, H2 and
U (for T).

Let ¢i0 = @i o @oo, i = 1, 2. Let 1//1.”1 : D — B be defined by (¢i)lp- By applying 5.1 without loss of generality, we may
assume that there are two pairs of hereditary C*-subalgebras By, B and Bj, and B}, with By L By and B, L B} such that
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¢1(Aoo) C Bo and 11(D) C B1, ¢2(Aoo) C By and yr,1(D) C B}, and ila,, is Go-8-multiplicative, yr1 1 : D — By and
Y21 : D — B) are homomorphisms such that

1% 4(x) = Yia(X)ll < 82/2 forall xe G, ND, i=1,2. (€5.36)
We may further assume, by (e5.26) (and xo € G>),

s j128(01(ag)) < ¥1.1(f1/16(¥o(a0)))- (e5.37)

Choose bgy € By such that t(bgy) > 1/2 for all t € T(B). Since both ¢1, ¢, are T-H;-full, Y10 and v, are
(4/3)T-(Yro(H1.0) U H1.q4)-full. We then compute that

T(Pi0(x)) > AX) for all x € H14 and for all t € T(B). (e5.38)

Then, by the choice of P, #,,4 and y, by applying 7.8 of [15] we obtain a unitary U; € B such that

IAd U] o ¥ 1(%) — Yr1,1(x)]| < £2/4 for all x € Gj. (e5.39)
In particular,
IAdU; o ¥2.1(84) — Y1.1(8a)ll < £2/4. (e5.40)
By applying Lemma 3.3 of [15], there is a unitary U € B such that
AdUY o AdU; o 1 1(x) € ¥1,1(€4)BV1.1(ea) for all x € ¥ 1(€a)BY2.1(eq) and (e5.41)
(U7 eUy = cll < (e1/16)l[c|| for all ¢ € Vrp,1(€a)Bra.1(Ea)- (e5.42)
Put U; = UjU7. Then we have
Ad U; o V5. 1(f1/a(8a)xf1/a(8a)) € Yr1.1(84)BVr1.1(8q) for all x € A and (e5.43)
IAd Uy o ¥2,1(x) — ¥r1,1(X)Il < e1/4 for all x € ji o Yo(G7). (e5.44)
Let B' = (Ad Uy o V2, 1(f1/4(€4)))B(Ad Uy o ¥r 1(f1/4(€4))) and let
B,={beB:bx=xb=0 forall xeB}. (e5.45)
By the choice of #; and the assumption (e5.8), for all T € T(B),
[7(@1,0(fs7/4(a00))) — T(@2,0(f5 /4(@00)))| < min{y /2, 8,/2}, (e5.46)
With (e5.31) in mind, by the assumption, we have that
Ifsr7a(@i(aoo)) — ¢ilfsr7a(aoo))ll < min{s,/2, 8'/32} and (€5.47)
lg(¢i(aoo)) — ¢i(g(a))ll < min{s,/2, 8'/32}, (e5.48)
i = 1, 2. We then compute that, by (e5.31), by the choice of #; and y, and by (e5.33),
©(fs/a(92(a00))) < min{8>/2, 8'/32} + t(¢2(fir74(aoo))) (e5.49)
< min{8,/2, 8'/32} + y + t(¢1(fyr/a(ao))) e5.50)

A

(
min{8,/2, 8'/32) + y + min{8,/2, §'/32) (€5.51)
+7(fr7a(1((a00)))) (e5.52)
(
(

A

T(g(@1(ano))) + t(fsr/a(@1((aoo)))) e5.53)
< t(fy /64(91(aoo))) e5.54)

for all € T(B). It is important to note that
Uifs j2(@2(ao00))Ur, fsrs6a(@1(aoo)) € Bp.

Also note that B, is a hereditary C*-subalgebra of B. Since B has strictly comparison for positive elements and B has stable
rank one, by 3.2 of [15], there is a unitary U, € B, such that

(U3 )*Usfs 2(02(a00))U1(U3) € fsj128(91(a00))Bfs /128(91(a00)) := Boo. (€5.55)

Write Uy = « - 13,, +z with z € By, and « € C with || = 1. Put U, = « - 13 + z. Then (e5.55) still holds by replacing U,
by U,. Moreover,

UsxU; = x (e5.56)
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for any x € B'. In particular,
(U5 (Ad Uy o Y2 1(x))Uz — ¥r1,1(X)]| < £1/4+ £1/16 = 5¢1/16 (e5.57)

for all x € j; o Yo(G7).
Put ¢) o = AdU, 0 Ad U; o @20 and define ¢ : A — Bgo by

@5 o(x) = Uy Uiy j2(@2(a00))2.0(X)fs /2(02(a00))U1 Uy for all x € A. (e5.58)

By (e5.22), wz 1 1s g§-8§/24—multiplicative completely positive contractive linear map. Define <p§y0 : A — Bgg by

91.0%) = fy 12(01(a00))p1.0(X)fs /2(91(a00)) for all x € A (e5.59)

which is also G;-§] /24 multiplicative completely positive contractive linear map. Now both ¢} , and @5 , are completely
positive contractlve linear maps from A into Bgo. Note that B is separable and simple and has stable rank one. From the
assumption, (e5.22) and (e5.21), we have

(05 ollp= [g2.0llp= [@1.0]lp= [9] oll>- (e5.60)
It follows from the choice of ¢4, and assumption (e5.9) (as well as (e5.22) and (e5.46) among others) that
dist([¢; o(v)1. [¢] o(v)]) < 0+ 8;/2* forall v €1l (e5.61)

as elements in U(B)/CU(B). It follows from (e5.35) that

T(fyr /128(91(a00))) > T(fsr/128(@1(¥0(a0)))) > 1/K; for all T € T(B). (e5.62)
It follows from 4.6 that, in U (EOO) for all v € U,
Ky 1
celg, (T@5 o(V)1Te7 o(V)T*) < ( 22 + 16)(77 +82) + 67 (e5.63)
< 7m < L(v). (e5.64)

Now let ¥4 = 1.1 o diag(o, o) and By = a(A)B4(A). Let bgo € Boo be a strictly positive element with ||boy || = 1
and let b, € B, be a strictly positive element with ||b,|| = 1. It follows from (e5.37) that

by, < by. (€5.65)

Recall that v 1 and , ; are assumed to be homomorphisms which are T-vo(#1,0)-full. Since ¥ is T1-H1 o-full in D, Va
is also T3-#1 o-full in B,. Recall that

Ky

Y1131 0 Yo(x)) = diag(Pa(x), Ya(x), ..., Ya(x)) for all x € A. (€5.66)

Now we are ready to apply the stable uniqueness theorem 3.14 of [16]. By that theorem, viewing B, as a hereditary
C*-subalgebra of B, there exists a unitary Us € M, +1(By) such that

U3 (¢5,0(%) ® Y1131 © Yo(x))Us — (] o(X) © Y1101 0 Yo(x))Il < /16 (e5.67)

for all x € F. It follows from (e5.28), (e5.59), (e5.22) and (e5.58) that
1U3(95,0(%) ® Y1131 © Yo(x)))Us — (¢1,0(x) © Y1101 © Yo(x))l (e5.68)
<e/16+e1/4+681/28 <¢/8 (e5.69)

for all x e F. Since both ¢} (x) @ ¥1,1(j1 © ¥o(x)) and @1,9(x) ® ¥1,1(j1 © Yo(x)) are in B, and since B has stable rank one,
one easily finds a unitary U} € B such that the above holds using U} in stead of U; but with ¢/7 instead of &/8.
Put Uy = U,U,Uj. It follows from (e5.17), (€5.57), (€5.36) and the above that, for all x € F,
IAd Uy 0 ¢2(x) — 1(x)l
< 1UZ@a(@oo(x) @ ji o Yo(x))Us — @1(goo(x) @ j1 © Yo(x))|| + 2 min{e/128, §]/128}
< [(U3)"(¢5.0(%) @ ¥r1.1G1 © Yo(x)))U3 — (@1,0(X) ® ¥1.1G11 © Yo(x)ll
+561/16 4+ 83/2 + ¢/64
<¢e/7T++561/16+682/2 +¢/64 <¢e. O (e5.70)

Remark 5.4. It is easy to see that, with (e5.8), we may assume that [v;] # {0} (see (e2.9)).
The following follows from A6 and A7 of the appendix of [16]. We keep here since the proof is much simpler.
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Proposition 5.5. Let A be a non-unital separable stably projectionless exact simple C*-algebra with continuous scale which is
Z-stable and T(A) # . Then Ko(A) is weakly unperforated, i.e., if x € Ko(A) with kx € Ko(A); \ {0} for some integer k > 1,
then x € KO(A) Furthermore, if p, ¢ € Ms(A) (for some s > 1) are two projections such that t(q) < t(p) for all T € T(A),
then q < p.

Proof. Put A; = A® Z. Note that, since A is Z-stable, A; = A letB=A® Z and let 1 : A1 — B be the embedding.
Then 1,9 : Ko(A;) — Ko(B) is an isomorphism. Let 74 : Ay — C and 7, : B — Z be the quotient maps. Note that
w01 =1¢, z o ma, Where i¢ z is the embedding from C to Z. Let ¢y be the tracial state of A; which vanishesonA® Z = A
and t, be the tracial state of 2. Note T(A;) = T(A) U {to} and T(B) = T(A) U {t, o 7,}.

Let x € Ko(A1) such that kx > 0 in Ko(A;) for some integer k > 1. Suppose that p, q € M;(A;) are two projections such
that [p]—[q] = x in Ko(A1). Suppose that k[p]—k[q] is realized by a projection r € M,(A). If ma(r) = 0, then r € M,(A) which
is contradicted with A being stable projectionless. That is r is a full projection in A;. Hence, for all = € T(A;), 7(r) > O.
That is 7(p) > t(q) for all t € T(A;). It follows that t(i(p)) > t(i(q)) for all ¢ € T(B). Also pMs;(A ® Z)p # {0}. Note
p € Ms(A® Z) since A is stably projectionless. Therefore the ideal generated by p in M(B) contains g. Since B is Z-stable,
by 4.10 of [52], ¢ £ p in M,(B). Therefore there is a projection p; < p in M(B) such that [p;] = 1,(x). There is a unitary
w € Z such that w*m,(p)w = 1y, where 1y, € M(C) is a scalar matrix of rank k < s. Since K;(Z) = {0}, there exists a
unitary W € M;(B) such that 7,(W) = w. Then W*p;W — 1y, € kerm, = M;(A® Z). Let e = W*p;W. Then e € M;(A,).
We compute that [e] = x in Ky(A1). This implies that x > 0 and Ky(A1) is weakly unperforated. O

Remark 5.6. In Theorem 5.3, if both ¢ and ¢, map strictly positive elements to strictly positive elements, then, by the
virtue of 5.7 of [15], the fullness condition can be replaced by ©(fi,2(¢1(e))), t(fi/2(¢2(e))) = d for some given 1 > d > 0
and a strictly positive element e € A. for all t € T(B). If furthermore, ¢ and ¢, are assumed to be homomorphisms, then,
T o ; are tracial states of T(A) for all T € T(B). Therefore, the fullness condition can be dropped.

6. C*-algebras of the form B ® W

The main purpose of this section is to prove Theorem 6.9.
The following is known (in particular, the case that n = 1).

Lemma 6.1. Let B be a C*-algebra and n > 1 be an mteger Letu € 1y, ¢ + M, (B). Suppose that u € UO(M,,( )). Then
there exists a continuous path {u(t) : t € [0, 1]} C Up(M, a(B)) such that u(0 ) =u, u(1) = 1, 5 and e(u(t)) = 1y, 4 for all
t € [0, 1], where ¢ : My(B) — M,, is the quotient map. _

Moreover, one may write u = ]_[;?:1 exp(ih;) for some h; € M;(B)sqa. with @(h;) = 0 (and ¢(exp(ih;)) = 1Mn(;3)),
j=1,2,...,m(for some m > 1).

Proof. Let {w(t) : t € [0, 1]} be a continuous path of unitaries such that w(0) = u and w

w(t) = e(w(t)) € M,. Let w'(t) € M, C M;(B) be the same scalar matrix as &1( ) with @(w'(t))
w'(0) = Iy = w’(1). Define u(t) = w(t)(w'(t))*. Then u(0) = u and u(1) = 1,, ) Moreover o(u(t
t €0, 1].

To see the last part, one chooses a partition 0 = t; < t; < ---t = 1 of [0, 1] such that |Ju(ti_;)u(t)* — 1] < 1.
Define hj = 2m log(u(tji—1)u(t;)*),j = 1,2,...,m. Thenu = ]_[]";] exp(ih;). Note that g(u(tj)) = 1y, Whence ¢(h) = 0,
j=12,...,m O

1)

( 1Mn(l§)' Let
)

w(t). Note that
)= Ty for all

Lemma 6.2. Let B be a C*-algebraand u = 13+x € Bbea unitary, where x € B. Suppose that diag(u, 1Mm(ia)) € Uo(Mm+1(B)).
Letv = 1c +x® 1g € C, where C = B® Q. Then v € Uy(C). Moreover, there exists a continuous path of unitaries
{v(t) : t € [0,1]} C C such that v(0) = v, v(1) = 1¢ and w(v(t)) = 1¢ for all t € [0, 1], where & : C — C is the
quotient map.
Proof. By 6.1, there exists a continuous path of unitaries {u(t): t € [0, 1]} C UO(M;:(/B)) such that

u(0) = diag(u, 1, (B)) u(l) = 1Mm+1(1§) and w(u(t)) = 1m,, > (e6.1)

where 7 : B — C is the quotient map. Write u(t) = 1m+1(l§) + x(t), where {x(t) : t € [0, 1]} C Mp41(B) is a continuous
path such thatx( )+ x(E)* + x(e)*x(t) = 0, x(t) + x(t)* + x(t)x*(t) = 0 and x(1) = 0.

Let e1, €3, ..., emr1 € Q be mutually orthogonal and mutually equivalent projections such that Zmﬁl e; = 1. Put
m+1
E=1n ®e = diagler, e, ... 8) € Mui(B®Q), i=1,2,....,m+1. (e6.2)
Define
wi=1c+x0)Qe,=1c+xQe, i=1,2,...,m. (e6.3)
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Then
U= wiwy - - Wntt- (664)

Let X; € Mpm41(B® Q) be a unitary such that

XEX' = 1590 = 1. (e6.5)
Note that X;(x(t) ® €;)X;* € B® Q. Define wi(t) = 1¢c + Xj(x(t) ® ;)X e Cfort € [0,1],i=1,2,...,m+ 1. Then

wi(t) wi(t) = Tc 4+ Xi(x(t) ® e)X;" + Xi(x"(t) ® e)X;" + Xi(x(t )X*(t) ® e)X; (e6.6)

= 1c + Xi(x(t) + x*(t) + x(£)x* ()X = 1c. (e6.7)

Similarly,

wi(Owi(t)=1¢, i=1,2,...,m+1. (e6.8)
So {w;(t) : t € [0, 1]} C Up(C) with w;(0) = w; and w;(1) = 1¢. Moreover,

m(wi(t))=1 forall t €[0,1], i=1,2,...,m+1. (e6.9)
Define v(t) = wq(t)wy(t)- - - wny1(t) for t € [0, 1]. Then

v(t) € U(C), v(0)= w1(0)wz(0)- - wm41(0)=1c+x=u and v(1)=1c. O (e6.10)

Theorem 6.3. Let B be a C*-algebra and C = BT@\;V. Then U(My(C)) = Uo(Mp(C)) for all integer m > 1. Moreover, if
u=1¢ + x is a unitary in C for some x € B® W), then there exists a continuous path of unitaries {u(t) : t € [0, 1]} C C such
that w(u(t)) = 1 for all t € [0, 1], where w : C — C is the quotient map.

Proof. Note K;(W) = {0}. Therefore K;(B ® W) = {0}.

Let u € U(Mp,(C)). Write u = w + x, where w € M, is a scalar unitary and x € M;,(C). By considering w*u, without
loss of generality, we may assume u = 1y,, + x for some x € M;(C). Hence (by 6.1) there exists a continuous path
{w(t) : t € [0, 11} C Imyym(c) + Mnym(B @ W) such that w(0) = diag(u, 1,) and w(1) = 1,4, for some integer n > 1. Since
W =W ® Q and Q is strong self absorbing, without loss of generality, we may assume that u = 1p,) + x ® 1. Thus
6.2 applies. This proves the second part of the lemma. To see the first part, we let m = 1. O

Lemma 6.4. Let B be a C*-algebra and let q € Mm(f) be a projection, where C = B ® W, such that nc(q) = p € Mn(C), a
projection matrix, where wr¢c : C — C is the quotient map. Then there exist an integer ry > r > 0 and a unitary w € Mp4,(C)
such that w(q® 1, )w* = P& 1,, where P is the matrix in My,(C - 1z) which is the same matrix as p. Moreover, wc(w) = ljpyr,.

Proof. Since W is KK-contractible, Ko(B ® W) = {0}. Therefore, for some large r; > r > 0, there is w; € Mm+,1(f) such
that

wi(q® 1wt =P 1,. (e6.11)

Note wc(w1)(P & 1;)mc(w1)* = P & 1,, where we identify these elements with matrices with scalar entries. Write
W = mc(w1) as a unitary matrix with scalar entries. Note that W(P® 1, )W* = P®1,. Let w = W*w;. Then, nc(w) = T,
and

w1le 1, )w*=Pd1,.. O (e6.12)
Lemma 6.5. Let B be a C*-algebra and u = 13+ x € UO(E), where x € B. Then, for any ¢ > 0, there exists m > 1 such that
there exists a continuous path of unitaries {y(t) : t € [0, 1]} C 1pm,,,, +Mmn11(B) such that y(0) = diag(u, 1, ), y(1) = 1y,
and length({y(t) : t € [0, 1]}) < 47 +&.
Moreover, let C = BQ K and v = 1¢ 4+ z € Uy(C) for some z € C. Then, for any ¢ > O, there exists a continuous path
of unitaries {v(t) : t € [0, 1]} such that v(0) = v, v(1) = 1¢, [I(v(t)) = 1 for all t € [0, 1] and cel(v(t)) < 4w + ¢, where
IT : C — C is the quotient map. Consequently, v € Up(C) and cel(v) < 4w + «.

Proof. By 6.1, we may assume that there exists a continuous path of unitaries {u(t) : t € [0,1]} C B such that
u(t) = 13 + x(t), where x(t) € B such that u(0) = u and u(1) = 1;. Note that {x(t) : t € [0, 1]} is continuous, x(0) = x and
x(1) = 0. Moreover, for all t € [0, 1],

x(6) + x(t) + x(t)x*(t) = 0 and x(t) + x(t)* + x(t)*x(t) = 0. (e6.13)
Fix 1/4 > & > 0. There is a partition 0 =ty < t; < -- - t; = 1 such that
lx(t) — x(t;)|| < e/2 forall t €[t tiy1], i=0,1,2...,n—1. (e6.14)
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Put D = M3,,1(B). Then

Zo = 15 + diag(x(0), x(0). X(t), X*(t1). ..., X(ta—1). ¥*(£s_1). 0) € D. (e6.15)
Put y; = x(t;) + x*(t;),i =0, 1,...,n — 1. Then, by (e6.13),
ZoZy = 1j + diag(yo + x(0)x*(0), yo + X(0)"x(0), y1 + X(t1)x"(t1), y1 + X(t1)*x(t1), . .., 0)
= 1;.

Similarly, Z;Zy = 15. In other words, Zj is a unitary in D. Put, for t € [0, 1],

cos(tm/2) —sin(tw/2)
v(e) = (sin(tn/Z) cos(tmr /2) ) (€6.16)

Note that V(t) is a unitary in Mz(é) V(O) 1M @) and V(t)*V(t) =1, 5 (B) Put w;(t) = V(t)diag(13+x(t;), 13)V*(t)diag(1z, 15
+x*(t;)), t€[0,1]andi=0,1,...,n— 1. Note that

w;(0) = diag(1; + x(t;), 1 +x*(t;)), and w;i(1) = diag(1;, 13), i=0,1,...,n— 1. (e6.17)

Let ¢ : MZ(B) — M, be the quotient map. We also have

p(wi(t)) = e(V(t))diag(1, 1e(V*(t))diag(1, 1) = diag(1, 1). (e6.18)
Define
Z(t) = diag(wo(t), w1(t), ..., wp_1(t), 13) (e6.19)
Then Z(0) = Zy, Z(1) = 15. Moreover, by (e6.18),
mp(Z(t) =1,

where 7p : D — C is the quotient map. Note that {Z(t) : t € [0, 1]} is a continuous path of unitaries in D. It is standard
to compute that length({Z(t) : t € [0, 1]}) = 2x. Put

Z_1 = 15+ diag(x(0), x*(t1), x(t1), X*(t2), x(t2), . . ., X*(ta), X(tn)). (e6.20)
By (e6.14),
1Zo —Z-all <e. (e6.21)

There exists a continuous path of unitaries {Z_4(t) : t € [0,1]} C D such that Z 40) = Z_1,Z4(1) = Zy and
length({Z_(t) : t € [0, 1]}) < 2 arcsin(e/2). Define

wi(t) = V(t)diag(1; + x*(t), 15)V*(t)diag(15 + X(t), 15)

fort € [0,1]andi = 1,2,...,n. Then, similar to some computation above, {w;(t) : t € [0, 1]} C M>(B) is a continuous
path of unitaries such that w;(0) = 11\/12(:"3)' wi(1) = diag(1; + x*(;), 15 + x(t;)) and

o(w;i(t)) = (V(t))diag(1, 1)p(V*(t))diag(1, 1) = diag(1, 1) for all ¢ € [0, 1], (e6.22)
i=1,2,...,n. Define
Z_»(t) = diag(1; + x(0), w1(t), wo(t), ..., wy(t)) forall t € [0, 1]. (e6.23)
Then {Z_,(t): t € [0, 1]} C UO( ) is a continuous path such that
2(0) = 15 + x(0) = 15 + x = diag(u, 13,) (e6.24)
_2(1) = 15 + diag(x(0), x*(t1), x(t1), . . ., Xp(ta), Xn(tn)) = Z_1. (e6.25)
Moreover, length({Z_,(t) : t € [0, 1]}) < 27. Now define
_2(3t) ift €[0,1/3]
y(t)={Z_1(3(t — 1/3)) ift e[1/3,2/3] (e6.26)

Z(3(t—2/3)) ifte[2/3,1].
Now {y(t):t € [0, 1]} C Uo(ﬁ), ¥(0) = Z_»(0) = diag(u, 15,) and y(1) = Z(1) = 1. Moreover, for any 1/4 > ¢ > 0,
length({y(t) : t € [0, 1]}) < 47 + 2 arcsin(e/2). (e6.27)
This proves the first part of the statement. The second part follows the same way. O
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Theorem 6.6. Let {B,} be a sequence of C*-algebras and C = ]_[,fil(Bn ® W ® K). Then K{(C) = {0}. Moreover K;(E) = {0},
where E =[]2 (B, @ W® K)".

Proof. Let u € My(C). Let ¢ : C — C be the quotient map and let z = 7c(u) € Mu(C) be a unitary matrix. Denote by
Z the same scalar unitary matrix (as z) in M,,(C1z). Replacing u by Z*u, without loss of generality, we may assume that
uely ¢+ M;(C). To simplify notation, without loss of generality, we may further assume that u € 1z 4+ C. We write

u = {u,}, where u,; = 1g,ewex); + X% and where x, e B, @ W®K,n=1,2,.

By applying 6.5, we obtain, for each n, a continuous path of unitaries v,(t) € I(BH®W®,C +B, @W® K with v,(0) = up
and vy(1) = 1(3,@werx)y~ and cel(v,(t)) < 5. Thus, we obtain (see Lemma 1.1 of [19]) a sequence of equi-continuous
paths of unitaries {wn(t) : t € [0, 1]} C 1,ewer) +Br @ W® K with w,(0) = u, and wy(1) = 1g,ewerxy~ 1= 1,2,.
Define

u(t) = fwa(t)} C 1 +C. (€6.28)

Then {u(t) : t € [0, 1]} is a continuous path of unitaries in 1z + C such that u(0) = u and u(1) = 1¢. Thus K;(C) = {0}.

If u € U(E), we write u = {u,}, where u, € U((B, ® W ® K)~). Denote by 7, : (B, ® W ® K)~ — C the quotient map.
Let A, = my(uy). Then A, € T. Consider the unitary Z = {A,} € U(E). Then Z € Uy(E). Now consider v = uZ*. Then v € C.
Thus the above shows that K{(E) = {0}. O

Lemma 6.7. Let B, be a sequence of C*-algebras and let C = ]_[;";1 B, ® W. Then K;(C) is divisible and the map from K;(C)
to Ki(C, Z/kZ) is zero,i =0, 1and k =2, 3, .. ..

Proof. Let ¥ : Q ® Q — Q be an isomorphism. Since W ® Q = W, we may write C = ]_[,j“;] B, ® W ® Q. Define
@ :C — C®Q by &({an}) = {a,} ® 14 for all {a,} € C. It is an injective homomorphism. Let ¥ : C® Q — C be a
homomorphlsm defined by l1/({(b ® rn) ®r}) = {b, ® Y(r, ®r)} for all {b, ® r,} € C, where b, € B,® W and r, € Q.
Denote by &:C—> C ®Q and ¥ : C ®Q — C the extensions.

Fix z € Ko(C). We will show that, for any integer k > 2, there exists y € Ky(C) such that ky = z. Without loss of
generality, we may assume that z = [p] — [q], where p € M,(C) is a matrix with scaler entries and ¢ = p + x, where
X € M;(C)s4, and both p and q are projections. Let D be a separable C*-subalgebra of C such that M,(D) contains x. Let
t: D — C be the embedding. Consider &(D). Then, ®(D) C D; .= {i((d)®r:d e D,r € Q} =D ® Q. Note, for each ¢ > 0
and each finite subset F C Q, there exists a unitary u € Q such that

Yy ® lou~, y forall y € F. (€6.29)
Now write x = {(x(. )rxr}. For each n, i, j, there are af';)k € B, ® W and rl(;l)k €Q,k=1,2,...,N(i,j,n), such that
Zaz] (O < /@™ (X + 1), 1<ij<r. (€6.30)

Let M, = max{||a 1 < k < N(i, j, n)}. Therefore there is a unitary u, € Q such that

zjk”

Iy (7 ® To)un — riPll < 1/(A%XI + NG j, mM,r?), 1<ij<r, n=12,.... (6.31)
T
Let u = {1 ® up} and U = diag(u, u, ..., u). Then u*{bp}u € C for all {b,} € C.In other words, Adu : C — C is an
automorphism. Moreover
lU*(¥ o @(x))U — x| < 1/4. (e6.32)

Let H; —AduolI/ C®Q - CandH, =Hjo® :C — C.Puty =1®idg : D :=D®Q — C ® Q. Recall that
p,q € M(D ) and p — g = x € M;(D). Thus [p] — [q] also defines an element z’ € Ky(D) and z = t,0(z’) in Ko(C). Since
@®(D) C D1 = D® Q, we may regard @|p as a map from D to D;— let us denote it by @, that is @’ : D — D, is the same
map as @ |p= @ o but with different codomain algebra D; (instead of C ® Q). Formally, we have @|p= (1 o @'. Then

Py0(z) = Pog(t40(2") = (@p)so(2') = (t1 0 D' )so(2') = (11)0(Py(2)).
By Kiinneth formula, Ko(D,) is divisible. Therefore there is y' € Ky(D;) such that @,,(z') = ky’ € Ko(D1). That is

@.0(z) = (t1)s0(ky’) = k(t1)x0(y"). Hence (Hz)s0(z) = (H1)so(®Ps0(2)) = ky, where y = (Hq)xo((t1)+0(y"))€ Ko(C). That is,
(H2)s0(2z) divisible by k.
Since p = (Aij)rxr, Where A;; € C. (by (e6.32)),

Hy(p) = U*pU = p and [|(H2)(q) — qll = |Ha(x) — x| < 1/4, (6.33)
where we use H, : C — C for the unitization of H, : C — C and its induced map H, : Mr(C) — M,(C ) It follows that

(H2)x0(z) = z in Ko(C). (€6.34)
Hence z is divisible by k. This shows that Ky(C) is divisible. It follows that Ky(C)/kKo(C) = {0} for all k > 2.
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A similar argument shows that K;(C) is also divisible. O

Lemma 6.8. Let A be a separable C*-algebra and let ¢, : A — B, ® W be a sequence of approximately multiplicative
completely positive contractive linear maps. Then there exists a sequence of integers {m(n)} satisfying the following condition:
Put C = [[,(Mmmn)(Bxs ® W)) and Co = @D, Mimn)(Ba ® W). Then [m o ({ga})] = 0 in Hom,(K(A), K(C/Co)), where
7w : C — C/Cy is the quotient map and where we view ¢, maps A into Mmn)(Bn, ® W) (as ¢y(a) = diag(¢s(a), 0, ..., 0)).

Proof. Let Ko(A) = {x1, X2, ..., Xy, ...}. Put D, = (B, ® W)~ Suppose that, without loss of generality, that [¢,(;)] is well
defined, for all i < n. We may write x; = [p;] — [qi] € Ko(A), where p; € M,;(C) is a projection and q; = p; + b; and
bi € Mr(i(A)s.q.. By 6.4, for any i < n, there are integers r(i, n) and m(n) = r(i) + r(i, n), and a unitary u; , € Mpgy(Dn)
with 7y 5 (Uin) = Ty, where g 5 : My (Dn) = My is the quotient map, such that

1 o (@n(D:) @ Trgiony Win — (@n(Gi) © Triny)ll < 1727 (e6.35)
for all large n. Note that {u;j,} € ([ ], Mimtny(Bx ® W))™. It follows that, for any i > 1, there exists k(i) > i such that
[{pn(xiDnzip] =0 in Ko( [ Mmngny(Ba @ W)). (e6.36)
n>m(k)

Thus, for any x € Ko(A), [7'({¢n(x)})] = 0, where 7’ : [, My (Bx @ W) = [, Mintny (Bn ® W)/®nMm(ny (B, @ W) is the
quotient map.

Let K1(A) = {81, &2, ..., &, ...} and z; € My be a unitary so that [z] = g;, i=1,2,....Let G = {g1,82, ..., &m}. By
the first part of 6.5, there exist I(i) > 1, k(i) > i and m(n)” = d(i) + I(i, n) such that

[{{@n@ M nziyo] =0 in Ks( [T Mungay'(Ba ® W)), (€6.37)

nzky (i)

by viewing ¢, as a map from A into My (B, @ W). Let m(n) = max{m(n), m(n)"}, n = 1,2, ....Put C = [[2; Mun)(Bx ®
W). Then (7 o {gn}),j = 0 (j = 0, 1) as we view {¢,} as a map from A to C, where & : C — C/C is the quotient map.
Fix an integer k > 2 and a finite subset F' C Ky(A, Z/kZ), we may assume that the image of F’ is in G; = {g1, &, ..., &}
Then, by the following commutative diagram

Ko(A) —— Ko(A, Z/kZ) —— K;4(A) (e6.38)
[{Wn)nzkl(i)ll l{‘ﬂn]nzkl(i)li \Ll(@n}nzkl(i)l
C

Ko(C") —— Ko(C', Z/KZ) — Kq(C")),

where ' = ]_[nzkl(i) M) (Bn ® W), since [{@n}n=k,i)]lc;= 0, [{@n}tn=k ]l C Ko(C")/kKo(C"). However, by 6.7, Ko(C')/ kKo
(C") = 0. It follows that [z ({¢n})]|/= 0. It follows that

(e lkgazmzy= 0, k=2,3,.... (e6.39)
Exactly the same argument shows that

[r{eakyazzy=0, k=2,3,.... (e6.40)

This implies that
[ o ({gn})] = 0 in Hom,(K(A), K(C/Co)), (e6.41)
where Gy = @;’il Mm(n)(Bn ®W). O

We would like to recall Definition 2.17 for definition of T-#-fullness (see also 5.5 of [15]).

Theorem 6.9. Let A be a non-unital separable amenable C*-algebra which satisfies the UCT and let T : A, \ {0} — Nx R, \ {0}
be a map. For any ¢ > 0 and any finite subset ¥ C A, there exist § > 0, a finite subset G C A, a finite subset
H C Ay \ {0} satisfying the following condition: For any two G-§-multiplicative contractive completely positive linear maps
¢, ¥ : A — B® W, where B is any o -unital C*-algebra, and any G-§-multiplicative contractive completely positive linear
map o : A — M;(B® W) (for any integer | > 1) which is also T-H-full, there exist integers Ny, N, > 1 and a unitary
U € Miynyi+n,(B® W)™ such that

IAdU o ((¢ @ Sy, )(a) ® On,) — (( @ Sy, )Na) @ On,)ll < & forall a e F, (e6.42)
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where
K
Sk(f) = diag(o(a), o(a), ..., o(a)) foral ac A
Ny
———
for integer K > 1 and where Oy, = diag(0, 0, ..., 0).

Proof. This follows from the proof of 3.14 of [15]. Suppose that the conclusion of the theorem is false, then there exist
&0 > 0 and a finite subset 7 C A such that there are a sequence of positive numbers (§,) with §, \( 0, an increasing
sequence (G,) of finite subsets of A such that (], G is dense in A, an increasing sequence (#,) of finite subsets ofA}r \ {0}
such that, if a € H, and fy,5(a) # O, then fi/2(a) € Hny1, and Un H, is dense in A1, and has dense intersection with the
unital ball of each closed two-sided ideal of A, two sequences of G,-8,-multiplicative completely positive contractive maps
¢n, Y 1 A — B, a sequence of unital G,-8,-multiplicative completely positive contractive linear maps o, : A — M)(By)
which are F-H,-full and satisfy, foreachn=1,2, ...,

inf{sup ||v;(¢n(a) ® Sk, m)(a@) & Oky(n))vn — (Yn(a@) ® Sy (my(@) @ Orymy)ll : @ € F} > o, (e6.43)
where the infimum is taken among all ki(n), ky(n) — oo, and all unitaries v, € M, m)(n)+1+kyn)(Bn), and Sy : A —
My, myim)(Bn) is as above.

Let {m(n)} be as in 6.8. Set Myn(mym(Bn) = B, @neqB, = Co, [17;B, = C, and C/C, = Q(C), and denote by
7w : C — Q(C) the quotient map. Consider the maps @, ¥,S : A — C defined by ®(a) = (¢n(a))n>1, ¥(a) = (¥n(a))n>1,
and S(a) = (on(a))n>1 for all a € A, where

m(n)

on(a) = diag(on(a), on(a), ..., op(a)) for all a € A. (e6.44)

Note that 7 o @, 7 o ¥ and 7 o S are homomorphisms. Consider also the truncations &™), (™ sm : A — T
defined by ®™(a) = (¢n(@))nzm, ¥ ™ (@) = (Yn(@)nzm, and S™(a) = (Gn(@)nzm-
It follows from 6.8 that
[ o ®] = [ o W] in Hom(K(A), K(C/Co)). (e6.45)
We will show that oy, is T-H,-full in Myy(nyn)(Bn ® W). Let T(a) = (N(a), M(a)) e N x R\ {0} for all a € A; \ {0}. Fixed

any nonzero element 0 < a < 1in H,. Let b € Myumym)(Bn ® W)+ with ||b|| < 1, and &1 > 0. Since B, is o-unital, there
exists 0 < e < 1in B, ® W such that

/
n=m Bn

b — b"*(Inuymy ® €)b'/?|| < &1/2. (e6.46)
Choose ¢1/2 > n > 0 such that

Ib = b"*(Tignyy ® (e — 1) )b'?|| < &1. (e6.47)
Since o, is T-H,-full, by also applying 3.1 of [15], there are X1, X, . .., Xn(@a) € Myn)(B.®@W) with ||x;|| < M(a), 1 <i < N(a)

such that (e — n)4 ® 1yn) = Zf’:(‘;) x{oy(a)x;. Therefore (identifying o, (a) with 1) ® oy(a))

(a)
1Y 5" (M) ® %) Gn(@) Ay ® Xi)b'/> — b < £1.
i=1

This shows that &, is T-H,-full in Mymym)((B ® W)). As in the proof of 3.14 of [15], this implies 7 o {5,,} is full in C/Cy.
Then, by the proof 3.14 of [15], there exists an integer K > 1 and there exists a unitary v € Mgm)in)+m(n)in)(C/Co)
such that
lv*diag(mr o ®(a), Xy(a))v — diag(w o @y(a), Xy(a))|| < /4 for all a € F,

where
K

Xu(a) = diag( o ap(a), w o 6y(a), ..., w o ox(a)).

Lifting this to C, one obtains, for all sufficiently large n > 1, a unitary u, € Mimm)i(n)+m(nyin)((Bn ® W)™) such that
llu;diag(¢n(a) @ Omemyin)—1, n(a))un — diag(y¥n(a) ® Ommnyn—1. on(a))|l < €0/2 forall a € F.

By replacing u, by another unitary wy, if necessary, we have, for all sufficiently large n > 1,
luydiag(en(a), Gn(a) ® Ommyin)—1)un — diag(yrn(a), 6n(a) ® Ommym—1)Il < €0/2, (e6.48)

forall a € F.
This contradicts (e6.43). Lemma follows. O
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7. Models and range of invariant

Lemma 7.1. Let A be an AF algebra and ¢1, ¢, : A — Q be two unital homomorphisms with (¢1)«0 = (¢2)+0- Let n be a
positive integer. Define B; (i = 1, 2) to be the C*-subalgebraof C([0, 1], Q ® M,.1) @ A given by

n

——
f(0) = gi(a) ® diag(1, ..., 1,0
f(1) = ¢i(a) ® diag(1, ..., 1,1

—_———

n+1

)

Bi={(f,a) e C([0,1],Q ® My11) PA: )

} (e7.1)

fori=1,2. Then By = B,.

Proof. Since both A and Q are AF algebras and (¢1).0 = (¢2).0, there is a unitary path {u(t)}o<r<1 such that ¢,(a) =
lim;_ 1 u(t)p1(a)u(t)* (see [34]). Define the isomorphism i : By — B, by sending (f, a) € B; to (g, a) € B,, where g is
given by

(u(l2t — 1)) ® Tnp1)f ()12t — 1)) ® 1p41)" if t<(0,1),

g(t) = { pa(a) ® diag(1, ...
@ (a) ® diag(1, ...,
——

n

,1,0) if t=0,
1,1) if t=1.

9

It is straight forward to verify that g is continuous, that (g, a) € B,, and that i defines a desired isomorphism. O

Definition 7.2. Let Gy and G; be two countable abelian groups. Let A be a unital AH-algebra with TR(A) = 0, unique
tracial state, K1(A) = G; and Ko(A) = Q @ Gp with ker ps = Go and [14] = (1, 0).

There is a unital homomorphism s : A — Q such that s,o(r,g) = r for (r,g) € Q @ Gy. Fix a unital embedding
j 1 Q — A with j,o(r) = (r,0) for r € Q. (Note that both j o s and s o j induce the identity maps on T(A) and T(Q)
respectively. Furthermore the homomorphism j and s identify the spaces T(A) and T(Q))

Fix an integer a; > 1. Let @ = alall' For each r € Q4 \ {0}, let e, € Q be a projection with tr(e;) = r. Let
0, :=(1®e)Q®Q)1Qe,). Defineq, : Q — Q, by a > a®e, for a € Q. We will also use g, to denote a homomorphism
from B to B® e;Qe; (or to B® Q) defined by sendingb € Btob® e, € B® e,Qe; C B® Q.

We fix an isomorphism Q ® Q — Q which will be denoted by (2. Moreover the composition of the maps which first
maps a to a ® 1q and then to Q via (2 is approximately inner. In fact every unital endomorphism on Q is approximately
inner. If we identify Q with Q ® 1 in Q ® Q then (2 is an approximately inner endomorphism.

Foreach 1 > r > r’ > 0, we assume that e, > e,». Fix 1 > r > 0, define LTQ :Qr — Q, = e,Qe; by L? = Adv, oLQl@,
where v¥(1%(1 ® e:))v, = e.

Let

Rla,r)={(f,a) € C([0,11,Q ®Q)®Q : f(0)=a®e, and f(1)=a®e}.
(Recall that R(«, 1) has been defined in 3.7.)
Let
AW, a)={(f.a) € C([0,1,Q ® Q)@ A : f(0) = gy o s(a) and f(1) = s(a) ® 1¢}.

We also note that (f, a) is full in A(W, «) if and only if a # 0 and f(t) # 0 for all t € (0, 1). _ _
Let M, denote the set of nonnegative regular measures on (0, 1). As in 3.4, trace spaces T(A(W, o)) and T(R(e, 1)) are
isomorphic, and each t € T(R(«, 1)) = T(A(W, «)) corresponds to (i, s) € M, (0, 1) x R,. Furthermore we have

1
el = ||u||+s=f du + s.
0

Note that in the weak topology of T(A(W, a)) (or T(R(oz, 1))), under the above identification, one has that
lin(q)((St, 0)=(0,a) e M4(0,1) x Ry and  lim(8;, 0) = (0,1) € M,(0, 1) x R,
t—

t—1

where §; is the unit measure of the point mass at t.
The affine space Aff(T(A(W, «))) and Aff(T(R(«, 1))) can be identified with

{(f,x) e C([0, 1, R) ® R : f(0) = - x and f(1) = x}, (e7.2)

a subspace of C([0, 1], R) ® R.
Let

AW, a,r)={(f,a) e C([0,1],Q ® Q) ®A: f(0) = qry oS(a) and f(1) = g, o s(a)}.
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Define garq : AW, a) = R(e, 1) by
eara((f, a)) = (f,s(a)) forall (f,a) e AW, a).
Define sj : C([0, 11,Q ® Q) — C([0, 11,Q ® Q) by
SIF)(E) = (s 0) @ idg J(F(L)).
Define ¢rao : R(et, 1) > AW, a, 1) by
Praa((f. @) = (si(f).j(a)) forall (f,a) e R(e, 1).

Note that
SiF)0) = ((s0j) ®idg)a®e,) = soj(a)®e, and (e7.3)
SF)X1) = ((soj)®idg)a® 1) =s0j@)® 1. (e7.4)
Also

go 0 Soj(a) =soja)® e,.

In particular, ¢ 4, does map R(«, 1) into A(W, o, 1). Moreover ¢ 4 is injective and map the strictly positive element
a, to a strictly positive element (with the same form-see 3.7).

With the identification of both Aff(T(A(W, «))) and Aff(T(R(«, 1))) with the same subspace of C([0, 1], R) @ R, the
homomorphism ¢4 g+ and ¢ra, induce the identity map on that subspace at the level of Aff(T(—)) maps. They also
induce the identity maps at level of trace spaces, when we identify the corresponding trace spaces. In particular, (pjg’m :
T(R(a, 1)) — TAW,a)) (or ¢} ,, @ TAW,a)) > T(R(e, 1)), respectively) takes the subset T(R(a, 1)) to the subset
T(A(W, a)) (or takes T(A(W, a)) to T(R(e, 1)), respectively)

Fix o, r € Q4 \ {0}. There are unitaries u, ,, Uy, € Q- such that

u;r(ea ® e )y,r = ([9)_](91'0() and UT,r(l ® e uyr = (trQ)_l(er) =1Qe.

(Note that u;, can be chosen to be 15.) There is a continuous path of unitaries {u(t) : t € [0, 1]} in Q; such that
u(0) = g, and u(1) = uy,.
Let v(t) = 1Q®u(t) € Q ® Q, for t € [0, 1]. Note if f(t) € Q ® Q, then

V() (f(t) ® e )u(t) € Q ® Q- forall t € (0, 1).
Let g, : R(ae, 1) — R(, r) be defined by
or((f, @) = (idg ® (¥) o Ad v o q,(f, a).
Note that, for t € (0, 1),

(idg ® 12) o Ad v(t) 0 q,(f)(t) = (idg ® 12) 0 Ad v(t)(f(t) ® e;) (e7.5)
= (idg ® t2)(t)*(f(t) @ e v(t) € Q ® Qr, (e7.6)
(idg ® (%) o Ad v(0) 0 q,(f)(0) = (idg ® () o Ad v(0)(a ® e, ® e;) (e7.7)
= (idg ® 12)(a ® (:2) "' (€ar)) (e7.8)
= a® ey, and (e7.9)
(idg ® (¥) o Ad v(1) 0 q,(f)(1) = (idg ® 12) o Adv(1)(a ® 1 ®e;) (e7.10)
= (idg ® 12)(a ® (1) '(er)) (e7.11)
=aQ®e. (€7.12)

Evidently, when we identify T‘(R(oz, r)) and T(R(a, 1)) with M,(0, 1) x R4, the map g3, is the identity map and takes the
subset T(R(«, 1)) to the subset T(R(«, 1)).
Define s?¥:Q®Q®Q - Q®Q ®Q by

PRy Rz)=x0zQy

for all x,y,z € Q. To make the notation clearer, we will often write the above x ® z ® y as (x ® z) ® y, later. Define a
homomorphism (2 : R(ee, 1) ® Q — R(«, 1) by

Qf ®b,a®b)= (1) ®idy) o s2¥(f ® b), 1%(a ® b))
for (f,a) € R(e, 1) and b € Q.
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Note, at t = 0,

(12 ®idg) o s?I(f @ b)(0) = (12 ®idg) 0s*P(a@ e, @ b) (7.13)
= (12 ®idg)(a®b)®e,) (e7.14)
=1 a®b)®ey; (e7.15)

and, at t =1,

(12 ®idg) o s?I(f @ b)(1) = (X ®idg) 0s*P(a®1®b) (e7.16)
=(?®idy)(a®@b)® 1) (e7.17)
=%a®b)e1. (e7.18)

Let m > 2 be an integer. Viewing My, as a unital C*-subalgebra of Q, Put Mm = Q|5 om,,- Define M Rla, 1) ® M, —
R(a, 1) by Mm = (Q|g 1)9m,,- Note also that (recall (e3.16))
L~Q(aa ® 1g) =a, and t%(aa ® 1m,) = Uy (e7.19)
We need one more map. Let ¥4, : A(W, a) = C([0, 1], Q) & A be defined by

w/\w(fv a) = (g7 a)v
where g(t) = s(a) for all ¢ € [0, 1]. Define Y4, r : AW, o) = C([0, 1], Q ® Q;) & A by

¥, . ((f, @) = (q-(g), a)
with g(t) = s(a) (and g-(g) = ¢, o s(a)). Note that Y4, r(a,) = (1 ® e, 1) is the unit of C([0, 1], Q ® Q;) @ A. It follows
that ¥,,,.» maps strictly positive elements to strictly positive elements.
When we identify T(A(W, «)) with M_.(0, 1) x Ry, and T(C([0, 1], Q ® Q) & A) with M [0, 1] x Ry, the map ¥; .
is given by

1
Vi (wes) = (0.5 + / d),
0

which takes T(C([0, 1], Q ® Q;)) to T(A(W, )).
Warning: C([0, 1],Q ® Q;) ® A # A(W, «).
One more notation: define Py : (f,a) — f and P, : (f, a) = a.
Now let @ < B8 < 1. Let us choose x such that 8(1/2 + x) = («/2 + x). So

W)
1-8
Let
_ 1, 2w (-
Y—l/2+x—2~|— G-p) —20-p)

Let ry = (1/2)(1/y) = E}:ﬁ and r, = x(1/y) = ((’?:Z)) Then
ar1+1r,=1/y)1/2+x)=8 and 11+, =(1/y)(1/2 +x) = 1.
Define @y, o.p : AW, @) = AW, B) by
Py(D4,.4.6((f,a))) = a and
Pr(®p,.0.p((f, 0))) = diag(Ps o gr.r, © @ara((f, Q). Pr 0 Ya, r,((f, ).

One computes that, for t € (0, 1),

Pr(¢rr, © @ara((f, )))t) = (idg ® 1) o Ad (1) o gy, (F)(1) (7.20)
= (ido ® ¢ J(w(t)'f(t) ® er, Ju(t) (e7.21)
€Q®Q, CQ®Q and (e7.22)
Pr(Ya,.n((f, a)Xt) = gr,(s(a)) =s(a) @ e, €Q®Q. (e7.23)
Att =0,
Pr(¢r.r, © para((f, )0)) = (idg ® 1}) 0 Ad v(0) 0 gy, (f)(0) (€7.24)
= (idq ® 1) o Ad v(0)(s(a) ® e, @ er,) (7.25)
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= (ide ® 2 )@ ® (1) (ewr,) (e7.26)
= 5(a) ® eqr,- (e7.27)
Hence
Pr(®a,,0.p((f, 0)))0) = diag(s(a) ® eqr,, S(a) ® er,) (e7.28)
= 5(a) ® egr 41, = 5(a) ® eg. (e7.29)
Att =1,

Pr(@rR.r, © @ara((f, @))(1)) = (idg ® (}) o Adv(1) 0 g, (f)(1) (e7.30)
= (idg ® Lr JoAdv(1)(s(a)® 1 ®ey,) (e7.31)
= (idq ® (2 )(s(a) ® (12) " '(er,)) (e7.32)
=s(a)@ey,. (e7.33)

Hence

Pr(@a,, 0,6((f, a)))(1) = diag(s(a) ® er,, s(a) Q er,) (e7.34)

= s(a) @ erqr, =s(a)® 1. (e7.35)

Therefore, indeed, @4, 44 defines a homomorphism from A(W, ) to A(W, B). It is injective. We also check that
D, a.p(0q) is a strictly positive element of A(W, 8) (recall (93.16)).
Furthermore @, 5 TAW, B))(= M4 (0, 1) x Ry) — TAW, a))(E M,(0, 1) x Ry) is given by

1
Dy, o pli,s) = (nu, rz(/ du)+s),
0

which takes T(A(W, B)) to T(A(W, a)).

Fix any a € A, with ||a|| = 1. Define f(t) = (1 — t)(s(a) ® e,) + t(s(a) & 1). Then (f, a) € A(«, 1) is a full positive
element. Note that @,, . g((f, a)) is also a full positive element.

Let m, m’ be two positive integers such that m|m’. Let % =a+ 1. Let F, = Myy/(C), F; = Mjy(C), and ¢q, ¢1 : F; —> F,
be defined by

@o(x) = diag(x, ...,x,0), and ¢o(x) = diag(x,...,x).
S—— ——

a a+1
Denote that

A(m, m') = A(F1, F2, g0, ¢1) = {(f, %) € C([0, 1], Min(C) ® My11(C)) @ Min(C)
f(0) =x®diag(1,...,1,0) f(1) =x® diag(1, ..., 1)}.
——— ———
a a+1
Then A(m, m') € ¢§ with As(A(m, m')) = 4.

In [25], the author constructed a simple inductive limit W = limW = lim(A(m;, (a; + 1)m;), w;;) such that
Ko(W) = 0 = K;(W) and T(W) = {pt}, In the construction, one has a; + 1 = 2(a;_1 + 1) and m; = a;m;_;. Consequently
limHoo a; = oo. From the construction in [25], the map w;; takes strictly positive elements to strictly positive elements,
and o}; maps tracial state space T(W/") to tracial state space T(W;"). Furthermore, A; € ¢y with As(A;) = 031 — 1as
i— oo

Note that W ® Q = Ww. Identify Q ® M;; and Q ® M, with Q, we can identify A(m, (a+1)m)®Q with R(«, 1) for
a = a/(a+ 1). Moreover, W = lim(W; = R(an, 1), l(,vyn), where 1(,‘,‘” : R(ap, 1) = R(oepyq, 1) are injective. Again, we have
that (1, ,)* takes T(R(an1, 1)) to T(R(ern, 1)).

Let C be a unital AF-algebra so that T(C) = T. We write C = limp_, oo(Fy, 1r,n), where dim(F,) < oo and 1r , : F; = Futq
are unital injective homomorphisms.

Let W be as before. Write

Wr=weg®~C.

Then T(Wr) = T and Wr has continuous scale.
Suppose that

k(n)
Fo = P My,
i=0
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By identifying R(a,, 1) with R(ory, 1) ® My, and R(a;, 1) ® Q, we may write that
Wr = lim (Wy, 1),
n—oo
where W, is a direct sum of k(n) summand of R(ay, 1) : Wy, = @I R(ars, 1), where o < @ < - -+ < 1. Again, we have

that 1}, takes T(Wy41) to T(W,).
We write

Wn = RO,n @ Dnv

where Ro, = R(a, 1) and

k(n)
Dy = EP Rlern, 1),
i=1
In the case that W, has only one summand, we understand that W, = Ry, and D, = {0}. We also use
Pon: Wy — Ropn and Py, : W, — Dy
for the projection map, i.e., Pon(a ® b) =a and Py ,(a @ b) =b forall a € Ry, and b € Dy,

Consider
B, =W, ® M(n!)Z(A(W’ Ofn))a n=1,2,
Let fn = sty 1= 1,20

Let us define a homomorphism ¥, 41 : B, — B4 as follows.
On M2 (AW, o)) define ¥y ny1,4a @ M2 (AW, an)) = M(pq1y2 (AW, ati1)) by
((n+1)12 —(n1)?
. f-/—
Ynni1.44(@) = diag(Pa,, ap.my1 (@), 0,0,...,0) forall a € My, 2(AW, an))
and define ¥y ni1.aw @ Myp(AW, an)) = Ronp1 ® ey, Qer, by

—

’ M, .o .
lpn,n—}—l.A,W ={(qr ° lW,n oL o (WA,R,D{,, ® ldM(ny

2)-

(Recall that Q Rle,1) ® Q — R(«, 1) is an isomorphism and M Rla,1) ® M, — R(a, 1) is defined by
Mm = Qg 1)emy-) It is injective.
On W, define ¥ nt1.w.w : Wan = Ronse1 ® (1 —e,)Q(1 —ep,) ® Dyy1 C Wnyq by, fora e Ry, b € Dy,
Yinr1ww((a® b)) = Wrgn“,w,w((a @ b)) ® lIjnl,rpr1,w,w((a ® b)) =
41—, ((Po,nt1 © tn,n1(@)) @ (Po,nt1 © tn,n1(D)))

)

®P1 141 0 lnnt1(a) @ Py g1 © nnga(b). (e7.36)
Suppose that a, b > 0. Then, for any t € T(W;;11),
t(Wnnr1,w,w(a @ b)) = (1 — 1)t (tn,nt1(a & b)). (e7.37)

Define ¥, ny1woa : Ron — M((n+1)y)2(A(W, any1)) by

((n+1)2—(n1)?

Wnn1,w,a(@) = diag(0, (@R Ay © Ty n)@), - s (PR A © Ty n)@)):
Now if (a ® b) ® ¢ € W, ® AW, ay) (with a € M, 2(Ron), b € Dy, and ¢ € A(W, ap), define
Ppnp(la®b)dc)=ddc,
where
d=0 (Pnns1aw(©) @ ww@@b)ew! . w(adb) e Wy,
(nns1.4w(€) € Ront1 ® (er,Qer,). ¥ 1w w(@®b) € Ryt ® (e1-,Qe1—p,), and ¥ .\ (a @ b)eDyyq) and
¢’ = diag(¥nnr1.44(C), Ynns1.w.a(@)) € Mgy 1y (AW, ani1)).

Since all partial maps of @, ;1 take the strictly positive elements to the strictly positive elements in corresponding
corners, ®p 541 itself takes strictly positive elements to strictly positive elements. This also implies that @ ,(T(Bnt1)) C
T(By). Note also that @, 1 maps full elements to full elements and it is injective.

Define

Br = lim (By, @npi1)
n—oo
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Remark 7.3. In the construction above, C* algebras A and Q are Z-stable, one can also choose the homomorphism
s:A—Qandj:Q —> Atobeoftheforms' Ridz :AR Z>Q® Zandj ®idz : Q ® Z — A® Z respectively, when
one identifies A = A® Z and Q = Q ® Z. Then R(«, 1), AW, a;), W,, B, are all Z-stable. One can also make the map
DPpnt1: By ® 2 — By ® Z to be of form of @’ ® idz. In such a way, we will have that By is Z-stable.

By section 4 of [13], one can write A = lim,_,(An, @n), Where each A, = My;)(C(X,)), where each X, is a finite CW
complex with dimension no more than 3. Let s : A — Q be at the beginning of 7.2. Then, by the proof of 4.7 (and using
2.29) of [13], there exists a sequence of My, C Q and homomorphisms s, : A, — My such that, for each fixed m,

lim s o ¢ oo(a) = lim s, oy p(a) for all a € Ap,. (e7.38)
n—oo n—oo

This also follows from the following. Note s,;(G;) = 0, i = 0, 1. Since K;(Q) = {0} and Ko(Q) = Q which is divisible, by
Theorem 3.9 of [23], for each fixed m, there exists a sequence of homomorphisms ¥, : A, — Q such that y(A,) has
finite dimension and limy_, o ¥k(a) = S o pm.co(a) for all a € Ap,. Since finite dimensional C*-algebras are semiprojective,
one also obtains (e7.38). Then for any finite set 7 C A(W, «) and any ¢ > 0, there is a C*-algebra of the form

Dy ={ (f,a) € C([0, 1], Mn) ® Min)) ® A = f(0) = sy(a) ® diag(1, ..., 1,0),
——
al(n)
f(1) = sy(a) ® diag(1, ..., 1) }
——
)

such that 7 C, D), where «l(n) is an integer. Put D, = D;, & W,. Then that D, is a sub-homogeneous C*-algebras with
3-dimensional spectrum. Moreover, D, € D, defined in 4.8 of [20].

Hence Br has the decomposition rank at most three. (In fact, one can prove that Br is an inductive limit sub-
homogeneous C*-algebras with spectrum having dimension no more than 3, but we do not need this fact.)

Lemma 7.4. Suppose that a € (W,),. Then, for any integer k > 1 and any t € T(W,,1),

k—1
EWPnnskew,w(@) = (1= Y 1ot nir(@)). (e7.39)
j=0

Proof. Note 7 o @142 is in T(Wy4q) for all 7 € T(W,42). Thus this lemma follows from (e7.37) and induction
immediately. O

Lemma 7.5. Let n > 1 be an integer. There is a strictly positive element e, € W, with |ley|l = 1 such that 1, (e;) is a strictly
positive element. Moreover, for any a € (W, )4 \ {0}, there exist ng > n, X1, Xa, ..., Xy € Wy, such that

m
foln.no(a)xi = ln.no(eé))-
i=1

Moreover,

t(tnm(ep)) > 7/8 forall t € T(Wy) and for all m > no,

and t(in,00(€p)) > 15/16 for all T € T(Wr).

Proof. To simplify the notation, without loss of generality, we may let n = 1. Since Wr is simple, pick a strictly positive
element in ey € (W;), with |leg]| = 1 so that e’ = 17 (ey) is a strictly positive in Wy. By replacing e;, by g(e;) for some
g € Go((0, 1])+ we may assume that

7(eg) > 15/16 for all T € T(Wr).

There is an integer ny > 1 such that

t(11,n(ep)) = 7/8 forall n > ngy and t € T(W,). (e7.40)
Note that this implies that
t(11,n(fy(€p))) = 3/4 forall n > ng and t € T(W,) (e7.41)
whenever 1/16 > n > 0.
Fixed a € (W) \ {0}. Since Wr is simple, there exist ng > ny > 1 and X}, x), ..., x;n, € W, such that
-
1> () 1100 (@K, — 11.00(€Q)Il < 1/128. (e7.42)
i=1

33



G. Gong and H. Lin Journal of Geometry and Physics 158 (2020) 103865

It follows from Lemma 2.2 of [51] that there are y},y5, ..., ¥y, € Wy, such that

/

m
D 0 1100(@); = 110 (o (€5)) (e7.43)
i=1
for some 1/16 > n > 0. By (€7.41), 11 5,(f;(e)) is full in W,,. Therefore there are x1, xo, ..., X, € Wy, such that
m
Zx;‘lmo(a)x,- =1n(ep). O (e7.44)
i=1

Proposition 7.6. Br is a simple C*-algebra.

Proof. It suffices to show that every element in (Br), \ {0} is full in By. It suffices to show that every non-zero positive
element in U2 @y oo(By) is full. Take b € U2 @, o(B,) with b > 0 and ||b|| = 1. To simplify notation , without loss of
generality, we may assume that there is by € By such that @1 »(bo) = b.

Write b() = boo (&) boy], where boo € (W] )+ and bOJ € (A(W, oq ))+

First suppose that bgg 7# O.

By applying 7.5, one obtains an integer ng > 1, X1, X2, ..., Xy € Wy, such that
m
> X (1mg(boo) i = 11,1y (€5)- (e7.45)
i=1
Let M = max{||x;|| : 1 < i < m}. The above implies that
7
£(11,n4(boo)) > P~y forall t € T(Wy,). (e7.46)

Let Pw.m : By — Wy and Pa @ By — Mmy(A(W, an)) be the projections (m > 1). Then, by 7.4,

t(Pw,no(P1,n9(b00))) = t(¥1,ng,w,w(boo)) (e7.47)
>(1- 'g T'145)E(11,n0(boo)) (€7.48)

=0
> (1— "OZ*] rHj)(SnZW) for all t € T(Wy,). (e7.49)

=0

It follows that Py n,(P1,n(boo)) is full in Wy,. Put by, = Pw 5o(P1,ny(boo)). By applying 7.4 again, one concludes that
Py ng+1 © @ny.ng+1(bgg) is full in Wy 4.

Since by, is full in Wy, Pong(by) is full in Rony = R(otny, 1). Since graa,,, © z/Wm maps full elements of Rano,l to full
elements in A(W, ang11), Pang+1 © Prg.ng+1(bgg) is full in My 13/(A(W, ang41)). It follows that @y yo11(bg,) is full in By 4.

Note that what has been proved: for any b’ € (W,), \ {0}, there is my > 1 such that @, ,,(b') is full in By,. Therefore
@, m(b') is full in By, for all m > my.

In particular, this shows that @, -(bgo) is full. Therefore b > &, «(bgo) is full.

Now consider the case that by = 0. Then by ¢ # 0. Since ¥, 4w is injective, Pw 1(®1.2(b1,0)) # 0. Applying what has
been proved, @, o(Pw,1(®1,2(b1,0))) is full in Br. But

D1,00(b1,0) = P2 0o(Pw,1(P1,2(b1,0)))-

This shows that, in all cases, b is full in Br. Therefore By is simple. O

Proposition 7.7. By € Dy and T(Br) = T. In particular, By has continuous scale. Moreover Br is locally approximated by
sub-homogeneous C*-algebras with spectrum having dimension no more than 3, has finite nuclear dimension, Z-stable and
has stable rank one.

Proof. Let us first show that T(Br) = T. Recall T(A) is the set of all lower semi-continuous traces on A and T(A)

is the set of tracial states on A. In the rest of the proof, for all C* algebras A = B; and A = W,, we have that
0<a, <infld.(a): 7 € (A)w}, and that all traces t € T(A) are bounded trace. _ _

Note the homomorphisms @, 11 : By — Buyi1 and 1041 © Wy — W;4q induce maps q§,’{,n+1 : T(Bpy1) = T(Bn)
and 1 ;¢ T(W,,H) — T(Wn). From the construction above, (see also [25]), since @, 541 and 1, ,41 map strictly positive
elements to strictly positive elements, @, , and 17 ., take tracial states to tracial states. That is, @, | : T(Bn41) C T(Bp)
and %, : T(Way1) C T(W,). Consequently for any t € T(Buy1) (or T € T(Wpi1)), we have (|7, (0)] = [z (or
5 na (DM =Nzl
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Hence we have the following inverse limit systems of compact convex spaces:

o* o
T(Bl)w " T(Bz)w <> T(Bg)w ...... lim T(Bn)w ,
w '7,2 U l;.}l w . w
T(W;) <—— T(W>) T(W3) =——-----. <~—— limT(W,)

Here we write that

M T(B,)" = {(v1. T2 ooy Tus ) € T (Ba) 2 B () = T,

which is a subspace of the product space HnT(Bn)w with product topology. On the other hand, since all the map &}, are
affine map, lim . T(Bn)w has a natural affine structure defined by

t(t1, T2 ey Ty - )+ (=T, Ty oo s Ty ) =T+ (1=t 2+ (1 =), ..., T + (1 = B)7;),

for any (1, 2, .., Tus -+ ), (T)o Ty oo, Thr . ..) € lim_ T(B,)" and t € (0, 1).

Note that each element in lifm_ T(B,,)w is given by (71, 72, ... Tn, ..., ) With @7 (tin) = 7y, for m > n. This element
decides a unique element T € T(B) defined by t|p,= 7,. However, since ||z;|| > o, and lim, a, = 1, T € T(Br). On the
other hand, each element t € T(Br) defines a sequence {t, = t|g, € T(By)}n. Since U,B, is dense in B, ||t = limp— o || 7.
From (@, (z")l = ||I7’| for any t" € T(Bn1), we know that ||z,|| = ||za+1|. Consequently ||z,|| = ||zl = 1 for all n.

Hence t, € T(B,;) C T(Bn)w. Consequently, T(Br) = lim. T(Bn)w. Similarly, T(Wr) = lim_ T(Wn)w. (Note that the
map T(Br) — T(Bn)"’ from the reverse limit is the same as @ ., : T(Br) — T(B,,)w, the restrict map. That is, T € T(Br)
corresponds to the sequence

(P (1), @3 (7)o s @y (T ooy ) = (TBy TlBys v v v s Ty - - 2)-

In other words, the homeomorphism between T(Br) and lim . T(Bn)w also preserve the convex structure.)
Similarly, we also have the following inverse limit systems of the topological cones:

I N )
T(By) =—— T(B) T(B3) <— -+~ <~—T(By) ,
FW)) <22 F(Wa) <22 F(Ws) = -+ fwy) .

gain, the reverse limit is taking in the category of topological space in weak* topology, but it automatically preserves
A th limit is tak the cat f topol 1 k* topol but it automaticall

cone structure) ~
Let 7ty : By = Wy @ Mp2(A(W, ay)) — W, be the projection and let @y 11 = @y nt1lw,, then we have the following
(not commutative) diagram:

D12 Py 3 P34
B4 ~— B, - B3 -
T 2 73
11,2 12,3 134
Wi W, W3

Even though the diagram is not commutative, from the construction, it induces an approximate commuting diagram

T(B;) <—2— T(B,) <——— T(B3) =—— - ----- T(Br)
E2F%
FWy) <22 F(Wa) <22 F(Ws) ——— -+ T(wy)

That is
(@} 1 (T 1 (EN)(E) = (01 (D))(@)] < k(WraliglliTll forall g € Wy, T € T(Wpy); and

S+ k) If 1l for all f € By, € T(Barr).

(7 ( @ 1 (EN)) = (Prs 1 (D)) < (m

(Note that k(n)r, = 5t+.)
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Note that from the above, for t,,1 € T(WHH) if Ty =1} .. 1(Tat1), then

Iea (T DIl = (1= )l (€7.50)

So, we have the following fact:
if (11,72, ..., Ty -+, ) € IT,T(Wpyq) satisfies 7, = 1ﬁ,n+](rn+1), then

lim |[zall = lim [l (za)ll-
n—oo n—o0

The approximate intertwining induces an affine homeomorphisms 17 : T(WT) — T(BT) as follows.
For each t € T(Wr), for fixed n, we define a sequence of {0y m}m=n C T(B,) b

Onm = (P 070 01 o0 )(T) € T(By).

Recall that each element in T(Bn) is a bounded trace, whence it is a positive linear functional of B,. From the above
inequalities for approximately commuting diagram, one concludes that {0, }m-n is @ Cauchy sequence (in norm) in the
dual space of B, ~

For each n, let t, = limp_, on,m. Evidently, from the inductive system above, @ 11(Tnt1) = T Hence the sequence

(t1, T2, -+ -, Tn, . . .) determines an element t’ € T(BT) Let [1(t) = 7’. From (e7.50) and the above mentioned fact, we
know that H preserves the norm and /7 maps T(Wr) to T(Br) Moreover, it is clear that 7 is also an affine map on T(WT)

We can define IT’ : T(BT) — T(WT) in exactly same way by replacing @, by 1; ,, replacing 7, by q§m met and 1
by &5
Wrtns ngow show that both I7 and [T’ are continuous on T(Wr) and T(Br), respectively. Let {s;} C T(Wr) be a net
which converges to s € T(Wr) point-wisely on Wr. Write s, = (Sx.1, 51,25 -+ »Sin, --.) and s = (s1,S2, ..., Sp, .. .). Since
Sin = ln nt1(Snt1) and s,, = 1,, ng1(Snt1), for each n, s, , converges to s, on W,. Write I1(s;) = (Tw1, T2, - -+ » Tans - - )
and 11(s) = (11, T2, - . ., ..). Then, by the definition,
Tn = 1M 0y nm = mlijgo(@;m oM o1k o)(s1) (e7.51)
= lim (‘I’:m o7y )(s.m) and (€7.52)
T = lim oy = lim (P momoth )(s) (€7.53)
m—oo — 00 ’ ’
= lim (2 orrm)(sm). (e7.54)
For b € B, and m > n,
(@:ym o nfg)(skqm)(b) = S m(Tm © Pn.m(b)) and (e7.55)
((D:,m o n;)(sm)(b) = Sm(Tm © Pp.m(b)). (e7.56)
Let ¢ > 0 and let F C B, be a finite subset. We may assume that F is in the unit ball of B,,.
There exists mg > 1 such that, for all m > my,
53.2(7Tm © @n.m(b)) — Ta.n(b)] < &/3 and (e7.57)
[$n(7Tm © Ppm(b)) — w(b)| < /3 (€7.58)
for all b in the unit ball of B,,.
Since s; , — s, on B, point-wisely, There exists 1o such that, for all A > A,
|5A,n(77m0 o an,mo(b)) - Sn(nmo o ¢n,m0(b))| <e/3 (€7.59)
for all b € F. It follows that, when A > Aq, for all b € F,
[To.n(b) — ()l < |Tan(D) — S3.n(7Tmy © Pr,my (D)) (e7.60)
+ [S3.n(7Tmg © ¢n,m0(b)) - Sn(”mo ° (pn,mg(b)” (e7.61)
+ [$n(7Tmy © Prmg(b)) — (b)l < &/3+¢e/3+¢e/3=¢e. (e7.62)

This verifies that I1(s;) converges to [1(s) on B, for each n. Since U,_{B, is dense in Br, it is easy to see that I1(s;)
converges to I1(s) point-wisely. It follows that IT is weak*-continuous on T(Wr). A similar argument verifies that 17’ is
weak*-continuous on T(Br). From the definition, one can also verify that IT and 1’ are inverse each other. Consequently,
they induce the homeomorphism between T(Wr) and T(Br). Hence T(Br) = T(Wr) =T.

From Remark 7.3, we know that By is locally approximated by sub-homogeneous C*-algebras with spectrum having
dimension no more than 3, has finite nuclear dimension and Z-stable. It follows from a theorem of Rerdam (see 3.5
of [15]) that By has strictly comparison for positive elements. Since T is compact, it follows from 5.3 of [15] that Br has
continuous scale.
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It remains to show that By € Dy. Since Br has continuous scale, to prove Br € Dy. let a € A, be a strictly positive
element with ||a|| = 1. Without loss of generality, we may assume that (f,2(a)) > 15/16 for all T € T(Br). We choose a
such that a = (ay, a,)) € By = AW, a1) @ W; such that

t(ay) > 3/4, t(fip2(ay)) > 3/4 forall t € T(W;). (e7.63)

Choose f, = 5/16. Let b € A, \ {0} and let 7 C Br be a finite set and ¢ > 0. Let § > 0. With out lose of generality, we
may assume F U {a, b} C B, for n large enough, and let A : B — B, be a completely positive contractive linear map such
that

|A(b) — b|| < min{e/2, 8} forall b e F. (e7.64)
We choose § so small that

Ifi2(A(@)) — Alfi2(a))ll < 1/16 and ||fi2(Aa)) — A(fi2(a))]l < 1/16. (e7.65)
Let Py : By — M, 2(A(W, @) and Py : B, — W, be the canonical projections. We choose n > 1 such that

1
——— < inf{z(b) : T € T(Br)}/2. e7.66
gy < M) T e TRy (7.66)
We will choose the algebra D € Cg tobe D = ¥, ny1.wa(Wy) @ Wpyq and the map ¢ : Bf — Brand ¢ : B — D be
defined by

¢ =Pni1,00°¥nnr1,440Pro0 A and
Y =Wnr1,w,a o Pw o A @ diag(W ny1,aw 0 Pao A, Wy np1ww o Py o A).
Put
Y =W npiwa o Pw @ diag(Wnns1.aw © Pa, Ynnti,w,w o Pw) (€7.67)

from B, to D. Since ¥, n11.w 4 is injective on Wy, D € Cg. Since &, « is injective, we will identify D with @, (D). With
this identification, we have

llx — diag(e(x), ¥(x))|| < ¢ forall x € F. (e7.68)
It follows from 7.4 that
Py (@1,n(f1/2(a))) > P1.a(aw) and (e7.69)
n—1
t(Pw(@1.a0(f1/2(a)))) = t(P1,a(f1/2(aw))) me (t1,n(f1/2(aw))) (€7.70)
j=0

for all t € T(W,). Since t o 17, is a tracial state on W; as proved above, by (e7.63),
t(Pw(®1,n(f1/2(a)))) = (1/2)(3/4) = 3/8 for all t € T(W,). (e7.71)

Since ¥, ,+1.w.a sends strictly positive elements of W, to those of ¥, 1 1.w.a(Wy), any t’ € T(¥; nr1.w.4(Wy)) gives a tracial
state of W, therefore

' (Wnns1.w A(Pw(P1a(fi/2(a))))) = 3/8 for all ©’ € T(Wyny1,.w.a(Wa)). (e7.72)
For any t € T(W,41), by applying (e7.63) again,

t(Wnne1,ww(Pw(f))) = (1 — Zrl+j)f(l1,n+1(f1/2(aw))) > (1/2)(3/8) = 3/8. (€7.73)
j=0
Combining (e7.72) and (e7.73), we have that
t(Y' (P1.n(f1/2(0)))) = t(¥' (Pw(P1.n(f1/2(a))))) = 3/8 forall t € T(D). (e7.74)

It follows that, for all t € T(D),

t(fi2(¥ () = t(P'(@1.a(f1/2(a)))) = (W' (Pw(P1a(f1/2(a))) — 1/16 = 5/16 = f,. (e7.75)
On the other hand, from the construction, for any ¢ € ¥ ni1,44(M2(AW, a)))+ with |ic]| < 1,

1
T(C) < m forall T e T(M((n+1)!)2(A(W, Oln+]))). (e7.76)

Therefore, for any integer m > 1,

t(p(@)™) <

1
mE1? for all t € T(Br). (e7.77)
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Consequently, by (e7.66),

1 .
d(p(a)) < TR inf{d.(b) : T € T(Br)} (e7.78)
Since we have proved that Br has strict comparison for positive elements, (e7.78) implies that
p(a) S b. (€7.79)

It follows from 3.9, (e7.68), (e7.79) and (e7.75) that Br € Dy. Since Br € Dy, it follows from 11.5 of [15] that By has stable
rank one. This completes the proof of this proposition. O

Proposition 7.8. Ko(Br) = ker pg, = Go and K;(Br) = G1.

Proof. Let] = C ((0, 1),Q0® Q) be the canonical ideal of A(W, «;,). Then the short exact sequence
0—>I1—->AW,ay,) >A—>0
induces six term exact sequence
Ko(I) —— Ko(A(W, an)) —— Ko(A)
3
Ki(A) =<— Ki(AW, o)) <— K4 (D).

Note that Ky(I) = {0} and K;(I) = Ko(Q) = Q. Moreover, Ko(A) = Q @ Gy and K;(A) = G;. The map 0 : Ko(A) — Kyi(I) =
Ko(Q ® Q) is given by 8 = (1 — ay)s« (defined by d(x) = (1 — ap)s.«o(x) € Q for all x € Ky(A)) as the difference of
two induced homomorphisms at the end points (recall that s,o(r,g) = r for all (r,g) € Q & Gy, see the beginning of
7.2). Then one checks (1 — ay)s4 is surjective as K;(I) = Q. From the six-term exact sequence above, one computes that
Ko(A(W, a,)) = ker 0 = kers,o = Gop = ker ps and K1(A(W, «,)) = K1(A) = G1. We also note that 9 gives an isomorphism
on Q. Recall B, = W, @ M, 2(A(W, o). Since K. (W) = {0}, one has

Ko(Bn) = ker pp, = ker M0 (AW ) = ker ps = Go, and (e7.80)
Ki(Bn) = Ki(Mp2(A(W, o)) = K1(A) = G1. (e7.81)

Hence @, 11,4 : Ki(Byn) = Ki(Bn+1) is completely decided by its partial map @’ : M2 (AW, o)) — My 1y2 (AW, atn11)).
Also this partial map sends (f,a) € My2(A(W,ay)) to (g, diag(a,0,...,0)) € My 1yp(AW, any1)), where g =
Pr(®a,, a1 ((f, @))) is as in Definition 7.2. Therefore @' maps M, 2(I) to Mi(,,1y2(I) and it induces a homomorphism
@" 1 Mpp(A) = My y1y2(A) which is given by a — diag(a, 0, ..., 0) for all @ € M,2(A). The latter map induces the
identity map id on K;(A), i = 0, 1. Thus we have the following commutative diagram:

0— Ko(A(W, ap)) Go®Q

id

0 —— Ko(A(W, o41)) —=Go ® Q

| o

G1 < Ki(A(W, apy1)) =——Q
id Y
*1 id
) -~ Ki(AW, ) 0 Q

This commutative diagram shows that @, is the identity map on Go and @, is the identity map on G;. Since K;(W) = {0},
this shows that (@, ,11)i : Ki(By) — Ki(By+1) (i = 0, 1) is the identity map for each n. It follows that Ko(Br) = Go and
Ki(Br)=Gy. O

Lemma 7.9. Let Gy be a torsion free abelian group and let A be the unital AF algebra with

(Ko(A), Ko(A)+, [14]) = (Q & Go, (Q & Go)y, (1, 0)),

where (Q @ Go)+ = {(r,g): 1 € Q4 \ {0}, g € Go} U{(0, 0)}. Let y : Ko(A) — Ko(Q) be given by sending (r,x) € Q & Gy to
r € Q = Ko(Q). Then one can write AF inductive limits A = lim,(Ay, ¢n,m) with injective ¢p m and Q = limu(Mi)(C), Yn,m)
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such that there are injective homomorphisms s, : A, — My (C) satisfying the following conditions:
(1) (Sn)« : Ko(An) = Ko(Myn)(C)) is surjective;
(2) Sp+1 © @nnt1 = Ynnt1 © Sp and the commutative diagram

A ' Z o A S A
S1 l 2 l S3 J/
V1,2 V23 V3.4
M) M) Myzy ——------ Q

induces s : A — Q satisfy s, = y.

Proof. By the classification theory of AF algebras due to Elliott, there is a one-sided intertwining

7 @ 78
F] 12 F2 23 F3 4. A
a]l O(zl Dt3l
V12 V33 V34
Min(1) M) Mpy@y ——= -+ Q,
which induces a homomorphism ¢« : A — Q with @, = 1y, where F, are finite dimensional C*-algebras, all

homomorphisms oy, (pr/m 41 and Wun 4 are unital and injective. We need to modify the diagram to make the condition (1)
holds.

We will define subsequence F, and for each n construct a matrix algebra Mjp), unital injective homomorphisms
Sn : F, = My, &n : Myn) = Miqk,y and Bn—1 : Mk, ) = My (if n > 1) to satisfy the following conditions:

(1): (Sn)« = Ko(Fx,) = Ko(Myny) is surjective;

(ii): & 08y = o, and B,_q o Qf, 1 =Sn O (plgnq,kn'

Let k; = 1. By identifying Ko(Mm,)) with Z, there is a positive integer j|m(k;) such that (ay, )«(Ko(Fy,)) = j - Z. Let

o, " Ko(Fi,) — Ko(Myny) = Z (which

is surjective). Note that for any finite dimensional C* algebra F and a matrix algebra M, a homomorphism 8 : F — M;
is injective if and only if B.(Ko(F)4+ \ {0}) C Ko(Mi)+ \ {0}. Hence the injectivity of «y, implies the injectivity of s;.
Let & : Myn — Mpu,) be any unital embedding. Then (&; o 1), = (o, )« There is a unitary u € M,y such that
Adu o &} o 51 = oy,. Define & = Adu o &] to finish the initial step n = 1 for the induction.

Suppose that we have already carried out the construction until step n. There is a k,1 such that

(Vg deps 1 1+ Ko(Mim))) C (otky 1 )x(Ko(Fk, 1)) € Ko(Mumk,1))-

Again, there is a positive integer j|m(k,1) such that

(k1 6 (Ko(Fry 1)) = J - Z C Z(= KoM,y 1))-

(1) = @ Choose a homomorphism s; : F, — Myq to satisfy that (s;), =

Let(n+ 1) = mkat1) A what we have done in the case for k, = kq, there are two injective unital homomorphisms
Snt1 ¢ Fiyy = Mgy and &nyy : Ming1y = Mingk,,,) such that &1 o Spp1 = oy, . Note that &, has to be injective as
Mj41) is simple. Since the map (1//,;1,,("“)* 0 Ko(Mm(ky)) — Ko(Mink,,)) factors through Ko(Myn11)) by (§nv1)+, ONE can
find a homomorphism B, : Muk,) = Min+1) such that (§,41) o (B;), = (‘plén,kn“ )« Since (&n41)« is injective, we know
that (B o i, )« = (Sn+1 0 %Q,,xm )«. Hence we can choose a unitary u € M1y such that Aduo 8 o ay, = Spt10 ‘pl/cn,km‘ In
particular, g} is injective. Choose B, = Adu o 8, we conclude that the inductive construction of Fy,, Myn), S : Fx, = Min),
& @ My = M,y and Bo_q @ Mpg, ) — My to satisfy (i) and (ii) for all n. (Warning: we do not require that
§nopPp1= wl:n_pkn')

Finally, let A, = Fi,, ¢nnt1 = (p,/%k
@n.nt+1 and Y, pyq are injective. Then

and Yy nq1 @ My = Myny1) be defined by v, i1 = Ba o &,. Therefore both

n+1

Sn+1 0 Pnny1 = ,Bn O g, = ,Bn o éﬂ oSy = 1p[fn,n+l O Sp.
Since m(k,)[l(n + 1), we have lim(Myn), ¥nm) = Q. O
Lemma 7.10. Let Gy be torsion free and A be the AF algebra as in 7.9 with Ko(A) = Q @ Gy. Let a be a positive integer

and o = a%l Let A(W, «) be defined in 7.2. Then A(W, «) is an inductive limit of a sequence of C*-algebras C, € Cy with
As(Cny) = o and with injective connecting maps.
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Proof. lets:A — Q be asin 7.9. By Lemma 7.1, A(W, «) is isomorphic to the C*-subalgebra of C([0, 1],Q ® My11) DA
defined by

—
f(0) = s(x) ® diag(1, ..., 1
f(1) =s(x) ® diag(1, ..., 1,

———

Let A = limy(An, @n,m) with injective ¢, ;m, Q = limp(Myn)(C), Ynm), and s, : Ay — M) (C) be described as in 7.9.
Evidently C is an inductive limit of

C={(f,x)€C([0,1],Q ® May1) DA:

a

——
f(0) = s;(x) ® diag(1, ..., 1,0),
f(1) =s,(x) ® diag(1, ..., 1,1 }
——

a

Cn = {(fsx) € C([O7 1]s Ml(n)((c) ® Ma+1) @An :

with connecting homomorphism @y ;11 : C; — Cpyq given by

Dnn1(f, %) =(g,y) for (f,x) e Gy,

where g(t) = (Y n+1 ® idg1)(f(t)) and y = @p n+1(x). Since both ¢ ny1 and ¥, npq are injective, so is @y 511. The short
exact sequence

0 — Co((0, 1), Mn)(C) ® May1) — Co — Ay — 0

induces the six term exact sequence of K-theory. Since (s;).0 : Ko(An) = Ko(Myn)(C)) is surjective, exactly as the beginning
of proof of Proposition 7.8, we have Ky(C,) = ker ((54)«0) C Ko(An) and K;(C,) = 0. From a standard calculation (see section
3 of [20]), we know that Ko(Cp)+ = ker(sp )0 N Ko(Ap)+. On the other hand, since s, is injective, ker (s )0 N Ko(An)+ = {0}.
In fact, if x € ker (s;)«0 N Ko(An)+ \ {0}, then there exists a projection p € M;(A;) such that [p] = x. However, since s, is
injective, s,(p) = q is a non-zero projection in M,(Myy)) which is a non-zero element in Ko(Mjy)), whence x & ker((S;)«0).
This proves that Ko(C,)+ = {0}. Thus G, € Co. Since s, are unital, from the very definition (see Definition 3.5), we have
As(Ch) =a. O

Summarize the above, we obtain the following main theorem of this section:

Theorem 7.11. Let Gy, G be any countable abelian groups and T be any compact metrizable Choquet simplex, then there is
a simple C*-algebra B € Dy with continuous scale such that Ko(B) = ker(pg) = Go, K1(B) = Gy and T(B) =T.

Furthermore, if, in addition, Gq is torsion free and G, = 0, then B = lim,_, o(Cy, 1,) with each C, € Co, and 1, map strictly
positive elements to strictly positive elements. Moreover, B is locally approximated by C*-algebras in Cy.

Proof. We only need to prove the additional part. But in this case, by Lemma 7.10, we know all B,, in the construction of
inductive limit of B in 7.2 are inductive limits of C*-algebras in Cy with injective connecting maps. Therefore B is locally
approximated by C*-algebras in Cy and B € D. Since the C*-algebras in Cq are semi-projective, B itself is an inductive limit
of C*-algebras in Co. O

Corollary 7.12. Let Gy, G; be any countable abelian groups. Let T be a topological cone with a base T which is a metrizable
Choquet simplex and let y : T — (0, oo] be a lower semi-continuous function and y : T — [0, co] be the extension of y
defined by y(st) = sy(t) for any s € Ry and © € T. Then there exist a non-unital simple C*-algebra A, which is stably
isomorphic to a C*-algebra with the form Br (in 7.7) which is in Dqy such that

(Ko(A), K1(A), T(A), £, pa) = (Go, G1, T, 7,0)
(Note that ps = 0 is equivalent to Ko(A) = ker(pa).)
Proof. Let B be the C*-algebra in 7.11 with Ky(B) = ker(pg) = Go, K1(B) = Gy and T(B) = T. There is a positive element

(see 6.2.1 of [49], for example) a € B® K such that d,(a) = y(t) forall t € T = T(B). Let A = a(B ® K)a. Then A is stably
isomorphic to B € Dy and

(Ko(A), K1(A), T(A), Za, pa) = (Go, G1, T, 7,0). O
Remark 7.13. We would like to recall the following facts: _
Let A be a separable C*-algebra with T(A) # ¢ and Ped(A) = A. Then T(A) forms a base for the cone T(A). It follows from

3.3 of [43] and 3.1 of [44] that T(A) forms a vector lattice. Therefore, if T(A) is compact, then T(A) is always a metrizable
Choquet simplex.

Definition 7.14. In what follows we will use Br for the class of C*-algebras with the form Br. Note that if A € By then A
is Z-stable with weakly unperforated Ky(A) (see 5.5).
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8. C*-algebras =, and class Dy

Definition 8.1. Let Z, = Br be as constructed in the previous section with Gy = Z and G; = {0} and with unique tracial
state. Note also 2, is Z-stable.

From Theorem 7.11 and Corollary 7.12, we have the following fact.

Proposition 8.2. Z; is locally approximated by C*-algebras in Cy. In fact that Zy = lim,_, »(Cy, 1,), where each C, € Cy, 1,
maps strictly positive elements to strictly positive elements.

(See 15.7 for the uniqueness of Zj.)

Lemma 8.3. Let A be a separable exact simple C*-algebra with continuous scale. Then A ® 2, also has continuous scale and
A® Zy is Z-stable.

Proof. Since 2, is Z-stable, so is A ® Z,. Therefore, by [52], A ® 2y is purely infinite or is stably finite. Since every
separable purely infinite simple C*-algebra has continuous scale [28], we assume that A® Zj is stably finite. In particular,
T(A® Zy) # ¥. Since Z is unital, it is easy to see that A® Z has continuous scale. It follows that T(A) is compact. Since 2y
has a unique tracial state, T(A ® Zg) is also compact. The lemma follows if we also assume that A is exact by 5.3 of [15].
However, the proof 5.3 of [15] also shows that T(A ® Zg) is compact.

For general cases, let B = A ® Z. We may write A ® Zy = B ® Z,. We also note that B has strict comparison (by
Theorem 4.5 of [52]).

Let {e,} be an approximate identity for B such that e, e, = e,e,t 1 = e,, n = 1,2, ... Let {b,} be an approximate
identity for 2, such that b, b, = byby1 = by, n = 1, 2, .. .. It follows that ¢, = e, ® b, is an approximate identity for
B ® 2y such that

Cn+1Cn:(en+len)®(bn+1bn):en®bn:Cnv n=12,.... (68.1)
Fix any d € B® Zy. Put
o =inf{d.(d): t e T(B® Zp)} > 0. (e8.2)

Since B has continuous scale, there exists an integer ng > 1 such that

t(ep —enm) <o /4 forall T € T(B) (e8.3)
when n > m > ny. Let t; be the unique tracial state of Zj. There is n; > 1 such that

tz(bp — bm) <o /4 forall n > m > n;y. (e8.4)

We have, for n > m > ng + ny,
Ch—Cn =€, @by —en @by =(en —en) @by + (em @ by — e @ bp) (e8.5)
= (en — em) @ by + (ém ® (by — b)) (e8.6)

Therefore, for n > m > ng + ny,

(t®tz)(ch — cm) < o /2 forall T e T(B). (e8.7)

By the strict comparison for positive element, the above inequality implies that ¢, — ¢, < d. It follows that A ® Z, has
continuous scale. O

Now we are ready to state the following theorem which is a variation of 7.12:

Theorem 8.4. For any separable finite simple amenable C*-algebra A, there is a C*-algebra B which is stably isomorphic to a
C*-algebra of the form By in Dg such that Ell(B) = Ell(A ® Zy)

Proof. Note that, by 6.2.3 of [49] (see also 7.3 of [15]), one may write
Cu™(20) = ZULAFF(T(20)) and Cu™ (W) = LA (T(W)). (e8.8)

Since both Z; and W are monotracial, LAff;(T(ZO)) = LAff;(T(W)). Since Ko(2y) = kerpZO, one has an ordered semi-

group homomorphism A : Z L LAff}(T(Zo)) — LAff}(T(W)) which maps Z to zero and identity on LAff}(T(Z)) = R}. In
particular, A maps 1 to 1. It follows from 8.2 and [49] that there is a homomorphism ¢, ,, : Z9 — W which maps strictly
positive elements to strictly positive elements. Let t; and tyy, be the unique tracial states of 2, and W, respectively. Then
tw o ¢z = tz, since Zg has only one tracial state.
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Since 2 ® 2y = Z,, without loss of generality, we may assume that A is Z-stable. Let a € Ped(A); be such that aAa
has continuous scale (see 5.2 of [15]). Put B = aAa ® 2. It is easy to verify that B is a hereditary C*-subalgebra of A ® 2.
Every tracial state of B has the form 7 ® tz, where t € T(aAa). Fix T € T(aAa), then

(t®t)Na®z)=rt(a)tz(z) = t(a)tw o ¢, ,(z)) forall ae A and z € 2. (e8.9)

lety =ida® ¢, A® 20 > A® W and let s = t ® t; € T(B). Then, by (8.9), s = (r ® tyy) o Y. Since W satisfies
the UCT, by the Kiinneth formula [54], Ki(aAa ® W) = 0, i = 0, 1. Therefore, for any x € Ko(B), s(x) = 0. This implies that
ker pg = Ko(B). Since A is separable, simple and B is a hereditary C*-subalgebra of A® Zy, by [4], (A® Z;) ® K = B® K.
It follows that Ko(A ® Zp) = ker pag z,.

Note that (see 7.13) T(B) is a metrizable Choquet simplex. By 7.12, there is a C*-algebra C which is stably isomorphic
to a C*-algebra of the form Br in Dy such that Ell(C) 2 EllA ® Zy). O

Theorem 8.5. Let A be a separable C*-algebra which is stably isomorphic to a C*-algebra in Dy. Then Ky(A) = ker pa.

Proof. Without loss of generality, we may assume that A € Dy. By 12.3 of [15], it suffices to show that every tracial state
of A is a W-trace. By 12.2 of [15], it suffices to produce a sequence of completely positive contractive linear maps {¢,}
from A into D, € ¢§ such that

lim ||@n(ab) — @u(a)pn(b)|| =0 for all a, b € A and

n—oo

t(a) = lim t,(¢s(a)) for all a € A, (e8.10)
n—o0

where t, € T(Dy).

This, of course, follows directly from the definition of Dy. In fact, in the proof of 9.1 of [15] ¢;, would work (note,
we assume that A € Dy instead in D, therefore C*-algebras D, € Cg/ instead in Cj). Note also that, 9.1 of [15] shows that
QT(Q) = T(A). Thus (e8.10) follows from (e.9.9) of [15]. O

Theorem 8.6. Let A be a separable simple C*-algebra in D with continuous scale. Then the map from Cu(A) to LAff(T(A)) is
a Cuntz semigroup isomorphism.

Proof. This follows from 11.8 of [15] (see 15.8 of [18]) immediately (since (A)w = T(A), as A is assumed to have
continuous scale). O

Corollary 8.7. Let A be a separable simple C*-algebra in D. Then Cu™(A) = Ky(A) U LAff;(f‘(A)).
Proof. Note, by 11.5 of [15], A has stable rank one. This follows from 8.6 (see 7.3 of [15]). O
Theorem 8.8. Let A be a separable simple C*-algebra in D with ker ps = Ko(A). Then A € Dy. Moreover, There exists es € Ay
with |lea]l = 1 and 0 < og < 1 which satisfy the following: For any ¢ > 0, n > 0 and any finite subset ¥ C A, there are

F-e-multiplicative completely positive contractive linear maps ¢ : A — A and ¢ : A — D for some C*-subalgebra D € R (see
3.1) with ¢(A) L D such that

x — (px)® ¥(x)Il <& foral x e F, (e8.11)
d.(¢(ea)) < n forall T € T(A) and (e8.12)
t(fia(¥(ea))) = 1 —op forall t € T(D). (e8.13)

Proof. We may assume, without loss of generality, that A has continuous scale, by considering a hereditary C*-subalgebra
of A (see 11.9 of [15]). We will use the facts that C*-algebras in D have stable rank one and strict comparison as well as
have the property described in 8.7. _
Let e4 € A be a strictly positive element with |les|| = 1. Note that d.(es) is now assumed to be continuous on T(A).
Fix any integer m > 2, by 8.7, there is a positive element egy € A such that d.(eqo) = (1/m)d.(es) for all = € T(A).

Moreover, as in the proof of 3.13, A = M,(egoAeqo). Let Ao : Cu™(A) — Cu™(A) be defined by (Ao m)lkya)= idg,a) and
(Ao’m)|LAff:(f(A)): (1/m) idLAff;(T(A))' Then, since Ko(A) = ker pa, one sees that Ag ,, is @ morphism in Cu.

Claim. For any C*-subalgebra D'CA with D' € Cy, there is a homomorphism jop : D' — Ap = egAeg Such that
Cu~(jo.pr) = Aom o Cu™(tp). To see the claim, note that Ay has stable rank one (see 11.5 of [15]) and Ag;m o Cu™ (ipr) is
a morphism in Cu. Then, by Theorem 1.0.1. of [49], such homomorphism jo p exists.

Let 1 > op > 0. We may assume that t(es) > 1 — 0¢/64 for all € T(A). Suppose also that 7(fi/2(ea)) > 1 — 0o/32 for
all T € T(A). Let f = 1 — 0p/4. Let ¢ > 0 and let F C A be a finite subset. Let 6p/32 > 1 > 0. Choose m > 2 such that
1/m < min{cy/2'%, n/2}.
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Let T = T(A). Let Wr be the separable simple amenable C*-algebra with K(Wr) = {0},i = 0,1, and T(Wr) = T
as in 2.8 of [16]. Therefore LAff} (T(Wr)) = LAff}(T(A)). Let I" : LAff;(T(Wr)) — LAff(T(A)) be the order semi-group
isomorphism. By 8.7, Cu™(A) = Ko(A)u LAff;(YN"(A)). Since Ko(A) = ker p4, the map r-r. Cu~(A) — Cu~(Wr) which maps
Ko(A) to zero and IV i (Feay= (2=1r=1is a morphism in Cu.

Fix 0 < & < min{e/4,0/2'%) and a finite subset 7; D . There are F;-e;-multiplicative completely positive
contractive linear maps ¢p : A — A and ¢ : A — D for some C*-subalgebra D C A such that ¢o(A) L D,

Ix — (@o(x) ® ¥(x))|| < &1/4 forall x € 7y U {ea}, (e8.14)
D € Cy(see 3.11), d.(gpo(ea)) <n forall t € T(A) and (e8.15)
t(fi/a(¥(ea))) = 1 —0p/16 for all t € T(D). (e8.16)

Let ip : D — A be the embedding. Consider r-v oCu™(1p). Then, by [49], there exists a homomorphism v/, : D — Wr such
that Cu™~(yn) = r'o Cu~(ip). Let eg € D be a strictly positive element of D with |leq|| = 1 and let Wy = vr1(eq)Wrr1(eq).
By [49] again, there exists a homomorphism v, 4 : Wr — A such that Cu™ (¢, 4) = I.

Note that (Y, 4 o ¥1(eq)) < (1/n){ea). By the claim above, we may assume that there also exists a homomorphism
Jjp : D — A such that Cu™(jp) = Ao.m o Cu™ (¢p) and jp(D) L ¥y q 0 Y. Put ¥ := jp @ ¥y 4 0 ¥1. Then Cu™(1p) = Cu™(¥).

By [49], there exists a sequence of unitaries u, € A such that

nli)rgo llip(g) — upw(gluyll =0 forall g € D. (e8.17)
Let § > 0, G C D be a finite subset, and e, = ¥(e4). Choose 1/4 > o > 0 such that

Ifo(ea)efo(ea) — gll < 8/2 forall g €g. (e8.18)
By (e8.17), with sufficiently small 8, by Prop.1 of [8], there is ny > 1 and unitaries v, € A, for all n > ng,

lip(g) — vif, (en)¥'(g)f5 (en)unll < &1 forall g € G and v}f,(e,)v, € DAD. (e8.19)

Put @' : D — Aby @'(c) = Upo Vw,a © Yi(c)vy, forall c € D, and ¢ : A — A by ¢(a) = go(a) ® vf,(eq)ip(a)fs(eq)v, for all
acA. Let Wy = v,j‘o Yw,a(Wi)vg,. By the choice of m and by (e8.16), we may also assume that

t(fi/a(@'(Y(ea)))) > 1 —0p/8 for all t € T(Wp). (e8.20)
Note Wy L ¢(A)Ap(A). Moreover, with sufficiently small § and large G,
X — (p(x)) ® @'(¥(x)|| <& forall x e F. (e8.21)

Note that Wy = Up2 | F, ® W, where F;, C F,44 are finite dimensional C*-algebras, and W = U}2 | R, where R, € R. Since
D is semiprojective, there exists a sequence of homomorphisms v, : D — R, such that

lim ||vo.,(g) — @'(g)| =0 forall g €D. (e8.22)
n—oo

Then, passing to a subsequence, applying a weak*-compactness argument, if necessarily, we may assume that, for all
sufficiently large n,

t(fi/aon(¥(ea))) > 1 —09/8 = f = forall t € T(Ry), (e8.23)
Moreover,

lx — (¢(x)) @ Yon(¥ (X)) < ¢ forall x e F.
The lemma then follows. O
Proposition 8.9. Let A be a separable simple C*-algebra and B be a separable simple C*-algebra which is tracially approximate
divisible (see definition 10.1 of [15]). Suppose that both A and B have continuous scale, and B has strict comparison. Let C = AQB

(minimal tensor product) be such that C has continuous scale and also has strict comparison. Then AQB is tracially approximate
divisible.

Proof. Let ¢ > 0, let 7 C A ® B be a finite subset, let c € (A ® B), \ {0} and let n > 1 be an integer. Without loss of
generality, we may assume that
F={a®b:ae Fy and b € Fg},

where 74 C A and Fj are finite subsets. We may further assume that ||a||, ||b|| < 1 for alla € 74 and b € F3. Since AQ B
is simple and T(C) is compact, as C has continuous scale,

inf{d;(c): 7 € T(C)} =d > 0. (e8.24)
Choose by € B, \ {0} with ||bg|| = 1 such that d.(by) < d/2 for all T € T(B).
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Since B has tracially approximate divisible property, there are C*-subalgebras By and B; of A such that
dist(b, D4) < ¢/2 for all y € Fg, (e8.25)
where Dy C D C B which has the form

Dy = {do & diag(dy, dy, ..., d1) € Bo & My(B1) : do € Bo, dy € By},

where D = By @& M,(B;). Moreover, bey < by, where b is a strictly positive element of By.
Now let A = A® By, Ay = A® By and A3 = Ap @ M,(A1). Also let A; = A® Dy. Then

dist(x,Aq) < ¢ forall x € F. (e8.26)
We also compute that
s ®be <e,®bg S c. (e8.27)

This implies that C is tracially approximate divisible. 0O
Proposition 8.10. Br ® 2, € D,.

Proof. C*-algebra By has finite nuclear dimension and so does Z,. By Proposition 2.3 of [60], By ® Zy has finite nuclear
dimension. By 8.3, Br ® Zy has continuous scale and Z-stable. Therefore, by [52], it has strict comparison. It follows from
8.9 and 3.12 that every hereditary C*-subalgebra has tracially approximate divisible property. It follows from 6.5 of [16]
that every tracial state of By ® 2 is a W-trace. It follows from 6.6 of [16] that B ® Zp is in Dg. O

In the Appendix (A.10), we will show that
Theorem 8.11 (A.10). Let A be a separable amenable C*-algebra in D. Then A ® Z = A.

Definition 8.12. By [49], there exists a homomorphism ¢,, ; :W — Z, which maps the strictly positive elements to strictly
positive elements, Since Ko(Zp) = ker pz,, by 8.2 and by [49], there exists also a homomorphism ¢, ,, :Z9 — W which
maps the strictly positive elements to strictly positive elements. Note as in the proof of 8.4 we also have t; = tyy o0 ¢z,
and tyy = tz o ¢, ;, where t; and ty are the unique tracial states of Z, and W respectively.

There exist also an isomorphism ¢,,; : M;(W) — W and an isomorphism ¢,51 : My(Zy) — Zo such that
(@221)0 = idg,(z,). We will fixed these four homomorphisms.

Definition 8.13. Let «{ : Ko(Zo) — Ko(Zo) be a homomorphism by sending x to —x for all x € Ko(Zo) = ker pz,. Denote
also by «° the automorphism on Cu™(Z) such that «°|x,z,)= «§ and identity on LAff~(T(25)) which maps function 1
to function 1. It follows from [49] that there is an endomorphism j‘ff/ P2y —> 2o sugh that Cu“(j‘f’/) = «k° and j@'/(a) isa
strictly positive element of Z, for some strictly positive element a. By [49] again, j* (Zg) is isomorphic to Zy, say, given

by j:j¥(20) = Zo. Then j® =joj* is an automorphism. The automorphism j* will be also used in later sections.

Lemma 8.14. Define @, ¥ : Zg — M,(2y) by
@(a) = diag(a, j*(a)) and ¥(a) = (pu; ® idy, J(diag(ezu(a), pzw(a))) for all a € 2.

—~

Then @ is approximately unitarily equivalent to W, i.e., there exists a sequence of unitaries {u,} C My(Zy) such that

lim Ad u, o @(a) = (¢u; ® idu, ) o diag(gzu(a), gzu(a)) for all a € 2.

n—oo
In particular, j;,(x) = —x for x € Ko(Zo).
Moreover @51 o @ is approximately unitarily equivalent to ¢,51 o .
Proof. Using 6.1.1 of [49] (see also 7.3 of [15]), one computes that
Cu™(®@)=Cu™(¥).

It follows from [49] that @ is approximately unitarily equivalent to ¥. O
9. £(A, B)

Definition 9.1. Let A be a separable amenable C*-algebra and let B be another C*-algebra. We use B~ for the C*-algebra
obtained by adding a unit to B (regardless B has a unit or not). We will continue to use the embedding ¢,,. : W — Z.
Without causing confusion, we will identify W with ¢,,,(WW) from time to time.
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An asymptotic sequential morphism ¢ = {¢,} from A to B is a sequence of approximately multiplicative completely
positive contractive linear maps ¢, : A — BT ® 2, ® K which satisfies the following condition: there is a €
Hom 4(K(A), K(B" ® Zo® K)) and there are two sequences of approximately multiplicative completely positive contractive
linear maps hy, hj, : A — C - 15 ® 2o ® K such that, for any finite subset P € K(A), there exists no > 1 such that

[onllp+hallp= alp+[h;]lp forall n > ng. (e9.1)

Let ¢ = {¢n} and ¥ = {¢,} be two asymptotic sequential morphisms from A to B. We say ¢ and ¢ are equivalent and
write ¢ ~ v if there exist two sequences of approximately multiplicative completely positive contractive linear maps

hn, b, : A— C - 13 ® 2o ® K and a sequence of unitaries u, € B~ ® 2, ® K such that
lim ||u}diag(en(a), hn(a))u, — diag(ya(a), h)(a))|| = O for all a € A.
n—oo

Denote by (¢) the equivalence class of asymptotic sequential morphisms represented by ¢, and by £(A, B) the set of all
equivalence classes of asymptotic sequential morphisms from A to B.
Consider the split short exact sequence

0 B®Z®K—B" ® 2y @K=,C- 1y ® Z9® K — 0.

It gives the following split short exact sequence:

0 — KL(A, B® Zo)—>KL(A, B~ ® Zo)lg[s]KL(A, C-1p ® Z) — 0. (e9.2)
Define Ap : Hom4(K(A), K(B~ ® Z)) — Hom4(K(A), K(B ® Z)) by

Ap(x) = x — [s] o [](x) for all x € KL(A, B~ ® Z). (€9.3)
Note that

Somogy=§&n

for any completely positive contractive linear map g,:A— C- 13- ® 2@ K CB" ® Zy ® K.
Let (¢) € &£(A, B) be represented by {¢,} and let « be as in (e9.1). Then, for any fixed finite subset P C K(A),

Ag o ([enllp+hallp—[hyllp) = [@allp—[S o7 0 @ullp= Apo|p (€9.4)

for all n > ny(P) for some integer no(P). If {v,,} is another representation of (p), then, there exist two sequences of
approximately multiplicative completely positive contractive linear maps g,, g, : A — C- 13- ® Zp ® K and a sequence

of unitaries u, € B~ ® 2y ® K such that
nILHOlo lupdiag(en(a), gn(a))u, — diag(yn(a), g,(a))| =0 for all a € A.

Thus there is an integer n;(?) > 1 such that

[enllp+gnllp = [Ynllp+Ig,]l» and (e9.5)

[som ogullp+ignllr = [som o]+ [g,llp forall n>ny(P). (€9.6)
Therefore

([Ynllp—Isom o Yllp) = ([¢nllp+ignllr—lg,1l») (e9.7)

—([somognllp+lsomogillp—[somogyllp) (€9.8)

= [gnllp—[som ogn]lp=Apoalp (e9.9)

for all n > max{ng(P), n1(P)}. Thus B4 : £(A, B) = Hom,(K(A), K(B® Zy ® K)) given by Ba({¢)) = Apo«, is well defined.

If ¢ and v are two asymptotic sequential morphisms from A to B, we define ¢ @ v by (¢ @ v )(a) = diag(¢(a), ¥ (a)) for
all a € A. Here we identify M(K) with K in the usual way. We define (@) + (y) = (¢ @ ). This clearly defines an addition
in £(A, B). Let (y) € £(A, B) be represented by {i/,} whose images are in C - 13 ® 2, ® K. Then, for any (¢) € £(A, B),
(¢ ® {Y¥n}) = (p). In other words that £(A, B) is a semigroup with zero represented by zero asymptotic morphism. Note,
if A is unital, then £(A, B) = {0}, as there are only zero asymptotic sequential morphisms from A to B~ ® 2, ® K.

Definition 9.2. Denote C = B~ ® Z, ® K. Let Coo = I°°(C)/co(C). If ¢ = {¢,} is an asymptotic sequential morphism, then
we may view ¢ as a homomorphism from A to C.,. Two asymptotic sequential morphisms ¢ and y are homotopy if there
is @ homomorphism H : A — C([0, 1], C ) such that 7o o H = ¢ and w1 o H = ¢, where 7; : C([0, 1], Cx) — Cx is the
point-evaluation at t € [0, 1]. Since we assume that A is amenable, there exists a completely positive contractive linear
map L : A — C([0, 1], I°°(C)) such that IT oL = H, where IT : I°°(C) — C is the quotient map. Denote by P, : [**(C) — C
the nth coordinate map. Define @, =P, oL, n=1,2,.... Define ¢, = my o @, and ;, = 71 o ®;. Note that

lim ||gn(a) — ¢ (@) =0 and and lim ||¥,(a) — ¥, (a)] = 0 for all a € A. (e9.10)
n—oo n—o00o

45



G. Gong and H. Lin Journal of Geometry and Physics 158 (2020) 103865

Therefore we may assume, without loss of generality, as far as in this section, that ¢, and ,, are homotopy for each n.
Fix a finite subset 7 C A and ¢ > 0. There is a partition 0 =t < t; < ---t, = 1 such that

l7r: o L(a) — 7, o L(a)ll < &/2 forall a e {cd,c,d:c,de F}. (e9.11)

Since IToL = H, there is ng > 1 such that 7y, o P, oL is F-¢/2-multiplicative for alla,b € F foralln > ng,i =0, 1,...,m.
It follows from (e9.11) that 7y o P, o L is F-e-multiplicative. In other words, ¢, and i, are connected by a path of
F-e-multiplicative completely positive contractive linear maps for all large n.

Definition 9.3. We now fixed a separable amenable C*-algebra A satisfying the UCT with the following property: There
isamap T : Ay \ {0} - N x R, \ {0} and a sequence of approximately multiplicative completely positive contractive
linear maps ¢, : A — W such that, for any finite subset # C A, \ {0}, there exists an integer no > 1 such that ¢, is
T-H-full (see 5.5 of [15] and 7.8 of [18]) for all n > n,.

For the rest of this section, A is as above.

Lemma 9.4. Let {¢,} be an asymptotic sequential morphism from A to B~ ® Z, ® K such that the image of ¢, are all contained
in B @ W ® K. Then ({¢,}) = 0.

Proof. Let ¢ > 0 and F C A be a finite subset. Let T be given in 9.3. Write T(a) = (N(a), M(a)) for all a € A, \ {0}. We
will apply 6.9.

Let § > 0, G be a finite subset, # C A, \ {0} be a finite subset and let K > 1 be an integer as required by 6.9 for T.

Suppose that ¢, : A — B" ®W®K is a G-6-multiplicative completely positive contractive linear map. We may assume,
without loss of generality, that the image of ¢, lies in Mk(n)(BF ® W). Choose an asymptotic sequential morphism {,}
from A to W given by 9.3. We may assume that v, is g-§-multiplicative and is T-H-full. Let /o : W — C - 13- ® W K
be the homomorphism defined by ¥(a) = 1 ® a ® eq 1, where ey ; is a rank one projection of K. By replacing {v,} by
{0 o ¥}, we assume that the image of v, are in C - 13 ® W ® K. Define v, : A = M) (W) by

k(n)
Ya(a) = diag(Wa(a), ¥a(a), ..., ¥a(a)) forall a € A.

By viewing ¥, as a map from A to Mim)((C - 15-) ® W), it is easy to check that W is T-H-full in Min)((C - 15-) ® W) (see
the proof of 6.9).
Then, by 6.9, there exist an integer K and a unitary v € M(,<+1),<(n)(BF QW)™ C M(K+1)k(n)(BF ® Zy)~ such that

[lv*diag(g,(a), ¥,(a))v — diag(0, ¥, (a))|| < ¢ for all a € F,

where ¥,(a) = 1an(a) ® 1k. Lemma then follows. O
Proposition 9.5. £(A, B) is an abelian group.

Proof. Define an endomorphism * on B” ® 2y ® K by
*(a®b®c)=a®j*(b)®c forall ae B ,be 2y and c € K

(see 8.13 for the definition of j®). Let ¢ = {¢,} be an asymptotic sequential morphism from A to B ® 2, ® K. Let
Yn:A— B” ® Zp ® K be defined by

Yn(a) = (¥ o gp(a) for all a € A.
Define H :B" ® 2y ® K — My(B™ ® Z, ® K) by
Ha®b®c)=a® (pu; ® idy, )(diag(ezw(b), ¢zu(b))) ® ¢ forall a e B ,be 2 and c e K.

It follows from 8.14 that there exists a sequence of unitaries {u,} C B~ (XTE’O/ ® K such that
Ad u, o H(gn(x)) = lim diag(en(x), ¥q(x)) for all x € A.
n—-oo

It follows that {¢, @ ¥} is approximately unitarily equivalent to {H o ¢,}. By 9.4, (¢, ® ¥,) = 0. O

Definition 9.6. Fixed A as in 9.3, we will consider £(A, B) for separable C*-algebra B, and denote £(A, B) by &(B). Suppose
that B and C are separable C*-algebras and h : B — C is a homomorphism. Define h, : = &(h) : €x(B) — &a(C) by
Ea(h)({p)) = ({h o @,}), where {¢,} is a representation of (¢) and where we also use h for h™ ® idz;gx. This gives a
homomorphism from the abelian group £4(B) to the abelian &(C). Clearly & (idg) = idg, ). If D is another C*-algebra and
hy : C — D is a homomorphism, then one checks that £4(hy o h) = &x(hy) o Ea(h).

Theorem 9.7. £(A, —) = &x(—) is a covariant functor from separable C*-algebras to abelian groups which is homotopy
invariant and stable, i.e., £4(D) = £4(D ® K).
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Proof. From 9.5 and 9.6, &4(—) is a covariant functor from separable C*-algebras to abelian groups. It is obviously stable.
We will show it is homotopy invariant.

Fix a C*-algebra B. Set C = B~ ® 2, ® K. Let ¢ and ¥ be two homotopy asymptotic sequential morphisms from A to
C.Let§ >0and g C A.

Fix a large integer n. As discussed in 9.2, we may assume that there exists G-§-multiplicative completely positive
contractive linear map L, : A — C([0, 1], C) which is such that 7g o L, = ¢, and 7y o L, = V.

Let ¢ > 0 and F C A be a finite subset.

Let 7; be a finite subset which contains 7. Let P : 0 =ty < t; < --- < t, = 1 be a partition such that

l7r: o Ln(g) — 7y, o Lu(g)ll < &/4 forall g € 74 (e9.12)
forallt € [ti_q,tiyq],i=1,2,..., k. Put yy=m; 0L, i=0,1,2,..., k Define @,, ¥,, ®;, ¥, : A — My1(C) as follows.

@n(a) = diag(yo(a), " o y1(a), y1(a), ..., 1" o yi(a), n(a)), (e9.13)

@,(a) = diag(yo(a), 1* o yo(a), y1(a), ..., * o yi—1(a), y(@)), (9.14)

w,(a) = diag(yi(a), t* o yo(a), yo(a), ..., " o yi—1(a), yi-1(a)), (€9.15)

Wn(a) = diag(yi(a), «* o yi(a), yi(a), ..., 1% o yil(a), y(a)) (9.16)
for all a € A. We estimate that, by (e9.12),

|®Pn(g) — ()l < /4 and || Wa(g) — W, (g)ll < e/4 forall g € Fy. (e9.17)
There is also a unitary u € M2k+1(5 ) such that

Aduo @)(g) — ¥,(g)|l < e/4 forall g € Fy. (€9.18)
It follows that

Adu o @,(f) — Wu(f)ll < 3¢/4 forall f € F. (e9.19)

Define ® : A — My, (C) by
O(a) = diag(¢” o yi(a), y1(a), ..., " o yi(a), y(a))
for all a € A. Then (e9.19) becomes
IAd u o diag(en(g), ©(g)) — diag(¥m(g), @(g))Il < 3¢/4 forall g € 7. (€9.20)

On the other hand, by 8.14, there exists a homomorphism H : B- ® 2y ® K — B~ ® W ® K and G-§-multiplicative
completely positive contractive linear map I3, : A — C such that

IHo I(g)— O(g)| <¢e/8 forall g e F (e9.21)
(I;, = diag(y1, y2, - - - » Yk)). Finally, we obtain that

IAdu o diag(gn(f), H o Iw(f)) — diag(y(f), H o IL(f)Il < &
for all f € F. Since the image of H o I, are in B~ ® W ® K, the above implies that (@) = (). O
The proof of the following is essentially the same as that in 6.1.4 of [30].

Proposition 9.8. If

0 J5D5D) - 0 (e9.22)
is a split short exact sequence of separable C*-algebras, then

£(A.J)-25 £(A, D)5 £(A, DJ))

is exact in the middle.

Proof. Suppose that (¢) € £(A,J) which can be represented by an asymptotic sequential morphism {¢,} which maps A
toJ™ ® 2y ® K. Then 7 oj o ¢, has image in C - 1py ® 20 ® K. It follows from the definition that 7, o j, = 0.

Now assume that (@) € &(A, D) which is represented by {¢,}. Without loss of generality, we may assume that
img, € My (D™ ® Z,) for some sequence {k(n)}.

Suppose that 7.({¢)) = 0. Thus we may assume that there exist two asymptotic sequential morphisms hy, h}, :
C - 1p/y ® 20 ® K and a sequence of unitaries u, € (D/J)" ® 2y ® K)~ such that

lim ||u}diag(w o ga(a), hn(a))u, — hj(a)]l = 0 for all a € A. (e9.23)
n—oo
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By the proof of 9.5, by adding ® o h, (to both terms), we may assume that [h;]|>= 0 for all n > ny. We also assume that
there exists o € Hom4(K(A), K(DF ® Z)) such that, for any finite subset P C K(A) and for all n > ng (for some ng > 1),

[@nllp+Thallp= [pl 0 Ap o | p+[h) ]| (see (e9.3) for the definition of Ap), (e9.24)

where {h;} is a sequence approximately multiplicative completely positive contractive linear maps from A to C- 15 ®
Zy ® K, and we also view h, and h/, as maps from A to C - 1py ® 20 ® K, and where Jp : D ® 2o — D" ® 2, is the
embedding. Thus, combining with (e9.24), [7] o (Ap(«)) = 0.

Denote [Tp : (D/JF ® 2y ® K)© — C the quotient map. Without loss of generality, we may assume that
im (¢ @ hy), imhy, C Mg@(C - 1 ® Zo). We may further assume that K(n) = 2k(n). We may view diag(uy, uy) €
((D/]) ® Zo ® K)~. Replacing u, by diag(u,, u’), we may assume that u, € Uo(((D/])™ ® K£)™). Therefore, we may assume
that there exists a unitary z, € U(D" ® 2o ® K)™) such that 7(z,) = u,.

By identifying C - Tpyr® 200K with C- 15 ® Zp® K and C- 1)- ® 2o ® K, we may view hy, h,:A— C-1)r®2,0K
as well as hy, b, :A— C- 1+ ® Zo ® K, whichever it is convenient.

Let IT : I°(DF ® 2, ® K) — (D" ® 2, ® K)/co(D" ® Zy ® K) be the quotient map. Let

U={z}, Z=1U),® = {gn}, H={h}, H = {h}},
where we view &, H, H' : A — I°(D" ® 2, ® k). Then, by (e9.23)
Z((®(a) ® H@)Z — [T o H'(a) € I°(" ® 20 ® K)/co(J” ® 20 ® K)
for all a € A. Since IT o H'(a), IT o H(a) € C - 1} ® Z ® K, it follows that
ZN(P(a) @ 0))Z € I°(" ® 20 ® K)/coJ” ® 2o @ K)

for all a € A. Since A is amenable, by [6], there exists a completely positive contractive linearmap L = {I,} : A — J"® 2,0k
such that IT oL = Ad U o (®). Also

nlirgo ldiag(l,(a), hn(a)) — z;(diag(@n(a), hn(a)))z,|| = 0 for all a € A. (e9.25)

Since (e9.22) is split exact, by Proposition 5.2 of [31], there is a unique 8 € Hom 4(K(A), K(J® Z5)) such that [jJo8 = Apoa.
It follows (by (€9.24) and (e9.25)) that, viewing I, as maps from A to J” ® Z,®XK, there exist two sequences of approximately
multiplicative completely positive contractive linear maps H,, Hy : A — C- 1j- ® 2, ® K, for any finite subset 7 C K(A),
such that, for all n > n; (for some n; > 1),

L]lp+Hallp= Ul o Blp+Hl» U :]® Z0 — ]~ ® Z is the embedding).
So ({I,}) is an asymptotic sequential morphism in £(A,J) and (by (€9.25)) j.{{l,}) = (¢n) which implies that () is in the
J«(EA D). O

Proposition 9.9. £,(—) is split exact.

Proof. This is standard from 9.7 and 9.8 (see [22]). Let
0D D) >0

be a short exact sequence of separable C*-algebras.

Let us first assume that D/J is contractible. Then by 9.7, £4(D/]) = {0}. It follows from 9.8 that j, gives a surjective
map from &4(J) onto E4(D).

For C*-algebra C, denote by S(C) = Cy((0, 1), C). Then, by 9.7,

Ea(D/]) = 0 = &x(S(D/J))

Put
S(D,D/]) = {(a,b) € D ® Cy([0, 1),D/]) : w(a) = b(0)} and (e9.26)
Z(J,D) = {x € C([0, 1], D) : x(0) € J}. (e9.27)
We have the following exact sequence:
0 = &a(S(D/])) —> Ea(S(D, D/])) —> Ea(D). (€9.28)

Define 7’ : Z(J, D) — Co([0, 1), D/J) by 7'(f)(t) = = (f)(1—¢t) for t € [0, 1). Note ='(f)(1) = 7 (f)(0) = O for all f € Z(J, D).
Define x : Z(J, D) — S(D, D/]) by

x(f) = (f(1), #'(f)) for all f € Z(J, D).
One obtains the short exact sequence:
0 — Cy([0,1),]) - Z(J,D) — S(D,D/]) — O.
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This gives the following exact sequence:
0 = &a(Go(10, 1), ) —> &a(ZU, D)) —> £a(S(D, D/J)). (e9.29)

From (e9.28) and (e9.29), it follows that composition map &4(Z(J, D)) — &a(S(D, D/])) — &a(D) is injective.

However, Z(J, D) is homotopically equivalent to J. Moreover, one sees that the composition ] — Z(J, D) — S(D,D/]) —
D coincides with j. It follows that j, is injective.

Thus we show that, when D/]J is contractible, j, is an isomorphism from &£,(J) onto £4(D).

In general, let1 : ] — S(D, D/J) be defined by 1(b) = (b, 0) for b € J. Then S(D, D/])/u(J) = Co([0, 1), D/J) which is
contractible. So, from what has been proved, 1, is an isomorphism.

To see that &4(—) is split exact, consider the short exact sequence of separable C*-algebras:

0— J—D>.D/j — 0.
By 9.8,

eall)—L>£a(D) > Ex(D/))

is exact in the middle. Since 7 o s = idp/;, we check that m, o s, = (idp/; ).
It remains to show that j, is injective. Using the exact sequence

€a(S(D/])) = €a(S(D, D/])) — &a(D),

and identifying £4(J) with £4(S(D, D/])), we see that kerj, C im(1;), where 1; : S(D/]) — S(D, D/J) is the embedding.
Let

I'={(s(b(0)), b) € S(D, D/J) : b € Co([0, 1), D/J)},

where s is the split map given above. Since m o s = idpj, I = Co([0, 1), D/J) which is contractible. On the other hand,
im1; C I. Therefore (11), = 0. Thus kerj, = 0. In other words, j, is injective. O

10. An existence theorem

Definition 10.1. Fix A as in 9.3. We assume that A satisfies the UCT. There is a homomorphism /32 from &£4(B) to KL(A, B)
defined as follows.

We will identify KL(A, C) with Hom (K (A), K(C)) for any separable C*-algebra C (see [10]). Let (¢) € £a(B) := &(A, B)
be represented by an asymptotic morphism {¢,}. Recall (see 9.1) that Ba({¢n)) = Ap o « is well defined which defines a
homomorphism ﬂf : Ea(B) — KL(A, B). Consequently ﬂ}j is a morphism which maps C*-algebra B to the abelian group
Hom 4(K(A), K(B ® Zp)). If B and C are two C*-algebras and h : B — C is a homomorphism we have the following
commutative diagram:

Eah)
Ea(B) &a(C)

| |

Hom,(A,B® 2y ® K) ? Hom4(A,C ® 2o ® K).

It follows that
B : Ea(—) — Hom,(K(A), K(— ® Z0))
is a natural transformation.

Theorem 10.2. The transformation B, maps E4(B) onto Hom (A, B ® Zy) for each separable C*-algebra B, if A satisfies the
UCT.

Proof. By a theorem of Higson (Theorem 3.7 of [22]), since £4(—) is a covariant functor from separable C*-algebras to
abelian groups which is homotopy invariant, stable and split exact (Section 8), there is a unique transformation
o KK(A, =) = &a(-)

such that a4([idalkk) = (ida). Let y : KK(A, —) — KL(A, —) be the natural transformation induced by I" : KK(A, B) —
KL(A, B). We have

Ba o aa(lida]) = [idalxe,

where B is defined in 10.1. Since y([ida]) = [ida], (the first [id4] is in KK(A, A) and the second is in KL(A, A)), by the
uniqueness of Higson’s theorem (3.7 of [22]),

Boa=y.
Since y(KK(A, B)) = Hom (A, B® Zy ® K), if A satisfies the UCT, B, : £4(B) — KL(A, B) must be surjective for each B. O
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Lemma 10.3. Let B a non-unital and separable simple C*-algebra with continuous scale. Let ¢q, ¢1, @2 : W — M(B)/B be
homomorphisms with ¢o nonzero. Then, for any ¢ > 0, and any finite subset ¥ C W, there exists a unitary U € M,(M(B))
such that

I (U)*diag(e1(a), go(a))m(U) — diag(g2(a), go(a))ll < & forall a € F.

Proof. It follows from [28] that M(B)/B is simple and purely infinite.

Fix a strictly positive element ay € W with |layw || = 1. Let by = ¢o(aw ) and let By = bo(M(B)/B)by.

Since W and By are both simple, there isa map T : W, \ {0} — N x R, \ {0} such that ¢g : W — By is T-W, \ {0}-full.
Let Wy = gﬂo(W) So b() e Wj.

Let H C Wy \ {0} be a finite subset and K > 1 be an integer as required by Cor. 3.16 of [16] for the above given T,
&/2 (in place of ¢) and F.

Note that W ® Q = W. Moreover, the map from W to W ® 1o which maps a to a ® 1 then to W is approximately
inner. To simplify notation, without loss of generality, we may assume that ¢p : W — Wy ® Q has the form ¢y(a) ® 1q.
Let ey, ey,...,ex € Q be mutually orthogonal and mutually equivalent projections such that Zfil e; = 1g. Define
®o,i - W — Wy ®e; by

@o.i(a) = gp(a) ® e; forall a e w.

Put By 1 = (bo ® e1)(M(B)/B)(bo ® e1).

Let by = ¢1(aw), by = ¢2(aw) € M(B)/B. Since W is projectionless, sp(aw ) = [0, 1]. Thus, since W is simple, b; cannot
be invertible in M(B)/B. Let D; = b,Ab;. By Pedersen’s double orthogonal complement theorem (Theorem 15 of [45]),
there is a projection E; € M(B)/B such that 1y@)p — E; € D+ is not zero and E;b; = biE; = b;. Similarly, one obtains
a projection E; € M(B)/B such that 1y)s — E; # 0 and E;b; = byE; = b,. Using the fact that M(B)/B is purely infinite
simple again, one obtains a unitary w; € M(B)/B such that

wTE2w1 < E;.

Thus, without loss of generality, replacing ¢, by Ad w; o ¢,, one may assume that E; < E;.

Since M(B)/B is purely infinite and simple, E; < p; for some projection p, € By. Thus we obtain a unital hereditary
C*-subalgebra Byy C M(B)/B such that, we may view that ¢, ¢ : W — Bgo and ¢o 1 : W — By is a T-Wy \ {0}-full.
Moreover, we view

K

@o(a) = diag(go,1(a), @o,1(a), ..., @o.1(a)) forall a e w.

Furthermore, My 1(Boo) is a unital C*-subalgebra of My(M(B)/B) such that 1y, sy is not the unit of M»(M(B)/B). By
applying 3.16 of [16], there is a unitary u € M 1(Boo) C M>(M(B)/B) such that

[lu*(diag(g1(a), go(a)))u — diag(ea(a), go(a))| < & forall a € F.

Since 1y, — Imy,qByy) 7# O and M(M(B)/B) is purely infinite and simple, there exists a unitary v € (ly, —
T4 1(Boo) (M (B)/B)(1nt, — T, q(Bgp)) SUch that u @ v € Up(M2(M(B)/B)). Thus we may assume that u is a unitary in
Uo(M,(M(B)/B)). Hence there is a unitary U € My(M(B)) such that 7(U) = u. O

10.4 (Construction of ¢ ). Let B be a non-unital separable simple C*-algebra with stable rank one, with T(B) # ¢ and
with continuous scale.
Let {e,} C B® Zy be an approximate identity with

ent16n = epenr1 = e, forall n e N.

We may assume that e, ; — e, 7~ 0 for all n > 1. Choose k(n) > 1 such that

1
inf{d,(esn —e€an_1):T€TBR Z)} > ——, n=1,2,....
k(n)

Note that Z;’il ﬁ < 1. Put B, = (e4n — €4n—1)(B® Zo)(€4n — €an_1). Fix a strictly positive element a,, € W with
llawll = 1.
It follows from [49] that there is a homomorphism ¢, : W — B, such that

d:(pon(ay)) = ﬁ for all T € T(B).
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Let @even, @odd, Pw : W — M(B ® Zo) be defined by

oo oo
Peven = Z‘PO,Zn’ Podd = Z§00,2n+1 and (e10.1)
n=1 n=1
(o)
ow =Y Pon = diag(@even: Poad)- (€10.2)
n=1

Proposition 10.5. Let B be a non-unital separable simple C*-algebra with stable rank one, with T(B) # ) and with continuous
scale. Fix an integer k > 1. Let j,, ; : W — My(Zo) be an embedding which maps strictly positive elements to strictly positive
elementsand d : Zy — C - Ty ® 20 C Mp(B ® Zp) C M(Mp(B ® Zy)) be the embedding defined by d(z) = 1 ® z for all
Z € 2.

Let ¢ > 0 and F C W be a finite subset. Then there is an integer K > 1 and a unitary u € Mg.1(M(My(B® Z))) such that

l[u*diag(d o ju(a), 0)u — (dk 0 ju (@) ® @eaa(@))l < & forall a € F,

where
K
—
dx(z) = diag(d(z), d(z), ..., d(z)) forall z € Z.

Proof. The proof has the same spirit as that of 10.3. Keep in mind that B has continuous scale. Therefore M(My(B ® Z))
has only one (closed) ideal My(B ® Z,) (see [28]). Since W is simple and d o j,, ; maps a strictly positive element to that
of C- Ty ® 2o which is not in My(B ® Zy), d o j, .(a) is full in M(My(B ® Z)) for every a € W, \ {0}. There is a map
T:wy\ {0} > N x R, \ {0} such that d o, , is T-W, \ {0}-full in M(My(B ® Zp)).

Let K > 1 be the integer required by Cor. 3.16 of [16] for ¢/2 (in place of ¢), 7 and T. By applying 3.16 of [16] (and
considering ¢,4q4 and zero map), one obtains (note that M(M(B ® Z)) is unital) a unitary v € Mg1(M(My(B ® Z))) such
that

l[u*diag(d o ju z(a), 0)u — (dk o ju -(a) ® goda(a))ll < & forall ae 7. O
Lemma 10.6. For any ¢ > 0, there is § > 0 satisfying the following: for any e € A, with |le|| < 1 and any a € A with
llall <1,
le'?ae'? — ea|| < &
whenever |lea — ae| < §.
In the following statement and the proof we keep notations in 10.4 and 10.5.
Theorem 10.7. Let A be a non-unital separable amenable C*-algebra. Let ¢ > 0 and F C A be finite subset.
There exists § > 0 with § < &/2, a finite subset G C A with ¥ C G and an integer K > 1 satisfying the following: For
any G-§-multiplicative completely positive contractive linear map ¢ : A — My(B ® Zy) (for any non-unital separable simple

C*-algebra B with continuous scale and any integer k > 1) such that if there are homomorphisms v, ., : Mi(Zo) — W and
Yuz W — M(C- 13 ® Z9) = My(Zo) which map strictly positive elements to strictly positive elements such that

I o (@(a)) = Ywz 0 Vzwomo(pa))ll <8 foral aedg,

where T : My(B ® 25) — M(C - 13 ® Zo) is the quotient map, then there exist an F-g-multiplicative completely positive
contractive linear map Ly : A — My 2(My(B ® Z0)) and an F-e-multiplicative completely positive contractive linear map
Li:A— M1(+2(M/{(B ® Zo)) such that

ILo(a) ® Li(a) — ¢(a) ® dg oso @™ (a)|| < ¢ forall a e F,

where ¢ =Yy 0V pomop, s M (C- 153 ® Z) — Mk(f% ® Zp) is the nature embedding, and furthermore, the following
are true:

(1) Lo(a) = pY/3(p(a) @ dx o s 0 9™ (a))pl/? forall a A

for some m > mg, where {p,} is an approximate identity for Mg (My(B ® Zp)) and,
(2) there are G-§-multiplicative completely positive contractive linear map Log : A — W and Lo o(F)-¢/2-multiplicative
completely positive contractive linear map Ly, p : W — My 2(Mi(B ® Zo)) such that Ly = Ly, p o Loo.

Proof. Fix 1/2 > ¢ > 0 and a finite subset F C A. We may assume that F C Al.
Let G ={ab:a,b € F} U F. Let {e,} C My(B) be an approximate identity as described in 10.4. Let §; > 0 (in place of
8) be in 10.6 for £/64.
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Let § = min{8;/2'2, &/22}. We view My(B® Zo) as a C*-subalgebra of M(M(B® Zo)). Suppose that ¢ : A — My(B® Z)
is G-5-multiplicative completely positive contractive linear map. Suppose that there are homomorphisms v, ,, : Mi(Zp) —
wand ¥, , : W — Mi(C - 13 ® Z) such that

lT o @(a) — (Y2 0 Yz 0w o(@(a))] <8 forall aeg. (e10.3)

Recall that 9™ = v, ; 0¥, o 0@. Put ¢ = v, ,, o 0. Thus Y.z oW = ¢". Let K be the integer in 10.5 associated
with § (in place of &) and ¢ (G) C W (in place of F).
By applying 10.3, we obtain a unitary U; € Mg42(M(Mp(B ® Zp))) such that

1I7(U1)*IT o ow (9" (a))IT(Uy) — diag(IT o di+1 0 Yz 0 9" (), IT 0 goaa(e” (@)l < & (e10.4)

for all a € G, where IT : Mg 2(M(Mk(B ® Zp))) — Mk 2(M((M(B ® Z0))/(My(B ® Z0)))) is the quotient map.
Let s : Mi(C - 13 ® Zp) — Mi(B ® Zp) be the embedding such that

mos(a)=a forall ae M(C- 15 ® Z).
Consider L 1 : A — (M(My(B ® Zy))) defined by L1 = ¢y o ¢" and L’L0 : A — My, 2(M(M(B ® Zp))) defined by
L} o(a) = diag(dy 1 o s 0 Yz 0 9" (@), Yeaa(” (a)) for all a € A,

where notation d;,(c) means the following:

m
d;,(c) = diag(c,c, ..., ).
By 10.5, there is another unitary U, € My ,(M(My(B ® Z))) such that
UL o(a)U> — diag(dy,; oS 0¥z 09" (a),0)]| <8 forall aeg. (e10.5)

Define a homomorphism L; o : A — MK+1(M;<(B’ ® Zp)) by
Lig(a) = dy, 0s0¢”(a) forall acA.

Put ® = ¢ @ dy oso ™ and U = U;Us. By (e10.4) and (e10.5), for each a € g, there exist b(a), b'(a) € Mk 2(My(B ® Z))
with ||b(a)|| < 1, ||b’(a)|] < 1 such that

|lU*Ly 1(a)U — Ly o(a) + b(a)|| < 28 and (e10.6)

|U*Ly 1(a)U — ®(a) + b'(a)|| < 28 forall a e g. (e10.7)
K+2

Put e, = diag(m), n=1,2,....Letp, = U*e,U, n = 1,2,.... Then {p,} is an approximate identity for

Mis2(Mk(B® Zo)). Let S =N\ {4n—1, 4n:neN}.IfmeS,
(Pan — Pan—1) if m < 4n—1;

(1 — pm)(Pan — Pan-1) = {0 if m > 4n and (e10.8)
Pm(1 — pm)(Pan — Pan—1) = O for all me S. (e10.9)
There is N > 1 such that, forany m > N and m € S,

11 = P)(U*Lra(@U) = (1 = pr)lo(@)l] < 46, (e10.10)
I(U*L1,1(a)U)(1 — pm) — L1,0(a)(1 — pm)ll < 44, (e10.11)
[¢ —Pm)(U Li1(a)U) — (1 — pm)@(a)ll < 46 and (e10.12)
I(U*Ly1(a)U )1 — pm) — @(a)(1 — pm)|| < 48 forall aeg. (e10.13)

Note that, by the construction of ¢y and (e10.9), if m € S,
(1 = pm)(U*Ly1(@)U) = (UL 1(a)U)(1 — pm) (e10.14)
= (1= pm)(U*L11(a)U)(1 — pp) for all a € A. (e10.15)

It follows from (e10.10)-(e10.14), for allm > N and m € S,
Ipm®(a) — @(a)pm|l < 85 and ||(1 — pm)L1.0(a) — L1,0(a)(1 — pm)ll <85 forall a € G. (e10.16)

By the choice of §; and 10.6, for all a € G,

IpY2®(a)p)/* — pn®(a)l| < e/64 and (€10.17)
(1= pm)mL],o( )(1 = pm)"? = (1 = pm)Lio(@)]| < &/64. (e10.18)
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Moreover, the map a — (1 — pp)(U*Ly 1(a)U) is G-§-multiplicative. By (e10.18) and (€10.10), a — (1 — py)"2Ly o(a)(1 —
pm)V/? is F-e-multiplicative. Define
L(a) = pm®(a) + (1 — pn)(U*Ly1(a)U) for all a € A.
Then, by (e10.12),
IL(a) — ®@(a)|| < 46 forall aeg. (e10.19)
Consequently,
|IL(ab) — L(a)L(b)|| < 85 for all a,b € F. (e10.20)
We compute that
L(ab) = pm®(ab) + (1 — pm)(U*Ly,1(ab)U) for all a, b € A, (e10.21)
and, for all a, b € G, by (e10.9), (e10.15) and (e10.16),
L(a)L(b) = (pm®(a) + (1 — pm)(U"L1,1(@)U))(pm P (b) + (1 — pm)(U*L1,1(b)U))
= pm@(@pn@(b) + (1 — pm)(U*L1,1(a)U))1 — pm)(U*L1,1(b)U))
~gs+s Pm@(@)P(b)pm + (1 — pm)(U*L1,1(ab)U).
Combining this with (e10.21), (e10.20)

lpm@(ab) — pm®@(a)®(b)pm|| < 85+ 85+ 8 =175 forall a,b e F. (e10.22)
Therefore (see 10.6)
IpY2@(ab)p)/* — pi2d(a)p)/*pX2®(b)pl/?|| < 178 + 3¢/64 < £/16. (e10.23)

Define Lo(a) = py/>®(a)py/* and Li(a) = (1 — pp)"/2L1o(a)(1 — pm)V/2 By (€10.23), Lo is F-e-multiplicative. By (¢10.19),

(e10.10), (e10.12), and the choice of §1, we finally have
I(Lo(a) + Li(a)) — ®(a)|| < & forall ae F.

Let Lop = 9" :A— W and L, p : W — My 2(Mi(B® Zp)) be defined by L, p(b) = (1 — pm)"/?(d}; 0 5 0 ¥y 2(b))(1 — pm)"/?
forbe w.ThenL; =LypoLy,p. O

Theorem 10.8. Let A be a non-unital separable amenable C*-algebra which satisfies the UCT and satisfies the condition in 9.3
and let B be a separable simple C*-algebra with continuous scale. For any « € KL(A, B), there exists an asymptotic sequential
morphism {¢,} from A into B® 2o ® K such that

Hon}] = a.

Proof. Let P C K(A) be a finite subset. Let ¢ > 0 and F C A be a finite subset. We assume that any F-s-multiplicative
completely positive contractive linear map L from A, [L]|» is well-defined.

If follows from 10.2 that there exist sequences of approximately multiplicative completely positive contractive linear
maps @, :A— B " ® Zo® K and ¥, : A — C- 1y ® Zy ® K such that, for any finite subset Q C K(A),

[¢n]|Q= 0‘|Q+[l1’n]|Q

for all sufficiently large n, where ¥, = s o w o ®, (without loss of generality) and 7 : B @ Zy ® K — C-1p- @ Z0 ® K
be the quotient map. Fix a sufficiently large n.

Let {e;;} be a system of matrix unit for K and let E be the unit of the unitization of 13 ® Z,. By considering maps
a— (EQ® 25{21 eii)@n(a)E ® Zl 1eii) and maps a — (E ® Z, 1ei)Ph(a)E ® Z, 1 ei.i), without loss of generality, we
may assume that the i 1mage of @, is in M(B™ ® Zp) and that of ¥, is also in My(C - 13- ® Z,) for some sufficiently large k.

Define 1* : B" ® Z) @ K — BF ® Zo® K by defining 1*(b®z® k) =b®j*(z) @k forall b € B~, z € Z, and k € K (see
8.13 for j*). Note that

Som(PpDsomoi®o®) =W, Hsomoi®od,.

Let § > 0 and let G C A be a finite subset.
It follows from virtue of 8.14, replacing @, by @, ® s o 7 0 i® o &, and replacing ¥, by ¥, @ s o 7 0 i® o ®@,, and by
implementing a unitary in unitization of My(C - 13 ® 2), we may assume that

7w o Pn(g) — Pu,z © Pz o T(Pn(a))ll <& forall geg.
and ¥, = s o T o @, approximately factors through W, in particular, [¥;]|»= 0. In other words,
[@nllp= alp. (e10.24)
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By applying 10.7, we obtain an integer K > 1, 7-¢-multiplicative completely positive contractive linear maps Lo, : A —
Mi(B® Zy), Lin:A— M(K+2)k(B'_ ® Zp) and Lyn:A— M(K+1)k(B}_ ® Zy) such that

ILo.n(a) ® Ly.n(a) — @p(a) ® Ly n(a)|| < ¢ forall a € F, (e10.25)

where L; , and L, , factor through W. In particular,

[L1.n]lp= [L2n]l»= 0. (e10.26)
It follows that, using (e10.24) and (e10.25)
[Lonllp= a|p. (e10.27)

Choose ¢, = Ly, (for all sufficiently large n). O
11. Existence theorem for determinant maps

Lemma 11.1. Let A be a stably projectionless simple C*-algebra such that Cu(A) = LAff+(T(A)) with strict comparison for
positive elements and with continuous scale. Suppose a,b € A® K. Then (a) < (b) ({a) is compact contained in (b)) if and
only if, there exists § > 0, for any t € T(A), there exists a neighborhood O(t) C T(A) such that

d¢(b) > d.(a)+ & forall T € O(t). (e11.1)
Proof. The proof of “if” part is a standard compactness argument (see, for example 5.4 of [38]). Recall that T(A) is compact

in this case (see [32]). Suppose that (e11.1) holds. Let f, € LAff+(7~"(A)) such that f, 7 supf, > (b). Then, for each t € T(A),
there exist n; such that

Jone)(£) > di(b) — 8/8. (e11.2)
Since each f, is lower semi-continuous, there is a neighborhood U(t) C O(t) such that

fne)(T) > di(b) — /4 for all T € U(t). (e11.3)
It follows that

foe(z) > di(b) — 6/4 > d.(a)+ 6/2 for all T € U(t). (e11.4)
There are finitely many such U(ty), U(tz), ..., U(ty) covers T(A). Put ng = max{n;, : 1 <i < mj}. Then, if T € U(t;),

Jao(2) > fu () > de(a) +8/2. (e11.5)

This implies that f,, > (a) in LAff+(T(A)), which means (a) < (b).
For the converse, as in Lemma 2.2 of [5] (see 7.2 of [15]), there exists a sequence of continuous f, € Aff, (T(A)) such that
fon /" b.letg, =fH— % Then g, * b. The assumption that (a) < (b) implies that, for some nyp > 1, (a) < gy = fo, — 1

in Cu(A). Hence "

fro(T) > d:(a) + nlo for all T € T(A). (e11.6)
Since fy, is continuous, for each t € T(A), there is a neighborhood O(t) such that

Jng(£) > de(a) + Zino for all T € O(t). (e11.7)
Therefore

di(b) > fo,(t) > d(a) + 2170 forall 7 € O(t). O (e11.8)

Theorem 11.2. Let A be a stably projectionless simple exact C*-algebra with strictly comparison for positive elements, with
stable rank one and with continuous scale such that Cu(A) = LAff(T(A)). Fix 1 >« > 0and 1 > n > 3/4. Let

hy € {f € C([0, 11, R) : f(0) = eef (1)}

such that h,, is strictly increasing on [0, n], 0 < h, < 1, h,(0) = 0 = h,(1), and h,(n) = 1. o
Let ¢ € Ay with |c]l = 1 and b € cAc,. with ||b]| = 1. Suppose that there is a non-zero homomorphism ¢ : R(ar, 1) — cAc.
Then, for any & > 0, there exists a homomorphism v : R(a, 1) — B := cAc such that

sup{|t(y(h,)) — t(b)| : T € T(A)} < €.
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Proof. Let ¢ > 0. Since A is stably projectionless, we may assume that sp(b) = [0, 1].
Note that (hy)l,: [0, n] — [0, 1] is a bijection. Define hn_] : [0, 11 — [0, n] to be the inverse of (hy)lo,,. Note that
h, o ;! = idg 1. For each f € C([0, 1], R),, define y(f)(z) = (f o h; (b)) for all T € T(A).
_ The y above gives an affine continuous map from C([0, 1],R) — Aff(T(A)). Note that Aff(T(R(a, 1))) and LAff
(T(R(xr, 1)))4 are identified with

{(f,5) € C([0, 1], R) B R : f(0) = s and f(1) = s} = {f € C([0, 1], R) : f(0) = ef (1)}

and LSC([0, 1], RT) @, R

(see 3.7), respectively. Let y1 = ¥ | sgf(ria, 1)), - 1hEN
yi(hy)(T) = t(hy o h, (b)) = T(b). (e11.9)

It induces an order semi-group homomorphism y; : LAff(T(R(a, 1))+ — LAff(T(A))+. Note y; takes continuous functions
to continuous functions. Let r : Cu(R(e, 1)) — LAff(T(R(a, 1)))+ be the rank function defined in 3.7. Define an order
semi-group homomorphism y, : Cu(R(«, 1)) — LAff(T(A)) by

v2({(f. ) = (1 — &/4)a(r((f. 5))) + (e/4)Cule)((f . 5))- (e11.10)

We verify that y, is a morphism in Cu. Since the rank function r preserves the suprema of increasing sequences, it is
easy to check that y, also preserves the suprema of increasing sequences. Suppose that (f) = ((f, sr)) < (g) = ((g, Sg))
in Cu(R(«, 1)). There is a sequence of ¢, € Cu(R(e, 1)) such that r(c,) is continuous and r(c,) /' r({(g, s¢))) (see 3.7 and
3.8). Note that ¢, can be identified with an element in LSC([0, 1], (R™ \ {0} L Q)+ ) D, (R™\ {0} L Q),, at each point t, we
identify r(c,)(t) with the corresponding values of ¢,(t) in Ry —that is, [s] € Q. is regarded as s € R,. Put ¢ = sup,, r(c;).
Then ¢ = r((a)). For any g1 > 0, (1 + &1)r(c) > r({g)). Since {f) <« (g), there exists ng > 1 such that

(1+ e1)r(cny) = r({F)- (e11.11)

This, in particular, implies that r({f)) is a bounded function.
Now let z, € Cu(R(«, 1)) such that z, /" supz, > y,((g, Sg)). By 11.1, there exists 6 > 0 such that, for each t € T(A),
there is a neighborhood U(t) such that

di(p(g)) > d.(e(f))+ 6§ forall t € U(t). (e11.12)
Choose 0 < &1 < ¢ -6§/16(M + 1). Then, for some ny > 1,
(1 —e/4) 1+ e1)ya(r(Cng)) > (1 — &/4)(1 + 1)y (r({f)))- (e11.13)

Since r(cy,) is continuous, y1(r(cy,)) is also continuous. Therefore, for each t € T(A), there is a neighborhood O(t) such
that

(1 —&/4)y1(r(cag))(t) > (1 — &/4)y1(r((f)))(T) — &1 for all T € O(t). (e11.14)
Put N(t) = O(t) N U(t). Then, by (e11.12) and (e11.14) as well as (e11.10),
v2({2))t) > ya(r((f)))T) + &8/2 for all T e N(t). (e11.15)

It follows from 11.1 that y,({f)) < y2({g)). This shows that y; is a morphism in Cu. Since Ko(R(«, 1)) = {0}, it induces a
morphism y;" : Cu™(R(e, 1)) — Cu™(A) (see 7.3 of [15]). L
It follows from [49] that there exists a homomorphism ¥ : R(«, 1) — B = cAc such that

d.(¥(g)) = v2({g) ) forall = € T(A) (e11.16)
and for all g € R(«, 1)+. There is f € R(a, 1)1 such that d.(f) = (h,) for all T € T(R(e, 1)) (see 3.4). Therefore
d:(¥(f)) = lim (M) = Jim 7o v (e11.17)
= droy(f) = (r o Y)(hy) for all T € T(A). (e11.18)
Then, by (e11.10) and (e11.16),
|de(W(f)) — ni(r(F))t)| < e/4 for all t € T(R(e, 1)). (e11.19)

Since y1(r(f)) = yﬂh}), we estimate that
sup{|t o ¥(h,) — t(b)| : T € T(A)} < &.
The lemma follows. O
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11.3. Let A be the AH-algebras of real rank zero with unique tracial state as associated with By in Section 6. So
By = limy_, oo(By, @y). Write

By =W, @ E, and E, = Mup(AW, o)), n=1,2,....

We may write A = U2 Gy, where C; = Go1 @ Gio, Cot @ Coz C Gig1,1 @ Gogr2 and Gy is a circle algebra and G, is
a homogeneous C*-algebra with torsion Kj. In fact, G, , may be written as M, (C(X;)), where X, is a finite CW complex
with dimension no more than 3 and r(n) > 6 (see [13]). In particular (by [48]), K1(Cn.2) = U(Cn2)/Uo(Cn2). We use
Jjn : G4 = Cpyq for the embedding.

Fix a finitely generated subgroup Fy C K;(Br). We may assume that F) C Ki(By,) such that (@, «).1(F}) = Fo. Write
By = E; ® Wy, where E; = M, 2(A(W, ;). We also write

Ci,1 = Mr(s(1))(C(T)) © Mik2))(C(T)) & - - - Mi(i(my(C(T)).

with the identity of each summand being p;, j = 1,2,...,k(my) = my,—here we denote my; by k(my) to emphasise
that it corresponds to Ci. We choose n > 1 so that n > my. Put F{ = n,_,(F)), where n;, : B, — A defined by
my(a®b) = n(a)for all a € M, 2(A(W, ap)) and b € Wy, where 7, : M, 2(A(W, ap)) — Mp2(A) is the quotient map. Note
that 7., : Ki(By) — Ki(A) is an isomorphism. We may assume that F' C (ji o0 )«1(K1(Cr)). Let F = n,;ll((i,{,oo)ﬂ(K](Ck)))
and F = (@n,oo)*l(lj‘). (Here, we identify K;(M,2(A)) with K;(A) and K;(M,2(Cy)) with Kq(Cy).)

The subgroup F may be called the standard subgroup of K;(Br).

In what follows tr is the unique tracial state on Q. We will define an injective homomorphism j , : F — U(Br)/CU(Br).

—~—

We identify A(W, «;) with the following C*-algebra (recall s : A — Q is defined in the beginning of 7.2):
{(f,a) € C[0,1,Q®Q)BA: fi(0) = (s(a — 1) ® €q,) + A - Iogq and fi(1) =s(a —A)® 1q + A - logal,

where A e Canda — A =a — A - 14 € A. Note that (f, 14), where f(t) = 1o ® 1g, is added to A(W, «).
Write F = Z"") @ Z/knZ @ - - - Z./km, Z. Put m = k(my) + k(m;). Let X1, X, ..., Xi(my) be the free cyclic generators for

Z¥™) and xo; be cyclic generators for each Z/kZ, j = 1,2, ..., k(m;), respectively.

Fix unitaries z;, 2}, ..., Zymy» 20,15 20,20 - -+ » Z0.me) € Ck Such that [z] = x;, i = 1,2,.... k(my) and [z5;] = Xo,,
j=1,2,..., k(m;) = m,. Note that (z{)’j)"f € Up(Gy2). We may choose z(’),]. so that (z()’j)"f € CU(Cy,2). We further assume
that zj’ = diag(z}o), 1,...,1), where zj(o) is the standard unitary generator for C(T),j = 1,2, ..., k(mg).

We write s(z{) = exp(ih; ;) exp(ih; ; ), where h; o, b ; € s(p;)Qs.0.5(p;). (Note that here we use the fact that the exponen-
tial rank for Q is 1+¢ (see [29])). Let h}fo, h]ffl € R such that h}fz = tr(h}’l), I=0,1.Putz = zj’ exp(—Zinh}fl) exp(—2inh}f0),
j=1,2,...,m(k). Then [z] = [zj’] = x;. Note that s(z;) = exp(2imh;o)exp(2imh; ) such that hjo, hj; € (s(p;)Qs(p;))s.a.
and tr(hjo) + tr(hj1) = 0,j = 1,2,...,k(mg). We also choose zp; and s(zp;) = exp(ihjo,0)exp(ihjo 1) such that
tl‘(hj’o.o) =+ tl‘(hj,o’l) =0, and [ZOJ‘] = Xo,j-

Define u; = (f}, z) as follows.

fi(t) = (s(zj) ® eq,) @ ((exp(i2tmh; o) exp(i2tmh; 1)) ® (1 —ey,)) forall t € [0, 1]. (e11.20)
Note that
£i(0) = (s(z)) ® e4,) ® (1 ® (1q — €4,)) and (e11.21)
fi(1) =(s(z)) ® ew,) @ (exp(i2mh;jo) exp(i2mh; 1) ® (1 — ey,)) = 5(zj) ® 1q. (e11.22)
In fact
fi(t) = exp(2imd; o(t)) exp(2in d; 1(t)), (e11.23)
where
dio(t) = hjo ® ey, + thjo ® (1qg — ey,) and (e11.24)
di1(t) = hj1 @ ey, + thj1 ® (1g — €qy). (e11.25)

In particular, (f,, z)) € AW, o) and 1u; € UAW, o)), j = 1,2, ..., k(my).
Write u; = ¢ + u(uy;), where ¢ € A(WW, a;,) and pu(uy;) is a scalar. Since d; o, dj 1 € AW, otp)s.q., u(u;) = 1. In particular,

— —

(f,z) e AW, ay) and uj € UAW, p)), j=1,2,..., k(mg).

—~

Let up; = (fo, 20;) € A(W, a,) be defined as follows:

fo,j(t) = exp(2imd; o o(t)) exp(2ind; o 1(t)), (e11.26)
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where
djqoqo(t) = hjo0,0 0% €y =+ l'hjyoyo (24 (1Q — Ean) and (61127)
di0.1(t) = hjo1 ® eq, + thijo1 ® (1o — g, ). (e11.28)

One has, for some & € AW, ),
Ugj = ;0,]' =+ 1A(mn)'

The map Ju 5 : F e U( )/CU( ) defined by x; — u; and Xo; +—> Up; is an injective homomorphism and define
Jur t F — U(BT)/CU(BT) by identifying u; with @, (u;) and ug; with @, o(ug;). It should be noted, by our choice,
kjllod =0.

11.4. We keep notation used in 11.3. Define
Enk ={(f, a) € Mu2(C([0, 1], Q ® Q) & Mp2(Ci) : f(0) = s(a)®e,, and f(1) € s(a) @ 1o},

n=1,2,..., wheres : My2(C) — My(Q) is the restriction of s : My2(A) = Mp2(Q) to Mgy2(Cx) C Mpyp2(A). Fix
e > 0 and a finite subset F C Br. Without loss of generality, we may assume that  C B,. Denote by 74 = g, (F),
where g, : By — Ep = M2(A(W, ) is the projection map. Let

k(mg)
Ck 1= @ Mr(k(l
Now write uq, us, ..., Uk(my) € E, which represent the free generators of K;(E, ). We may assume that m,(u;) = z;, the
unitary generator for My;(C(T)),j = 1, 2, ..., k(mg), and where 5, : E; — M,2(A) is the quotient map. We also assume

that z; and u; have the form (e11.20).

Fix /2 > 8 > 0 and a finite subset ¢’ C Gy with G’ D . (F**), where mn : Enx — My2(C) is the quotient map.
Choose a finite subset 7; D F4* such that m,  (F;) D G.

We also assume that there is an G’-§-multiplicative completely positive contractive linear map L : A — C; such that

|IL(a) — a|| < §/4 forall ae ¢, (e11.29)

where we also use L to denote L ® idy_ , : M2(A) — M,2(Cy). Choose § > 8o > 0 such that, for any (f, a) € 7, if

|t - t/| < 250,
If () — f()]l < 8/16 for all t,t" € [0, 1]. (e11.30)
Define L : E, — E, k as follows: L(f, a)) = (g, L(a)), where

((1—2t/80)s(L(a)) ® e, + 3:5(a) ® €,)  for all t € [0, 80/2],
g(t)= f([ 50/2) forall t € (89/2,1—80/2],
15s(@)®1q + “5A(La) ® 1q for all t € (1—380/2, 1].

(n)?2

One verifies that L is an F;-8 /2-multiplicative completely positive contractive linear map from E, into E, y.

We now assume that a, < ayqq. Let 1y = ];fg‘: and r, = “";’ji;"” Let1>n>3/4and u; > 0,j=1,2,..., k(my).
Let w; = p;/tr(s(pj)) j = 1,2, ..., ki(mg).

Fix a contmuous increasing surjective function g; : [0, n] — [0, 1] such that g;(0) = 0, g1(n) = 1 and decreasing
surjective function g, : [, 1] — [0, 1] such that g,(n) = 1, g2(1) = 0. Define h|jo ,;= g1 and h|j, 1= . In particular,
h=(0)=0and h(1) =

Define a homomorphism w’;R : M2 (C,1) = Mi2(C([0, 1], Q) ® ey, ) such that

(ﬂgR(zj)(t) = s(z;) exp(i2m (w;j/r2)h(t))s(p;) ® ey, for all t € [0, 1]. (e11.31)
Define ¢cr = wﬁ,RIMW(c,m)ea(wﬁ,R)IM(m)z(c,(,z): M (C) = Min2(C([0, 11, Q) ® ey, ), where

g g(a)(t) = s(a)®e;, forall t € [0, 1]. (e11.32)

Let gar : En — M(n,)z(C([O, 1],Q) ® e;,) be defined by ¢ar((f,a)) = VYcr oL o ma(a) for all a € E, and where
7a : M (AW, ar)) = M, 2(A) is the quotient map.

Now define a completely positive contractive linear map ¥ : E;, — M2 (A(W, apy1)) as follows. We will use some of
the notation in Section 7. Define (see Section 7 for the notation)

Po(¥((f, a))) = L(a) and (e11.33)
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P (W((f, a))) = diag(P; o ¢r.r, 0 PaRan(L(f, @), (@ar(f, )

= diag(Py o grry © ¢aRa,(g: L(a)), (@ar(f, 0))). (e11.34)
Note that

Pr(¥(f, @))(0) = diag(s(L(a)) ® eqyr,» S(L(a)) ® er,) = s(L(a)) ® ey,,, and (e11.35)

Pr(¥(f, @))(1) = diag(s(L(a)) ® er,, s(L(a)) ® er,) = s(L(a)) ® 1q. (e11.36)
Let

Wi(t) = (exp(i2mhj o)) exp(i2mhj 1) ® eq,r, ® (exp(i2mth; o)) exp(i2rwth; 1) ® (er, — eqpyr;)

+5(zj) exp(i27 (wj/r2)h(t))s(p;) ® er,, i=1,2,..., kimy).

Let E;, | := Myup(A(W, otns1)), then in E/ | (with large ¢'),

¥ (u)— W, z)ll <6, j=1,2,..., kimy). (e11.37)

(Here the unitalization of ¥ is also denoted by ¥.) Therefore there exists Hj oo € (E;, )s.q. With ||Hjeoll < 2arcsin(é/2)
such that

[V (u;)] = exp(i2mwHj 00)(W}, 2), j=1,2,..., k(mg). (e11.38)
Put
Hjo(t) = hjo ® (€q,r, D er,) @ thjo @ (e, — €gyry ), (e11.39)
H;1(t) = hj1 ® (eq,r, D er,) @ thj1 @ (&, — €q,r,) and (e11.40)
Hj (t) = (wj/r2)h(t)s(p)) ® ey, . (e11.41)
Noting h(0) = 0 and h(1) = 0, we see that Hj; € Mp2(R(cty 41, 1)). Therefore
@A R a1 ([W(U)]) = exp(i2m Hj 00) exp(i27 H; o) exp(i2m Hj 1) exp(i27 Hj ). (e11.42)
Note that (recall that tr(h;o) + tr(hj 1) = 0,j = 1,2,..., k(myg)), for all t € [0, 1],
tr(Hjo + H;j1)(t) =0 (e11.43)
We then compute that, for all t € [0, 1],
tr(Hj 00 + Hj,0 + Hj,1 + Hj2)(t) = tr(Hjo0) + (@j/r2)h(t) - tr(s(p;))tr(er, ) (e11.44)
= tr(Hj 00) + wjh(t). (e11.45)
It follows that, in E;, ; = Myy2(R(antq, 1)), for all ¢ € [0, 1],
IDer (@A Ry ([P (W5)1NE) — pih(E)] < 8. (e11.46)
Let
Wy j(t) = exp(i2mhj,0) exp(i27hjo,1) ® €q,r, ® exp(i2rth; o) exp(i27rthjo 1) @ (er, — €qyry)
+s(z)s(pj) ® er,, ji=12,...,m.
A similar computation shows that
1D (@R (¥ (U0 )DXO) < 5. (e11.47)

We will keep notations in 11.3 and 11.4 in the following statement.

Lemma 11.5. Let C be a non-unital separable simple C*-algebra in D with continuous scale such that ker pc = Ko(C) and let
B = By be as constructed in 7.2.

Let ¢ > 0, F C B be a finite subset, let P C K(B) be a finite subset and let 1/2 > §, > 0.

For any finitely generated standard subgroup F (see 11.3), any finite subset S C F, there exists an integer n > 1 with the
following property: _
for any finite subset &/ C U(Br) such that U C Jry(F) C Jru((@n.0o)x1(K1(En))) (see the end of 11.3) and I1(U) = S, where
1T : U(B)/CU(B) — Ky(B) is the quotient map, for any homomorphism

Y JFu((Pn,co)x1(K1(En))) — Af(T(C))/Z, such that y 1oy, r(@n.00) (ki (En))= 0 and any ¢ € C, with ||c|| = 1, there exists
F-e-multiplicative completely positive contractive linear map & : By — cCc such that

[@]lp=0 and dist(®1(Z), y(2)) < 8 forall zeu (e11.48)
(in Uo(C)/CU(C) = AFE(T(C))/Z).

(here we assume dist(®1(2), [@(2)]) < o/4 for all z € U-see 2.7 for the definition of @1).
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Proof. Fix ¢ > 0, F and P as described by this lemma. Fix §; > 0, a finite subset G C Br. We assume that F C G. Choose
no > 1 such that there exists finite subset G’ C By, such that, for any b € G, there exists b’ € G’ such that

lIb — ®poo(b)l| < 81/64. (e11.49)

We assume that §; < min{dy/16, /16}.

Choose k > 1 asin 11.3 and write F = Z™ @ Z/kiZ & - - - Z/km, Z. Fix a set of generator S of F.

To simplify notation, without loss of generality, we may assume that G C ®p,,0(G’). We also assume, without loss of
generality, that P C [@; ](Bs). Let P* C K(By,) be a finite subset such that P C [@y,,001(P').

Let i/ C Jru(F)and, letzjand uj, j=1,2,...,ms, and 2o, and ugj, j = 1, 2, ..., m;, be as described in 11.3. Without

loss of generality, we may assume that &/ = {iiy, i, . . ., L'tmf, U 1, ..., Uom )
We also assume that there exists a completely positive contractive linear map L : Bf — B, such that, for all n > ng,
(@ 00(b')) — b'|| < 81/64 forall b’ € ¢’ (e11.50)

We further assume that §; is sufficiently small and G is sufficiently large so that [L']|» is well defined for any G-8;-
multiplicative completely positive contractive linear map from Br. Moreover, L'’ can be defined so that dist(L’(2), [L'(z)])
< 89/4 for all z € U (see 2.7).

Choose § = m and choose n > ng 4+ my 4+ m; + 2 as in 11.4 associated with /64 (in place ¢) and G (in place
of 7).
Choose non-zero elements ¢;; € ﬁJr which are mutually orthogonal, i=1,2,...,ms, [=1,2.

Choose 1 > 1o > 0 such that
no < inf{d.(¢;;): T € T(C)}, 1 <j<my and | € {1, 2}.

Choose gj +, gj,— € Aff(T(C)); and A; 4, Aj - € R, such that
0 <gi(r)<n0,0<g_(tr)<mno forall T eT(C) and (e11.51)
y(Uj) = Aj 18+ — Aj-&—, J=1,2,...,m. (e11.52)

Let P, : B, — E, be the projection map, and let G’ C E, be a finite subset such that g” D P(g").
Define <p]f., : Mz (AW, &) = M2 (R(any 1, 1)) be as defined (denoted by @ g a,,, o ¥ there) in 11.4 (with u; = A; ¢

and p; = 0 if i # j (for ¢;,); and with p; = A; — and p; = 0 if i # j (for ¢/ ,)) such that

[} 1(u;)] = exp(v/ =127 H; o0) exp(v/ — 127 Hj o) exp(v/ — 127t H; 1) exp(+/ — 127 H; 2.1), (e11.53)
where Hj o0, Hj 0, Hj 1, Hj.2.1 € Mp2(R(ant1, 1)), I = 1, 2, such that

tr(Hj 00(t) + Hjo(t) + Hj1(t) + Hj2,1(t)) = tr(Hj 00(t)) + tr(H; 2,1)(¢), [=1,2, (e11.54)

tr(H;2.1)(t) = A4h(t), tr(Hj22)(t) = A_h(t) and (e11.55)

[tr(Hj00(t))] < 3/4 (e11.56)

for all ¢t € [0, 1], where h(t) is C([0, 1]);. such that h(0) = 0, h(3/4) = 1, h(1) = 0, h(t) is strictly increasing on [0, 3/4]
and strictly decreasing on [3/4, 1]. Moreover (pj/‘, is ”-8/8(my)-multiplicative,

|'g0]-,,,(u,-)-| = exp(2w v —1H; g0) exp(2wr v/ —1H; o) exp(2wr v/ —1H; 1), if i #j and (e11.57)

[¢j]lo =0, (e1158)

where Q = [P, 0 @y, o ](P’). (Note that Ki(R(ay+1, 1)) = {0}, i = 0, 1). Note since C € D, for each j, there exists a non-zero

homomorphism <pj’f, : M(n!)z(R(anH, 1) — Gi:=¢Ccj=1,2,..., m. It follows from 11.2 that there is, for each j and
I, @ homomorphism ¢/, : Mg, 2(R(en41, 1)) — G such that

sup{|t o ¢/,(h) — gj.+(7)| : T € T(C)} < §/2 and (e11.59)

sup{|t o ¢/5(h) — g —(7)| : T € T(C)} < §/2. (e11.60)

Let ¢j1 = ¢/, 0 ¢f; : En — Gj. Recall ¢} is of the form ¢arq,,, o ¥, we compute that (also using (e11.43) and (e11.46),
and, see 2.1 for the notation [ - 1),

2
Da(ZW],l(ujﬂ) ~asi 6(mp) (Aj+&+ — Aj-&j—) (in Aff(T(C))/Z) (e11.61)
=1
- @) (in Aff(T(C))/Z) (e11.62)
De(Teji(ui)1) ~25, /160mp) O (in Aff(T(C))/Z), i#]. (e11.63)
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Similarly, using (e11.47), we have
2
De( > ([934(t0.)0)) ~25,160mp) O (in AFT(C))/2). (e11.64)
=1

Now define @' : E, — @;n:fl(@,zzl Giby @' = 2;21(212:1 ;). From the above estimates,

dist(®1(2), y(2)) < 8 forall z € u. (e11.65)
Moreover, since @' factors through M, 2(R(ctn11, 1)),
[@']lo= 0. (e11.66)

Define @ = @’ o P, o L. We check that @ meets the requirements. O

Lemma 11.6. Let C be a non-unital separable C*-algebra. Suppose that u € U(Ms(C)) (for some integer s > 1) with [u] # 0
in K1(C) but uk e CU(MS(é))for some k > 1. Suppose that wc(u) = €% for some 6 € (M;);q., Where ¢ : MS(C) — M; is the
quotient map. Then sk - tr(0) € Z, where tr is the tracial state of M;.

Let B be a stably projectionless simple separable C*-algebra with ker pg = Ko(B) and with continuous scale. For any ¢ > 0,
there exist § > 0 and finite subset G C C satisfying the following: If L1, L, : C — B are two G-§-multiplicative completely
positive contractive linear maps such that [L1](u) = [L,](u) in K1(B), then

dist([Ly(u)1, TLa(u)]) < &, (e11.67)

where u is as in the first paragraph.

Proof. Write u = e>V=1" 4 ¢ where ¢ € My(C)and 6 € (My)s q.. Therefore, if u* € CU(M,(C)), then sktr(0) € Z.
Note L; is originally defined on C and the extension L; : My(C) — M,(B) has the property that Li(u) = gz‘mﬂg + Li(¢),
i = 1, 2. To simplify notation, without loss of generality, we may assume that [L;(u)] - [Ly(u*)] € Up(Ms(B)). Note that

7p(TLi(u)] - [La(u™)]) = 62«/—717r96—2\/f1n9 -1

(where g : Ms(B) — M; is the quotient map). By 6.1, we may write

n
[Li(u)] - [La(u*)] = l_[exp(Z«/—lnhj) for all some hy, hy, ..., h, € MS(B)S,H with

j=1

mp(hj) = 0 and mp(exp(2v/ —1xh;)) = 1 for all j. (e11.68)

It follows from 14.5 of [35] that, by choosing small § and large G (independent of L, and L) there is hy € My(B)sq. such
that ||ho|| < min{1, €}/4s(k + 1) and

((exp(Zinho))(H exp(2i71hj)))" IS CU(MS(B)). (e11.69)
j=1

By (e11.68), mp(exp(2ihg)) € CU(Ms). Then sto(ho) € Z. However, since [[ho|| < 1/4s(k + 1), to(ho) < 1/4s(k + 1). This

Z.
implies that to(ho) = 0. Note also UO(B)/CU(B) = Aff(T(B) /Z. Therefore (by (e11.69)), there is an integer m € Z such that,
for any t € T(B),

n
kr() hj+ ho/k) =m. (e11.70)
j=1
Forany 7o € T(B)and any 0 < a < 1, t = a1y + (1 — a)to is a tracial state of B. Then (by (e11.68)),
n n
k(Y hj + ho/k) = kato( D hy) + ato(ho/K)) = m. (e11.71)
j=1 j=1

So kato()_j—; hj + ho/k) = m for any 0 < & < 1. It follows that

n
7o()_ hj+ho/k) =0 for all 7o € T(B). (e11.72)
j=1
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It follows that

n
[TQ_m)l < e/2(k+ 1) forall T € T(B). (e11.73)
j=1
Thus (e11.67) holds. O

12. Construction of homomorphism

Proposition 12.1. Let A be a separable simple C*-algebra in D. Suppose that ker ps = Ko(A). Then there exists a sequence
of approximately multiplicative completely positive contractive linear maps {¢,} from A to W which maps strictly positive
elements to strictly positive elements.

Proof. Fix t € T(A). Define y : T(W) — T(A) by y(ty) = 7, where tyy is the unique tracial state of W. Then y induces
an order semi-group homomorphism from LAff(T(A)) onto LAff(T(W)). Since ker ps = Ko(A) and Ko(W) = 0, this in turn
induces a homomorphism I" : Cu™~(A) — Cu~ (W) (see 7.3 of [15]). Fix a strictly positive element a; € A with ||a|| = 1. Let
fay > 0 be the associated number (see 3.9). There exists a sequence of approximately multiplicative completely positive
contractive linear maps ¥, : A — D, such that yr,(ap) is a strictly positive element of Dy, t(f1/4(ao)) > fq, for all t € T(Dy),
(where Dy is the same as constructed in the proof of 9.1 of [15] and v, is the same as ¢; ). Moreover,

nlim sup{|t(a) — T o yYp(a)l : T € (A)w} =0 forall aeA

— 00
(see the proof of 9.1 of [15]). In particular, this implies that lim,_, », ||¥n(x)|| = ||x|| for all x € A. For each n, let1, : D, — A
be the embedding.

Let A, = I' o (Cu™(1,)). It follows from [49] that there is a homomorphism h; : D, — W such that

Cu~(hy)=Xp, n=1,2,....

By passing a subsequence if necessary, we may assume that
lim ||h, o Yp(ab) — hy o Yrp(a)hy, o Yryu(b)| = 0 for all a, b € A.
n—oo

By using an argument used in the proof of 12.4 of [15], we may also assume that h, o ¥,(ap) is a strictly positive element
of w. O

Remark 12.2. In the absence of the condition Ko(A) = ker p,, the proof of 12.1 shows that the conclusion of 12.1 holds
if the assumption is changed to that A has at least one non-zero W-trace. The proof of Proposition 12.1 also shows that
every tracial state of simple C*-algebras in D with Ky(A) = ker p4 is a W-trace. Proposition 12.1 can also be obtained from
the proof of 8.8.

The following is a number theory lemma which may be known.

Lemma 12.3. Let aq, ay, ..., a, be non-zero integers such that at least one of them is positive and one of them is negative.
Then, for any d € Z, if a1x1 + axXy + - - - + axX, = d has an integer solution, then it must have a positive integer solution.

Proof. We will prove it by induction. Suppose that a, b € Z such that a > 0 and b < 0. Suppose also there are xq, yo € Z
such that axy + byg = d. Then, for any integer m € Z, and any x = xo + bm and y = yo — am,
a(xo + bm) + b(yo — am) = d. (e12.1)

Thus, by choosing negative integer m with large |m|, both xo + bm and y, — am are positive. This proves the case n = 2.
Suppose the lemma holds for n — 1 with n > 3. Without lose of generality, let us first assume that a; and a, have

different signs. Suppose {xJ, X9, ..., x%} is an integer solution for a;x; + axXs + - - + apXy = d, Let k = a1x9 + X + - - - +
an—1x2_,. Now we divided it into two cases:
Case 1: k and a, have opposite signs. By induction assumption there are positive integers x7, x5, ..., x,_; such that
k=ax +ax, + -+ an_ax,_q, (e12.2)
since aia; < 0 and n > 3. On the other hand, by applying the case n = 2, we have integers x > 0 and y > 0 such that
kx + any = d
Let x; = xx] for i € {1,2...n — 1} and x, = y to get desired positive integer solution for
n n—1
Zx,—a,- =X Z Xa; + apy = d. (e12.3)
i=1 i=1

Case 2: k and a, have the same sign.
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By the induction assumption there are positive integers: X}, x,, ..., x;_; such that
—k=a1x] + ax5 + - + ap_1x,_, (e12.4)

(recall a;a; < 0). On the other hand, applying the case n = 2 (note that —k and a,, have opposite signs), we have x > 0
and y > 0 such that —kx 4 a,y = d. Finally let x; = xx] for i € {1,2...n — 1} and x, =y to get the desired positive integer
solution. O

12.4. Recall that, from 7.2, 2, is an inductive limit of By, = Wyn@®M2(AW, e )) and recall that Ko(2p) = Z and Kq(2o) =
{0}. Let Eyy = M2 (A(W, a)) be as in 7.2. For any m, Ko(Er) = Z and Kq(Epn) = {0}. Let id : Ko(Z0) = Ko(Em) be the
isomorphism. Then it induces a unique element in KK(Zy, Ep,) and will be denote by id. Let z; = [1] € Z = Ky(Z) be the
generator of Ko(Zp). Suppose that C is a separable amenable C*-algebra satisfies the UCT. Denote by «z, € KK(C ® 2o, C)
the element such that (kz, ). : Ki(C ® Z9) — Ki(C) ® Z = K;(C) is the isomorphism with (k z, ).i(x ® zz) = x for x € K;(C),
given by Kunneth’s formula, i = 0, 1.

Lemma 12.5. Let C be a separable amenable C*-algebra which satisfies the condition in 9.3 and which satisfies the UCT. There
exists a sequence of approximate multiplicative completely positive contractive linear maps ¢, : C ® Z9 — C ® My, (for some
subsequence {k(n)}) which maps strictly positive elements to strictly positive elements such that

[@nllp= (kz,)lP, (e12.5)
where Kz, € KK(C ® Zy, C) is an invertible element which induces (k z, )., for every finite subset P C K(C) and all sufficiently
large n.

Proof. Let ¢ > 0 and let F C C be a finite subset.
Without loss of generality, we may assume that [L]|p is well-defined for any F-e-multiplicative completely positive
contractive linear map from C. We may also assume that P generates the subgroup

Gr C K(OYEPKiOIEP P éK,-(C, 7./jZ) for some m > 2.

i=1,0 j=1

Let § > 0 and G C A be a finite subset. Let A be a unital simple AF-algebra with Ky(A) = Q & Z and with ker p4 = Z.
Write

A=U%F,

where 14 € F, C F,41 is a sequence of finite dimensional C*-algebras. Recall that there is an identification of Ko(Zy) with
ker pa = Z C Ko(A). Therefore there are sequences of pair of projections p,, g, € F, such that

(Un,00)0([Pr] — [qn]) = 2z,
where j, o : F; — A is the embedding and zz is [1] in Z = ker ps. Without loss of generality we may assume that

[Pn] # [gn] € Ko(Fy) for all n > 1. (e12.6)
Write

Fp = My, & My, @ - - - My,.
Note that | > 3 (see 7.7.2 of [2]). Let P; : F, — M, be the projection map. Let x; = [P(pn)] — [Pi(qn)] € Z = Ko(My,),

i=1,2,...,L Then some of x; > 0 and some of x; < 0. Otherwise, we may assume that

x; >0 forall ie{1,2,...,1}. (e12.7)
Then [p,] — [gn] > O for all n. It follows that, for all k > 1,

Unnti)x0([Pn] — [@n]) = 0 and (jn,o0)x0([Pn] — [ga]) = O. (e12.8)

That is (jn,c0)s0([Pn] — [qn]) € Ko(A)+. This contradicts the fact that (ju o0 )s0([pn] — [qn]) = 2.
Note that, as constructed in Section 6, with A above,

Zy = mli_[}go(Em @ Wm)s (612.9)

where Wy, is a single summand of the form R(ap, 1) for some 0 < oy < 1 and En = My, p(A(W, ap)). Note that
Ki(Wp) = {0},i = 0,1, and Ko(A(W, o)) = Z and K1(A(W, o)) = {0}. Let id € KK(Z, Ep,) be as described in 12.4. Let
koo € KK(C ® Zy, C ® Ep) be the invertible element given by [idc] and id.

By (e12.9), there exists a G-§-multiplicative completely positive contractive linear map @ : C ® 2y — C ® E, (for
sufficiently large m) such that

[@]]p= (x00)lP (e12.10)
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which maps strictly positive elements to strictly positive elements. Consider the short exact sequence
0 — Go((0, 1), Q) = Em —> Myp(A) — 0.

Let wgq : Em —> My 2(A) be the quotient map. Note that (¢gq).0 gives an isomorphism from Z = Ko(A(W, o)) onto
ker pa. Let 95 : C ® En — C ® Mgnp(A) be defined by idc ® @ga. Let 91 : C ® Z9 — C ® My, 2(A) be defined by
$1 = @q o ®. For any §; > 0 and finite subset F4 C M, 2(A), there is a unital F4-§;-multiplicative completely positive
map, @ : Myp2(A) — Mgn2(Fy) such that [@a]lerp, is Injective. Note that @, maps strictly positive elements of A to
strictly positive elements of F,. Recall

Fo =My, & My, © - - - My,

and x; = [Pi(pn)] — [Pi(gn)] € Z,i =1, 2, ..., L. Without loss of generality, we may assume that

xi>0fori=1,2,...,m", x;<0fori=m"+1,...,I', and x;, =0for1=10+1,...,L (e12.11)
We claim that xq, x,, ..., xy are relatively prime. If not, x; = Nx;, for some integer x;,i =1, 2, ..., [, for some N > 2. Then
N(jn,00)50((X}, X5, ..., X])) = zz. This is impossible since Ky(A) = Q @ Z and z; = [1] in the summand Z. It follows from

12.3 that there are positive integers Ny, Na, ..., N; such that
!
D Nxi=1. (e12.12)
i=1

Let r = ) ., Niki. Define 1 : My2(Fn) = Mm2(M;) by

1

((fr, fo - - 1)) = EDulh), (e12.13)
i=1
where i; : My, — M, is defined by
Ni
——
(fy) = diag(fi, fi, ..., fi) forall ffeM, i=1,2,...,L (e12.14)

Let kz, € KL(C ® 2o, C) be defined by, forj=2,3,...,
kz,(X®zz) = x for all x € K;(C ® Z) ® Ki(C ® 20, Z/jZ), i =0, 1. (e12.15)

Note that (1.0)([Pn] — [ga]) = [1] € Z = Ko(Myy2, ). Let L = (idc ®1) o (idc @ Pa)o 91 : C® Z9 — C ® M2, By choosing
8 and &, sufficiently small and G and G, sufficiently large, L is F-e-multiplicative. Moreover, we compute that

[Lllp= [kzllp. O

Lemma 12.6. Let A and B be separable simple C*-algebras in D with Ky(A) = ker ps and Ko(B) = ker pg, respectively, which
have continuous scale and satisfy the UCT. Suppose that there is k € KL(A, B) and an affine continuous map «r : T(B) — T(A).
Then, there exists a sequence of approximate multiplicative completely positive contractive linear maps ¢, : A — B such that

[{en}l =« and (e12.16)
nlim sup{|t o py(a) — «kr(t)(@)|} =0 for all a € As,.. (e12.17)

Proof. Let ¢ > 0,1 > 0, F C A be a finite subset and # C A, be a finite subset.
Fix a finite subset P C K(A). We may assume that, for some m > 1,

P C Ko(A) D K:(A) ED(EP KolA, 2/i2) D K (A, 2/i2)).

j=1

Moreover, m!x = 0 for all x € Tor(Ko(A)) N P. Let Go» be the subgroup generated by Ko(A) N P. We may write
Go.p = Fo ® Go, where Fy is free and Gy is torsion. In particular, m!x = 0 for all x € Go.

Choose 6 > 0 and finite subset G C A so that [L]|» is well defined for any G-§-multiplicative completely positive
contractive linear map L from A. We may assume that § < ¢ and F U #H C G. Since both A and B have continuous scale,
T(A) and T(B) are compact (5.3 of [15]). Choose ag € A, such that ||ag|| = 1 and

d.(ap) < min{n, §}/4 for all t € T(A). (e12.18)

Let ey € A be a strictly positive element of A with |eg|| = 1 such that t(ey) > 15/16 for all T € T(A).
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Since A € Dy (see 8.8), by 10.7 of [15], there are G-§/4-multiplicative completely positive contractive linear maps
90 : A — go(A)Ago(A) and v : A — D C A with D € ¢ and My(D) L @o(A) such that

lx — (wo(x) @ diag(o(x), Yo(x), ..., Yo(x)))|| < /16 forall x € G, (e12.19)

®o(eo) < do, (e12.20)

t(fi/a(¥o(eo))) > 1/4 for all t € T(D). (e12.21)
Let ¥y : A — My (D) C A be defined by

Yo(a) = diag(Yo(x), Yo(x), ..., Yo(x)) for all a € A. (e12.22)

Let P; = [@ol(P) and P, = [¥](P). Put P; = P U P; U P,. Note that, since K;(D) = {0} (i =0, 1), lpO|7>ﬁK,v(A)= 0,i=0,1.
Moreover, by (e12.22),

[Yollprkyz/zy=0, i=0,1, j=2,.....,m. (e12.23)
Set

d = inf{d.(¢o(eg)) : T € T(A)}. (e12.24)
We also have

[pollr,= lidallF,- (e12.25)

Let G; = G U ¢o(G). Choose 0 < §; < & and finite subset G; C A such that [L']|p, is well defined for any
G1-6;-multiplicative completely positive contractive linear map from A.

It follows from 10.8, 12.1 and 12.5 that there exists a G;-6;/4-multiplicative completely positive contractive linear map
L:A — B® Mg for some integer K such that

[L]lpy= Kz, 0 (K2, 0 K)|py= Klp;, (e12.26)

where «z, € KK(B® Z, B) is as in 12.4 with B = C. Without loss of generality, we may assume that G; C Al
Let by € B with ||bg|| = 1 such that

t(bo) < min{n, 81, d}/16(K + 1) for all t € T(B). (e12.27)
Let e, € B® My be a strictly positive element of B ® My such that
t(ep) > 7/8 forall v € T(BQ® M). (e12.28)
Let Q C K(B) be a finite subset which contains [L](P4). We assume that

o c ko(BYEP KBYPD P 6191@-(3, Z/iz) (e12.29)

i=0,1 j=1

for some my > 2. Moreover, we may assume that m;x = 0 for all x € Tor(Gp ), where Gy is the subgroup generated by
Q N Ko(B). Without loss of generality, we may assume that m|m;.

Let G, C B ® Mk be a finite subset and 1/2 > §, > 0 be such that [@]|g is well defined for any G,-8,-multiplicative
completely positive contractive linear map @ from B ® M. Note also, by 8.8, B € Dy. There are G,-§,-multiplicative
completely positive contractive linear maps ¢gp : B& Mg — @0 5(B ® Mk )(B ® Mk )po (B ® M) and ¥ : BQ Mg — Dy,
Mm,x(Dy) C B® My with Dy € ¢’ such that

(mq)!

b — (¢o,5(b), diag(v0,5(b), Yo,5(b), ..., Yos(b))ll < min{éz, £/16,n/16} for all b € Gy (e12.30)
and ¢o p(ep) < bo and t(yop) > 3/4 forall ¢t € T(Dp). (e12.31)
Note that K{(Dp) = {0} = Ko(Dp). Moreover, as in (e12.19) and (e12.23), we may also assume that
[Y0.6]ITor(Ge )= 0 and [¥opllonks,z/zy= 0, j=2,3,...,m. (e12.32)
Therefore
[@0.5]ITor(Gy )= [idB]ITor(Gq ) [¥0.6]l onicy8)= lidp]| onic;(s) and (e12.33)
[@o,6]l onki,z/izy= lidsll onii(8,2/iz)s J = 2,3, ..., my. (e12.34)

Let Gp be the subgroup generated by P and let ' =k — [@g 5] o [L] o [¢o] be defined on Gp.
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Then, by (e12.26), (e12.33) and (e12.34), we compute that
K,|G0,7>: 0, K/|7:n1(1(/\): 0 and (612.35)
K'lpoiazin=0, j=2,3,...,m. (e12.36)

Let 1 : M;;(D) — A be the embedding. ~

Let Kﬁ : Aff(T(A)) — Aff(T(B)) be given by «7. This induces an order semigroup homomorphism 7 : LAff, (T(A)) —
LAff+(T(B)). By 8.6 and 11.1, one checks easily that Kﬁ is a Cuntz semigroup homomorphism and a morphism in Cu.

Let y' : Cu(Mmu(D)) — LAfer(]N"(B)) be the Cuntz semi-group homomorphism given by y’ = /c}i o Cu(1). Put
¥ : Cu(Mm(D)) — LAff, (T(B)) defined by y(f) = (1 — min{n, no}/2(m"))y’(f) for all f € Cu(My(D)).

Let yp : Cu™(Mpy(D)) — Cu™(B) be the morphism induced by y (note Ko(Mp(D)) = {0} and see also 7.3 of [15]).

By applying 1.0.1 of [49], one obtains a homomorphism hy : M,;;(D) — B such that

(ha)so = Yoo and T o hg(c) = y(C)(r) forall T € T(B) and ¢ € (Muy(D))s.. (e12.37)
Define h: A— B by h = hy o ¥,. Then

[hllp= «'lp, (W]l Prkyy= 0 and [h]|prkz/izy= 0, i=2,3,...,m. (e12.38)
Moreover,

t(h(a)) = y(m) forall ae A and 7 € T(B). (e12.39)

Let eg € M;(D) be a strictly positive element with ||e4|| = 1. Then, by (e12.24),
d:(hg(eq)) < 1—d for all v € T(B). (e12.40)
It follows from (e12.27) that
d.(h(eq)) + d:(¢op(€0)) < 1 for all t € T(B). (e12.41)

Note that B has stable rank one (see 11.5 of [15] and 15.5 of [18]). By omitting a conjugating unitary in B without loss of
generality, we may assume that ¢, o L @ h maps A into B. Put @ = ¢y, o L @ h. Then @ is G-6-multiplicative. Moreover,
we compute that

[@]lp=«|p and sup{|t(D(x)) — «r(T)(x)| : T € T(Br)} < n forall x € H. (e12.42)
The lemma then follows. O
Lemma 12.7. Let A be a non-unital simple separable C*-algebra in D with Ky(A) = ker ps and with continuous scale which
satisfies the UCT. Let Br be as in 7.2. Suppose that there is k¥ € KL(Br,A), an affine continuous map «r : T(A) — T(Br)

and a continuous homomorphism k. : U(BT)/CU(BT) — U(A)/CU(A) such that («, T, kyc) is compatible. Then there exists a
sequence of approximate multiplicative completely positive contractive linear maps ¢, : Br — A such that

Hondl =« (e12.43)
nlim sup{|t o gy(a) — «kr(t)(a)|} =0 forall a € (Br)sq and (e12.44)
lim dist(kyc(z), ¢(z)) = 0 for all z € U(Br)/CU(Br). (e12.45)

Proof. lete¢ > 0,let n > 0 and let ¢ > 0, let P C K(Br) be a finite subset, let S, C U(BT)/CU(ET) be a finite subset, let
‘H C (Br)s.q. be a finite subset and let 7 C By be a finite subset.

Without loss of generality, we may assume that # C (Br)!, and, [L']|» and (L')f|s, are well-defined for any
F-e-multiplicative completely positive contractive linear map from Br.

Let G; C K;(Br) be the subgroup generated by P N K;(Br).

Fix § > 0 and a finite subset G C Br. We assume that § < min{e/2, /4, o /16}. To simplify notation, without loss of
generality, we may assume that G; C F C (@p,00)+1(Ki(Bn,)) for some ng > 1, where F is a finitely generated standard
subgroup of K;(Br) (see 11.3). We also choose ng larger than that required by 11.5 for § (in place of ¢) G (in place of F)
P and o /16 (in place of &p). Without loss of generality, we may write

Sy =Suy1U Su,O, (612.46)
where S, 1 C Jry(F)and S, C UO(BT)/CU(ET) = Aff(T(ET))/Z and both S, 1 and S, ¢ are finite subsets. For w € S, o, write

I(w)
w = [ [exp(v/=127h,,). (e12.47)
j=0
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where h, o € Rand h,j € (Br)sa,j=1,2,...,(w). Let
I(w)
Hy=1{hyj:1<j<lw), weS,o) and M=max{y_ [lhyll : w € Syo}. (e12.48)
i=0
To simplify notation further, we may assume that G; = F.

Write Gy = Z™ @Tor(G;) and Z™ is generated by cyclic and free generators x1, x;, . . ., Xm,. Let Tor(G) be generated by
X0,1,X0,25 + - - » Xo,me- Let U, Un, oo o, Uy, Ur.0, U0, -+ - s Ump 0 € U(BT) be unitaries such that [u;] = x;,i=1,2,...,my, and
[Ujol =%0j,j=1,2,...,m. Let m, : U(BT)/CU(BT) — K1(Br) be the quotient map and let G, be the subgroup generated
by Su.1. Since (x, kr, k) is compatible, without loss of generality, we may assume that 7,(G,) = {x1,X2, .. .,xmf} U
{X0.1,X0.2, - - - » Xo.m.} and Sy 1 = {uy, Uy, .‘.,ﬂmf, U1,0, U0, ..., Um0} as described in 11.3, in particular, kjiljo = 0 in
U(Br)/CU(Br),j=1,2,...,m,.

Let ¢, : Br — A be a sequence of approximately multiplicative completely positive contractive linear maps given by
12.6 such that

[{eon}] = k¢ and (e12.49)
lim sup{|t o gy(a) — «r(t)(a)|} = 0 for all a € (Br)syq.- (e12.50)
n—oo

Fix a strictly positive element e, € By with |ley|]| = 1 and t(ey) > 15/16 and t(f;/2(ey)) > 15/16 for all T € T(By).

Let 7, C Br be a finite subset which contains 7 U H U H,. and let 8, > 0. There are F,-8,-multiplicative completely
positive contractive linear maps @ : B — Dy C By with Dy € Cg, @1 : B — Br and &¢(Br) L Dy such that

b — (®@o(b) ® D1(b))|| < 8p/2 for all b € F, and (e12.51)
0 < d.(®Po(ep)) < min{n, o /16}/4(M + 1) for all 7 € T(Br). (e12.52)

Note that Ky(Dy) = K1(Dp) = {0}. Therefore, for any sufficiently large n,

[¢n 0 Pollp=0, [gno Pi]lp=«|p and (e12.53)
d, (@n(Po(es))) < minfry, /16}/2(M + 1) for all T € T(A). (e12.54)

Fix a sufficiently large n. Define A = «|¢, —(¢n0®1)'|c,: Gy — U(Z)/CU(Z). Since («, kT, ky) is compatible, 7, 0A(1;) = 0
and my o M(ilpj) =0,i=1,2,...,mpandj=1,2,...,m,.

Let 71 = FUH. It follows from 11.5 that there exists 7;-min{e /4, n/4}-multiplicative completely positive contractive
linear map L : By — cAc, where ¢ = @, o ®g(ep), such that

[L]lp=0 and dist(L'(), M(&;)) < 0/4, j=1,2,...,my. (e12.55)
Define ¥ : B — A by
¥(a) = L(a) @ ¢, o @1(a) for all a € Br. (e12.56)
Then ¥ is F-e-multiplicative if n is sufficiently large. By (e12.52), by (e12.50) and by choosing sufficiently large n,

sup{|t o gp(a) — kr(t)(a)]} < min{o /16, n}/(M + 1) for all a € H, and (e12.57)
sup{|t(¥ (b)) — kr(t)(b)| : T € T(A)} < min{o /16, n} for all b € H. (e12.58)

It follows from (e12.53), (e12.55) and the definition of A that

[W]lp=«lp and dist(¥' (1), kuc(@y)) < 0/2, j=1,2,...,mf. (e12.59)
By 11.6, we may also have

dist(¥ (L 0), kuc(ljo)) < o, j=1,2,...,m. (e12.60)
By the choice of M and #H,, (e12.52), and (e12.57), and by the assumption that («, 1, kyc) iS compatible,

dist(W (), k(W) < o forall w e S,o. O (e12.61)
Theorem 12.8. Let A be a separable amenable simple C*-algebra in Dy with continuous scale which satisfies the UCT. Let By be
as in 7.2. Suppose that there is k € KL(Br, A), an affine continuous map «r : T(A) — T(Br) and a continuous homomorphism

Kuc - U(BT)/CU(ET) — U(A)/CU(A) such that (k, k1, kyc) is compatible. Then there exists a homomorphism ¢ : B — A such
that

[pl =k, Toga)=kr(t)a) forall ae (Br)sa and ¢! = kyc. (e12.62)
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Proof. Let e, € Br be a strictly positive element of Br with |e,|| = 1. Since A has continuous scale, without loss of
generality, we may assume that
min{inf{z(ey) : T € T(Br)}, inf{z(f12(ep)) : T € T(Br)}} > 3/4. (e12.63)

Let T : (Br)y \ {0} = N x R, \ {0} be given by Theorem 5.7 of [15].
By 12.7, there exists a sequence of approximately multiplicative completely positive contractive linear maps ¢, : B —
A such that

Hon}l =« (e12.64)
nlim sup{|t o pp(a) — kr(t)(a): T € T(A)|} =0 for all a € (Br)s, and (e12.65)
nlirglo dist(xyc(2), (pg(z)) =0 forall z e U(BT)/CU(BT). (e12.66)

Let ¢ > 0 and F C By be a finite subset.

We will apply 5.3. Note that Ky(A) is weakly unperforated (see 5.5 and 8.11). §;1 > 0 (in place of §), ; > 0 (in place
of y), n1 > 0 (in place of n), let G;1 C Br (in place of G) be a finite subset, H1 1 C (Br)+ \ {0} (in place of #,) be a finite
subset, P; C K(Br) (in place of P), ¢; c U(U) (in place of ¢/) with & = P N K;(Br) and let Hi12 C (Br)s.q. (in place of H;)
be as required by Theorem 5.3 for T, ¢ and F (with T(k, n) = n, see 5.2).

Without loss of generality, we may assume that ;1 C (BT)‘+ \ {0} and y; < 1/64.

Let G2 C Br (in place of G) be a finite subset and let §;, > 0 be as required by Theorem 5.7 of [15] for the above
H1.1 (in place of #,). Let 61 = min{81,1, 812} and Gy =G4 U G1,2.

Choose ng > 1 such that ¢, is G;-8;/2-multiplicative, for all n > ny,

[onllp, = kP, (e12.67)
sup{|t o gp(a) — kr(t)(a)| : T € T(Br)} < y1/2 forall a € Hq o, (e12.68)
7(f1/2(¢n(eq))) > 3/8 for all T € T(Br) and (e12.69)
dist(e, (@), kuc(@1)) < n/2 for all u e u. (e12.70)

By applying 5.7 of [15], ¢, are all T-#; ;-full. By applying Theorem 5.3, we obtain a unitary u, € By (for each n > ng)
such that

lup@n(a)un, — @py(a)ll < & forall ae F. (e12.71)

Now let {e,} be a decreasing sequence of positive elements such that > -, &, < oo and let {F,} be an increasing
sequence of finite subsets of Br such that U2 | 7 is dense in Br.
By what have been proved, we obtain a subsequence {ny} and a sequence of unitaries {uy} C Br such that

|Ad tgy1 © @ny, (@) — Adug o @y (a)l| < & for all a € F, (e12.72)
k=1,2,....Since U2, F is dense in Br, by (e12.72), {Ad uy o ¢y, (a)} is a Cauchy sequence. Let
o(a) = klim Aduy o @, (a) for all a € By. (e12.73)
— 00

Then ¢ : B — A is a homomorphism which satisfies (e12.62). O

Lemma 12.9. Let A be a non-unital simple separable C*-algebra in D with Ky(A) = ker ps and with continuous scale which
satisfies the UCT. Let Br be as in 7.2. Suppose that there is « € KL(A, Br), an affine continuous map «r : T(Br) — T(A) and a
continuous homomorphism k. : U(A)/CU(A) — U(BT)/CU(BT) such that (k, kr, kyc) is compatible. Suppose also that « |k,
is injective.

Then there exists a sequence of approximate multiplicative completely positive contractive linear maps ¢, : A — Br such
that

Hon}] =k, (e12.74)
lim sup{|t o gp(a) — «r(r)(a)|} =0 forall a € As4 and (e12.75)
lim dist(iuc(2). ¢l(2)) =0 for all z € U(A)/CU(A). (e12.76)

Proof. Denote by I7 : U(A)/CU(A) — K;(A) the quotient map and fix a splitting map J, : Ki(A) — U(A)/CU(A). Since
(x, kT, Kyc) is compatible, it suffices to show that there are {¢,} which satisfies (e12.74) and (e12.75) and

1im dist(cuc (6 ), ¢} (6 ) = 0 for all ¢ € Ki(A). (e12.77)

It follows from 12.6 that there exists {¢,} which satisfies (e12.74) and (e12.75). Let G; C K;(A) be a finitely generated
subgroup.
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Choose some sufficiently large n, then (pn induces a homomorphlsm on the group Ju(G1) Since K liy(a ) is injective and
(k, kT, Ky ) 1S compatible, (pn ll(c;) has an inverse y. Let G, = (pn(]u(Gl)) and let 7, : U(BT)/CU(BT) — K1(BT) be the
quotient map. Again, using the fact that («, kr, kyc) is compatible, (1Ty)|g, is injective. Let J,p : Ki(Br) — U(BT)/CU(BT) be
a homomorphism such that 17} o Juc = idg,(s;).

Put

do = ((kuc 0 ¥) 0 Juc — (‘pn)T o ¥ 0 Jue)l my(Gy)- (e12.78)

Then, since («, k7, kyc) is compatible, [Ty 0 Ao = 0. Therefore Ao maps from IT,(G,) to Aff(T(Br))/ os, (Ki(Br)). However,
AfE(T(Br))/ ps; (Ki(Br)) is divisible. Therefore there is a homomorphism A; : Ki(Br) — Aff(T(Br))/ps, (Ki(Br)) such that

(Al my(6p)= *o- (e12.79)
Now defined A : U(Br)/CU(Br) — U(Br)/CU(Br) as follows.

Al D/ (Ki(Br) — M riery ) by (K1(Br))’ (e12.80)

Al = A1 0 Iy + (idg; )T (e12.81)

Note that ([idg, ], (idg, )r, A) is compatible. It follows from 12.7 that there exists a homomorphism v, : By — By such
that

[Yal = lids, ], (¥a)r = (idg,)r and v} = A. (e12.82)

Now let @, = ¥, o ¢,. Then, for z € J,(Gy), by (e12.78),
®/(2) = ¥} 0 pl(z) = A1 0 [y 0 ¢}(2) + ¢}(2) (e12.83)
= ko 0 @}(2) + @l(2) = Kuc(2). (e12.84)

The lemma follows immediately from this construction of @,. O

Lemma 12.10. Let A be a non-unital simple separable C*-algebra in Dy with continuous scale which satisfies the UCT. Let By be
as in 7.2. Suppose that there is k€ KL(A, Br), an affine continuous map «r : T(Br) — T(A), and a continuous homomorphism
ke : U(A )/CU(A) — U(BT)/CU(BT) such that (k, kr, kyc) is compatible. Suppose also that « |k, () is injective.

Then there exists a homomorphism ¢ : A — By such that

[l =k, ¢r =«r and ¢! = Kky. (e12.85)
Proof. The proof is exactly the same as that of 12.8 but applying 12.9 instead of 12.7. O
13. The isomorphism theorem for Z,-stable C*-algebras

Theorem 13.1. Let A and B be two separable simple amenable C*-algebras in D with continuous scale which satisfy the UCT.
Suppose that ker ps = Ko(A) and ker pg = Ko(B). Then A = B if and only if

(Ko(A), K1(A), T(A)) = (Ko(B), K1(B), T(B)). (e13.1)

Moreover, let «; : Ki(A) — Ki(B) be an isomorphism as abelian groups (i = 0, 1) and let kr : T(B) — T(A) be an affine
homeomorphism. Suppose that k € KL(A, B) which gives «; and ko, : U(A)/CU(A) — U(B)/CU(B) is a continuous affine
isomorphism so that (k, kt, k) is compatible. Then there is an isomorphism ¢ : A — B such that

lpl=« (i=0,1), ¢or = k7 and ¢ = kg (e13.2)

Proof. Note it follows from 8.8 that A, B € Dy. It follows from 7.11 that there is a non-unital simple C*-algebra By
constructed in Section 7 such that

Ko(Br) = Ko(B), K1(Br) = K1(B) and T(Br) = T(B). (e13.3)

Let « € KL(A, B) be an invertible element which gives «; (i = 0, 1). Let «7 : T(B) — T(A) be an affine homeomorphism. By
the assumption, («, x7) is always compatible. Choose any «, so that («, k7, k) is compatible. Note that there is always
at least one: kylj(k;a)=Jc 0 K ik, (40T cu, Where my, @ U(A)/CU(A) — K;(A) is the quotient map and «y|asr(ay),z is induced
by KT.

Therefore it suffices to show that there is an isomorphism ¢ : A — B such that (e13.2) holds. We will use the Elliott
intertwining argument.

Let {F,,n} be an increasing sequence of finite subsets of A such that U2, 7, , is dense in A, let {7} »} be an increasing
sequence of finite subsets of B such that U2, 7 , is dense in B. Let {e,} be a sequence of decreasing positive numbers
such that Y77 &y < 1.
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Let e, € A and e, € B be strictly positive elements of A and B, respectively, with |e,|| = 1 and with ||e;|| = 1. Note
that d,(e;) = 1 for all T € T(A) and d.(e,) = 1 for all t € T(B).
It follows from 12.10 that there is a homomorphism ¢; : A — B such that

[prl =k, (@1)r =kr and @] = kg (e13.4)

Note that d.(¢1(eq)) = 1. Therefore ¢; maps e, to a strictly positive element of B. It follows from 12.7 that there is a
homomorphism ] : B — A such that

Wil=«"" (Yr =k and (¥ =id} o (e))™". (e13.5)
Thus

[¥; 0 @11 = [idal, (¥} 0 @i)r = idry and (Yqo0¢1) = iy cucay- (e13.6)
It follows from 5.3 (see also 5.6) that there exists a unitary u; 4 € A such that

Aduy g oY) 0 @1 R, idy on Fyq. (e13.7)

1
Put ¥y = Ad uy 4 o ¥{. Then we obtain the following diagram

idg
A——A

| A

B

which is approximately commutative on the subset 7, ; within ;.
By applying 12.10, there exists a homomorphism ¢/, : A — B such that

[93] =1, (@5)r =kr and (¢5)" = idjo (¥])" = ka (e13.8)
Then,

[¢5 0 ¥l = [idgl, (¢ 0 ¥1)r and (¢ 0 Y1) = idyg) cuep)- (e13.9)
It follows from 5.3 (and 5.6) that there exists a unitary u, € B such that

Aduyp o @) oYy R, idg on Fpp U @1(Fq ). (e13.10)

Put ¢; = Aduy j, o ¢,. Then we obtain the following diagram:

with the upper triangle approximately commutes on %, ; within &; and the lower triangle approximately commutes on
Fb.2 U ¢1(Fq.1) within &,. Note also

[p2] =k, (p2)r = «r and (¢2)" = k. (e13.11)
We then continue this process, and, by the induction, we obtain an approximate intertwining:

iy idy iy

By the Elliott approximate intertwining argument, this implies that A = B and the isomorphism ¢ produced by the
above diagram meets the requirements of (e13.2). O

The following theorem and its proof gives the proof of Theorem 1.1.

Theorem 13.2. Let A and B be two stably projectionless separable simple amenable C*-algebras with gTR(A) < 1 and
gTR(B) < 1 and which satisfy the UCT. Suppose that Ky(A) = ker p, and Ko(B) = ker pg. Then A = B if and only if

(Ko(A), K1(A), T(A), Z4) = (Ko(B), K1(B), T(B), Zp). (e13.12)
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Proof. Let

I : (Ko(A), K1(A), T(A), £4) — (Ko(B), K1(B), T(B), X5) (e13.13)
be an isomorphism. Let /T : T(A) — T(B) be the cone homeomorphism such that

Zp(I7(1)) = Zu(v) for all t € T(A). (e13.14)
Let e4 € Ped(A), such that |les|| = 1 such that Ay := esAe,s has continuous scale (see 5.3 of [15]). Choose by € P(B)4 \ {0}
with ||bg|| = 1 such that B' := byBby has continuous scale. Then T(Ag) and T(B') are metrizable Choquet simplices.
Moreover T(Ag) and T(B') can be identified with

To = {t € T(A): d.(ay) = 1} and {s € T(B) : ds(bo) = 1}, (e13.15)

respectively. Let g(t) = dp-1((ea) € LAfff('f(B)). Since d,(e,) is continuous and I"~! is a cone homeomorphism, g(t) is
continuous and g € Aff, (T(B')). Since Aff, (T(B')) is compact, g is also bounded. By identifying B’ ® K with B® iC, we find
a positive element by = diag(bo, ..., bg) € B® K, where by repeats m times so that ds(bog) > g(s) on T(B'). Then g is
continuous on T(B"), where B” := bgg(B ® K)bgo. It follows 8.6 that there is ez € B C B ® K with |leg|| = 1 such that
ds(eg) = glr(sr). Since B has strictly comparison, By := egBep has continuous scale (see 5.3 of [15]). Let

Tz = {t € T(B) : d;(ep) = 1}. (e13.16)
Then T(Ag) = Tg. It follows that I" induces the following isomorphism
(Ko(Ao), K1(Ao), T(Ao)) = (Ko(Bo), K1(Bo), T(Bo)). (e13.17)

It follows from 13.1 that there is an isomorphism ¢ : Ao — By which induces I on (Ko(Ao), K1(Ao), T(Ao)). By [4], ¢o
gives an isomorphism from Ay ® K onto By ® K. Let a € A, with |la|]| = 1 be a strictly positive element. Then

4(t) = Za(z) for all T e T(A). (e13.18)
Let b € (By ® K); such that ¢(a) = b. Then
de(b) = lim t o @(a"/") for all t € T(B). (e13.19)

Note Xp(t) = d;(b). Since B is simple and has stable rank one, this implies that B = b(By ® K)b. The theorem follows. O

Corollary 13.3. Let A and B be in Dy which are amenable and satisfy the UCT. Then A = B if and only if
Ell(A) = ElI(B). (e13.20)

Proof. Since A and B are in Dy, by 8.5, Ko(A) = ker p, and Ky(B) = ker pp. Therefore Theorem 13.2 applies. O

Corollary 13.4. Let A be a stably projectionless simple separable amenable C*-algebra which satisfies the UCT and gTR(A) < 1.
Suppose that Ko(A) = ker ps. Then A Q@ 2y = A.
In particular, Zy ® Zy = Z,.

Proof. Recall that Ko(Zo) = Z = ker pz,, Ki(2o) = {0} and T(Zp) has exactly one point. Let Ag = eAe for some e € A, \ {0}
such that Ag € D. Since Ko(A) = ker ps, Agp € Do, by 8.8. By 12.5 of [15] and 6.6 of [16] (or by 18.5 and 18.6 of [18]),
Ao ® Zg € Dy. Therefore gTR(A ® Zy) < 1. Moreover, Ko(A ® Zy) = Ko(A) = ker pa, Ki(A ® Zo) = K1(A), T(A® Zy) = T(A)
and X4 = Yjgz,. Thus 13.2 applies. O

14. A homotopy lemma

The purpose of this section is to present 14.14 which will be used in next section. The following is known, a proof for
the unital case can be found in 12.4 of [20]

Lemma 14.1. Let C be a separable C*-algebra, and let A : Ci’l \ {0} — (0, 1) be an order preserving map. There exists a map
T : C.\{0} - R\ {0} x N satisfying the following: For any finite subset H C C}r \ {0} and any o -unital C*-algebra A with the
strict comparison of positive elements which is quasi-compact, if ¢ : C — A is a unital contractive completely positive linear
map satisfying

to@(h) > A(fl) forall h € # forall T € T(A), (e14.1)
then ¢ is T-H-full.

Recall the class of sub-homogeneous C*-algebras D; is defined in 4.8 of [20]. The following is a non-unital version of
8.4 of [20] (see 5.2.7 of [39]).
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Theorem 14.2. Let Ag be a non-unital C*-algebra such that A := A~0 € D, with finitely generated Ki(A) (i=0,1). Let F C A
be a finite subset, let ¢ > 0 be a positive number and let A : Ai‘l \ {0} — (0, 1) be an order preserving map. There exist a finite
subset H, C Al \ {0}, y1 > 0, » > 0, § > O, a finite subset G C A and a finite subset P C K(A), a finite subset H, C A, a
finite subset U C J.(K1(A)) (see (€2.9) in 2.4 for the definition of ].) for which [U{] C P satisfying the following: For any unital
G-§-multiplicative contractive completely positive linear maps ¢, ¥ : Ao — C for some C € Cq such that

o~ llp= ¥ 1lp, (e14.2)
(¢~ (a)) = A(a), (¥ (a)) > A(a), forallt € T(C) and a € H;, (e14.3)
ltog (a)—toy (a)l <y foral aeH,, and (e14.4)
dist((¢™)(u), (¥ ") () < y2 forall ueu, (e14.5)

there exists a unitary W € C such that

Wl (FOW* = ("Il <&, foral feF, (e14.6)
where ¢~ ¥~ are the unital extension of ¢ and ¥ from A to C.

Proof. Without loss of generality, we may assume that A is infinite dimensional.

Since K,(A) is finitely generated, there is ny such that k € Hom4(K(A), K(C)) is determined by its restriction to
K.(A,Z/nZ),n =0, ..., no.

Let #} C Ay \ {0} (in place of #1), §; > 0 (in place of §), G; C A (in place of G) be a finite subset and let Py C K(A)
(in place of P) be a finite subset required by 4.4.5 of [39] (6.7 of [20]) for £/32 (in place of ¢), 7 and A. We may assume
that §; < &/32 and (261, G1) is a KK-pair (see the end of 2.12 of [20]).

Moreover, we may assume that §; is sufficiently small that if ||uv — vu|| < 381, then the Exel formula

7(botty(u, v)) = (r(log(u*vuv™)))

1
2w/ —1
holds for any pair of unitaries u and v in any unital C*-algebra C with tracial rank zero and any t € T(C) (see Theorem 3.6
of [34]). Moreover if ||v; — v2]] < 381, then

bottl(u, U]) = bOtt](u, Uz).

Let g1, 82, ..., 8ka) € UMma)(A)) (m(A) > 1 is an integer) be a finite subset such that {g, £, ..., 8xa)} C J.(Ki(A))
and such that {[g;], [g2], . ... [8ka)]} forms a set of generators for K;(A). Let &/ = {1, &, - ..., 8a)} C Jc(Ki(A)) be a finite
subset.

Let Uy C A be a finite subset such that

(81,82, ..., 8} S {(aij) : aij € Up}.

Let 8, = min{1/256m(A)?, 8;/16m(A)*}, G, = F U G; Ul and let P, = PoU{[g1], [g2], - - -, [gka)]}-

Let 8, > O (in place of 8), G, C A (in place of G), #, C A} \ {0} (in place of ), Ny > 1 (in place of N) be the finite
subsets and the constants as required by 7.3 of [20] for §, (in place of ¢), G, (in place of F), P, (in place of P) and A and
with g; (in place of gj), j = 1, 2, ..., k(A) (with k(A) = ).

Let 83 > 0 and let G3 C A ® C(T) be a finite subset satisfying the following: For any G3-83-multiplicative contractive
completely positive linear map L' : A ® C(T) — C’ (for any unital C*-algebra C" with T(C") # @),

IT(IL'1BEINI < 1/8N1, j=1,2,... k(A). (e14.7)
Without loss of generality, we may assume that
G3={gQ®f:g€0; and f € {1,2,2"}},

where G5 C A is a finite subset containing 14 (by choosing a smaller 83 and large g5).

Let ¢} = min{d/27Nym(A), 8,/2, 8,/2m(A)*, 83/2m(A)*} and let &; > O (in place of §) and G4 C A (in place of G) be a
finite subset as required by 6.4 of [20] for &7 (in place of ¢) and G, U 5. Put &y = min{e], 7, &}. Let Gs = G, U G5 U G4.

Let 74 € A} \ {0} (in place of #1), 84 > O (in place of §), Gs C A (in place of G), H}, C As,. (in place of #5), P1 C K(A)
(in place of P) and ¢ > 0 be the finite subsets and constants as required by Theorem 5.8 of [20] with respect to &/16
(in place €) and Gs (in place of F) and A.

Choose N, > Ny such that (k(A) + 1)/N, < 1/8N;. Choose Hy C A’+ \ {0} and &5 > O and a finite subset G; C A
such that, for any M,, and unital G;-8s-multiplicative contractive completely positive linear map L' : A — My, if
troL'th) > 0 for all h € Hg, then m > 16N..

Put § = min{e;/16, 84/4m(A)?, §5/4m(A)*}, G = Gs U Gs U G7, and P = P, U Py. Put

H1=H; UH, UHSUH,UH
and let #, = H,. Let y; = o and let 0 < y, < min{d/16N,m(A)?, §,/9m(A)?, 1/256m(A)*}.
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Now suppose that C € Cq and ¢, ¥ : A — C are two unital G-§-multiplicative contractive completely positive linear
maps satisfying the condition of the theorem for the given A, #1, 8, G, P, Ha, y1, ¥2 and U.
We write C = A(F1, F2, ho, h1), Fi = Min; @ M, © - - - © Mpyy;y and F, = My, © Mp, @ - - - @ My, By the choice of #,
one has that
n; > 16N, and ms > 16N, 1 <j <F(2), 1<s<F(1). (e14.8)

Let gr,0 = ho(1f) and gr,,1 = h (1F1) Define hy : F{":=F & C — Fz by hy((a, 1)) = he(a) ® A(1 — gf,,0) and
hy((a, A)) = hy(a) ® (1 — g, 1). Then C = A(F, @(C Fz,hg,h”) Put 7~ : C — C. Note that 1~ o p(a) = 0 =
nCN oy(a) forall ae Ay C A and that 7~ o @(14~) = 1¢ = 7~ o Y (14~). Hence

7 o pla) = o y(a) forall aeA. (e14.9)
Let0 =1ty <t; <--- <t;, =1 be a partition of [0, 1] so that
e 0 9™ (g) — e 0@ (g)l < &1/16 and |l o Y™ (g) — 7w 0 Y~ (g)Il < &1/16 (e14.10)

forall g € G, provided t, t' € [t;i_1, t;],i=1,2,...,n
Applying Theorem 5.8 of [20], one obtains a unitary w; € F, if 0 < i < n, wg € ho(Fy), such that

lwimy; 0 9™ (g)w] — 7, o Y (g)|l < &1/16 forall g € Gs, (e14.11)
Also there is w, € F; such that

l(w,) e 0 @(g)w, — e o Y(g)ll < £1/16 for all g € Gs. (e14.12)
Let 7Fi 3 hy(F;) — C angl let 7’ ; ho(Fy) — ho(,F1) be the quotient maps. Put wy = ho(w;) @ (1r, — gF,,0),
wy = h1(we) D (11:2 — qF]-l)' wo = ho(we) and w;, = hl(we). Then

lwimy; 0 ™ (g)wi — 7, 0 Y (g)ll < &1/16 forall g € Gs, (e14.13)
i =0 and i = n. Denote w, = w, @lceF ®C. Then wo = hy (we), wn_h (we).

By (e14.5), there is a unitary a) € Mpa)(C) such that w; € CU(Mma)(C)) and

IT(@™ ® iduy (&Y™ ® iduy g — Il < y2, =1,2,..., kA). (e14.14)
By (e14.9) and (e14.14), we have ||(7€ ®1dm(A))(a)Jf)—1|| < y.Setw; = w]f-(nCN(X)idm(A))(w]f)* (viewing (nC”®idm(A))(wa) €
M) (C) C Mm(A)(f)). Consequently, we have

[Te™ @ idmy, (G ® idum,, g — wjll < 2y2, j=1,2,...,kA), (e14.15)

with an extra condition 7~ idya)(@j) = 1ma)(C). As mentioned in 2.2, we will use 7~ for 7¢~ ® idpa). (Note that we
now have w; as well as w; in the proof.) Write
ej)
wj = l_[ exp(djla;'))
I=1
0]

for some self adjoint element a € Mm(A)(C) 1=1,2,...,e(G),j=1,2,..., k(A). In particular, one can choose a; such
that ncw(a(l)) =0 € Mpy@)(C) (see 6.1). Write
L,

a](.) ( J(”), ](12),...,(11(- Ric ) and wj = (wj1,a)j2,... a)jp(z))

in C([0, 11, F2) = C([0, 11, My, ) & - - - @ C([0, 1], My, ). Where a5 = [T{) exp(v/—1a]""), s = 1,2, ..., F(2).
Then
e(j) L.s)
ns(ts ® Tr, )( (t)
yo = €z, te(0,1),
2

I=1
where t; is the normalized trace on My, s = 1, 2, ..., F(2). In particular,

e(j) e(j)

D ng(ts ® Trga) (@t Z ny(ts ® Trma) (@"(t) for all ¢, € (0, 1). (e14.16)

I=1
We also have

e(j) l
(1/27) ) " my(tes ® Trmia)(wel(a”) € Z, (€14.17)

I=1
where t is the tracial state on Mp,. Note, for s = F(1) 4 1, one has ne,s(ajl)) = nc”(aj(')) =0.
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Let Wi = w; ® ide(A), i=0,1,....,nand W, = w, ® ide(A)(Fl)‘ Then it follows from (e14.11) and (e14.15) that

124 (T~ ® idugyg X&TDIWilry(T9™ ® idugy Mg W, — ax(6)l (14.18)
< 3m(AYer + 2y, < 1/32. (e14.19)

We also have (with ¢, = 7, 0 ¢™)

1T ® idutyp g Wel [@e ® iduyy) NGIWS — me(@))ll < 3m(A)e; + 2y, < 1/32. (e14.20)

It follows from (e14.18) that there exist selfadjoint elements b;; € Mu)(F2) such that

exp(v/ — bl] = w](tl) (mi(le™ ® 1de(A) )(gj IWimi(Te™ ® ldM ) )(gjﬂ )W* (e14.21)
and b j € Miya)(F1 @ C) such that

exp(v/ —1be j) = 7e(;)* (me([¢™ @ iduy, 0 NG NNIWe(me([@™ @ ida s N(G)TIW,' (e14.22)
and

[Ibijll < 2 arcsin(3m( A e1/24+ 1), j=1,2,...,k(A),i=0,1,...,n,e. (e14.23)
Write

bij = (b, b7, ... b[\?) € Mua)(F2) and bej = (b, bZ). ... b by € Mya(Fy @ ).

From 7€ “(wj) = 1 and definition of W, and w,, we know that bm)+1 0. We have that

hg (bej) = boj and hy(be;) = bn. (e14.24)
Note that
(77T~ @ idmya) (& VDIWily([@™ ® i, (GTIWS = 7y (wj) exp(v/—1b;;), (e14.25)

j=1,2,...,k(A)andi=0,1,...,n,e. Then,

n

(b ® Ty M) € 2, (e14.26)

2 ()
where ¢ is the normalized trace on My, s =1,2,...,F(2),j=1,2,...,k(A),and i =0, 1, ..., n. We also have

(ts ® TrMm(A))(b ) € Z, (e14.27)
where ¢ is the normalized trace on My, s =1,2,...,F(1),j=1,2,..., k(A). Put
n
) = ﬁ(fs ® Tty b)) € Z.,

where t; is the normalized trace on My, s =1,2,...,n,j=1,2,...,k(A)andi=10,1,2,...,n
Put

() _ Ms ©
hej = Z(ts ® Triya b ;) € Z,

where ¢ is the normalized trace on My, s =1,2,...,F(1)and j =1, 2, ..., k(A). Denote

rij= a8 P e 2 and aey = (A%, LAl 0) e 2O
We have, by (e14.23),forj=1,2,...,k(A)andi=0,1,2,...,n,
A 29
ij e.J
i< VAN 5= 1,2, F), 1< 14N, s =12, B, (e14.28)
mg
Define a((” . K1(A) — ZF® by mapping [gj] to Ay, j = 1,2,....k(A), i = 0,1,2,...,n, and define «" : K;(A) —

zFV @ z by mapping [gj] to (A.j,0),j = 1,2, ..., k(A). We write Ko(A ® C(T)) = Ko( ) 69 B(K1(A)) (see 2.10 of [35] for
the definition of B). Define «; : K.(A ® C(T)) — K.(F,) as follows: On Ky(A ® C(T)), define

0.1
ilkyay= [77i 0 @llkya), il pcian= i © Blk,(a) Ol,( ) (e14.29)

and on K;(A ® C(T)), define ailx,(agcry=0, i=0,1,2,...,n
Also define o, € Hom(K,(A ® C(T)), K.(F; ® C)), by

eliou)= [7Te 0 0 liyays el piicy(an= e © Blic;my= " (e14.30)
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on Ko(A ® C(T)) and (e )|k, aeccry= 0. Note that
(hy )« oae = g and (h} )y o e = atp. (e14.31)

Since A ® C(T) satisfies the UCT, the map «, can be lifted to an element of KK(A ® C(T), F; @ C) which is still denoted by
o,. Then define

oo = x [hy] and an = ae x [h]] (e14.32)

in KK(AQ C(T), F,). Fori=1,...,n—1, also pick a lifting of «; in KK(A® C(T), F,), and still denote it by «;. We estimate
that

(Wi wit1)my 0 97 (8) — 7 0 @™ ()W wit1)ll < &1/4 forall g € Gs, (e14.33)

i=20,1,...,n— 1 Let A;;4+1 : C(T) ® A — F, be a unital contractive completely positive linear map given by the
pair wiwit1 and 7, o ¢ (by 6.4 of [20], see 2.8 of [35]). Denote Vi; = [n;, 0 ¢~ ® idwm,,,,(g)].j = 1,2,...,k(A) and
i=0,1,2,...,n—1.

Write

V,‘,j = (V,‘JJ, Vi.j.27 ey V,"j’}:(z)) € Mm(A)(Fz), ] =1, 2, ey k(A), i= O, 1, 2, e, N

Similarly, write

Wi = (W1, Wi, ..., Wirp) € Mpay(F2), i=0,1,2,...,n. (e14.34)
We have

W3V WS Vi Vi Wi VigWis , — 11| < 1/16 (e14.35)

||W,‘V;}Wi*v,"jvij_liji_#]Vi+1,jW;:_] — 1|| < 1/16 (61436)

and there is a continuous path Z(t) of unitaries such that Z(0) = V;; and Z(1) = Vi, . Since
Vij = Vigrjll < 61/12, j=1,2,...,kA),
we may assume that ||Z(t) — Z(1)|| < §1/6 for all ¢t € [0, 1]. We also write
Z(t) = (Z1(t), Za(t), ..., Zrpy(t)) € F, and t € [0, 1].
We obtain a continuous path Wl-\/l-f‘jW,-*Vl-,]-Z(t)*W,-HZ(t)Wi’fH which is in CU(Mym)) for all t € [0, 1] and
WiVEWVZ(E) Wi Z(EW], — 1] < 1/8 for all ¢ € [0, 1].
It follows that
(1/270 /= 1)(ts @ Trug u, JIOG(Wi sV75 W/ Vi sZs( ) Wi 1 SZ( )W/ )]

is a constant integer, where t; is the normalized trace on Mp,. In particular,

(1/27V/=1)(ts ® Trag ) N0(Wi sV Wi Wig1 sVij s Wi 1)) (e14.37)
= (1/270 /= 1)(ts ® T JAOG( Wi sV (Wi Vi Vi s Wik 1.6 Vigis Wi 1)) (e14.38)
One also has
WiVEW ViV Wi Vi Wi, = (wi(t;) exp(v/—1b; j))* wj(tiv1) exp(v/—1biy1 ) (e14.39)
= exp(—v/—1b;)oy(t:)* @j(tiz 1) exp(v/— i1 ). (e14.40)
Note that, by (e14.14) and (e14.10), for t € [t;, tit1],
lle(t)*wi(t) — 1 < 2(m(A))e1/16 + 2y < 1/32, (e14.41)
j=1,2,...,k(A),i=0,1,...,n— 1. By Lemma 3.5 of [40],
(ts ® Trim(a))(log(wj s(t)* wj 5(ti+1))) = 0. (e14.42)
It follows that (by the Exel formula (see [24]), using (e14.38), (e14.40) and (e14.42))
(t ® Tria))(botty(Vij, Wi Wipq)) (e14.43)
= (anm)(t ® Trm))(log(Vi Wi Wi Vi Wiy Wh)) (e14.44)
= (Zn\%)(f ® Tra) Xlog(WiVi5Wi Wi sViiWii1)) (€14.45)
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1
= (Znﬁ)(t ® Trim(a) (log(Wi VWi Vi Vi (Wi Vi W) (e14.46)
1
= (727[ = Nt ® Trima))(log(exp(—~/'—1b; j)wj(ti)* wi(ti1) exp(v/ —1biy 1)) (e14.47)
1 *
= (72]1 = Mt ® Trimga)(—v —1bjj) + (¢ @ Trima))(log(wj(ti)* wj(ti+1))) (e14.48)
+(t ® Tripa))(v/ —1b; )] (e14.49)
= E(t & Trima))(—bij + biy1) (e14.50)
for all t € T(F,). In other words,
bOttl(V,',j, Wi*Wi—H) = —Aij + Aig1j (e14.51)

j=1,2,...,mA),i=0,1,...,n—1.
Define g =0, B1 = [Ao,1] — a1 +ag + Bo,

Bi=[Aiil —ai+ai1+ B, i=2,3,...,n. (e14.52)
Then

B1([g]) = Ao1([g]) — A1j + Ao =0,

B2(1gi]) = A12([g]) — A2;j — A1 + B1([g]) = 0 and

Bi(lgi]) = Ai—1i([g]) — Aij — Aic1j — Bica(lg]) =0, i=3,...,n
It follows 5.2.5 of [39] that there is ¢ € Hom,(K(A), K(F; ® C)) such that

o(B(K1(A))) =0 and

0 x ([hy] = Thy Dlkan= Bnlpway-
Define kg = ag + Bo + 0 x [hy'], ki = a; + Bi + 0 x [hg], i = 1,2, ..., n. Note that, on B(K(A)),

kn = op + B+ 0 X [hy] = oy + 0 x ([h]] = [hy]) + ¢ x [hy] (e14.53)

= oy + 0 x [h]] = (e + 0) x [h]], (e14.54)

and, by (e14.32), ko = ag + 0 x [hy] = e x [hy] + o x [hy]. We also have, for eachj =1, 2, ..., k(A),

ki([g1) = Aij + (hg w0 0 0(Ig]) = Aij, i=0,1,...,n and

(Q + ae)([g]]) = }“e,j~

Applying 7.4 of [20] (using (e14.28), (e14.3)), there are unitaries z; € F,,i=1,2,...,n—1,and z, € F;QC withz, = z,®1
such that, fori=1,2,...,n—1,

I(zi, 7 0 @™ (€)1l < 8y for all g € Gy, Bott(z;, my; 0 9™ ) = (i)l g(ay, and (e14.55)

l[ze, e 0 @~ (g)1ll < éu forall g € G, and Bott(ze, me 0 ¢~ ) = (0 + ote)lgk(ay- (e14.56)
Put

2z = ho(ze) ® (1, — ho(1f,)) and  z, = hy(ze) ® (15, — hi(1F,)).
Note that, as above,

Bott(zg, mpo ¢~ ) = KO|ﬂ(K(A)) and Bott(z,, mgo ¢~ ) = Kﬂ,g(ﬂ/,)).

Let

Ui = zzwjw},1ziyq, i=0,1,...,n—1. (e14.57)
Then, by (e14.55), (e14.56) and (e14.33),

Ui, 7 0 @7 ()]l < 28, + 261/4 < 81/2 forall g € G,. (e14.58)

We also compute that (using the choice of §; and (e14.52))
Bott(U;, my; 0 ¢~) = Bott(z;, 7, 0 ™) + Bott(w] wiy1, 7, 0¢7)
= Bott(zi11, 7 0 97 ) = ki + [Ajiv1] — ki
= i+ Bi + o x [hol + [Aiit1] — (@iy1 + Biv1 + 0 x [ho])
= o; + Bi + [Asir1] — diy1 — ([Aiip1] — i1 + o + Bi) =0,
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i=0,1,...,n— 1. Note that, by the assumption (e14.3),
t; o 7t 0 @(h) > A(h) for all h € #), (e14.59)

where t; is the normalized trace on My, 1 < s < F(2). Then, by this, (e14.58), (e14.59) and by applying 6.7 of [20] we
obtain a continuous path of unitaries {Uj(t) : t € [t;, tiy1]} C F> such that Ui(t;) = 1r, and U(ti11) = zi(wi)*wiy12f, ; and

IUi(t), e o~ (]Il < €&/32 forall f € F, (e14.60)
i=0,1,...,n— 1. Now define W(t) = w;z;Uj(t) for t € [t;, ti41],i=0,1,...,n — 1. Then W(t) € C([0, 1], F;) but also
W(0) = wozg = hy (wezy) and W(1) = wpzy = h(wez)).
Therefore W € C. One then checks that, by (e14.10), (e14.60), (e14.55) and (e14.11),

IW(t) (e 0 @™ YOIW(E)" — (e 0 ¥ 7)) @ Tyl
< IW(t)(me 0 @7 )W (E)" — W(E)(my; 0 @ )P IW(0) e14.62)
+ W)y 0 @™ YOW(E)" = W(ti) (7, 0 o )W (6)"| e14.63)

(e14.61)
(
(
+ IW(t) (7 0 7 XOW (L) — (wirry, 0 97 )yl (e14.64)
(
(
(

(
(

+ llwi(g 0 o7 ) w — 7 0 ¥ ()l e14.65)
+ 7y o~ (f) — e 0 ™ ()l e14.66)
< &1/164+¢/32+ 6, +€1/16 +&1/16 < ¢ e14.67)

forall f € Fand for t € [t;, ti1]. O

Definition 14.3. Let D be a non-unital C*-algebra. Denote by~C(T,f))" the C*-subalgebra of C(T, D) generated by
Co(T\ {1}) ® 15 and 1¢(ry ® D. The unitization of C(T, D)° is C(T, D) = C(T) ® D. Let C be another non-unital C*-algebra,
L: C(T,D)° — C be a completely positive contractive linear map and L™~ : C(T) ® D — C be the unitization. Denote by z
the standard unitary generator of C(T). For any finite subset 7 C C(T)®D, any finite subset 7; C D, and ¢ > 0, there exist
a finite subset G C D and & > 0 such that, whenever ¢ : D — C is a G- -multiplicative completely positive contractive
linear map (for any C*-algebra C) and ||[u, ¢(g)]|l < 6 for all g € G, there exists a F-¢-multiplicative completely positive

contractive linear map L' : C(T) ® D — C such that
IL(z®1)—u| <e and |'(1®d)— ¢~ (d)| <& forall de Fy. (e14.68)

We will denote such L' by @, . y
Conversely, there exist a finite subset ' C C(T, D)’ and 8’ > 0, if L : C(T, D)° — C is G’-§'-multiplicative completely

positive contractive linear map, there is a unitary u € C such that
Iz®1)—ull <e (e14.69)
and ¢ = L™ |1gp is a completely positive contractive linear map.

In what follows, we use A for the family of C*-algebras which can be approximated by C*-algebras D € D, for some
integer r > 1, Note that By C A.

Lemma 144. [et A = C(T) ® D, where D € A. Let F C Abea finite subset, let ¢ > 0 be a positive number and let
A Ai‘] \ {0} — (0, 1) be an order preserving map. There exist a finite subset H1 C A}r \{0}, 1 >0, >0,86 >0,a
finite subset G C A, and a finite subset P C K(A), a finite subset H, C A, a finite subset U C J.(K1(A)) for which (U] C P
satisfying the following: For any unital G-§-multiplicative contractive completely positive linear maps @, ,, @,y : A — 6for
some amenable C € DY with continuous scale, where u, v € U(f) and ¢, ¥ : D — C are two Gg-6-multiplicative completely
positive contractive linear maps (G4 = {g : g ® 1 € G}) such that

[Pupllp=[Pvyllp, (e14.70)

T(Py,p(a)) = A(G), T(Py,y(a)) > Aa) forall T € T(C) and a € Ha, (e14.71)

|T 0 @y y(a) —1od,y(a)l <y foral aeH, and (e14.72)

dist(@] (). !, () < y2 forall y eu, (e14.73)
there exists a unitary W € C such that

IW(Dy o (fNW* — (&, (FDIl < &, forall feF. (e14.74)
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Proof. Let us first reduce the general case to the case that D € D;. Fix any finite subset F; C D and any &4 > 0, by 7.3,
there is D, € D, such that

dist(x, D,) < &4 for all x € 7. (e14.75)

This effectively allows us to assume that D € D,. It should then be noted that C(T, D) € Dryi.

Now we assume that D € D;.

Let L=8m,170 =0, =0, T(n, k) =n for all (n,k),s=1and R=7.Let 1/2 > ¢ > 0 and F C A be a finite subset.
Let Ag = A/2.Let F' : A, \ {0} — R x N be given by 14.1 associated with A,.

Put Ag = C(T, D)°. Let F; C Ap be a finite subset such that, if x € 7, then x = A + y for some y € F;.

Let §op > 0 (in place of §), Gy C Ay (in place of G) be finite subset, Py C K(Ag) (in place of P), Uy C U(My(A)) (for some
integer N > 1) Ho C (Ao)+ \ {0} (in place of ) and K > 1 be an integer required by Theorem 3.14 of [16] for A, £/16
(in place of ¢), 7 (in place of F), L, F/, (in place F), as well as ro, 1, T, s and R above. As in 3.15 of [16], we can choose
U = {81, 82, - - -, 8wy} so that K1(A) N Po = {[g1], [2] ..., [&w)]}.

Lety, >0, >0,8 >0, CA #H; C(AL\ {0}, P CK(A), U' CJ(Ki(A)) and H) C A, be finite subsets required
by 14.2 for min{dy/4, £¢/16} (in place of €) Gy (in place of F) and for A (in place of A).

Put y1 = y{/4 v2 = 5 min{y;/16,¢/64}, § = min{8'/16, 50/16,11/16, y2/16,/2'%}, Hy = H;, Ho = H, and
¢=¢g.

Now suppose that @;, @, : A — C are two g-§-multiplicative completely positive contractive linear maps such that
1 = &y and &, = @, 4, Where u, v and ¢, ¥ are as given. Moreover, @, @, satisfy the condition (e14.70), (e14.71),
(e14.72), (e14.73) and (e14.73) for the above mentioned A, P, H1, Ha, ¥1, Y2 and U.

Since C € DY there exist a sequence of positive elements {b,} of C, a sequence of C*-subalgebras Cy,, € Cy, two
sequences of completely positive contractive linear maps ¢o, : A — B, and ¢1, : C — Cp, such that Gy, L By,

lim ||@;in(ab) — @in(a)pin(b)ll =0 forall a, b e C, (e14.76)
n—oo
K
lim {lx — (¢o.n(x) ® diag(g1.n(x), @1.0(x), - ... Y1.a(x))| = 0 forall x € C (e14.77)
lim sup d;(by) =0, t(fijale1aec))) > 1/2 forall t e T(Cop), (e14.78)
=00 r&T(C)
and 7(fi/a(¢1.n(ec))) > 1/2 for all = € T(C), (e14.79)
where ec € C is a strictly positive element with |lec|| = 1, B, = b,Cb, (see 9.2 of [15]). Put C, = Mg(Con),n=1,2,...1t
should be noted that C, 1. B,, n =1, 2, .... We may assume, without loss of generality, for all n,
sup d.(b,) < min{y;/64K, y, /64K, min{Ao(fl) th e M1} /AK + 2)}. (e14.80)
TeT(C)

Let u;, v; € MN(f) (i=1,2,...,k(A)) be two unitaries such that
(@1 ® idw, (&) — uill < min{e/2%, 1,/8} and [[(@; ® idwy)(g) — vill < min{e/2, y,/8}.

Let w; € CU(C) be such that

m(i)
lujv] — will < (5/4)y, and w; = 1_[ Wij, Wij = Wi w5 Wi Wi, (e14.81)
j=1
where w;;j € U(f), s=1,2,j=1,2,...,m()and i =1, 2,..., k(A). Let m = max{m(i) : 1 <i < k(A)}.
Write ws;j = os,ij + c(wsj), where as;; € T C C and c(ws;j) € C,j = 1,2,...,m(i). Note that [c(ws;;)I| < 2,

j=1,2,...,m@i),i=1,2,...,k(A).
K
Define 1, : A = G, by ¥1,n(a) = diag(ei,n(a), ¢1.x(a), ..., @1a(a)) forall n. Put ¥, = 1 0 @ :A— Gy, j=1,2.
Let G =G U {c(ws;j):s=1,2, 1 <j<m(i),1=<i=<k(A)}. We can choose n large enough so that v , and v , are
gz—m—multiplicative. In particular, by (e14.73) and the choice of y»,

dist(Teg ()1, g n(v)1) < v5/4 in U(B,)/CU(B,) and (e14.82)
dist(Ty7, ()T, T¥7,(v)1) < ¥3/4 in U(Gy)/CU(Gy). (e14.83)

It is standard to check that, by choosing sufficiently large n, we may assume that ¥; are g-§-multiplicative completely
positive contractive linear maps satisfying the following:

~ ~

t o Wy(h) > Ag(h), toWy(h) > Ag(h) for all h € Hq, (e14.84)
[t o Wi(g) —toWsh(g)l <y, forall g € Hs. (e14.85)
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Combining these with (e14.83), by applying 14.2, one obtains a unitary U; € C, such that
|UT ¥ (x)U; — Wa(x)|| < min{8o/4, e/4} for all x € Go. (e14.86)

Write Uy = A - 1z + c(U;), where A € T C C and c(U;) € G,. Define Vi = A - 1z + ¢(Uy). Then V; € U(C). Note, since
B, L Gy, VibV, _bforallbeB

Let E;, = Co,nCCon and e, be a strictly positive element with |leg,|| = 1. Put A : A — C;, C E, by defining
A(a) = Ad Vi o @14 0 @4(a) for all a € Ay, By (e14.84), A is F'-H;-full in Cy p. It follows it is F'-#-full in E,. By (e14.80),
we may assume that b, < eg,.

Let Li = ¢on 0 @, i = 1, 2. By (e14.77), we assume that L; is also g-25-multiplicative and

IILi(x) @ Pi(x) — ®i(x)|| < & forall x € G. (e14.87)
Since K;(C,) = {0}, i = 0, 1, we conclude that

[(Lillp= [@1]lp= [P:]lp= [L2]|P. (e14.88)
It follows from 4.4 and (e14.82) that, in By,

cel([L1(z @ 1)[L2(z ® 1)]*) < 87 = L. (e14.89)
It follows from 3.14 of [16] that there exists a unitary W; € B such that

W7 (Li(a) @ S(a))Wr — (La(a) & S(a))l| < &/16, (e14.90)

K

where S(a) = diag(A(a), Aa), ..., A(a)) = Viw¥i(a)Vy, for all @ € F. Put W = V;W;. One then estimates, by (e14.87),
(e14.90) and (e14.86),

AdW o @, ~; AdW o (L; ® Ad V; o ¥;) (14.91)
Ne16 Ly @ Vi oWy R Ly ® Wy &5 @, on F. (e14.92)

Therefore
IAAdW o @(a) — @,(a)|| < e forall ae F. O (e14.93)

Lemma 14.5. Let A be a non-unital C*-algebra and T(A) # ¥, let U be an infinite dimensional UHF-algebra and B C A be a
hereditary C*-subalgebra of B. Suppose that there exists e € A, with |le|| = 1 and eb = be = b for all b € B. Then there is a
unitary w € A® U with the form w = exp(in (e ® h)) for some h € Us . with ty(h) = 0 (where 1y is the unique tracial state
of U) such that for any unitary u = > +x € Awith A € T C C and x € B, one has, for any b € B and f € C(T),

t(bf (u ® 1)w)) = t(b)t(f(14 ® exp(ih)) /fdm (e14.94)

and for all T € T(A ® U), where m is the normalized Lebesgue measure on T. Moreover, for any a € B and t € T(A ® U),
t((a® 1)w!) = 0 if j # 0. Furthermore, if A has continuous scale, then, for any ¢ > 0, and any N > 1, one can choose e such
that

lz((u ® Dw)| < & forall 0< |j| <N. (€14.95)

Proof. Denote by ty the unique trace of U. Then any trace t € T(A ® U) is a product trace, i.e.,
(a®b)=1(a® 1)@ y(b), acAbel.

Pick a selfadjoint element h € U such that the spectral measure of the unitary wy = exp(ih) is the Lebesgue measure
(a Haar unitary). Moreover, sp(h) = [—m, 7] and t(h) = 0.
Then one has, for each n € Z,

(w") = 1, ifn=0,
Wwi®o) =10 otherwise.

Put w = exp(i(e ® h)) € A®U.Thus w = > "ek,‘f!’hk. Hence, for any T € T(A ® U), one has, for each n € Z, and any
b € B (note that eb = be = b),

w(b), ifn=0,

7(b((u ® Nw)") = t(b(u" ® 1)(e ® 1)(1 ® wy)) = t(bu" ® 1)ry(wg) = {O, otherwise:

and therefore

(b® 1)P(u® Nw) = t(b)t(P(1 @ w)) = t(b)/P(z)dm
T
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for any polynomial P. Similarly, t(bP(u ® w)* fr z)dm for any polynomial P. Since polynomials of z and z~' are
dense in C(T), one has

(b @ 1)f(u ® Nw)) = t(b)r(f(1 ® w) ffdm fedm),
as desired.

For the second part of this lemma, assume that A has continuous scale. Then, for any § > 0 and any integer N; > 1,
we can choose ey, e € AL such that 1 > e > ey, eje = ee; = ¢4 7(ek) > r(eq“) >1—4forall Tt € T(A)and k € N. Fix N
and ¢ > 0. A simple calculation shows the second part of the lemma follows by choosing sufficiently small § and large
N;. O

Proposition 14.6. Let C be a non-unital amenable simple C*-algebra and let U be an infinite dimensional UHF-algebra. For
any § > 0,86, > 0,1 > o1, 0 > 0, any finite subset G C C® C(T), any finite G, C C, any finite subset H; C C(T); \ {0}
and any finite subset H, C (C ® C(T))s.q. and any integer N > 1, there exist §; > 0 and a finite subset G; C C satisfying
the following: For any unital G;-8,-multiplicative contractive completely positive linear map L : C — A and a unitary u € A
with ||[L(g), ulll < &; for all g € Gy, where A is another non-unital C*-algebra with T(A) # # and with continuous scale,
there exists a positive element e € A with |le|| = 1 and h € U satisfying the following: there are two unital G-6-multiplicative
completely positive contractive linear maps L1, L, : C® C(T) — B such that

|T(L1(f)) — t(La(f))| < o1 forall f € Hy, T € T(B), and (e14.96)

t(g(uexp(v—1e ® h))) > az(/gdm) forall g € Hq1, T € T(B), (e14.97)
where B=A ® U and m is the normalized Lebesgue measure on T, and

ILi(g ® 1em) —L7(g) ® 1ull <& forall g € Ge, i=1,2, (e14.98)

ILi(g @ Z) — L™ (g)(uexp(~/—1e @ h)Y| < 8. forall g € G- and (e14.99)

IL(g ® Z) — L(g)~ exp(v/—1e @ hY| < 8. forall g € G, (e14.100)

and for all 0 < |j| < N, where L™~ : C — A is the unital extension of L. Moreover, t(e ® h) =0 forallt € A® U.

Proof. Without loss of generality, we may assume that there are finite subsets G., H¢ 1 C Csuchthat g = {c ® Tem -
cegtU{1,1: ®2z,1: ®2z*}and Hy = {c ® 1¢ry : ¢ € He1} U {1 ®Db: b e Hr), where Hr C C(T)s .. We may assume
that 1z € G¢, 1z € Hc,1 and ¢ty € Hr. We may also assume that |la|| < 1 for all a € G, U H,. Put

Go={cd®gf :c,de G UHc1, & f €{z,2"} UHs).

Fix §,8c > 0, 01, 02 > 0. Put ¢ = min{§/4, 6. /4, 01/4, 02/4}.

Let 87 > 0 and Gy, C C be a finite subset such that there is a Go-¢-multiplicative completely positive contractive linear
map L' : C ® C(T) — D, for any C*-algebra D and any Gom-67-multiplicative completely positive contractive linear map
" : C — D, such that

IL'(g ® 1cm) — L"(g)ll < & forall g € Go. (e14.101)

Let G = Go U Gom and 8; = min{8/4, £/4}.
Now suppose that L : C — AisaGi-61- -multiplicative completely positive contractive linear map and u € Aisa unitary.
Without loss of generality, we may assume that there are positive elements e, e € A with |e;|| = 1 = ||e|| such that

e1l(g) =L(g)e =L(g) forall g e C,ee; =eje=e; and ty(e;) > 1—e. (e14.102)

Furthermore, without loss of generality, we may assume that L(c) = e1L(c)e; for all c € C. Let h € U be as in 14.5. Let
v = exp(~/—1e ® h). Note that 7y(e/) > 1 — ¢ for all j € N. We can choose e so that both (e14.94) and (e14.95) hold.
This lemma then follows from an easy application of 14.5 and Lemma 2.8 of [35] (with L; = &, ; and L, = ®,, ;, where
v1 = u(exp(ie ® h)) and v, = exp(ie ® h)). O

Corollary 14.7. Let C be a non-unital separable C*-algebra. Suppose that there is an embedding ¢ : C — W. Then C(T, c )’
satisfies the condition in 9.3. Moreover, there exists an embedding ® : C(T, C)° — W which maps strictly positive elements
to strictly positive elements.

Proof. Let {e,} be an approximate identity for W such that e,, e, = e, fort all n. Let W; = e,We, Then there exists an
isomorphism ¥, : W — Wy, Put g9 = ¥, o ¢. Therefore there is e € W, with |le|| = 1 such that ep;(c) = ¢1(c)e = ¢1(c)
for all ¢ € C. Let & be a UHF-algebra of infinite type. Choose h € U4 with sp(h) = [—m, 7] and t;,(h) = 0, where t;, is

the unique tracial state of ¢/. Define x = Z;’il ﬁi‘i‘@h)n eWw®Uand u = 1,5 + x € W ® U. Note that up;(c) = ¢1(c)u
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for all ¢ € C. Define ¥ : C(T, C) - W ® U by

Y(f ® 1) =f(u) forall f e C(T) and ¥(1¢m ® ¢) = ¢q(c) forall c. (e14.103)
This gives a homomorphism @ : C(T, C’)" — W ® U. By the proof of 14.5, we have, for all ¢ € C and f € C(T),

(6w ® 6O © ) = tlir(c) [ fim (e14.104)
where m is the normalized Lebesgue measure on T. It follows that, for any f € (C(T) ® 5)+,

(tw @t )(¥()) = /Ttw(w](f(t)))dm- (e14.105)

This implies @ is injective. Note that W ® & = W. By replacing W by & (C(T, f)" W®(C(T, E)O)J we may assume that @
maps strictly positive elements to strictly positive elements. It follows from 5.6 of [ 15] that C(T, C)° satisfies the condition
in9.3. O

In what follows, if A is a unital C*-algebra, u is a unitary and p is a projection in A such that ||[p, u]|| < é for some
sufficiently small 8, then (1 — p)+ pu is close to a unitary with the form (1 — p)+ v, where v is a unitary in pAp. As before
this unitary may be chosen to be [(1 — p) + pu] (see 2.1). Moreover, when [(1 — p) + pu] is written we also assume that
Ilp, ulll_is sufficiently small so the notation makes sense. Therefore, if L : A — B is a map which is n-F-multiplicative,
p € My(A) is a projection and u € B is a unitary such that ||[L(x), u]|| < n for all x € F for some sufficiently small » and
some large 7 C A, then L(p) is close to a projection and ||[L(p), u.]ll < 8, where u; = u® 1y,. So (e14.108) makes sense.
Similar items will appear again later.

Lemma 14.8. Let A € A be a separable simple C*-algebra with continuous scale. For any 1 > & > 0 and any finite subset
F C A there exist § > 0, 0 > 0, a finite subset G C A, a finite subset {p1, p2, ..., Dk 91, G2, - - - » Gk} of projections of My(A)
(for some integer N > 1) such that {[p1] — [q1], [P2]1 — [q2], . . ., [Pr] — [qx]} generates a free subgroup G, of Ko(A), and a finite
subset P C K(A), satisfying the following:

Suppose that ¢ : A — B®V is a homomorphism which maps strictly positive elements to strictly positive elements, where
B € D has continuous scale and V is a UHF-algebra of infinite type. If u € U(B® V) is a unitary such that

[[p(x), ulll <& forall x €g, (e14.106)

Bott(¢, u)|»=0, (e14.107)

dist(F((1 — ¢~ (p)) + ¢~ (Pi)un (1 — ¢~ (@) + ¢~ (g)uy)1, 1) < o and (e14.108)

dist(i1, 1) < o, (e14.109)
(where uy = u ® 1y, ), then there exists a continuous path of unitaries {u(t) : t € [0, 1]} C UO(B/(gT/) such that

u0)=u, u(l)=1 (e14.110)

lle(a), u(t)]lll < e forall a e F and for all t € [0, 1]. (e14.111)

Proof. Without loss of generality, one only has to prove the statement with assumption that u € CUB® V') as (e14.109)
is assumed. Since BQ V ® V = B® V, to simplify notation, without loss of generality, we may assume that B=B® V. In
particular, Ko(B) is weakly unperforated (see 5.5).

In what follows we will use the fact that every C*-algebra in D has stable rank one (11.5 of [15]). We will also use z
for the generator unitary function on the unit circle. Let A, = C(T)® A and m is the normalized Lebesgue measure on the

unit circle T. Define

A(h) = (1/4) inf{/ t(h(t))dm : T € T(A)} (e14.112)
T

forh e (Az)}r \ {0} (note, by the assumption, T(A) is compact). Let 7 = {x®f : x € F,f = 1, z, z*}. To simplify notation,
without loss of generality, we may assume that 7 C Al. Let 1 > §; > 0 (in place of §), G; C A, be a finite subset (in
place of G), 1/4 > y; > 0, 1/4 > y», > 0, P’ C K(A) (in place of P) be a finite subset, #; C (Az)]r \ {0} be a finite subset,
Ho C (Az)s.q. be a finite subset and ¢/ C J.(K;(Az)) (for some integer N > 1) be a finite subset as required by 14.4 for £ /16
(in place of &), F; (in place of F), A and A, (in place of A). Here we assume that [L]|» is well defined whenever L is a
G1-6;-multiplicative completely positive contractive linear map from A,. Moreover,

[Li]lpr= [L2]l P, (e14.113)

if both L; and L, are G;-8;-multiplicative completely positive contractive linear maps from A, to a unital C*-algebra and
IL1(g) — L2(g)ll < &1 forall g € Gy.
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Without loss of generality, we may assume that G; = {z® 13, Iy ® a : a € Gial, H1 = { @ 13, I¢y @ W : W' €
Hat and h’ € H]A}, Hy = {h] ® 17{’ 1C('J1~) ® h2 : h] € Hor and hz € HZA}v where Hir C C(T)l \ {0}, Hor C C(T)s'a,
G1a C A Hia C A]r \ {0} and #34 are finite subsets. Furthermore, we may also assume that elements in #r and #,r are
polynomials of z and z* of degree no more than N; and all coefficients with absolute values no more than M. In addition,
we assume that 14 C Hz4. We may assume that P’ = Py U B(P,) U B([1;]), where Py, P, C K(A) are finite subsets. We
further assume that

Bott(¢, v(0))|»,= Bott(p, v(t))|»,, (e14.114)

if [|[[@(a), v(t)]]| < 81 for all a € Gi4 and for any continuous path of unitaries {v(t) : t € [0, 1]}.
We may further assume that,

U= U{1®@z} Uk, (e14.115)

where Uy = {Igmy®a:a e ) C U(A)} and Uy is a finite subset, ¢, C U(Mn(A2))/CU(My(A)) is a finite subset whose
elements represent a finite subset of B(Ky(A)). So we may assume that U, € J.(B(Ko(A))).

We may even assume that U, = Uy Ullyr, Where Loy = Uc(815): Jc(821), - -+ Je(8ms)p )} and Uae = e(g1.0), Je(82.r), - -
Je(8m(t),t)}, where P' N B(Ko(A)) = {8if. g : 1 <i<m(f), 1 <j < m(t)}. Moreover, {g1f, &, ----, Em()f} IS a set of free
generators of a finitely generated free subgroup of B(Ko(A)) and {g1¢, &2.¢, - - ., &m(r),¢} are generators for a finite subgroup

of B(Ko(A)). Since J. is a homomorphism, we may assume that there is an integer k,, > 1 such that knJ.(g) = 0 in
U(Mn(A2))/CU(Mn(A7)). Since gi; € B(Ko(A)), we may write that

=101 -p)+z@p)1®0(1-¢)+z"Qq)], i=1,2,...,m(f). (e14.116)

Write p; = (aﬁ;)NxN and q; = (a?j)NxN as matrices over A. Let w; = (bi,,j)NxN be unitaries in MN(;\) such that w; = J.(gj¢),

1=1,2,...,m(t).
We assume that (281, P, G1) is a KL-triple for A;, (281, P1, G1a) is a KL-triple for A (see 2.12 of [18], for example). We
may also choose o and o3 such that

0 < o7 < (1/4)min{y;/16, inf{A(f) : f € H1}}/4M(N + 1) and (e14.117)
02 =1—y,/16(N + 1)M. (e14.118)

Choose 8, > 0 and a finite subset G,» C A (and denote G, = (g ® f : g € Gon. f = {1, z, z*}}) such that, for any two
unital G,-8;-multiplicative contractive completely positive linear maps ¥, ¥, : C(T) ® A — C (any unital C*-algebra C),
any Gya-8>-multiplicative contractive completely positive linear map ¥, : A — C and unitary W € C (1 <i < k), if

[Wo(g) — ¥1(g ® 1)|| < &, forall g € Gaa (e14.119)
¥1(z® 1;) — W] < 8, and ||¥(g) — ¥a(g)ll < &, forall g € Gy, (e14.120)
then (W =W ® 1y,)
[(1 — Wo(pi) + Yo(p)W)(1 — Wo(qi) + Wo(q:)W™)] (e14.121)
N (1 —p) +z@pi)((1 - q) +2° ® qi))1, (e14.122)
IT@1(x)] — T¥001] < y2/2"° forall x € 4, (e14.123)
(1 =p) +z@pi)((1 — @) +2" ® qi)) (e14.124)
N (1= p) +z2@p)¥ (1 - q) +2° ® qi)), (e14.125)
furthermore for d'" = p;, d'” = g;, there are projections d”’ € My(C) and unitaries z” € d”My(C)d” such that
(1 —d") +z @ d")) ~ (1- d”)+z? and (e14.126)
2
AV~ wy(d)), 2V~ Wiz@p). and 27~ Wi(g®2Y), (e14.127)
o12 512 512

where 1 <i<k,j=1,2. _ ~

Let 63 > 0 and let G3 C C(T, A)° be a finite subset required by 11.6 for C = C(T, A)°, y»/2 (in place of ¢) and for all
unitaries in u4,;. Without loss of generality, we may write G3 = G34 U {1, z, z*}, where G3, is a finite subset of A.

Choose 8, = min{e/16, 8;/16, 8,/16, 61/4, 02/4}/SM(N + 1) and

Ga=FUGIaUGnUHin UHpu Uty Ufdls af. bj;:1<s<,1<l<m(t), 1<i,j<N}.

Let G, C A be a finite subset such that every element a € G4 has the form a = A + b for some A € C and b € Gj. Let
Ga=G1UG UGsUH1 UHy Ulh.

Let 4 > O (in place of §1) and a finite subset Gs (in place of G;) be as required by 14.6 for A (in place of C), /4 (in
place of §), 84 (in place of &), o1, 02, H1, Ha, G4 (in place of G), G (in place of G.) and Nj.
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By choosing even smaller 84, without loss of generality, we may assume that Gs = {a ® f : g € Gs4 and f = 1, z, z*}
with a large finite subset Gs4 D Ga. Let G, C A be a finite subset such that every element g € Gss has the form g = A +x
for some A € C and x € G.,.

Choose ¢ > 0 so it is smaller than min{o/16, ¢/16, 0,2/16, 82/16, 83/16, 64/16, 5a/4}.

Let§ =0 and g = G;, U Ga.

Now suppose that ¢ : A — B is a homomorphism and u € CU(B) which satisfy the assumption (e14.106)-(e14.108)
for the above mentioned 6, o, G, P, p;, and q;. There is an isomorphism s : V ® V — V. Moreover, s o1 is approximately
unitarily equivalent to the identity map on V, where1: V — V ® V is defined by 1(a) = a® 1 (for all a € V). To simplify
notation, without loss of generality, we may assume that p(A) C B® 1 C B® V. Suppose that u € U(B) ® 1y is a unitary
which satisfies the assumption. As mentioned at the beginning, we may assume that u € CU(B) ® 1y.

Applying 14.6, we obtain e € (B); with |le]| = 1 and h € Vi, satisfying the conclusions of 14.6. Note that we may
assume, without loss of generality, that

ep (g)=¢ (g)e forall g € G34UGss and (e14.128)
ep(g) = ¢(g)e = ¢(g) forall g € Gy, UGs,. (e14.129)
N
In particular, for E = diag(e,e,...,e)andy =p;, q;,i=1,2,...,m(f),
(¢~ ® iduy JW)E = E(¢”™ @ idu, )¥). (e14.130)

Put v; = uexp(ie ® h) and v, :Nexp(w/@Jl). Note that sp(h) = [—m, 7] and ty(h) = 0 and where ty is the unique
tracial state of V. Let L1, L, : C(T) ® A — B® V be given by 14.6 such that

[T(L1(f)) — t(La(f))| < oq forall f € Hy, T € T(B), (e14.131)
(g(vy)) > oz(/gdm) forall g € #1, T € T(B), and (e14.132)
ILi(c @ 1em) —¢ () ® 1y|l < 84 forall ce G, i=1,2, (e14.133)
ILi(c ® Z)— @ (c)uexp(v—1le® h)Y|| < 84 forall ¢ € . and (e14.134)
ILx(c ® Z) — o(c)” exp(ie ® hY|| < 84 forall ¢ € G, (e14.135)

and for all 0 < |j| < Ny, where ¢~ ‘A — B/Q\Z)/V Note by (e14.133)-(e14.135), we may write L1 = ®@,, , and L, = @, ,.
Let u(t) = exp(+/—13t(e ® h)) for t € [0, 1/3]. Then

I[p(a), u®)lll < d. forall a e g,. (e14.136)
In particular,

Bott(, v1)|p,= 0. (e14.137)
Exactly the same reason, we have that

Bott(¢p, v3)|p,= 0. (e14.138)
This implies

[L1]lgepy= [L2]lgpy)- (e14.139)
We also have

[Lillp, = [@]llp, = [L2]lp, and [v1] = [v2] = 0. (e14.140)
Therefore

[Lillp= [L2]lpr. (e14.141)
Then, by (e14.132) and the choice of §4, we compute (as in (e14.94)) that

t(Li(h)) > A(h) forall he Hy, i=1,2. (e14.142)
We also have

dist(L (x), Li(x)) < 284 forall x € t; U {z ® 15). (e14.143)

N N

Write V, = diag(m) and H = diag(m). As always, we will write ¢~ (y) for ¢~ ® idy, (y) for y = p;, qi,
i=1,2,...,m(f). By (e14.130),

¥ (pi)V2 = exp(iy ™ (pi)E @ H) and ¥7(qi)V2 = exp(iyy " (qi)E @ H), (e14.144)
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i=1,2,...,m(f). However,

t(Y(q;)E ® H) = t(¥(q;)E)ty(H) =0 forall t e TBR V). (e14.145)
In the next few lines, 1 = 1y,. Therefore

Y 0i)Ve + (=¥~ (p:)), ¥ (qi)V2 + (1 — ¥ (qi)) € CUMn(B® V),
i=1,2,...,m(f). This implies that

Li(x)=1 forall x € ty. (e14.146)
with x = ((1—p;)+pi ®z)(1—q;i) + q; ® z*), one then computes from (e14.125) and from the assumption (e14.108) that
L) ~,, 00 @7 @ v2 + (1= ))EP ® v2 + (1 - §)) (e14.147)
=@ +01- pl))(p,vz +(1-5) ® W)Y + (1= @)aVa + (1 - ) (e14.148)
=@"+ (1 —PEP + (1 - @)~ 1. (e14.149)
where p;, i, z l , ,(2) are as above (see the lines below (e14.125)), replacing ¥, by L;. It follows that
dist(Li(x), 1) < y2/4 forall x € {1® 2z} U Uyy. (e14.150)
By the choice of §3 and G4, and by applying 11.6, we also have
dist(TL;(wi)], TL(wi)1) < 12/2, 1=1,2,...,m(t). (e14.151)
Combining (e14.146), (e14.150) and (e14.151), we obtain that
dist(L! (w), Li(w)) < y, forall w e u. (e14.152)

By (e14.141), (e14.131), (e14.142) and (e14.152), and by applying 14.4, we obtain a unitary W, € B/é/\/ such that

IW1*Ly(f W7 — Li(f)|| < ¢/16 for all f € F. (e14.153)
Therefore

I[L1(a), Wi W]l < &/8 and ||Li(a) — Wi*Li(a)W,]|| < ¢/8 forall a e F (e14.154)

and |lv; — WM u,Wq| < &/8. (e14.155)

Let vy Wi v, W, = exp(~/—1h;) for some h; € By such that [lh1]] < 2 arcsin(e/16). Now define u(t) = uexp(i3t(e®h)) for
t €10, 1/3], u(t) = u(1/3)exp(i3(t — 1/3)hy) for t € (1/3,2/3] and u(t) = u(2/3)W;* exp(v/—1(3(t —2/3))(e ® h))W; for
t €(2/3,1]. So {u(t) : t € [0, 1]} is a continuous path of unitaries in B® V such that u(0) = u and u(1) = 1;. Moreover,
we estimate, by (e14.106), (e14.154) and (e14.154) that

lle(a), u(t)]ll <e forall ae 7. O (e14.156)

Corollary 14.9. Let A € Mg with continuous scale. For any 1 > ¢ > 0 and any finite subset F C A, there exist § > 0, a finite
subset G C A satisfying the following:

Let B = By ® V, where By € M, with continuous scale which satisfies the UCT and V is UHF-algebras of infinite type.
Suppose that ¢ : A — B is a homomorphism.

If u € U(B) is a unitary such that

lp(x), ulll <& forall x g, (e14.157)
there exists a continuous path of unitaries {u(t) : t € [0, 1]} C U(B) such that

u(0) =u, u(1) =1, (e14.158)

lle(a), u(t)]lll <e forall a e F and for all t € [0, 1]. (e14.159)
Proof. Fix a finite subset ¢’ C A and ¢’ > 0, there exist positive elements €', e”, e”’ € B\{0} with || = 1 = ||e”|| = |l”|,

! 5!

ee’ =e’e = ¢ such that ¢”’¢’ =¢e'¢” =0, and
lo(g)e — (&)l < '/2 and |le'p(g) — ¢(g)ll < ¢'/2 forall g € g (e14.160)

Let 78~ : B — C be the quotient map. Without loss of [ generality, we may assume that 78~(u) = 1¢. Since U(B) = Uy(B),
we may write u = ]_[l 1 exp(ihj) for some hjy € Bsa Write hjo = 17 + hJO, where r; € R and thO € B;,. Note
that Z]=1 rj = 2wk, for k, € Z. Therefore u = ]_[J=1 exp(lhj/ ). We may also assume, without loss of generality, that
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u = 1+ x, where x € e”’Be”. It is easy to find an element hy € e”’Be” such that t(hg) = Z}L r(hj’.o) for t € T(B). Let
up(t) = exp(—+/—1thg) for all t € [0, 1]. Note that

uup(0) = u and uug(1) € CU(E). (e14.161)
Moreover, by (e14.160),
llo(g)ug(t) — ug(t)p(g)|l < 2¢’ forall g € ¢’ and forall t € [0, 1]. (e14.162)

In other words, we have just reduced the general case to the case that u € CU(B). In other words, we may assume that,
without loss of generality, that u = 1.

Now we will apply 14.8. Note, from the above, we may assume (e14.109) holds. Since Ko(A) = {0}, (e14.108)
automatically holds. Since both A and B are KK-contractible, (e14.107) also holds. O

Lemma 14.10. Let A € Br have continuous scale. For any finite subset P C K(A), there exist 8o > 0 and a finite subset Go C A
satisfy the following: For any & > 0, any finite subset 7 C A and any homomorphism ¢ : A — B = B; ® Q which maps strictly
positive elements to strictly positive elements, where By = B; ® Zo € Do has continuous scale, suppose that u € U(B) satisfies

Ile(g), ulll < do forall g € Go. (e14.163)
Then there exists another unitary v € U(B) such that

le(g), vlll < minfe, &} forall g € GoUF and (e14.164)
Bott(¢, uv)lp=0 and [uv] =0 in K;(B). (e14.165)

Proof. Define A;(h) = inf{z(h) : € T(A)} for h € A} \ {0}. Let A = A;/2. Let T : AL \ {0} — Ry \ {0} x N be the map
given by A as in 14.1. Let P be given.

Write A = U2 Ay, where A, = AW, o) ® W, as in Section 7. Without loss of generality, we may assume 7 C Ay for
some integer N’ and P C [1'](Py’) for some finite subset Py; C K(An’), where 1" : Ay, — A is the embedding.

Let 8o > 0 and let Go C Ay be a finite subset satisfying the following: Bott(L, w)|p is well defined for any Go-8o-
multiplicative completely positive contractive linear map L : A — C and any unitary w € C with ||[L(g), w]|| < 26y for
all g € Go. Moreover, if w’ is another unitary, we also require that

Bott(L, ww’)|»= Bott(L, w)|p+Bott(e, w’)|p, (e14.166)

when ||[L(g), w']|| < 28, for all g € Go.

Let ¢ and u be given satisfying the assumption for the above Gy and .

Now fix ¢ > 0 and a finite subset 7 C A.

Let &1 = min{dp/4, ¢/16} and F; = F U Go. Let §; > 0 (in place of §), y > 0, n > 0, G; C A (in place of G) be a
finite subset, P; C K(A) (in place P) be a finite subset, &/ C U(A) be a finite subset, #; C A} \ {0} be a finite subset, and
H, C Asq. be a finite subset required by 5.3 for the above T (and for T(n, k) = n as Ko(B;) is weakly unperforated). Let us
assume that P; contains the set {[u] € K;1(A) C K(A) : u € U}, by enlarger P; if necessary.

Without loss of generality, we may assume that P; C [1](Py) for some finite subset Py C K(Ay), where N > N’ and
1: Ay — Ais the embedding. We assume that §; < . Without loss of generality, by choosing large N, we may assume
that GiUH{UH, C (AN)1+. We may also assume that &/ C U(Ay). Write w = A, +a(w), where A, € T C C and a(w) € An.
As in the remark of 5.3, we may assume that [w] # 0 and [w] € Py for all w € U. Let G, be the subgroup generated by
{w: w € U}. We may view G, C J.(K;(A)) (see the statement of 14.2). Moreover, for any G;-§;-multiplicative completely
positive contractive linear map L’ from Ay to a non-unital C*-algebraC induces a homomorphism A" : G, — U(C)/CU(C)
(see 14.5 of [38]). Furthermore, since Kj(Ay) is finitely generated, i = 0, 1, we may assume, with even smaller §; and
larger Gy, that [®,/ ;/]defines an element in KL(C(T, Ay), C), if |[L'(g), u']|| < &; for all g € G;.

Set G = F1 UG U{a(w): w € U} and set a rational number

0 < 0o < min{inf{A(h) : h € H1}, y/4).
Choose 6 = min{¢;/16, 81/16, y /16, n/16}. We may write u = 15 + a(u), where~a(u~) € B.Since B® Q = B, Ki(B) is
divisible (i = 0, 1). Therefore KL(A, B) = Hom(K,(A), K.(B)) and there is ¥ € KL(C(T, Ay), B) such that
[Pupallpy Py )= KlPyuppy) and [u]l =« ([z ® 15 1). (e14.167)

Note that B = B® Z. Define v, ,, : B® Zy — B® W by letting ¥, ,(b® a) = b® v, ,,(a) for all b € B and a € 2, where
2w 2o — W is a homomorphism defined in 8.12. Note also W ® Q = w. There is a homomorphism ¥,y : W — W
such that d;,, (¥, w(ew)) =1 —o0g and

tw(¥e w(a)) = (1 —og)tyy(a) forall a e w. (e14.168)

Let ¢, . be as in 8.12. Note that t\,, = £z 0o ¢, ; and t; =
respectively. Let ¥, , : B — B be defined by ¥, (b ® a) =

Vb0 (B)" # {0}

tw o @;.4, Where ty, and t; are tracial states of W and 2y,
b® ¢uz0VYsw o@,(a) forall b € Band a € Zy. Note that
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Let 9o = Yo o and u, € B satisfy a(u,) = ¥p o ((u)). Then, by (e14.168)
|t op(a) — 7 o ¢s(a)l < oplt(a)l forall aeA. (e14.169)
In particular,
T o Yo (h) > (1 — 00)t(e(h)) > (1 — 0p)Aq(h) forall h e (A)!\ {0}. (e14.170)

Choose two mutually orthogonal non-zero positive elements e, e; € ¥ ,(B)*. Note that

Y t(e) < op forall T € T(B). (e14.171)
i=1

Consider C*-algebra Cy = C(T, AN)". By 14.7, C(T,]\)" satisfies the condition in 9.3. It follows from 10.8 that there
exists an asymptotic completely positive contractive linear maps L, : Cop — B ® My, such that

(L Tlpugrui = & lpugrpuie - (14.172)
where k(n) — oo and where

K lkean= K ki) and kg, = K |a(K(AN)). (€14.173)
In particular,

€ (B(I13,1)) = —w(B(L13,1)) = ~[ul. (e14.174)

For each n, there are two sequences of completely positive contractive linear maps ¥o.m : B® Myun) — Bo,m C B @ Mim)
and ¥y, : B® Mym) — D C B ® My such that

mlgrgo Ix — (Yo,m(x) ® ¥1,m(x))]| =0 for all x € B® M), (e14.175)
lim ||y m(ab) — i m(a)¥im(b)ll =0 forall a,b € B& Mym), i=0,1, (e14.176)
m— 00
lim sup{d.(epm): T € T(B)} =0, (e14.177)
m—0o0

where D,, € Cg, Bom L Dp, and e, m € Bon is a strictly positive element of By ;. Since Ki(Dp) = {0}, i = 0,1, by
choosing sufficiently large n and m, put L, = Yro.m o Ly, we may assume that L~ is G-8/2-multiplicative (with embedding
1:Cy — C(T,A)) and

(L, o Hlpugcpuii;, 0= K®|7’Uﬂ(Pu{[1AN]])- (e14.178)

Moreover, by (e14.177), we may assume that e, n < eo.1, where eg 1 € B, eg 181 = e1e9,1 = ep,1. Since B has almost
stable rank one, there is a unitary w; € B such that Adw; o L},(a) € Bo. = e;Be; for all a € A. Put L] = Adw o L. Let
Ug € By such that up = 1B6e ~+ a(ug) for some a(up) € (Bo.e)s.q. and

ILa(z ® 15,) — uoll < 8/16. (e14.179)
It follows from (e14.178) and (e14.174) that

[uo] = k“(B([15,1)) = —[ul € Ki(B) (e14.180)
Define L : A — B by (for some sufficiently large n as specified above)

L(a) =Ly (a) ® ¥, o @(a) for all a € A. (e14.181)

It is ready to check that L is G;-6-multiplicative. Let " : G, — U(B)/CU(B) be a homomorphism induced by L. Let
A = @flz—)". Since ¥, o ¢ factors through B ® W, [, o ¢] = 0. By (e14.178) and (e14.167) and the fact that P;
contains the set {[u] € Ki(A) C K(A) : u € u}, we know that [L]|{ju),uec,)= [¢]l{fu],uec,)- Consequently, the map A maps
G, into Uo(B)/CU(B). Since Uy(B)/CU(B) is divisible, we may extend A to a map from J.(K;(A)) into Aff(T(B))/Z. Choose
a non-zero element ey € B with ege; = e;eq = eg such that d(eg) is continuous on T(B). Let Ar : T(egBeg) — T(A)

be an affine continuous map defined by Ar(t) = t4 for all t € T(egBeg), where t, is a fixed trace in T(A). Define
Aar @ U(A)/CU(A) — Up(eoBey)/CU(egBey) by Aeulj g an= * and Aeulyy iy cuiiy= kg, i.e., Aaq(f)(t) = f(rr(t)) for all
t € T(egBeg). Define Ag : K(A) — K(eoBeg) by Ax = 0. Then (A, Acy, A7) is compatible. It follows from 12.8 that there exists
a homomorphism ¢, : A — egBegy such that ([¢q], go;,, (¢cu)r) = (Ak» Aeus 7). (Note that ¢, L L, since e, e; € wb,(,(B)l
and eje; = 0.)

Now define @ : A — B by &(a) = ¢q(a) ® L(a) for a € A. Then @ is G1-§-multiplicative,

to®(h)> A(h) forall h e #H,, (by (e14.170)) (e14.182)
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It o®(h)—to@h)| <y forall h € Hs, (e14.183)
[@]lp=[¢]l» and (e14.184)
& ()= M)+ N(w) = ¢f(w) forall weu. (e14.185)

Let v/ = 15 + a(uo) + Vo ((u)). By (e14.179), (e14.181), and [y}, ; o ¢] = 0, We have

Bott(®, v')|p= Bott(L) |4, Uo)lp= [L;] 0 Blp (e14.186)
Combining with (e14.178) and (e14.173), one obtains
Bott(®, v')|p=«® o B|P = —k o Bl p. (e14.187)

By (e14.182), @ is also T-H1-full. By applying 5.3, we obtain a unitary W € B such that
IW*®(f)W — o(f)|| < &1 forall f e FUG. (e14.188)
Let v = W*(15 4+ a(uo) + ¥p,o(a(u)))W. Then v is a unitary. It follows from (e14.180) that

[v] = —[u] (e14.189)
We have
lle(f), v]ll < &1+ 8 forall f e FUG. (e14.190)

Note that Bott(g, v) = Bott(®, v’). Recall that from (e14.167), Bott(¢, u)|»= x o B|p. By (e14.187) and (e14.189), we then
compute that

Bott(¢p, uv)|»>= Bott(¢, u)|p+Bott(¢p, v)]p=0 and [uv] =0. O (e14.191)

Remark 14.11. Lemma 14.10 still holds by replacing Q by any UHF-algebra of infinite type if K;(A) is finitely generated.
It should be noted that §p and Gy are independent of & and F.

Lemma 14.12. Let A € Br have continuous scale. For any ¢ > 0 and any finite subset F C A, there exist § > 0 and a
finite subset G C A satisfying the following: Suppose that ¢ : A — B = B ® W, where B € Dy with continuous scale, is a
homomorphism which maps strictly positive elements to strictly positive elements and suppose that there is a unitary u € B
such that

lp(g), ulll <4 foral g €g. (e14.192)
Then there exists a continuous path of unitaries {u(t) : t € [0, 1]} C B such that u(0) = u, u(1) = 1; and
(), u(t)lll < e forall f e F. (e14.193)

Proof. Note that, by 134, A = A ® Z,. We identify A with A ® 2. Let ¢,,, : W — Z; be defined in 8.12. Let
Ywa: AQW — A® Zy defined by ¥, (a @ w) =a® ¢, foralla e Aand w € W.PutA; = AQ W.Fixe >0
and a finite subset 7 C A. o

Note T(A) = T(A®W) and p;(Ko(A ® W)) = Z. It follows from 12.8 that there exists a homomorphism hy ,, : A — AQW
such that (h.)r = idra) and hi ,[j.w,@ap= 1 and hd | agrayz= Dagriyz-

Let F; = hg(F). Choose G,, € A® W and 8y > 0 which are required by 14.9 for A® W € My, F; and ¢/16.

Suppose that ¢ : A — B is a homomorphism which maps strictly positive elements to strictly positive elements and
suppose that there is a unitary v € B such that

Iy (g), vill < dw/2 forall g € ¥ a(Gu) (e14.194)

and suppose that 1 maps J.(K;(A)) to 1.

Consider homomorphism " : A — B defined by ¥' = ¥ o, 4ohq,,. Note that ['] = [/] in KL(A, B) (since B = B®W)
and roy’ = 1oy forall € T(B)and ¥ = (y')" (Note that (') maps J.(K;(A)) to 1). Therefore, by 5.3 (and 5.6), there
is a unitary V € B such that

V9 (g)V — ¢(g)ll < min{dw/2,&/16} forall g € ¥a(Gu) U F. (e14.195)
Define yw : A® W — Bby Y = AdV o ¢ o ¢, 4. Then
IlYw(g), v]ll <& forall g € Gy. (e14.196)

Note A® W € M. It follows from 14.9 that there exists a continuous path of unitaries {v(t) : t € [0, 1]} C U(B) with
v(0) = u and u(1) = 15 such that

IYw(g), v(t)]|l < e/16 for all g € F. (e14.197)
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Therefore,
IAAV o ¥'(f), v(t)]|| < /16 forall f e F. (e14.198)
It follows from this and (e14.195) that
v (), vl <e&/8 forall f e F. (e14.199)
Now we consider the general case that v (J.(K;(A))) # 1. Let
Ap(a) = inf{z(a) : T € T(A)} forall a € Al+ \ {0} and (e14.200)
Ap(C) = inf{(/fdm)AA(a) c>f®a, fedT), acA} (e14.201)

for all c € C(T, ;\)"Lwhere m is the normalized Haar measure on T. Put A = Ag/2. ~

Put A. = C(T,A). Let H; C (Ac)]r \ {0} be a finite subset, y; > 0, »» > 0,8, > 0, G C A (in place of G) and
P C K(Ac), Ha C Ac and U C J(Kq(Ac)) be finite subsets with [¢/] C P be required by 14.4 for min{dy /4, £/16} (in
place of ¢) and ¥4, (Gw) (in place of F) and A. With smaller §; > 0, y;, without loss of generality, we may assume
that H] = {g 03] 1;\ . g € ’H]_T} U {lc('ﬂ‘) ®a:a e 'H]’A}, and g1 = {g 24 IA . g € gLT} U {1(‘(']1‘) ®Xa:ae g]',q},
Hy={g8®1;:8 € Har}U{lemy®@a: a € Hya}, where Hy 1, Ha 1, Gi,r C C(T), and H1 4, H2.4, G1.4 C A are finite subsets.

Let ¢ = G142 U F and & = min{8./2, dw/2,¢/16}. Let 0 < § < 8’ and G D G’ be finite subset such that any G-é-
multiplicative completely positive contractive linear map L’ from A to a C*-algebra C and any unitary v’ € C with property
IIL'(g), ]|l < 26 for all g € G gives a G;-6-multiplicative completely positive contractive linear map from C(T, A) to C.

Suppose that ¢ : A — B is a homomorphism which maps strictly positive elements to strictly positive elements and
u € B such that

le(g), ulll <6 forall geg. (e14.202)

Note that B® Q ® Q = B. We may assume that ¢(A) C B® 1o ®1¢ and u € B® 1o ® 13. Let {e,} be an approximate identity
for A. Consider v, = u(exp(ie, ® h)), where h € Q ® 1o with sp(h) = [—n, w] and ty(h) = 0 and where t; is the tracial
state of Q. Let pk, q1.k. 2.k € 1o ® Q be mutually orthogonal projections with to(px) = 1 — 1/k, to(qix) = 1/2ki =1, 2,
andpik @ik ® =119, k=1,2,....Put By =BQpi, Bix =B®qix, i = 1,2,k = 1,2,.... By 12.8, there are
homomorphisms ¥; x :A — B; such that ‘L'( 1k( )) = (1/2k)t(¢(a)) for all a € A and

1
& ean= —(1 = E)‘/’”Jc(lﬁ(ﬁ)) and ¥ [, ap=(1— E)‘/’”Jc(KﬂA))’ (e14.203)

k=1,2,....Define wn ¢ - A — Ci = B®By by wn (@) = p(a)RpkBY; k(a) for all a € A, and define Y, : A — BR1o®1q
by ¥ (a ) ¥ (a )@%k( Jforallae A k=1, 2,.... Write vp = A+ a(v,) for some A € T and a(v,) € BQ 1 ® 1q.
Let vpx = A - 1- + a(va)(Pk @ quk) and wpp = A - 15 + a(vn)(Pk @ q1.k). Choose a completely positive contractive linear
map Ly = cbu,nk i C(T,A’ — B®Q ® Q induced by the unitary wy x and ¥ . Let @, , : C(T,A)° - B® Q ® Q be
the one induced | by v, and ¢.

Note that U(B )/CU( = Aff(T ))/Z By applying 14.5, for all sufficiently large n and k (we then fix a pair n and k)

T(Lyk(h)) = AO( )/2 = A(h) forall t € T(B) and forall h € Hq, (e14.204)
[T(Lnk(h)) = T(Py,,0)(h)| < y; forall heH, and (e14.205)
dist(L} (), @] (@) < y, forall w eu. (e14.206)

It follows from 14.4 that there exists a unitary U € B ®/a_é Q such that
U k(8)U — ()l < min{dw /4, e/16} for all g € ¥, o(Gw) and (e14.207)
|U*wy kU — vyl < min{dw /4, £/16}. (e14.208)

Now consider Ad Uov; |, : A — Dy := U*CU and the unitary U*v, U € Dy. Note, by (e14.203), (Ad Uoy ) et an= 1.
So we reduce this case to the case that has been proved. Thus there is a continuous path of unitaries {V(t) : t € [2/3, 1]} C
Dy such that V(2/3) = U*vpU and V(1) = 15, and

I[ADU o ¥, (f), V()| < &/8 forall f e F. (e14.209)

Note that U*wp U = A o 13 + U*a(vy)U. Write V(t) = A(t) - 15 + a(V(t)) for some A(t) € T and «(V(t)) € Dy. Put
Z(t) = A(t) - 15+ a(V(t)). Then Z(2/3) = U*wy U and Z(1) = 1;. Since B, L Cy, we have that

IAAU o Yr(g), Z(t)]]| < &/8 for all f € F. (e14.210)

By (e14.208), we may write viU*w, U = exp(ib) for some b € B.o with ||b| < 2 arcsin(e/32). Define Z(t) =
vy exp(v/—1(3(t — 1/3)b)) for t € [1/3, 2/3). Then Z(1/3) = v,. We also have

AU o ymi(g), Z()]]l < &/8 forall t e [1/3,1]. (e14.211)
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It follows that
Ile(g), Z(OIl < /8 + ¢/16 for all t € [1/3, 1]. (e14.212)

Define Z(t) = u(exp(3+/—1te, ® h)) for t € [0, 1/3). Then Z(0) = u and {Z(t) : t € [0, 1]} is a continuous path of unitaries
in B. Moreover,

lle(g), Z(t)]|l <& forall ge F and t €[0,1]. O (e14.213)

Theorem 14.13. Let A € Br have continuous scale. Let P C K(A) be a finite subset, let {p1, pa, ..., Pk, q1, G2, - - -, qk} be
projections of Ms(A) (for some integer s > 1) such that {[p1]—[q1], [p2]1—1q2], - . ., [px] — [qk]} C P generates a free subgroup
Guo of Ko(A), let 0 > 0, g9 > 0 and Fy C A be a finite subset. There exist 8o > 0 and Gy C A such that the following hold: For
any & > 0, any finite subset 7 C A, any homomorphism ¢ : A — B = By ® Q which maps strictly positive elements to strictly
positive elements, where By = B1 ® Zy € Dy has continuous scale, and any unitary u € U(B) such that

Ile(g), ulll < do forall g € Go, (e14.214)
there exists a continuous path of unitaries {v(t) : t € [0, 1]} C U(B’) such that

lp(g), v(0)]ll <& forall g € GoUF, (e14.215)

le(f), vl < &o forall f € Fo, (e14.216)

Bott(¢, uv(1))|p=0, [uv(1)] =0 and (e14.217)

dist(T((1s — ¢(ps)) + (wo(1)se(P)((1s — ¢(g) + w1 p(g)1, 1) < o, (e14.218)

where 1, = 1y, and (uv(1))s = uv(1) ® .

Proof. Define A;(h) = inf{z(h): T € T(A)} for h € Al \ {0}. Let A = Aq/2.Let T : A} \ {0} — R, \ {0} x N be the map
given by A as in 14.1. Let g9, o, Fo, P and {p1, ..., Pk, 91, G2, - - - » Gk} C MS(A) be given. In what follows, if v’ is a unitary,
v, =0 ® 1.

Write p; = (af’j)SXS and q; = (a%)sxs, where a
aﬁj., ag’j- €eC-1+ 7.

In what follows, if L' : A — C’ is a map, we will continue to use L' for L' : A — (" and L' ® idy, as well as L™ @ idy,
when it is convenient. Moreover, 1 := 1p;.

Let §; > 0 and let G; C A be a finite subset satisfying the following: Bott(L, w)|» is well defined for any G;-§;-
multiplicative completely positive contractive linear map L : A — C and any unitary w € C with IL(g), wlll < 28; for
all g € Go. Also, if w’ is another unitary, we also require that

fj ag‘j €A 1<ij<s 1<I<k Let F, be a finite subset in A such that

Bott(L, ww’)|»= Bott(L, w)|»+Bott(e, w')|p, (e14.219)

when ||[L(g), w']|| < & for all g € G. Moreover, for any G;-6,-multiplicative conpleteNIy positive contractive linear map
L' from A to a non-unital C*-algebra C’ induces a homomorphism 1’ : G, — U(C)/CU(C) (see 14.5 of [38]). Furthermore,

using 14.5 of [38] again, we assume that, for any unitary w’ € Ms(q) with the property that [|[L'(g), w']|| < 26 for all
g € Gy, @,y v induces a homomorphism Ay, from Gy to U(C)/CU(C) and, for 1 <i <k,

dist([(1s — L'(pi) + wel (pi))(1s — L'(qi) + (we)*L'(@i)], Avw ([pi] — [4i])) < 0/16, (e14.220)

where w; = w’ ® 1;. We may assume that §; is smaller than §; in 14.10 and gj, is larger than Gy in 14.10 for the above P.

Let 8y > 0 and let Gy C A be a finite subset required by 14.12 for min{eq/4, 8;/2} (in place of ) and Fy U g, Put
8y = min{8;/4, dw/4} and G; = G, U Gw U Fy U Fp.

Let &1 = min{8(j/4, £0/16, 0 /16}/2'%(s + 1)%. Let §; > O (in place of §), y > 0, n > 0, G; C A (in place of G) be a
finite subset, P; C K(A) (in place P) be a finite subset, 2/ C U(A) be a finite subset, H; C A, \ {0} be a finite subset, and
Hy C A, be a finite subset required by 5.3 for & (in place of ¢) and G (in place of F) the above T (and T(n, k) = n).

We assume that §; < §; and that G; UH; UHy C (A)l. Write w = A, 4+ a(w), where A, € T C C and a(w) € A.
As in the remark of 5.3, we may assume that [w] # 0 and [w] € P for all w € U. Let G, be the subgroup generated by
{w: w € U}. We may view G, C J.(K1(A)) (see the statement of 14.2).

Note that B = B ® 2. Define ¥, : B® Zyp — B® W by letting ¥, w(b ® a) = b ® ¢, ,(a) for all b € B and a € 2,
where ¢, ,, : Z9 — W is a homomorphism defined in 8.12. Note that, by 6.8 of [16], B® W is in M, with continuous
scale.

Set Go = Go U Gy U {a(w) : w € U} and set a rational number

0 < 0o < min{inf{A(h) : h € H1}, y /4).

Let {e,} be an approximate identity for A such that e, e, = e, and (e,Ae,)* # {0} for all n. Define y,(a) = @(e,ae,) for all
a € A. Then lim,_, », ||¥n(a)—¢@(a)|| = 0 for all a € A. Choose a sufficiently large n such that ¥,,|»= ¢|p. Therefore, without
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loss of generality, we may assume that there are ey, e, € Ay with |le,|| = [leall = 1 such that, with ¥s(a) = ¢(eaaea)

eag =gea =g forall g € Gy, e,eq=en, (m)L # {0} and ¢|p= Valp. (e14.221)
Choose a pair of mutually orthogonal non-zero positive elements ey, e, € (M)l such that

d.(eo + €p) < op forall T € T(A). (e14.222)
Choose an integer K > 1 such that

1/K < min{og/4, inf{d.(eo) : T € T(A)}} (e14.223)

and choose 8, = min{e/16, §1/16, ¥ /16, n/16}/64(s + 1)3(K + 1)%. Put Gy = G, U {ea, €y, €0, €p}.

Now let ¢ and u be given satisfying the assumption for the above Gy and §g. Let ¢ > 0 and F C A be a finite subset.
We may write u = 13 4 «(u), where «(u) € B. Put @ = P U B(P).

Note also W ® Q = W. Let e; € Q be a projection with ty(e;) = 1/K, where t, is the tracial state of Q. Define
Yikw : W —=>W®RQ by yrixw(a) =a® e for all a € w. Then

tw(¥rik,w(a)) = (1/K)tw(a) for all a e w. (e14.224)

Let ¢, . be as in 8.12. Note that t)y, = t; o ¢, and t; = tyy o ¢, ,, Where ty, and t; are tracial states of W and 2y,
respectively. Let ¥ 1,k : B — B be defined by ¥ 1/k(b ® a) = b ® ¢, o Y1xk,w © ¢, w(a) for all b € B and a € 2. Let
Ybw,1/k 1 B— B® W ® eq be defined by v¥p . 1/x(b ® a) =b ® Yi/k.w o ¢, w(a) for all b € Band a € 2.

By applying 14.10, there is a unitary v, € B such that

lle(g), v1lll < min{dy, e} forall g € FU Gy and (e14.225)

Bott(¢, uvy)|»=0 and [uv{] = 0. (e14.226)
Note that

I[e(g), uvilll < 8o + min{dy, &} for all g € Go. (e14.227)

We may write uv; = 13 + a(uv;) for some «a(uvy) € B. Define ¢’ : A — B by ¥'(a) = 1k o ¢(a) for all a € A.
Using (e14.223), by replacing ' by Ad w; o ¢’ for some unitary wq, we may assume that v'(A) C By := eg ,Beg », where
eop = @(eo). Let vy = 15 + ¥ 1k (a(uvr)), v2 = ((v4)*)€ and v = 15, + Wb,1/x(@(uv1)). Note that [¢']]»= 0, since it
factors through B ® . Moreover

Bott(y', v})|p= 0 and Bott(y’, (v ))|p= 0. (e14.228)

Let Ap uy, : Guo — U(M. ( ))/CU(M. ( )) be the homomorphism induced by ¢ and uvy, via a map @y, ,. Then (e14.226)
implies that A, ,, maps Gyo to Aff(T(B))/Z (see also [21]). Let A,/ ,, o : Gyo — Aff(T(B))/Z be the homomorphism induced
by ¢v;,w“ Since T o ¥p,1/x(b) = (1/K)z(b) for all b € B and for all T € T(B), it is straightforward that we may write

Ay ([i] = [4i]) = (1/K)Ag, 0, ([Pi] — [qi]), (e14.229)
i=1,2,...,k It follows that, by the choice of §; and &5, since v, = ((v5)*)¥,
dist(¢/, —(Ag.uv, ([pi] = [qi]))) < /16, (e14.230)

where ¢/ = [((1s — ¥/(pi) + (v2)s¥'(P))((1 — ¥'(qi) + (v3)s¥/())1, i = 1,2, ..., k. As in the proof of 14.10, by applying
12.8, we obtain a homomorphism, ¥, : A — e (Be; ;, where e, ; = ¢(e;), such that

[Yeu] = 0 in KL(A, B) and ¢}, = —(¢)'. (e14.231)

Define v : A — B by ¥(a) = ¥ (a) ® ¥'(a) ® p(eaae,s) for all a € A. Then ¢ is G,-28,-multiplicative (see the last part
of (e14.221)),

toy(h) > ( ) for all h € Hq, (e14.232)
[t oy(h)—to@(h) <y forall h e #H,, (e14.233)
[V1lp=[¢llp and (e14.234)
Vi) = —(¥") (@) + (W) () + o' () = f(w) forall weu. (e14.235)
By (e14.232), ¥ is T-H;-full. By applying 5.3 (as Ko(B) is weakly unperforated), we obtain a unitary U € B such that

U (U — o(f)ll < & forall f € g. (e14.236)
Let v = v1U*(vy)U. Then v is a unitary. We have
Ile(f), v1l| < 2&1 + (K + 1)8 forall f € g. (e14.237)
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We then compute that, by (e14.226), (e14.236) and (e14.228), and by the fact that ¢(es)vy = vop(ea) = @(ea),

Bott(¢p, uv)|p = Bott(gp, uvy)|p+Bott(p, U v,U)|p (e14.238)
= 0 + Bott(y, v2)|p (e14.239)
= 0+ Bott(¢(es - €4), 1) + Bott(y/', vy)|p= 0. (e14.240)

Put ¥ = AdU o v, ¥" = AdU o ¥ and u, = U*v,U. Put g5 = s?g; and 8, = (K + 1)8;. We have (recall wé =w ® 1)

(1s — o(pi)) + (uv)se(pi) (e14.241)
= (15 — @(pi)) + (uviu2)sp(pi) (e14.242)
Res (15 — @(pi) + (uv1)s(u2)s¥ (pi) (using (e14.236)) (e14.243)
Rgss, (1s — @(pi)) + (uv1)s ¥ (pi)(u2)s ¥ (pi) (e14.244)
Res (1s — o(pi))(1s — W(py)) + (uv1)s@(pi)¥ (pi)(U2)s¥ (pi) (e14.245)
Raes ((Ts — (pi)) + (uv1)s@(p))((1s — P (pi)) + (u2)s ¥ (pi))- (e14.246)
Similarly,
(1s — (i) + (uv)se(qi) ~ee, ((1s — @(qi)) + (Uv1)s@(qi))((1s — ¥ (qi)) + (U2)s¥ (qi))- (e14.247)
Put
Zi = [((1s = ¥(pi)) + (u2)s¥ (pi))N((1s — ¥(qi)) + (u2); ¥ (qi)].
Then, since we have assumed that v/'(A) C eg »Beg , one computes, by (e14.221), that
Zi=¢, i=12,...,k (e14.248)
Then, in U(M,(B))/CU(Ms(B)), for i = 1,2, ..., k, by (e14.246) and (e14.247),

[((1s = o(pi)) + (uv)se(P))((1s — ¢(g:)) + (uv);e(qi))] (e14.249)
~i12es [((1s — @(pi)) + (Wv1)sp(Pi))Zi(1s — @(qi)) + (uv1 )i o(qi))1 (e14.250)
= (15 — ¢(p)) + (wv1)se(P))((Ts — ¢(q0)) + (w1 )i@(ai))1 Zi (e14.251)
2 hgauwy ([i] — (412 %o 16 1. (see (€14.230)) (e14.252)

Now back to ¥'. Let ¢go : A = By := B® W ® eq be defined by ¢oo = V¥p,u,1/x © ¢. Then
IT@oo(g). (v Y1l < 2K8o < 81/2 for all g € Go. (e14.253)

By the choice of dw and Gw and by applying 14.12, there exists a continuous path of unitaries {V(t) : t € [0, 1]} in
B® W ® eq such that V(0) = 15, V(1) = (vy*)€ and

Igoo(g), V(O < min{eo/4, 5y/2} forall g € FUG). (e14.254)
Write V(t) = A(t) - 15, + e((V(t)) for some A(t) € T and a(V(T)) € By. Put

u(t) = 1 U*(A(t) - 15 + a(V(0)U forall t € [0, 1]. (e14.255)
Then we have

Ile(f), v(O]ll < min{eg, 85} for all f € Fo. (e14.256)

Note that v(0) = v; and v(1) = v. So, (e14.216) holds. Also, by (e14.225), (e14.215) holds and, by (e14.240), (e14.217)
holds. Moreover, by the choice of ¢; and by (e14.252), (e14.218) also holds. O
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Corollary 14.14. Let A € Br have continuous scale. For any 1 > gy > 0 and any finite subset 7o C A, there exist § > 0 and
a finite subset G C A satisfying the following:
For any ¢ > 0 and any finite subset 7 C A and any homomorphism ¢ : A — B ® Q which maps strictly positive elements

to strictly positive elements, where B= B ® Z, € Dy has continuous scale. If u € U(B ® Q) is a unitary such that

lle(x), ulll <é forall x € g, (e14.257)
there exists a unitary v € B/ga such that

Ile(f), vill < & forall f e F, (e14.258)
and there exists a continuous path of unitaries {u(t) : t € [0, 1]} C Uo(B/éa) such that

u0)=uv, u(l)=1 (e14.259)

lle(a), u(t)lll < eo forall a e Fy and for all t € [0, 1]. (e14.260)

Proof. This is a combination of 14.13 and 14.8. Let &9 > 0 and F, be given. Let §; > 0, 0 > 0, G; C A be a finite
subset, let {p1, p2, ..., Pk, 91, G2, - - -, Qk} be projections of My(A) (for some integer N > 1) such that {[p1] — [q1], [p2] —
[g21, ..., [pk] — [qk]} generates a free subgroup G, of Ko(A), and P C K(A) be finite subset required by 14.8.
Let 6o > 0 and Gy be required by 14.13 for min{§1, &} (in place of &), o and G; U Fy (in place of Fy) and P and G,.
Now suppose that ¢ and u satisfy the assumption for this pair of 8o and Go. Let € > 0 and F C A be given. Then, by
applying 14.13, there is a unitary v € B; = B® Q and a continuous path of unitaries {v(t) : t € [0, 1/2]} C B; such that
v(0) = v,

Ile(f), vill < e forall f e F, (e14.261)
I[p(g), v(t)]ll < & forall g € Foy (e14.262)
Bott(p, uv(1/2))lp= {0}, [uv(1/2)] =0 and (e14.263)
dist([((15 — @(pi)) + (uv(1/2))s@(P))(1s — (g:)) + (uv(1/2))ie(g))]. 1) < o, (e14.264)

where 15 = 1y, and (uv(1/2))s = uv(1/2)® 1u,. Note, since B is non-unital, it is easy to see that we may assume, without
loss of generality, that everything mentioned above lie in My(Bp), where By is a hereditary C*-subalgebra of B so that
;é {0}. By the proof of 14.9, therefore one may assume uv(1/2) € CU(B ) It follows from 14.8 that there is a continuous
path of unitaries {u(t) : t € [1/2, 1]} C By such that u (1/2) = uv(1/2), u(1) = 13, and
Ile(f), u(t)]ll < &o forall f e 7/ forall t e[1/2,1]. (e14.265)

Finally, define u(t) = uv(t) fort € [0,1/2]. O
15. Finite nuclear dimension
The following proposition follows from the definition immediately.
Proposition 15.1. Let A be a non-unital separable amenable simple C*-algebra. Then A has tracially approximate divisible

property in the sense of 10.1 of [15] if and only if the following holds:
For any ¢ > 0, any finite subset 7 C A, any integer n > 1 and any non-zero elements ay € A, \ {0}, there are

mutually orthogonal positive elements e;, i = 0, 1,2, ..., n, elements w;, i = 1,2, ...,n, such that wjw; = e%, wiw] = el.z,
i=1,2,...,n ey < agand
n
lx — Zeixe,-ll <e¢e and |lwix —xw;i|]| <e, 1<i<n, foral xe F. (e15.1)

i=0

Theorem 15.2. Let A be a non-unital separable simple C*-algebra with continuous scale and with finite nuclear dimension
which satisfies the UCT. Suppose that T(A) # ) and every tracial state of A is a W-trace. Then A € Dy.

Proof. Since every tracial state of A is a W-trace, by 12.3 of [15] (see 18.3 of [18]), Ko(A) = ker p4. Suppose that A is
tracially approximately divisible. Then, since we assume that every tracial state of A is a W trace, by 3.12 of this paper
and 6.5 of [ 16] and the proof of 18.6 of [ 18], A € Dy. Therefore it suffices to show that A is tracially approximately divisible.

It follows from [57] that A= A® Z. Put B = A® Zp, By = B® Q and A; = A ® Q. Pick a pair of relatively prime
supernatural numbers p and q such that M, ® M, = Q. Let

Z,a=1{f€C([0,1],Q): f(0) e M, and f(1) € M} and (e15.2)
D®2z,,=1{f€C([0,1,D®Q):f(0)e D®M, and f(1) € D M,} (e15.3)
for any C*-algebra D. Note, by [53], Z is a stationary inductive limit of Z, ; with trace collapsing connecting map.
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Lete > 0,let FCA® Z,letay € (A® Z), \ {0}, and let n > 1 be an integer. Put n = inf{d.(ap) : T € T(A® Z)}. Since
A is assumed to have continuous scale, one may find a positive element f, € A ® Z with |fe|| = 1 such that

(fe) > 1—n/16(n+1)% forall t € TAQ 2). (e15.4)

We assume that f, € F. Without loss of generality, we may also assume that 7 C A ® Z, ;. We may further assume,
without loss of generality, that there is 0 < 1/2 < dy < 1 such that

flt)y=f(@) forall t > dy (e15.5)

and for all f € F. Note Aff(T(B)) = Aff(T(A)) and U(B)/CU(B) = U(A)/CU(A). There is a KK-equivalence x € KL(B, A)
which is compatible to the identifications «r : Aff(T(B)) — Aff(T(A)) and «¢, : U(B)/CU(B) — U(A)/CU(A) above. We will
consider the triple («, k7, k). Let ¢, : B My, - A® M, and ¢, : B® M; — A ® M, be isomorphisms given by 13.1
and induced by (« ® [idp, ], 1, Ko ® (idy, )ew), and by («k ® [idMq], KT, Ky @ (idMq Ju)- Let ¥, :BOM, @ M; =B®Q —
A®M, ® M, =A®Q given by ¢, = ¢, ® idy, and let ¥, = ¢, ® idy, : B® Q - A® Q. Then

(Wl (Wl ¥) = (], (Wdr ). (e15.6)

)
q

let 71 = {f(1) : f € F} inAQ@ M, @ M. Let G; = {W fy : f e A} € B® Q. Fixane > 0. Put
Coo = Co((0, 1]) @ Mn(Co((0, 1])) and Gz = {(f,0),(0,f ® ei,i) (o, f ® ey;): 1 <i < n} form a set of generators, where
f € Go((0, 17) is the identity function on [0, 1] and {e; j}1<ij<a iS a system of matrix units for M,,. It is well known that Cyg
is semi-projective. Let §. > 0 satisfy the following: if L : Coo — C’is a Cg-8.-multiplicative completely positive contractive
linear map for a C*-algebra C’, there exists a homomorphism h. : Cog — C’ such that

lhe(g) — L(g)|l < min{e, n}/64(n+ 1) forall g € Cg. (e15.7)

Let &g = min{e/(n + 1)*16, 8. /4, n/(n + 1)>16}.
Let § > 0and G C A®Q be a finite subset required by 14.14 for &y and ;. Without loss of generality, we may assume
that 6 C (A® Q) and F; C G. Let &; = min{gy/2, §/4} and G; = 1/;;1(9) UGy CB®AQ.

It follows from 5.3 (see 5.6) that there exists a unitary u € A® Q such that

U Yrp(8)u — Yro(8)ll < €1/4 forall g € G;. (e15.8)

Write u = A 4 «(u) for some a(u) € A® Q. Choose egg, €91 € (AR Q)+ with |lego]l = |leo1]l = 1 such that eggep; = ego and
lleoox—x|| < £1/16 and ||x—xego|| < £1/16 for all x € Gy and x = «(u). We also assume that there is a non-zero e, € AQQ
such that ey,eq; = 0. There is a unitary u; € C- 155 P ORE e0o(A ® Q)egp such that |lu; — u|| < ¢/8. Since A® Q € Dy, by

11.5 of [15], it has stable rank one. Thus there is a unitary u, € C - 1o+ ego(A ® Q)eg, such that [up] = —[u] in K;(A).
Put u3 = uu,. Then, since ey eq; = 0, by (e15.8),
lu3¥p(glus — Yq(g)ll < &1/2 for all g € G- (e15.9)

But now us € UO(A/g/Q). There is a continuous path of unitaries {u(t) : t € [0,d]} C U(A/éa) such that u(0) = 1 and
u(t) =us for all t € [d, 1] and for some 0 < dy < d < 1. Define

_lﬁ_(()f()()) t €[0,d];
vk = {qi‘ Dy @ (du()y) + CDy (1) ke (d, 1. (e15.10)
Note that y(f) € B® Z,,. For f € F, let g = ¢ '(f(1)) = ¥, '(f(d)), by (e15.9),
lg — v, (u(d)yg(g)u(d))]| < &1/2. (e15.11)
In other words, if f € F,
||1/f'j1(u(d1f(d)u(d)*) - lﬁ[l(f(l))ll < &1/2 (e15.12)

Let 7, = {y(f) : f € F} C B® Z,,. Note that B is a simple C*-algebra and B = B ® Z, B has tracially approximate
divisible property (see 8.9). Since Z, , is unital and B has tracially approx1mate divisible property, there ex1st mutually

orthogonal positive elements e;,i = 0, 1,2, ..., n,elements w;, i = 1, 2, ..., n,in B® 2, 4 such that wjw; = el, wiw; = e
epei=0,i=1,2,...,n,and
n
lx — Zeixein < e1/4, ||xw; —wix|| < &1/4, 1 <i<n forall xe 7 and (e15.13)
i=0
d.(eo) <n/4 forall T e T(BQ® Z, ). (e15.14)

Since f, € F, (e15.13) also implies that
n
> t(e) = 1— /4 —n/16n* forall 7 € T(B® Z,,). (e15.15)
i=1
92



G. Gong and H. Lin Journal of Geometry and Physics 158 (2020) 103865

Without loss of generality, we may assume that e;(t) = e;(1) and w;(t) = w;(1) for all t € [dy, 1] for some d; > d > do.
Let G, = G1 U {ei(1), wi(1) : 1 <i < n}. By applying 5.3 again, we obtain another unitary us € A® Q such that

(5 (s )ita — wo(@)ll < £1/16 for all g € Gy, (e15.16)
Therefore (see also (e15.9)), for any g € G,
I[Adus o ¥ry(g), ualll < &1. (e15.17)

It follows from 14.14 that there exist a unitary us and a continuous path of unitaries {v(t) : t € [dy, r]} in /@6 (for
some 1 > r > dy) with v(r) = uqus and v(d;) = 1/@6 such that

I[Ad u3 o ¥,(g), uslll < e1/16 forall g € G, and (e15.18)
I[Ad us o ¥, (f), v(t)]ll < & forall f € 71 and t € [dy, r]. (e15.19)
It follows from (e15.16) and (e15.18) that
(r ) (u3yr(gus)u(r) — Yq(g)ll < &1/8 forall g € Gs. (e15.20)
Now define
u*(£)yrp(ei(t)u(t) t €0, dq],
by = { v*(t)uby,(ei(t)usv(t) teldy,r],i=0,1,2,...,n and (e15.21)
oy gy e(Dusv() + S=2yg(e(1) ¢ e (r, 1],
w*(£)rp(wilt))u(t) t €[0,d4],
zl = { v (Oud v, (wit)usv(t) teldy,r], i=1,2,...,n. (e15.22)
(G= vy s (wi(1)usv(r) (wi(1)) te(r, 11,

From the definition of e; and w;, and (e15.20) we have
I(z)) 2] — (b)) < &1, 1Z/(z})* — (b})?*|| < &1, foralli>1 and |bjbj|| < &; foralli# L (e15.23)

For the next few estimates, recall that f(t) = f(1) for all t € [dy, 1], e;(t) = e;(1) for all ¢ € [d;, 1], and u(t) = u(d) for
all t € [d, dq].
For t € [0, do], since y(f) € 7, by (e15.13),

If(6) — Zb/ t)|| <& forall f e F. (e15.24)
For t € [0, dy], by the definition of y(f), by (e15.12), the definition of b, and (e15.13), we have

F(8) ey ult) Y (y (1) Nei/4 Zb/ u(t) Yo (¥ (F(ONu(0)b(t) (e15.25)

R 2 Zb’ bj(t) forall f e F. (e15.26)

For t € [dy, r], by (e15.5), (e15.9), (e15.19), and (e15.13), with g = wq‘l(f(l)),

f(6) = f(1) ~e, u3,(8)us =2, v(E) u3Y,(g)usv(t) (e15.27)
Ry 2 Ad usv(t) o Y (v (F(£)) ey /4 Aduzv(t) o wp(i e()y(f(t)ei(t)) (e15.28)
i=0

ey Xn:bé(t)f(t)b;(t). (e15.29)

On [r, 1], by the above, and b;(e15.20), ase(1) € Gy,
fO)=f(1) =3, Xn: bi(r)f (rbi(r) Xan-1)e,/8 Xn: bi(E)f ()bi(t). (15.30)

Coming all the four est;r:I?ates above, we have that -
If - Zn:b,‘fbéll <(n+1)e; +eg < &/16(n+1)* forall f € F. (e15.31)

s
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We also compute that

lzif — fz{Il < 2e1+¢0, 1<i<n, forall feF. (e15.32)
By the semi-projectivity of Coo and (e15.23), and choice of §. (¢; < &), we obtain b;,z; € A® 2,,,i=0,1,2,...,n,
j=1,2,...,n,such that

lIbi — bjll < min{e, n}/(64n°) and ||z — z/|| < min{e, n}/(64n°), (e15.33)

bibi=0 if i #£1, z'zi=b3, zz' = b}, (e15.34)

i,l=0,1,2,...,nandj=1,2,...,n. By (e15.31) and (e15.32),

n
If =) bifbill <& and |lzf —fzill <&, 1<i<n, forall xe F. (e15.35)
i=0
We also estimate, by (e15.15), that

n
o() bi)>1—n/2 forall T € TAQ 2). (e15.36)
i=1
It follows that d.(by) < n for all t € T(A ® Z). This implies that by < ap. Therefore A ® Z has the tracial approximate
divisible property (see 15.1). O

Lemma 15.3. Let A be a separable simple Z-stable C*-algebra with continuous scale, and with T(A) # @, and QT(A) = T(A).
Let x € ker pa. Then there exists a homomorphism  : A — My(A) which maps strictly positive elements to strictly positive
elements, V¥.0(x) = 0 and (t @ Tr)(¥(a)) = 4z(a) for all a € A and t € T(A). where Tr is the standard trace on M.

Proof. We first assume that A is stably projectionless. By A8 of the appendix of [16], there exists a projection p € Mr(g\)
such that [p] = [14] — x in Ky(A) for some integer r > 0. By AG of the appendix of [16], we may assume that p € M(A).
Denote by 1, € M;(A) the identity of My(A). Put ¢ = 1, — p. Note that p 4+ q = 1,. Write {e;},.> as the matrix unit for
M. By replacing p by Z*pZ, where Z is a unitary matrix with scalar entires, we may assume that 7(p) = ey, where 7 is
the map induced by the quotient map A — C. Later we will also use 7 for the quotient map M,(M(A)) — My(M(A)/A).
Note that we also have 7 (q) = e,;.

We have t(p) = 7(q) for all T € T(A). Let A; = pM,(A)p and A, = qM,(A)q. Let a, € A; and a4 € A, be strict positive
element of A; and A, respectively. We also assume that 0 < a, < 1and 0 < ay < 1. Then

d.(ap) = t(p) = t(q) = d.(aq) for all T € T(A). (e15.37)

Note that we assume that A is stably projectionless and Z-stable. Then, by Theorem 1.2 of [50], a, ~ a4 in Cu(A). Also,
by [50], A almost has stable rank one. By 2.6 there is a partial isometry w € M;(A)** such that w*a, aw € M,(A) and
ww*a = aww* = a for all a € A; and wb, bw* € M;(A) for all b € A, such that w*a,w = by is a strictly positive element
of A2.

Moreover,

w*(ap)""w = b)/" for all n. (e15.38)
Consider W = pwq + qw*p. Then, for any a € M,(A), W*a, aW € M,(A). In fact, we may write

a = pap + paq + qap + qaq
for any a € M;(A). Then, for any a € M;,(A),

W*a = qw*pap + qw*paq + pwqap + pwqgaq € M(A) and aW € M,(A). (e15.39)

(Note that M,(A) is an ideal in M»(A) and p, q € M,(A).) Therefore W € M(M,(A)) = M»(M(A)). Since p+ q = 15, ap + bq
is a strictly positive element of M,(A). Hence a;/" + b,}/" — 1, in the strict topology. We also have, by (e15.38),

W*(a)" + b)/"W = w*a)"w + wh,"w* = by/" + w(w*ay " w)w* (e15.40)
= by/" + (ww*)a)"(ww*) = b/" + a}/". (e15.41)

It follows that W*W = 1,. As W* = W, W is a self adjoint unitary in My(M(A)) and ¢(a) = W*aW for all a € A defines
an automorphism of M,(A). Note that a;,/ " converges strictly to the identity of M(A;). Note also

a;/"(ap +bg)'? = a;/”a;/z — 1; (ap + bg)'/? and (a, + bq)ma:,/" — (ap + bq)l/Z]A1

norm). It follows that a;/ " converges to a projection p’ € M,(M(A)) strictly. Exactly the same argument shows that

(in
b:,/” converges strictly to a projection q¢' € M(M(A)). Since a,, + by is a strictly positive element of M,(A), this implies that
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P+ q = 1,. Since p € M(M(A)) and pa;/" = a;,/”, p > p'. Also pg = q'p = 0. Similarly ¢ > ¢’ and qp’ = p’q = 0. Since
p+q=1, and p' + ¢’ = 15, this implies that p = p’ and q = ¢'. Since W € M,(M(A)), it follows that

W*pW =q. (615.42)
We now show that W*M,(A)W = M,(A). Write
W= (w“ ““2) . (e15.43)
W21 W22

Note that 7 (p) = eq; and 7 (q) = e,;. Since W is a self adjoint unitary, by (e15.42), 7 (W )*e11m (W) = eqp, (W )*epn(W) =
e11, and e r (W) = (W )ep,. Hence

7T(1.U11) =0= ﬂ(wzz). (615.44)
In other words,
(W) = < 0 ”(w12)> (e15.45)
— \m(war) 0 ’ ’

Then, since W is a unitary,

[0 1 w(wi;) 0 0 (Wi war) 0 1
T(W )(1 0> r(W) = ( 021 ﬂ(w;})) T(W) = (n(szwlZ) 26 21 ) = (1 0) .

Since e; 1, €22 and (?

W*M,(A)W = My(A). This extends ¢ from M(A) to My(A) as an isomorphism. It follows that ¢,o(2[1;]1) = 2[1;]. Put
¥ = ¢:0([13]) — [1;]. Then 2y = 0. Also

é) generates M, this implies that 7(W*)s7(W) € M, for any scalar matrix s. Therefore

@0(X) = @u0o([13] — [P]) = @xo([13]) — [4] (e15.46)
= (@so([1z]) — [1AD+13] — (2[1] — [p]) (e15.47)
=y+(pl —[1]) =y —x. (e15.48)

Define iy : A — My4(A) by

Y (a) = diag(a, a, p(a), p(a)) for all a € A. (e15.49)
Note that

Vi) =2x+2(y —x) =2x —2x = 0. (e15.50)

In case that A is not stably projectionless, let e € M;;,(A) be a nonzero projection. Put B = eM;,(A)e. Then B is a unital
simple C*-algebra with nonzero quasidiagonal traces. Then the conclusion follows from 5.5 of [9]. O

Corollary 15.4. Let A be a separable simple C*-algebra which is Z-stable and QT(A) = T(A) # . For any finitely generated
subgroup Gy C Kker p4, there exist an integer m > 1 and a homomorphism ¢ : A — M,;,(A) which maps strictly positive
elements to strictly positive elements, V,o(x) = 0 for all x € Gy and (t ® Try)(¥(a)) = mz(a) for all a € A and © € T(A),
where Tr, is the standard trace on Mp,.

Proof. Let x{, x5, ..., x; € Go be a set of generators of Gyo. We prove the corollary by induction. By 15.3, it holds for k = 1.
Suppose that it holds for all integers 1 < k' < k. Let Go.; C Gp which is generated by x1, X, . .., Xc—1. By the inductive
assumption, there exists a homomorphism v; : A — M,y(A) which maps strictly positive elements to strictly positive
elements, (¥ )s0(x) = 0 for all x € Gp; and (t ® Tryy )(¥1(a)) = m't(a) for all a € A.

Let y = (¥1)0(xx) and B = M,;y(A). Lemma 15.3 shows that there exists a homomorphism ¢ : B — My(B) such that ¢
maps strictly positive elements to strictly positive elements, (¢).0(y) = 0 and (t ® Tr4)(y(b)) = 4t(a) for all b € A and
T € T(B). Let m = 4m’. Define ¥ : A — My,(A) by

Y(a) = ¢ o Yry(a) for all a € A. (e15.51)

Then (¥ ).0(x) = O for all x € Gp. Lemma follows. O

Theorem 15.5. Let A be a finite separable simple C*-algebras with finite nuclear dimension which satisfies the UCT. Suppose
that T(A) # @ and Ko(A) = ker pa. Then gTR(A) < 1.

Proof. Note that, by [59], that A is Z-stable. It follows that there exists e € A} \ {0} such that eAe has continuous scale.
Without loss of generality, we may assume that A = eAe. It follows from [58] that every tracial state of A is quasidiagonal.
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We will prove that every tracial state of A is a W-trace. Then 15.2 applies. We will follow exactly the same proof of 7.4
of [16].

As in the proof of 7.4 of [16], it suffices to show that every tracial state of A ® Q is a W-trace. Therefore, from now
on, in this proof, we assume that A = A ® Q. Let Ko(A) = U2, G,, where G, C G4 is a sequence of finitely generated
subgroups. Let P C K(A) be a finite subset and G» be the subgroup generated by 7. We may assume that PNKy(A) C G,
for some integer n > 1. It follows from 15.4 that there exists a homomorphism ¢, : A - A ® Mp(C) - A ® Q which
maps strictly positive elements to strictly positive elements, ¢,o(x) = O for all x € G, and t(¢(a)) = t(a) foralla € A
and T € T(A® Q). By [58], every tracial state of A ® Q is quasidiagonal, there exists a sequence of completely positive
contractive linear maps ¥ : A® Q — Q such that

klim |k(ab) — Yre(a)y(b)|| = 0 and klim t(Yi(a)) = t(a) forall a, b € A. (e15.52)

For each n choose k(n) such that L, : A® Q — Q defined by L,(a) = ¥m) o ¢q(a) for all a € A has the property that
[Ly]l¢,= 0 and

lim ||L,(ab) — Lo(a)Ly(b)|l = 0 and lim trg(Ly(a)) = t(a) forall a € A, (e15.53)
n—oo n—oo
where trq is the unique trace on Q. Since both A® Q and Q are divisible, and K;(Q) = {0}, for any finite subset P C K(A),
[L,]|>= {0} for all sufficiently large n.
By Lemma 7.2 and the proof of 7.4 of [16] there exists a sequence of completely positive contractive linear maps
@, : A — W such that
lim ||®@,(ab) — @,(a)@,(b)|| =0 and t(a) = lim tyy, o &,(a) for all a € A. (e15.54)
n—oo n—oo
To see this, let P C K(A) be a finite subset. Then [L,]|»= 0 for all sufficiently large n. In the proof of 7.4 of [16] let us
replace v there by L, above. Since [L,]|p= 0, we obtain [¥]|p= [¥1]|» with L, in place of yy—namely, ¥, is defined
to be m copies of L, (in place of i there) and ¥; is defined to be m + 1 copies of L, (in place of 4 there). The fact
[Wollp= [W1]]p is used to connect ¥, and ¥;. Thus, by the same proof of 7.4 of [16]), we can construct {®,} as required.
This proves that every tracial state of eAe is a W-trace. It follows from 15.2 that eAe € Dy. O

Theorem 15.6. Let A; and A, be two separable simple C*-algebras with finite nuclear dimension which satisfy the UCT. Suppose
that Ko(A;) = ker ps, (i =0, 1). Then Ay = A, if and only if

(Ko(A), K1(A), T(A), X4) = (Ko(B), K1(B), T(B), X5). (e15.55)

Moreover, in case that T(A) # {0}, both A and B are stably isomorphic to one of Br constructed in Section 7.

Proof. Since A and B have finite nuclear dimension, A and B are both stably finite or purely infinite (which are the case
that T(A) = T(B) = {0}). By [26] and [46], we may assume that A and B are stably finite and by [3], T(A), T(B) # {0}.

It follows from [57] that both A and B are Z-stable. Let e, € A, with |les]| = 1 and eg € B with |eg|| = 1 such that
both A := esAe, and By := egBeg have continuous scales (see 5.2 of [15]). It follows from 15.5 that both Ay and By are in
Do which implies gTR(A) < 1 and gTR(B) < 1. Then Theorem 13.2 applies. O

Corollary 15.7. Let A be a stably finite separable simple C*-algebras with finite nuclear dimension which satisfies the UCT.
Then the following are equivalent:

(1) A is isomorphic to Zy;

(2) A has a unique tracial state, Ko(A) = ker p = Z and K;(A) = {0} and

(3) A is stably projectionless and has a unique tracial state, Ko(A) = Z and K;(A) = {0}.

Proof. The equivalence of (1) and (2) follows from 15.6. It is obvious that (2) implies (3). If A is stably projectionless,
then, by A8 of [16], Ko(A) = Z = ker p,. Therefore (3) implies (2). O
Finally we offer the following result (as Theorem 1.2).

Theorem 15.8. Let A and B be two separable simple C*-algebras with finite nuclear dimension which satisfy the UCT. Then
A® Zy = B® Z if and only if

(Ko(A), K1(A), T(A), Za) = (Ko(B), Kx(B), T(B), Zs). (€15.56)
(We emphasise that there is no order on Ko-groups. Also in case that T(A) = {0}, we view X, = 0.)
Proof. First, if A is infinite, it follows T(A) = {0}. Moreover since A has finite nuclear dimension, it is purely infinite. Since

Ell(A) = ElI(B), T(B) = {0}. So B is also not stably finite. As B has finite nuclear dimension, B is also purely infinite. Thus,
the infinite case is covered by the classification of non-unital purely infinite simple C*-algebras (see [26] and [46]).
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We now assume both A and B are finite. We only need to show the “if’ part.
Put Ay = A® 2, and B; = B® Z,. Then we have, ignoring the order structure on Ky(A),

(A1), Za,) = (Ko(A), K1(A), T(A), Z) (e15.57)
T(B), Z). (e15.58)

Let e4 € (Ped(A1))+ with |lea]l = 1 and eg € (Ped(B4)); with |leg|| = 1 such that Ay = Ped(Ag) and By = Ped(By), where
Ao := es(A1)eq and By := ep(Bq)ep. It follows from Proposition 12.5 of [15] that all tracial states of Ap ® Z and By ® 2o
are W traces. It follows from 6.6 of [16] (see 17.6 and the proof of 18.6 of [18]) that Ay ® Zy, By ® Z¢ € Dy. Note Ay and
By are hereditary C*-subalgebras of Ay ® Zp and B; ® Zj, respectively. Note also A; ® Zy = A; and B; ® Zy = By, by
13.4. Therefore gTR(A;) < 1 and gTR(B;) < 1. Since Ag, By € Dy, by 8.5, Ko(A1) = Ker pa, and Ko(B1) = Kker pp,. Thus the
theorem follows from (e15.57), (e15.58) and Theorem 13.2. O
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Appendix

In this appendix, we show that separable amenable C*-algebra in D are Z-stable. The proof is a non-unital version of
Matui and Sato’s proof in [42] which is identical to the unital case with only a few modification. We will follow steps of
their proof as well as the notation in [42].

Lemma A.1 (cf. 2.4 of [42]). Let A be a separable simple C*-algebra with continuous scale and with T(A) # # and let a € A, \{0}.
Then there exists « > 0 such that

aliminf inf t(f,) <liminf inf ©(f}/?af}/?) (eA.1)

n—oo teT(A) n—o0 teT(A)

for any central sequence (f,), of positive contractions of A.

Proof. By 5.6 of [15], A is strongly uniformly full in A. Therefore there are M(a), N(a) > 0 such that, for b € A, with

IIb]l <1 and for any ¢ > 0, there are x; € A with ||x;|| < M(a),i=1,2,...,N(a) such that
N(a)
1) xfaxi —b|l <. (eA2)
i=1

Put o9 = M(a)*N(a) and @ = %. Let {f,}» be given. We may assume that

liminf inf z(f;)=p8 > 0,

n—o00 1€eT(A)

otherwise there is nothing to prove. Since A has continuous scale, there exists e € A, with |e|| = 1 such that
(1 — eY?)c(1 — e/?)) < B/8 for all T € T(A) (eA.3)

for any ¢ € A, with |c|| = 1. Then there are y; € A such that ||y;|| < M(a),i=1, 2, ..., N(a) such that

N(a)
1) yiayi—el < /8, i=1.2,.... (eA4)

i=1
One also has that
(1 —e)fy) < B/8, neN. (eA5)
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Then, keeping in mind that (f,,), is a central sequence,

N(a)
B = liminf inf t(f;) < liminf 1nf r(efn)+,3/8 < liminf inf t(yiayify) + B/4
n—o00 1€eT(A) n—-oo te n—o00 t€eT(A) — !
N(a) N(a)
= minf inf, ) c07aha'y) + p/4 = iminf inf D el %a yyia )+ /4
< agliminf inf r(fl/zafl/z)+/3/4
n—oo teT(A
Thus
38/4 < ap liminf inf z(f)2af)/?). O (eA6)
n—oo 1eT(A) n n

Definition A.2 (2.1 of [42]). Let A be a separable C*-algebra with T(A) # ¢ and let ¢ : A — A be a completely positive
linear map. Suppose that T(A) is compact. Recall that ¢ is said to be excised in small central sequence if for any central
sequence (e,), and (f,), of positive contractions in A satisfying

lim sup z(e;) =0 and 11m lim inf mf r(f’“ )> 0, (eA.7)
HHOOTET(A) —00 Nn—oo0 1€eT

there exists s, € A with ||s,|| < |l¢]|'/? and n € N such that

lim ||s;as, — ¢(a)en|| =0 forall a € A and lim ||fpsy — snll = 0. (eA.8)
n—oo n—oo

Lemma A.3 (2.5 of [42]). Let A be a separable simple C*-algebra with T(A) # ¢ with continuous scale. Suppose also that A has
the strict comparison for positive elements. Let (e,), and (f,), be as (eA.7). Then for any a € A, with ||a|| = 1, there exists a
sequence (ry), in A such that

11m Irf12af}/?r, — ey =0 and  limsup ||r,|| = lim sup [|e, || '/2. (eA.9)

n—oo n—oo
Proof. The proof of this is exactly the same as that of Lemma 2.5 of [42] using A.1 instead of 2.4 in [42]. O

Proposition A4 (2.2 of [42]). Let A be a separable amenable simple C*-algebra with T(A) # ¢ and with continuous scale.
Suppose that A has strict comparison for positive elements. Let w be a non-zero pure state of A, c¢;,d; € A,i=1,2,...,N. Then
a completely positive linear map ¢ : A — A defined by ¢(a) = 2%21 w(d}ad;)cfc; can be excised by small central sequences.

Proof. Let ¢ > 0 and let 7 C A be a finite subset. It suffices to show that there exist s, € A, n € N, such that
lIsall < ll@ll'*+ ¢ and

lim ||s;as, — ¢(a)en]l <& and lim [|fys, — spll = 0. (eA.10)
n—-oo n—oo

Let G = {dfad;: a € F,1<i,j <N}and let § = ¢/N°.

By Proposition 2.2 of [1], there is a € A, with [la|| = 1 such that |a(w(x) — X)a|| < & for all x € G. Let {e,}, and {fu}x
be as in (eA.7). By 2.3 of [42], there is a central sequence {f,}, of positive contractions of A such that {f,f;}, = {fa}n in Ao
and

lim liminf inf r(fnm)— lim liminf inf z(f]"). (eA.11)

m—oo n—oo teT(A) m—o0 n—>oo tel(A)

Applying A.3 to {e,}n, {fa}n, and a®, we obtain r,, € A, n € N, satisfying
lim [|rf12af1/?r, — e, = 0 and limsup [|r,]| < 1. (eA.12)
n—oo

n—oo

Define

N
= Zdiafnl/zrnc,-, n=12,.... (eA.13)
i=1
The rest of the proof is exactly the same as that of proof of Proposition 2.2 in [42] with one exception. We need to address
the norm of s,. Note that, by (eA.10),

Isibsall < ll@ll + & for all b e Al. (eA.14)

Therefore by replacing s, by Es, for some E, € A1+ as subsequence of an approximate identity of A, we may assume
Isall < lel'?. O
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Lemma A.5 (3.1 of [42]). Let A be a separable amenable simple non-elementary C*-algebra, and let w be a non-zero pure state
of A. Then any completely positive contractive linear map ¢ : A — A can be approximated point-wisely in norm by completely
positive contractive linear maps v of the from

N N
¥(a) = Z Z w(dfad;)c)icr; for all a € A, (eA.15)

I=1 ij=1

where ¢, di €A l,i=1,2,...,N.

Proof. The proof is identical to that of 3.1 of [42]. Unital condition can be easily removed. In the first place that
unital condition is mentioned, by using an approximate identity {e,} of A, and consider p(e,)~"2p(-)p(e,)~"/? and
a(p(en)? - p(e,)/?) for some large n, we can assume that p(e,) is the unit of My, by considering a hereditary
C*-subalgebra of a full matrix algebras exactly the way as described in that proof. Then, since we assume that A is simple
and non-elementary, 7(A) does not contain any non-zero compact operators on # in the second paragraph of that proof.
So Voiculescu theorem applies. The rest of proof are unchanged. O

Lemma A.6. Let A € D be separable C*-algebra with continuous scale. Then, for any integer k > 1, there exists an order zero
c.p.c. map  : My — As N A’ such that

lim inf{|z(c;') — 1/k| : T € T(A)} =0 for all m € N, (eA.16)
n—oo

where ¢, = y(e) and e € My, is a minimal rank one projection of M.

Proof. This proof can be extracted from the proof of 10.4 of [ 15]. First keep in mind, by 9.4 of [ 15], A has strict comparison
for positive elements. In the case that A € Dy, this directly follows from 10.7 of [15]. In this case, by 10.7 of [15], there
are two sequences of C*-subalgebras Ag n, My(Dn) of A, two sequences of completely positive contractive linear maps
go,go) :A — Apn and <p,(11) :A— D, € Cg/ with M(Dy) L Ao.;m satisfy the following:

lim [¢9(ab) — ¢(a)p(b)| = 0 forall a, be A, i=0,1, (eA.17)
n—oo
k

lim |la — (¢{”(a)) @ diag(p{"(a), g\ (a), ..., V(@) = 0 for all a € A, (eA.18)
n—oo

lim sup d.(c,) =0, (eA.19)
N—=>00 7eT(A)

t(fi/a(¥{P(ap))) = d for all © e T(D,) (eA.20)

and gaf,”(ao) is a strictly positive element in D,,, where ¢, is a strictly positive element of A, and 1 > d > 0. It is easy to
see (see the proof of 9.1 of [15]) that

k

lim sup{|(a) — 7 o diag(¢{"(a), ¢{"(a), ..., (@) : T € T(A)} = 0 for all a € A. (eA21)
n—oo

Let eg, and e; , be approximate identities for Ag, and D,, respectively. Define e;;, = fi/u(ejn), j = 0,1, 1 € N. Then
k

{eo..n} and {ejn}; are approximate identities for Ag, and Dy, respectively. Define eq;, = diag(e1.m.n, €1.mns - - - » €1.m.n)-
Put E;, = eg,1,n + €115 Then since T(A) is compact, as we assume A has continuous scale, lim;_,  SUp; cr(a) T(Em.n) = 1.
Therefore, by (eA.19), it is easy to choose a subsequence j, such that

lim sup |z(ef; ,)—1/k| =0 forall m €N, (eA.22)
n—00 1 £T(4) o
k—1

——
and by (eA.18), {e1j, n} is a central sequence. Note that we identify e;j, , with diag(eyj,n,0,...,0) C M(Dy). Put
i—1

——
e1j,ni = diag(0,...,0,,€1j,ni,0,...,0), i = 1,2,...,k There are w;, € M(D,) such that w;fnwi,n = eyj,n1 and
Wi W, = eyj,ni i = 2,3,...,k Since A is stably projectionless, the C*-subalgebra generated by e, n; and w;, is
isomorphic to Co(C(0, 1], M). Note {win} can be chosen to be central (by (eA.17) and (eA.18). Put ¢, = e j, ». We obtain
a completely positive contractive linear map ¢ : My — Ay, NA'.
In the case that A € D, My(D,,) is replaced by D, and (eA.18) is replaced by

lim [la — diag(¢!%(a), diag(¢"(a)))|| = 0 for all a € A. (eA.23)
n—oo
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But, as in the proof of 10.4 of [15], the algebra D in that proof is Z-stable. Therefore, in the proof of 10.2 of [15], one has
that (as (e.10.6) there)

Il@nm(x), y1ll < £/16K* for all x € F (eA.24)
and y e {d"V/2,d",v", e/ w/,j = 1,2,...,K}. Note that one can choose K = nk and using n copies of ¢/ and w/, the

same argument above aiso produces the completely positive contractive linear map map ¢ from M. O

Lemma A.7. Let A be a separable amenable simple C*-algebra in D with continuous scale. Then every completely positive
linear map ¢ : A — A can be excised by small central sequences.

Proof. Let ¢ : A — A be a completely positive contractive linear map (so we assume ||¢|| = 1 without loss of generality).
Let {en}n and {f,}, be as in A.2. By A.1, we may assume that there exist a pure state w of Aand ¢;;d; € A, ,i=1,2,...,N,
such that

N N
= Z Zw (df adj)cf;c1; for all a € A. (eA.25)
=1 ij=1

Set ¢i(a) = Z:V, yo(diadi)cicyforalla € A 1= 1,2,...,N. Thus ¢ = SV, 1. Note that Lemma 3.4 of [42] holds
for non-unital case, in particular, holds for the case A D Wthh can also be directly proved by repeatedly using the

construction in A.6 in fAf,. Therefore we also have a central sequence {f;,}n, [ = 1,2, ..., N, of positive contractions in
A such that {fufintn = {fin}, Uinfraln=01#101,1=1,2,...,N,in Axx NA’, and
lim lim sup mf r(f,n) > 0. (eA.26)

Mm—>00 p oo TET

Applying A4 to ¢, {e}n and {f»}n, We obtain a sequence {s;}, in A! such that
lim ||s;fnasl,n —@(a)ey]l =0 and lim ||fpS;n — Sinll = 0. (eA.27)
n—oo n—oo

Put s, = ZL S;.n- One estimates that (recall that ||s;,]| < 1)

N
fasn = sll < D UfuStn — Stall

=1

N
<> Uastn = ffinSiall + Wfafinsin = finsiall + Ifinstn — siall)
=1

N
< > Ufallisin = finstall + Wifin = finlllsiall + WfinSin = stall) = 0
=1

asn — oo. If [ # I, then, since {f; »}, is central and {fi ofy n}n = 0 in Aw,
lim ||s;fnasl/,,,|| = lim |Is] .finfr nSiall = 0. (eA.28)
n—oo n—oo
Therefore, for all a € A,
N
lim [ls;as, — g(@enll = lim || ) " s},a50, — @i(@)eql] = 0. O (eA29)
n—oo n—oo =

Definition A.8 (cf. 4.1 of [42]). Let A be a separable C*-algebra with T(A) # ¢ and with T(A) compact. We say A has
property (SI) if for any central sequence {e,}, and {f;}, which satisfy (eA.7), there exists a central sequence {s,}, in A
such that

lim |fysy — sall =0 and {s}sp}n — {€n}n € A", (eA.30)
n—oo

where AL = {{b,}n € A : {bn}nA = A{bn}n = 0.

Lemma A.9. Let A be a separable amenable C*-algebra in D with continuous scale. Then A has (SI).

Proof. Let {e;}, and {f,}, be as in (eA.7). Then, by A.7, id4 can be excised in small central sequences. Thus there is a
sequence s, € A1 such that lim,,_,oo l(sy)*a(s,) — aey|l = 0 for all a € A and limy—.« [|fuSn — Sall = 0. Fix an approximate

identity {d, } of A. By passing to snl, ;1k and fnk, if necessary, we may assume further that
lim [|(s},)*da(s,) — dpen]l =0 and lim |f,d}/? — dY2f,|| = 0. (eA31)
n—oo n—o0o
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Define s, = d;/zs;, n=1,2,....Then

lim ||sks, — dpenll =0 and  lim [fySy — sall = lim [|dY?(fs, —s,)|| = 0. (eA.32)
n—oo n—oo n—oo
Moreover, for any a € A, since {d,} is an approximate identity for A,
lim |la(s}sn,) — aey|| < lim |la(s,)*du(s,) — adnen|| + lim |lad,e, — aey|| = 0. (eA.33)
n—o00 n—oo n—oo

It follows that {s}sp}n — {ex}n € A'L. Moreover, for a € A, by (eA.33),

lim ||[s,, a]||> = lim |lasis,a — a*skas, — sta*s,a + sta*as, || (eA.34)
n—oo n—oo
= lim |las;sya — a*eyall = lim |a(s;s, — en)all = 0. (eA.35)
n—o00 n—-oo

Therefore {s,}, is a central sequence. O
Theorem A.10. Every separable amenable C*-algebra in D is Z-stable.

Proof. Let A € D. It suffices to show that a non-zero hereditary C*-subalgebra of A is Z-stable. Therefore, by 11.7 of [15],
we may assume that A has continuous scale.

Fix any integer k > 1. By Lemma A.6, we obtain a central sequence {c;n}, in A, i = 1,2, ..., k, such that {Ci,anfn}n =
8ij{ci ,}n in Ay and

lim sup |z(c}",)—1/k| =0 forall m e N. (eA.36)

N—=>00 reT(A)

Thus we obtain an order zero completely positive contractive linear map ¢ : My — Ao N A’ such that g(e) = {c1a}n
for a minimal projection e € M;. Let {d,} be an approximate identity for A. Then {d,}, is a central sequence. Then
{d,}, is the identity of A,, N A'/A*, where {d,}, is the image of {d,}, in A, N A’/AL. We may choose such {d,} so that
{d, — Zf’:] CnCintn € (Axo)+. Note that, since A has continuous scale, limy_, o Sup,crs) t(ds) = 1. Let {e,} be a central

sequence of positive contraction such that {e,}, = {d, — Z:‘Zl cifnq,n}n. As in A.6 {c;n}n can be chosen so that

limsup sup z(e,) =0 (eA.37)

n—o0 tel(A)

which can also be computed directly from (eA.36). Then, we also have

lim liminf in&)r(cfn) = 1/k. (eA.38)

m—o00 n—o0o teT(
By the property (SI), we obtain a central sequence {s,} in A! such that

{stn}n - {en}n € AJ_ and nli{lgo{cl,nsn}n = {Sn}n in Aco. (EA39)

Thus we obtain an order zero completely positive contractive linear map @ : My — A, N A’/A* induced by ¢ and
s = {Su}n € Aso NA'/AL such that,

s*'s+ @(1y,) =1 and @(e)s =s in A, NA/A* (eA.40)

This implies that A® Z = A as in the proof of (iv) = (i) in section 4 of [42], see also, for example, Proposition 5.3 and
56 of [57]. O

Remark A.11. More general result related to this appendix will appear elsewhere.
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