Role of electron-electron collisions for magnetotransport at intermediate temperatures
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We discuss galvanomagnetic and thermomagnetic effects in disordered electronic systems focusing
on intermediate temperatures, for which electron-electron scattering and electron-impurity scatter-
ing occur at similar rates, while phonon-related effects can be neglected. In particular, we explore
how electric and thermal currents driven either by an electric field or by a temperature gradient
are affected by the interplay of momentum-dependent electron-impurity scattering, electron-electron
scattering, and the presence of a magnetic field. We find that the electric resistance, the Seebeck
coefficient and the Nernst coefficient are particularly sensitive to the momentum dependence of the
electron-impurity scattering rate at intermediate temperatures. A sufficiently strong momentum
dependence of the electron-impurity scattering rate can induce a sign change of the Seebeck coef-
ficient. This sign change can be suppressed by a perpendicular magnetic field. The temperature
and magnetic field dependence of the Seebeck coefficient can be used for measuring the magni-
tude of the electron-impurity and electron-electron scattering rates. The Nernst coefficient vanishes
for momentum-independent electron-impurity scattering, but displays a maximum at finite tem-
peratures once the momentum dependence is accounted for. By contrast, the Hall coefficient and
the Righi-Leduc coefficient display only a weak dependence on the momentum dependence of the

electron-impurity scattering at intermediate temperatures.

I. INTRODUCTION

Galvanomagnetic and thermomagnetic phenomena in
metals and semiconductors have been discussed ex-
tensively in the literature when electron-phonon and
electron-impurity collisions are the dominant scatter-
ing mechanisms [1-4]. Indeed, elastic electron-impurity
scattering events dominate at low temperatures, when
phonons freeze out and inelastic scattering of electrons off
each other becomes ineffective due to the Pauli-exclusion
principle. At elevated temperatures, in turn, electron-
phonon scattering is responsible for the leading tempera-
ture dependence of the transport coefficients. In between
these two transport regimes, the influence of electron-
electron collisions on the transport coefficients may be-
come visible. If the corresponding interval of temper-
atures is sufficiently broad, then hydrodynamic behav-
ior can be observed on its upper end, once electron-
electron scattering occurs much more frequently than
electron-impurity scattering [5-17]. Here, we are mainly
interested in an intermediate temperature regime, for
which these two scattering processes occur at similar
rates [16, 18, 19].

Throughout the paper, we assume that Umklapp scat-
tering is prohibited or ineffective. In this case, electron-
electron collisions conserve the total momentum, but
may still influence the electric conductivity indirectly
via a redistribution of occupation numbers in momen-
tum space. This redistribution reveals itself in the tem-
perature dependence of the electric conductivity o, for
example, if the electron-impurity scattering is momen-
tum dependent [4, 20]. The effect is well illustrated
by the two differing results obtained for the conductiv-
ity in the electron-impurity and electron-electron scat-

tering dominated transport regimes, where o o« (7¢ip),
and o oc (1/7¢;p) %, respectively [20]. Here, Te;p is
the electron-impurity scattering rate, and the angular
bracket symbolizes a (weighted) thermal average. The
crossover between these two limits has also been ex-
plored [20]. The combined influence of electron-electron
scattering and momentum-dependent electron-impurity
scattering on other transport coefficients in the interme-
diate temperature regime is less understood. Recently,
we discussed the thermal and thermoelectric transport
coefficients in this context [19]. We found, in partic-
ular, that the Seebeck coefficient can develop a non-
monotonic temperature dependence accompanied by a
sign change under the influence of the two scattering
processes. Here, we generalize these studies to include
a magnetic field. The inclusion of a magnetic field also
opens the way to discussing transverse effects, character-
ized by the Hall, Nernst and Righi-Leduc coefficients.
In order to achieve this goal, we restrict ourselves to
isotropic systems with a quadratic dispersion. We base
our considerations on a Boltzmann equation approach in
which both electron-impurity and electron-electron colli-
sion integrals are treated in the relaxation time approxi-
mation. This simple model allows us to find compact and
transparent expressions for the different coefficients, and
to highlight the influence of the momentum dependence
of Tei,p-

The Seebeck coefficient displays a particularly interest-
ing behavior at intermediate temperatures. We find that
a weak perpendicular magnetic field reduces the maxi-
mum in the temperature dependence of this coefficient
and stronger magnetic fields can even suppress the sign
change, making this coefficient a monotonically decreas-
ing function of temperature. The obtained temperature



and magnetic field dependence of this coeflicient closely
resembles the behavior observed for the Seebeck coeffi-
cient of Si:P on the metallic side of the metal-insulator
transition, Ref. [21]. We therefore devote special atten-
tion to this coefficient. The Nernst coefficient is also
strongly affected by the momentum dependence of the
electron-impurity scattering rate. It vanishes in the ab-
sence of this momentum dependence in our model, and
shows a characteristic maximum determined by the com-
petition between elastic and inelastic scattering if it is
present.

The paper is organized as follows. In Sec. II, we review
the phenomenological equations defining the galvano-
magnetic and thermomagnetic transport coefficients, as
well as the relevant Onsager relations. In Sec. III, we
introduce the Boltzmann equation and solve it to obtain
the linearized distribution function. In Sec. IV, we find
the nine transport coefficients which characterize electric,
thermal and thermoelectric transport in three dimensions
for an arbitrary magnetic field direction and discuss the
geometry of the transport processes. Sec. V and the sup-
plementary material [22] are devoted to a discussion of
the temperature and magnetic field dependence of the
transport coefficients, with particular emphasis on the
role of the momentum dependence of 7¢; ,. We conclude
in Sec. VI. Appendix A contains some technical details
of the calculation.

II. PHENOMENOLOGICAL RELATIONS

The linear response relation between the electric and
thermal currents J g and J, respectively, and the electric
field E or thermal gradient VT driving these currents can
be parametrized as [23]
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The components of the coefficient matrix are the conduc-
tivity tensor &, the thermal flow tensor £, and the two
cross effect tensors N' and M.

For comparison with experiment, it is often convenient
to use the electric current as an independent variable
instead of the electric field. To achieve this, one may
resolve the equation for the electric current J 5 encoded in
Eq. (1) for E, resulting in E = 6 ' J g — 6" MVT. After
entering with this result into the equation for Jr, one
finds a new pair of equations which can also be expressed
in a matrix form as

(5)=(23) (%), 2)

Here, we introduced the resistivity tensor p, the thermo-
electric power tensor &, the Peltier coefficient tensor 7,
and the thermal conductivity tensor <. The relation be-
tween the tensors used in Eq. (2) and those introduced

in Eq. (1) is as follows

&7, a=-pM, (3)

Np,  k=NpM— L. (4)
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The linear response relation in Eq. (1) is often formulated
with the help of &, & and & instead of M, N, and L, via
the relations M = —6&, N = 76, and L = —(76& + k).

The components of the tensors &, M, N, £ in Eq. (1)
and, respectively, p, &, , & in Eq. (2), are not all in-
dependent. They obey the Onsager relations, which can
be obtained in the general framework of non-equilibrium
statistical mechanics [24-26]. When allowing for the
presence of an external magnetic field B, these rela-
tions read 6(B) = 67(-B), L(B) = LT(-B), and
N(@B) = -TMT(-B).

As a direct consequence, one

can obtain
p(B) = p" (-B), (5)
#(B) = &"(-B), (6)
#(B) = TaT (-B). (7)

In particular, in the absence of a magnetic field, 67 = ¢,

pr =p, LT = £ and &7 = & are symmetric.

III. LINEARIZED BOLTZMANN EQUATION

We consider an electron system in two or three spatial
dimensions with a quadratic dispersion ep = p?/(2m). In
the presence of a magnetic field, and in linear response
to an electric field or a temperature gradient, the non-
equilibrium steady state is governed by the linearized
Boltzmann equation, which we present in the form [3]

T
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Here, the distribution function has been expanded as
f(r,p) = np(&p) +0fp, where np(&p) = [exp(Bp) +1] 7"
is the Fermi-Dirac distribution with 3 = (kgT)~!, and
&p = €p — 1, where p is the chemical potential. The ve-
locity vp is related to the momentum p as vp = p/m.
In the two-dimensional (2d) case, only the magnetic field
component perpendicular to the plane is effective, while
E and VT lie in the plane. When writing the Boltz-
mann equation in the form of Eq. (8), we assumed that
spin-related effects are not important in the parameter
regime under consideration. This requires, in particular,
that the Zeeman splitting is much smaller than the Fermi
energy.

We describe the electron-impurity and electron-
electron collision integrals in the relaxation-time approx-



imation (RTA)

Lf} = ff‘; (9)
(cm)
Iee{f} _ _f(rvp) ;nF (p) ) (10)

There is an important difference between these two col-
lision integrals. Impurities cause a relaxation of the
electronic system towards equilibrium in the laboratory
frame characterized by the distribution function ng(p).
Electron-electron collisions conserve the total momentum
of the colliding particles. Therefore, the relaxation in
this case is towards equilibrium in the center of mass
frame, characterized by the “drifting distribution func-

tion” ngfm) (p). In contrast to the electron-impurity scat-
tering time 7;p, the electron-electron scattering time
Tee 18 momentum-independent in the RTA. This ensures
consistency with the conservation of momentum during
electron-electron collisions. For our purposes, we assume
that 7.; p depends on |p| only.

Linearizing the drifting
n(cm)

F (p) ~ (1 — VUem - paﬁp)nF(gp) in Iee{f}a where vem
is the center of mass velocity, we recast Eq. (8) in the
form

distribution function

- 0
(—eE - ngTT> ‘ UP?
_ e 4 o(w, x B) - Vi, (11)
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with the effective electric field

E=g_ Wem (12)
ETee
and the total scattering rate
1 1 1
— = +—. (13)

Tp Tei,p Tee

The inelastic scattering rate 1/7.. contributes a temper-
ature dependence to 1/7p, that is not present when study-
ing elastic electron-impurity scattering alone. As far as
the effective electric field E is concerned, the distinction
between E and E becomes crucial whenever electrons ac-
quire a finite center of mass velocity as a result of the ap-
plied electric field or temperature gradient. We see that
with these definitions for the effective field E and total
scattering rate 1/7p, the linearized Boltzmann equation
in the form (11) is formally equivalent to the equation
governing linear response in electronic systems with only
elastic scattering in the RTA. The solution of this equa-
tion is well known [2]. The deviation from the equilibrium
distribution function ¢ f, takes the form

7~'p 8np(£p)v ]
L+ (weTp)? 06  °

{1+ wfpliin ) + i Pin(im)} (B + &7 )|

5fp = (14)

where we defined the cyclotron frequency w. = eB/m,
and the unit vector ig = B/|B|. The product of w. and a
typical scattering time, in our case 7y, frequently appears
in studies of electronic transport under the influence of
a magnetic field. This product describes the competition
between periodic cyclotron motion and delocalizing scat-
tering processes. The Landau level quantization is not
accounted for in the Boltzmann Equation (11). We will
therefore assume that the condition w,7p < 1 holds. Un-
der this condition, the broadening of the Landau levels
caused by the scattering of various kinds is larger than
the spacing between consecutive Landau levels. An addi-
tional smoothening of the Landau levels results from the
motion along the magnetic field direction, if the system
is three dimensional.

It is worth noting that obtaining the solution provided
by Eq. (14) does not complete the problem of finding
the transport coefficients. The reason is that the effec-
tive electric field E contains the center of mass velocity
Vem, Which itself depends on the non-equilibrium part of
the distribution function ¢ fp. This dependence will be
accounted for in the next section when calculating the
transport coefficients self-consistently.

IV. TRANSPORT COEFFICIENTS

This section is concerned with the transport coeffi-
cients characterizing the electric and thermal currents
flowing in response to an electric field or temperature
gradient in the presence of a magnetic field B with arbi-
trary orientation. To find these coefficients, we make use
of Eq. (14) for the non-equilibrium distribution function
0 fp to calculate the electric and thermal currents

JE

- 00 fo, 15

se/pv 1 (15)

Jr = 3/ {ppd fp, (16)
P

with the particle density N = sfp np(ép) and the spin
degeneracy s = 2. Here, and in the following, we use
the notation [ = [d%p/(2m)?. The right-hand side of
Eq. (14) still depends on 6 fp implicitly through the drift
velocity vy contained in E. Indeed, the drift velocity
is given as V¢, = sfp pdfp/(Nm). This does not pose
a problem, however, since we can eliminate v, in favor
of the electric current Jg = —Nevem. We can there-
fore find the currents Jg and J7 as a function of E and
VT. This leads directly to the conductivity tensors for
electric, thermal and thermoelectric transport, Eq. (1).
However, here we will choose a different representation
that allows for a more straightforward comparison with
experimental measurements, and write E and Jr as func-
tions of Jg and VT as in Eq. (2). Technical details of the
calculation are relegated to Appendix A. The result can
be conveniently formulated by introducing the following



notation
/3: pL+ Ru(Bx)+ (p) — pL)iB(NB"), (17)
=51 +n(Bx) + (5 - S1)ns(s-), (18)
f%:m_—/fﬁ(Bx)—i—(/fH — k1 )np(hB-). (19)

Furthermore, the Peltier coefficient tensor 7 can be elim-
inated in favor of & by way of the relation # = T'&. The
resulting equations take the form

E:pJ_JE—I—SJ_VT—‘rB X (RHJE—l-?]VT)
+ (p) — pr)nB(B - JE) + (S) — SL)AB (M - VT),
(20)
Jr=TS,Jg -k, VT +B x (T’I]JE-‘FKJ_,CVT)
+ T(SH - SJ_))’IA”LB(TALB . JE) - (FLH — /iJ_)’fLB(’IAlB . V(T))
21

We see that linear response transport for our isotropic
model is determined by nine independent transport coef-
ficients.

Electric transport in the absence of a temperature gra-
dient is characterized by three coefficients, the resistivity
in a perpendicular magnetic field p, , the resistivity in a
parallel magnetic field p||, and the Hall coefficient Ry,

m Ybo 1 )
o= ( @
Ne2 \Yi + Y5 Tee
1 Y
Ry =— “ o (23)

Ne2 BYZ + Y3’

In order to formulate the results in a compact form, we
introduced the following matrix

Yo = (ST T ) (25)
1+ (weTp)?
Here, for any physical quantity Xp, the average ((...)) is
defined as

(o) =~z [ Xoltp + 2L ()

The weight ({p + p) appearing in the definition of the
average may also be expressed in terms of the square of
the velocity, v2 = 2(&p + p)/m.

The inelastic scattering rate 1/7.. enters the Eqgs. (22)-
(24) in two distinct ways. First, it enters through the to-
tal scattering rate 1/7p, implicitly contained in the func-
tion Yy,,,,. Secondly, the expressions for p; and p) contain
1/7ee explicitly. This dependence on 1/7. has its origin
in the v¢y, dependence of the drifting distribution func-
tion, a dependence that arises due to the conservation of
the total momentum during electron-electron collisions.
It is worth mentioning that all coefficients p,, Ry, and
p) are even in B in agreement with the Onsager relation

Eq. (5).

Thermoelectric transport depends on the coefficients

1 YooYi0 + Yor Y11
§, = 2ol Yot 27
R A V- VR (27)

1 1 YooYi1 — Yo1Yio

ras gy o
1 (6
=T () (29)

Here, S1 (S))) is the Seebeck coefficient, or thermoelectric
power, in perpendicular (parallel) magnetic field; 7 is the
Nernst coefficient. Note that S| does not depend on the
magnetic field, S| = S, (B = 0).

In view of the Onsager relations, in combination with
the relation @ = T4, we expect &(B) = a*(—-B), and
therefore the coefficients S, S| and 7 must be even in
B. This property can indeed be checked from the explicit
relations.

The following three coefficients determine thermal
transport

Yoo (Y32 —
N (YQO— 00 (Y7

_ Y3)+ 2YO1Y10Y11>
Rl =—F= )

mT Yio + Y
(30)
Kk L=— ﬂl (Y21 _ You (Y — Yip) + 2Y00Y10Y11>
T B Yoo + Y ’
(31)

_ <<sp%p>>2> | (32)

In these equations, x; and K| are the thermal conduc-
tivities in perpendicular and parallel magnetic field, re-
spectively; £ is the thermal Hall (or Righi-Leduc) coeffi-
cient. All coefficients are even in B, in accordance with
Eq. (6). Just as pj and S|, x| does not depend on B,
HH = HL(B = O)

In theoretical studies, it is often easier to find the com-
ponents of the generalized conductivity matrix connect-
ing currents and external perturbations in Eq. (1) than
the components of the matrix of Eq. (2), which is more di-
rectly related to experimental observations. Let us there-
fore mention here, for the example of the resistivity and
conductivity tensors, the relation between the coeflicients
used to parameterize the matrix p [compare Eq. (17)] and
an analogous parameterization of the matrix ¢. Defining
the coefficients o, o and apy, through the following
equation (for VT = 0)

JE:ULE—C%HBXE-F(O'H—UL)TALB(’I%B'E), (33)
one finds the following relation between the components

pL 1 L pu
o= == ag=——T (34
2oy g Bp% + 0%

where py = Ry B is the Hall resistivity.



The linear response equations Egs. (20) and (21) in
combination with the general expressions for the coeffi-
cients Eqgs. (22)-(24) and (27)-(32) are the main results
of this paper. They characterize electric, thermal and
thermoelectric transport accounting for electron-electron
scattering and momentum-dependent electron-impurity
scattering, for an arbitrary orientation of the magnetic
field. In two spatial dimensions, only the magnetic field
component perpendicular to the plane is effective. In this
case, the coefficients p||, S|, and k) are not required for
the characterization of transport, and the second lines
of both Egs. (20) and (21) should be discarded. Within
the framework of the Boltzmann equation, these stated
results are exact. Below, we will discuss the implications
for different parameter regimes.

The main purpose of this manuscript is to discuss how
elastic and inelastic scattering times of similar magni-
tude influence different transport coefficients. In princi-
ple, the formulas derived on the basis of the Boltzmann
equation below are also applicable when either the elastic
scattering time is much shorter than the inelastic scat-
tering time, or in the opposite limit, which corresponds
to the hydrodynamic regime. However, an important as-
pect relevant for the comparison with hydrodynamics is
that the role of elastic scattering can be quite different
for imperfections of different type. Here, we implicitly as-
sume that the size of the impurities is smaller than both
elastic and the inelastic mean free paths. This contrasts
a typical hydrodynamic approach in which variations of
the potential are assumed to be smooth, as for example
in Ref. [7], or scattering on a boundary is considered as,
e.g., in Ref. [27]. In Ref. [7], charge and heat transport in
the presence of large-scale inhomogeneities was studied.
We, in turn, consider systems in which small-size impu-
rities distributed homogeneously in the bulk of the liquid
are weak and dense.

A. Dependence on the magnetic field direction

Equations (20) and (21) are valid for an arbitrary di-
rection of the magnetic field. Choosing a setup with
perpendicular and parallel magnetic fields simplifies the
equations and highlights the physical significance of the
coefficients. We choose the direction of the electric cur-
rent Jg (the temperature gradient VT') as a reference for
the direction of the magnetic field when VI' = 0 (when
Jrg = 0). After discussing these two limiting cases, we
consider the general case of a tilted magnetic field.

1. Perpendicular and parallel magnetic fields

a. B 1 Jg, VI' = 0: Here, both the electric
field and the thermal current are confined to the plane

spanned by Jg and B x Jg,

E=p,Jg+RyB xJg, (35)
Jr=TS, Jg+TnB x Jg. (36)

Neither of these quantities has a component in the direc-
tion of the magnetic field.

b. B L VT, Jg =0: In this case, the electric field
and thermal current both lie in the plane spanned by VT
and B x VT,

E=S5,VT+nB x VT, (37)
Jr=—k VT + Kk, LB x VT, (38)

c. B Jg, VI =0: The magnetic field, the electric
current, the thermal current and the electric field are all
parallel to each other, E = pJg, J7 = TS| Jg.

d. B | VT, Jg = 0: Here, the magnetic field, the
electric field, the temperature gradient and the thermal
current are parallel, E = S VT, Jr = —x VT

2.  Tilted magnetic field

An interesting observation can be made for the case
of an arbitrary magnetic field direction, see Fig. 1. For
the purpose of illustration we highlight the case of elec-
tric transport in the absence of a temperature gradient,
which is characterized by the three coefficients p_ , p| and
Ry . Alternative setups involving the other transport co-
efficients can be discussed in analogy. For the case under
consideration, we have

E:pJ_JE-i-RHBXJE-i-(pH —pL>’fLB(ﬁB-JE). (39)

We see that for an arbitrary direction of the magnetic
field, ng can have a component in the direction of the
electric current. This observation motivates the following
decomposition

g = nl, + g, (40)
ﬁ‘]lg =Ny, (N3, -1B), (41)
hg =Ny, X (AB X N3y), (42)

where fz‘1|3 is parallel to the electric current, and fg is

perpendicular. This allows us to bring Eq. (39) into the
form

E = [m + ()2 (p) — PL)] Jg+RuB x Jp
+(py — po) (Al - Ip)g. (43)

with three mutually orthogonal vectors Jg, B x Jg, and
fig. This is illustrated in Fig. 1. The last term is relevant
only if Jp and B are neither parallel nor perpendicular,
i.e. for general tilted magnetic fields. Then, the electric
field develops a component perpendicular to both Jg and
B x Jg, which is proportional to pj — p_.
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FIG. 1: This figure shows the different vectors that are im-
portant for the discussion of electric transport for the general
tilted magnetic field case in three dimensions, when B is nei-
ther perpendicular nor parallel to Jg. In this case, an electric
field component parallel to g o< Jg x (B x Jg) arises, i.e.,
the electric field has a component pointing out of the plane
spanned by B and Jg x B, unlike for the perpendicular mag-
netic field case. This component along #g is non-vanishing
only for p; # p1, as can be seen from Eq. (43).

B. Constant elastic scattering rate

If we eliminate the momentum dependence of 7;, Tp —
7, then we find

pL=p|=po, Ru=Rno, (44)
SLZS” ZS(), 7720, (45)
K1 =Ko, K| =#ro(l+ (wc%)Q) , L=2Lg, (46)
where
m 1 1
PO= Nezr Rpo = Ve So = ~7 (&p), (47)

=2 T (@) - () 6=

At low temperatures ' < e, the two moments of &, en-
tering the expressions for ko and Sy are <<£123>> =72T?/3
and (&p) = m2T?/2¢p.

A few remarks are in order here. For a constant scat-
tering time 7.;, the coefficients pg, Ryq, So, and i do not
depend on 7. In this limit, the Fermi sphere is shifted
as a whole under the influence of the electric field. As a
consequence, inelastic scattering becomes inelﬁfective for
the conductivity tensor &, cross effect tensor A, and the
Onsager related M. This argument does not hold for
the components of the thermal conductivity tensor due
to the additional factor £y associated with the tempera-
ture gradient in Eq. (14). Furthermore, for the thermal
conductivity, a difference between parallel || and perpen-
dicular | components remains in the limit of constant
Tei, 1-€., K| # 1. This leads to a nontrivial angular
dependence as can be seen from the thermal analog of
Eq. (43). Finally, x, is the only coefficient that depends
on B for a constant elastic scattering rate.

V. DISCUSSION

The temperature dependence of the transport coeffi-
cients originates from two sources. First, from the ther-
mal smearing encoded in the averages ((...)) defined in
Eq. (26), and secondly from the temperature dependence
of the inelastic scattering rate. The latter is a phe-
nomenological parameter and needs to be fixed exter-
nally. For a momentum-independent elastic scattering
rate, the results for the transport coefficients simplify
considerably, see Sec. IVB. As we will discuss below, it
is often the momentum dependence of the elastic scatter-
ing rate that induces interesting dependences of the coef-
ficients on temperature and magnetic field. For the sake
of the discussion, we therefore single out the momentum-
dependent part of the elastic scattering rate

1/Tei,p = 1/Tei + (SFP (48)

The entire dependence of the transport coefficients on
0I'p is encoded in the averages Yy, as can be seen from
Egs. (22)-(32). The momentum dependence of the elas-
tic scattering rate enters these averages in the form of
the combination 1/7, = 1/7 4+ 6I'p. When changing the
temperature, two competing trends influence Y,,,,,. Typi-
cally, 1/7.. increases with increasing temperature. Then,
the momentum dependence of 6I'p, becomes less impor-
tant in comparison to the total scattering rate and so
does its influence on Y,,,, and the transport coefficients.
On the other hand, a larger range of momenta is probed
in Y,,, as the temperature increases due to the weight-
ing factor Onp(£p)/0¢p entering the averages [compare
Eq. (26)]. This effect enhances the influence of 6I', when
the temperature grows.

Figs. 2-5 illustrate the temperature and magnetic field
dependence of the transport coefficients py, S, n, p| =
pL(B =0),and S = S (B = 0). In addition, Figs. S1-
S3 display Ry, k1, k) = k(B = 0), and £ [22]. Knowl-
edge of these coefficients is sufficient for the characteri-
zation of transport in a magnetic field of arbitrary direc-
tion. In all figures, we apply the same notation. Solid
lines illustrate results for a momentum-dependent elas-
tic scattering rate. Solid black, red and blue lines are
computed for w.7e; = 0, 0.4, 0.8, respectively. Dashed
lines are calculated for a momentum-independent scat-
tering rate. As we have already mentioned, the thermal
conductivity £, is the only coefficient that depends on
the magnetic field even for a constant elastic scattering
rate. For the purpose of our illustrations, we assume
that the electron-electron scattering rate has a quadratic
dependence on temperature, as in a Fermi liquid at low
temperatures, with 1/7.. = 3.44 x T?/ep. We also as-
sume that disorder is weak, and set 1/(ep7e;) = 0.01. For
the illustrations of the results, we choose the parameter-
ization

Tei0lp = wiép/er + w2 (&p/er)? (49)

with w; = 2.3 and wy = 1.4, and set the dimensionality
to d = 3. For the interpretation of the results, it will be
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FIG. 2: The resistances p, Eq. (22), and p; = p1 (B = 0),
Eq. (24), normalized to the Drude result po, Eq. (47), as a
function of temperature 7". Solid lines illustrate results for a
momentum-dependent elastic scattering rate, parameterized
according to Egs. (48) and (49) with 1/(ep7ei) = 0.01, w1 =
2.3 and w2 = 1.4. The inelastic scattering rate is chosen
as 1/7ee = 3.44 x T2/€F. The dimensionality is d = 3. Solid
black, red and blue lines are computed for B = 0, w.7e; = 0.4,
and w.Te; = 0.8, respectively. The dashed line is calculated
for a momentum-independent scattering rate, and coincides
with po. A detailed discussion of the results is provided in
Sec. VA.

instructive to expand the expressions for the transport
coefficients in powers of the momentum-dependent part
of the elastic scattering rate, dI'p. Next, we will discuss
the characteristics of the transport coefficients p1, p,
S1, S|, and n. A discussion of the coefficients Ry, k1,
x|, and L is provided in the supplementary material [22].

A. Resistivity pi

For a constant elastic scattering rate, the resistivity
p1 depends neither on temperature nor on the magnetic
field. The inelastic scattering time 7., drops out in this
case and only the elastic scattering time 7.; enters the
expression for p,

m
pL — po = Netr Tei = const. (50)

A temperature dependence arises for p; when the
elastic scattering rate becomes momentum-dependent,
0I'p # 0. For B = 0, this case has first been discussed by
Keyes [20],

plﬁﬁ(«%l»—;) B=0, (51)

with notable limits p; — m/Ne? x ((T;lp» for 7. — 0

and p; — m/Ne2 x (o p) " for 7o — 0.

In this paper, we focus on the low-temperature regime,
T < €p, while the relation between 1/7.; and 1/7., re-
mains arbitrary. Fig. 2 shows p, for different temper-
atures and magnetic fields. The zeroth-order term, po,

with respect to the momentum-dependent part of the

elastic scattering rate, 6I', has already been discussed

and is displayed in Eq. (50). The first-order term reads
m

60 = 575 (T (52)

This term gives rise to a leading quadratic temperature
dependence for the form of 6I'y, used here, which is clearly

visible in Fig. 2. Further, we note that 5;)11) does not
depend on the magnetic field, which explains the weak
magnetic field dependence observed in Fig. 2.

B. Seebeck coefficient S|

For a momentum-independent elastic scattering rate,
the Seebeck coefficient S| depends neither on the mag-
netic field, nor on any scattering mechanism,

S, =5 = _eiT <<£p>> ) Tei = const. (53)
S| remains temperature-dependent in this case; for ex-
ample, S| o T at low temperatures T' < ep. It is worth
noting that Sy is finite only due to particle-hole asym-
metry, for which there are two sources in the model un-
der consideration. The first one is the £, dependence of
vf) o &p + 1, which enters the definition of the average,
Eq. (26). The second source of particle-hole asymmetry
is the &, dependence of the density of states in three di-
mensions which becomes explicit upon changing the inte-
gration variable from p to {p in Eq. (26). For a vanishing
magnetic field, but general 7; p, one obtains

1 {(&p7p)
S, = —— . B=0, 54
LT (Y &9
with limiting cases S1 = — {(€pTeip)) /(€T (Tesp)) for
Tee > Teip and S| = — (&) /€T for Tee < Tejp. The

key features of this expression have already been dis-
cussed in Ref. [19].

In order to explore the combined effect of the magnetic
field and the momentum dependence of 7; , on the See-
beck coefficient, we expand Eq. (27) up to linear order in
0I'p. The first order correction in dI'p reads as

55(1) _ i {€pdT'p)) — (€p) {OLp) 1
L el Te_il + 7'8_61 1+ (wc%)2 '

(55)

Unlike for the resistance p,, éI'p induces a sensitivity
of S, to electron-electron collisions, disorder, and the
magnetic field already at linear order in the expansion.
For the further discussion, it is convenient to write the

expression for 55&1) as the product of two factors
551" =68(B = 0)[1 + (weA)? L (56)

The first factor, 655_1)(3 = 0), stands for the correc-
tion to the Seebeck coefficient in the absence of a mag-
netic field. The second factor encodes the entire mag-
netic field dependence. As discussed in Ref. [19], the
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FIG. 3: The Seebeck coefficient S, , Eq. (27), as a function of
temperature 7', and for different magnetic fields. Parameters
as listed in the caption of Fig. 2. In particular, the black solid
line stands for S, (B = 0) = 5. A discussion is provided in
Sec. VB.

correction 655_1) can give rise to a non-monotonic tem-
perature dependence of the Seebeck coefficient S| for
B = 0. Let us briefly recall the argument. At low tem-
peratures, T' < ep, and for B = 0, the correction to the
Seebeck coefficient (in d = 2,3 dimensions) becomes

2
2 16 '
FW1 + TpW2 (EF>

o5 (B=0) _ (57)
SO 1 + Tei/Tee .

The leading temperature dependence, i.e. the w; term in
the low-temperature expansion, originates from the term
{(§p0L'p)) in Eq. (55).

An important observation is that 5S(j) is not neces-
sarily smaller than Sy. This is because both depend on
particle-hole asymmetry. For Sy, this dependence reveals
itself through the average ({p)), which is finite due to a
non-constant density of states and/or a non-constant ve-

locity, as discussed above. (55&1)7 on the other hand, is
finite due to the momentum dependence of the elastic
scattering rate. In three dimensions, for example, the
origin of this momentum dependence may also be the
density of states, just as for Sy. The natural behavior
in this case is wy; > 0 and as a consequence 555_1) and
Sy have opposite signs at low temperatures. The ex-
pected temperature dependence of S is as follows: S|
vanishes for T'— 0. At low but finite temperatures, S
may be positive, if 65(1) dominates. For higher temper-
atures 7., becomes shorter, resulting in a suppression of
§SM . As a consequence, S displays a maximum, and
subsequently changes sign to become negative at higher
temperatures, just as the now dominant Sy. The tem-
perature scale at which the maximum of S} occurs can
be estimated by equating 7. and 7.;. In the presence
of the magnetic field, 555_1) is suppressed by the factor
[1+ (we7)?)] " [compare Eq. (56)]. The suppression be-
comes stronger for higher magnetic fields. As a conse-
quence, a sign change of S| now requires the more strin-
gent condition wy > 2/d x [1 4+ (weTe;)?]. The influence
of the magnetic field is most pronounced at low temper-
atures. Indeed, if 7., decreases with increasing tempera-

FIG. 4: The Seebeck coefficient S, , Eq. (27), as a function of
temperature T, and for different magnetic fields. In compari-
son to Fig. 3, the parameters are: 1/ep7e; = 0.05, w1 = 2.35,
we2 = 1.4, 1/Tee = 9.1 X TQ/eF. Black, red, blue and gray
curves stand for w.7e; = 0, 0.75, 1.5, and 3, respectively. A
discussion is provided in Sec. V B.

ture, which is the natural behavior, so does the product
WeT.

The temperature and magnetic field dependence of S|
as obtained from Eq. (27) is illustrated in Fig. 3. We see
that in accordance with our discussion (i) for B = 0
the Seebeck coefficient displays a non-monotonic tem-
perature dependence with a maximum at finite temper-
atures and a sign change, (i) a sufficiently large mag-
netic field suppresses the maximum, (iii) the influence of
the magnetic field decreases with increasing temperature,

and (iv) 5Si1) /So decreases with increasing temperature.
One may, thus, conclude that measuring temperature
dependence of the Seebeck coefficient at various mag-
netic fields provides an effective tool for determining the
magnitude of the electron-impurity and electron-electron
scattering rates.

Reference [21] reported a measurement of the Seebeck
coefficient in Si:P near the 3d metal-insulator transition.
This experiment was performed at very low temperatures
< 1K in order to minimize the influence of phonons.
Due to the closeness to the metal-insulator transition,
electron-electron interactions are expected to be strong.
On the metallic side of the transition, the Seebeck coeffi-
cient displays a non-monotonic temperature dependence
qualitatively similar to the one discussed above. More-
over, a suppression of the maximum is observed at finite
magnetic fields, eventually leading to an almost linear
temperature dependence at the highest magnetic fields
in the experiment. The authors of Ref. [21] interpret the
observed behavior in terms of the Kondo effect (Ref. [28])
that may arise close to the metal-insulator transition
due to the formation of magnetic moments. Motivated
by the experimental observations, we display the See-
beck coeflicient as calculated from Eq. (27) once more in
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FIG. 5: The Nernst coefficient 1, Eq. (28), normalized to
Ne = Tei/M, as a function of temperature T, and for different
magnetic fields. Parameters as listed in the caption of Fig. 2.
A discussion is provided in Sec. V C.

Fig. 4. Compared to Fig. 3, both the electron-impurity
and electron-electron scattering rates are increased (in
relation to the Fermi energy) in Fig. 4, and higher values
of w,.Te; are included. [Note that in the latter case the
Landau level quantization may become relevant before
thermal smearing smooths out quantization effects with
increasing temperature.] We see that the main features
of the experiment are well reproduced. Unfortunately, a
direct comparison to the experiment is difficult due to
the uncertainty in the relevant energy scales. We can
conclude, however, that Eq. (27) provides a good phe-
nomenological description of the observed behavior.

C. Nernst coefficient 7

The Nernst coefficient n can be discussed along similar
lines as S| . An obvious difference is that the Nernst co-
efficient vanishes for arbitrary magnetic fields when 7,; is
constant. A finite Nernst coefficient is obtained, however,
when the momentum dependence of 7; p, is accounted for.
At first order in 6I'p, one finds

W _ 1w
eTB 1+ w272

on ((€p0T'p)) — (&p)) (OTp)) - (58)

We have already encountered the combination of aver-

ages in round brackets in the expression for S(f) given
in Eq. (55). At low temperatures, the leading contribu-
tion comes from the first term, (£,6Tp)) oc w1 T2, which
implies that the Nernst coefficient is proportional to T
For B — 0 the only other source of temperature depen-
dence comes from the factor 72. This factor is approxi-
mately constant at low T" when 7. > 7;, and decreases
at higher temperatures, when 7., < 7. and 72 ~ 7'38.
Consequently, the Nernst coefficient is positive and goes
through a maximum at finite T'. A rough estimate for the
temperature scale at which the maximum occurs is ob-
tained from the condition 7.; = 7... The magnetic field
dependence of 71 is governed by the factor [14+w?72] 71,

which equals [1 + w?72]~! for T — 0, and then succes-
sively approaches 1, when 72 diminishes with increasing
temperature. Therefore, the magnetic field dependence
is most pronounced at low temperatures and becomes
weak for 7., < 7¢;. All the described features are visible
in Fig. 5, which is obtained directly from the exact result

in Eq. (28).

VI. CONCLUSION

In this paper, we studied the combined effect of
electron-electron and electron-impurity scattering on
charge and heat transport in metallic systems at inter-
mediate temperatures. We employed a simple kinetic
equation approach, in which both collision integrals are
treated in the relaxation time approximation, and stud-
ied the linear response of the system. We found expres-
sions for all relevant transport coefficients in the pres-
ence of a magnetic field of arbitrary direction, and ana-
lyzed the influence of the momentum dependence of the
electron-impurity scattering time in detail. The results
are applicable for two and three-dimensional systems.

Despite its simplicity, the model used in this paper
captures a key element of the kinetics of disordered elec-
tronic systems: the competition between the relaxation
of the distribution function towards equilibrium in the
laboratory frame caused by electron-impurity scattering,
and the relaxation towards the drifting distribution func-
tion resulting from the electron-electron interaction. This
drift enters the linearized kinetic equation through the
center of mass velocity v.n,. It is straightforward to fol-
low the effect of a finite center of mass velocity on the
transport coefficients in this approach, because v, is ac-
companied by an explicit factor of the electron-electron
scattering rate 1/7.., as can be seen from Eq. (12). Out
of the three independent tensors p, &, and &, only p is af-
fected by the finite drift velocity, while the others depend
on 7. only via the total scattering rate 1/7,. It should be
emphasized, however, that the situation is quite different
when the conductivity tensor &, thermal flow tensor L,
and cross effect tensors A" and M are used for character-
izing the transport processes. These are all affected by
the drift.

Table I provides a guide to the results obtained for the
different transport coefficients in this paper and the fig-
ures that serve as illustrations. It is worth stressing sev-
eral peculiarities. Only the thermal conductivities x| |
and the thermal Hall (Righi-Leduc) coefficient £ depend
on 1/7.. even for a constant elastic scattering rate, in
contrast to the electrical resistances p /|, the Hall coef-
ficient Ry, the Seebeck coefficients S, /| and the Nernst
coefficient 7. The Hall coefficient Ry displays a very
weak dependence on both the electron-electron scattering
rate and the momentum dependent part of the electron-
impurity scattering rate I'p, as long as the latter is weak
compared to 1/7.;. The coefficients p, j, S /| and 1 only
depend on 1/7¢. if 1/7.; p is momentum-dependent. For



Resistivity p1 Eq. (22), Fig. 2

pi Eq. (24), Fig. 2
Hall coefficient Ru Eq. (23), Fig. S1
Seebeck coefficient S1 Eq. (27), Figs. 3, 4

S Eq. (29), Figs. 3, 4
Nernst coeffiient n Eq. (28), Fig. 5
Thermal conductivity x, Eq. (30), Fig. S2

k) Eq. (32), Fig. S2
Righi-Leduc coefficient £ Eq. (31), Fig. S3

TABLE I: The transport coefficients studied in this paper.
The coefficients are defined through Egs. (20), (21) and cal-
culated on the basis of the Boltzmann equation displayed
in Egs. (8)-(10). The table gives the equations in which
the results for the coefficients are stated and the figures in
which their temperature and magnetic field dependence is il-
lustrated. The coefficients py = pL (B =0), S = SL(B =0)
and k| = k1 (B = 0) are described by the black solid lines in
these figures.

S|, we argued that the correction originating from a fi-
nite 6I'p can be of the same order as the result obtained
for 6I'y = 0. In the case of 1, a finite dI'p is even more
impactful, since = 0 for 0I'p, = 0.

For all coefficients, the competition between 7; , and
Tee Plays an important role for the temperature depen-
dence. The magnetic field enters in combination with
the total scattering time as w.7p. This product can con-
tribute to the temperature dependence in two ways: first,
directly through the temperature dependence of 7., and
second more indirectly via the momentum dependence
of Te;p which induces a further sensitivity of the trans-
port coefficients to the occupation of states in momen-
tum space. The temperature dependence of the transport
coeflicients becomes particularly intriguing when the en-
ergy scales 1/7¢;, 1/7ee and w,. are of the same order.
We analyzed the temperature and magnetic field depen-
dence of the Seebeck coefficient in this case, which shows
a striking qualitative similarity with experimental results
on the Seebeck coefficient of Si:P on the metallic side of
the 3d metal-insulator transition. A detailed analysis of
the experimental results, however, is beyond the scope of
this work. We hope that the results obtained within the
simple model system studied here can serve as a guide
for experimental studies of the electron kinetics at not
too low temperatures.
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Appendix A: Derivation of the transport coefficients

Inserting the expression for df stated in Eq. (14) into
the defining relations for the electric and thermal cur-
rents, Egs. (15) and Eqgs. (16), we find the following set
of equations

m 1 1
MOE — W (1 - TeeMO) JE‘ - e—TM1VT, (Al)
N Ne m
= ———FMoVT — —M,; (E+ —5— . (A2
Jr T 2V M ( + Nt JE‘) (A2)

Here, we defined the three matrices
M; = Yio + Y (B %) + Yiong(nB-), i € {0,1,2}, (A3)

where the matrix Y,,, is defined in Eq. (25).

In order to find E and Jr as functions of Jg and VT,
Eq. (A1) can be solved for E, and may be used to elim-
inate the electric field from the second equation in favor
of Jg and VT. These steps result in the two equations,

_m 1 1 4
E = m (TeeMO — ].) JE — EMO M1VT7 (A4)
Jr = — MM T — ﬂ[M — M; My "ML VT
T — e 11Vl E mT 2 11V 1 .
(A5)
By comparison with Eq. (2), we find
« m -1
p= m (TeeMO — ].) 5 (AG)
. 1
& = fe—TMO My, (A7)
1
7= —ngMgl, (A8)
N 1
k= ——= My — M; M, "M;]. A9
R=—5[Ma — MiMy My (A9)

In order to find explicit expressions for these tensors, we
need to know the inverse of the matrix M,

(Y& — YooYoo) B (7B")

(Ysh + Y33) (Yoo + Yo2) -
(A10)

M = Yoo — Yo1 (B %)
Yoo + Yo

It is easily checked that the two matrices My ! and
M; commute, so that # = T'a. The relations stated
above enable us to find the transport coefficients given
in Egs. (22)-(24), (27)-(32). Let us note that the ex-
pression for p; was obtained using the relation Yo +
Yo = (7)) for m = 0. In particular, the combina-
tion Y,,0 + Yino is magnetic field-independent, and so is
p|=pL(B=0).
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