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The Lorenz ratio serves as a measure to compare thermal and electric conductivities of metals.
Recent experiments observed small Lorenz ratios in the compensated metal WP2, indicating that
charge flow is strongly favored over heat conduction. Motivated by these findings, we study transport
properties of compensated metals in the presence of electron-electron collisions and electron-impurity
scattering. We focus on intermediate temperatures, where the phonon contributions to transport
are weak and elastic and inelastic scattering rates are comparable. Our exact solution for the
kinetic equation in the presence of general Fermi-liquid interactions is used to extract the Lorenz
ratio for short and long range interactions. We find that the Lorenz ratio develops a temperature
dependence as well as gets enhanced as a consequence of disorder scattering. For collisions mediated
by the Coulomb interaction, impurities give rise to a non-monotonic dependence of the Lorenz
ratio on the screening wave number with a minimum for intermediate screening strength. To help
future experimental efforts, we establish a scheme to connect the exact results with the solution
of the Boltzmann equation under the relaxation time approximation for all collision integrals. Our
recipe provides simple phenomenological expressions for the transport coefficients and it allows for
a physically transparent interpretation of the results.

I. INTRODUCTION

Transport coefficients of metals can significantly vary
with temperature [1]. A primary source of temperature
dependence is the various mechanisms of electron scatter-
ing, such as electron-phonon and electron-electron inter-
actions. Over a wide range of temperatures, the scat-
tering of electrons by phonons is the most important
means of relaxing the currents, and hence, it controls
the transport coefficients. When the temperature de-
creases, all inelastic scattering rates are suppressed and
the residual resistance observed at the lowest tempera-
tures is caused by the scattering of electrons on impuri-
ties. Electron-electron collisions can become important
at intermediate temperatures. In many cases, electron-
electron collisions alone cannot contribute to the electric
resistance, since they conserve the total momentum of
the participating particles and prevent the charge cur-
rent from decaying. Notable counterexamples arise in
electronic systems where the underlying lattice plays an
important role, and umklapp scattering relaxes the cur-
rent. Another interesting case occurs in compensated
metals, which have both electron and hole bands and
equal population of charge carriers. In these systems,
the current is proportional to the difference between the
total electron and the total hole momenta, and thus, can
relax by collisions between the two types of particles.
This mechanism was first discussed by Baber in Ref. [2].

Transport properties of compensated metals such as
Mg, Zn, Cd, Bi, and W (for a more comprehensive list,
see [3]) are already well-known for a long time. Recent
experiments on WP2 [4, 5], however, sparked renewed in-
terest in their low-temperature transport properties [6].
These experiments studied the temperature dependence
of the ratio between the thermal (κ) and electric (σ) con-
ductivities, i.e., the Lorenz ratio L = κ/Tσ. In the T → 0

limit, metals feature a universal ratio L0 = π2/(3e2)
with −e the electron charge [7]. The ratio measured in
Ref. [4, 5] has a minimum, L . 0.25L0, at a low but fi-
nite temperature Tm ∼ 10 K. A Lorenz ratio smaller than
unity implies that charge transport is more efficient than
heat conduction. Analysis of the experimental result [4]
concluded that the effect of electron-phonon scattering on
the transport coefficients in WP2 is negligible at T ∼ Tm.
Thus, the smallness of the Lorenz ratio is likely caused
by electron-electron interactions.

Previous efforts to analyze the effect of electron-
electron collisions on the electric and thermal trans-
port properties of WP2 assumed a clean, compensated
metal [6] . The small value of the Lorenz ratio was then
attributed to weakly screened Coulomb interactions that
give rise to small-angle scattering. Such a mechanism is
effective in relaxing the flow of heat but not of charge. An
alternative origin for a small Lorenz ratio could be strong
intra-band scattering, which predominantly affects the
thermal conductivity. The model of Ref. [6] provides
valuable insight into the influence of different electron-
electron scattering mechanisms on the Lorenz ratio. It
does not, however, explain its temperature dependence.
At low temperatures, all scattering rates are proportional
to T 2 and therefore, the temperature drops out from the
Lorenz ratio κ/(Tσ).

Motivated by the experiments on WP2 [4, 5], we
study transport properties of general compensated met-
als with non-vanishing electron and hole densities. Our
work focuses on the combined effect of electron-electron
collisions (both interband and intraband) and electron-
impurity scattering on the temperature dependence of
the Lorenz ratio. The inclusion of disorder ensures that
the Lorenz ratio becomes L0 as T → 0 (as observed in the
experiment [4]). We consider two types of inelastic colli-
sions: (i) Hubbard-like electron-electron interactions that
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scatter electrons uniformly. (ii) Screened Coulomb inter-
actions, for which small-angle scattering is dominant. We
find that for both types of interactions, the Lorenz num-
ber decreases with increasing temperature, in agreement
with the experimental result.

The most significant reduction in L(T ) occurs up to
temperatures where the elastic and inelastic collisions
rates become equal. Interestingly, a minimum in the
Lorenz ratio can be caused by electron-electron interac-
tions alone. Moreover, our result indicates that the min-
imal value of the Lorenz ratio in real systems is limited
by the disorder strength. For weak disorder, electron-
electron and electron-impurity scattering rates can be-
come comparable at temperatures where phonons are still
negligible. Then, the Lorenz ratio can take values signif-
icantly below L0, before it increases with temperature
due to phonon contributions to the heat flow. Thus, the
experimental observations [4, 5] at low temperatures can
be explained by the interplay of electron-electron and
electron-impurity scattering. By contrast, in highly dis-
ordered systems, phonons are expected to change the
Lorenz ratio well before electron-electron interaction ef-
fects become relevant [8].

We derive the transport coefficients from the kinetic
equation describing a multi-band system with both elec-
trons and holes. In order to keep the model tractable, we
choose a spherical Fermi surface with a quadratic disper-
sions for both charge carriers. In addition, we introduce
two types of independent collision integrals that describe
the effect of elastic and inelastic scattering. We first sim-
plify the kinetic equation by using the relaxation-time
approximation for all collisions. This step allows us to
obtain an exact solution for all transport coefficients, as
demonstrated in Ref. [9] for the electric conductivity of
a single-band metal, and recently been applied to other
transport coefficients in Ref. [10]. A similar method has
been used for calculating the electric conductivity for
a two-band compensated metal [11, 12]; we generalize
those works to compute also the thermal conductivity
and Lorenz ratio. To account for the details of the in-
elastic interactions, we also solve the full kinetic equation
for Fermi-liquid like interactions. For this purpose, we
employ a mapping of the linearized Boltzmann equation
to a second order differential equation of the Schrödinger
type, which can be solved exactly by an eigenfunction
expansion. This approach was previously used to study
transport properties of metals with [13, 14] and with-
out [15–17] elastic scattering. The same method was ap-
plied to calculate the Lorenz ratio of compensated met-
als in the clean limit [6] and the electric conductivity
of compensated metals for special values of the scatter-
ing rates [12]. Recently, we derived a set of formulas for
the electric and thermal conductivities of a disordered
one-band model [10], which allows for a straightforward
numerical evaluation. Here, we derive analogous expres-
sions for the compensated metal and analyze the results.

A comparison between the two solutions reveals that
a simple relaxation-time approximation cannot capture

the different effect that interband scattering has on elec-
tric and heat transport: While forward scattering events
reduce the thermal conductivity they barely change the
electric conductivity. We show that the relaxation-time
approximation can be easily modified to reproduce the
correct temperature dependence of all transport coeffi-
cients. We achieve this by introducing (phenomenologi-
cally) different interband relaxation times in the solution
of the charge and heat conductivities. Thus, we provide
a tractable and simple solution for the transport coeffi-
cients as well as the Lorenz ratio of a compensated metals
in the presence of both disorder and electron-electron in-
teractions.

This manuscript is structured as follows. In Sec. II,
we introduce our model of a compensated metal and dis-
cuss the structure of the linearized Boltzmann equation.
In Sec. III, we introduce a simplified kinetic equation,
where all collision integrals are treated in the relaxation-
time approximation. We derive closed-form expressions
for the electric, thermal and thermoelectric transport co-
efficients and the Lorenz ratio. In Sec. IV, we use the
method of Refs. [10, 13, 15–17] to solve the Boltzmann
equation and calculate the conductivities of impure com-
pensated metals with Fermi-liquid collision integrals for
the intraband and the interband scattering. In Sec. V, we
use two specific model interactions, Hubbard-type short-
range interaction and statically screened Coulomb inter-
action, to discuss various aspects of our result for the
transport coefficients. Moreover, we compare the exact
solution of the kinetic equation with the results obtained
using the relaxation-time approximation. We conclude
in Sec. VI.

II. LINEARIZED BOLTZMANN EQUATION
FOR THE COMPENSATED METAL

A compensated metal (CM) is a metal with equal num-
bers of electrons and holes. Here, we study a low-energy
model described by the combination of electron and hole
bands (see Fig. 4) with quadratic dispersion [2, 6]

ε1,p =
(p− p0/2)2

2m1
, (1)

ε2,p = − (p + p0/2)2

2m2
+ ∆. (2)

In this equation, ∆ is the energy offset, and m1 (m2) is
the electron (hole) effective mass. If we set the electron
and hole densities to be N1 = N2 = N , the Fermi mo-
mentum and Fermi energy are given by pF = (3π2N )1/3

and εF = ∆m2/(m1 +m2), respectively.
We use the Boltzmann equation [1] to study electric

and thermal transport in a compensated metal. For
the electron band, the collision integral consists of three
parts: I1{f1, f2} = I11

ei {f1}+I11
ee {f1}+I12

ee {f1, f2}. Here,
I11
ei , I11

ee , and I12
ee stand for intraband electron-impurity

scattering (with the interband counterpart ignored for
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FIG. 1: The electron and hole bands for the compensated
metal studied in this manuscript.

simplicity), intraband and interband electron-electron
scattering, respectively, and f1 (f2) is the distribution
function for the electron (hole) band. The collision inte-
gral for the hole band I2{f1, f2} is obtained by switch-
ing the indices 1 ↔ 2. We use the relaxation time ap-
proximation (RTA) for electron-impurity scattering: the
distribution function fc(r,p, t) relaxes towards the angu-
larly averaged distribution 〈fc(r,p, t)〉 in a characteristic
time τei,c,

Iccei {f} = −fc(r,p, t)− 〈fc(r,p, t)〉
τei,c

. (3)

Hereafter, it is understood that momenta in the elec-
tron/hole bands are measured from the points ±p0/2,
respectively.

Our aim is to find the transport coefficients in linear
response to either an electric field E or a temperature
gradient ∇rT . To this end, the distribution function
can be expanded as fc(r,p) ≈ nF (ξc,p) + δfc,p. Here,
nF (ξc,p) = [exp(βξc,p) + 1]−1 is the Fermi-Dirac distri-
bution with β = 1/T , and ξc,p = εc,p − µ.

The linearized Boltzmann equations for electrons and
holes are coupled by the interband scattering processes,(

−eE− ξc,p
∇rT

T

)
· vc,p

∂nF (ξc,p)

∂ξc,p

= −δfc,p
τei,c

+ Iccee{δf}+ Icc̄ee{δf}. (4)

where we denote c̄ = 2 for c = 1 and vice versa. The
group velocities of the electron and hole bands are defined
by v1,p = ∇pε1,p = p/m1 and v2,p = ∇pε2,p = −p/m2,
respectively. The electron-electron collision integrals are
also linearized.

III. RELAXATION-TIME APPROXIMATION

Closed-form solutions to the coupled set of Boltzmann
equations (4) can be derived for a model in which all
collision integrals are treated in the relaxation time ap-
proximation. In this section, we introduce such a model
by generalizing the single-band Boltzmann equation first
discussed by Keyes [9] to a compensated metal with two
bands. This allows us to find the distribution function in

linear response to an electric field or a thermal gradient,
and to calculate the electric, thermal and thermoelec-
tric transport coefficients. While individual scattering
processes are not described accurately in the relaxation
time approximation, the main merit of this approach is
that it provides valuable insight into the interplay of the
three scattering processes and how they affect the differ-
ent transport coefficients.

The intraband electron-electron collision integral Iccee
in the RTA can be set up in analogy to the single-band
case [9, 10],

Iccee{fc} = −
fc(r,p)− n(c.m.)

F,c (p)

τ ccee
. (5)

Here, τ ccee is the characteristic time for intraband electron-
electron scattering and c.m. stands for “center of mass”.
We also introduced the “drifting” Fermi-Dirac distribu-

tion function n
(c.m.)
F,c . This distribution function is re-

lated to the the Fermi-Dirac distribution in the labora-
tory frame (in which impurities are at rest) as

n
(c.m.)
F,c (p) = nF,c(εc,p − µ− v(c.m.)

c · p). (6)

For a quadratic dispersion, the drift velocity v
(c.m.)
c cor-

responds to the velocity of the center-of-mass motion of
electrons and holes in their respective bands [18],

v(c.m.)
c = s

∫
p

vc,pδfc,p/N . (7)

Here, s = 2 is the spin degeneracy and particle and hole
densities are equal and denoted by the common symbol
N = s

∫
p
nF (ξ1,p) = s

∫
p
[1− nF (ξ2,p)].

A finite drift velocity arises only when the system is
taken out of equilibrium. This is why in linear response

one may expand n
(c.m.)
F,c to first order in v

(c.m.)
c . In this

way, one obtains the expression for the intraband collision
integral that will be used for the calculations presented
in this section,

Iccee{f} = − 1

τ ccee

[
δfc,p + ηcv

(c.m.)
c · p∂nF,c(ξc,p)

∂ξc,p

]
. (8)

Here, we used the notation η1 = −η2 = 1.
The interband electron-electron collision integral can

be formulated in a similar spirit

Icc̄ee{f} = − 1

τ cc̄ee

[
δfc,p − ηcv(c.m.)

c̄ · p∂nF,c(ξc,p)

∂ξc,p

]
, (9)

where τ cc̄ee is the characteristic time for interband
electron-electron collisions.

There is an important difference between intraband
and interband collisions. Intraband collisions conserve
the momentum for each band separately,

∫
p

p Iccee{f} =

0. Interband collisions, in turn, conserve the total mo-
mentum for the combined system consisting of parti-
cles and holes,

∫
p

p
(
I12
ee {f}+ I21

ee {f}
)

= 0. This condi-

tion imposes an additional constraint on the parameters
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characterizing the interband collision integral, namely
m1/τ

12
ee = m2/τ

21
ee . This observation suggests introduc-

ing a new timescale τ via the relation

mc

τ cc̄ee
=
m̃

τ
, (10)

where 1/m̃ = 1/m1 + 1/m2. The time τ is the character-
istic time scale for the decay of the electric current in the
system consisting of particles and holes, as identified in
[11]. Ref. [11] studied the electric conductivity of a com-
pensated metal with impurities and interband scattering
using an equation of motion approach. These equations
of motion can be obtained from the set of coupled Boltz-
mann equations by calculating the average momenta for
the two bands.

A. Non-equilibrium distribution

The coupled Boltzmann equations, Eq. (4), for c ∈
{1, 2} with the collision integral Iee given in Eqs. (8) and
(9) can formally be resolved for δfc as

δfc,p = τ̃cvc,p ·
(
eẼc + ξc,p

∇rT

T

)
∂nF,c(ξc,p)

∂ξc,p
, (11)

with the effective electric field

Ẽc = E− mcv
(c.m.)
c

eτ ccee
+
mcv

(c.m.)
c̄

eτ cc̄ee
, (12)

and the total scattering rate

1

τ̃c
=

1

τei,c
+

1

τ ccee
+

1

τ cc̄ee
=

1

τei,c
+

1

τ ccee
+

m̃

mcτ
(13)

One more step is necessary in order to find δfc, because
the right-hand side of Eq. (11) depends on δfc implicitly

through v
(c.m.)
c . To make progress, we follow the idea

outlined in Ref. [9] and insert the formal solution for
δfc in Eq. (11) into the definition of the center of mass
velocity (7). In this way, one obtains a coupled set of
equations for the center of mass velocities,

(
m1(1/τei,1 + 1/τ12

ee ) m1/τ
12
ee

m2/τ
21
ee m2(1/τei,2 + 1/τ21

ee )

)(
v

(c.m.)
1

v
(c.m.)
2

)

=

(
−eE− 〈〈ξ1,p〉〉∇rT/T
−eE− 〈〈ξ2,p〉〉∇rT/T

)
. (14)

where 〈〈. . . 〉〉 denotes the average

〈〈Xc,p〉〉 = −smc

dN

∫
p

Xpv
2
c,p

∂nF (ξc,p)

∂ξc,p
, (15)

This result for v
(c.m.)
c can be inserted into Eq. (12) to find

the non-equilibrium part of the distribution functions,

δfEc,p =
τei,cvc,p · eE

1 + (m̃/τ)(τei,1/m1 + τei,2/m2)

∂nF,c(ξc,p)

∂ξc,p
,

(16)

δfTc,p =

τei,c
{
〈〈ξc,p〉〉+

m̃

τ

τei,c̄
mc̄

(〈〈ξc,p〉〉 − 〈〈ξc̄,p〉〉)
}

1 +
m̃

τ

(
τei,1
m1

+
τei,2
m2

)
+ τ̃c(ξc,p − 〈〈ξc,p〉〉)

]
vc,p ·

∇rT

T

∂nF,c(ξc,p)

∂ξc,p
.

(17)

The non-equilibrium part of the distribution functions,
Eqs. (16) and (17), have been derived for a momentum-
independent electron-impurity scattering rate. A gener-
alization to include the momentum dependence of τei,c
is straightforward within the formalism presented in this
section, but this discussion is beyond the scope of this
manuscript.

In the introduction of Sec. III, we discussed the prop-
erties of the electron-electron collision integral. We focus
here on the constraints imposed on the relaxation times
to guarantee total energy and momentum conservation.
To explain the consequences of momentum conservation
on the transport properties of compensated metals, we
start with comparing the results given by Eqs. (16) and
(17) to that of a single-band [9, 10]. The single-band case
can be recovered by switching off the interband scatter-
ing, τ →∞, for a fixed c. In the absence of any momen-
tum relaxation mechanism, the force created by an elec-
tric field accelerates the particles in the band irrespective
of the intraband interactions. Thus, the total momentum
of the corresponding Fermi sea grows at a constant rate,
and the electric conductivity diverges. This mechanism
manifests itself in the expression for δfE of a single band:
it depends on τei but not on τee. For the compensated
metal, Eq. (16) reveals that the intraband scattering rate
also drops from the result for δfEc,p. Another common
feature of the single-band and compensated metals is
the rigid, i.e., momentum-independent, shift of the Fermi
surface(s) by the electric field. In the absence of inter-
band scattering, the shift of the Fermi surfaces is de-
termined by the elastic scattering rate alone. Interband
scattering, in turn, leads to a dressing of the elastic scat-
tering rate, which becomes temperature-dependent (via
τ) and is also influenced by the elastic scattering rate of
the other band.

A temperature gradient gives rise to an energy-
dependent (ξ) force acting on particles and holes,
Eq. (11). The corresponding distribution function is
given by Eq. (17). For a single band (τ → ∞), the
non-equilibrium part of the distribution function is de-
termined by two types of contributions: (i) A term de-
pending on the average energy (measured from the Fermi
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energy). (ii) A term proportional to the deviation of the
energy from the average one. The former contribution
can be interpreted as the response to a uniform force.
Similar to the effect of an electric field, the resulting ac-
celeration of the Fermi sea is limited by the relaxation
of the total momentum alone. The latter term describes
the response to a momentum-dependent force. The cor-
responding distortion of the Fermi surface is sensitive to
all scattering mechanisms, and electron-electron interac-
tions alone are sufficient to establish a finite shift. The
absence of a stationary solution for the non-equilibrium
distribution function due to the uniform force (i) in clean
systems implies that a temperature gradient can drive
a diverging thermal current. However, thermal conduc-
tivity is conventionally defined under the condition of a
vanishing electric current, i.e., it is assumed that a coun-
teracting electric field develops at the boundaries and
cancels the uniform force. Therefore, the thermal con-
ductivity of a single-band metal can be finite even in the
clean limit. For the compensated metal, the acceleration
of the Fermi seas by the uniform force cannot be stopped
as long as the total momentum is conserved. Mathemati-
cally, this property is related to the divergence of the first
contribution to δfTc,p given by Eq. (17) in the clean limit
τei,c → ∞. The crucial distinction from the single-band
case is that the condition of vanishing electric current is
not sufficient to eliminate this diverging contribution to
the thermal conductivity of compensated metals. This
point will be discussed further in the next subsection.

A few remarks are in order here concerning Eq. (14)
for the center of mass velocities. A peculiar feature of
(16) is that the clean limit is not unambiguously defined
(the order of τei,1 → ∞ and τei,2 → ∞ matters). Trac-
ing back the origin of this in ambiguity, we see that the
matrix in Eq. (14) becomes singular in the clean limit.
Further inspection shows that for electric field-driving in
the clean system, one may find the sum of the two center
of mass velocities from this equation but not the differ-
ence. It is therefore possible to calculate the current and
find the conductivity for the clean system, but not the
total momentum or the individual distribution functions
for the electron and hole band. For the compensated
metal studied here, an electric field does not influence
the total momentum of the electron-hole system, even
though it can give rise to a current. Moreover, with-
out impurities, none of the scattering mechanisms under
consideration is able to influence the total momentum,
which is therefore stationary. In the presence of impu-
rities, the stationarity condition imposes an additional
constraint

∫
p

(Iei,1 + Iei,2) = 0 [11], which fixes the ratio

of the center of mass velocities of the two bands and lifts
the ambiguity. The same ambiguity arises for the clean
limit when a temperature gradient is applied to the com-
pensated metal. Here, the situation is slightly different
compared to the electric-field driving: the temperature
gradient can transfer a momentum to the electron-hole
system. Without impurity scattering, the total momen-
tum cannot relax and the system cannot be stationary.

The consequences is discussed further below Eq. (23).

B. Transport coefficients

To find the transport coefficients, we insert the results
for the non-equilibrium distribution functions Eqs. (16)-
(17) into the expressions for the electric and thermal cur-
rent densities(

JE
JT

)
= s

∑
c∈{1,2}

∫
p

(
−e
ξc,p

)
vc,pδfc,p

=

(
LEE LET
LTE LTT

)(
E

−∇rT

)
, (18)

where s = 2 appears due to the spin degeneracy. In
order to formulate the results in a transparent form, it is
useful to define an effective elastic scattering time in the
following way

τel
m̃

=
τei,1
m1

+
τei,2
m2

. (19)

Note that if masses are comparable, and scattering times
τei,c unequal, τel is mainly determined by the larger time.

Then, we can write the electric conductivity as

σ ≡ LEE =
N e2

m̃

(
1

τel
+

1

τ

)−1

, (20)

consistent with Ref. [11].
The thermoelectric transport coefficients satisfy the

Onsager reciprocal relation,

LET =
LTE
T

= −N e
T

τei,1
m1
〈〈ξ1,p〉〉+

τei,2
m2
〈〈ξ2,p〉〉

1 +
τel
τ

. (21)

For the thermal conductivity one can distinguish two
cases. In open systems, where an electric current can
flow, one obtains

LTT =
N
T

∑
c∈{1,2}

[
τ̃c
mc

(〈〈ξ2
c,p〉〉 − 〈〈ξc,p〉〉2)

+
τei,c
mc

〈〈ξc,p〉〉2 +
m̃

τ

τei,c̄
mc̄
〈〈ξc,p〉〉(〈〈ξc,p〉〉 − 〈〈ξc̄,p〉〉)

1 +
τel
τ

 .
(22)

In experiment, one typically measures the thermal con-
ductivity in the absence of electric current, JE = 0, for
which one obtains

κ ≡ LTT −
LTELET
LEE

=
N
T

[
τ̃1
m1

(〈〈ξ2
1,p〉〉 − 〈〈ξ1,p〉〉2) +

τ̃2
m2

(〈〈ξ2
2,p〉〉 − 〈〈ξ2,p〉〉2)

+
(〈〈ξ1,p〉〉 − 〈〈ξ2,p〉〉)2

m1

τei,1
+ m2

τei,2

]
(23)
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As anticipated, the electric conductivity in the clean
case can be obtained straightforwardly by taking the
limit τei,c → ∞. The result takes a Drude-like form,
σ = N e2τ/m̃, where τ and m̃ play the role of effective
scattering time and mass, respectively. Interband scat-
tering results in a finite conductivity, even in the absence
of elastic scattering. Intraband scattering, in turn, does
not influence the electric conductivity, because it cannot
relax the momenta of the bands and therefore does not
lead to a decay of the current carried by each band.

The result for LET can be understood as a straightfor-
ward generalization of the single-band result [10], albeit
with an effective total scattering rate with elastic and
inelastic (interband) contributions. This property is in-
herited from the form of δfE , Eq. (16).

The result for the thermal conductivity naturally falls
into two parts, κ = κa + κb, corresponding to the first
and second line on the right hand side of Eq. (23). The
expression for κa is a straightforward generalization of
the single-band case. Unlike for the electric conductiv-
ity, all scattering processes are effective: besides electron-
impurity and interband scattering, intraband scattering
also contributes to the thermal conductivity. The scat-
tering rates simply add up to give τ̃c. The second contri-
bution to the thermal conductivity, κb, is special in that
it diverges in the clean limit. The reason has already
been discussed in connection with δfT below Eq. (17).
The thermal gradient gives rise to a net force on the
electron-hole system, but without impurities none of the
remaining scattering processes is able to keep the system
in a stationary state. The same situation occurs in the
single-band case, and the thermal gradient can induce a
diverging charge current. However, thermal conductivity
measurements are conventionally done under the condi-
tion of zero charge current, JE = 0. Consequently, for
a single band the diverging contribution is omitted from
the thermal conductivity κ. Unlike in the single-band
case, however, the zero-current boundary condition does
not cure the divergency of the thermal conductivity for
the compensated metal. The reason is that JE = 0 does
not imply a vanishing of the total momentum: electrons
and holes moving with the same velocities do not pro-
duce a net charge current. Thus, the thermal conductiv-
ity retains the diverging contribution better known as the
ambipolar (or bipolar) effect [19]. From Eq. (23), we can
see that in the presence of disorder the ambipolar contri-

bution, κb ∼ N T 3

ε2F
( m1

τei,1
+ m2

τei,2
)−1, no longer diverges. At

sufficiently low temperatures, the ambipolar effect is neg-

ligible in comparison to κa ∼ NT
(
τ̃1
m1

+ τ̃2
m2

)
. Below, we

discuss the range of temperatures in which the ambipolar
effect gives only a sub-leading correction to the thermal
conductivity for the Hubbard-like and screened Coulomb
interactions.

Recently, it was shown in Ref. [20] that a non-uniform
charge distribution can form near the contacts used
for thermal conductivity measurements. As a conse-
quence, the ambipolar contribution to thermal conduc-

tivity should not diverge even in the clean limit. The
intriguing result of Ref. [20] suggests that in the pres-
ence of disorder, the ambipolar effect can be suppressed
up to even higher temperatures than naively expected.

Keeping only the leading terms, and using 〈〈ξ2
p〉〉 =

π2T 2/3, one obtains the low-temperature result

κ =
π2

3
NT

(
τ̃1
m1

+
τ̃2
m2

)
. (24)

and the Lorenz ratio

L =
π2m̃

3e2

(
1

τ
+

1

τel

)(
τ̃1
m1

+
τ̃2
m2

)
. (25)

As is obvious from Eq. (25), the Wiedemann-Franz law
prediction L = L0 = π2/(3e2) can be expected to hold
only for vanishing intraband and interband scattering
rates, i.e. for T → 0.

IV. FERMI-LIQUID COLLISION INTEGRAL

In this section, we use the eigenfunction expansion
method first introduced in Refs. [15, 16] and employed
for disordered systems in [10, 13] to find solutions of the
linearized Boltzmann equations (4) with intraband and
interband collision integrals of the Fermi-liquid type. We
obtain expressions for the electric and thermal conduc-
tivies of a compensated metal which will form the basis
for further discussions in Sec. V.

A. Electron-electron collision integral

We write the collision integral as

Icc
′

ee {f} = − fc,p
τ cc

′
out,p

+
1− fc,p
τ cc

′
in,p

, (26)

where out- and in-scattering rates take the form

1

τ cc
′

out,p

=

∫
q,p′,q′

W cc′

pq,p′q′δ(εc,p + εc′,q − εc,p′ − εc′,q′)

× δ(p + q− p′ − q′)fc′,q(1− fc,p′)(1− fc′,q′),
(27)

1

τ cc
′

in,p

=

∫
q,p′,q′

W cc′

p′q′,pqδ(εc,p + εc′,q − εc,p′ − εc′,q′)

× δ(p + q− p′ − q′)fc,p′fc′,q′(1− fc′,q). (28)

Here, W describes the probability for electrons with mo-
mentum p in band c and q in c′ to be scattered into
states with p′ in c and q′ in c′,

W cc′

pq,p′q′ = s(2π)d+1|U cc′pq,p′q′ |2. (29)

In this formula, s counts spin degeneracy, and U cc
′

pq,p′q′

is the matrix element describing the interaction between
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carriers in bands c and c′. Spin-triplet scattering pro-
cesses have been ignored for the sake of simplicity. If
needed, they can be included into the formalism straight-
forwardly [6, 17].

Following a standard procedure [1], we linearize the
collision integral with the ansatz δfc,p = βnF (ξc,p)[1 −
nF (ξc,p)]Φc,p, to obtain the form

Icc
′

ee {Φ} = − 1

T

∫
q,p′,q′

W cc′

pq,p′q′δ(εc,p + εc′,q − εc,p′ − εc′,q′)

× δ(p + q− p′ − q′)nF (ξc,p)nF (ξc′,q)

× [1− nF (ξc,p′)][1− nF (ξc′,q′)]

× (Φc,p + Φc′,q − Φc,p′ − Φc′,q′), (30)

and further make the dependence on the external fields
explicit by writing Φc,p as Φc,p =

∑
α∈{E,T} φ

α
c (ξc,p)vc,p·

Fα with FE = −eE and FT = −∇rT with four unknown
functions φE1 (ξ1,p), φE2 (ξ2,p), φT1 (ξ1,p), φT2 (ξ2,p).

From now on, we focus on a three-dimensional com-
pensated metal with Fermi-liquid interactions, at tem-
peratures in the degenerate regime T � εF .

B. Exact solution

The general collision integral (30) can be simplified
considerably in the degenerate regime, as we describe
in appendix A. The resulting approximate form of the
electron-electron collision integral reads as [21]

Iccee{φ} = − m3
c

(2π)7T
nF (ξc,p)[1− nF (ξc,p)]

×
∫ ∞
−∞

dωK(ω, ξc,p)
∑

α∈{E,T}

vc,p · Fα

×
[
〈W̃cc(θ, ϕ)〉av

{
φαc,s(ξc,p) + φαc,a(ξc,p)− φαc,s(ξc,p + ω)

}
− 〈W̃cc(θ, ϕ)(1 + 2 cos θ)〉avφ

α
c,a(ξc,p + ω)

]
, (31)

Icc̄ee{φ} = − mcm
2
c̄

(2π)7T
nF (ξc,p)[1− nF (ξc,p)]

×
∫ ∞
−∞

dωK(ω, ξc,p)
∑

α∈{E,T}

vc,p · Fα

×
[
〈W̃cc̄(θ, ϕ)〉av

{
φαc,s(ξc,p) + φαc,a(ξc,p)

}
− 〈W̃cc̄(θ, ϕ) cos Θ〉av

{
φαc,s(ξc,p + ω) + φαc,a(ξc,p + ω)

}
+ 〈W̃cc̄(θ, ϕ)(1− cos Θ)〉av

mc

mc̄
φαc̄,s(ξc,p + ω)

+ 〈W̃cc̄(θ, ϕ)(1 + 2 cos θ − cos Θ)〉av
mc

mc̄
φαc̄,a(ξc,p + ω)

]
,

(32)

Here, it was convenient to split φα into symmetric and an-
tisymmetric parts φα(ξ) = φαs (ξ) +φαa (ξ), where φαs (ξ) =
φαs (−ξ) and φαa (ξ) = −φαa (−ξ). The function K(ω, ξc,p)

contains information on the occupation of states involved
in the scattering processes,

K(ω, ξc,p) = ωnB(ω)
1− nF (ξc,p + ω)

1− nF (ξc,p)
, (33)

where nB(ω) = [exp(βω) − 1]−1 is the Bose-Einstein
distribution. For later reference, we note the rela-
tions K(−ω,−ξc,p) = K(ω, ξc,p), and

∫
dωK(ω, ξc,p) =

[ξ2
c,p + (πT )2]/2. The scattering probability W̃ is ob-

tained from W by fixing all incoming and outgoing mo-
menta to pF , and is characterized by two angles: θ is
the angle between the two incoming momenta, and ϕ
is the angle between the two planes spanned by the in-
coming momenta and by the outgoing momenta. The
third angle Θ is defined by the relation cos Θ = 1 −
2 sin2(θ/2) cos2(ϕ/2). The angular average is defined by
〈X(θ, ϕ)〉av =

∫
d(Ω/4π)X(θ, ϕ)/ cos(θ/2) with the dif-

ferential solid angle dΩ = sin θdθdϕ.
The sum of the intraband and interband collision inte-

grals, Eqs. (31) and (32), can be written in the compact
form

Iee,c{φ} = −4nF (ξc,p)[1− nF (ξc,p)]

π2T 3τout,c

∫ ∞
−∞

dωK(ω, ξc,p)

×
∑

α∈{E,T}

vc,p · Fα
∑

γ∈{s,a}

[
φαc,γ(ξc,p)

− Λc,γφ
α
c,γ(ξc,p + ω) + Ξc,γφ

α
c̄,γ(ξc,p + ω)

]
.

(34)

Here, 1/τout,c denotes the out-scattering rate defined in
Eq. (27), evaluated on the Fermi surface and in equilib-
rium,

1

τout,c
= (ucc + ucc̄)

T 2

εF
, (35)

with the dimensionless parameters

ucc =
m3
cεF

29π5
〈W̃cc(θ, ϕ)〉av, (36)

ucc̄ =
mcm

2
c̄εF

29π5
〈W̃cc̄(θ, ϕ)〉av. (37)

Additional dimensionless parameters Λc,s/a and Ξc,s/a,
relevant to the symmetric and antisymmetric parts of φαc
in Eq. (34), respectively, are defined by

Λc,s = 1− mc̄

mc
Ξc,s (38)

Ξc,s =
(mc̄/mc)〈W̃cc̄(θ, ϕ)(1− cos Θ)〉av

〈W̃cc(θ, ϕ)〉av + (m2
c̄/m

2
c)〈W̃cc̄(θ, ϕ)〉av

, (39)

Λc,a =
〈W̃cc(θ, ϕ)(1 + 2 cos θ)〉av

〈W̃cc(θ, ϕ)〉av

− mc̄

mc
Ξc,a, (40)

Ξc,a =
(mc̄/mc)〈W̃cc̄(θ, ϕ)(1 + 2 cos θ − cos Θ)〉av

〈W̃cc(θ, ϕ)〉av + (m2
c̄/m

2
c)〈W̃cc̄(θ, ϕ)〉av

.

(41)
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For a clean compensated metal, the two coupled Boltz-
mann equations (4) with electron-electron collision inte-
gral given by Eq. (34) were solved in Ref. [6] using the
eigenfunction expansion originally introduced for Fermi
liquids in Refs. [15, 16]. The approach of Refs. [15, 16]
was also used to study conventional disordered metals in
Refs. [10, 13]. Here, we derive solutions of (4) for dis-
ordered compensated metals with the electron-electron
collision integral given in Eq. (34). We find the elec-
tric and thermal conductivities by inserting the solutions
into Eq. (18). The technical details of this procedure are
described in appendix B. Here, we summarize the main
results. The expressions for the electric and thermal con-
ductivities read

σ =
∑

c∈{1,2}

∞∑
n=0

σ̃cΥ
σ
c,n(2n+ εc + 1/2)

× λc̄,2n − Λc̄,s − Ξc,sτout,c̄/τout,c
(λc,2n − Λc,s)(λc̄,2n − Λc̄,s)− Ξc,sΞc̄,s

, (42)

κ =
∑

c∈{1,2}

∞∑
n=0

κ̃cΥ
κ
c,n(2n+ εc + 3/2)

× λc̄,2n+1 − Λc̄,a − Ξc,aτout,c̄/τout,c
(λc,2n+1 − Λc,a)(λc̄,2n+1 − Λc̄,a)− Ξc,aΞc̄,a

,

(43)

respectively. Here, we defined σ̃c = N e2τei,c/mc and
κ̃c = π2NTτei,c/(3mc), the contributions of band c to
the electric and thermal conductivities in the absence
of electron-electron scattering, respectively. We further
introduced the functions λc,n = (n + εc)(n + εc + 1)/2,
and

Υσ
c,n =

τout,c
8τei,c

Γ(n+ 1/2)Γ(n+ εc + 1/2)[Γ(n+ (εc + 1)/2)]2

Γ(n+ 1)Γ(n+ εc + 1)[Γ(n+ εc/2 + 1)]2
,

(44)

Υκ
c,n =

3τout,c
8τei,c

Γ(n+ 3/2)Γ(n+ εc + 3/2)[Γ(n+ (εc + 1)/2)]2

Γ(n+ 1)Γ(n+ εc + 1)[Γ(n+ εc/2 + 2)]2
.

(45)

These results will be discussed in the next section.

1. Intraband scattering dominant regime

An instructive special case is obtained in the intra-
band scattering dominant regime. For W̃cc � W̃cc̄,
parameters simplify considerably: 1/τout,c = uccT

2/εF,
Ξc,s = Ξc,a = 0, Λc,s = 1, and

Λc,a =
〈W̃cc(θ, ϕ)(1 + 2 cos θ)〉av

〈W̃cc(θ, ϕ)〉av

. (46)

The parameter Λc,a takes values between −1 and 3.
Head-on collisions (θ = π) correspond to Λc,a = −1,
and collinear scattering (θ = 0) to Λc,a = 3.

In the intraband scattering dominant regime, trans-
port occurs independently in electron and hole bands.
The electric conductivity is simply described by the
Drude formula [22]

σ = σ̃1 + σ̃2. (47)

The electric conductivity is insensitive to intraband
electron-electron collisions when interband scattering
processes are negligible, it depends only on the electron-
impurity scattering rate. This is because intraband colli-
sions do not relax the total momentum, and therefore
do not affect the electric current directly. Intraband
electron-electron collisions can relax the thermal current,
however, and this is why the thermal conductivity takes
a nontrivial form

κ =
∑

c∈{1,2}

∞∑
n=0

κ̃cΥ
κ
c,n

2n+ εc + 3/2

λc,2n+1 − Λc,a
. (48)

A detailed discussion of Eq. (48) and a comparison with
the simple results obtained from the RTA can be found
in Ref. [10] for the closely related single-band case. Let
us note here that due to the intraband scattering the
thermal conductivity is always reduced with respect to
to the Drude result κ = κ̃1 + κ̃2, and as a consequence
L/L0 < 1.

2. Interband scattering dominant regime

We now turn to the interband scattering dominant
regime. For W̃cc � W̃cc̄ as well as (intraband) electron-
impurity scatterings suppressed, the electric and thermal
conductivities are greatly simplified into

σ

σ̃0
=
∞∑
n=0

4n+ 3

4(n+ 1)(2n+ 1)[(n+ 1)(2n+ 1) + 1− 2Λ̃]
,

(49)

κ

κ̃0
=
∞∑
n=0

3(4n+ 5)

4(n+ 1)(2n+ 3)[(n+ 1)(2n+ 3) + Ξ̃− 2Λ̃]
.

(50)

For the purpose of normalization, we defined the conduc-
tivities

σ̃0 =
29π5N e2

m2
1m

2
2T

2〈W̃12(θ, ϕ)〉av

, (51)

κ̃0 =
29π7N

3m2
1m

2
2T 〈W̃12(θ, ϕ)〉av

, (52)

with κ̃0/(σ̃0T ) = L0. We further introduced the dimen-
sionless parameters

Λ̃ =
〈W̃12(θ, ϕ) cos Θ〉av

〈W̃12(θ, ϕ)〉av

, (53)

Ξ̃ =
〈W̃12(θ, ϕ)(1 + 2 cos θ)〉av

〈W̃12(θ, ϕ)〉av

. (54)



9

The temperature dependence of the electric and ther-
mal conductivities is fully determined by that of σ̃0 and
κ̃0, the sums in Eqs. (49) and (50) provide prefactors
which depend crucially on the angular dependence of
the scattering probabilities. The normalized Lorenz ratio
L/L0 is solely determined by the ratio of the two sums,
and therefore temperature-independent and in general
different from 1.

V. DISCUSSION

In the previous section we derived exact expressions for
the electric and thermal conductivities of compensated
metals in the presence of disorder and Fermi-liquid-type
interactions, Eqs. (42) and (43). Moreover, we obtained
simplified results for two limiting cases: the case where
intraband scattering dominates over interband collisions
and the opposite limit. We turn now to a discussion
of these results for systems where electron-electron col-
lisions are due to: (i) Hubbard-like interactions or (ii)
screened Coulomb interactions.

The exact formulas for the conductivities, Eqs. (42)
and (43), require knowledge of the angular dependence
of the interaction, which is not easily accessible in experi-
mental systems. By contrast, the conductivities obtained
by the RTA method (given by Eqs. (20), (24) and (25))
are fully specified by a few phenomenological parameters.
Thus, establishing the connection between the two ap-
proaches may provide a simple way to analyze and under-
stand experimental findings. It is important to note that
the Fermi-liquid integrals only retain contributions to the
leading order in temperature, T 2/ε2F. Consequently, for
the comparison we omit the subleading ambipolar con-
tribution to the thermal conductivity and Lorenz ratio in
the RTA approach.

We first analyze the case of Hubbard-like short-range
interactions that scatter uniformly over all Fermi-surface
angles. In Fig. 2, we plot the electric and thermal con-
ductivities found using the exact solution and the RTA
for a compensated metal in the presence of Hubbard-
like interactions. An important step in comparing the
solutions is to determine the scattering times that en-
ter the RTA as phenomenological parameters. Here, we
find the relaxation time for electron-impurity scattering,
τel, by matching the results for the electric conductivity
at T = 0, where interaction effects go to zero. In the
absence of disorder, the decay time of the electric cur-
rent, τE , is determined by interband scattering events
alone. Consequently, we fix this time by comparing the
RTA expression for the electric conductivity (20) to the
exact result obtained for the clean interband-scattering-
dominated regime in Sec. (IV B 2). Finally, to find the in-
traband relaxation time, we similarly fit the two solutions
for κ in the clean limit and in the absence of interband
collisions. As illustrated in Fig. 2, the two solutions for
the electric conductivity agree very well, but this is not
the case for the thermal conductivity. Alternatively, we
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FIG. 2: Transport coefficients in the presence of Hubbard-like
interactions as a function of temperature for different strength
of impurity scattering: The electric conductivity in units of
σ0 = N e2(τei,1/m1 + τei,2/m2) is showed in (a), and the
thermal conductivity in units of κ0 = (π2NT/3)(τei,1/m1 +
τei,2/m2) is plotted in (b). W used the following values for the
calculation of the exact expressions for the transport coeffi-
cients: u11 = 1.29, W̃11 = W̃22 = 1, W̃12/W̃11 = W̃21/W̃22 =
2, m2/m1 = 1.5, and τei,2/τei,1 = 10. The red, blue, and
black curves correspond to 1/εFτei,1 = 0.1, 0.01, 0.001, re-
spectively. The dotted lines indicate the solutions to the phe-
nomenological RTA approach, Eqs. (20), (24) and (25), by
matching the relaxation times as described in the main text.
The poor fit to κ illustrates the different effect that interband
scattering has on the electric and thermal transport (see dis-
cussion in the main text).

could determine both the intra- and interband relaxation
times using the expressions for the thermal conductivity.
Then, the RTA would only poorly fit the exact solution
for the electric conductivity.

The failure of the phenomenological solutions to match
both σ and κ using one set of relaxation times occurs be-
cause the RTA does not take into account that electron-
electron interactions affect the two conductivities differ-
ently. For example, forward scattering events are more
effective in suppressing the heat flow than relaxing the
charge current. This shortcoming can be easily mitigated
by introducing different inelastic scattering times into the
RTA expressions for the electric and thermal conductiv-
ities

σ =
N e2

m̃

(
1

τel
+

1

τE

)−1

, (55)

κ =
π2

3
NT

(
τ̃1
m1

+
τ̃2
m2

)
, (56)
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FIG. 3: Transport coefficients in the presence of Hubbard-like
interactions as a function of temperature for different strength
of impurity scattering: The parameters used for the plots are
identical to those in Fig. 2. Here, however, the dotted lines
indicate the solutions to the phenomenological RTA approach
with two independent interband-scattering times as given by
Eqs. (55) and (56). The ambipolar contribution has been
dropped for comparison. The Lorenz ratio L(T ) in units of
L0 = π2/(3e2) is also displayed.

with τel defined in Eq. (19) and

τ̃c =

(
1

τei,c
+

1

τ ccT,ee
+

m̃

mcτT

)−1

. (57)

As a result, the phenomenological expression for the
Lorenz ratio becomes

L
L0

=

(
1

τel
+

1

τE

)
m̃

(
τ̃1
m1

+
τ̃2
m2

)
. (58)

In Appendix D we provide a transparent example for the
necessity to distinguish τE and τT , the analysis of the
forward-scattering dominated regime with the ansatz of
constant φE and φT /ξ. The solutions obtained from this
ansatz take precisely the form of Eqs. (55) and (56).

As illustrated in Fig. 3, the modified RTA expressions
given above agree well with the exact solution and cap-
ture details such as the minimum of the Lorenz ratio
(and its position). The phenomenological parameters τel,

τE and τ ccT,ee are determined as prescribed above for the
case of a single interband relaxation time. To set the
value of τT , we match between Eq. (56) and the exact
solution found in Sec. (IV B 2) in the clean limit and in
the absence of intraband scattering. We give a detailed
description of this procedure in Appendix E. Interest-
ingly, in the solutions obtained from the RTA the elastic
and inelastic scattering rates are independent; they enter
the conductivity additively, unlike in the exact solution,
Eqs. (42) and (43). Nevertheless, (55) and (56) may often
provide a satisfactory approximation for any form of the
interaction. Equipped with the modified RTA solutions,
we are now ready to address the temperature dependence
of the Lorenz ratio in the presence of Hubbard-like and
screened Coulomb interactions.

A. Hubbard interaction

The exact solutions for the conductivities include an-
gular averages over the scattering amplitudes. Thus, they
considerably simplify for the Hubbard-like interactions.
Specifically, Eqs. (38) and (39) become

Λc,s =
3 + (m2

c̄/m
2
c)(W̃cc̄/W̃cc)

3[1 + (m2
c̄/m

2
c)(W̃cc̄/W̃cc)]

, (59)

Ξc,s =
2(mc̄/mc)(W̃cc̄/W̃cc)

3[1 + (m2
c̄/m

2
c)(W̃cc̄/W̃cc)]

. (60)

In addition, Eqs. (40) and (41) result in Λc,a = 1/3
and Ξc,a = 0. We use the above expression for the
calculation of the transport coefficients. In the clean
limit, the Lorenz ratio is independent of temperature
and it satisfies the following properties: (i) L becomes
independent of m2/m1 (ii) It approaches zero when the
strength of intraband interactions significantly exceeds
the interband one, W̃cc � W̃cc̄. (iii) In the opposite

limit, W̃cc � W̃cc̄, the Lorenz number approaches a
maximum value of L/L0 ≈ 0.930 (iv) In the maximally

symmetric case W̃11 = W̃22 = W̃12 = W̃21, we obtain
L/L0 ≈ 0.489 [23].

In Fig. 3 we show the electric conductivity, the ther-
mal conductivity, and the Lorenz ratio of a compen-
sated metal with Hubbard interactions for several val-
ues of the disorder scattering strength. As T → 0 the
inelastic scattering rates become small, and both the
electric and thermal conductivities attain their Drude
values, i.e., σ0 = N e2(τei,1/m1 + τei,2/m2) and κ0 =
(π2NT/3)(τei,1/m1 + τei,2/m2). Hence, L(T = 0) = L0

in agreement with the Wiedemann-Franz law [24]. As
the temperature increases, inelastic collisions become im-
portant, and both conductivities decrease. The range of
temperatures over which the conductivities exhibit the
largest drop is set by the ratios between the elastic and in-
elastic collision rates and it gets wider for larger electron-
impurity scattering. The drop in the thermal conductiv-
ity at T > 0 is stronger than for its electric counterpart.
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The difference between the temperature dependence of
σ(T ) and κ(T ) is due to the fact that interband collisions
are more effective at relaxing the heat current than the
electric current, τE/τT ≈ 2.15 (see appendix E), while
intraband collisions hardly affect the charge flow. Conse-
quently, at non-zero temperature, L(T ) becomes smaller
than L0. The Lorenz ratio saturates to its clean-limit
value [6] at temperatures where inelastic scattering is sig-
nificantly stronger than electron-impurity collisions. In
Fig. 3, we see that the decrease in L(T ) is non-monotonic
and all curves have a minimum. While the Lorenz ratio
at its minimum is independent of the disorder strength,
its position moves to higher temperatures for larger 1/τel.

To understand the origin of the minimum in L(T ), it is
instructive to examine the expressions for the conductiv-
ities found within the RTA method, Eqs. (55) and (56).
Both conductivities can be written as a sum of the con-
tributions from each band. For the electric conductivity,
however, both contributions depend only on global re-
laxation times, τel and τE . As a result, the slope of the
decreasing σ(T ) is set by a single parameter, the ratio
between the two relaxation times, τel/τE . By contrast,
the contribution to the thermal conductivity from each
band cannot be written in terms of the global relaxation
times, and the slope of κ(T ) depends on two independent
parameters. A minimum of the Lorenz ratio appears if
κ′(T )/κ(T ) changes from being larger than σ′(T )/σ(T )
at low T to being smaller at high T . Such a scenario can
occur in systems with unequal masses and/or impurity
scattering rates for the two bands. This is the case in all
three curves presented in Fig. 3.

To highlight the different role of intraband and inter-
band scattering on the Lorenz ratio, we plot the conduc-
tivities and L(T ) for different values of W̃cc̄ in Fig. 4. We
obtain that for the parameters chosen here, increasing
the strength of interband interactions has much stronger
effect on the temperature dependence of σ(T ) than on
κ(T ). This is expected as long as intraband collisions are
important, since then interband scattering determines
the thermal conductivity in combination with intraband
scattering, while interband scattering alone determines
the electric conductivity. Figure 4 (c) demonstrates that
a minimum in the Lorenz ratio is not universal within
the Fermi-liquid approximation.

The ambipolar contribution that was found within the
RTA solution for the thermal conductivity diverges as
T →∞. For T/εF � 1, this contribution is of the order
of κ0T

2/ε2F [see Eq. (23)]. Thus, the ambipolar contri-
bution is negligible as long as κ/κ0 is larger than T 2/ε2F .
For the parameters used in Fig. 3, the ambipolar contri-
bution becomes relevant only for temperatures exceed-
ing the minimum in the Lorenz ratio (see also Fig. 5).
In general, the ambipolar contribution, which is unique
for compensated metals, suggests that a minimum in the
Lorenz number should always be present, even in the ab-
sence of phonons.
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FIG. 4: Transport coefficients for Hubbard-type interactions
as a function of temperature for different strength of inter-
band scattering. The parameters used for the exact solu-
tions are: γei,1/εF = 0.01, γei,2/εF = 0.001, u11 = 1.29, and

W̃11 = W̃22. The black, blue and red curves correspond to
W̃12/W̃11 = W̃21/W̃22 = 0.1, 1, 10, respectively. We consider
bands of equal masses (solid line) and bands with different
masses m2/m1 = 1.5 (dashed lines). The dotted lines illus-
trate the RTA expressions for the transport coefficient (with
m1 = m2).

B. Screened Coulomb interaction

The discussion above focused on short-range inter-
actions that give rise to uniform scattering over the
Fermi surface. We now examine the opposite limit
of strongly angle-dependent scattering. Specifically,
we study the transport coefficients in the presence of
screened Coulomb interactions

U(k) =
1

ε0

4πe2

k2 + k2
TF

, (61)

where the Thomas-Fermi (TF) screening wave number
kTF is given by k2

TF = 4πe2[ν1(εF) + ν2(εF)]/ε0 =
4e2(m1 +m2)pF /(πε0), and ε0 is the dielectric constant.
The electron-electron collisions are dominated by forward
scattering in the limit of weak screening, kTF � pF,
and they become almost momentum/angle-independent
in the opposite limit kTF � pF . Strictly speaking the
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FIG. 5: Transport coefficients in the presence of Hubbard-like
interactions as a function of temperature for different strength
of impurity scattering. Parameters are chosen as in Fig. 3. In
contrast to Fig. 3, the results of the phenomenological RTA
approach (dotted lines), include the ambipolar contribution.

interaction given by Eq. (61) is valid only for kTF < pF .
Nevertheless, we use it for arbitrary kTF as a model in-
teraction to study the effect of changing the angle de-
pendence of the inelastic collisions on the transport co-
efficients and the Lorenz ratio.

To evaluate the electric and thermal conductivi-
ties, Eqs. (42) and (43), we insert Eq. (61) into
Eqs. (35)-(41). Parameterizing the momentum as k =
2pF sin(θ/2) cos(ϕ/2) and averaging over the angle yields

1

τout,c
=
π3

32

mc

m1

1 +m2
2/m

2
1

(1 +m2/m1)2

T 2

εF

× k̃TF
[

tan−1

(
1

k̃TF

)
+

k̃TF

1 + k̃2
TF

]
, (62)

Ξc,s =
2mc̄/mc

1 +m2
c̄/m

2
c

(1 + k̃2
TF ) tan−1(1/k̃TF )− k̃TF

(1 + k̃2
TF ) tan−1(1/k̃TF ) + k̃TF

k̃2
TF ,

(63)

Λc,a =
(1− 2k̃2

TF )(1 + k̃2
TF ) tan−1(1/k̃TF ) + k̃TF (1 + 2k̃2

TF )

(1 + k̃2
TF ) tan−1(1/k̃TF ) + k̃TF

,

(64)

and Ξc,a = 0. Here, we defined the dimensionless param-

eter k̃TF = kTF /(2pF).

An instructive limiting case arises in the clean limit
of the forward scattering regime, k̃TF � 1. There, the
leading contributions to the thermal and electric conduc-
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FIG. 6: Transport coefficients for the screened Coulomb in-
teraction as a function of temperature for different screening
wave numbers. Here, we set γei,1/εF = 0.01, γei,2/εF = 0.001
and m1 = m2. The black, blue, red colored curves correspond
to kTF /pF = 0.1, 0.4, 4, respectively. The dotted lines are
the RTA expressions that have been obtained by matching
scattering times in the clean forward scattering limit as ex-
plained in the main text.

tivities become (see Appendix E and Ref. [6])
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so that L/L0 = k2
TF /2p

2
F is temperature-independent.

To compare the exact solution for the transport coef-
ficients with the RTA conductivities, Eqs. (55) and (56),
we apply the matching procedure discussed above to ex-
tract the phenomenological scattering times. We find
that 1/τE ∝ k̃3

TF , 1/τT ∝ k̃TF and 1/τ ccT,ee ∝ k̃TF in

the limit of weak screening k̃TF � 1 (see Appendix E).
Figure 6 illustrates the temperature dependence of the
conductivities and the Lorenz ratio for different values
of k̃TF . For very weak screening (black and blue curves
with kTF /pF = 0.1 and kTF /pF = 0.4, respectively), the
inelastic interactions barely relax the electric current and
σ is almost independent of temperature. By contrast, κ
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FIG. 7: Transport coefficients for the screened Coulomb in-
teraction as a function of kTF for different temperatures. We
use here the same parameters as in Fig. 6. In all panels, black,
blue and red curves correspond to T/εF = 0.05, 0.1, 0.2, re-
spectively. The solid lines indicate the exact solution, while
the RTA results are given by the dotted lines. We found the
phenomenological parameters entering the RTA calculation
by taking the limit of small kTF . Thus, the dotted curves
start to strongly deviate from the solid lines as kTF /pF → 1.

is significantly suppressed with increasing temperature.
The difference between the temperature dependence of
the two transport coefficients is also reflected by the ra-
tio between the two relaxation times, τE/τT = 1/(2k̃2

TF ),

which can become large for small k̃TF . As a result of the
weak temperature dependence of σ(T ), the Lorenz ratio
acquires its temperature dependence solely from κ, and
does not exhibit a minimum. For strongly screened in-
teractions (red curves with k̃TF = 4), the conductivities
resemble those found in the previous subsection for the
Hubbard-like interactions. Without electron-impurity
scattering, the Lorenz ratio becomes smaller with in-
creasing screening length. Interestingly, this no longer
holds in the presence of disorder. As illustrated in Fig. 6
(c), L(T ) at low temperatures is suppressed with increas-
ing kTF . When electron-electron collisions dominate over
impurity scattering, the curves cross, and as expected for
the clean limit, the Lorenz ratio decreases with increas-
ing kTF . Finally, we note that the RTA approximation
works well for low kTF /pF , as expected. We do not in-
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FIG. 8: Lorenz ratio in the presence of screened Coulomb
interaction as a function of kTF for varying disorder scattering
strength. For all curves m1 = m2, T/εF = 0.05, and γei,1 =
γei,2. The black, gray, blue, purple, pink, red, and magenta
lines correspond to γei,c/εF = {1, 4, 8, 12, 16, 20, 24} × 10−4,
respectively. The dotted lines represent the RTA solutions in
the limit of small k̃TF .

clude here the RTA result for kTF /pF = 4 because it is
well outside the range of validity for the scattering times
found in Appendix E.

In Fig. 7, we show the dependence of the transport
coefficients on the inverse screening length, kTF , at fixed
temperature. As can be seen from panel (c), for each tem-
perature the minimal Lorenz ratio is obtained at different
values of kTF /pF . This minimum becomes more shallow
with growing temperature. As expected, the RTA solu-
tions (dashed lines) match the curves at low k̃TF , and

strongly deviate from the exact result as k̃TF approaches
unity.

For completeness, we present in Figs. 8 and 9 the
Lorenz ratio for different levels of disorder as functions
of kTF /pF and temperature, respectively. Disorder sig-
nificantly enhances the Lorenz ratio at low T , but be-
comes irrelevant at high T . For small k̃TF , we find a
good agreement between the RTA (dashed lines) and the
exact (solid lines) solutions, see Fig. 8 (b). Therefore, we
can use the RTA expression to estimate the the screen-
ing length for which the Lorenz ratio is minimal. This
is especially simple when the bands are symmetric, since
the RTA expression becomes

L
L0

=
1
τ + π4

24
T 2

εF
k̃3
TF

1
τ + π4

48
T 2

εF
k̃TF

. (67)

At small k̃TF , the denominator grows faster than the nu-
merator, while at larger k̃ these roles reverse. In between,
the minimum in L occurs.
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FIG. 9: Lorenz ratio in the presence of screened Coulomb
interaction as a function of temperature for varying disor-
der scattering strength. Here, we set m1 = m2, kTF /pF =
0.5, and γei,1 = γei,2. The black, gray, blue, purple,
pink, red, and magenta curves correspond to γei,c/εF =
(1, 4, 8, 12, 16, 20, 24)× 10−4, respectively.

VI. CONCLUSION

We studied the effect of both disorder and electron-
electron interactions on electric and thermal transport
in compensated metals by solving the Boltzmann kinetic
equation. The eigenfunction expansion method was used
to solve the Boltzmann equation within the Fermi-liquid
approximation and to find exact expressions for the con-
ductivities. In the limit T → 0, electron-electron collision
terms vanish and the electric and thermal conductivities
satisfy the Wiedemann-Franz law. As temperature is in-
creased, inelastic scattering becomes important and, as
long as phonons can be neglected, both conductivities
decrease. The electric conductivity is mainly affected by
interband collisions, the Baber mechanism, while both
intra- and interband collisions contribute to the suppres-
sion of the thermal conductivity with increasing tempera-
ture. As a result, the drop in κ(T ) is, in general, stronger
than for σ(T ), and the Lorenz ratio also reduces with in-
creasing temperature. Within the Fermi-liquid approxi-
mation and as long as phonon contributions can be ne-
glected, both conductivities are expected to go to zero as
1/T 2 at high temperatures where the electron-electron
scattering rates significantly exceed those of the inelas-
tic collisions. The Lorenz ratio, by contrast, saturates
to a non-zero value, 0 < L < L0. To gain more insight,
we also analyzed the kinetic equation in the relaxation-
time approximation, and found closed form solutions for
the transport coefficients in terms of the phenomenolog-
ical scattering rates, Eqs. (55) and (56). We developed a
scheme for calculating the scattering rates from the ex-
act expressions for the conductivities. We showed that
the transport coefficients calculated using the two meth-
ods agree over large range of temperatures. The trans-
parency and simplicity of the phenomenological approach
and its connection to the microscopic models, may prove
valuable for the interpretation of future transport exper-
iments in compensated metals.

Our main result, the exact formulas for the conductiv-
ities given by Eqs. (42) and (43), are expressed in terms
of averages of the inelastic collision probabilities over an-

gles on the Fermi surface. To illustrate the implications
of the angular averaging, we examined two types of in-
teractions: (i) the short-range Hubbard-like and (ii) the
long-range screened Coulomb. In particular, we stud-
ied the dependence of the Lorenz ratio on the screening
length. In agreement with the analysis of Refs. [4, 6],
we obtained that without disorder L becomes smaller
as the screening gets weaker. This is no longer valid in
the presence of impurities. As a result of both elastic
and inelastic collisions, the Lorenz ratio becomes a non-
monotonic function of the inverse screening length with
a minimum at finite kTF. In systems with asymmetric
bands, L(T ) can be also non-monotonic in temperature,
and go through a minimum at intermediate temperatures
even in the absence of phonons. This minimum is, how-
ever, not universal and it is highly sensitive to the prop-
erties of the bands as well as to the form and the strength
of the interactions.

The temperature dependence of our solution for the
Lorenz ratio is (qualitatively) consistent with the experi-
mental observations of Refs. [4, 5]. We derived the trans-
port coefficients only to the leading order in T/εF � 1,
i.e., in the low-temperature limit. Specifically, the lead-
ing contributions to the thermal conductivity and the
Lorenz ratio do not include the ambipolar effect, which
in the presence of disorder is O(κ0T

2/ε2F ). To the lead-
ing order, κ(T )/κ0 equals unity at T = 0 and reduces
to a smaller value at higher temperatures, while the
subleading ambipolar contribution grows with increas-
ing T . Thus, the latter can be neglected as long as
κ(T )/� κ0T

2/ε2F . This condition is valid near the min-
imum of the Lorenz ratio found [4] in WP2 near Tm ∼ 10
K. (The Fermi energies of the electron and hole pockets
in this material are on the order of 1000 K [25].) It was
recently shown [20] that the ambipolar effect can be small
even in clean systems as a result of a non-uniform charge
distribution accumulating near the system boundaries.
In the presence of disorder, a similar mechanism can
further reduce the already small ambipolar contribution.
Scattering by impurities was essential in our calculation
to capture the reduction of the Lorenz ratio with tem-
perature, as seen in experiments. In addition to the am-
bipolar effect, we also neglected corrections to the Lorenz
ratio due to phonons. These were found [4] to be small at
temperatures . Tm. At higher temperatures, electron-
phonon scattering and the ambipolar contribution to the
thermal conductivity can become significant [26].
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Appendix A: Derivation of the approximate form of the electron-electron collision integral, Eq. (32)

In this appendix, we derive the approximate form of the electron-electron collision integral presented in Eq. (31)
and (32) in the main text. The case c = c′ is a rather straightforward generalization of the single-band case discussed
in Ref. [10], here we focus our attention on c 6= c′. We study the case of a Fermi liquid in three dimensions
(d = 3) [27], adjusted to the presence of two bands in a compensated metal. Our starting point is Eq. (30). In
a first step, we introduce the energy ω transferred during electron-electron scattering with the help of the identity
δ(εc,p + εc′,q − εc,p′ − εc′,q′) =

∫∞
−∞ dωδ(ω − εc,p′ + εc,p)δ(ω − εc′,q + εc′,q′). This identity allows us to present the

collision integral in the following form

Icc
′

ee {φ} = − 1

T

∑
α∈{E,T}

∫
q,p′,q′

∫ ∞
−∞

dωW cc′

pq,p′q′δ(ω − εc,p′ + εc,p)δ(ω − εc′,q + εc′,q′)δ(p + q− p′ − q′)

× nF (ξc,p)nF (ξc′,q)[1− nF (ξc,p + ω)][1− nF (ξc′,q − ω)]

× [φαc (ξc,p)vc,p + φαc′(ξc′,q)vc′,q − φαc (ξc,p + ω)vc,p′ − φαc′(ξc′,q − ω)vc′,q′ ] · Fα. (A1)

In order to make progress, it is convenient to separate the angular part of the momentum integrals as
∫
p′ =∫

dn̂p′
∫∞
−εF dξ1,p

′ν1(ε1,p′) or
∫
p′ =

∫
dn̂p′

∫∆−εF
−∞ dξ2,p′ν2(ε2,p′). Here, we defined the unit vector n̂p′ = p′/|p′|,

normalized the angular integrals as
∫
dn̂p′ = 1, and introduced the density of states for the two bands as

ν1(ε1,p) = (2m1)3/2√ε1,p/(4π2) = m1p/(2π
2) and ν2(ε2,p) = (2m2)3/2

√
∆− ε2,p/(4π2) = m2p/(2π

2). Now, the
delta functions containing ω can be used to perform the integrations in ξc,p′ and ξc′,q′ .

Our aim is to extract the leading dependence on T and ξc,p. With this goal in mind, the density of states, velocities
and interaction matrix element may be evaluated on the Fermi surface, and we can approximate δ(p + q−p′−q′) ≈
p−3
F δ(n̂p + n̂q − n̂p′ − n̂q′). The result of these transformations is

Icc
′

ee {φ} = −νc(εF )[νc′(εF)]2

T

∑
α∈{E,T}

FαpF
p3
F

∫ ∞
−∞

dξc′,q

∫ ∞
−∞

dωnF (ξc,p)nF (ξc′,q)

× [1− nF (ξc,p + ω)][1− nF (ξc′,q − ω)]Ψα(n̂p; ξc,p, ξc′,q, ω) · n̂Fα , (A2)

where we defined Fα = Fαn̂Fα , and the lower (upper) integration limit in ξ1,q (ξ2,q) was extended to ∓∞. We also
introduced the angular integral

Ψα(n̂p; ξc,p, ξc′,q, ω) =

∫
dn̂qdn̂p′dn̂q′W̃ cc′

n̂pn̂qn̂p′ n̂q′ δ(n̂p + n̂q − n̂p′ − n̂q′)

× [χcφ
α
c (ξc,p)n̂p + χc′φ

α
c′(ξc′,q)n̂q − χcφαc (ξc,p + ω)n̂p′ − χc′φαc′(ξc′,q − ω)n̂q′ ], (A3)

where χ1 = 1/m1, χ2 = −1/m2, and W̃ cc′

n̂pn̂qn̂p′ n̂q′ = W̃cc′(θ, ϕ) is obtained from W by fixing all incoming and outgoing

momenta to pF . We use two angles for parameterizing the matrix element W̃cc′ : the angle θ between the two incoming
momenta p and q, and the angle ϕ between the planes spanned by p and q and by p′ and q′, respectively. With
these conventions, the momentum transfer during collisions can be expressed as k = |p−p′| = 2pF sin(θ/2) cos(ϕ/2).

For the integration in n̂p′ and n̂q′ we use a coordinate system in which the z axis aligned with n̂p + n̂q = n̂p′ + n̂q′ ,
and employ the relation

δ(n̂p + n̂q − n̂p′ − n̂q′) =
δ(θp′ − θq′)δ(ϕq′ − ϕp′ − π)δ(θp′ − θ/2)

2 cos(θ/2) sin2(θ/2)
. (A4)

Next, we set ϕp′ = ϕ and choose new coordinates so that the z-axis points along n̂p and θq = θ. The unit vectors
n̂q, n̂p′ and n̂q′ can now be averaged in ϕq. Denoting n̄k =

∫
d(ϕq/2π)n̂k, the angular integral takes the form

Ψα(n̂p; ξc,p, ξc′,q, ω) =
π

(4π)3

∫ π

0

sin θdθ

cos(θ/2)

∫ 2π

0

dϕW̃cc′(θ, ϕ)

× [χcφ
α
c (ξc,p)n̄p + χc′φ

α
c′(ξc′,q)n̄q − χcφαc (ξc,p + ω)n̄p′ − χc′φαc′(ξc′,q − ω)n̄q′ ], (A5)

with n̄p = n̂p, n̄q = cos θ n̂p, and n̄p′/q′ = [cos2(θ/2)∓ cosϕ sin2(θ/2)]n̂p.
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Turning our attention to the remaining integrations in ω and ξq, a further simplification may be achieved with the
help of the identity∫ ∞

−∞
dξc′,q

∫ ∞
−∞

dωnF (ξc′,q)[1− nF (ξc,p + ω)][1− nF (ξc′,q − ω)]φα(xj) =

∫
dωωnB(ω)[1− nF (ξc,p + ω)]φα(yj),

(A6)

for (x1, x2, x3, x4) = (ξc,p, ξc′,q, ξc,p +ω, ξc′,q−ω) and (y1, y2, y3, y4) = (ξc,p,−ξc,p−ω, ξc,p +ω, ξc,p +ω). This result
was obtained with the help of the two relations nF (−ξ) = 1 − nF (ξ) and

∫
dξnF (ξ)[1 − nF (ξ − ω)] = ωnB(ω) and

by relabeling the integration variables whenever convenient. After combining Eq. (A2) with Eqs. (A5) and (A6), one
arrives at the form of the collision integral stated in Eq. (32) in the main text.

Appendix B: Solving the Boltzmann equation in the Fermi-liquid approximation

In this appendix, we describe how the coupled set of linearized Boltzmann equations in (4) can be solved when the
electron-electron collision integrals are treated in the Fermi-liquid approximation. Presenting the non-equilibrium part
of the distribution function δfc,p in the form stated in connection with Eq. (30), and the electron-electron collision
integral as in Eq. (34), one can present the the linearized Boltzmann equation in the form

(
1

βξc,p

)
=

1

τei,c

(
φEc,s(ξc,p)
φTc,a(ξc,p)

)
+

4

π2T 2

1

τout,c

∫ ∞
−∞

dωK(ω, ξc,p)

(
φEc,s(ξc,p)− Λc,sφ

E
c,s(ξc,p + ω) + Ξc,sφ

E
c̄,s(ξc,p + ω)

φTc,a(ξc,p)− Λc,aφ
T
c,a(ξc,p + ω) + Ξc,aφ

T
c̄,a(ξc,p + ω)

)
,

(B1)

whereas φEc,a and φTc,s vanish. Eq. (B1) can be brought to a standard form [15, 17]:

X(x) = (x2 + π2ε2
c)Qc(x)−

∫ ∞
−∞

dy(y − x) csch

(
y − x

2

)[
McQc(y)−WcQc̄(y)

]
. (B2)

Here, we define the two-component functions

X(x) =

(
1
x

)
sech

(
x

2

)
, (B3)

Qc(x) =

(
Q̂Ec,s(x)

Q̂Tc,a(x)

)
=

2

π2

1

τout,c

(
φ̂Ec,s(x)

φ̂Tc,a(x)

)
sech

(
x

2

)
, (B4)

with dimensionless variables x = βξc,p and y = βω, and the diagonal matrices Mc = diag(Λc,s,Λc,a) and Wc =

(τout,c̄/τout,c)diag(Ξc,s,Ξc,a), and introduce the parameter εc =
√

1 + τout,c/2τei,c. We also defined Ŷ (x) = Y (x/β) =
Y (ξp) for Y ∈ {Q,φ}. The integral equation (B2) can be converted to an inhomogeneous second order differential

equation with the help of the Fourier transformation Q̃c(x̃) =
∫∞
−∞ dxeix̃xQc(x):[

I
d2

dx̃2
+ π2

{
2 sech2(πx̃)Mc − ε2

cI
}]

Q̃c(x̃)− 2π2sech2(πx̃)WcQ̃c̄(x̃) = −X̃(x̃), (B5)

where X̃(x̃) = 2π sech(πx̃)(1, iπ tanh(πx̃))t, and I is the identity matrix.
We first consider the homogeneous part of the equation and temporarily neglect the influence of interband collisions,

Wc = X̃ = 0 in Eq. (B5). Following the solution strategy proposed in Refs. [15, 16], we equip the homogeneous equation
with an additional parameter λ as [

d2

dx̃2
+ π2

{
2λ sech2(πx̃)− ε2

c

}]
Q̃c(x̃) = 0. (B6)

This equation is similar in structure to a time-independent Schrödinger equation in a sech2x potential [28].
For a particular choice of eigenvalues, λcn(εc) = (n+ εc)(n+ εc + 1)/2, Eq. (B6) is solved by the eigenfunctions

Q̃cn(x̃) = [sech(πx̃)]εc 2F1[−n, n+ 2εc + 1, εc + 1, (1− tanh(πx̃))/2] (B7)
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for n ∈ {0,N}. Here, 2F1 is the hypergeometric function.
The eigenfunctions are even(odd)-symmetric in x̃ for even (odd) integer n, and satisfy the orthogonal relation∫ ∞

−∞
dx̃ sech2(πx̃)[Q̃cm(x̃)]∗Q̃cn(x̃) =

n!22εc+1[Γ(εc + 1)]2δmn
π(2n+ 2εc + 1)Γ(n+ 2εc + 1)

, (B8)

where Γ(z) is the Gamma function, and δmn is the Kronecker delta.

We now derive the solution for Eq. (B5). Let us expand Q̃c(x̃) in eigenfunctions basis with fixed index c′ =1 or 2

Q̃Ec,s(x̃) =
∞∑
n=0

CEcc′,2nQ̃c′,2n(x̃), (B9)

Q̃Tc,a(x̃) =
∞∑
n=0

CTcc′,2n+1Q̃c′,2n+1(x̃), (B10)

with the expansion coefficients Cαcc′,n. Plugging these series expansions in Eq. (B5), and using Eqs. (B6) and (B8),
we derive coupled algebraic equations for Cαcn(

λ1,2n − Λ1,s Ξ1,sτout,2/τout,1
Ξ2,sτout,1/τout,2 λ2,2n − Λ2,s

)(
CE1c′,2n
CE2c′,2n

)
=

(
1
1

)
DE
c′,2n, (B11)(

λ1,2n+1 − Λ1,a Ξ1,aτout,2/τout,1
Ξ2,aτout,1/τout,2 λ2,2n+1 − Λ2,a

)(
CT1c′,2n+1

CT2c′,2n+1

)
=

(
1
1

)
DT
c′,2n+1, (B12)

Here, we defined

DE
c,2n =

∫∞
−∞ dx̃ sech(πx̃)[Q̃c,2n(x̃)]∗

π
∫∞
−∞ dx̃ sech2(πx̃)|Q̃c,2n(x̃)|2

=
(2n+ εc + 1/2)Γ(n+ εc + 1/2)Γ(n+ (εc + 1)/2)

πΓ(n+ εc/2 + 1)Γ(n+ 1)Γ(εc + 1)
, (B13)

DT
c,2n+1 =

i
∫∞
−∞ dx̃ sech(πx̃)tanh(πx̃)[Q̃c,2n+1(x̃)]∗∫∞
−∞ dx̃ sech2(πx̃)|Q̃c,2n+1(x̃)|2

=
i(2n+ εc + 3/2)Γ(n+ εc + 3/2)Γ(n+ (εc + 1)/2)

Γ(n+ εc/2 + 2)Γ(n+ 1)Γ(εc + 1)
. (B14)

After performing the matrix inversion in Eqs. (B11) and (B12), we find the expansion coefficients

CEcc,2n =
(λc̄,2n − Λc̄,s − Ξc,sτout,c̄/τout,c)D

E
c,2n

(λc,2n − Λc,s)(λc̄,2n − Λc̄,s)− Ξc,sΞc̄,s
, (B15)

CTcc,2n+1 =
(λc̄,2n+1 − Λc̄,a − Ξc,aτout,c̄/τout,c)D

T
c,2n+1

(λc,2n+1 − Λc,a)(λc̄,2n+1 − Λc̄,a)− Ξc,aΞc̄,a
. (B16)

In the clean limit of εc = 1, the coefficients are reduced to a form consistent with Ref. [6].

Appendix C: Conductivities

In view of Eq. (18), the electric and thermal conductivities can be expressed in terms of the functions Q̂Ec,s(x) and

Q̂Tc,a(x) as (
LEE
LTT

)
=
π2N

2

∑
c∈{1,2}

τout,c
mc

∫ ∞
−∞

dx
∂nF (x)

∂x
cosh

(
x

2

)(
−e2Q̂Ec,s(x)

−TxQ̂Tc,a(x)

)
. (C1)

For the purpose of this calculation, it is then convenient to transform to the conjugate variable x̃,(
LEE
LTT

)
=
π2N

8

∑
c∈{1,2}

τout,c
mc

∫ ∞
−∞

dx̃ sech(πx̃)

(
e2Q̃Ec,s(x̃)

−iπT tanh(πx̃)Q̃Tc,a(x̃)

)
. (C2)

Inserting Eq. (B9) in Eq. (C2), one obtains a series expansion for the electric conductivity σ ≡ LEE ,

σ =
π2

8
N e2

∑
c∈{1,2}

τout,c
mc

∞∑
n=0

CEcc,2n

∫ ∞
−∞

dx̃ sech(πx̃)Q̃c,2n(x̃). (C3)
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For the thermal conductivity, we insert Eq. (B10) in Eq. (C2) and find κ ≈ LTT as

κ = −iπ
3

8
NT

∑
c∈{1,2}

τout,c
mc

∞∑
n=0

CTcc,2n+1

∫ ∞
−∞

dx̃ sech(πx̃)tanh(πx̃)Q̃c,2n+1(x̃). (C4)

Appendix D: Ansatz of constant φEc and φTc /ξc,p

Here we discuss, how one may directly obtain elec-
tric and thermal conductivities in the form of Eqs. (55)
and (56) from the coupled kinetic equations (4), under
certain simplifying assumptions. The goal here is to fur-
ther motivate the phenomenological expressions, in par-
ticular the ansatz of unequal τE and τT . To this end,
we analyze the forward-scattering dominated regime as
an instructive example. We assume that typical trans-
ferred momenta k during collisions are small, k � pF .
This is relevant, for example, for the statically screened
Coulomb interaction, when the Thomas-Fermi screening
wave number kTF fulfills kTF � pF . It has been argued
[6, 29] that the ansatz of a ξ-independent φE is well suited
for the forward scattering limit, because “vertical” relax-
ation to the Fermi surface is the fastest process. One
may expect that in a disordered compensated metal this
ansatz can work particularly well, since in the absence
of interactions, when impurities provide the only scatter-
ing mechanism, the Boltzmann equation is solved by a
constant φEc = τei,c.

For the electric conductivity, assuming a constant φE ,
the two coupled Boltzmann equations in the forward scat-
tering dominant regime can be simplified considerably,

evc,p ·E
∂nF (ξc,p)

∂ξc,p
(D1)

=evc,p ·E
∂nF (ξc,p)

∂ξc,p

[
φEc
τei,c

+mc

(
φE1
m1

+
φE2
m2

)
Γcc̄p

]
,

with

Γcc̄p =
mcm

2
c̄

29π7p3
[ξ2
c,p + (πT )2]

∫
dkk2W cc̄(k), (D2)

W 12 = W 21 and m1Γ12
p = m2Γ21

p . As expected, the
intraband collision integral does not give a contribution
to this equation.

Eq. (D1) does not have a solution for a constant φE ,
since Γcc̄p is momentum-dependent. One may think of
fixing Γcc̄p to the Fermi surface, but this step would com-

pletely neglect the influence of the ξ2 term in Eq. (D2),
which tends to increase the scattering rate. Here, we
will follow an alternative approach [6, 30, 31], multiply
Eq. (D1) by vc,p and integrate in p. As a result, a new
momentum-independent scattering rate 1/τ cc̄E,ee = 4

3Γcc̄pF
appears, and the equation for φEc reads( m1

τei,1
+ m1

τ12
E,ee

m1

τ12
E,ee

m2

τ21
E,ee

m2

τei,2
+ m2

τ21
E,ee

)(
φE1
m1

φE2
m2

)
=

(
1
1

)
. (D3)

This equation is structurally similar to Eq. (14) (lim-
ited to the case of an applied electric field). After
solving Eq. (D3) the conductivity can be found with
the help of Eq. (18). Defining τE through the relation
mcΓ

cc̄ = m̃/τE , and τel as in (19), one obtains the elec-
tric conductivity in the form of Eq. (55).

For the calculation of the thermal conductivity we use
the ansatz φTc (ξc,p) = ϕTc ξc,p/T with constant ϕTc . With
this ansatz, one obtains two decoupled equations for ϕT1
and ϕT2 ,

ξc,pvc,p · ∇T
∂nF (ξc,p)

∂ξc,p
(D4)

=ϕTc ξc,pvc,p · ∇T
∂nF (ξc,p)

∂ξc,p

[
1

τc,ei
+Rccp +Rcc̄p

]
,

where

Rcc
′

p =
1

3

mcm
2
c′

27π7p
[ξ2
c,p + (πT )2]

∫
dkW cc′(k). (D5)

The key difference in the expression for the rate R com-
pared to Γ is the lack of the factor k2 under the integral
[6]. Small-k scattering processes are much less effective
for the electric conductivity compared to the thermal
conducticity. In analogy to the electric field case, we
multiply Eq. (D4) by ξc,pvc,p∇T , and integrate over mo-
menta. We find that the relevant temperature-dependent
scattering rate becomes 1/τ cc

′

T,ee = 12
5 R

cc′

pF [32]. In view of

the relation m1/τ
12
T,ee = m2/τ

21
T,ee, and motivated by the

results obtained for the RTA in Sec. III, we define a new
time scale τT by setting m̃/τT = mc/τ

cc̄
T,ee. This leads to

ϕTc = τ̃c [compare Eq. (57)] and the thermal conductivity
takes the form of Eq. (56).

Relations analogous to (55) and (56) have previously
been obtained in Ref. [6] for the clean case. While
the result for the electric conductivity is consistent with
Eq. (65) when applied to the screened Coulomb inter-
action, the result for the thermal conductivity obtained
with the ansatz of constant ϕTc differs from Eq. (66)
as it predicts a prefactor 10/(3π2) compared to 4/π2 in
Eq. (65), previously noted in Ref. [6]. This makes obvious
the necessity for a nonperturbative solution for ϕTc , even
after restricting considerations to the forward scattering
regime and clean systems. Despite this shortcoming, the
considerations presented in this appendix clearly demon-
strate the importance of introducing two different time
scales, τE and τT , instead of the single scale τ considered
in Sec. III.
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Appendix E: Fixing τee - Boundary condition in the
clean limit

The relation between τee and τout can be fixed by us-
ing the boundary condition for both electric and thermal
conductivities in the clean limit.

The electric and thermal conductivities in the RTA in
the clean limit read as

σ =
N e2τE
m̃

, (E1)

κ =
π2

3
NT

∑
c∈{1,2}

τ̃ cT,ee
mc

, (E2)

where we defined 1/τ̃ cT,ee = 1/τ ccT,ee+m̃/(mcτT ). In order

to arrive at Eq. (E2), we approximated 〈〈ξ2
c,p〉〉 ≈ π2T 2/3

and 〈〈ξc,p〉〉 ≈ π2T 2/(3εF ) in Eq. (23) for T � εF and
consistently neglected the small quantity 〈〈ξc,p〉〉2 com-
pared to 〈〈ξ2

c,p〉〉.

1. Hubbard interaction

For the Fermi-liquid solution Eq. (42), we take the
clean limit, and additionally neglect intraband scatter-
ing, since we expect its influence on the electric conduc-
tivity to be small. We can use Eq. (49) and perform

the summation numerically for Λ̃ = 1/3. The result is
σ ≈ Aσσ̃0 with Aσ = 0.632 and σ̃0 = N e2εF /(mcucc̄T

2).
Comparing this result with Eq. (E1), we obtain

1

τE
=
mc

m̃

ucc̄
Aσ

T 2

εF
(E3)

A similar strategy can be used for the thermal con-
ductivity. The Fermi-liquid solution Eq. (43) is approxi-
mated by

κ ≈ π2

8
NTAκ

∑
c∈{1,2}

τout,c
mc

, (E4)

where we define

Aκ =
3

8

∞∑
n=0

4n+ 5

(n+ 1)(2n+ 3)[(n+ 1)(2n+ 3)− 1/3]

≈ 0.294. (E5)

If we compare Eqs. (E2) and (E4) term by term, we
can find the relations

1

τ ccT,ee
=
ucc
Aκ

T 2

εF
, (E6)

1

τT
=
mc

m̃

ucc̄
Aκ

T 2

εF
. (E7)

Comparing Eqs. (E3) with (E7), we find τT
−1/τE

−1 ≈
2.15. Interband scattering is more effective for thermal
transport than for electric transport.

2. Screened Coulomb interaction

For the screened Coulomb interaction, we follow the
same strategy. We restrict our attention to the forward
scattering limit, for which simple transparent results can
be derived.

For the electric conductivity, it is important to note
that in the low-temperature limit it is sufficient to
consider interband scattering only [this corresponds to
neglecting the difference φEc,s(ξc,p) − φEc,s(ξc,p + ω) in
Eq. (31), which gives contribution that is subleading in
temperature. These terms were kept for the general
derivation in order to treat electric and thermal con-
ductivities analogously]. With this insight, we can use
Eq. (49) for the calculation of the electric conductivity.
The most divergent contribution in the forward scatter-
ing limit originates from the n = 0 term in the sum, for
which we can further approximate Λ̃ ≈ 1 − 2k̃2

TF . For
the purpose of later reference, we note that the electric
conductivity can be written as

σ =
3N e2

32k̃2
TF

∑
c∈{1,2}

τout,c
mc

, (E8)

1

τout,c
=
π4T 2

25

mcm
2
c̄

(m1 +m2)2

k̃TF
p2
F

. (E9)

For the sake of consistency, only the interband contribu-
tion to 1/τout,c has been considered.

For the thermal conductivity in the forward scattering
limit, both interband and intraband scattering contribu-
tions need to be accounted for. Here, it is sufficient to
approximate Λc,a ≈ 1. Using the relation

∞∑
n=0

4n+ 5

(n+ 1)(2n+ 3)[(n+ 1)(2n+ 3)− 1]
= 1, (E10)

one finds the result

κ =
π2NT

8

∑
c∈{1,2}

τout,c
mc

(E11)

1

τout,c
=
π4T 2

25
mc

m2
c +m2

c̄

(mc +mc̄)2

k̃TF
p2
F

. (E12)

In the last formula, the contribution proportional to m3
c

(mcm
2
c̄) originates from intraband (interband) collisions.

By comparing the results (E8) to the RTA result (E1)
one finds

1

τE
=
π4

12

m2

m1 +m2
k̃3
TF

T 2

εF
(E13)

Similarly, by comparing (E11) to the RTA result (E2),
one finds

1

τ cc
′

T,ee

=
π4

24

mcm
2
c′

m1(m1 +m2)2
k̃TF

T 2

εF
. (E14)
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The latter expression results in

1

τT
=
π4

24

m2

m1 +m2
k̃TF

T 2

εF
, (E15)

so that τ−1
T /τ−1

E = 1/(2k̃2
TF )� 1.
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[4] A. Jaoui, B. Fauqué, C. W. Rischau, A. Subedi, C. Fu,
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