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The non-linear sigma model is a well-established theoretical tool for studies of transport and ther-
modynamics in disordered electronic systems. The conventional sigma model approach for interact-
ing systems does not account for particle-hole asymmetry. It is therefore not suited for studying
quantities that are sensitive to this effect such as the thermoelectric transport coefficient. Here,
we derive a minimal extension of the Keldysh non-linear sigma model tailored for two-dimensional
interacting systems. We argue that this model can be used to systematically study the combined
effect of interactions and disorder on thermoelectric transport. As a first step in this direction, we
use the model to analyze the structure of the heat density-density correlation function and calculate
interaction corrections to its static part. The calculation of interaction corrections to the dynamical
part of the correlation function and the thermoelectric transport coefficient is left for future work.

I. INTRODUCTION

The nonlinear sigma model (NLσM) formalism is a
field theoretical approach to the description of diffusive
electron dynamics. The NLσM for interacting disor-
dered electron systems was introduced by Finkel’stein [1],
building upon earlier work on non-interacting systems [2,
3]. The formalism has since been used for numerous the-
oretical studies [4–22]. The Finkel’stein model contains
a small number of parameters: the diffusion, frequency
and interaction constants. These parameters characterize
the diffusive motion of electrons and are closely related to
transport coefficients and thermodynamic quantities such
as the the conductivity, spin susceptibility or the specific
heat [1, 23, 24]. At low temperatures, these quantities
acquire logarithmic corrections in two-dimensional sys-
tems [4, 6, 25–28], which can be computed efficiently by
means of a renormalization group (RG) analysis [1, 29–
31].

In recent years, it has become clear that unlike for the
electric conductivity, not all logarithmic corrections to
the thermal conductivity are of the RG type. For a thor-
ough analysis of this problem, the NLσM formalism was
generalized to thermal transport studies in Refs. [17–19].
These studies confirmed the results of a diagrammatic
RG analysis [30], and also verified the existence of addi-
tional logarithmic corrections to the thermal conductiv-
ity [32–36]. The latter corrections appear for systems
with long-range Coulomb interactions and arise from
electronic energies that are lower than those relevant for
the RG corrections. In Ref. [20], the RG results for ther-
mal transport were be merged with the corrections orig-
inating from low energies. This step was crucial for find-
ing the thermal conductivity at low temperatures and
for analyzing the resulting violation of the Wiedemann-
Franz law. In view of these developments, it would be
desirable to adapt the NLσM formalism to the analysis
of thermoelectric transport phenomena as well. Ther-
moelectric transport, unlike electric and thermal trans-
port, is very sensitive to deviations from particle-hole
symmetry. Indeed, in a perfectly particle-hole symmet-

ric system, the thermoelectric transport coefficient van-
ishes. As a consequence, theoretical studies of this coeffi-
cient require a higher accuracy compared to electric and
thermal transport, and the conventional NLσM [1, 18] is
not suited for this purpose. In order to overcome this
limitation, we introduce here a minimal extension of the
conventional Finkel’stein model. The model is specifi-
cally tailored for two-dimensional systems with quadratic
dispersion. We argue that this model can, for example,
be used for a comprehensive study of logarithmic cor-
rections to the thermoelectric transport coefficient in the
two-dimensional disordered electron gas. The general-
ized NLσM reflects the particle-hole asymmetry of the
underlying microscopic model by accounting for energy-
dependent deviations of the electron velocity from the
Fermi velocity. Specifically, the non-constancy of the ve-
locity manifests itself in the form of a frequency depen-
dence of the diffusion coefficient that is absent in the con-
ventional NLσM approach. We find that the generalized
model can be obtained from the conventional Finkel’stein
model by replacing the Q̂ field by Q̂+ 1

4iD
′
ε(∇Q̂)2, where

D′ε is the derivative of the diffusion coefficient with re-
spect to frequency.

We include two types of source fields into the deriva-
tion of the generalized NLσM action: a scalar poten-
tial coupling to the density and a gravitational poten-
tial coupling to the heat density. These source fields
can be used for obtaining heat and charge densities and
the heat density-density correlation function from the
NLσM. Knowledge of this correlation function is suffi-
cient for finding the thermoelectric transport coefficient
[31]. For the sake of simplicity, we consider a model with
Fermi-liquid type short range interactions. The resulting
NLσM is a generalization of the model derived for the
calculation of the heat density-heat density correlation
function in Refs. [17, 18]. In analogy to these works, we
employ the Keldysh real-time formalism [13, 37–39]. We
analyze the structure of the heat density-density corre-
lation function in the absence of interaction corrections
with the help of the generalized NLσM and make contact
with the result obtained from conventional Boltzmann
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transport theory [40]. As a first application to the calcu-
lation of interaction corrections, we study the static part
of the heat density-density correlation function. Since the
generalized NLσM in the presence of source fields has a
rather non-trivial structure, we perform the calculation
in two different ways, thereby testing different terms in
the model. We demonstrate that both routes lead to the
same results. The results are also consistent with the
diagrammatic analysis of Ref. [31]. Unlike the density
of states in the clean case, which is constant, the disor-
der averaged density of states in two-dimensional systems
has a weak energy dependence. In order to explore the
implications of this observation we study how the result
for the heat density-density correlation function in the
ladder approximation is modified when this energy de-
pendence is taken into account. We argue, that a further
generalization of the NLσM that includes a non-constant
density of states is not required for studies of the leading
interaction corrections in two-dimensional systems.

This paper is structured as follows. In Sec. II, we dis-
cuss the structure of the heat density-density correlation
function in the ladder approximation. We analyze the
role of the frequency dependence of the diffusion coef-
ficient and of the density of states. In Sec. III, we in-
troduce the generalized NLσM with particle-hole asym-
metry and source fields, discuss its symmetry properties,
and use this formalism to reproduce the ladder approxi-
mation for the heat density-density correlation function
in the constant density of states approximation. Sec. IV
is devoted to the calculation of interaction corrections
to the static part of the heat density-density correlation
function. In Sec. V, we present the derivation of the gen-
eralized Keldysh NLσM introduced in Sec. III. We first
restrict ourselves to non-interacting systems. This allows
us to stress the key points in a simplified set-up. We then
generalize the derivation to include electron-electron in-
teractions as well as source fields. In Sec. VI, we address
the issue of the weak energy dependence of the disorder-
averaged density of states. We conclude in Sec. VII.

II. THE HEAT DENSITY-DENSITY
CORRELATION FUNCTION

A. General structure

In linear response, the thermoelectric transport coeffi-
cient can be obtained from the heat current-current cor-
relation function. An alternative route proceeds via the
heat density-density correlation function. Here, we will
make use of the second possibility and develop a formal-
ism that allows us to study to the retarded heat density-
density correlation function

χkn(x1, x2) = −iθ(t1 − t2)〈[k̂(x1), n̂(x2)]〉T , (1)

as well as the closely related density-heat density correla-

tion function χnk(x1, x2) = −iθ(t1− t2)〈[n̂(x1), k̂(x2)]〉T .

In Eq. (1), k̂ = ĥ−µn̂ is the heat density operator, where
µ is the chemical potential, n̂ is the density operator,
x = (r, t) comprises spatial coordinates r and time t, and
the angular brackets denote thermal averaging. As usual,
the averaging over disorder configurations establishes
translational invariance: 〈χkn(x1, x2)〉dis = χkn(x1−x2).
After a Fourier transformation, the correlation function
is expected to take the following form in the diffusive
limit [31]

χkn(q, ω) =
Dnq2Dkq

2χstkn + iLq2ω

(Dnq2 − iω)(Dkq2 − iω)
. (2)

Here, Dn and Dk are the diffusion coefficients for charge
and heat transport. These coefficients also enter the heat
density-heat density correlation function, χkk(q, ω) =
−TcDkq

2/(Dkq
2 − iω), where c is the specific heat,

and the density-density correlation function χnn(q, ω) =
−∂µnDnq2/(Dnq2 − iω). In Eq. (2), L is the thermo-
electric transport coefficient. This coefficient is related
to the Seebeck coefficient S as S = eL/(σT ), where e is
the charge of the electron and σ is the electric conduc-
tivity. The correlation function is very sensitive to the
order of the two limits q→ 0 and ω → 0,

χkn(q = 0, ω → 0) = 0 (3)

χkn(q→ 0, ω = 0) ≡ χstkn = −T∂T 〈n̂〉T . (4)

Eq. (3) reflects the conservation laws of energy and par-
ticle number, while Eq. (4) relates the static part of the
correlation function to a thermodynamic susceptibility.
When k and n are both even under time reversal, χkn and
χnk are closely related, χkn(r, r′, ω) = χnk(r′, r, ω) [41].
As a consequence, the equality χkn(q, ω) = χnk(q, ω)
holds in the diffusive limit.

B. Ladder approximation

For the sake of clarity, we restrict our study to a
model Hamiltonian with short-range interactions, as well
as quadratic dispersion and a white noise disorder poten-
tial (for details, see Sec. V A). Interactions are character-
ized by the Fermi liquid parameters F ρ,σ0 for the singlet
and triplet channels. In this section, we discuss the heat
density-density correlation function χkn in the ladder
approximation. In this approximation, interaction cor-
rections resulting from loop integrations over small mo-
menta and frequencies of diffusion modes are neglected.
The function χnk can be treated in analogy. It is useful
to present χkn as the sum of static and dynamical parts
as

χkn(q, ω) = χstkn + χdynkn (q, ω), (5)

where the dynamical part is denoted as χdynkn (q, ω). In
the absence of interaction corrections, the static part of
the correlation function is given as

χst,0kn = −z0
1T∂Tn0 = −z0

1Tc
′
0,ε. (6)
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FIG. 1: Ladder diagrams contributing to χdyn,0kn,1 (q, ω). The

interaction amplitude Γ0
ρ is related to the Fermi-liquid pa-

rameter F ρ0 as Γ0
ρ = F ρ0 /(1 + F ρ0 ). The scalar potential ϕ

and gravitational potential η, formally introduced in Sec. V C,
are source fields coupling to the density and heat density, re-
spectively. The ladders of dotted (impurity) lines represent
diffusons.

FIG. 2: Ladder diagrams contributing to χdyn,0kn,2 (q, ω).

In this relation, n0 denotes the density in the absence of
interaction corrections, the frequency-dependent specific
heat c̄0,ε = 2π2T ν̄ε/3 is related to the (disorder aver-
aged) density of states ν̄ε, and z0

1 = (1 + F ρ0 )−1 is the
Fermi-liquid renormalization of the density vertex. Here
and below, we denote the derivative with respect to the
frequency ε by a prime, f ′ε = ∂εfε|ε=0.

The two diagrams relevant for the calculation of the
dynamical part of the correlation function are displayed
in Fig. 1 and Fig. 2. The diagram in Fig. 1 has two ex-
ternal vertices, one vertex symbolizing the heat density
coupling to the gravitational potential η, and a second
one for the density coupling to the scalar potential ϕ. In
general, the heat density is represented by two distinct
types of vertices in a diagrammatic representation, one
associated with the of the electrons, and the other one
associated with the interaction [18]. Postponing a more
detailed discussion to Sec. V C, the frequency vertex cor-
responds to the term ψ̄(p+)εψ(p−) in the action, where
p± = (p ± q/2, ε ± ω/2). For the calculation of the dy-
namical part in the ladder approximation, as in Fig. 1,
only the frequency vertex is relevant, since the interaction
vertex is automatically associated with a loop integration
over the frequencies and momenta of the diffusion modes.
The analytical expression corresponding to Fig. 1 reads
as

χdyn,0kn,1 (q, ω) = −2iπz0
1

D1(q, ω)

D(q, ω)

∫
ε

ε∆ε1ε2 ν̄εDε(q, ω).

(7)

This equation contains the diffusons D(q, ω) = (Dq2 −
iω)−1 and D1(q, ω) = (Dq2 − iz0

1ω)−1, where D is the
diffusion coefficient. These diffusons appear frequently
in the theory of disordered interacting systems [1? ]. For
our proposes, it is necessary to introduce another type of
diffuson with a frequency dependent diffusion coefficient,

Dε(q, ω) =
1

Dεq2 − iω
, (8)

where Dε = D+δDε. The dominant ε dependence of δDε

in two dimensions is given by δDε = τε/m, where τ is the
scattering time and m the electron mass. The frequency
integral in Eq. (7) originates from the product of retarded
and advanced Green’s functions adjacent to the fre-
quency vertex. The window function ∆ε1ε2 = Fε1 −Fε2 ,
where F = tanh(ε/2T ) and ε1/2 = ε ± ω/2, restricts
the ε integration to a window of order ω at low temper-
atures. In the absence of particle-hole asymmetry, i.e.,
for a constant density and constant diffusion coefficient,
the ε integral in Eq. (7) vanishes, because the integrand
is odd in ε. After expanding the product νεDε to first

order in ε, we find that χdyn,0kn,1 can be presented in the
form

χdyn,0kn,1 (q, ω) = −T
(

c0,εiω

Dεq2 − iω

)′
Dq2 − iω
DFLq2 − iω

, (9)

where DFL = D/z0
1 and we used the relation∫

ε
ε2∆ε1,ε2 = πT 2ω/3.
The second contribution to the dynamical part of the

correlation function, χdyn,0kn,2 , can be written as

χdyn,0kn,2 (q, ω) =
χst,0kn F

ρ
0 χ

dyn,0
nn (q, ω)

2νz0
1

, (10)

where χdyn,0nn is the dynamical part of the density-density
correlation function in the ladder approximation. The
structure of the density-density correlation function is
well known. In the ladder approximation, its dynamical
part is given by χdyn,0nn = −2νz0

1iω/(DFLq2 − iω), where
ν is the single particle density of states. Figure 2 shows a

diagrammatic representation of χdyn,0kn,2 . In this diagram,
the heat density vertex is connected to the interaction
amplitude F ρ0 by a product of two retarded or two ad-
vanced Green’s functions. This block, which is depicted
as a black triangle, is the origin of the factor χst,0kn in
Eq. (10). The contribution to the dynamical part of the

correlation function χdyn,0kn,2 (q, ω) can be combined with
the static part to give

χst,0kn + χdyn,0kn,2 (q, ω) = −Tc′0,ε
Dq2 − iω
DFLq2 − iω

(11)

The final result for the correlation function in the lad-
der approximation, which accounts for the non-constant
density of states and non-constant diffusion coefficient,
and comprises the two contributions to the dynamical
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part displayed in Eqs. (7) and (10), as well as the static
part shown in Eq. (6), reads as

χ0
kn = −T

(
c0,εDεq

2

Dεq2 − iω

)′
Dq2 − iω
DFLq2 − iω

. (12)

We see that Eq. (12) is consistent with the general form
of χkn introduced in Eq. (2), after identifying Dn = DFL

and Dk = D, and also with Ref. [31]. The relations
for Dn and Dk are also consistent with the known re-
sults for the density-density and heat density-heat den-
sity correlation functions. By comparison with Eq. (2),
one obtains the thermoelectric transport coefficient as
L = T (c0,εDε)

′, in agreement with the Boltzmann result
[40].

C. The role of ν̄′ε for the calculation of L

The thermoelectric transport coefficient obtained in
the previous section can be written as the sum of two
terms, L = Tc0D(ν̄′ε/ν + D′ε/D). The two potential
sources of particle-hole asymmetry in our model are the
ε-dependences of ν̄ε and Dε. We see that unlike the elec-
tric and thermal conductivities, the thermoelectric trans-
port coefficient vanishes when particle-hole asymmetry is
neglected. An important observation is that in two di-
mensions D′ε/D is larger by a factor εF τ compared to
ν̄′ε/ν (for details, see Sec. VI). This is why we may take
the density of states as constant when calculating the
dominant contribution to the thermoelectric transport
coefficient. We demonstrated this explicitly for the lad-
der approximation. The argument also carries over to the
calculation of interaction corrections. The calculation of
interaction corrections is typically organized according
to the number of loop integrations over slow momenta.
Each loop integration generates an additional power of
the dimensionless resistance, which serves as a small pa-
rameter in the theory. At each given order, corrections
proportional to D′ε are larger than those proportional to
ν̄′ε. The main outcome of this discussion is that in two
dimensions the leading contributions to the thermoelec-
tric transport coefficient can be calculated by neglecting
the ε-dependence of ν̄ε. This is the reason why we will
restrict ourselves to the constant density of states approx-
imation when deriving the NLσM for the calculation of
L below.

Before proceeding with the NLσM approach, we would
like to comment on a subtle point concerning the diffusion
coefficient. Besides the ε-dependence originating from
δDε = ετ/m, there is an additional dependence origi-
nating from the ε-dependence of the scattering rate τ .
Indeed, in the model under consideration a non-constant
density of states νε also goes hand in hand with a non-
constant scattering rate τε. As we will discuss in Sec. VI,
the self-consistent Born approximation for the disorder
induced self-energy results in the relation τεν̄ε = const..
This is why the diffusion coefficient acquires an addi-
tional frequency dependence through the scattering time.

However, this dependence is much weaker than the one
originating from the explicit ε-dependence of δDε.

III. THE GENERALIZED NLσM

The calculation of quantities that are strongly af-
fected by particle-hole asymmetry requires a generaliza-
tion of the conventional NLσM formalism. Indeed, in
the Finkel’stein model the density of states and the diffu-
sion coefficient are frequency-independent constants. We
will now introduce a generalized NLσM that incorporates
a frequency-dependent diffusion coefficient. Motivated
by the analysis of the heat density-density correlation
function in Sec. II, according to which the frequency-
dependence of the density of states results in sub-leading
corrections to the thermoelectric transport coefficient in
two dimensions, the density of states in the generalized
model is treated as a constant. The NLσM introduced
below also contains gravitational and scalar potentials
in order to prepare the calculation of the heat density-
density correlation function. The derivation of the gen-
eralized model will be presented separately in Sec. V. As
a first consistency check, we will use the model to repro-
duce the result for χ0

kn stated in Eq. (12) for the case of
a constant density of states.

A. The NLσM action

The action of the generalized NLσM can be written as

S0
δQ = S0,ηϕ + Sint,η + Sη + Sϕ. (13)

The first term on the right hand side is a generalization
of the Keldysh NLσM for non-interacting systems, and
reads as

S0,ηϕ =
iπν

4
Tr
[
D(∇X̂)2 + 4iε̂ηϕFLδX̂

]
. (14)

Here, X̂ is related to the Q̂-field used in the conventional
sigma model approach as

X̂ = Q̂+
1

4i
D′ε(∇Q̂)2. (15)

The field Q̂(r) is a matrix in Keldysh space, which also
carries two spin and two frequency indices, and fulfills the
constraint Q̂2 = 1. It is understood that the form of the
action S0,ηϕ displayed in Eq. (14) is accurate up to linear
order in D′ε only. The trace operation Tr in Eq. (14) ac-
counts for all these degrees of freedom and also includes
an integration over the coordinates r. The generalized
frequency operator ε̂ηϕFL includes source fields and is de-
fined as

ε̂ηϕFL =
1

2
{ε̂− ϕ̂FL, λ̂}. (16)



5

In this relation, the Fermi liquid renormalization of the
density vertex is encoded in ϕ̂FL = ϕ̂/(1 + F ρ0 ), and

λ̂ = (1+ η̂)−1 contains the gravitational potential η̂. The

frequency operator ε̂ acts as (ε̂Q̂)ε1ε2 = ε1Q̂ε1ε2 . The
matrix structure of the source fields in Keldysh space is
defined as follows: ϕ̂l = Σk=1,2ϕ

l
kγ̂k (and, correspond-

ingly, for λ̂ and η̂), where γ̂1 = σ̂0 and γ̂2 = σ̂1 are Pauli
matrices in Keldysh space. In addition, ϕ̂ is also a ma-
trix in frequency space, according to (ϕ̂r)εε′ = ϕ̂r,ε−ε′ ,

and the same applies to λ̂ and η̂. The matrix Q̂ takes the

form Q̂ = Û σ̂3
ˆ̄U , where Û ˆ̄U = 1 and σ̂3 is the third Pauli

matrix in Keldysh space. The second term in Eq. (14)

contains δX̂ = Q̂− σ̂3 in the form of δX̂ = ûδX̂û. Here,
the matrix û contains information about the occupation
of states,

ûε =

(
1 Fε
0 −1

)
, ûε = û−1

ε . (17)

In order to make contact with the conventional model,
it is useful to write the action S0,η,ϕ displayed in Eq. (15)

in terms of the matrix field Q̂ as S0,η,ϕ = S
(1)
0,η,ϕ +S

(2)
0,η,ϕ,

where

S
(1)
0,ηϕ =

iπν

4
Tr
[
D̂ε̂ηϕFL

(∇Q̂)2 + 4iε̂ηϕFLδQ̂
]
, (18)

S
(2)
0,η,ϕ =− πν

8
DD′εTr[∇2Q̂(∇Q̂)2].

It is instructive to first discuss the form of S0,η,ϕ in the
absence of the source fields ϕ and η (for ε̂ηϕFL → ε̂).
Then, the action differs from the conventional Keldysh
NLσM for non-interacting system by (i) the ε̂ depen-

dence of the diffusion coefficient, D̂ε̂ = D + τ
m ε̂, and (ii)

the presence of the higher order gradient term. We al-
ready saw in Sec. II that the frequency dependence of
the diffusion coefficient is crucial for the calculation of
the thermoelectric transport coefficient. The importance
of the higher gradient term in S0 does not reveal itself
in the ladder approximation for the heat density-density
correlation function. This term gives rise to (generalized)
Hikami-box diagrams, however, and is therefore expected
to become important for the calculation of interaction
corrections to the dynamical part of the correlation func-
tion.

The interaction term in the action takes the form

Sint,η = −π
2ν

8

∫
r,εi

(
tr[γ̂i(λ̂δX̂)ε1ε2 ]γ̂ij2 Γ0

ρtr[γ̂jδX̂ε3ε4
]

+tr[γ̂iσ(λ̂δX̂)ε1ε2 ]γ̂ij2 Γ0
σtr[γ̂jσδX̂ε3ε4 ]

)
δε1−ε2,ε4−ε3 ,

(19)

where we abbreviated δε,ε′ = 2πδ(ε − ε′). The ampli-
tudes Γ0

ρ/σ are related to the Fermi liquid amplitudes as

follows: Γ0
ρ = F ρ0 /(1 + F ρ0 ) and Γ0

σ = Fσ0 /(1 + Fσ0 ). The

presence of λ̂ in the action (19) reflects the fact that the
heat density includes a contribution from the interaction

itself. An analogous term was found in the context of the
NLσM approach to the calculation of the heat density-
heat density correlation function in Refs. [17, 18], albeit

with the matrix Q̂ instead of X̂.
As far as the last two contributions to S0

δQ in Eq. (13)
are concerned, they describe the coupling of the quan-
tum component of the potentials, ϕ2 and η2, to the non-
interacting density n0 and heat density k0, respectively

Sη = −2k0

∫
x

η2(x), Sϕ = −2n0

∫
x

ϕ2(x). (20)

The gravitational potentials η1 and η2 [42, 43] in com-
bination with the scalar potentials ϕ1 and ϕ2 allow us to
formulate a linear response theory for the thermoelectric
transport. The correlation functions χkn in the diffusive
limit can be obtained from the Keldysh partition function
Z =

∫
DQ exp(iS0

δQ) as

χkn(x1, x2) =
i

2

δ2Z
δη2(x1)δϕ1(x2)

∣∣∣∣
~η=~ϕ=0

, (21)

while χnk can be found by switching the roles of η and
ϕ. One can also calculate the heat density as

〈k̂〉T = 〈kcl(x)〉 =
i

2

δZ
δη2(x)

∣∣∣∣
~η=~ϕ=0

, (22)

and the charge density by differentiating with respect
to ϕ2. In these equations, we wrote ~η = (η1, η2)T and
~ϕ = (ϕ1, ϕ2)T .

Equations (14) and (19) are the main results of this
manuscript. We see that particle-hole asymmetry can be
incorporated into the conventional NLσM through the
replacement Q̂→ X̂. It is worth noting that effective po-
tential ϕ̂FL couples to the field δX̂ in the action. There-
fore, δX̂ describes density fluctuations.

B. Particle-hole asymmetry

In the absence of sources and for a constant diffu-
sion coefficient, Eq. (13) reduces to the conventional

Keldysh NLσM action SF [Q̂] for interacting systems in
the unitary symmetry class. This action is invariant un-
der a certain transformation of the Q̂ matrices. Indeed,
SF [Q̂] = SF [Q̂′] holds for

Q̂′ε1ε2 = −σ2σ̂1Q̂
t
−ε1,−ε2 σ̂1σ2, (23)

where σ̂1 is a Pauli matrix in Keldysh space, σ2 acts
in spin space and the transposition in Q̂t operates on
Keldysh space, on spin indices, and on frequencies [a
similar transformation was used in Ref. [44]]. The saddle
point matrix σ̂3 and the matrix û are also invariant under
this transformation, σ̂′3 = σ̂3, û′ = û.

To understand this observation it is instructive to
study the effect of the transformation (23) on the elec-

tronic Green’s function, which is connected to Q̂ via the
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saddle point equation. When applying this transforma-
tion to Ĝ0 = diag(GR0 , G

A
0 ), where GR0 and GA0 are re-

tarded and advanced Green’s functions and to the equi-
librium Keldysh Green’s function Ĝ = ûĜ0û, the “parti-

cle” Hamiltonian k̂ = ĥ0 − µ transforms into the “hole”

Hamiltonian k̂′ = −(iσ2)k̂T (iσ2)−1 by a combination of
a sign change and a time reversal operation [45]. The
invariance of the conventional NLσM action under the
particle-hole transformation (23) is a consequence of the
approximations used during the derivation, for which the
velocity and the density of states are treated as con-
stant. The approximation of a constant velocity has been
avoided for the derivation of the generalized model, and
this is why (13) incorporates particle-hole asymmetry.

The generalized NLσM action can be broken down to
individual pieces that are either even, Si[Q̂

′] = Si[Q̂], or

odd, Si[Q̂
′] = −Si[Q̂], under the transformation (23). As

already noted, the conventional NLσM action SF , which
is obtained from S0

δQ by setting η = ϕ = D′ε = 0, is even

under transformation (23). The source terms for D′ε = 0
transform as

Tr[{ε̂− ϕ̂FL, λ̂}δQ̂′] = Tr[{ε̂+ ϕ̂FL, λ̂}δQ̂], (24)

and Sint,η[Q̂′] = Sint,η[Q̂]. Since the generalized NLσM
is obtained from the conventional one by the replacement
Q̂→ X̂ = Q̂+ 1

4iD
′
ε(∇Q̂)2, each term in the conventional

model has a partner containing D′ε. One can see that the
terms with D′ε acquire an additional minus sign under

the transformation Q̂→ Q̂′.
These observations have important consequences for

the calculation of correlation functions. The heat
density-heat density and the density-density correla-
tion function are obtained as second derivatives of the
Keldysh partition function with respect to the source
fields η and ϕ, respectively. Therefore, the sign change
in Eq. (24) is not relevant and the inclusion of particle-
hole asymmetry is not required for the calculation of
these correlation functions. By contrast, the calculation
of the heat density-density correlation function χkn re-
quires derivatives with respect to both ϕ and η [com-
pare Eq. (21)]. Due to the sign change in the source
term in Eq. (24), a non-vanishing result for χkn can only
be obtained by including terms with D′ε 6= 0, i.e., with
particle-hole asymmetry.

The symmetry considerations presented above are a
valuable guide for the derivation of the generalized
NLσM. They allow us to distinguish terms that share the
symmetry of the conventional NLσM from those terms
that change the symmetry and therefore need to be in-
cluded into the generalized model.

C. χ0
kn from the generalized NLσM

We will now discuss how the correlation function χkn
in the ladder approximation can be obtained from the

generalized NLσM. In the absence of interaction correc-
tions, the static part of the correlation function vanishes
and only the dynamical part needs to be considered. This
is an immediate consequence of the constant-density ap-
proximation used for the derivation of the NLσM. Inter-
action corrections arising from momentum and frequency
integrations over diffusion modes are neglected in the
ladder approximation. The ladder can be obtained by
treating fluctuations near the saddle point Q̂ = σ̂3 in the
NLσM in the Gaussian approximation. In order to derive
the Gaussian action, one needs to choose a parameteri-
zation for the matrix Û . In this paper, we will work with

the exponential parameterization, for which Û = e−P̂ /2

with the additional constraint {P̂ , σ̂3} = 0. Details con-
cerning the parametrization, and the contraction rules
for averages with respect to the Gaussian action are pre-
sented in Appendix A.

The calculation is simplified by the fact that vertices
originating from the interaction part Sint,η or the gradi-
ent term in S0,ηϕ do not contribute in the ladder approx-
imation. Only the source fields contained in the second
term of the action S0,ηϕ in Eq. (18) and a first order

expansion of δQ̂ in P̂ are relevant for the vertices. Us-
ing the contraction rule (A5) stated in appendix A, one
obtains

χ̃dyn,0kn,1 (q, ω) = −2iπνz0
1

D1(q, ω)

D(q, ω)

∫
ε

ε∆12Dε(q, ω). (25)

The diagrammatic representation is shown in Fig. 1. By

comparison with Eq. (7), we see immediately that χ̃dyn,0kn,1

is obtained from χdyn,0kn,1 in the constant density of states

approximation, as expected. The contribution χdyn,0kn,2 of

Eq. (10) has no analog here because it is proportional
to ν′ε. [In Sec. VI below, we will explain how this term
can included into the generalized NLσM.] Since the static
part of the correlation function also vanishes in the con-
stant density of states approximation, Eq. (25) represents
the only non-vanishing contribution to χ̃0

kn. After per-
forming the integration, the result can be written in the
form

χ̃0
kn(q, ω) = −Tc0∂ε

[
Dεq

2

Dεq2 − iω

]
Dq2 − iω
DFLq2 − iω

. (26)

This result can also be obtained from the more general
Eq. (12) in the limit c0,ε → c0 = 2π2νT/3, i.e. for
a constant density of states. By comparing the result
χ̃0
kn(q, ω) to the general form of the correlation func-

tion stated in Eq. (2), we find L = Tc0D
′ [and, obvi-

ously, χst,0kn = 0]. The resulting Seebeck coefficient is
eS = π2T/3εF , in agreement with the Boltzmann result
for two-dimensional systems. Interestingly, in the ab-
sence of interaction corrections, the result is independent
of the interactions.
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IV. INTERACTION CORRECTIONS TO THE
STATIC PART OF THE CORRELATION

FUNCTION

As a further application of the NLσM formalism, we
calculate interaction corrections to the static part of
the heat density-density correlation function, χstkn. The
structure of the NLσM action (13) in the presence of
source fields is quite intricate. This is why we calcu-
late the interaction corrections to the static part in two
different ways, which will provide a valuable test of the
structure of the model. First, in Sec. IV A, we make use
of the relation of the static part to certain thermody-
namic susceptibilities. Starting point for this approach
is the relation

χstkn =
T

V
∂T∂µΩ, (27)

where Ω is the grand canonical potential. The second
derivative on the right hand side may be interpreted in
two ways,

T

V
∂T∂µΩ =− T∂T 〈n̂〉T = −∂µ〈k̂〉T − 〈n̂〉T . (28)

The thermal averages 〈k̂〉T and 〈n̂〉T can be calcu-
lated straightforwardly in our formalism, as explained
in Sec. III A. As a byproduct, we will verify that the
Maxwell relation stated on the right hand side of Eq. (28)
is reproduced. This first approach relies on terms of first
order in the source fields, see Eqs. (22). As an alterna-
tive route to the calculation of the correlation function,
we will study the limit χstkn = χkn(q→ 0, ω = 0) directly
in Sec. IV B. This approach makes use of terms that are
of second order in the source fields, see Eq. (21).

A. Calculation of interaction corrections to the
thermodynamic susceptibilities

We will first make use of the relation χstkn = −T∂T 〈n̂〉T
for the calculation of the static part of the correlation
function. The diffusion mode contribution to the density
ndm can be obtained with the help of the NLσM action
(13). After performing the differentiation with respect to
ϕ2, one obtains the expression

ndm(x) = −πνz
0
1

2
tr
[
γ̂2δX̂tt(r)

]
. (29)

Here, and in the following, averaging with respect to the
NLσM action in the absence of sources is implied. For
the perturbative calculation of the diffusion mode con-
tribution, δX̂ in Eq. (37) should be expanded to second

order in the generators P̂ . We split the resulting terms
into two parts, ndm = ndm1 + ndm2 , where

ndm1 = −πνz
0
1

4
tr
[
γ̂2σ̂3P̂

2
tt

]
, (30)

ndm2 = −πνiz
0
1

8
D′tr

[
γ̂2(∇P̂ )2

tt

]
. (31)

These expressions can be averaged with the help of
Eqs. (A5) and Eqs. (A6). Fig. 3 provides a diagram-
matic representation of the resulting contributions. The
following identities are useful for the calculation,

1−Fε+ω
2
Fε−ω2 = Bω(Fε+ω

2
−Fε−ω2 ), (32)∫

ε

(Fε+ω
2
−Fε−ω2 ) =

ω

π
, (33)

and 1 − F2
ε = 2TF ′ε, where Bω = coth ω

2T is the bosonic
equilibrium distribution function. The calculation shows
that only ndm2 gives a contribution, which leads us to

ndm =
z0

1

2

∫
q,ω

ωBωD′εq2D(Γ0
ρD1 + 3Γ0

σD2). (34)

The relation D−1
1,2 − D−1 = iωΓρ,σ was used in obtain-

ing this result. Making use of the identity T∂TBω =
−ω∂ωBω, we further obtain

−T∂Tndm =
z0

1

2

∫
q,ω

ω2∂ωBωD′εq2D(Γ0
ρD1 + 3Γ0

σD2).

(35)

The factor ∂ωBω in Eq. (43) constrains the frequency ω
to be of the order of T . This allows us to neglect all fre-
quencies in the diffusion propagators D, D1 and D2 in the
expression for −T∂Tndm. The remaining logarithmic in
integral in q then acquires the coefficient Γ0

ρ+3Γ0
σ. Using

the integral
∫
ω
ω2∂ωBω = −2πT 2/3, and the expression

for the specific heat c0 = 2π2νT/3, we find

χst,dmkn = −T∂Tndm = Tz0
1c0δzD

′/D. (36)

Here, δz is the known result for the correction to the
frequency renormalization z at first order in the small
parameter ρ ≡ ((2π)2νD)−1, namely δz = − 1

2ρ(Γ0
ρ +

3Γ0
σ) log 1/Tτ . Noting that ∂µρ = −z0

1ρD
′
ε/D, the re-

sult may also be written as χst,dmkn = −Tc0∂µz = −T∂µc,
where c is the specific heat including interaction correc-
tions and the µ dependence of the density of states has
been neglected in the last equality.

We proceed by confirming the Maxwell relation stated
in Eq. (28) in the context of the NLσM approach. This
requires the knowledge of the diffusion mode contribution
to the heat density kdm. We perform the differentiation
of the Keldysh partition function with respect to η2 to
obtain

kdm(x) = −πνi
4

tr
[
γ̂2(∂t − ∂t′)t′=tδX̂tt′(r)

]
−π

2ν

16

2∑
i=1

3∑
l=0

tr
[
γ̂iσ

lδX̂tt(r)
]

tr
[
γ̂iσ

lδX̂tt(r)
]

×diag
(
Γ0
ρ,Γ

0
σ,Γ

0
σ,Γ

0
σ

)
ll
. (37)

As for the calculation of the density, δX̂ in Eq. (37) needs

to be expanded to second order in P̂ . For the sake of the
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FIG. 3: The diffusion mode contribution to the heat density
and the charge density. Rectangles symbolize the scattering
amplitudes; rescattering is either in the singlet channel with
amplitudes Γρ, or in the triplet channel with amplitudes Γσ.
Ladders of dotted lines stand for the bare diffusons D or Dε.
The terms kdmε,1 and kdmε,2 are symbolized by the same diagram

labeled as kdmε .

discussion, we distinguish three contributions,

kdmε,1 = −πνi
8

tr
[
γ̂2(∂t − ∂t′)t′=tσ̂3P̂

2
tt′(r)

]
, (38)

kdmε,2 =
πνD′

16
tr
[
γ̂2(∂t − ∂t′)t′=t(∇P̂ )2

tt′(r)
]
, (39)

kdmΓ = −π
2ν

16

2∑
i=1

3∑
k=0

tr
[
γ̂iσkσ̂3P̂tt(r)

]
tr
[
γ̂iσkσ̂3P̂tt(r)

]
×diag

(
Γ0
ρ,Γ

0
σ,Γ

0
σ,Γ

0
σ

)
kk
. (40)

An illustration of these contributions is shown in Fig. 3.
Upon averaging with the Gaussian action, we obtain the
leading contributions as

kdmε,1 = −1

2

∫
q,ω

ωBω (D −D1 + 3(D −D2)) , (41)

kdmΓ = −1

2

∫
q,ω

ωBω
(
Γ0
ρD1 + 3Γ0

σD2

)
, (42)

whereas kdmε,2 = 0. After adding these two terms one
obtains the total collective mode contribution to the heat
density as [18]

kdm = kdmε,1 + kdmΓ

=
1

2

∫
q,ω

ωBω
[
z0

1D1 −D + 3(z0
2D2 −D)

]
. (43)

where D̄ is the advanced diffuson. This expression coin-
cides with previously obtained results [18, 35].

With the results for ndm and kdm at hand, it is conve-
nient to write the Maxwell relation for the diffusion mode
contributions in the form

(1− T∂T )ndm = −∂µkdm. (44)

We first study the left hand side of this equation based
on Eq. (34). After using the relation T∂TBω = −ω∂ωBω,
a partial integration in ω can be performed to find

(1− T∂T )ndm (45)

= −z
0
1

2

∫
q,ω

D′q2ωBω(1 + ω∂ω)
[
D(Γ0

ρD1 + 3Γ0
σD2)

]
.

We next turn to the right hand side of Eq. (44). The dif-
ferentiation of kdm, Eq. (43), with respect to µ can easily
be performed with the help of the relation ∂µD = z0

1∂εDε

[31]. By comparing the result to (45), one establishes the
relation (44).

Let us briefly comment on a technical aspect of the cal-
culation. For the sake of convenience, physical quantities
in this manuscript are expressed through derivatives with
respect to the quantum component of the source fields.
Eq. (22) is a typical example. In this way, the Keldysh
component of the Green’s function is generated and, as
a consequence, the distribution functions F and B enter
the integrals [13]. Strictly speaking, the lesser component
of the Green’s function G< = (GK − GR + GA)/2 and,
correspondingly, the Fermi distribution nF = (1 − F)/2
and Planck distribution nP = (B − 1)/2, should be used
instead. When calculating thermodynamic quantities it
is sometimes useful to remember the distinction when
interpreting the results. For example, upon symmetriza-
tion in ω and replacing B → 2nP , Eq. (43) reads as

kdm =

∫
q,ω>0

ωnP (ω)Dq2× (46)

× [z1D1D̄1 −DD̄ + 3(z0
2D2D̄2 −DD̄)],

and Eq. (45) should be understood in a similar way.

B. Calculation of interaction corrections to the
static part of the correlation function

We now present a direct calculation of the static part
of the correlation function χstkn. According to Eq. (21),
χstkn can be obtained by differentiating the heat density
kϕ1

(x) = (i/2)δZ/δϕ2(x) with respect to the classical
component of the scalar potential ϕ1: χstkn = ∂kdmϕ1

/∂ϕ1,
where ϕ1 may be taken as constant. Therefore, kϕ1

(x)
needs to be found in the presence of ϕ1. One obtains
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FIG. 4: Diagrams contributing to χst,εkn .

FIG. 5: Diagrams contributing to χst,Γkn .

kdmϕ1
= kdmϕ1,ε + kdmϕ1,Γ

+ kdmϕ1,n, where

kdmϕ1,ε(x) =− πνi

4
tr
[
γ̂2(∂t − ∂t′)t′=tδX̂tt′(r)

]
, (47)

kdmϕ1,Γ(x) =− π2ν

16

2∑
i=1

3∑
l=0

tr
[
γ̂iσ

lδX̂tt(r)
]

tr
[
γ̂iσ

lδX̂tt(r)
]

× diag (Γρ,Γσ,Γσ,Γσ)ll , (48)

kdmϕ1,n(x) =
πνz0

1

2
tr[ϕ1γ̂2δX̂tt(r)]. (49)

We label the contributions to χstkn as χst,εkn , χst,Γkn and

χst,nkn and display the corresponding diagrams in Figs. 4, 5

and 6, respectively. The term kdmϕ1,n depends on the po-
tential ϕ1 explicitly. Therefore, averaging can be per-
formed with the ϕ1-independent part of the action. By
comparison with Eq. (29) it is immediately clear that

χst,nkn = −ndm. The other two terms, kdmϕ1,ε and kdmϕ1,Γ
,

have an implicit ϕ1-dependence due to the averaging
with respect to the ϕ1-dependent action. We need to
expand the expressions for kdmϕ1,ε and kdmϕ1,Γ

and the ac-

tion up to second order in the generators P̂ . In order
to calculate the contributions arising from the differen-
tiation ∂ϕ1

, it is instructive to note that for ϕ2 = 0, as

relevant here, and due to the relation tr[δQ̂] = 0, the
potential ϕ1 enters the action only in the combination
ϕ1tr[(∇P̂ )2]. Another useful observation is that at sec-

ond order in the generators P̂ the interaction part of the
action becomes independent of the diffusion coefficient,

FIG. 6: Diagrams contributing to χst,nkn .

and so does the expression for kdmϕ,Γ before averaging. We

can therefore perform the averages for kdmϕ,ε and kdmϕ,Γ in

Eq. (47) and Eq. (48) with the help of the action taken
at ϕ1 = 0, if we trade the differentiation with respect
to ϕ1 for a differentiation with respect to (minus) the
chemical potential µ. The chemical potential, in turn,
enters the action only through the diffusion coefficient.
This argument allows us to immediately obtain the re-

lation χst,εkn + χst,Γkn = −∂µkdm. As a consequence, the
total diffusion mode contribution to the static part of
the correlation function reads as

χst,dmkn ≡ χst,εkn + χst,Γkn + χst,nkn = −∂µkdm − ndm

= −T∂Tndm, (50)

where the last equality was already established in
Sec. IV A. We therefore conclude that both routes to the
calculation the interaction corrections of χstkn presented

above give the same result, χst,dmkn = −T∂µc, where c
is the specific heat. This result is in agreement with
Ref. [31], where a thermodynamic approach was used.

V. DERIVATION OF THE GENERALIZED
NLσM

In this section, we present the derivation of the the
generalized NLσM discussed in Sec. III. In Sec. V A, we
introduce the electronic action that serves as a starting
point for the derivation. Then, for the sake of clarity, we
first focus on the NLσM for the non-interacting case in
Sec. V B before including interactions and source fields
in Sec. V C.

A. Model

Starting point for our considerations is action

Sk[ψ†, ψ] =

∫
C
dt

∫
r

(
ψ†i∂tψ − k[ψ†, ψ]

)
. (51)

This action is defined on the Keldysh time-contour C
[13, 37–39], which consists of a forward (+) and a back-
ward branch (−). In Eq. (51), the heat density is defined
as k = h − µn, where h, µ, and n are the Hamiltonian
density, chemical potential, and particle density, respec-
tively. Further, ψ = (ψ↑, ψ↓), ψ

† = (ψ∗↑ , ψ
∗
↓) are Grass-

mann fields with spin up and spin down components.
The Hamiltonian density h consists of two parts, h =

h0 + hint, where

h0(x) =
1

2m
∇ψ†x∇ψx + ψ†xudis(r)ψx, (52)

hint(x) =
1

4
n(x) (F ρ0 /ν)n(x) + s(x) (Fσ0 /ν) s(x). (53)

The disorder potential is chosen as delta correlated white
noise characterized by 〈udis(r)udis(r

′)〉 = 1
2πντ δ(r − r′)
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and 〈udis(r)〉 = 0. The angular brackets symbolize aver-
aging over different realizations of the disorder potential.
We will assume that disorder is weak in the sense that
εF τ � 1, where εF is the Fermi energy. In Eq. (53),
we introduced the following expressions for the number
and spin densities: n(x) = ψ†xσ0ψx, and s(x) = 1

2ψ
†
xσψx.

The Pauli matrices σl for l ∈ {0, 1, 2, 3} act in spin space
(↑, ↓). For the sake of simplicity, we restrict ourselves
to a short-range interaction model. Long-range Coulomb
interactions can be included into the formalism straight-
forwardly following Ref. [19].

B. NLσM for non-interacting systems

Following standard steps in the derivation of the
Keldysh NLσM, (i) disorder average, (ii) Hubbard
Stratonovich transformation of the resulting four-fermion
term with the matrix field Q̂ = ûQ̂û, (iii) saddle point

approximation Q̂→ σ̂3, and (iv) inclusion of fluctuations

Q̂ = Û σ̂3
ˆ̄U with Û ˆ̄U = 1, as described in Appendix B,

the electronic part of the action can be presented in the
form

S[~Ψ†, ~Ψ] =

∫
~Ψ†
(
Ĝ−1 + ˆ̄U [Ĝ−1

0 , Û ]
)
~Ψ. (54)

In this equation, we introduced the inverse of the dis-
order averaged Green’s function, Ĝ−1 = Ĝ−1

0 + i
2τ σ̂3,

where Ĝ0 = diag(GR0 , G
A
0 ) is a diagonal matrix in

Keldysh space, and GR0 and GA0 are the non-interacting
retarded and advanced Green’s functions. The combi-
nation ˆ̄U [Ĝ−1

0 , Û ] contains slow gradients of the fields Û

and Û , as well as small differences of their frequency ar-
guments. In order to make those explicit, we introduce
the fields

V̂i = ˆ̄U∇iÛ , Ê = ˆ̄U [ε̂, Û ]. (55)

Using this notation, we can write the action as

S[~Ψ†, ~Ψ] (56)

=

∫
~Ψ†
(
Ĝ−1 + Ê +

1

2m

[
V̂i
−→
∇i −

←−
∇iV̂i + V̂iV̂i

])
~Ψ.

A summation in the vector index i is implied.
The derivation of the NLσM proceeds via an expansion

in the slow fields Ê and V̂i. The conventional model is ob-
tained by truncating the expansion at the first order in Ê
and at the second order in V̂i. The resulting sigma model
action takes the form S = πνi

4 Tr[D(∇Q̂)2 + 4iε̂Q̂], where

D = v2
F τ/d is the diffusion coefficient in d dimensions de-

fined with the help of the Fermi velocity vF . From now
on we will restrict the discussion to the two-dimensional
case d = 2.

The expansion in the slow fields requires the evalu-
ation of certain momentum integrals over products of

fermionic Green’s functions. This integration is simpli-
fied by the fact that due to the presence of the slow modes

Û and ˆ̄U all the fermionic frequencies lie within a small
energy shell of order 1/τ around the Fermi surface. In
the conventional derivation, it is therefore sufficient to
neglect the frequency arguments of the Green’s functions
entirely. Indeed, a perturbative expansion in those fre-
quencies gives rise to terms that are small in the pa-
rameter ω/εF , where ω is a typical frequency. For our
purposes, however, it is crucial to account for such terms,
since they encode the particle-hole asymmetry that will
render the observables of interest finite. In order to il-
lustrate this point, it is instructive to inspect the term
arising at second order in the expansion in V̂i,

δSV2 = −iπν
∫
ε1,ε2,r

Dεtr[V̂i⊥ε2,ε1 V̂
i⊥
ε1,ε2 ]. (57)

In this formula, we used the notation Â⊥ = 1
2 [Â, σ̂3]σ̂3,

where Â is a matrix in Keldysh space, and we wrote
Dε = D + τ

mε with ε = (ε1 + ε2)/2. The second term in
the expression for the diffusion coefficient Dε is smaller
than the leading term by a factor of ε/εF . The gradient
term in the conventional sigma model action is obtained
by neglecting the ε-dependence of the diffusion coefficient
and using the identity tr[V̂i⊥V̂i⊥] = − 1

4 tr[(∇Q̂)2].
The result (57) is not satisfactory, since it does not

allow us to write the action in terms of the field Q̂.
This shortcoming can be corrected by including addi-
tional terms in the slow mode expansion which give con-
tributions of the same order. Relevant contributions are
either linear in both Ê and V̂i, in which case an additional
expansion in coordinates is required, or of second order
in V̂i and first order in Ê . These terms are illustrated in
Fig. 7. The part of the action in Eq. (57) that accounts
for the frequency dependent part of the diffusion coef-
ficient is proportional to tr[ε̂V̂⊥,iV̂⊥,i]. After including
the contributions shown in Fig. 7, this term is replaced
by tr[(ε̂+ Ê)V̂⊥,iV̂⊥,i] = − 1

4 tr[ε̂(∇Q̂)2]. After adding the
leading contribution to the gradient term in the NLσM,
which is proportional to D (cf. Eq. (57)) and the term

obtained from the linear expansion in Ê , we arrive at the
action

S1[Q̂] =
iπν

4
Tr[D̂ε̂(∇Q̂)2 + 4iε̂Q̂] (58)

with D̂ε̂ = D + τ
m ε̂. The inclusion of the ε-dependent

part of the diffusion coefficient encodes the deviations of
the single-particle energy from the Fermi energy (and the
velocity from the Fermi velocity) in the NLσM language.
In order to complete the derivation of the generalized
NLσM for non-interacting systems, we also need to in-
clude a term with four gradients into the action. Such a
term is obtained from the expansion in the slow modes
V̂i up to fourth order. The calculation is similar to the
expansion in V̂i and E described above (for details see
Appendix C). The resulting term in the action takes the
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FIG. 7: Diagrammatic representation of the slow mode ex-
pansion resulting in the generalized NLσM in Eq. (58). The
diagrams illustrate traces in Keldysh space. An integration
over fast momenta p is implied. Slow mode matrices are sym-
bolized by dark squares; the symbol ⊥ labels matrices that
are off-diagonal in Keldysh space, ‖ labels diagonal matri-

ces. The matrix Green’s function Ĝ0 = (GR0 , G
A
0 ) contains

retarded and advanced Green’s functions on its diagonal, so
that all traces contain at least one retarded and one advances
Green’s function. The momentum vertex in (c) arises due to
the expansion of E in coordinates.

form

S2[Q̂] = −πν
8
DD′εTr[∇2Q̂(∇Q̂)2]. (59)

This term must be treated on the same footing as the
contribution proportional to D′ε in Eq. (58). Indeed, the
latter term is smaller by a factor of D′εq

2 compared to
the frequency term in the conventional NLσM (where q
is a typical momentum characterizing the diffusion pro-
cess). Likewise, S2 is smaller by a the same factor D′εq

2

compared to the gradient term in the conventional model.
By combining the two contributions displayed in

Eqs. (58) and (59), we obtain the generalized NLσM for

non-interacting systems as S[Q̂] = S1[Q̂] + S2[Q̂]. The
generalized model can conveniently be formulated with
the help of the matrix X̂ introduced in Eq. (15),

S[Q̂] =
iπν

4
Tr[D(∇X̂)2 + 4iε̂X̂]. (60)

This NLσM action is the main result of this section. The
model is accurate up to leading order in the particle-
hole asymmetry terms. The inclusion of the particle-hole
asymmetry amounts to the replacement Q̂ → X̂ in the
conventional NLσM.

In fact, this innocent-looking extension of the sigma
model action has profound consequences. Equipped with
the relevant source fields, the model allows for the calcu-
lation of quantities such as the thermoelectric transport
coefficient that are beyond the reach of the conventional
NLσM. In this work, we study a model in the unitary
symmetry class. An extension of the derivation to, for
example, the orthogonal or symplectic symmetry classes
is beyond the scope of this work.

A comment is in order here. The expansion that lead
to Eq. (58) also generates terms that are small in the
parameter ωτ compared to the leading term in Eq. (57),
but larger by a factor εF τ compared to the ε-dependent
correction in this equation. Such terms give a contribu-
tion of the form δS ∼ ντTr[ε̂Q̂D(∇Q̂)2] to the action.
This is merely a higher order contribution to the gradi-
ent expansion of (56) which does not introduce particle-
hole asymmetry. Indeed, one can interpret it as a small
correction to the tr[εQ̂]-term which shares its symme-
tries with respect to the frequency structure. The formal
symmetry argument presented in Sec. III B leads to the
same conclusion. Indeed, Tr[ε̂Q̂D(∇Q̂)2] is even under
the transformation defined in Eq. (23). In a similar vein,
the expansion up to fourth order in slow gradients also
produces a term that is larger than S2 by a factor of
εF τ . However, this term contains an even number of
Q̂ matrices, is even under the transformation (23), and
may therefore be neglected since it does not introduce
particle-hole asymmetry into the model.

C. NLσM with interactions and source fields

We now discuss how the derivation of the NLσM pre-
sented in Sec. V B needs to be modified in order to
accommodate interactions and source fields. In order
to describe interactions, we add the interaction part
hint of Eq. (53) to the Hamiltonian density and study
h = h0 + hint. We further include the source terms

Sη = −2
∫
x
[η2(x)kcl(x) + η1(x)kq(x)], (61)

Sϕ = −2
∫
x
[ϕ2(x)ncl(x) + ϕ1(x)nq(x)]. (62)

In order to be able to calculate χkn and χnk in the
Keldysh NLσM approach, we first define the classical
(cl) and quantum components (q) of the heat density
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and density symmetrized over the two branches of the
Keldysh contour, kcl/q = 1

2 (k+ ± k−), and ncl/q =
1
2 (n+ ± n−), respectively [13]. Using these definitions,
the retarded correlation functions can be obtained as
χkn(x1, x2) = −2i 〈kcl(x1)nq(x2)〉 and χnk(x1, x2) =
−2i 〈ncl(x1)kq(x2)〉. The angular brackets symbolize av-
eraging is with respect to the action.

The interaction terms in the action resulting from
hint can be decoupled with the help of bosonic Hubbard
Stratonovich fields ϑl+ and ϑl− on forward and backward
paths of the Keldysh contour. Then, after performing the
Keldysh rotation [Eq. (B1) in appendix B], the action can
be presented in the following form

S[~Ψ†, ~Ψ, ~θ, η̂] (63)

=

∫
x

~Ψ†
(
i∂t − [udis − µ](1 + η̂) + θ̂lσl − ϕ̂

)
~Ψ

−
∫
x

1

2m
∇~Ψ†(1 + η̂)∇~Ψ +

∫
x

~θT
γ̂2

1 + η̂
f−1~θ.

Here, we introduced so-called classical (cl) and quan-
tum (q) components of the fields θlcl/q = (ϑl+ ± ϑl−)/2

[13], where l = 0 stands for the singlet channel, and l ∈
{1, 2, 3} for three triplet-channel components. The fields
θlcl/q are sometimes grouped into an eight-component vec-

tor ~θ with components θl1 = θlcl and θl2 = θlq. The inter-
action potentials for the singlet and triplet channels are
contained in the matrix f = diag(F ρ0 , F

σ
0 , F

σ
0 , F

σ
0 )/2ν.

The next steps in the derivation of the NLσM are the
disorder average, and the decoupling with the matrix field
Q̂. The form of the action in Eq. (63) is inconvenient for
this purpose, because the gravitational potential enters
the disorder term. In order to avoid this complication, we
introduce the following transformation of the fermionic

fields, ~Ψ→
√
λ̂~Ψ and ~Ψ† → ~Ψ†

√
λ̂, where λ̂ = 1/(1 + η̂)

[18, 36]. Then, the action can be written as

S[~Ψ†, ~Ψ, ~θ, ~η] =
1

2

∫
x

~Ψ†(iλ̂
−→
∂ t − i

←−
∂ tλ̂)~Ψ (64)

−
∫
x

~Ψ†(Okin + udis − µ− λ̂θ̂lσl + λ̂ϕ̂)~Ψ

+

∫
x

~θT (γ̂2λ̂)f−1~θ + SJ .

Here, the kinetic energy operator Okin = −∇2/2m was
introduced. The term SJ accounts for the Jacobian of
the transformation of the fermionic fields. It is will not
play any role in our considerations and we drop it from
now on. For a further discussion of this term we refer to
Ref. [18].

After these preparations, the generalization of the
derivation presented in the previous section does not pose
a problem. In view of the transformation (B5), the source

fields and the Hubbard Stratonovich fields θ̂ are dressed
with matrices û as θ̂ε1ε2 = ûε1 θ̂(ε1 − ε2)ûε2 . Then, the
gradient expansion in the presence of interactions and

source fields requires the following replacement,

E → E ′ = E + ˆ̄U

[
Θ̂
l
σl − 1

2
{η̂, ε̂+ Θ̂

l
σl}
]
Û , (65)

where ~Θ0 = ~θ0 − ~ϕ and ~Θ = ~θ. The result of this proce-
dure can be written as

S0
δQ =

πνi

4
Tr
[
D̂ε̂ηΘ

(∇Q̂)2 + 4iε̂ηΘδQ̂
]

+

∫
x

~θT γ̂2λ̂f
−1~θ

+2ν

∫
x

~ΘT γ̂2λ̂~Θ− 2k0

∫
x

η2(x)− 2n0

∫
x

ϕ2(x). (66)

In this equation, we used the notation ε̂ηΘ = 1
2{ε̂ +

Θ̂lσl, λ̂}. We consistently kept terms up to first order
in η̂ and in ϕ̂. The terms in the second line describe con-
tributions originating from the electronic degrees of free-
dom without participation of the diffusion modes. They
arise from diagrammatic blocks containing only retarded
or only advanced Green’s functions. In the derivation of
S0
δQ in Eq. (66) terms containing the derivative of the

disorder averaged density of states, ν̄′ε, have consistently
been neglected. As a consequence, the action does not
contain a purely electronic contribution that is linear in

both ~η and ~Θ. We will discuss the impact of such a term
on the correlation function in Sec. VI.

It is often convenient to present the NLσM in a form

where the Hubbard-Stratonovich fields ~θ are integrated
out. The relevant contraction rules (in the absence of

η̂) are 〈θ0
i,r,ωθ

0
j,r′,−ω′〉 = i

2ν (Γ0
ρ/2)γij2 δr−r′2πδω−ω′ for

the charge degrees of freedom, and 〈θαi,r,ωθ
β
j,r′,−ω′〉 =

i
2ν (Γ0

σ/2)γij2 δr−r′2πδω−ω′δαβ for the spin degrees of free-

dom. The integration in ~θ leads to the sigma model ac-
tion in Eq. (13).

VI. ON THE ROLE OF A NON-CONSTANT
DENSITY OF STATES

In this section, we discuss the role of the non-constant
disorder averaged density of states in two dimensions.
To this end it is instructive to revisit the saddle point
equation for the matrix Q̂,

Q̂0 =
i

πν

(
Ĝ−1

0 +
i

2τ
Q̂0

)−1

. (67)

With the ansatz Q0 = (τ/τε)σ3, where τε is real, one
obtains the following condition for τε,

1 =
1

2πντ

∫
p

|GR• (p, ε)|2, (68)

where GR• (p, ε) = ([GR0 ]−1(p, ε) + i/(2τε))
−1. It is in-

structive to establish a connection between the right hand
side of Eq. (68) and the disorder averaged density of
states calculated with the help of GR• ,

ν̄ε = − 1

π

∫
p

=GR• (p, ε) =
1

2πτε

∫
p

|GR• (p, ε)|2. (69)
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By comparison, one finds the relation ντ = ν̄ετε. We
see that even in two dimensions, when the density of
states ν of the clean system is constant, τε acquires an ε-
dependence, and so does the disorder averaged density of
states ν̄ε. The magnitude of this effect can be estimated
from Eq. (68). After transforming the integration mea-
sure as

∫
p
→ ν

∫∞
−µ dξp, it is important for our purposes

not to extend the lower limit of the integration range to
−∞. The equation for ν̄ε obtained after performing the
integral in ξp can be solved approximately and allows us
to estimate ν̄′ε/ν ∼ (ε2

F τ)−1. The important point is that
ν̄′ε/ν is smaller than D′ε/D by a factor (εF τ)−1 � 1. As
explained in Sec. II, this smallness allows us to justify
the constant density of states approximation.

As is clear from the relation Q0 = (τ/τε)σ3, the inclu-
sion of a non-constant density of states for the diffusion
modes described by the NLσM would require a modi-
fication of the constraint Q̂2 = 1 and thus fundamen-
tally alter the structure of the model. Such a generaliza-

tion would, for example, be necessary to obtain χdyn,0kn,1 of

Eq. (7) instead of χ̃dyn,0kn,1 in Eq. (25). The second contri-

bution discussed in Sec. II B, χdyn,0kn,2 , and the static part

χst,0kn , arise in a different way. They have their origin in
a purely electronic contribution,

SηΘ = −2T∂Tn0

∫
x

~ηT γ̂2
~Θ0. (70)

This term was not included in Eq. (66), because T∂Tn0 ∝
ν̄′ε. As a consequence, S0

δQ in Eq. (13) also acquires ad-

ditional contributions, S0
δQ → S0

δQ + Sηϕ + SηX , where

SηX = −π
2
T∂Tn0Γ0

ρTr[η̂δX̂], (71)

Sηϕ = 2T∂Tn0

∫
x

~ηT γ̂2~ϕFL. (72)

The static part of the correlation function is obtained

from Sηϕ as χst,0kn = −T∂Tn0z
0
1 , and χdyn,0kn,2 originates

straightforwardly from SηX .

VII. CONCLUSION

In this manuscript, we introduced a NLσM approach
aimed at calculating quantities that are strongly af-
fected by particle-hole asymmetry. We focused on two-
dimensional systems with quadratic dispersion, and de-
rived a minimal extension of the Finkel’stein model which
accounts for deviations of the electron velocity from the
Fermi velocity by including a frequency-dependent diffu-
sion coefficient. The generalized model is obtained from
Finkel’stein’s model by replacing the Q̂-field by X̂ =
Q̂ + 1

4iD
′
ε(∇Q̂)2. Our considerations in this manuscript

were based on the Keldysh NLσM. Due to the structural
similarity, we expect the replacement rule Q → X to be
applicable for the NLσM in the Matsubara formalism as
well.

We studied a model with short-range Fermi-liquid in-
teractions. Coulomb interactions can be included into
the formalism using the procedure outlined in Ref. [19].
As an application, we analyzed the heat density-density
correlation function in the ladder approximation, and cal-
culated interaction corrections to its static part. These
calculations served two purposes. They demonstrated
that the results obtained with the help of the generalized
NLσM are consistent with results previously obtained by
different means, Ref. [31]. The calculations also consti-
tute a first step in analyzing interaction corrections to
the thermoelectric transport coefficient, a problem that
will be addressed in a future publication.
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Appendix A: Gaussian action

In this appendix, we discuss the Gaussian action re-
sulting from S0

δQ [Eq. (13)], and the corresponding con-
traction rules. In this manuscript, we work with the ex-
ponential parameterization,

Û = e−P̂ /2, Û = eP̂ /2, {P̂ , σ̂3} = 0. (A1)

The matrix Q̂ is related to P̂ as Q̂ = σ̂3 exp(P̂ ). We

further write P̂ as a matrix in Keldysh space in the form

P̂εε′(r) =

(
0 dcl;εε′(r)

dq;εε′(r) 0

)
, (A2)

where dcl/q are hermitian matrices in the frequency do-

main and in spin space, [dαβcl/q;εε′ ]
∗ = dβαcl/q;ε′ε. Expanding

S0,ηϕ+Sint,η up to second order in P̂ and neglecting the
source fields, one finds the Gaussian action as

S = − iπν
4

∫
tr[D̂ε̂(∇P̂ )2 − 2iε̂σ̂3P̂

2] (A3)

−π
2ν

8

∫
r,εi

(
tr[γ̂iσ̂3P̂ε1ε2 ]γ̂ij2 Γ0

ρtr[γ̂j σ̂3P̂ε3ε4 ]

+tr[γ̂iσσ̂3P̂ε1ε2 ]γ̂ij2 Γ0
σtr[γ̂jσσ̂3P̂ε3ε4 ]

)
δε1−ε2,ε4−ε3 .

This result allows us to find Gaussian averages of the
components of dcl and dq by inverting the quadratic form.
In order to formulate the result, it is convenient to sep-
arate the singlet and triplet channels. To this end, we
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expand dcl and dq in terms of the Pauli spin matrices σl

as

dlcl/q;εε′ =
1

2

∑
αβ

σlβαd
αβ
cl/q;εε′ , l = (0, 1− 3). (A4)

Using this notation, we obtain for the singlet channel
(l = 0)

〈
d0
cl;ε1ε2(q)d0

q;ε3ε4(−q)
〉

= − 1

πν
Dε(q, ω) (δε1,ε4δε2,ε3

−δω,ε4−ε3iπ∆ε1ε2Γ0
ρD−1(q, ω)D1(q, ω)Dε̃(q, ω)

)
,

(A5)

Singlet channel and triplet channels do not interfere in
the Gaussian approximation. The average in the triplet
channel for i, j ∈ {1, 2, 3} reads as

〈
dicl;ε1ε2(q)djq;ε3ε4(−q)

〉
= − 1

πν
δijDε(q, ω) (δε1,ε4δε2,ε3

−δω,ε4−ε3iπ∆ε1ε2Γ0
σD−1(q, ω)D2(q, ω)Dε̃(q, ω)

)
,

(A6)

In Eqs. (A5) and (A6), we used the following notation:
ω = ε1 − ε2, ε = (ε1 + ε2)/2, ε̃ = (ε3 + ε4)/2, ∆ε,ε′ =
Fε −Fε′ and δε,ε′ = 2πδ(ε− ε′). Further, in addition to
the diffusons already introduced in Sec. II B, we defined

D2(q, ω) =
1

Dq2 − iz0
2ω
, (A7)

where z0
2 = 1 − Γ0

σ. When the frequency dependence of
Dε is neglected, the contraction rules stated in Eq. (A5)
and Eq. (A6) reduce to those obtained from the Keldysh
sigma model in the absence of the particle-hole asymme-
try.

Appendix B: Derivation of Eq. (54)

In this appendix, we briefly summarize the initial steps
in the derivation of the NLσM which lead to Eq. (54).
The derivation of the Keldysh NLσM was first described
in Refs. [8, 9, 46, 47]. Here, we will use the notation
introduced in Ref. [16]. Starting from the action Sk in

Eq. (51), it is convenient to form vectors ~ψ = (ψ+, ψ−)T ,

and ~ψ† = (ψ†+, ψ
†
−) with components corresponding to

the fields ψ and ψ† on the forward and backward path,
respectively. Then, the Keldysh rotation can be intro-

duced by transforming the fields ~ψ and ~ψ† as

~Ψ† = ~ψ†L̂−1, ~Ψ = L̂σ̂3, L̂ =
1√
2

(
1 −1
1 1

)
. (B1)

The disorder average of the Keldysh parti-
tion function results in a four-fermion term
Sdis = (i/4πντ)

∫
r
(
∫
t
~Ψ†x~Ψx)2 in the action. The

term Sdis can be decoupled with the help of a

Hubbard-Stratonovich transformation by introduc-
ing an auxiliary integration over a hermitian matrix
Q̂(r, t, t′). As a result, the following terms appears

in the action, δS = i
2τ

∫
r,t,t′

~Ψ†r,tQ̂(r, t, t′)~Ψr,t′ +
πνi
4τ

∫
r,t,t′

tr[Q̂(r, t, t′)Q̂(r, t′, t)]. The saddle point equa-

tion for Q̂ can be solved by the matrix Q̂0(r, t, t′) = Λ̂t−t′ ,

where Λ̂ε = ûεσ̂3ûε and ûε was introduced in Eq. (17).
We are interested in describing the slow diffusive mo-

tion of electrons at long times and distances. In the
NLσM formalism, the diffusive behavior is encoded in
gapless fluctuations around the saddle point solution Q̂0

that respect the condition (Q̂ ◦ Q̂)t,t′ = δ(t − t′). The
symbol ◦ denotes a convolution in time. A convenient
parametrization of the fluctuations reads as

Q̂ = û ◦ Q̂ ◦ û, Q̂ = Û ◦ σ̂3 ◦ Û , (B2)

where Û = Ût,t′(r), and (Û ◦ Û)t,t′ = δ(t − t′). All
these steps are standard in the derivation of the Keldysh
NLσM. We present the fermionic part of the action as

S[~Ψ†, ~Ψ] =

∫
x,x′

~Ψ†x

(
Ĝ−1

0 (x, x′) + δr,r′
i

2τ
Q̂(r, t, t′)

)
~Ψx′ .

(B3)

Here, Ĝ0 is the non-interacting Green’s function of the
clean system with the typical triangular structure

Ĝ0 =

(
GR0 GK0
0 GA0

)
= û ◦ Ĝ0 ◦ û, (B4)

where Ĝ0 = diag(GR0 , G
A
0 ) is diagonal, and GR0 , GA0 , and

GK0 are the retarded, advanced and Keldysh components,
respectively. In order to prepare the gradient expansion,

we rotate the fields ~Ψ and ~Ψ† as

~Ψ→ û ◦ Û ◦ ~Ψ, ~Ψ† → ~Ψ† ◦ ˆ̄U ◦ û, (B5)

respectively. It is convenient to Fourier transform all
fields with respect to the time arguments, and to use a
matrix notation for the resulting fields in the frequency
space. This brings us to Eq. (54) in the main text.

Appendix C: Derivation of S2 in Eq. (59)

The term S2 displayed in Eq. (59) is obtained from

Eq. (56) by integrating ~Ψ† and ~Ψ while retaining terms of

fourth order in gradients of the slow field Û and ˆ̄U . Such
terms originate from the following two contributions to

the action in Eq. (56), SV = 1
2m

∫
r
~Ψ†[V̂i

−→
∇i −

←−
∇iV̂i]~Ψ

and SV2 = 1
2m

∫
r
~Ψ†V̂iV̂i~Ψ, upon averaging with S0 =∫

r
~Ψ†Ĝ−1~Ψ. Six terms can give rise to four gradients,

δSa = − i
4! 〈〈S

4
V〉〉, δSb = − 1

2! 〈〈S
2
VSV2〉〉, δSc = i

2 〈〈S
2
V2〉〉,

δSd = i
2 〈〈S

2
V〉〉, δSe = i〈〈SVSV2〉〉, and δSf = − 1

3! 〈〈S
3
V〉〉.
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Here, the double brackets 〈〈. . . 〉〉 denotes the connected
average with respect to S0. The calculation is simpli-
fied by the fact that the frequency dependence of the
Green’s function Ĝ can be neglected. Furthermore, only
terms that are odd under the transformation (23) are
relevant for our discussion since such terms reflect the
particle-hole asymmetry in the system. We find that the
important contributions come from

δSa =− 8πνDD′ε〈ninjnknl〉Tr[V̂i⊥V̂j⊥V̂k‖V̂ l‖σ̂3],

δSb =− πνDD′ε×
× Tr[V̂iV̂i(V̂j‖V̂j⊥ − V̂j⊥V̂j⊥ − V̂j⊥V̂j‖)σ̂3],

δSe =πνDD′εTr[∇iV̂i⊥(V̂jV̂j)⊥σ̂3],

δSf =− πνDD′εTr[Vk‖[∇jV̂k⊥, V̂j⊥]σ̂3]. (C1)

Here, 〈ninjnknl〉 = 1
8 (δijδkl + δikδjl + δilδjk) is an angu-

lar average over components of the unit vector n, sum-
mation over repeated vector indices is implied, and we
denote the diagonal and off-diagonal components of V̂i
in Keldysh space as V̂i‖ and V̂i⊥, respectively. Summing
up all contributions we obtain

S2 = 2πνDD′εTr[V̂i⊥V̂i⊥V̂j⊥V̂j⊥σ̂3], (C2)

which can be brought to the form displayed in Eq. (59)

with the help of the identity ∇iQ̂ = 2Û V̂iσ̂3
ˆ̄U in con-

junction with the normalization condition Q̂2 = 1.
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