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Future mathematics teachers must be able to interpret a wide range of mathematical statements, 

in particular conditional statements. Literature shows that even when students are familiar with 

conditional statements and equivalence to the contrapositive, identifying other equivalent and 

non-equivalent forms can be challenging. As a part of a larger grant to enhance and study 

prospective secondary teachers’ (PSTs’) mathematical knowledge for teaching proof, we 

analyzed data from 26 PSTs working on a task that required rewriting a conditional statement in 

several different forms and then determining those that were equivalent to the original statement. 

We identified three key strategies used to make sense of the various forms of conditional 

statements and to identify equivalent and non-equivalent forms: meaning making, comparing 

truth-values and comparing to known syntactic forms. The PSTs relied both on semantic 

meaning of the statements and on their formal logical knowledge to make their judgments.  
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Mathematics educators generally agree that teaching mathematics in ways that promote 

reasoning and proof can deepen students’ understanding and support retention of knowledge 

(e.g., Hanna & deVillers, 2012; Harel, 2013). Furthermore, researchers and policy makers 

support integration of proof and reasoning across all grade levels and mathematical topics 

(NCTM, 2009; NGA & CCSSO, 2010). In order to bring this vision of mathematics teaching into 

reality, teachers need to have robust understanding of deductive reasoning, valid modes of 

inference, proof techniques, and other aspects, which comprise knowledge of the logical aspects 

of proof (Buchbinder & McCrone, 2018). Moreover, teachers must flexibly use this knowledge 

in the context of school mathematics.   

As part of a larger grant to study and enhance prospective secondary teachers’ (PSTs’) 

mathematical knowledge for teaching proof, we designed instructional activities aiming to 

strengthen their knowledge of the logical aspects of proof. The activities were enacted in the 

capstone course, Mathematical Reasoning and Proof for Secondary Teachers, which is a blended 

content and pedagogy course developed as a part of the grant (Buchbinder & McCrone, 2018).  

One set of such activities focused on conditional statements and logical equivalence, or the 

lack of thereof, between the implication P⇒ Q and various logical forms, such as contrapositive, 

converse, inverse, but also other forms such as P if Q or P is necessary for Q. The purpose of the 

activities was to push the PSTs thinking beyond typical “if-then” statements, in hopes that by 

identifying ways of moving their own understanding forward, the PSTs would strengthen their 

knowledge of the logical aspects of proof, which in turn, could inform their future teaching.  

As researchers, we sought to understand the process by which the PSTs made sense of 

various logical forms of conditional statements and to identify strategies by which the PSTs 

determined logical equivalence. Our work was guided by the research question: How do PSTs 

make sense of various logical forms of conditional statements and establish equivalence between 

them? 



Background and Theoretical Perspectives  

A conditional statement (or a logical implication), denoted as P⇒ Q, can be expressed in 

words as If P then Q or P implies Q. But many other equivalent forms are possible, for example, 

Q if P, P only if Q, P is sufficient for Q and Q is necessary for P. Formally, two statements are 

logically equivalent if they have the same truth tables. This definition can be used to determine 

that a contrapositive ~Q⇒ ~P is equivalent to P⇒ Q. However, it cannot be applied directly to 

the logical forms mentioned above. The equivalence of these forms to the original implication is 

not obvious and many require a few logical steps to show. As an example, consider the form P 

only if Q. Taken by itself, this statement says that P is true only under the condition that Q is 

true. In other words, if Q is false, it cannot be the case that P is true (i.e., P is also false). Using 

such reasoning, one might recognize that P only if Q is equivalent to not Q implies not P which is 

the contrapositive of the statement P implies Q, and thus is equivalent to P implies Q (Chartrand, 

Polimeni & Zhang, 2018). This type of reasoning can be challenging, as it requires both syntactic 

understanding of the formal symbolic notation and the semantic understanding of the meaning of 

each logical form and the related wording (Weber & Alcock, 2004).  

Studies have shown that mathematics majors and PSTs often misinterpret mathematical 

language and experience particular difficulties with conditional statements. These include 

confusion between an implication and its converse (Q⇒ P) (Durand-Guerrier, 2003), interpreting 

an implication as a biconditional (P⇔ Q) (Epp, 2003), difficulty understanding the equivalence 

between an implication and a contrapositive (Dawkins & Hub, 2017; Stylianides, Stylianides & 

Philippou, 2004) or between an implication and a disjunction (~P ∨ Q) (Hawthorne & 

Rasmussen, 2015). However, we are not aware of studies that examined how undergraduates, in 

particular PSTs, make sense of logical equivalence of a broad range of logical forms of 

conditional statements. We see this as a crucial aspect of teacher preparation, as teachers need 

flexible knowledge to make sense of and rephrase their students’ contributions into more precise 

mathematical statements in order to determine their validity.  

Methods 

The Conditional Statements activities took place in the capstone course, Mathematical 

Reasoning and Proof for Secondary Teachers, for which the first author served as the instructor. 

All PSTs enrolled in the course agreed to participate in the study: 15 PSTs in Fall 2017, and 11 

PSTs in Fall 2018. All PSTs were native English speakers. At the time of data collection all 

PSTs were seniors, thus, they had completed most of their mathematics coursework, including 

several proof-based classes such as Mathematical Proof, Geometry and Abstract Algebra. Hence, 

the goal of the Conditional Statements activities was not to introduce PSTs to new material, but 

to help them refresh and strengthen their content knowledge of conditional statements. The 

content focus included the meaning and logical notation of the implication P⇒ Q, recognition of 

hypothesis and conclusion in context specific statements worded in different forms, determining 

truth-value of conditional statements, and recognizing equivalent and non-equivalent logical 

forms such as a contrapositive ~Q⇒ ~P and a converse Q⇒ P.  

The activity that is the focus of this paper included the following tasks:  

a. Working in small groups, determine which of the 11 given logical forms are equivalent to 

the original implication P⇒ Q and which are not (Fig. 1);  

b. Create a poster display of the equivalent and non-equivalent statements and share those 

posters with other groups;  



c. Discuss the answers as a whole class, clarify difficult items, and summarize main points 

about logical equivalence and its relationship to truth-value.   

Each group received a different mathematical statement, but the logical forms were the same 

across all groups. The mathematical statements of each group were the following:  

Group 1: A graph of an odd function passes through the origin (assume f is defined at 0).  

Group 2: A number that is divisible by 6 is divisible by 3. 

Group 3: Diagonals of a rectangle are congruent to each other.       

 
Figure 1. A worksheet of Group 3 (Geometry) 

The inclusion of a mathematical context and symbolic form in one task aimed to support the 

PSTs flexible understanding and use of formal logical notation while grounding it in familiar 

content (Dawkins, 2017; Dubinsky & Yiparaki, 2000).  

The tasks were enacted across two class periods and took about two hours to complete. The 

data were collected in the form of video recordings of each groups’ work with a tabletop 360° 

video camera, a stationary camera to capture the whole class discussion, and PSTs’ written work 

in the form of worksheets and posters. The video recording and their transcripts were the primary 

data source for this paper. Written artifacts served as a secondary data source.  

To analyze the data, we divided the video transcripts into meaningful episodes, and used 

open coding (Wiersma & Jurs, 2005) and the constant comparative method (Strauss & Corbin, 

1994) to identify categories of strategies the PSTs utilized to determine whether certain forms of 

conditional statements are logically equivalent to the implication P ⇒ Q. 

Results 

Our analysis revealed three main strategies in the PSTs approaches to determining logical 

equivalence: (1) meaning making, (2) comparing truth-values, and (3) comparing to known 

syntactic forms. These strategies are interrelated and some have further sub-categories, which we 

elaborate below. The two types of logical forms that appeared to present most challenges to the 

PSTs were P only if Q, and the statements that contained the language of necessary and sufficient 



condition. Thus, the data excerpts chosen to illustrate the strategies are taken from these types of 

statements as they provided the clearest evidence of the PSTs strategies to determine 

equivalence, although the strategies were observed throughout all types of logical forms. Note, 

the text in square brackets was added for clarification.   

Strategy 1: Meaning Making 

This strategy entails rephrasing of the statement (often multiple times) in search of a clearer 

meaning. This process included three types of sub-strategies: (a) introducing additional or 

substituting alternative words, (b) attempting to put a statement into an “if-then” form, and (c) 

relying on counterexamples and “feelings”.  

Rephrasing by adding or substituting words. When trying to interpret conditional 

statements that were worded as necessary or sufficient conditions the PSTs initially attempted to 

substitute open sentences for P and Q, but quickly discovered that this may result in a 

nonsensical statement, as shown below: 

Excerpt #1. Sam: …how to write that… P is necessary for Q.  

Bill: Yeah, I’m trying to think about a word… 

Nate: That’s a lot of is’s. Cause “a quadrilateral is a rectangle is necessary for its diagonals 

are congruent …it’s just awkwardly worded. 

Laura: A quadrilateral must be a rectangle for the diagonals to be congruent. 

Nate: mmm…nice change.  

The PSTs also found it difficult to distinguish between necessary and sufficient conditions. 

The following excerpt illustrates the PSTs’ confusion as they tried to word the statement: If a 

number is divisible by 6 then it is divisible by 3 in the form Q is sufficient for P.   

Excerpt #2. Penny: It is sufficient to know that a number is divisible by 3… 

Zoe: If it’s divisible by 3 then it’s satisfies that it’s going to be divisible by, …no.  

Linda: No, technically not. 

Zoe: But that’s not what it’s saying, sufficient is like if it satisfies… that guarantees… so, if a 

number is divisible by 3, then it guarantees that it is divisible by 6.  

Here, Penny tried to retain the wording of “is sufficient” while Zoe struggled a bit but then 

offered the alternate wording if it satisfies Q, then it guarantees P. Not all attempts to rephrase 

the statement preserved the meaning, but this strategy was highly prevalent and for the most part 

was efficient in PSTs’ attempts to determine equivalence.       

 Rephrasing in “if-then” form. Much of the PSTs’ rephrasing efforts were directed towards 

putting the statements into an “if-then” form (e.g., Zoe’s attempts in Excerpt #2 above), even 

when this was not entirely appropriate. Consider the excerpt below:   

Excerpt #3. Audrey: Umm…and then another one that was really confusing for us was Q is 

necessary for P. So we said, if a number is divisible by 3, it is necessary for it to be 

divisible by 6, but that’s like opposite of what the [original] statement is saying. Cause if 

a number is divisible 3, it doesn’t have to be divisible by 6. 

Here, Audrey’s group rephrased Q is necessary for P incorrectly as if Q it is necessary for it 

to be P, which seems to be further simplified as if Q then P. This changed the meaning of the 

statement indeed transforming it into one not equivalent to the original.    

The strategy of rephrasing a statement in an “if-then” form worked for the P if Q statement. 

The PSTs put “if” at the beginning of the sentence: if Q, P, and added the words “follow” or 

“then” to correctly conclude that P if Q is equivalent to if Q then P, and thus not equivalent to the 

original implication. However, this strategy failed when interpreting P only if Q statement. The 



PSTs either came to impasse, not knowing how to interpret only if Q, P or they simply dropped 

the word “only,” wrongly transforming the statement into if Q then P (see Excerpt #5 below)  

Counterexamples and “Feelings.” The PSTs constructed counterexamples to help them 

make sense of the statements. For example, Emily used the counterexample of y = x2, a non-odd 

function passing through the origin to help her make sense of the form P if Q and to conclude 

that it is not equivalent to P implies Q. She said: “No, it’s not equivalent. [A function] x2 can 

pass through the origin. It [P if Q] is saying if a graph passes through the origin, then the 

function is odd. It’s flipping it.”  

In both cohorts, the PSTs came up with the same counterexamples: y = x2 for the statement 

about functions, an isosceles trapezoid to show that a quadrilateral which is not a rectangle can 

have congruent diagonals, and numbers 9 and 15, which are divisible by 3 but not divisible by 6. 

Once someone in the group introduced a counterexample into a public space, the members of the 

group repeatedly used it to make sense of various forms of conditional statements. However, the 

PSTs occasionally misused these counterexamples in statements. For instance, Derick attempted 

to use the function y = x2 to disprove a statement “A graph of the function passes through the 

origin if the function is odd”, which has a form Q if P. Derick noticed that the function y = x2 

satisfies Q, i.e. passes through the origin, but is not an odd function, and wrongly attempted to 

use it to disprove Q if P, without considering that it is equivalent to P implies Q, which makes 

his counterexample non-applicable.   

As much as the use of counterexamples was prevalent in the PSTs’ strategies, most 

frequently the PSTs simply relied on their perception to make a claim about the equivalence of 

statements, without providing any justification, as the next excerpt shows:   

Excerpt # 4. Rebecca: Alright, next, to infer Q is sufficient to know P. 

Logan: Logically, I think it is [equivalent].  

Dylan: Really? This is definitely not logically equivalent. Knowing the function is odd is 

sufficient to infer the graph passes through the origin... Maybe it is. 

Grace: Wait, I actually think that’s equivalent. It’s like exactly the same. 

Dylan: Yeah, yeah actually it is equivalent. Oh yeah. 

It can be argued that such words as “logically, I think” or “I feel like” (see excerpt #5 below) 

were used merely as a figure of speech. However, in the absence of any other justifications, we 

tend to interpret them as discursive mechanisms for convincing oneself or others. We also 

acknowledge that the PSTs’ feelings were probably based on their prior knowledge of both the 

mathematical content, the formal logical notation, and the counterexamples discussed in their 

groups. All these could be used to create mental representations of statements, which could then 

be compared to one another to determine equivalence. However, not surprisingly, the “feelings” 

were not always reliable, and often led to incorrect conclusions.   

Strategy 2: Comparing Truth-Values 

A second key strategy the PSTs used to decide if the statements are equivalent or not, was to 

compare their truth-values. In group discussions, the PSTs quickly agreed that equivalent 

statements must have the same truth-values and that statements that have different truth-values 

cannot be equivalent. These conclusions were not obvious to everyone, but the PSTs eventually 

resolved any initial doubts within their groups, without the instructor’s intervention.  

A more difficult point to agree upon was whether having the same truth-value made 

statements equivalent. This point required more discussion and negotiation, especially, since all 

statements in the worksheets which had the same truth-value to the original implication were also 

equivalent to it. Thus, the PSTs had to come up with their own examples of statements that have 



the same truth-value but are not equivalent. This was not always easy, as can be seen in Dylan’s 

comment: “I think, we agreed that if it’s equivalent, the truth value has to be the same, but you 

can have a case that the truth value is the same, but it’s not equivalent to the statement. So we 

were saying we found an if and only if case that was true, it’s not going to be equivalent to your 

original statement, but you can have the same truth value.” 

If the truth-values could not be used to establish equivalence, the PSTs referred back to 

relying on meaning making and “feelings”, as the next excerpt shows:  

Excerpt # 5: Nate: I feel like the only if would be the same as saying if Q then P. So I think, 

yeah, the P only if Q is like saying if Q then P. Which is not necessarily equivalent. 

Audrey: I feel like that shouldn’t be equivalent. 

Nate: It just can be true. Cause I feel like, I feel like… 

Audrey: That’s true. But doesn’t mean that it’s equivalent. 

While attempting to rephrase P only if Q in an “if-then” form, Nate mistakenly transforms it 

into Q implies P, but then correctly concludes that the rephrased statement is not equivalent to P 

implies Q. Both Nate and Audrey appeal to their feelings to seal the conclusion.     

Strategy 3: Compare to Known Syntactic Forms 

Since all PSTs had previously successfully completed proof-oriented courses, they often 

drew on their familiarity with logical notation, conditional statements, and other relevant 

concepts. For instance, the PSTs were aware that an implication is equivalent to a contrapositive, 

and used it in their work, as Dana’s comment shows: “I think I came to the decision that P only if 

Q is not-equivalent [to P implies Q]. So P only if Q is the same as saying if Q is true, then P is 

true. So then the contrapositive of that would be not P implies not Q, and that is not equivalent to 

P implies Q in the first place.”  

Dana’s first step is an incorrect interpretation of P only if Q as If Q then P. But then she 

correctly states that the contrapositive of If Q then P is not P implies not Q, and correctly 

concludes that it cannot be equivalent to P implies Q.  

Our PSTs also seem to have a good grasp of non-equivalence of an implication to its 

converse, as illustrated below.  

Excerpt # 6: Angela: ‘Cause doesn’t the converse like by definition is the opposite truth-

value of the original. That’s what the converse is? Or no? 

Sam: No, you can’t determine truth-value by the converse. But the converse could be true in 

some cases. I think, yeah. It’s not necessarily true, but it could be true… Technically the 

converse is a whole different statement in itself. 

Bill: ‘Cause we’re reversing p and q. 

Sam: Yeah, like they’re never gonna be logically equivalent. 

Here Sam correctly explained that although a converse can have the same truth-value as the 

implication, it cannot be equivalent to it. Bill justified that by saying that the converse “reverses 

P and Q”. The other members of the group accepted this explanation. Similar conversations 

occurred in all other groups, and were resolved correctly without the instructor’s intervention. 

The PSTs also recalled that a biconditional entails the truth of both an implication and its 

converse, and used it to justify non-equivalence of a biconditional and an implication. Note that 

in both excerpts above, the PSTs operated solely within a syntactic domain, without invoking 

semantic meaning of the statements and without appealing to examples.  



The Missing Strategy: Negation  

Visibly absent from PSTs’ strategies was the use of negation. In our data from both cohorts, 

we recorded only one instance of the use of negation to make sense of P only if Q. Except for 

that instance, the PSTs avoided using negation despite having the relevant prior knowledge. The 

forms for which the use of negation was critical were P only if Q, and the necessary condition. 

Unless prompted by the instructor, the PSTs seemed unable or unwilling to introduce negation to 

interpret “only if” or “necessary” as “otherwise” or “if not”.  

Discussion  

In this paper, we examined data from two cohorts of prospective secondary teachers’ 

interactions with Conditional Statements activities in the context of a capstone course aimed to 

enhance their content and pedagogical knowledge of proof. The key feature of the activities was 

the inclusion of both the formal logical notation and mathematical context from the secondary 

curriculum: number and operation, geometry and functions. Our study focused on understanding 

how PSTs make sense of various logical forms of conditional statements and establish 

equivalence between them. We identified three main strategies the PSTs used to establish 

equivalence, or the lack thereof, between a broad range of logical forms: (1) meaning making, 

(2) comparing truth-values, and (3) comparing to known syntactic forms.  

 Semantic strategies, what we term as meaning making, were prevalent in the PSTs’ 

approaches, concurring with the literature (e.g., Dubinsky & Yiparaki, 2000). The PSTs 

rephrased the statements multiple times to make them more comprehensible either by adding or 

substituting words or by putting the statements into an “if-then’ form. The PSTs used 

counterexamples to make sense of the statements akin to experts’ use of counterexamples (cf. 

Lockwood, Ellis, & Lynch, 2016). Our data show that in many cases these strategies proved to 

be helpful in determining equivalence of the various logical forms, but not always. At times, the 

PSTs would fall back on feelings, relying on their perceptions of the content of statements. This 

phenomenon reflects the nature of our data, which was captured during the natural discourse 

among the PSTs. We suspect that the PSTs’ perceptions were grounded in prior knowledge, and 

the PSTs would be able to mathematically justify their thinking, if requested.  

The two logical forms that were most challenging for the PSTs to interpret were: P only if Q 

and P is necessary for Q. Interpreting these forms requires the use of negation, which did not 

come naturally to our PSTs, as consistent with the literature (Dawkins, 2017). However contrary 

to prior studies (e.g., Dawkins & Hub, 2017; Durand-Guerrier, 2003) our PSTs seemed 

knowledgeable about an implication being equivalent to a contrapositive and non-equivalent to a 

converse. The PSTs often relied on this formal logical knowledge to determine whether certain 

logical forms are equivalent or not, without assessing the semantic meaning of these statements.  

The studies on knowledge retention in the area of formal logic are scarce, thus, our study 

adds to this literature by demonstrating knowledge retention of logical aspects of proof, beyond 

the typical introduction to proof course. Specifically, our study identified particular aspects of 

this knowledge that were retained and flexibly used by PSTs to make sense of a broad range of 

logical forms of conditional statements, and determine their logical equivalence. Our data show 

that the PSTs can apply their knowledge of formal logic to the secondary school context, and use 

it to interpret a wide range of logical forms of conditional statements, which may come up in 

classroom discourse. Another contribution to the literature is the design of the Conditional 

Statements activity that uncovered these strategies and elicited a range of rich discussion among 

PSTs around the various logical forms of conditional statements.  
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