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ABSTRACT: Pd-catalyzed C-H arylation of heteorarenes is an
important and widely studied synthetic transformation; however, the
regioselectivity is often substrate-controlled. Here, we report catalyst-
controlled regioselectivity in the Pd-catalyzed oxidative coupling of N-
(phenylsulfonyl)indoles and aryl boronic acids using O, as the oxidant.
Both C2- and C3-arylated indoles are obtained in good yield with>10:1
selectivity. A switch from C2 to C3 regioselectivity is achieved by
including 4,5-diazafluoren-9-one or 2,2'-bipyrimidine as an ancillary
ligand to a "ligand-free" Pd(OTs), catalyst system. Density functional
theory calculations indicate that the switch in selectivity arises from a
change in the mechanism, from a C2-selective oxidative-Heck pathway
to a C3-selective C—H activation/reductive elimination pathway.

Oxidative arylation of (hetero)aromatic C—H bonds provide
efficient access to biaryl compounds; however, these reactions can
lead to a mixture of regioisomers when more than one reactive C—
H bond is present in the substrate.'* In some cases, substrates react
preferentially at a single C—H site,*> while, in other cases, directing
groups guide the catalyst to a desired site.® Ideally, site selectivity
could be achieved via catalyst control, without requiring a directing
group in the substrate.” Reactions of indoles have been the focus of
extensive attention, and C2- and C3-aryl derivatives are
prominently featured in biologically active molecules (e.g.,
Scheme 1A%?). Synthetic methods have been developed to access
either C2 or C3 site-selectivity,'%!? using oxidative and non-
oxidative C-H arylation methods.!>?® Seminal studies by
Fagnou'*!® and DeBoef!®!” demonstrated Pd-catalyzed oxidative
C-H/C-H coupling of indoles with simple arenes. A switch in
regioselectivity was achieved by changing the reaction conditions,
most notably by changing the stoichiometric oxidant from AgOAc
(C2 selective) to Cu(OAc), (C3 selective) (Scheme 1B, left).2*!
We later showed that analogous arylation reactivity could be
achieved with O, as the oxidant, with regioselectivity controlled by
the identity of the neutral and anionic Pd ligands (Scheme 1B,
right).20

Pd-catalyzed oxidative arylation of indoles with boronic acids
represents an alternative route to these products, incorporating
several synthetically appealing features. They operate under mild
conditions, employ approximately 1:1 substrate ratios, and exhibit
broad scope with respect to the aryl coupling partner. Previous
examples of these reactions exhibit nearly exclusive selectivity for
arylation at the C2 position.®!832-36 In the present study, we
demonstrate aerobic oxidative coupling of arylboronic acids with
N-(phenylsulfonyl)indoles and show that either C2 or C3
selectivity is possible, depending on the catalyst identity (Scheme
1C).37-3 Selective C2-arylation is observed with an electrophilic
Pd(OTs), catalyst, while high C3 selectivity is observed upon
addition of 4,5-diazafluoren-9-one (DAF) or 2,2'-bipyrimidine
(bpym) as an ancillary ligand. Insights from density functional

Scheme 1. Purpose and Goal for Catalyst-Controlled Selective
Aerobic Arylation of N-(Phenylsulfonyl)Indoles
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theory (DFT) calculations show that this change in selectivity
arises from ligand-based inhibition of an oxidative-Heck arylation
mechanism, which favors C2 selectivity. In the presence of the
chelating ligand, a C3-selective C-H activation/reductive
elimination pathway is favored.

N-(Phenylsulfonyl)indole and 4-fluorophenylboronic acid were
selected as the initial substrate partners owing to their relevance to
the bioactive molecules in Scheme 1A.%° The Pd(OAc),/AcOH
conditions similar to those used for arylation of electron-rich N-
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H/alkyl indoles showed poor reactivity with the N-
(phenylsulfonyl)indole.'”®  Changing the solvent to 1,2-
dichloroethane (DCE) and replacing the acetates with non-basic
anionic ligands had a beneficial effect.*’ In particular, Pd(OTs), (Ts
= 4-toluenesulfonyl), generated in situ by adding 4 equiv TsOH to
Pd(OAc),, catalyzed the desired arylation reaction in 74% yield
with an 8:1 C2:C3 product ratio (Figure 1A - No L). Addition of
ancillary ligands had mixed results. Addition of 1 equiv of pyridine
to the Pd(OTs); catalyst diminishes the yield and selectivity (45%,
C2:C3 =4:1) system, while addition of 2 equiv of acetonitrile leads
to an improved yield and a switch in selectivity (63%, C2:C3 =
1:2). Mono-N-protected amino acids (MPAAs)*! and many
bidentate ligands (e.g., 2,2'-bipyridine, neocuproine) inhibit or fail
to improve yields or selectivity (Figure 1A); however, two
exceptions were identified: 4,5-diazafluoren-9-one (DAF) and
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Figure 1. Ligand effects on yield and regioselectivity in the coupling
of N-(phenylsulfonyl)indole and 4-fluorophenylboronic acid (A) and
selected optimization data for of C2 selective (B) C3 selective (C)
arylation reactivity. Conditions beyond those indicated in the graphic:
Indole (0.2 mmol), 17 h, 1 mL solvent. “Pd(OTs), generated in-situ
from Pd(OAc), and TsOH-H,O (1:4). %(MeCN),Pd(OTs), was used as
the catalyst with no additional ligand ¢The reaction with 2,2'-
bipyrimidine was performed with 5% [Pd(OTs),] and 2.5% ligand in
acetic acid/trifluoroethanol (1:1) as the solvent. “Determined by 'H
NMR analysis (int. std. = 1,1,2,2-tetrachloroethane).

2,2"-bipyrimidine (bpym), both of which supported good reactivity
and C3 selectivity (Figure 1A).

Building on this initial survey, we further optimized the catalyst
systems and reaction conditions to access the C2- and C3-arylation
products, targeting higher yields and selectivities. The Pd loading
was lowered to 5 mol%, and selected data leading to the optimal
conditions are shown in Figures 1B and 1C (see Tables S1 and S2
of the Supporting Information for full screening data). Assessment
of various transition metal and Lewis acid cocatalysts showed that
inclusion of 5 mol% Fe(NOs); supported formation of the C2-
arylation product in near quantitative yield at room temperature
with a 20:1 C2:C3 selectivity (Figure 1B, entry 4). Optimization
efforts for C3 arylation focused on a bpym/Pd(OTs), catalyst
system. Screening results showed that the yield and selectivity
benefitted from use of a protic solvent mixture (AcOH/tri-
fluoroethanol) and a somewhat higher reaction temperature (60 °C;
Figure 1C). Optimal conditions featured the use of Cu(OAc), and
benzoquinone (BQ) as cocatalysts, resulting in full conversion of
the starting material and an 81% product yield with a C2:C3
selectivity of 1:13 (Figure 1C, entry 3).

This ability to achieve catalyst-controlled regioselectivity in the
oxidative arylation of N-(phenylsulfonyl)indoles proved effective
with other substrates (Figure 2). The two catalyst systems consist
of Pd(OTs),/Fe(NO3);s for C2-selective arylation and
Pd(OTs),/bpym/Cu'/BQ for C3-selective arylation, both using 5%
Pd loading and 1 atm O, as stoichiometric oxidant. Good yields are
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Figure 2. Substrate scope for the C2 (A) and C3 (B) selective arylation
methods. Conditions: (A,B) See schemes, indole (0.2 mmol), 17 h, 1
mL solvent. “Pd(OTs), generated in-situ from Pd(OAc), and
TsOH-H,O (1:4 for C2 conditions and 1:8 for C3 conditions). ®’NMR
yields determined by 'H NMR analysis (int. std. = 1,1,2,2-
tetrachloroethane). “Isolated yields (obtained as a mixture of
regioisomers in the indicated ratio). “Regioselectivities determined by
'H NMR analysis.
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Figure 3. Computational results probing the switch in selectivity by use of ancillary ligands. -Z = -SO,Ph, Unit: kcal/mol. See text and the Supporting

Information Section 5 for computational details.

accessible with several different N-(phenylsulfonyl)indoles and
with boronic acids bearing various substituents, including halides
amenable to  further  derivatization.  Good-to-excellent
regioselectivity was observed in each of the cases shown; however,
electron-rich arylboronic acids appear to be susceptible to side-
product formation.*?

Among methods available to access C2- and C3-arylindoles, 328

the reactions described here provide a unique opportunity to probe
the mechanistic origin of catalyst-controlled regioselectivity. Aryl
transmetalation from boron to Pd" under aerobic conditions similar
to those used here is facile, often proceeding efficiently at room
temperature.*34¢ The L,Pd(Ar)X species generated in this step
could then react with indole to afford the desired coupling product.
At least two different pathways could be considered for this C-C
coupling step: (a) a Heck-type pathway initiated by insertion of the
indole C2-C3 double bond into a Pd—Ar bond,?® or (b) indole C-H
activation by Pd", followed by C-C reductive elimination.*’
Studies of thiophene arylation with aryl halides suggest that both
Heck and C-H activation pathways are possible,*®° and we
postulated that our observed switch in regioselectivity could arise
from a change in the preferred mechanism under different
conditions.

The relative energetics of these two pathways were probed
computationally, focusing on the reaction of a Pd(Ar)(O3SMe)
fragment with N-phenylsufonylindole, in the absence and presence
of an ancillary ligand. DFT calculations were conducted at the
B3LYP-D3(BJ)/[6-311+G (d,p) + RSC 1997 ECP>!2 (Pd)] level
of theory. 1,2-Dichloroethane was chosen as the solvent using the
polarizable-continuum model (PCM). The experimental tosylate
anions were replace with methanesulfonate (MsO") to lower
computational costs, and we elected to use DAF rather than bpym
as an ancillary ligand, due to the similar effect of DAF and bpym
on regioselectivity and our prior computational experience with
DAF/Pd" systems®>* (cf. Figure 1A). MeCN was also evaluated
as an ancillary ligand.

The structures of the Pd(Ar)(OsSMe) species with and without
an ancillary ligand (IMM¢CN, IMPAF, and IMN°L) were optimized.
These species were defined as the starting energies (i.e., 0.0
kcal/mol) for energetic comparison of C2- and C3-arylindole
product formation via the Heck and C—H activation mechanisms
(Figure 3 and Figure S1). Significant observations from the
computational results may be summarized as follows. In the
absence of an ancillary ligand, the Heck pathway exhibits a
relatively low barrier, with regioselectivity favoring C2 arylation
(16.0 vs 20.9 kcal/mol). Barriers for the Heck pathway are

significantly higher upon coordination of DAF or MeCN as an
ancillary ligand: >30.0 kcal/mol for the C2 pathway (TS-Heck'¢2;
Figure 3) and >34.4 kcal/mol for the C3 pathway (TS-Heck -3,
Figure S1 in the Supporting Information). With a coordinated
MeCN or DAF ligand, the barrier for C—H activation at the C3
position is comparable to that of the Heck pathway (Figure 3; AAG?
= +0.9 kcal/mol TS-C-HPAFC vs TS-HeckPAF-C? and AAGH =
—1.6 kcal/mol TS-C-HM¢N-C3 v TS-HeckM*™N-C2). n addition,
C-H activation at C3 is favored over activation at C2 by 2.1
kcal/mol with both ligands (Figure S1, TS-C-HY®3 vs TS-C-H'-
€2), While these differences are within the uncertainties of the DFT
calculations, the relative energies of the C2 and C3 C-H activation
energies is expected to be meaningful (i.e., C—H activation favors
the C3 position).

Collectively, these observations provide a rationale for the
ligand-induced switch in site-selectivity for indole arylation. C2-
selective arylation appears to be accessible via a low-barrier Heck-
type pathway in the absence of added ligands, while the C3-
selective arylation in the presence of added ligands is rationalized
by a change in mechanism, whereby C—H activation is favored at
C3 over C2. The computations are consistent with mild, room-
temperature reaction conditions used to access the C2-arylation
product (see Figure 2). Similarly, the higher barriers computed for
the C3-arylation pathway is consistent with the higher temperatures
required to access the C3 products.

In conclusion, we have identified aerobic oxidation conditions
that allow for catalyst-controlled regioselectivity in the arylation of
indoles. C2 selectivity is accessed with a "ligand-free" Pd catalyst
system, while C3 selectivity is favored with a ligated catalyst
system (ligand = MeCN, DAF or bpym). Computational studies
indicate that the change in selectivity arises from a change in
mechanism, from a C2-selective Heck-type pathway in the absence
of ligands to a C3-selective C—H activation pathway in the presence
of ligands. These results, which complement insights obtained
previously from reactions of thiophenes, established an important
foundation for rational design of new regioselective heterocycle
functionalization reactions.
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