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ABSTRACT: Pd-catalyzed C–H arylation of heteorarenes is an 
important and widely studied synthetic transformation; however, the 
regioselectivity is often substrate-controlled. Here, we report catalyst-
controlled regioselectivity in the Pd-catalyzed oxidative coupling of N-
(phenylsulfonyl)indoles and aryl boronic acids using O2 as the oxidant. 
Both C2- and C3-arylated indoles are obtained in good yield with >10:1 
selectivity. A switch from C2 to C3 regioselectivity is achieved by 
including 4,5-diazafluoren-9-one or 2,2'-bipyrimidine as an ancillary 
ligand to a "ligand-free" Pd(OTs)2 catalyst system. Density functional 
theory calculations indicate that the switch in selectivity arises from a 
change in the mechanism, from a C2-selective oxidative-Heck pathway 
to a C3-selective C–H activation/reductive elimination pathway. 

Oxidative arylation of (hetero)aromatic C–H bonds provide 
efficient access to biaryl compounds; however, these reactions can 
lead to a mixture of regioisomers when more than one reactive C–
H bond is present in the substrate.1-3 In some cases, substrates react 
preferentially at a single C–H site,4,5 while, in other cases, directing 
groups guide the catalyst to a desired site.6 Ideally, site selectivity 
could be achieved via catalyst control, without requiring a directing 
group in the substrate.7 Reactions of indoles have been the focus of 
extensive attention, and C2- and C3-aryl derivatives are 
prominently featured in biologically active molecules (e.g., 
Scheme 1A8,9). Synthetic methods have been developed to access 
either C2 or C3 site-selectivity,10-12 using oxidative and non-
oxidative C–H arylation methods.13-28 Seminal studies by 
Fagnou14,15 and DeBoef16,17 demonstrated Pd-catalyzed oxidative 
C–H/C–H coupling of indoles with simple arenes. A switch in 
regioselectivity was achieved by changing the reaction conditions, 
most notably by changing the stoichiometric oxidant from AgOAc 
(C2 selective) to Cu(OAc)2 (C3 selective) (Scheme 1B, left).29-31 
We later showed that analogous arylation reactivity could be 
achieved with O2 as the oxidant, with regioselectivity controlled by 
the identity of the neutral and anionic Pd ligands (Scheme 1B, 
right).20  

Pd-catalyzed oxidative arylation of indoles with boronic acids 
represents an alternative route to these products, incorporating 
several synthetically appealing features. They operate under mild 
conditions, employ approximately 1:1 substrate ratios, and exhibit 
broad scope with respect to the aryl coupling partner. Previous 
examples of these reactions exhibit nearly exclusive selectivity for 
arylation at the C2 position.8,18,32-36 In the present study, we 
demonstrate aerobic oxidative coupling of arylboronic acids with 
N-(phenylsulfonyl)indoles and show that either C2 or C3 
selectivity is possible, depending on the catalyst identity (Scheme 
1C).37-39 Selective C2-arylation is observed with an electrophilic 
Pd(OTs)2 catalyst, while high C3 selectivity is observed upon 
addition of 4,5-diazafluoren-9-one (DAF) or 2,2'-bipyrimidine 
(bpym) as an ancillary ligand. Insights from density functional  
 

Scheme 1. Purpose and Goal for Catalyst-Controlled Selective 
Aerobic Arylation of N-(Phenylsulfonyl)Indoles 

 
 
theory (DFT) calculations show that this change in selectivity 
arises from ligand-based inhibition of an oxidative-Heck arylation 
mechanism, which favors C2 selectivity. In the presence of the 
chelating ligand, a C3-selective C–H activation/reductive 
elimination pathway is favored. 

N-(Phenylsulfonyl)indole and 4-fluorophenylboronic acid were 
selected as the initial substrate partners owing to their relevance to 
the bioactive molecules in Scheme 1A.8,9 The Pd(OAc)2/AcOH 
conditions similar to those used for arylation of electron-rich N-
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H/alkyl indoles showed poor reactivity with the N-
(phenylsulfonyl)indole.18 Changing the solvent to 1,2-
dichloroethane (DCE) and replacing the acetates with non-basic 
anionic ligands had a beneficial effect.40 In particular, Pd(OTs)2 (Ts 
= 4-toluenesulfonyl), generated in situ by adding 4 equiv TsOH to 
Pd(OAc)2, catalyzed the desired arylation reaction in 74% yield 
with an 8:1 C2:C3 product ratio (Figure 1A - No L). Addition of 
ancillary ligands had mixed results. Addition of 1 equiv of pyridine 
to the Pd(OTs)2 catalyst diminishes the yield and selectivity (45%, 
C2:C3 = 4:1) system, while addition of 2 equiv of acetonitrile leads 
to an improved yield and a switch in selectivity (63%, C2:C3 = 
1:2). Mono-N-protected amino acids (MPAAs)41 and many 
bidentate ligands (e.g., 2,2'-bipyridine, neocuproine) inhibit or fail 
to improve yields or selectivity (Figure 1A); however, two 
exceptions were identified: 4,5-diazafluoren-9-one (DAF) and 
 

 
Figure 1. Ligand effects on yield and regioselectivity in the coupling 
of N-(phenylsulfonyl)indole and 4-fluorophenylboronic acid (A) and 
selected optimization data for of C2 selective (B) C3 selective (C) 
arylation reactivity. Conditions beyond those indicated in the graphic: 
Indole (0.2 mmol), 17 h, 1 mL solvent. aPd(OTs)2 generated in-situ 
from Pd(OAc)2 and TsOH·H2O (1:4). b(MeCN)2Pd(OTs)2 was used as 
the catalyst with no additional ligand cThe reaction with 2,2'-
bipyrimidine was performed with 5% [Pd(OTs)2] and 2.5% ligand in 
acetic acid/trifluoroethanol (1:1) as the solvent. dDetermined by 1H 
NMR analysis (int. std. = 1,1,2,2-tetrachloroethane). 

2,2'-bipyrimidine (bpym), both of which supported good reactivity 
and C3 selectivity (Figure 1A). 

Building on this initial survey, we further optimized the catalyst 
systems and reaction conditions to access the C2- and C3-arylation 
products, targeting higher yields and selectivities. The Pd loading 
was lowered to 5 mol%, and selected data leading to the optimal 
conditions are shown in Figures 1B and 1C (see Tables S1 and S2 
of the Supporting Information for full screening data). Assessment 
of various transition metal and Lewis acid cocatalysts showed that 
inclusion of 5 mol% Fe(NO3)3 supported formation of the C2-
arylation product in near quantitative yield at room temperature 
with a 20:1 C2:C3 selectivity (Figure 1B, entry 4). Optimization 
efforts for C3 arylation focused on a bpym/Pd(OTs)2 catalyst 
system. Screening results showed that the yield and selectivity 
benefitted from use of a protic solvent mixture (AcOH/tri-
fluoroethanol) and a somewhat higher reaction temperature (60 °C; 
Figure 1C). Optimal conditions featured the use of Cu(OAc)2 and 
benzoquinone (BQ) as cocatalysts, resulting in full conversion of 
the starting material and an 81% product yield with a C2:C3 
selectivity of 1:13 (Figure 1C, entry 3).  

This ability to achieve catalyst-controlled regioselectivity in the 
oxidative arylation of N-(phenylsulfonyl)indoles proved effective 
with other substrates (Figure 2). The two catalyst systems consist 
of Pd(OTs)2/Fe(NO3)3 for C2-selective arylation and 
Pd(OTs)2/bpym/CuII/BQ for C3-selective arylation, both using 5% 
Pd loading and 1 atm O2 as stoichiometric oxidant. Good yields are 
 

 
Figure 2. Substrate scope for the C2 (A) and C3 (B) selective arylation 
methods. Conditions: (A,B) See schemes, indole (0.2 mmol), 17 h, 1 
mL solvent. aPd(OTs)2 generated in-situ from Pd(OAc)2 and 
TsOH·H2O (1:4 for C2 conditions and 1:8 for C3 conditions). bNMR 
yields determined by 1H NMR analysis (int. std. = 1,1,2,2-
tetrachloroethane). cIsolated yields (obtained as a mixture of 
regioisomers in the indicated ratio). dRegioselectivities determined by 
1H NMR analysis. 
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accessible with several different N-(phenylsulfonyl)indoles and 
with boronic acids bearing various substituents, including halides 
amenable to further derivatization. Good-to-excellent 
regioselectivity was observed in each of the cases shown; however, 
electron-rich arylboronic acids appear to be susceptible to side-
product formation.42   

Among methods available to access C2- and C3-arylindoles,13-28 
the reactions described here provide a unique opportunity to probe 
the mechanistic origin of catalyst-controlled regioselectivity. Aryl 
transmetalation from boron to PdII under aerobic conditions similar 
to those used here is facile, often proceeding efficiently at room 
temperature.43-46 The LnPd(Ar)X species generated in this step 
could then react with indole to afford the desired coupling product. 
At least two different pathways could be considered for this C–C 
coupling step: (a) a Heck-type pathway initiated by insertion of the 
indole C2-C3 double bond into a Pd–Ar bond,28 or (b) indole C–H 
activation by PdII, followed by C–C reductive elimination.47 
Studies of thiophene arylation with aryl halides suggest that both 
Heck and C–H activation pathways are possible,48-50 and we 
postulated that our observed switch in regioselectivity could arise 
from a change in the preferred mechanism under different 
conditions. 

The relative energetics of these two pathways were probed 
computationally, focusing on the reaction of a Pd(Ar)(O3SMe) 
fragment with N-phenylsufonylindole, in the absence and presence 
of an ancillary ligand. DFT calculations were conducted at the 
B3LYP-D3(BJ)/[6-311+G (d,p) + RSC 1997 ECP51,52 (Pd)] level 
of theory. 1,2-Dichloroethane was chosen as the solvent using the 
polarizable-continuum model (PCM). The experimental tosylate 
anions were replace with methanesulfonate (MsO–) to lower 
computational costs, and we elected to use DAF rather than bpym 
as an ancillary ligand, due to the similar effect of DAF and bpym 
on regioselectivity and our prior computational experience with 
DAF/PdII systems53,54 (cf. Figure 1A). MeCN was also evaluated 
as an ancillary ligand. 

The structures of the Pd(Ar)(O3SMe) species with and without 
an ancillary ligand (IMMeCN, IMDAF, and IMNoL) were optimized. 
These species were defined as the starting energies (i.e., 0.0 
kcal/mol) for energetic comparison of C2- and C3-arylindole 
product formation via the Heck and C–H activation mechanisms 
(Figure 3 and Figure S1). Significant observations from the 
computational results may be summarized as follows. In the 
absence of an ancillary ligand, the Heck pathway exhibits a 
relatively low barrier, with regioselectivity favoring C2 arylation 
(16.0 vs 20.9 kcal/mol). Barriers for the Heck pathway are 

significantly higher upon coordination of DAF or MeCN as an 
ancillary ligand: ≥30.0 kcal/mol for the C2 pathway (TS-HeckL-C2; 
Figure 3) and ≥34.4 kcal/mol for the C3 pathway (TS-HeckL-C3; 
Figure S1 in the Supporting Information). With a coordinated 
MeCN or DAF ligand, the barrier for C–H activation at the C3 
position is comparable to that of the Heck pathway (Figure 3; ∆∆G‡ 

= +0.9 kcal/mol TS-C–HDAF-C3 vs TS-HeckDAF-C2 and ∆∆G‡ =  
–1.6 kcal/mol TS-C–HMeCN-C3 vs TS-HeckMeCN-C2). In addition, 
C–H activation at C3 is favored over activation at C2 by 2.1 
kcal/mol with both ligands (Figure S1, TS-C–HL-C3 vs TS-C–HL-

C2). While these differences are within the uncertainties of the DFT 
calculations, the relative energies of the C2 and C3 C–H activation 
energies is expected to be meaningful (i.e., C–H activation favors 
the C3 position).  

Collectively, these observations provide a rationale for the 
ligand-induced switch in site-selectivity for indole arylation. C2-
selective arylation appears to be accessible via a low-barrier Heck-
type pathway in the absence of added ligands, while the C3-
selective arylation in the presence of added ligands is rationalized 
by a change in mechanism, whereby C–H activation is favored at 
C3 over C2. The computations are consistent with mild, room-
temperature reaction conditions used to access the C2-arylation 
product (see Figure 2). Similarly, the higher barriers computed for 
the C3-arylation pathway is consistent with the higher temperatures 
required to access the C3 products. 

In conclusion, we have identified aerobic oxidation conditions 
that allow for catalyst-controlled regioselectivity in the arylation of 
indoles. C2 selectivity is accessed with a "ligand-free" Pd catalyst 
system, while C3 selectivity is favored with a ligated catalyst 
system (ligand = MeCN, DAF or bpym). Computational studies 
indicate that the change in selectivity arises from a change in 
mechanism, from a C2-selective Heck-type pathway in the absence 
of ligands to a C3-selective C–H activation pathway in the presence 
of ligands. These results, which complement insights obtained 
previously from reactions of thiophenes, established an important 
foundation for rational design of new regioselective heterocycle 
functionalization reactions. 
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Figure 3. Computational results probing the switch in selectivity by use of ancillary ligands. -Z = -SO2Ph, Unit: kcal/mol. See text and the Supporting 
Information Section 5 for computational details. 
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