A Study of Runtime Adaptive Prefetching for
STTRAM L1 Caches

Kyle Kuan and Tosiron Adegbija
Department of Electrical & Computer Engineering
University of Arizona, Tucson, AZ, USA
Email: {ckkuan, tosiron}@email.arizona.edu

Abstract—Spin-Transfer Torque RAM (STTRAM) is a promis-
ing alternative to SRAM in on-chip caches due to several advan-
tages. These advantages include non-volatility, low leakage, high
integration density, and CMOS compatibility. Prior studies have
shown that relaxing and adapting the STTRAM retention time to
runtime application needs can substantially reduce overall cache
energy without significant latency overheads, due to the lower
STTRAM write energy and latency in shorter retention times.
In this paper, as a first step towards efficient prefetching across
the STTRAM cache hierarchy, we study prefetching in reduced
retention STTRAM L1 caches. Using SPEC CPU 2017 bench-
marks, we analyze the energy and latency impact of different
prefetch distances in different STTRAM cache retention times for
different applications. We show that expired_unused_prefetches—
the number of unused prefetches expired by the reduced retention
time STTRAM cache—can accurately determine the best reten-
tion time for energy consumption and access latency. This new
metric can also provide insights into the best prefetch distance for
memory bandwidth consumption and prefetch accuracy. Based
on our analysis and insights, we propose Prefetch-Aware Retention
time Tuning (PART) and Retention time-based Prefetch Control
(RPC). Compared to a base STTRAM cache, PART and RPC
collectively reduced the average cache energy and latency by
22.24% and 24.59 %, respectively. When the base architecture was
augmented with the state-of-the-art near-side prefetch throttling
(NST), PART+RPC reduced the average cache energy and latency
by 3.50% and 3.59%, respectively, and reduced the hardware
overhead by 54.55%.

I. INTRODUCTION

Much research has focused on optimizing caches’ perfor-
mance and energy efficiency due to the caches’ non-trivial
impact on processor architectures. These optimization efforts
are especially important for resource-constrained devices for
which low-overhead energy reduction remains a major con-
cern. An increasingly popular approach for improving caches’
energy efficiency involves replacing the traditional SRAM with
emerging non-volatile memory (NVM) technologies.

Among several NVM alternatives, Spin-Transfer Torque
RAM (STTRAM) has emerged as a promising candidate
for replacing traditional SRAMs in future on-chip caches.
STTRAMs offer several attractive characteristics, such as non-
volatility, low leakage, high integration density, and CMOS
compatibility. However, some of STTRAM’s most important
challenges include its long write latency and high write
energy [1], [2]. These challenges are attributed, in part, to
the STTRAM’s long retention time—the duration for which
data is maintained in the memory in the absence of power. For

caches, the intrinsic STTRAM retention time of up to 10 years
is unnecessary, since most cache blocks need to be retained
in the cache for no longer than ls [3]. Furthermore, different
applications or application phases may have different retention
time requirements [4]. Thus, prior research has proposed
reduced retention STTRAMs that can be specialized to the
needs of various applications [4] or different cache levels [5].

To further improve cache efficiency, cache prefetching is a
popular technique that fetches data blocks from lower memory
levels before the data is actually needed. While prefetching
can be very effective for improving cache access time, inac-
curate prefetching can cause cache pollution, increase memory
bandwidth contention, and in effect, degrade the cache’s
performance and energy efficiency [6], [7]. Apart from deter-
mining the right prefetch targets, the prefetch distance must
also be well-monitored such that it maintains good prefetch
accuracy [7]. This is especially important in reduced retention
STTRAMs, which, our analysis show, exhibit different locality
behaviors than traditional SRAM caches due to cache block
expiration.

In this paper, as an important first step towards under-
standing prefetching across the STTRAM cache hierarchy, we
study data prefetching in the context of a reduced retention L1
STTRAM cache—simply referred to hereafter as "STTRAM
cache’. We assume an STTRAM cache that features the ability
to adapt to different applications’ retention time requirements
(e.g., [5], [4]). We focus on the potentials of data prefetching
for improving STTRAM cache’s energy efficiency. To mo-
tivate this study, we performed extensive experiments using
a variety of SPEC 2017 benchmarks and a PC-based stride
prefetcher that prefetches memory addresses based on the
current program counter (PC) [8]. We observed that if earlier
prefetched data blocks are expired because of the reduced
retention time, a conventional prefetcher would not reload
these blocks. However, a prefetcher could be modified to
reload these blocks, thereby reducing the miss penalty caused
by premature expiration of blocks (i.e., expiration misses
[9]). Furthermore, the low write energy in reduced retention
STTRAM also mitigates the negative impact of writing blocks
in addition to demand requests. We also observed that common
metrics for determining the best retention time during runtime
(e.g., cache miss rates [4]) may not be accurate in the presence
of a prefetcher and can unnecessarily waste energy. As such,
prefetching, if carefully designed in the context of reduced

retention STTRAMSs, can increase energy savings as compared
to prior reduced retention STTRAM design techniques, with-
out incurring significant latency overheads.

Based on the above observations, we propose a new metric,
which we call expired_unused_prefetches, to evaluate the qual-
ity of a current retention time and prefetch distance. The ex-
pired_unused_prefetches represents the number of prefetched
blocks that were not accessed by a demand request before
expiry. Using this metric, we developed Prefetch-Aware Re-
tention time Tuning (PART) and Retention time-based Prefetch
Control (RPC). During a brief runtime profiling phase for each
application, PART uses the ratio of expired_unused_prefetches
to total prefetches to determine if the current retention time
suffices for the application. The retention time selected by
PART indicates the average amount of time for which cache
blocks used by an application reside in the cache. As such, if
too many prefetches are expired without being used, it is likely
that those prefetches were inaccurate. RPC uses this idea to
map expired_unused_prefetches to the prefetch distance.

Our major contributions are summarized as follows:

° We study prefetching in STTRAM caches and pro-
pose a metric—expired_unused_prefetches—that can
be used to effectively determine both retention time
and prefetch distance, without the need for any
complex hardware overhead.

° Using expired_unused_prefetches, we proposed an
algorithm to determine retention time and prefetch
distance during runtime.

° Compared to a base state-of-the-art reduced reten-
tion time STTRAM cache, PART+RPC reduced the
average energy and latency by up to 22.24% and
24.59%, respectively. Furthermore, when the base
architecture was augmented with the state-of-the-art
near-side prefetch throttling (NST) prefetching, our
approach reduced the average energy and latency
by 3.50% and 3.59%, respectively, and substantially
reduced the hardware overhead by 54.55%.

II. BACKGROUND AND RELATED WORK

STTRAM'’s basic structure, comprising of magnetic tunnel
junction (MTJ) cells, and characteristics have been detailed
in prior work [10]. Earlier works suggest the use of very
short retention times (e.g., 26.5 us [S]) with a DRAM-style
refresh scheme for cache implementation [5], [3]. Recent
works show that adapting a set of pre-determined retention
times to applications’ needs, specifically the cache block
lifetimes, can further improve energy consumption [4], [11].
In this section, we present a brief overview of prior work
on adaptable retention time STTRAM cache—the architecture
on which we build the analysis presented herein—and an
overview of prefetch distance control.

A. Adaptable Retention Time STTRAM Caches

Recent optimizations on STTRAM cache exploit the vari-
able cache block needs of different applications for energy

minimization. For example, Sun et al. [5] proposed a multi-
retention time cache featuring various retention times enabled
by various MTJ designs, wherein different applications could
be run on the retention time that suits them best. More recently,
Kuan et al. [4] analyzed the retention times of different
applications and proposed a logically adaptable retention time
(LARS) cache [4] that used multiple STTRAM units with dif-
ferent retention times. LARS involves a hardware structure that
samples the application’s characteristics during its very first
run. Based on the applications’ retention time requirements,
each application is executed on the retention time unit that best
satisfies their retention time needs. In this paper, we assume a
similar multi-retention time architecture to LARS. For brevity,
we direct readers to [4] for additional low-level details of the
architecture, but omit those details herein.

B. Prefetch distance control

Prefetch distance refers to how far into a demand miss
stream that a prefetcher can prefetch [8]. Effective prefetching
relies on accurate prefetch addresses and timely arrival of
data blocks to hide the latency between processor and main
memory. As such, the prefetch distance must not be so short
as to generate excessive late_prefetches [6] or too long to lose
prefetch accuracy [6], [7]. Inaccurate prefetches can cause
performance degradation due to the saturation of memory
bandwidth and cache pollution. As such, lots of prior works
discuss various techniques for controlling prefetch distance,
feedback directed prefetching techniques, ways to monitor the
number of total prefetches and late prefetches to evaluate
prefetch accuracy and lateness, and how to determine the
prefetcher aggressiveness. For example, Ebrahimi et al. [12]
proposed a rule-based control method to separate global throt-
tling and local throttling, and reduce inter-core interference.
Both [12] and [6] looked at the number of useless prefetches,
which is determined by prefetches that are not used before they
are evicted. Heirman et al. [7] referred to the aforementioned
methods as farside throttling, since they maintained high
prefetch distance and throttled down when negative effects
were observed. Heirman et al. [7] proposed near-side prefetch
throttling (NST), which monitored the ratio of late prefetches
and total prefetches, kept prefetch distance low and only raised
the distance if necessary. None of these techniques, however,
have considered prefetching in STTRAM caches. As we
show in our analysis herein, state-of-the-art prefetchers may
under-perform if simply implemented on STTRAM caches
without considering execution characteristics and metrics that
are unique to STTRAM caches.

ITI. ENABLING PREFETCHING IN STTRAM CACHE
A. Effectiveness of prefetching expired blocks

Expired blocks in STTRAM caches incur misses when a
demand request accesses an expired block prior to eviction.
We refer to these misses as expiration misses, similar to prior
work [9]. As the retention time becomes shorter, expiration
misses increase, until expiration misses become the majority
of misses and essentially disables the cache’s ability to exploit

Demand miss Demand miss
Ways (Expired block) Ways (Expired block)
2 504 |~ 8 504
o o
3 | 500 3 | 500 Prefetch
s © next stride
& 512 Demand miss g 512 Demand hit
(Expired block) Prefetch hit)
e
Prefetch
Demand miss next stride
(Expired block) Demand hit
<~ . (Prefetch hit)

(a) Prefetch disabled (b) Prefetch enabled

Fig. 1: Prefetching expired blocks. In (a) the prefetch does not
bring back previously expired blocks into the cache; in (b) the
previously expired blocks are brought back into the cache

temporal locality. Given the uniqueness of expiration misses in
STTRAM caches, we first studied the impact of prefetching on
expired cache blocks. Figure 1 illustrates a simplified diagram
of a data cache, with each cell representing a cache block. The
horizontal blocks represent the cache ways (four ways in total)
and the vertical blocks represent the set address (seven set
addresses in total). The blocks’ colors represent the prefetch
stream that brought the cache blocks into the cache. We used
the stride prefetcher [8] as the base to illustrate our idea and
in our experiments. The number associated with the color
represents the program counter (PC) value of the load/store
instruction that begins the stream due to a demand miss.
Figure 1la illustrates the STTRAM cache without prefetch-
ing expired blocks. Assume that the instruction at PC 504
brought three cache blocks into the cache. Since the blocks are
brought in by the same stream, they are likely to expire around
the same time. If the prefetcher is disabled on those expired
blocks, as in a conventional prefetcher, when the demand
request accesses the blocks again, loading each block will
incur the miss penalty due to expiration misses. Alternatively,
enabling the prefetcher for the expired blocks can have a
positive effect, since, as shown in Figure 1b, the prefetcher
brings in subsequent blocks after the first demand miss (expira-
tion miss). Thus, subsequent accesses to the prefetched blocks
become demand hits without exposing the memory latency.
To quantify the benefits of prefetching expired blocks,
we performed experiments using SPEC CPU 2017 rate (_r)
benchmarks and evaluated the energy and latency changes. We
used a base stride prefetcher of prefetch distance 16, similar
to [13] and considered retention times from 25us to 1ms. Our
detailed simulation setup is described in Section IV-A. We
use the term prefetchable expired blocks to represent expired
blocks that can be accurately predicted and reloaded through
the stride prefetcher, and therefore would incur no expiration
miss. Figure 2 shows the percentage of prefetchable expired
blocks in total expired blocks across the benchmarks, assuming
the best retention times. On average across all benchmarks,
10.85% of expired blocks can be reloaded into the cache for
reuse. Depending on the applications’ access pattern and cache
block lifetimes, the reused expired blocks can be as high as

29.66% for leela, while over the half of benchmarks (13 of 21)
have reuse rates over 10%. To further illustrate this behavior,
Figure 3 shows the percentage of prefetchable expired blocks
in total expired blocks for different retention times. For brevity,
the geometric mean is shown for the different retention times.
In general, the percentage of reused expired blocks increases
as the retention time decreases, with the highest being 8.69%
at 25 ps. These analysis motivate us to explore low-overhead
techniques for prefetching and determining the best retention
time in STTRAM caches during runtime.

@ 30
gg’zzs
£ 8 20
g5 15
1 1 11 il
Y T
v 0 5 I I
s = o0 - - B - - I -
Q
S8 IO e g s I I TG I
123 ! N/ S
® SEEEESY VS I FEEIETEES
S Sy LTI & & & &S Sr o S¥ oL
< S Y YES§ TEFF9 g 00 ISIAN
s & & 5 °F AR
Q o S & & <

Fig. 2: Percentage of prefetchable expired blocks in total
expired blocks across SPEC CPU 2017 benchmarks

25us 50ps 75ps 100ps 1ms

expired blocks
OFRNWAUION00W

% of prefetchable

Fig. 3: Percentage of prefetchable expired blocks in total
expired blocks for different retention times for SPEC CPU
2017 benchmarks (Geometric mean is shown for brevity)

Demand requests

LOAD(A): LOAD(A+1): LOAD(A+2):
Demand miss Demand hit Demand hit

l PF(A+1) PF(A+2) PF(A+3) |PF(A+4) |
] 1 1 1

I/!/%'II!

PF(AH) PF(A+2) PF(A+3) PF(A+4)

(| 1] -

Prefetch!
arrivals L STTRAM retention time | Expiring Expiring
1 used unused
prefetches prefetches

Fig. 4: Retention time expiration detect potentially unused
prefetches

B. Prefetch-Aware Retention time Tuning (PART)

A key point of our analysis so far is that, as illustrated in
Figure 1b, expiration of cache blocks must be considered in
the design of prefetchers. Furthermore, we also analyzed prior
adaptable retention time techniques (e.g., [4]) that used miss
rates to predict the best retention time. We found that these
techniques only accurately predicted the best retention time
using cache miss rates in the absence of a prefetcher. When a
prefetcher is introduced, using miss rates may not be as accu-
rate due to the interplay of expiration misses and prefetching.
Thus, we designed the prefetch-aware retention time tuning
(PART) technique to take into account the expiration misses.

Algorithm 1: Prefetch-Aware Retention Time Tuning

Data: Retention time set
R = {25us,50us, T5us, 100us, 1ms}
Result: OutputRetentionTime

1 OutputRetentionTime <— 1ms;
2 foreach » € R do

3 allPF +—totalPrefetches (r)/
totalMSHRRequests (r);

4 expiredPF <—
expiredUnusedPrefetches (1) /
totalPrefetches (r);

5 if allPF > 0.1/% then

6 if baseExpiredPF is set then

7 if expiredPF < 2*baseExpiredPF then

8 ‘ OutputRetentionTime <— 7;

9 end

10 else

11 ‘ return OutputRetentionTime;
12 end

13 end

14 else

15 OutputRetentionTime < 7;

16 if expiredPF > 0.02% then

17 baseExpiredPF <— expiredPF;
18 end

19 end

20 end

21 else

22 OutputRetentionTime <— 7;

23 missBasedTuning (OutputRetentionTime) ;
24 return OutputRetentionTime;

25 end

26 end

27 return OutputRetentionTime;

To motivate PART, Figure 4 illustrates the timeline of
when prefetched blocks are brought into the cache and then
expired. Assume that LOAD (A) instruction accesses memory
address A and causes a demand miss, the prefetcher sends
out four requests from address A+/ to A+4. The prefetch
arrival times are marked in green color. After the retention
time elapses, prefetched blocks begin to expire. We record
the number of blocks that were not used by demand re-
quests before expiration; we refer to these blocks as ex-
pired_unused_prefetches. The basic idea of PART is to use
the shortest retention time that does not excessively increase
the expired_unused_prefetches. To this end, PART tracks the
changes in expired_unused_prefetches at prefetch degree 1
during different tuning intervals to determine the best retention
time.

Algorithm 1 depicts the PART algorithm, which takes as
input the available retention times in the system and outputs
the best retention time. PART iterates through the available
retention time set starting from the longest to the shortest

(e.g., Ims to 25us), runs the application for a sampling period,
and takes the ratio of total prefetches to total MSHR requests
(allPF) and the ratio of expired_unused_prefetches to total
prefetches (expiredPF), as shown in lines 3-4. If allPF is
smaller than 0.1%, we infer that prefetches do not substantially
contribute to memory traffic. Therefore, the algorithm switches
to a subroutine that predicts the retention time based on cache
misses, similar to prior techniques [4] (line 23). If allPF is
greater than 0.1%, the algorithm first checks if expiredPF is
significant enough (> 0.02%). If expiredPF is greater than
0.02 %, this expiredPF is stored as baseExpiredPF and used
in subsequent tuning stages. Otherwise, PART iterates the
next available retention times to see if the thresholds are
satisfied (line 15-18). Note that we determined the thresholds
empirically through extensive experiments and analysis. After
obtaining baseExpiredPF, PART explores shorter retention
times to find the one that does not excessively increase
expiredPF as compared to baseExpiredPF. PART checks if
expiredPF is smaller than twice baseExpiredPF. If so, it
proceeds to the next shorter retention time, otherwise, the
current retention time is returned as the tuning result (line
7-12).

C. Retention Time-based Prefetch Control (RPC)

We also developed a simple heuristic, called retention
time-based prefetch control (RPC), that works in conjunction
with PART to determine the best prefetch distance during
runtime. To minimize tuning overhead, RPC determines the
best prefetch distance in ’one-shot’ along with the reten-
tion time tuning by the PART algorithm. PART tracks ex-
pired_unused_prefetches at prefetch degree 1 for tuning the
retention time. The determined retention time represents the
period that suffices, on average, for the executing applications’
cache block lifetimes. A prefetch degree of 1 is usually
considered conservative in prefetch distance throttling [6],
[12]. As such, if expired_unused_prefetches is excessively high
after retention time tuning, it is likely that wrong addresses
were prefetched. In this case, we maintain the prefetch distance
of 1 to minimize cache pollution and memory bandwidth
contention. RPC takes expiredPF in Algorithm 1 as input to
determine the prefetch aggressiveness, and maps the prefetch
distance similarly to [6]. Table I shows the distribution of
this mapping, representing different ranges of expiredPF and
the associated prefetch distance. If expiredPF is above 5%,
the stride pattern does not match the current application’s
data access. Thus, the prefetch distance is kept at 1 in order
to maintain prefetch functionality. On the other extreme, we
observed that some applications have the lowest expiredPF
(and energy consumption) at prefetch distance 32, which
indicates that the stride prefetcher captures the applications’
data access pattern and is able to recover expired blocks.

D. Overhead

Assuming a base architecture that has the capability of
multiple retention times (e.g., [4]), PART’s major advantage
is that it imposes negligible hardware and tuning overhead.

TABLE I: Prefetch distances for different ExpiredPF

[ExpiredPF at prefetch degree 1 | Prefetch distance]

Above 5% 1
1.01% - 5% 4
0.51% - 1% 8
0.05% - 0.5% 16
Below 0.05% 32

PART exploits most of the hardware components described in
[4] for tuning. In addition to the four 32-bit registers and one
division circuit used in prior work, PART only requires one
additional 32-bit register for al/lPF and expiredPF. To keep
track of expired unused prefetches, PART only requires one
custom hardware counter, which increments when an expiring
block’s prefetch bit is valid. Using the shared expiredPF in
PART, RPC requires only one 32-bit comparator. In total, we
estimate that the area overhead is less than 1% of modern
processors like ARM Cortex-A72 [13].

We note that the base architecture incurs energy and latency
switching overheads from migrating the cache state from
one STTRAM unit to another. Switching occurs when an
application is first executed during its sampling period. For
example, given a tuning interval of 10 million instructions
and five retention time options, sampling would require 50
million instructions. However, PART does not increase the
switching overhead with respect to the base. In the worst case,
each migration takes approximately 2560 cycles and 8.192nJ
energy, resulting in total time and energy overheads of 10240
cycles and 32.768nJ, respectively. While these overheads are
minimal in the context of full application execution, we
reiterate that PART did not contribute to this overhead.

IV. SIMULATION RESULTS
A. Experimental Setup

To perform our analysis and evaluate PART, we imple-
mented PART using an in-house modified! version of the
GEMS5 simulator [14]. We modified GEMS5 [14] to model
cache block expiration, variable tag lookup and cache write
latency, variable retention time units, and variable prefetch
distance as described herein. To enable rigorous comparison
of PART against the state-of-the-art, we used two recent prior
works to represent the state-of-the-art—LARS [4] to represent
adaptable retention time and NST [7] to represent variable
prefetch distance. We also implemented these two techniques
in GEMS. We used configurations similar to the ARM Cortex
A72 [13], featuring a 2GHz clock frequency, and a private
L1 cache with separate instruction and data caches. For this
work, we focused on data cache prefetching, since it provides
much opportunity for runtime adaptability, as opposed to the
instruction cache [4]. Every MSHR request from the L1 data
cache is directly sent to an 8GB main memory, and incurs
memory latency. We intend to explore the impact of our work
on the instruction cache and lower level caches in future work.

'The modified GEMS version can be found at www.ece.arizona.edu/tosiron/
downloads.php

We considered five retention times: 25us, S0us, 75us,
100us, 1ms, which we empirically found to be sufficient
for the considered benchmarks. We used the MTJ modeling
techniques proposed in [15] to model the different reten-
tion times, and used NVSim [16] to estimate the energy
for the different retention times. Table II depicts prefetcher
configurations and the STTRAM cache parameters used in
our experiments as obtained from the modeling tools and
techniques. We used twenty-one SPECrate CPU2017 bench-
marks [17], cross-compiled for the ARMv8-A instruction set
architecture. Each benchmark was run using the reference
input sets for 1B instructions after restoring checkpoints from
240B instructions.

B. Results and Comparisons

In this section, we compare the cache energy and access
latency benefits of our work to prior work in various prefetch
distance control scenarios. We denote uniform prefetch dis-
tance 1 to 32 as PFD_N, where N represents the memory
address distance. RPC represents the optimal static distance
among PFD_N, since RPC accurately determines the distance
in the sampling phase and uses that distance throughout the
application’s run. We use NST [7] to represent the state-of-the-
art dynamic prefetch distance throttling. We compare PART to
the miss-based tuning algorithm used in LARS. We start with
a direct comparison of PART to LARS without prefetching.
Next, we compare PART to LARS with a uniform stride
prefetcher and use moderate prefetch aggressiveness: prefetch
degree 2 and prefetch distance 16 (LARS+PFD_16), similar
to prior work [6]. Thereafter, we compare PART to LARS
with the NST stride prefetcher (LARS+NST) to evaluate the
improvement over dynamic prefetch distance throttling. Lastly,
we compare PART to an SRAM cache with the NST stride
prefetcher (SRAM+NST) to show the collective improvements
of adaptable retention time STTRAM cache when prefetching
is active. All energy and latency results of PART are normal-
ized to the subject of comparison.

1) Comparison to the base STTRAM cache (LARS): Figure
S5a depicts the energy consumption of PART in different
prefetch distance scenarios normalized to LARS. On average
across all benchmarks, PART reduced the energy by 19.53%,
21.25%, 21.29%, 20.09%, and 17.68% for PFD_1, PFD_4,
PFD_8, PFD_16, and PFD_32, respectively. RPC properly
mapped expired unused prefetches (expiredPF) to prefetch
distance and ensured that the ideal static prefetch distance
was selected. As such, PART+RPC reduced the average energy
by 22.24%, with savings as high as 65.96% for imagick. For
parest, imagick, [lbm, roms, and fotonik3d, PART+RPC reduced
the energy by more than 40%, and no benchmarks’ energy
consumption was degraded by PART. Figure 5b depicts the
cache access latency normalized to LARS without prefetch-
ing. On average across all benchmarks, PART reduced the
latency by 21.52%, 23.50%, 23.51%, 22.08%, 19.29%, and
24.59% for PFD_1, PFD_4, PFD_8, PFD_16, PFD_32, and
RPC, respectively. PART+RPC reduced the latency by up to
70.41% for imagick. PART only incurred a negligible latency

TABLE II: Prefetcher configuration and STTRAM cache parameters with different retention times

Prefetcher Configuration

I

Type: stride prefetcher, degree: 4, adaptable prefetch distance: T, 4, 8, 16, 32

32KB, 64B line size, 4-way, 22nm technology

Cache Configuration]

Memory device SRAM STTRAM-25us STTRAM-50pus STTRAM-75us STTRAM-100pus STTRAM-Ims
Write energy (per access) 0.002nJ 0.006nJ 0.007nJ 0.007n] 0.008nJ 0.0T1nJ
Hit energy (per access) 0.008nJ 0.005n]
Leakage power 75.968mW 11.778mW 11.778mW 11.778mW 11.778mW 11.365mW
Hit Tatency (cycles) 2 I
Write Tatency (cycles) 2 2 3 3 3 4
9 12 OPFD_1 HPFD 4 MPFD_8 EPFD_16 BPFD_32 B RPC
53 0 "
5258
5% 04
£ =02
£5°0
IS SRS
c & N 6/7;\‘?5} 0\\ */ @/ Q\{\/
& C e
N
(a) Energy
2192 WPFD_8 =PFD_16 =PFD_32 BRPC
g3 1 : :
g 2 82
= 32 0.
E 204
225
2
Qé\&

(b) Latency
Fig. 5: PART with different prefetch scenarios (PFD_N and RPC) normalized to the base STTRAM cache (LARS)

overhead (1.07%) for cactusBSSN while latency reductions
were achieved for the rest of the twenty benchmarks.

Compared to LARS, we observed that the energy reduction
trends were similar to the latency. Since prefetching can reduce
compulsive misses, increased latency benefits are achieved as
a result of the impact of expiration misses as discussed in
Section III-A. As shown in Figure 2, the average expired
blocks that can be accurately prefetched and ’reused’ are up
to 10.85%. Thus, the reduced expiration misses contributed
significantly to miss latency reduction.

2) Comparison to LARS with uniform prefetch distance
(LARS+PFD_16): Figure 6 depicts the energy and latency of
PART normalized to LARS+PFD_16. For brevity, only the ge-
ometric mean (across all the twenty-one benchmarks in Figure
5) and a subset of notable benchmarks are shown. Figure 6a
shows that across all the benchmarks,
the average energy consumption by 4.75%,
LARS+PFD_16 (the uniform prefetch distance). PART+RPC
reduced the energy by up to 20.51% and 18.77% for roms
and exchange2, respectively, with energy savings over 5%
for perlbench, mcf, xalancbmk, namd, nab, and imagick. We
observed that PART generally selected shorter retention times
than LARS+PFD_16. By incorporating the expiration misses
into the decision making about prefetching, PART achieved
a balance of short retention times without translating into
increases in miss latency. PART allowed the stride prefetcher
to recover expired blocks in short retention times. PART+RPC

=29 13 OPFD_1 BIPFD_4 EPFD_8
T 90 12 EPFD_16||8PFD_32 BRPC
C N
o= o 1.}
£ EQ 3
S mmEEEE
08 |EH [E0h 60 mm N 2 1 I 2 1B
< < < < < < < < ¢
R S i S g
Qd?’ (\o NG Q’b é(b LS
& & § &
] & &
(a) Energy
- owld OPFD_1 @WPFD 4 ®PFD 8
o+ <13
2o i3 EPFD_16 |@PFD_32 ®@RPC
v VO L
2 N 1.1
S = a 1
- e
€ »n 09
ek BB EEM i
& 23555 |32 r ,
PART+RPC reduced o &5 @O &>@°> EOIRY ,503 é{’> (y
compared to \Qe}‘ < 2 ?,o"o & sz}z‘ (@\ NS @é
¢ & é"& X ©

(b) Latency
Fig. 6: PART with different prefetch scenarios (PFD_N and
RPC) normalized to LARS+PFD_16

only degraded the energy (by 0.48%) for parest.

As described in Section III-A, due to the reduced latency
achieved by prefetching expired blocks, PART uses shorter
retention times to improve energy consumption, since the

short retention times do not substantially increase the latency.
Figure 6b shows that, similar to the energy improvement,
PART+RPC reduced the average latency by 4.99%, as com-
pared to LARS+PFD_16. PART+RPC reduced the latency by
up to 25.76%, 21.09%, and 14.15% for roms, exchange2,
and nab, respectively. To understand why PART performed
so well for these benchmarks, we studied their execution
more closely. For exchange2, we observed that LARS se-
lected a long retention time (Ilms) due to low miss rates
at 1ms, whereas shorter retention times increased the miss
rates substantially (by up to 9x). However, the large amounts
of misses at shorter retention times were rapidly amortized
by stride prefetching and did not have substantial negative
impact on the latency. We observed that even though shorter
retention times increased fotalPrefetches for expired blocks,
the expired_unused_prefetches increased at a much slower
rate, thereby substantially reducing expiredPF (by up to 42%).
As such, PART selected short retention times (e.g., 25us) and
was able to improve the latency for these benchmarks.

On the other hand, for roms, LARS selected a short re-
tention time of 25us due to the low miss rates. However,
the expiredPF were substantially higher at shorter retention
times than 1ms. As such, PART selected 1ms for roms to
save potentially useful prefetches with the longer retention
time. The reduced latency in nab resulted from the optimal
prefetch distance (at PFD_1) as determined by RPC. These
results illustrate the importance of adaptable prefetch distance
to satisfy different applications’ needs. PART incurred minor
latency overheads of up to 1.6% and 0.19% for cactusBSSN
and parest, but reduced the latency for majority of the bench-
marks (19 of 21).

3) Comparison to LARS with dynamic prefetch distance
(LARS+NST): We further compared PART with LARS+NST
to evaluate the improvement when the dynamic prefetch throt-
tling is enabled as in previous work [7]. For brevity, Figure
7 compares PART to LARS+NST using a subset of notable

~ o 13 OPFD.1 ®PFD 4 _ ®PFD 8
o5 %% EPFD_16 @PFD 32 F @®RPC
gLzt

o = + 1 B .
= 2209 ;;

s . o " - %
<5308 mEER I 7
< <
\(\3(\%6’), - c)%c"s\\\ - ‘o«\s -
o c’ad‘\)
(a) Energy
>~ o 14 gOPFD_1 ®PFD_4 EPFD_8
S5 -13
g9 QH EPFD_16 BPFD_32 B RPC
© = +
8 = 1 =P
Z £ & Nty N
z 558 2 N
<5 308 rmvemm | IBNEES I NEEA
2l NS 63 V(,P*\A
i So o W
o o ¢ &

(b) Latency
Fig. 7: PART with different prefetch scenarios (PFD_N and
RPC) normalized to LARS+NST

benchmarks and the geometric mean of all the benchmarks.
Figure 7a shows that on average, PART+RPC improved the
energy by 3.50% over LARS+NST, with energy savings of
up to 18.77% for exchange2. On the other hand, on average,
LARS+NST only improved over LARS+PFD_16 by 1.43%.
We observed that in STTRAM cache without PART, the
dynamic prefetcher (NST) offered minimal energy savings,
even if it recovered expired blocks. As shown in Figure 7b,
PART+RPC reduced the average latency by 3.59% compared
to LARS+NST, with reductions of up to 21.09% and 12.23%
for exchange2 and roms, respectively. In the worst case, the
latency overhead was 1.60% for cactusBSSN, while the rest of
benchmarks benefited from latency reduction.

In a few cases, PART+RPC did not improve the latency
or energy as compared with LARS+PFD_16 or LARS+NST
(for example, for cactusBSSN). CactusBSSN was one of the
benchmarks with a low prefetch percentage in total MSHR
requests. As defined in Algorithm 1 (line 3), the allPF in
cactusBSSN was very low at 0.0002%. Thus, PART reverts to
miss based tuning for cactusBSSN, as described in Section
III-B. However, to provide a clear contrast between our
work and prior work, we used expiredPF-based tuning in
all PART+RPC results. For cactusBSSN, the RPC table was
unable to map the correct prefetch distance for latency or
energy improvement. We note, however, that in almost all
cases (20 out of 21 benchmarks), PART+RPC outperformed
both LARS+PFD_16 and LARS+NST in both energy and
latency. Importantly, we also reiterate that LARS+NST re-
quired additional hardware structures to implement the NST
prefetcher, whereas RPC’s overhead was marginal compared
to LARS+PFD_16, as described in Section III-D. The main
advantage of PART+RPC is the negligible hardware overhead
compared to NST. For instance, NST required seven 32-bit
registers for storage [7], whereas PART only introduced one
additional register to LARS in order to track the number of
outgoing MSHR requests, total prefetches, and expired unused
prefetches. Overall, PART+RPC reduced the implementation
overhead by 54.55% compared to LARS+NST.

4) Exploring the synergy of PART and NST: We also
explored the extent of the benefit, if any, of combining PART
with NST (i.e., PART+NST). Figure 8 summarizes the energy
and latency of PART+RPC and PART+NST normalized to
LARS+NST. For brevity, only the geometric mean of all
the SPEC CPU 2017 benchmarks are shown. On average,
PART+NST improved the energy and latency by 2.75%
and 2.63%, respectively, compared to LARS+NST, whereas
PART+RPC reduced the energy and latency by 3.50% and
3.59%, respectively. The results show that while providing
dynamic prefetch distance control, NST’s increased hardware
overhead compared to PART does not translate to energy
or latency benefits. In fact, PART still reduced the energy
and latency, albeit marginally, while substantially reducing
the implementation overheads (Section IV-B3). The results
also reveal the promise of a low overhead dynamic prefetch
distance control for STTRAM cache based on expiredPF. We
anticipate that even more energy and latency benefits can be

OPART+RPC MPART+NST OPFD_1 BPFD_4 WPFD_8
0.98 EPFD_16 ®PFD_32 m@mRPC
o 8 ’ w 8 1
535 £3h 08 §
= 2 I [. §
x E £ < N
£5% 00 [] £55 °5 rnmesEm | ANSE
Energy Latency Energy Latency
geomean geomean geomean geomean
Fig. 8: PART normalized toFig. 9: PART normalized to
LARS+NST SRAM+NST

achieved in larger STTRAM caches (such as LLC), and we
intend to explore and quantify these benefits in future work.

5) Comparison to SRAM with dynamic prefetch distance
(SRAM+NST): We also compare PART to SRAM cache
with NST prefetcher enabled (SRAM+NST). Figure 9 sum-
marizes the energy and latency of PART in the different
configurations normalized to SRAM+NST. On average, in all
prefetch configurations, PART reduced the energy by more
than 80%. We attribute this reduction largely to the STTRAM’s
low leakage power (Table II) and PART’s ability to select
retention times that satisfied the different applications’ cache
block requirements. As a result of this specialization, PART
was also able to reduce the latency (e.g., by 10.28% for
PART+RPC). As shown in Table II, STTRAM has advantages
in hit latency but not write latency. However, with the help
of PART, STTRAM was able to select shorter retention times
that satisfy the applications’ needs while maintaining write
latencies that were close to SRAM. We took a closer look
at benchmarks with high write activity, where write requests
and miss responses were greater than 40%, such as perlbench,
cactusBSSN, povray, lbm, cam4, and fotonik3d. Our analysis
revealed that the synergy of prefetching and PART’s retention
time selection made the write performance for these bench-
marks comparable to SRAM. As a result, the STTRAM cache
with PART did not degrade the latency compared to SRAM.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied prefetching in reduced re-
tention STTRAM L1 caches. We showed that using ex-
pired_unused_prefetches, and practically, tracking changes in
expired prefetches (expiredPF) with respect to total prefetches
(allPF), we could provide an accurate description of the best
retention with regards to energy consumption and derive in-
sights into the best prefetch distance. Based on these insights,
we proposed prefetch-aware retention time tuning (PART) and
retention time based prefetch control (RPC) to predict the best
retention time and the best prefetch distance during runtime.
Experiments show that PART+RPC can reduce the average
cache energy and latency by 22.24% and 24.59%, respectively,
compared to a base architecture, and by 3.50% and 3.59%,
respectively, compared to prior work, while reducing the
implementation hardware overheads by 54.55%. For future
work, we plan to explore the implications of PART on shared
lower level caches and in the presence of workload variations.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under grant CNS-1844952. Any opinions, findings,

and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] J. Ahn, S. Yoo, and K. Choi, “Dasca: Dead write prediction assisted stt-
ram cache architecture,” in 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA), Feb 2014, pp.
25-36.

[2] N. Sayed, R. Bishnoi, F. Oboril, and M. B. Tahoori, “A cross-layer
adaptive approach for performance and power optimization in STT-
MRAM,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). 1IEEE, 2018, pp. 791-796.

[3] A.Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R.
Das, “Cache revive: Architecting volatile stt-ram caches for enhanced
performance in cmps,” in DAC Design Automation Conference 2012,
June 2012, pp. 243-252.

[4] K. Kuan and T. Adegbija, “Energy-Efficient Runtime Adaptable L1 STT-
RAM Cache Design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 6, pp. 1328-1339, 2020.

[51 Z. Sun, X. Bi, H. Li, W. F. Wong, Z. L. Ong, X. Zhu, and W. Wu,
“Multi retention level STT-RAM cache designs with a dynamic refresh
scheme,” in 2011 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Dec 2011, pp. 329-338.

[6] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback Directed
Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers,” in 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, Feb 2007, pp. 63-74.

[71 W. Heirman, K. D. Bois, Y. Vandriessche, S. Eyerman, and I. Hur, “Near-
Side Prefetch Throttling: Adaptive Prefetching for High-Performance
Many-Core Processors,” in Proceedings of the 27th International Con-
ference on Parallel Architectures and Compilation Techniques, ser.
PACT ’18. New York, NY, USA: Association for Computing Ma-
chinery, 2018.

[8] Tien-Fu Chen and Jean-Loup Baer, “Effective hardware-based data
prefetching for high-performance processors,” IEEE Transactions on
Computers, vol. 44, no. 5, pp. 609-623, May 1995.

[9] D. Gajaria and T. Adegbija, “Arc: Dvfs-aware asymmetric-retention stt-
ram caches for energy-efficient multicore processors,” in Proceedings of
the International Symposium on Memory Systems, ser. MEMSYS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
439-450. [Online]. Available: https://doi.org/10.1145/3357526.3357553

[10] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
“Relaxing non-volatility for fast and energy-efficient STT-RAM caches,”
in 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, Feb 2011, pp. 50-61.

[11] K. Kuan and T. Adegbija, “HALLS: An Energy-Efficient Highly
Adaptable Last Level STT-RAM Cache for Multicore Systems,” IEEE
Transactions on Computers, vol. 68, no. 11, pp. 1623-1634, Nov 2019.

[12] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated Control
of Multiple Prefetchers in Multi-Core Systems,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO 42. New York, NY, USA: Association for Computing
Machinery, 2009, p. 316-326.

[13] “ARM Cortex-A72 MPCore Processor Technical Reference Manual
Revision rOp3 Revision rOp3 Documentation.” [Online]. Available:
https://developer.arm.com/docs/100095/0003

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, Aug. 2011.

[15] K. C. Chun, H. Zhao, J. D. Harms, T. H. Kim, J. P. Wang, and C. H.
Kim, “A Scaling Roadmap and Performance Evaluation of In-Plane
and Perpendicular MTJ Based STT-MRAMs for High-Density Cache
Memory,” IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 598—
610, Feb 2013.

[16] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 31, no. 7, pp. 994-1007,
Jul. 2012.

[17] “SPEC CPU® 2017.”
cpu2017/

[Online]. Available: https://www.spec.org/

