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Abstract—Spin-Transfer Torque RAM (STTRAM) is a promis-
ing alternative to SRAM in on-chip caches due to several advan-
tages. These advantages include non-volatility, low leakage, high
integration density, and CMOS compatibility. Prior studies have
shown that relaxing and adapting the STTRAM retention time to
runtime application needs can substantially reduce overall cache
energy without significant latency overheads, due to the lower
STTRAM write energy and latency in shorter retention times.
In this paper, as a first step towards efficient prefetching across
the STTRAM cache hierarchy, we study prefetching in reduced
retention STTRAM L1 caches. Using SPEC CPU 2017 bench-
marks, we analyze the energy and latency impact of different
prefetch distances in different STTRAM cache retention times for
different applications. We show that expired unused prefetches—
the number of unused prefetches expired by the reduced retention
time STTRAM cache—can accurately determine the best reten-
tion time for energy consumption and access latency. This new
metric can also provide insights into the best prefetch distance for
memory bandwidth consumption and prefetch accuracy. Based
on our analysis and insights, we propose Prefetch-Aware Retention
time Tuning (PART) and Retention time-based Prefetch Control
(RPC). Compared to a base STTRAM cache, PART and RPC
collectively reduced the average cache energy and latency by
22.24% and 24.59%, respectively. When the base architecture was
augmented with the state-of-the-art near-side prefetch throttling
(NST), PART+RPC reduced the average cache energy and latency
by 3.50% and 3.59%, respectively, and reduced the hardware
overhead by 54.55%.

I. INTRODUCTION

Much research has focused on optimizing caches’ perfor-

mance and energy efficiency due to the caches’ non-trivial

impact on processor architectures. These optimization efforts

are especially important for resource-constrained devices for

which low-overhead energy reduction remains a major con-

cern. An increasingly popular approach for improving caches’

energy efficiency involves replacing the traditional SRAM with

emerging non-volatile memory (NVM) technologies.

Among several NVM alternatives, Spin-Transfer Torque

RAM (STTRAM) has emerged as a promising candidate

for replacing traditional SRAMs in future on-chip caches.

STTRAMs offer several attractive characteristics, such as non-

volatility, low leakage, high integration density, and CMOS

compatibility. However, some of STTRAM’s most important

challenges include its long write latency and high write

energy [1], [2]. These challenges are attributed, in part, to

the STTRAM’s long retention time—the duration for which

data is maintained in the memory in the absence of power. For

caches, the intrinsic STTRAM retention time of up to 10 years

is unnecessary, since most cache blocks need to be retained

in the cache for no longer than 1s [3]. Furthermore, different

applications or application phases may have different retention

time requirements [4]. Thus, prior research has proposed

reduced retention STTRAMs that can be specialized to the

needs of various applications [4] or different cache levels [5].

To further improve cache efficiency, cache prefetching is a

popular technique that fetches data blocks from lower memory

levels before the data is actually needed. While prefetching

can be very effective for improving cache access time, inac-

curate prefetching can cause cache pollution, increase memory

bandwidth contention, and in effect, degrade the cache’s

performance and energy efficiency [6], [7]. Apart from deter-

mining the right prefetch targets, the prefetch distance must

also be well-monitored such that it maintains good prefetch

accuracy [7]. This is especially important in reduced retention

STTRAMs, which, our analysis show, exhibit different locality

behaviors than traditional SRAM caches due to cache block

expiration.

In this paper, as an important first step towards under-

standing prefetching across the STTRAM cache hierarchy, we

study data prefetching in the context of a reduced retention L1

STTRAM cache—simply referred to hereafter as ’STTRAM

cache’. We assume an STTRAM cache that features the ability

to adapt to different applications’ retention time requirements

(e.g., [5], [4]). We focus on the potentials of data prefetching

for improving STTRAM cache’s energy efficiency. To mo-

tivate this study, we performed extensive experiments using

a variety of SPEC 2017 benchmarks and a PC-based stride

prefetcher that prefetches memory addresses based on the

current program counter (PC) [8]. We observed that if earlier

prefetched data blocks are expired because of the reduced

retention time, a conventional prefetcher would not reload

these blocks. However, a prefetcher could be modified to

reload these blocks, thereby reducing the miss penalty caused

by premature expiration of blocks (i.e., expiration misses
[9]). Furthermore, the low write energy in reduced retention

STTRAM also mitigates the negative impact of writing blocks

in addition to demand requests. We also observed that common

metrics for determining the best retention time during runtime

(e.g., cache miss rates [4]) may not be accurate in the presence

of a prefetcher and can unnecessarily waste energy. As such,

prefetching, if carefully designed in the context of reduced



retention STTRAMs, can increase energy savings as compared

to prior reduced retention STTRAM design techniques, with-

out incurring significant latency overheads.

Based on the above observations, we propose a new metric,

which we call expired unused prefetches, to evaluate the qual-

ity of a current retention time and prefetch distance. The ex-
pired unused prefetches represents the number of prefetched

blocks that were not accessed by a demand request before

expiry. Using this metric, we developed Prefetch-Aware Re-
tention time Tuning (PART) and Retention time-based Prefetch
Control (RPC). During a brief runtime profiling phase for each

application, PART uses the ratio of expired unused prefetches
to total prefetches to determine if the current retention time

suffices for the application. The retention time selected by

PART indicates the average amount of time for which cache

blocks used by an application reside in the cache. As such, if

too many prefetches are expired without being used, it is likely

that those prefetches were inaccurate. RPC uses this idea to

map expired unused prefetches to the prefetch distance.

Our major contributions are summarized as follows:

• We study prefetching in STTRAM caches and pro-

pose a metric—expired unused prefetches—that can

be used to effectively determine both retention time

and prefetch distance, without the need for any

complex hardware overhead.

• Using expired unused prefetches, we proposed an

algorithm to determine retention time and prefetch

distance during runtime.

• Compared to a base state-of-the-art reduced reten-

tion time STTRAM cache, PART+RPC reduced the

average energy and latency by up to 22.24% and

24.59%, respectively. Furthermore, when the base

architecture was augmented with the state-of-the-art

near-side prefetch throttling (NST) prefetching, our

approach reduced the average energy and latency

by 3.50% and 3.59%, respectively, and substantially

reduced the hardware overhead by 54.55%.

II. BACKGROUND AND RELATED WORK

STTRAM’s basic structure, comprising of magnetic tunnel

junction (MTJ) cells, and characteristics have been detailed

in prior work [10]. Earlier works suggest the use of very

short retention times (e.g., 26.5 μs [5]) with a DRAM-style

refresh scheme for cache implementation [5], [3]. Recent

works show that adapting a set of pre-determined retention

times to applications’ needs, specifically the cache block

lifetimes, can further improve energy consumption [4], [11].

In this section, we present a brief overview of prior work

on adaptable retention time STTRAM cache—the architecture

on which we build the analysis presented herein—and an

overview of prefetch distance control.

A. Adaptable Retention Time STTRAM Caches

Recent optimizations on STTRAM cache exploit the vari-

able cache block needs of different applications for energy

minimization. For example, Sun et al. [5] proposed a multi-

retention time cache featuring various retention times enabled

by various MTJ designs, wherein different applications could

be run on the retention time that suits them best. More recently,

Kuan et al. [4] analyzed the retention times of different

applications and proposed a logically adaptable retention time

(LARS) cache [4] that used multiple STTRAM units with dif-

ferent retention times. LARS involves a hardware structure that

samples the application’s characteristics during its very first

run. Based on the applications’ retention time requirements,

each application is executed on the retention time unit that best

satisfies their retention time needs. In this paper, we assume a

similar multi-retention time architecture to LARS. For brevity,

we direct readers to [4] for additional low-level details of the

architecture, but omit those details herein.

B. Prefetch distance control

Prefetch distance refers to how far into a demand miss

stream that a prefetcher can prefetch [8]. Effective prefetching

relies on accurate prefetch addresses and timely arrival of

data blocks to hide the latency between processor and main

memory. As such, the prefetch distance must not be so short

as to generate excessive late prefetches [6] or too long to lose

prefetch accuracy [6], [7]. Inaccurate prefetches can cause

performance degradation due to the saturation of memory

bandwidth and cache pollution. As such, lots of prior works

discuss various techniques for controlling prefetch distance,

feedback directed prefetching techniques, ways to monitor the

number of total prefetches and late prefetches to evaluate

prefetch accuracy and lateness, and how to determine the

prefetcher aggressiveness. For example, Ebrahimi et al. [12]

proposed a rule-based control method to separate global throt-

tling and local throttling, and reduce inter-core interference.

Both [12] and [6] looked at the number of useless prefetches,

which is determined by prefetches that are not used before they

are evicted. Heirman et al. [7] referred to the aforementioned

methods as farside throttling, since they maintained high

prefetch distance and throttled down when negative effects

were observed. Heirman et al. [7] proposed near-side prefetch

throttling (NST), which monitored the ratio of late prefetches

and total prefetches, kept prefetch distance low and only raised

the distance if necessary. None of these techniques, however,

have considered prefetching in STTRAM caches. As we

show in our analysis herein, state-of-the-art prefetchers may

under-perform if simply implemented on STTRAM caches

without considering execution characteristics and metrics that

are unique to STTRAM caches.

III. ENABLING PREFETCHING IN STTRAM CACHE

A. Effectiveness of prefetching expired blocks

Expired blocks in STTRAM caches incur misses when a

demand request accesses an expired block prior to eviction.

We refer to these misses as expiration misses, similar to prior

work [9]. As the retention time becomes shorter, expiration

misses increase, until expiration misses become the majority

of misses and essentially disables the cache’s ability to exploit



(a) Prefetch disabled (b) Prefetch enabled

Fig. 1: Prefetching expired blocks. In (a) the prefetch does not

bring back previously expired blocks into the cache; in (b) the

previously expired blocks are brought back into the cache

temporal locality. Given the uniqueness of expiration misses in

STTRAM caches, we first studied the impact of prefetching on

expired cache blocks. Figure 1 illustrates a simplified diagram

of a data cache, with each cell representing a cache block. The

horizontal blocks represent the cache ways (four ways in total)

and the vertical blocks represent the set address (seven set

addresses in total). The blocks’ colors represent the prefetch

stream that brought the cache blocks into the cache. We used

the stride prefetcher [8] as the base to illustrate our idea and

in our experiments. The number associated with the color

represents the program counter (PC) value of the load/store

instruction that begins the stream due to a demand miss.

Figure 1a illustrates the STTRAM cache without prefetch-

ing expired blocks. Assume that the instruction at PC 504

brought three cache blocks into the cache. Since the blocks are

brought in by the same stream, they are likely to expire around

the same time. If the prefetcher is disabled on those expired

blocks, as in a conventional prefetcher, when the demand

request accesses the blocks again, loading each block will

incur the miss penalty due to expiration misses. Alternatively,

enabling the prefetcher for the expired blocks can have a

positive effect, since, as shown in Figure 1b, the prefetcher

brings in subsequent blocks after the first demand miss (expira-

tion miss). Thus, subsequent accesses to the prefetched blocks

become demand hits without exposing the memory latency.

To quantify the benefits of prefetching expired blocks,

we performed experiments using SPEC CPU 2017 rate ( r)
benchmarks and evaluated the energy and latency changes. We

used a base stride prefetcher of prefetch distance 16, similar

to [13] and considered retention times from 25μs to 1ms. Our

detailed simulation setup is described in Section IV-A. We

use the term prefetchable expired blocks to represent expired

blocks that can be accurately predicted and reloaded through

the stride prefetcher, and therefore would incur no expiration

miss. Figure 2 shows the percentage of prefetchable expired

blocks in total expired blocks across the benchmarks, assuming

the best retention times. On average across all benchmarks,

10.85% of expired blocks can be reloaded into the cache for

reuse. Depending on the applications’ access pattern and cache

block lifetimes, the reused expired blocks can be as high as

29.66% for leela, while over the half of benchmarks (13 of 21)

have reuse rates over 10%. To further illustrate this behavior,

Figure 3 shows the percentage of prefetchable expired blocks

in total expired blocks for different retention times. For brevity,

the geometric mean is shown for the different retention times.

In general, the percentage of reused expired blocks increases

as the retention time decreases, with the highest being 8.69%

at 25 μs. These analysis motivate us to explore low-overhead

techniques for prefetching and determining the best retention

time in STTRAM caches during runtime.

Fig. 2: Percentage of prefetchable expired blocks in total

expired blocks across SPEC CPU 2017 benchmarks

Fig. 3: Percentage of prefetchable expired blocks in total

expired blocks for different retention times for SPEC CPU

2017 benchmarks (Geometric mean is shown for brevity)

Fig. 4: Retention time expiration detect potentially unused

prefetches

B. Prefetch-Aware Retention time Tuning (PART)

A key point of our analysis so far is that, as illustrated in

Figure 1b, expiration of cache blocks must be considered in

the design of prefetchers. Furthermore, we also analyzed prior

adaptable retention time techniques (e.g., [4]) that used miss

rates to predict the best retention time. We found that these

techniques only accurately predicted the best retention time

using cache miss rates in the absence of a prefetcher. When a

prefetcher is introduced, using miss rates may not be as accu-

rate due to the interplay of expiration misses and prefetching.

Thus, we designed the prefetch-aware retention time tuning
(PART) technique to take into account the expiration misses.



Algorithm 1: Prefetch-Aware Retention Time Tuning

Data: Retention time set

R = {25μs, 50μs, 75μs, 100μs, 1ms}
Result: OutputRetentionTime

1 OutputRetentionTime ← 1ms;

2 foreach r ∈ R do
3 allPF ←totalPrefetches(r)/

totalMSHRRequests(r);

4 expiredPF ←
expiredUnusedPrefetches(r)/
totalPrefetches(r);

5 if allPF > 0.1% then
6 if baseExpiredPF is set then
7 if expiredPF < 2*baseExpiredPF then
8 OutputRetentionTime ← r;

9 end
10 else
11 return OutputRetentionTime;

12 end
13 end
14 else
15 OutputRetentionTime ← r;

16 if expiredPF > 0.02% then
17 baseExpiredPF ← expiredPF;

18 end
19 end
20 end
21 else
22 OutputRetentionTime ← r;

23 missBasedTuning(OutputRetentionTime);

24 return OutputRetentionTime;

25 end
26 end
27 return OutputRetentionTime;

To motivate PART, Figure 4 illustrates the timeline of

when prefetched blocks are brought into the cache and then

expired. Assume that LOAD(A) instruction accesses memory

address A and causes a demand miss, the prefetcher sends

out four requests from address A+1 to A+4. The prefetch

arrival times are marked in green color. After the retention

time elapses, prefetched blocks begin to expire. We record

the number of blocks that were not used by demand re-

quests before expiration; we refer to these blocks as ex-
pired unused prefetches. The basic idea of PART is to use

the shortest retention time that does not excessively increase

the expired unused prefetches. To this end, PART tracks the

changes in expired unused prefetches at prefetch degree 1

during different tuning intervals to determine the best retention

time.

Algorithm 1 depicts the PART algorithm, which takes as

input the available retention times in the system and outputs

the best retention time. PART iterates through the available

retention time set starting from the longest to the shortest

(e.g., 1ms to 25μs), runs the application for a sampling period,

and takes the ratio of total prefetches to total MSHR requests

(allPF) and the ratio of expired unused prefetches to total

prefetches (expiredPF), as shown in lines 3-4. If allPF is

smaller than 0.1%, we infer that prefetches do not substantially

contribute to memory traffic. Therefore, the algorithm switches

to a subroutine that predicts the retention time based on cache

misses, similar to prior techniques [4] (line 23). If allPF is

greater than 0.1%, the algorithm first checks if expiredPF is

significant enough (> 0.02%). If expiredPF is greater than

0.02 %, this expiredPF is stored as baseExpiredPF and used

in subsequent tuning stages. Otherwise, PART iterates the

next available retention times to see if the thresholds are

satisfied (line 15-18). Note that we determined the thresholds

empirically through extensive experiments and analysis. After

obtaining baseExpiredPF, PART explores shorter retention

times to find the one that does not excessively increase

expiredPF as compared to baseExpiredPF. PART checks if

expiredPF is smaller than twice baseExpiredPF. If so, it

proceeds to the next shorter retention time, otherwise, the

current retention time is returned as the tuning result (line

7-12).

C. Retention Time-based Prefetch Control (RPC)

We also developed a simple heuristic, called retention
time-based prefetch control (RPC), that works in conjunction

with PART to determine the best prefetch distance during

runtime. To minimize tuning overhead, RPC determines the

best prefetch distance in ’one-shot’ along with the reten-

tion time tuning by the PART algorithm. PART tracks ex-
pired unused prefetches at prefetch degree 1 for tuning the

retention time. The determined retention time represents the

period that suffices, on average, for the executing applications’

cache block lifetimes. A prefetch degree of 1 is usually

considered conservative in prefetch distance throttling [6],

[12]. As such, if expired unused prefetches is excessively high

after retention time tuning, it is likely that wrong addresses

were prefetched. In this case, we maintain the prefetch distance

of 1 to minimize cache pollution and memory bandwidth

contention. RPC takes expiredPF in Algorithm 1 as input to

determine the prefetch aggressiveness, and maps the prefetch

distance similarly to [6]. Table I shows the distribution of

this mapping, representing different ranges of expiredPF and

the associated prefetch distance. If expiredPF is above 5%,

the stride pattern does not match the current application’s

data access. Thus, the prefetch distance is kept at 1 in order

to maintain prefetch functionality. On the other extreme, we

observed that some applications have the lowest expiredPF
(and energy consumption) at prefetch distance 32, which

indicates that the stride prefetcher captures the applications’

data access pattern and is able to recover expired blocks.

D. Overhead

Assuming a base architecture that has the capability of

multiple retention times (e.g., [4]), PART’s major advantage

is that it imposes negligible hardware and tuning overhead.



TABLE I: Prefetch distances for different ExpiredPF

ExpiredPF at prefetch degree 1 Prefetch distance

Above 5% 1
1.01% - 5% 4
0.51% - 1% 8

0.05% - 0.5% 16
Below 0.05% 32

PART exploits most of the hardware components described in

[4] for tuning. In addition to the four 32-bit registers and one

division circuit used in prior work, PART only requires one

additional 32-bit register for allPF and expiredPF. To keep

track of expired unused prefetches, PART only requires one

custom hardware counter, which increments when an expiring

block’s prefetch bit is valid. Using the shared expiredPF in

PART, RPC requires only one 32-bit comparator. In total, we

estimate that the area overhead is less than 1% of modern

processors like ARM Cortex-A72 [13].

We note that the base architecture incurs energy and latency

switching overheads from migrating the cache state from

one STTRAM unit to another. Switching occurs when an

application is first executed during its sampling period. For

example, given a tuning interval of 10 million instructions

and five retention time options, sampling would require 50

million instructions. However, PART does not increase the

switching overhead with respect to the base. In the worst case,

each migration takes approximately 2560 cycles and 8.192nJ

energy, resulting in total time and energy overheads of 10240

cycles and 32.768nJ, respectively. While these overheads are

minimal in the context of full application execution, we

reiterate that PART did not contribute to this overhead.

IV. SIMULATION RESULTS

A. Experimental Setup

To perform our analysis and evaluate PART, we imple-

mented PART using an in-house modified1 version of the

GEM5 simulator [14]. We modified GEM5 [14] to model

cache block expiration, variable tag lookup and cache write

latency, variable retention time units, and variable prefetch

distance as described herein. To enable rigorous comparison

of PART against the state-of-the-art, we used two recent prior

works to represent the state-of-the-art—LARS [4] to represent

adaptable retention time and NST [7] to represent variable

prefetch distance. We also implemented these two techniques

in GEM5. We used configurations similar to the ARM Cortex

A72 [13], featuring a 2GHz clock frequency, and a private

L1 cache with separate instruction and data caches. For this

work, we focused on data cache prefetching, since it provides

much opportunity for runtime adaptability, as opposed to the

instruction cache [4]. Every MSHR request from the L1 data

cache is directly sent to an 8GB main memory, and incurs

memory latency. We intend to explore the impact of our work

on the instruction cache and lower level caches in future work.

1The modified GEM5 version can be found at www.ece.arizona.edu/tosiron/
downloads.php

We considered five retention times: 25μs, 50μs, 75μs,

100μs, 1ms, which we empirically found to be sufficient

for the considered benchmarks. We used the MTJ modeling

techniques proposed in [15] to model the different reten-

tion times, and used NVSim [16] to estimate the energy

for the different retention times. Table II depicts prefetcher

configurations and the STTRAM cache parameters used in

our experiments as obtained from the modeling tools and

techniques. We used twenty-one SPECrate CPU2017 bench-

marks [17], cross-compiled for the ARMv8-A instruction set

architecture. Each benchmark was run using the reference
input sets for 1B instructions after restoring checkpoints from

240B instructions.

B. Results and Comparisons

In this section, we compare the cache energy and access

latency benefits of our work to prior work in various prefetch

distance control scenarios. We denote uniform prefetch dis-

tance 1 to 32 as PFD N, where N represents the memory

address distance. RPC represents the optimal static distance

among PFD N, since RPC accurately determines the distance

in the sampling phase and uses that distance throughout the

application’s run. We use NST [7] to represent the state-of-the-

art dynamic prefetch distance throttling. We compare PART to

the miss-based tuning algorithm used in LARS. We start with

a direct comparison of PART to LARS without prefetching.

Next, we compare PART to LARS with a uniform stride

prefetcher and use moderate prefetch aggressiveness: prefetch

degree 2 and prefetch distance 16 (LARS+PFD 16), similar

to prior work [6]. Thereafter, we compare PART to LARS

with the NST stride prefetcher (LARS+NST) to evaluate the

improvement over dynamic prefetch distance throttling. Lastly,

we compare PART to an SRAM cache with the NST stride

prefetcher (SRAM+NST) to show the collective improvements

of adaptable retention time STTRAM cache when prefetching

is active. All energy and latency results of PART are normal-

ized to the subject of comparison.

1) Comparison to the base STTRAM cache (LARS): Figure

5a depicts the energy consumption of PART in different

prefetch distance scenarios normalized to LARS. On average

across all benchmarks, PART reduced the energy by 19.53%,

21.25%, 21.29%, 20.09%, and 17.68% for PFD 1, PFD 4,

PFD 8, PFD 16, and PFD 32, respectively. RPC properly

mapped expired unused prefetches (expiredPF) to prefetch

distance and ensured that the ideal static prefetch distance

was selected. As such, PART+RPC reduced the average energy

by 22.24%, with savings as high as 65.96% for imagick. For

parest, imagick, lbm, roms, and fotonik3d, PART+RPC reduced

the energy by more than 40%, and no benchmarks’ energy

consumption was degraded by PART. Figure 5b depicts the

cache access latency normalized to LARS without prefetch-

ing. On average across all benchmarks, PART reduced the

latency by 21.52%, 23.50%, 23.51%, 22.08%, 19.29%, and

24.59% for PFD 1, PFD 4, PFD 8, PFD 16, PFD 32, and

RPC, respectively. PART+RPC reduced the latency by up to

70.41% for imagick. PART only incurred a negligible latency



TABLE II: Prefetcher configuration and STTRAM cache parameters with different retention times
Prefetcher Configuration Type: stride prefetcher, degree: 4, adaptable prefetch distance: 1, 4, 8, 16, 32

Cache Configuration 32KB, 64B line size, 4-way, 22nm technology

Memory device SRAM STTRAM-25μs STTRAM-50μs STTRAM-75μs STTRAM-100μs STTRAM-1ms
Write energy (per access) 0.002nJ 0.006nJ 0.007nJ 0.007nJ 0.008nJ 0.011nJ
Hit energy (per access) 0.008nJ 0.005nJ

Leakage power 75.968mW 11.778mW 11.778mW 11.778mW 11.778mW 11.365mW
Hit latency (cycles) 2 1

Write latency (cycles) 2 2 3 3 3 4

(a) Energy

(b) Latency

Fig. 5: PART with different prefetch scenarios (PFD N and RPC) normalized to the base STTRAM cache (LARS)

overhead (1.07%) for cactusBSSN while latency reductions

were achieved for the rest of the twenty benchmarks.

Compared to LARS, we observed that the energy reduction

trends were similar to the latency. Since prefetching can reduce

compulsive misses, increased latency benefits are achieved as

a result of the impact of expiration misses as discussed in

Section III-A. As shown in Figure 2, the average expired

blocks that can be accurately prefetched and ’reused’ are up

to 10.85%. Thus, the reduced expiration misses contributed

significantly to miss latency reduction.

2) Comparison to LARS with uniform prefetch distance
(LARS+PFD 16): Figure 6 depicts the energy and latency of

PART normalized to LARS+PFD 16. For brevity, only the ge-

ometric mean (across all the twenty-one benchmarks in Figure

5) and a subset of notable benchmarks are shown. Figure 6a

shows that across all the benchmarks, PART+RPC reduced

the average energy consumption by 4.75%, compared to

LARS+PFD 16 (the uniform prefetch distance). PART+RPC

reduced the energy by up to 20.51% and 18.77% for roms
and exchange2, respectively, with energy savings over 5%

for perlbench, mcf, xalancbmk, namd, nab, and imagick. We

observed that PART generally selected shorter retention times

than LARS+PFD 16. By incorporating the expiration misses

into the decision making about prefetching, PART achieved

a balance of short retention times without translating into

increases in miss latency. PART allowed the stride prefetcher

to recover expired blocks in short retention times. PART+RPC

(a) Energy

(b) Latency

Fig. 6: PART with different prefetch scenarios (PFD N and

RPC) normalized to LARS+PFD 16

only degraded the energy (by 0.48%) for parest.
As described in Section III-A, due to the reduced latency

achieved by prefetching expired blocks, PART uses shorter

retention times to improve energy consumption, since the



short retention times do not substantially increase the latency.

Figure 6b shows that, similar to the energy improvement,

PART+RPC reduced the average latency by 4.99%, as com-

pared to LARS+PFD 16. PART+RPC reduced the latency by

up to 25.76%, 21.09%, and 14.15% for roms, exchange2,

and nab, respectively. To understand why PART performed

so well for these benchmarks, we studied their execution

more closely. For exchange2, we observed that LARS se-

lected a long retention time (1ms) due to low miss rates

at 1ms, whereas shorter retention times increased the miss

rates substantially (by up to 9x). However, the large amounts

of misses at shorter retention times were rapidly amortized

by stride prefetching and did not have substantial negative

impact on the latency. We observed that even though shorter

retention times increased totalPrefetches for expired blocks,

the expired unused prefetches increased at a much slower

rate, thereby substantially reducing expiredPF (by up to 42%).

As such, PART selected short retention times (e.g., 25μs) and

was able to improve the latency for these benchmarks.

On the other hand, for roms, LARS selected a short re-

tention time of 25μs due to the low miss rates. However,

the expiredPF were substantially higher at shorter retention

times than 1ms. As such, PART selected 1ms for roms to

save potentially useful prefetches with the longer retention

time. The reduced latency in nab resulted from the optimal

prefetch distance (at PFD 1) as determined by RPC. These

results illustrate the importance of adaptable prefetch distance

to satisfy different applications’ needs. PART incurred minor

latency overheads of up to 1.6% and 0.19% for cactusBSSN
and parest, but reduced the latency for majority of the bench-

marks (19 of 21).

3) Comparison to LARS with dynamic prefetch distance
(LARS+NST): We further compared PART with LARS+NST

to evaluate the improvement when the dynamic prefetch throt-

tling is enabled as in previous work [7]. For brevity, Figure

7 compares PART to LARS+NST using a subset of notable

(a) Energy

(b) Latency

Fig. 7: PART with different prefetch scenarios (PFD N and

RPC) normalized to LARS+NST

benchmarks and the geometric mean of all the benchmarks.

Figure 7a shows that on average, PART+RPC improved the

energy by 3.50% over LARS+NST, with energy savings of

up to 18.77% for exchange2. On the other hand, on average,

LARS+NST only improved over LARS+PFD 16 by 1.43%.

We observed that in STTRAM cache without PART, the

dynamic prefetcher (NST) offered minimal energy savings,

even if it recovered expired blocks. As shown in Figure 7b,

PART+RPC reduced the average latency by 3.59% compared

to LARS+NST, with reductions of up to 21.09% and 12.23%

for exchange2 and roms, respectively. In the worst case, the

latency overhead was 1.60% for cactusBSSN, while the rest of

benchmarks benefited from latency reduction.

In a few cases, PART+RPC did not improve the latency

or energy as compared with LARS+PFD 16 or LARS+NST

(for example, for cactusBSSN). CactusBSSN was one of the

benchmarks with a low prefetch percentage in total MSHR

requests. As defined in Algorithm 1 (line 3), the allPF in

cactusBSSN was very low at 0.0002%. Thus, PART reverts to

miss based tuning for cactusBSSN, as described in Section

III-B. However, to provide a clear contrast between our

work and prior work, we used expiredPF-based tuning in

all PART+RPC results. For cactusBSSN, the RPC table was

unable to map the correct prefetch distance for latency or

energy improvement. We note, however, that in almost all

cases (20 out of 21 benchmarks), PART+RPC outperformed

both LARS+PFD 16 and LARS+NST in both energy and

latency. Importantly, we also reiterate that LARS+NST re-

quired additional hardware structures to implement the NST

prefetcher, whereas RPC’s overhead was marginal compared

to LARS+PFD 16, as described in Section III-D. The main

advantage of PART+RPC is the negligible hardware overhead

compared to NST. For instance, NST required seven 32-bit

registers for storage [7], whereas PART only introduced one

additional register to LARS in order to track the number of

outgoing MSHR requests, total prefetches, and expired unused

prefetches. Overall, PART+RPC reduced the implementation

overhead by 54.55% compared to LARS+NST.

4) Exploring the synergy of PART and NST: We also

explored the extent of the benefit, if any, of combining PART

with NST (i.e., PART+NST). Figure 8 summarizes the energy

and latency of PART+RPC and PART+NST normalized to

LARS+NST. For brevity, only the geometric mean of all

the SPEC CPU 2017 benchmarks are shown. On average,

PART+NST improved the energy and latency by 2.75%

and 2.63%, respectively, compared to LARS+NST, whereas

PART+RPC reduced the energy and latency by 3.50% and

3.59%, respectively. The results show that while providing

dynamic prefetch distance control, NST’s increased hardware

overhead compared to PART does not translate to energy

or latency benefits. In fact, PART still reduced the energy

and latency, albeit marginally, while substantially reducing

the implementation overheads (Section IV-B3). The results

also reveal the promise of a low overhead dynamic prefetch

distance control for STTRAM cache based on expiredPF. We

anticipate that even more energy and latency benefits can be



Fig. 8: PART normalized to

LARS+NST

Fig. 9: PART normalized to

SRAM+NST

achieved in larger STTRAM caches (such as LLC), and we

intend to explore and quantify these benefits in future work.
5) Comparison to SRAM with dynamic prefetch distance

(SRAM+NST): We also compare PART to SRAM cache

with NST prefetcher enabled (SRAM+NST). Figure 9 sum-

marizes the energy and latency of PART in the different

configurations normalized to SRAM+NST. On average, in all

prefetch configurations, PART reduced the energy by more

than 80%. We attribute this reduction largely to the STTRAM’s

low leakage power (Table II) and PART’s ability to select

retention times that satisfied the different applications’ cache

block requirements. As a result of this specialization, PART

was also able to reduce the latency (e.g., by 10.28% for

PART+RPC). As shown in Table II, STTRAM has advantages

in hit latency but not write latency. However, with the help

of PART, STTRAM was able to select shorter retention times

that satisfy the applications’ needs while maintaining write

latencies that were close to SRAM. We took a closer look

at benchmarks with high write activity, where write requests

and miss responses were greater than 40%, such as perlbench,

cactusBSSN, povray, lbm, cam4, and fotonik3d. Our analysis

revealed that the synergy of prefetching and PART’s retention

time selection made the write performance for these bench-

marks comparable to SRAM. As a result, the STTRAM cache

with PART did not degrade the latency compared to SRAM.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied prefetching in reduced re-

tention STTRAM L1 caches. We showed that using ex-
pired unused prefetches, and practically, tracking changes in

expired prefetches (expiredPF) with respect to total prefetches

(allPF), we could provide an accurate description of the best

retention with regards to energy consumption and derive in-

sights into the best prefetch distance. Based on these insights,

we proposed prefetch-aware retention time tuning (PART) and

retention time based prefetch control (RPC) to predict the best

retention time and the best prefetch distance during runtime.

Experiments show that PART+RPC can reduce the average

cache energy and latency by 22.24% and 24.59%, respectively,

compared to a base architecture, and by 3.50% and 3.59%,

respectively, compared to prior work, while reducing the

implementation hardware overheads by 54.55%. For future

work, we plan to explore the implications of PART on shared

lower level caches and in the presence of workload variations.
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