
1

ECG-based Authentication using Timing-Aware
Domain-Specific Architecture

Renato Cordeiro, Member, IEEE, Dhruv Gajaria, Graduate Student Member, IEEE, Ankur Limaye, Graduate
Student Member, IEEE, Tosiron Adegbija, Senior Member, IEEE, Nima Karimian, Member, IEEE, and Fatemeh

Tehranipoor, Member, IEEE

Abstract—Electrocardiogram (ECG) biometric authentication
(EBA) is a promising approach for human identification, partic-
ularly in consumer devices, due to the individualized, ubiquitous,
and easily identifiable nature of ECG signals. Thus, computing
architectures for EBA must be accurate, fast, energy-efficient,
and secure. In this paper, first, we implement an EBA algorithm
to achieve 100% accuracy in user authentication. Thereafter, we
extensively analyze the algorithm to show the distinct variance in
execution requirements and reveal the latency bottleneck across
the algorithm’s different steps. Based on our analysis, we propose
a domain-specific architecture (DSA) to satisfy the execution
requirements of the algorithm’s different steps and minimize the
latency bottleneck. We explore different variations of the domain-
specific architecture, including one that features the added benefit
of ensuring constant timing across the different EBA steps, in
order to mitigate the vulnerability to timing-based side-channel
attacks. Our DSA improves the latency compared to a base ARM-
based processor by up to 4.24x, while the constant timing DSA
improves the latency by up to 19%. Also, our DSA improves the
energy by up to 5.59x, as compared to the base processor.

Index Terms—Domain-specific architectures, energy efficient,
secure architectures, side-channel attacks, ECG, biometric au-
thentication, Internet of Biometric Things (IoBT), Internet of
Things (IoT)

I. INTRODUCTION AND MOTIVATION

Consumer devices, such as smartphones and wearables,

have become the fastest-growing category of Internet of

Things (IoT) devices. Many of these devices also constitute

the Internet of Medical/Health Things (IoMT/IoHT), which

enable innovative healthcare solutions and services. With the

rapid growth of the IoT, fast, energy-efficient, and secure

user authentication has become a necessity for consumer

IoT devices. IoMT devices, especially, are prone to cyber-

attacks and adversarial threats due to their interaction with

sensitive and private user information. As such, there is much

ongoing research into modalities for accurate and efficient user

authentication in consumer devices [1], [2].

R. Cordeiro and N. Karimian are with the Department of
Computer Engineering, San Jose State University, USA (email:
{renato.silveiracordeiro,nima.karimian}@sjsu.edu)

D. Gajaria, A. Limaye, and T. Adegbija are with the Department of
Electrical and Computer Engineering, University of Arizona, USA (email:
{dhruvgajaria,ankurlimaye,tosiron}@email.arizona.edu)

F. Tehranipoor is with the Department of Electrical and Computer Engi-
neering, Santa Clara University (email: ftehranipoor@scu.edu)

This article was presented in the International Conference on Hard-
ware/Software Codesign and System Synthesis 2020 and appears as part of
the ESWEEK-TCAD special issue.

This work is supported in part by the National Science Foundation under
grant CNS-1844952.

Electrocardiogram (ECG) is an increasingly popular modal-

ity for biometric user authentication. Apart from its value for

deriving health data insights and diagnosis through health-

care monitoring [3], ECG enables user authentication based

on physiological signals. ECG signals, which represent the

human heart’s electrical activity, are easy to obtain, uniquely

identifiable, permanent, and information-rich, making them an

excellent choice for user authentication in resource-constrained

systems [1]. As a result, there have been prior studies on fast

and energy-efficient EBA techniques, from the perspectives of

both the algorithm and hardware implementation [2], [3].

Most prior hardware approaches to implementing EBA at

extremely low time and energy typically involve application-

specific integrated circuits (ASIC) or FPGA-based designs

[4], [5]. While these approaches achieve high speed and

energy efficiency, they are inflexible and can only function

for the specific EBA algorithm that the hardware is designed

for. A modification of the algorithm would require a re-

implementation of the hardware, potentially from scratch [3].

Since EBA is not a persistent process, dedicated hardware

just for biometric authentication may be redundant, especially

in resource-constrained general- (or multi-) purpose devices,

such as smartphones or smartwatches. Furthermore, there is

currently a dearth of approaches that consider the security of

EBA architectures in consonance with the need for energy-

efficiency and low latency. Given the high variability in the

timing and power profile of different phases of the ECG

authentication [6] algorithm, these implementations are prone

to timing or power side-channel attacks [7], [8], [9].

In this work, we propose a domain-specific architecture
(DSA) for ECG biometric authentication. As an important

step in the direction of efficient and secure architectures for

EBA, our work aims to mitigate timing-based side-channel
attacks by ensuring that the different steps of the authentication

process exhibit both intra-step and inter-step constant timing

profiles. As such, the constant timing mitigates the variability

and timing leakage required for performing timing-based at-

tacks. Our main motivation for designing a DSA rather than an

ASIC or FPGA-based design is the runtime flexibility afforded

by domain-specific architectures. When the EBA algorithm

is not running, other processes or threads can be run on the

system and can be preempted for the EBA algorithm when

necessary.

We explore different versions of our DSA to evaluate their

latency and energy benefits and their tradeoffs. We explore

a design featuring a dedicated buffer to mitigate the latency

2

and energy overheads of data movement and one featuring

a custom block to mitigate the performance bottleneck in

the EBA algorithm. We also explore an adaptable DSA (via

dynamic frequency scaling [10] and adaptable execution order

[11]) to specialize the execution resources to the variable

runtime needs of the EBA algorithm while also achieving

constant timing.

Our main contributions are summarized as follows:
• We analyze the execution characteristics of the EBA al-

gorithm to reveal the performance bottleneck and variable

timing characteristics that increase their vulnerability to

timing-based side-channel attacks.

• We design an energy-efficient domain-specific architec-

ture (DSA) to reduce the execution time of EBA. To

mitigate the vulnerability to timing-based side-channel

attacks, our architecture can also maintain constant timing

across the different authentication steps by trading off

optimization potential.

• We explore different design variants of the DSA and

analyze their tradeoffs. We compare the DSA to a base-

line ARM processor configuration commonly found in

modern smartphones and show that the proposed architec-

tures offer substantial latency and energy improvements

over the baseline architecture. The adaptable DSA can

reduce the latency and energy by up to 19% and 4.62x,

respectively, while maintaining constant timing across the

algorithm’s steps. Furthermore, our DSA eliminates the

latency overheads imposed by prior work that also used

constant timing to mitigate vulnerability to timing-based

side-channel attacks.

The rest of the paper is organized as follows. In Section

II, we describe ECG biometric authentication, various steps

of EBA, and details of our implementation of the algorithm.

In Section III, we discuss domain-specific architectures for

EBA, details of our DSA design, timing-based side-channel

attacks in EBA, the threat model considered in this paper,

and mitigation methods. We describe our experimental setup

and experimental results in Section IV and Section V, respec-

tively. Section VI provides a brief literature review of related

work. Finally, in Section VII, we present our conclusion and

overview of future work.

II. ECG BIOMETRIC AUTHENTICATION (EBA)

Electrocardiogram signals result from the human heart’s

electrical activities. Many authentication schemes in the

healthcare domain, including the burgeoning IoMT, utilize

ECG biometrics for authentication [12], due to several ad-

vantages, such as internal security, ease of implementation,

liveness detection, etc.

EBA systems, in general, apart from the sensor, are com-

prised of four major steps: filtering, segmentation, feature
extraction, and matching. The ECG sensor provides the in-

terface between the user and the authentication system, and

collects the user’s biometric traits. Filtering processes the

gathered ECG signal to remove various noise sources in order

to enhance the quality of the biometric traits. Segmentation
splits the ECG signal into its different unique component

Filtering Segmentation Features extraction Registration
0.083651
0.281587
0.333333
0.370476
0.704444
0.253865
0.056415
1.000000
0.002344
0.465187



Filtering Segmentation Features extraction Matching
0.142540
0.272857
0.333333
0.376032
0.740952
0.591501
0.227614
0.975105
0.000000
0.832224



En
ro

llm
en

t
Au

th
en

tic
ato

n

Fig. 1: High-level overview of an ECG biometric authentica-

tion (EBA) system.

waveforms in order to reduce redundancy and simplify the

authentication process. Feature extraction extracts information

that may enable the system to distinguish between different

users. The feature set extracted during an a priori enrollment

phase is either stored in a remote database as a template

indexed by the user’s identity information (i.e., match-on

server) or stored on a smart card (i.e., match-on card/device).

This template will be computed by averaging a set of n
enrolled ECG signals of the same user in the feature sets.

Matching, which can be implemented in hardware or software,

compares the template with a new input query and provides

a response to the query, i.e., whether the user’s biometric

matches the template or not.

A. EBA Algorithm

Fig. 1 provides a high-level overview and flow of the EBA

process, which comprises of the enrollment and authentication
phases. In the enrollment phase, the user’s ECG signal is

registered to generate the template, and in the authentication

phase, which this work focuses on, raw data from a user is

provided and compared to the previously stored template to

determine the access permissions. In what follows, we briefly

describe the various steps of the EBA algorithm and our

approach for implementing the algorithm.

Data Acquisition: ECG measures electrical activity in the

heart and electrical signals produced during muscle contrac-

tions. Generally, an ECG sensor consists of two electrodes.

In early research work, wet electrodes such as AD8232 were

dominant, while the recent advancements in sensing technolo-

gies make the use of dry electrodes more feasible than ever.

The Nymi wristband [13] and CardioWheel [14] are examples

of commercial ECG sensing products that have been developed

to improve the wearer’s daily experience.

Filtering: The presence of noise within the signals might

result in inaccurate results. Hence, denoising is a required

step in EBA systems. Different types of noise get assembled

together with ECG signals in the process of acquisition and

transmission. These signals can range from low-frequency

noise such as baseline wander (BW) to high-frequency noises

such as power line transmission motion artifact (MA) and

electrode movement (EM). To remove this artifact, we em-

ployed an infinite impulse response (IIR) bandpass filter by

cascading a low-pass (LP) and high-pass (HP) filters with

cutoff frequency 1Hz-40Hz, as shown in Fig. 2a. We aimed

to preserve the useful original information of the ECG while

attenuating low and high-frequency noise components. The

3

0.6 0.8 1 1.2
Time (sec.)

-0.5

0

0.5

1

A
m

p
lit

u
d

e

(a) (b)

Fig. 2: Plots illustrating ECG signal from the database for (a)

filtered vs. noisy ECG. (b) ECG segments collected from the

same subject and localization of fiducial points. After detecting

R-peak using the Pan-Tompkins algorithm, the ECG signal is

segmented by cardiac cycles.

Fig. 3: Hypothetical example representing the ECG segmen-

tation. (a) is the original ECG waveform, (b) illustrates fixed

length segmentation, and (c) illustrates the RR segmentation

techniques

.

high-pass filter with the transfer function of the second-order

low-pass filter is:

H(z) =

(
1− z−6

)2
(1− z−1)

2 (1)

The amplitude response is:

|H(wT)| = sin2(3ωT)

sin2(ωT/2)
(2)

where T is the sampling period. The difference equation of

the filter is:

y(nT) =2y(nT − T)− y(nT − 2T) + x(nT)

− 2x(nT − 6T) + x(nT − 12T)
(3)

In addition, the transfer function for a high-pass filter is

defined by the following equation:

H(z) =

(−1 + 32z−16 + z−32
)

(1 + z−1)
(4)

where the difference equation is defined as follows:

y(nT) =32x(nT − 16T)− [y(nT − T)

+ x(nT)− x(nT − 32T)]
(5)

Segmentation: A typical ECG tracing consists of a series of

P , QRS, and T waveforms occurring in a repetitive order.

Each cycle of ECG can provide the same information over

time, and it is not efficient to repetitively read correlating

signals. Therefore, segmentation has come to the forefront of

ECG biometric systems. The goal of segmentation is to find

repeated patterns in the P , QRS, and T waveforms, thereby

significantly reducing the template size in order to simplify

template matching. The first step of ECG segmentation is to

identify the R-peak. To achieve this goal, we employed the

Pan-Tompkins [15] technique to detect ECG R-peak. In short,

four steps including derivation, squaring, averaging phases

before thresholds are set to identify R-peak for the ECG

segmentation. We used a derivative filter to find the high

slopes and identify the direction of the slopes of the ECG

signal. The derivative filter also distinguishes the R-peak from

other ECG waveforms. Squaring makes all the ECG signal

values positive and amplifies the output of the previous stage.

Averaging phase maximizes the ECG signal compared with

the squared output. After the averaging process, the threshold

is employed to detect the R-peaks in the ECG.

Upon successfully completing R-peak detection, the ECG

signals are isolated into ECG beats (segments). There are

two techniques for ECG segmentation called Fixed Length
Segmentation and RR segmentation. Fixed length segmentation

involves cropping the partial ECG signal at fixed distances

before and after detected R-peaks (Ri−1 − n, Ri−1 + n′)
instead of the whole signal, where n and n′ are the time

periods before and after the R-peak. Note that n and n′ are
different from each other and vary depending on the sample
rate of the data sets. Finding an optimal value of n and n′

plays a huge role in the EBA performance. Alternatively, RR

segmentation involves cropping the whole waveform of the

ECG signal (Ri, Ri+1), where the Ri is the ECG R-peak at

cycle t, and Ri+1 is the ECG R-peak at cycle t + τ . In this

work, we used Fixed Length Segmentation since we found

it to give better results, allowing us to not only reduce the

time for enrollment/authentication phase, but also reduce the

memory space for storing the template. Fig. 3 illustrates our

technique for segmenting ECG signals using sliding windows

into different heartbeats.

Feature extraction: The feature extraction stage translates the

segmented ECG into a representation that further reduces the

effects of intra-subject variability while emphasizing discrim-

inative and intra-class variations to obtain better performance.

ECG biometric systems fall into two categories in terms of

feature extraction: fiducial point or non-fiducial point. Fiducial

point techniques focus on measurements of ECG fiducial

landmarks in the time domain, such as temporal or amplitude

difference between fiducial landmarks (P , QRS, and T). In

non-fiducial techniques, on the other hand, feature extraction is

based on using frequency analysis such as wavelet transform to

holistically analyze an ECG signal and overall morphology of

the waveform rather than specific fiducial points. Even though

non-fiducial features such as frequency domain can lead to

high accuracy, selecting the optimal level of decomposition

and types of wavelet transform is challenging. Furthermore,

if ECG signals are very noisy, non-fiducial techniques can

degrade the EBA performance. Moreover, non-fiducial feature

extraction is not lightweight and consumes more power, which

4

is not ideal for IoMT [16]. Thus, in this paper, we use the

fiducial method. Specifically, we extracted a subset of ten

features that represent the majority of fiducial features from

every beat of each individual’s ECG signal. Fiducial point

feature extraction relies on accurate detection of ECG fiducial

characteristic points such as P , Q, R, S, and T waves, as

shown in Fig. 4, in order to obtain their relative amplitude,

temporal intervals, and morphological features [16]. Each

temporal and amplitude of each waveform are distinctive from

each individual user. In this work, we designed 10 fiducial

points and 14 temporal features to generate a discriminative

EBA feature representation to improve the EBA accuracy.

To extract these features, first the R-peak, and then the P ,

Q, S, T peaks and valleys are detected using a local maxi-

mum/minimum searching algorithm within a defined physical

region. Note that the number of fiducial points and temporal
features can be extended up to ≈ 40. However, we found that
the aforementioned 24 feature sets were more robust against
noises, discriminative, and achieved high accuracy.
Matching: In the matching stage, identification and authen-

tication functions are performed. Identification commonly in-

cludes a classification process such as support vector machines

(SVM). For authentication, the acceptance or rejection of the

identity claim is generally based on a reference threshold

of T between the currently acquired trait and the previously

acquired templates. In our work, we focus on authentication

and employed Euclidean distance as a matching technique

between the features’ vectors to decide whether to accept

or reject the identity claim. Given a claimed identity I and

a query feature set Xq , we need to determine if (I , Xq)

belongs to a genuine or imposter user. The Euclidean distance

D between two feature vectors Tj and qj is defined as

D({XT
I }, {Xq}) =

√√√√
K∑
j=1

(XT
I [j]−Xq[j])2 (6)

where XT
I is a stored template corresponding to identity I

and K is the number of feature sets. So, we compare XT
I and

Xq to measure the similarity for verification. If the distance

D or score is above a predefined user-specific threshold (η),

the claimed identity is accepted as a genuine user, otherwise,

it is rejected and considered an imposter.

B. EBA Algorithm Evaluation

Evaluation metrics: To evaluate the performance of our EBA

algorithm, we conducted the experiments with three error

rates: false positive/accept rate (FPR/FAR), true positive/accept

rate (TPR), and equal error rate (EER). FRR is the percentage

of genuine users who were denied access to the ECG authenti-

cation system, whereas FAR is the percentage of imposters who

successfully gained access to ECG biometric authentication.

Both FRR and TPR can be traded-off with each other in order

to find the optimal and desired EER. EER is the location on

the receiver operator characteristic (ROC) curve where the

FAR and true positive rate 1-FRR are equal. Adjusting the

threshold value (η) controls the TPR and FPR of the ROC

curve. In fact, we generated a set of thresholds {ηj}Tj=1 such

Fig. 4: (a) Single ECG beat with fiducial characteristic points,

(b) temporal and fiducial point features that have been ex-

tracted from single ECG beat and used in this paper.

that smin ≤ ηj ≤ smax, ∀j = 1, 2, · · · , T , where smin and

smax are the maximum and minimum scores, respectively,

in the given set of match score. Thus, each threshold (ηj)

computes different values for FAR and FRR [17]. As (ηj) is

decreased, the constraints on accuracy become more relaxed,

allowing for higher FAR. For a relatively high threshold (ηj)

value, the FAR is decreased. Depending on the application, the

user-specific threshold (ηj) value can be adjusted.

We also calculated the accuracy for each subject as the

number of successful attempts (segments or ECG beats) by

the genuine user divided by the total number of attempts or

the percentage of correctly recognized query samples. The

accuracy is defined as follows:

Accuracy =
Nc

Nq
(7)

where Nq is the total number of query samples and Nc is the

number of query samples that are correctly identified.

ECG database: To validate the effectiveness of the EBA

system, we conducted extensive experiments on three widely

used benchmark datasets: ECG-ID [18], Combined measure-

ment of ECG, Breathing and Seismocardiograms database

(CEBSDB) [19], which contains normal ECG records, and

PTB Diagnostic ECG Database [20], which contains both

normal and abnormal ECG signals. The databases used are

summarized in Table I. The PTB database contains 549 records

with diverse profile information such as gender, age, healthy,

unhealthy, and different lengths obtained from 290 subjects

sampled at 1 kHz, which mimics real-world scenarios. Among

the 290 subjects, 148 subjects showed serious abnormality,

whereas there were 52 healthy subjects. All channels were

involved, where only 14 are for ECG. However, in this work,

we only used lead 1 as our experimental setup, and none of

the people were excluded. ECG-ID contains twenty-second

ECG recordings collected from 90 subjects from multiple

sessions over a six-month period. The signals are acquired

from single limb lead I using electrodes at the wrists. In

this paper, we used all 90 subjects and used all sessions

recordings ECG to conduct the experiments. In the CEBSDB

database, 20 presumed healthy volunteers are measured using

a Biopac MP36 data acquisition system from Santa Barbara,

CA, USA. Total recordings are at a sampling frequency of

5 kHz for approximately 50 minutes. Note that while the
different health conditions have no tangible impact on ECG-
based authentication, we have included them to illustrate

5

the robustness of our EBA system to different kinds of input
signals.
Template generation: As discussed in Section II-A, in the

enrollment phase, the user’s ECG signal is registered to

generate the template. Based on the data sets, we were able

to collect 40 different test samples (i.e., beats/segment) from

any individual’s ECG. In order to generate a template, we

randomly selected 20 ECG beats (segments) from a total of 40

ECG beats and calculated the average to make a template for

each individual user. We registered each user using one ECG

segment, and each segment contains 24 feature sets that have

been extracted in the feature extraction module. In other words,

we generated template sets with sizes of 90 × X , 290 × X ,

and 20 × X for the ECG-ID, PTB, and CEBSDB datasets,

respectively. Here, X indicates the number of feature sets (24).

After each user is registered in the template, we tested and

evaluated our EBA system using 40 segments for each user.

Performance: We used all three datasets—ECG-ID database,

PTB, and CEBSDB—to evaluate the EBA algorithm’s match-

ing task and recognition performance. In order to do that, we

considered 40 ECG segments (beats) for each individual. Thus,

we obtained test sets with sizes of 90 × 40 for the ECG-

ID dataset, 290 × 40 for the PTB dataset, and 20 × 40 for

the CEBSDB dataset. For each test sample, we calculated

the Euclidean distance or similarity between the test sample

and the template of each individual. To measure a genuine

match score, a pair of samples from the same user have to be

compared using the matching module; to measure an impostor

match score, a pair of samples from two different users have

to be compared. In the authentication phase, we took each

subject as a genuine user and considered the rest as impostors.

Therefore, we had a total of Ns(s−1)/2 genuine comparisons,

and N(N − 1)s2/2 impostor comparisons, where N is a total

user size and s is the number of segments (40). N is 90, 290,

and 20 for the ECG-ID database, the PTB Diagnostic database,

and the CEBSDB, respectively.

The test performances of the accuracy, FAR, FRR, and

EER of the three datasets are shown in Table II and Fig. 5.

As shown in Table II, the accuracy and FRR for all three

datasets were 100% and 0%, respectively. In contrast, FAR
for ECG-ID, PTB, and CEBSDB were 1.86%, 3.36%, and

3.5%, respectively, while the EER was 2%, 3%, and 3.6%,

respectively.

Compared to other methods such as [21] and [22], our

results are superior to the state-of-the-art methods with EER of

2%, while prior work achieved 4.46% and 10%, respectively.

We can also observe that only a 93% accuracy is obtained

from prior work [23] when the fiducial feature extraction has

been implemented, while our proposed method achieves an

accuracy of 100%.

III. TIMING-AWARE DOMAIN-SPECIFIC ARCHITECTURE

FOR EBA

Even though there are a few prior works [3], [4], [5],

[24] that proposed accelerators for EBA, ours is the first that

explores the mitigation of side-channel attacks for the whole
algorithm. Using a domain-specific architecture, as opposed to

TABLE I: The summary of the four data sets adopted in our

experiments.

Dataset Sample rate # of subjects Health status
ECG-ID 500 90 Healthy

PTB 1000 290
Healthy &

Myocardial infarction
CEBSDB 5000 20 Healthy

TABLE II: A performance comparison of ECG biometric

authentication using different datasets.

Dataset # subjects Accuracy FPR FRR EER
ECG-ID 90 100 1.86 0 2
PTB 290 100 3.36 0 3
CEBSDB 20 100 3.5 0 3.6

an ASIC or FPGA-based accelerator, offers the added benefit

of flexibility to execute other applications on the base configu-

ration. Furthermore, a domain-specific architecture lends itself

to easier integration into general-purpose (or multipurpose)

architectures used in consumer devices, such as smartphones

and smartwatches [2].

Designing a domain-specific architecture for EBA involved

a detailed and fine-grained analysis of the algorithm’s execu-

tion characteristics and requirements. We followed three key

guidelines in designing our architecture: (1) using dedicated
memories to minimize the distance of data movement; (2)

eliminating unnecessary advanced arithmetic units and mi-
croarchitectural optimizations; and (3) using the easiest form
of parallelism that matches the domain. These guidelines,

among others, are followed in the design of other domain-

specific architectures [25]. In this section, we describe the

different design decisions made in the architecture and the

motivations for those decisions.

A. Leveraging Adaptability

Various steps in the ECG biometric algorithm have dras-

tically different execution characteristics that require differ-

ent resources for minimum or near-minimum latency. For

example, whereas segmentation exhibited a high amount of

instruction-level parallelism (ILP), we observed that the ILP in

filtering was much less, and as such, did not benefit from out-

of-order execution. Thus, our overall approach was to exploit

our observations about the algorithm’s execution character-

istics to explore an architecture that is well-matched to the

algorithm’s needs. We further sought to use adaptability to

ensure that the resources are just enough for each step, in order

to minimize resource over-provisioning and achieve constant

timing. For simplicity, we limited the employed adaptability to

frequency scaling and shutting down the out-of-order backend

when not in use (details in Section III-E).

B. Mitigating Timing-based Side-channel Attacks

EBA systems have been shown to have security and privacy

issues in adversarial settings [26]. Major security threats in

biometrics can be executed in three ways: non-invasive, semi-
invasive, and invasive. Invasive attacks [27] are the most ex-

pensive and intrusive, involving physical tampering (e.g., cir-

cuit editing and micro-probing). Compared to invasive attacks,

6

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
s
it

iv
e
 R

a
te

Receiver operating characteristic

ECG_PTB

ECG_ID

CEBSDB

Fig. 5: ROC curves of ECG-based biometric authentication for

ECG-ID, PTB, and CEBSDB datasets.

semi-invasive attacks [28] require moderate cost and some

physical tampering (e.g., partial decapsulation and backside

thinning). On the other hand, non-invasive attacks [29], such

as side-channel attacks, require the lowest cost and no physi-

cal tampering. Side-channels are physical signatures/leakages

from the execution time, power consumption, and electro-

magnetic emanations (EM) released while the device is ma-

nipulating data. Timing based side-channel leakage, within

the context of EBA, occurs when an attacker obtains the

execution time of the target authentication step (e.g., filtering,

segmentation, feature extraction) for the provided input. The

side-channel information can then be analyzed to infer private

information. These side-channel attacks rely on the attacker’s

ability to detect the variability between different operations or

inputs to the system [30].

In this paper, we focus on the timing leakage of each step

of the EBA system based on their execution latency. Since

different steps of the EBA take different amounts of time,

attackers may infer the current steps of the authentication

process, or even the specific instructions being executed,

simply by monitoring the latency of executions. Therefore,

our approach is to ameliorate the timing side-channels by

ensuring that the timing information from latency profiles

cannot be used to infer the operations being performed; thus,

reducing the vulnerabilities in EBA computing. Our future

work involves incorporating mitigation strategies for power

attacks into the work proposed herein.

C. Threat Model

In this subsection, we define the threat model, as well as

timing side-channel leaks under our threat model. In general,

timing attacks are based on measuring how much time various

computations in the EBA algorithm take to perform (e.g.,

comparing an attacker’s given ECG signal with the victim’s

unknown signal). Given the classification of biometric tech-

nologies as a match-on card or match-on server (Section II),

we define two types of attacks: server-based attack and device-
based attack.

We assume that in a server-based attack, an adversary

can observe the variation of the total execution time of the

victims EBA algorithm with respect to the ECG signal. This

capability is possible by accessing the match-on server that

contains the database of all enrolled users’ ECG signals. In

this scenario, for example, the victims EBA runs on a server

that can be remotely probed and timed by the attacker using

malicious/fake ECG signals. Due to cross-matching problems

and privacy invasion, an adversary can reconstruct various

users ECG data through timing attacks. Mitigating such attacks

at the server level will likely be very expensive. On the other

hand, in device-based attacks, an adversary can directly access

the victims device to observe variations in how long it takes

to run the EBA algorithm. In this scenario, an attacker will

only access the users ECG signal (only one user) that has been

enrolled in the card (device).

In more detail, an attacker can access leaked information

from the EBA system by measuring the time it takes to respond

to certain queries (trying different ECG signals as inputs).

Note that public ECG data is available to everyone and can

be exploited by attackers to access confidential information

leaked from timing attacks. Basically, an attacker attempts to

compromise the victim’s ECG signal by analyzing the time

taken to execute the EBA algorithm. The different operations

in our EBA algorithm take various amounts of time to execute,

and the time can change based on the different inputs (ECG

signals), given that each user’s ECG signal produces a unique

waveform. By precisely measuring the time for each operation,

an adversary can work backward to the input and reconstruct

the victims ECG data.

The importance of securing a biometric system against

timing side-channel attacks is that the biometric data are

permanent and not possible to revoke if compromised. To

mitigate timing attacks, it is important to design EBA systems

with constant-time functions and ensure that input-dependent

timing variations are eliminated in the EBA system. The

following subsection details how we implemented constant

timing in the EBA algorithms as a countermeasure to timing

attacks.

D. Input-Independent Intra-Step Constant Timing

Our overarching goal was to ensure constant timing across

the different algorithm steps. However, we also observed

that intra-step timing variations could occur due to different

inputs to the algorithm (i.e., user data inputs). This intra-step

timing variation was especially evident in the case of branches

within the algorithm’s instructions. Thus our first goal was

to modify the code such that our EBA algorithm maintained

constant timing regardless of inputs, similar to the constant
time exponentiation [31], [32] mitigation technique for timing-

based side-channel attacks.

To achieve this, we explored all the branches in our al-

gorithm/code and inserted dummy computations (tantamount

to nops) to balance the number of instructions in both the

taken and not taken branches. That is, all branches execute

the same number of instructions regardless of the branch

direction. We found that the timing variations for different

inputs were especially significant during the segmentation step

for R-peak detection. This step consists of complex branches

with computationally expensive loop operations and multiple

7

ECG biometric authentication
application

architecture flags

10ms STTRAM
L1 iCache

75μs STTRAM
L1 dCacheFetch

Arch.
controller

OoO
backend

Decode
SegBlk

Exec
Units

RR
averages

Derivative
filter

SquaringPeak
detection

In
te

gr
at

io
n

Segmentation block

0
1

sel

Fig. 6: Overview of domain-specific architecture (DSA) and computation flow in the custom segmentation block (segblk).

loop exit conditions. Simply balancing the full loops resulted

in substantial execution time overhead due to the dummy

computations. Thus, to mitigate this overhead, we observed

that constant timing could be achieved by only inserting

dummy computations equivalent to the maximum number of

times those branches are called for any possible combination

of inputs. The results of this intra-step constant timing process

are presented in Section V.

E. EBA Domain-Specific Architecture (DSA)

Fig. 6 depicts a high-level overview of the proposed DSA.

The architecture comprises of a base out-of-order core similar

to modern-day ARM-based high-performance processors for

consumer devices, such as smartphones. The functional units

(execution units) include two ALUs, one load, and one store

unit, while we eliminated complex functional units, such as

the floating-point and single instruction multiple data (SIMD)

units, as the EBA algorithm did not need them. Increasing the

number of functional units did not provide any latency benefits

and was deemed unnecessary.

For energy savings, we opted to use spin-transfer torque
RAM (STTRAM) caches, given their low leakage power and

normally-off computing capabilities [33]. We used a 4-way

set associative 16KB cache with 64B blocks. A 32KB cache,

which is common in smartphones, was over-provisioned for

the algorithm. To further limit the energy overheads, we used

reduced retention STTRAM caches that only retain data for

a limited period of time, after which the data is invalidated

[34]. Circuit-level details of how reduced retention can be

implemented are outside the scope of this paper but have been

described in prior work [34].

However, to prevent latency overheads or data corruption,

prior work [35] has shown that the retention time must suffice

for the cache blocks of the executing applications. Thus, we

analyzed the cache blocks of the algorithm’s different steps

to reveal that the data cache blocks, on average, required

approximately 75μs, while the instruction cache blocks re-

quired 10ms on average. That is, most data and instruction

cache blocks were either evicted or invalidated through normal

cache accesses after 75μs and 10ms, respectively. In general,

instructions were more frequently reused, hence the longer

retention time, while there was much higher dynamic data

activity. Therefore, we used 75μs and 10ms retention times for

the data and instruction caches, respectively. To prevent data

corruption of blocks that need to remain in the cache beyond

the retention time, we also incorporated a low-overhead 2-

bit-per-block monitor counter, similar to prior work [35].

This counter, which is incorporated with the cache controller,

0% 20% 40% 60% 80%100%

Buffer shift
Integration

Peak detection
Signal output

Other

Percentage time of segmentation

(a) Segmentation

0% 10% 20% 30% 40%

DC Filter
LP filter
HP filter

Other

Percentage time of filtering

(b) Filtering

Fig. 7: Percentage time of various components of the filtering

and segmentation steps. Time was relatively evenly spread in

filtering, but the buffer shift loop in segmentation comprised

the major source of overhead due to data movement to/from

memory.

simply writes back and invalidates dirty cache blocks when

the cache’s retention time is about to elapse. Note that the use

of STTRAM is orthogonal to the work proposed herein, and

our work still achieves optimizations even with SRAM cache.

We observed that the segmentation step took the most

execution time—98.6%—of the whole algorithm. Further fine-

grained analysis revealed that the main latency bottleneck

arose from the data movements between processor and mem-

ory in the segmentation step. Specifically, as illustrated in

Fig. 7a, a single loop (Buffer shift in the figure) accounted

for 91.02% of the overall execution time of segmentation.

Comparatively, other steps’ profiles were relatively stable

throughout execution, as shown in Fig. 7b for filtering (for

brevity, we omit figures for the other steps).

Therefore, to mitigate the bottleneck of the segmentation

step, we explored two flavors of our domain-specific architec-

ture. First, we designed a hardware implementation of a cus-

tom segmentation block (segblk)—effectively, an accelerator—

to perform the required computations (Fig. 6). The segblk is

tightly coupled to the core and shares key resources, such as

the register file, memory management unit, and caches, with

the core. While it imposes a less flexible integration than

a loosely-coupled implementation, a tightly coupled segblk
affords the benefit of zero runtime overhead for its invocation,

which is vital for the EBA algorithm. The segblk has pointer-

based inputs and outputs, and start and done signals, and

communicates with the rest of the processor via the on-

chip bus protocol. During the program execution, when the

segmentation function is called, the start signal is given to

the segblk. While the segmentation function is executed in the

segblk, the processor can go to a low power state and wait for

the execution to complete. Completion of the segmentation

step triggers an interrupt signal to wake up the processor and

continue the program execution.

8

S_Wait

S_SegS_FeatS_Mat

S_Read S_Filt

sel = 1
freq_l = 0

sel = 0
freq_l = 3

sel = 0
freq_l = 0

sel = 1
freq_l = 2

sel = 1
freq_l = 1

done

feat seq

filt

readstart

Fig. 8: Finite state machine of the architecture controller.

Fig. 6 illustrates the main functions implemented in the

segblk and the dataflow among the functions. The segblk
controller and datapath were implemented in Synthesizable

Verilog to perform five major functions as follows: 1) ini-

tialization of RR averages; 2) derivative filter calculation

using the Pan-Tompkins formula; 3) squaring the derivative

to eliminate negative values and emphasize high frequencies;

4) moving-window integration; and 5) peak detection.

Second, as an alternative to the custom segmentation block,

and given the memory bottleneck of the segmentation step, we

introduced a 4KB dedicated buffer for the segmentation step.

The buffer size was selected based on the amount of data

movement observed during our analysis. This buffer, directly

accessible via load/store instructions, reduces the distance and

frequency of data movement. For low overhead, we used a

STTRAM buffer with a 100μs retention time (SRAM can also

be used with similar results, but higher energy overheads). The

tradeoffs and overheads of these architectures are discussed in

Section V.

Finally, to enforce constant timing, our DSA adapts the ar-

chitecture to different algorithm steps. Adaptability is achieved

through dynamic frequency scaling [10], which is commonly

implemented in modern-day processors, and by varying the

execution order (i.e., in-order vs. out-of-order). To vary the

execution order, instructions can be multiplexed through the

execution pipeline in an in-order fashion or through the out-of-

order backend, depending on the algorithm step. The architec-

ture is implemented as illustrated in Fig. 6, and is conceptually

similar to the composite core architecture [11]. All instructions

traverse through the fetch and decode stages of the pipeline as

usual. However, depending on the multiplexer’s select signal,

as dictated by the architecture controller, the instructions can

traverse through the out-of-order backend (when sel = 0) or

through the execute stage of the pipeline in program order

(when sel = 1).

Fig. 8 depicts the controller’s state machine. For clarity,

only the most important signals shown. Output signals are

shown in italics and don’t change unless specified within a

state. We implemented the controller as a simple six-state finite

state machine (FSM) with different states for each of the four

steps of the algorithm (S Filt, S Seg, S Feat, and S Mat), a

state for reading the signals (S Read), and the initial ‘wait’

state (S Wait). The inputs to the FSM, which trigger its state

transitions, are single-bit architecture flags that are asserted at

the completion of each EBA step. That is, for example, at the

end of the filtering step, the filt signal is asserted, at the end of

TABLE III: Constant-timing configuration for each step.

Freq l and Sel represent the frequency level ID and select

signal output in the architecture controller.

EBA Step Frequency Freq l Execution Sel
Filtering 600 MHz 3 In-order 0
Segmentation 2.1 GHz (base) 0 Out-of-order 1
Feature extraction 500 MHz 2 In-order 0
Matching 400 MHz 1 In-order 0

the segmentation step, the seg filter is asserted, and so on. The

architecture flags are added at design time to the EBA code.

Each FSM state outputs the necessary signals to configure the

architecture for each algorithm step, as depicted in Table III.

To determine the appropriate configuration to achieve con-

stant timing for each step, we used a simple design-time

heuristic. The heuristic uses a greedy strategy to perform

an interleaved exploration of the execution order and clock

frequency in order to determine which configurations achieve

timing within 500μs of the segmentation step. We used 500μs
as our threshold since timing variations of such small magni-

tude are generally undetectable by side-channel attackers [31],

[36]. Our exploration heuristic occurred as follows: starting

from the base out-of-order configuration, we explored each

frequency for each step of the EBA algorithm in descending

order, and then similarly for the in-order configuration. Explo-

ration continued until the execution time was within 500μs of

the segmentation step. The base clock frequency was 2.1 GHz,

and the frequencies were explored in decrements of 100 MHz.

The timing was compared to the segmentation step since it was

the most resource-demanding step and took the longest time.

As such, other steps’ execution had to be elongated to match

the segmentation step’s execution. Table III depicts the specific

configurations selected by our heuristic for the different steps.

While this proposed architecture suffices for our EBA algo-

rithm, we acknowledge that one limitation of this architecture

is that additional design space exploration may be necessary

to maintain constant timing if the algorithm is modified.

IV. EXPERIMENTAL SETUP

We implemented the EBA algorithm in C with flags to

demarcate the various steps described in Section II. The orig-

inal code1 was also modified to achieve the intra-step timing,

as described in Section III-D, and to provide inputs to the

controller (Section III-E). We cross-compiled the code for the

ARM instruction set architecture (ISA) for our experiments.

For the baseline processor architecture, we used config-

urations similar to the ARM Cortex A15. The processor

features a 2100 MHz base clock frequency, separate 16KB

L1 instruction and data caches, and an 8GB main memory. To

provide a fair comparison, for the baseline processor, we also

assumed reduced retention STTRAM caches—75μs and 10ms
for the instruction and data caches, respectively. However, we

also compare our work with a generic processor featuring

SRAM to provide a robust evaluation of our work. To model

the domain-specific architectures (DSA) proposed herein and

gather execution statistics of the ECG algorithm, we used an

1The code is available at: www.ece.arizona.edu/tosiron/downloads.php

9

0.017

0.018

0.019

0.02

0.021

0.022

Ti
m

e
(s

)

Original Modified

Fig. 9: Runtime of original and modified EBA code. For

brevity, the graph shows a subset of user inputs is shown.

in-house modified version of the GEM5 simulator [37], which

allows us to model STTRAM caches with reduced retention

times. To model the power and energy, we used a combination

of NVSim [38] and McPAT [39] integrated with the GEM5

statistics. To model the STTRAM caches, we used the MTJ

cell modeling technique proposed in [40] to obtain design

parameters, such as the write pulse, write current, and the

resistance value RAP , and applied these parameters to NVSim.

We implemented the custom segmentation block (segblk)

using synthesizable Verilog and Xilinx Vivado synthesis.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the latency and energy savings

of the proposed architecture compared to the base architec-

ture. We also evaluate the ability of the adaptable DSA to

achieve constant and reduced timing for the EBA algorithm,

as compared to the base. We evaluate three different versions

of the DSA: with the custom block (DSA segblk), with

the dedicated segmentation buffer (DSA buff), and with

buffer and adaptability for constant timing (DSA adapt).
The specific configurations used for the different steps of our

ECG algorithm in the adaptable DSA are shown in Table

III. We also evaluate the overhead accrued by the proposed

architecture and compare our architecture to prior work.

A. Timing Analysis

Intra-step input-independent constant timing: First, we

explore the ability of our modified EBA code to achieve

constant timing for different user inputs as described in III-D.

Fig. 9 presents the runtime simulations of the EBA algorithm

with various inputs for the original and modified code. These

experiments were performed using the baseline processor

configuration.

As seen in the figure, there were timing variations among

the different user inputs, whereas the modified code kept the

timing relatively constant. In the original code, the maximum

timing variation due to input changes was 1.4ms, while the

maximum variation for the modified code was 400μs (less than

the 500μs threshold). Overall, the modified code increased the

latency compared to the original code by 11.17% on average.

This increase in latency resulted mainly from the increase in

the number of instructions in the modified code (by about

4.19%), due to the balancing of branches (Section III-D).

In what follows, we analyze the latency and energy of

our approach on different versions of our domain-specific

architecture.

Latency and inter-step constant timing: Despite the exe-

cution time increase from the software changes, our domain-

specific architecture still achieved substantial latency improve-

ments compared to the base. We first present the comparisons

of the DSA to the base with the modified code running on all

the systems.

Fig. 10(a) depicts the latency (in s) of the different versions

of our DSA and the base architecture for the different algo-

rithm steps. On the base configuration, the execution times of

the different steps of the ECG algorithm were widely disparate.

For instance, the matching step took 1.77x more time than the

feature extraction, the filtering step took 1.37x more time than

the matching step, and the segmentation step took 87.88x more

time than the filtering step. (Due to the different time scales,

these differences are not clearly visible in Fig. 10(a)).

Introducing the custom block for the segmentation step

(DSA segblk) reduced the latency of the segmentation step

by 44% and reduced the total latency (for the whole algo-

rithm) by 42%. Interestingly, since segmentation was memory-

bound, DSA buff (DSA with dedicated segmentation buffer)

achieved more performance benefits than DSA segblk.

DSA buff achieved the highest latency improvement of

4.24x compared to the base, and 2.97x improvement compared

to DSA segblk. Note that while the code exhibited constant

intra-step timing, DSA segblk and DSA buff did not keep

the timing constant across the different steps; that wasn’t an

optimization goal for these architectures as in DSA adapt.
As intended, DSA adapt achieved constant timing (dotted

line in Fig. 10) across the different steps. Furthermore, given

software changes, both the intra-step and inter-step timing

variations were mitigated. However, even though DSA adapt
improved the latency compared to the base architecture, the

constant timing was achieved at the expense of latency opti-

mization compared to DSA segblk and DSA buff .

DSA adapt reduced the latency compared to the base by

19%, but increased the latency by 19% and 3.55x compared

to DSA segblk and DSA buff , respectively. This tradeoff

occurred in DSA adapt because in order to achieve constant

timing, other steps’ timing had to be increased to match

the minimum possible timing achieved for segmentation.

Similarly to prior research [30], [31], by achieving constant

timing across the different distinct steps of the algorithm,

DSA adapt mitigates the chances of an attacker being able to

obtain patterns in the timing profile to perform a timing-based

side-channel attack.

Compared to a generic ARM architecture with SRAM

(rather than STTRAM as in our DSA), DSA segblk,

DSA buff , and DSA adapt improved the latency by 1.42x,

4.23x, and by 19%, respectively. These latency improvements

were similar to those achieved by the base architecture fea-

turing STTRAM (the STTRAM architecture increased the

latency by 0.3%). Minimizing the latency overhead compared

to SRAM was possible as a result of the a priori analysis

of the EBA algorithm’s cache block requirements in order to

determine the retention time that satisfies the needs of the

10

0

0.005

0.01

0.015

0.02

0.025

Filtering Segmentation Extraction Matching Total

La
te

nc
y

(s
)

Generic Base DSA_segblk DSA_buff DSA_adapt

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Filtering Segmentation Extraction Matching Total

En
er

gy
 (J

)

Generic Base DSA_segblk DSA_buff DSA_adapt

(a) (b)

Fig. 10: (a) Timing and (b) Energy of algorithm steps on the different versions of the (DSA) compared to the base (Base).

algorithm’s cache blocks.

Modified code on the DSA vs. the original code on the
base: To provide a complete picture of the results, and to

further illustrate the robustness of our work, we also compared

DSA segblk, DSA buff , and DSA adapt while running

the modified code (with the increased instruction count) to

the base while running the original code. As shown in Fig. 11,

compared to the base running the original code, DSA segblk,

DSA buff , and DSA adapt reduced the latency by 29.26%,

3.85x, and 8.22%, respectively.

Comparison to prior work: To evaluate our work in the

context of prior work, we compared DSA adapt to the

implementation of Ozone [30] for our EBA algorithm. Ozone

is a hardware technique targeted at mitigating timing-based

side-channel attacks by ensuring that applications execute with

a fixed latency regardless of inputs. Ozone achieved similar

results to our work in ensuring constant timing, albeit with

different tradeoffs for both techniques. As depicted in Fig. 11,

Ozone accrued execution time overhead and increased the

latency by 4.55x, whereas DSA adapt reduced the latency

by 8.22% compared to the base architecture (running the

original code). However, an advantage of Ozone over our

work is that it would achieve constant timing for a variety

of applications, whereas DSA adapt would require a priori

knowledge of the application and design-time modifications to

enable constant timing. Our work had the benefit of a priori

application knowledge and profiling to modify the code such

that the latency overhead was minimized. We believe that a

synergy of DSA adapt and a technique like Ozone would be

beneficial to mitigate the drawbacks of both techniques, and

we plan to explore this synergy in future work.

B. Energy Consumption

Fig. 10(b) depicts the energy consumed—comprising of

both static and dynamic energy—by the different versions

of our DSA compared to the base (running the modified

code). Compared to the base, DSA segblk,DSA buff, and

DSA adapt reduced the total energy by 1.85x, 5.59x, and

4.62x, respectively. Compared to the base running the original

code, DSA segblk,DSA buff, and DSA adapt reduced

the energy by 67.15%, 5.06x, and 4.18x. The majority of the

energy saving was achieved by introducing the segmentation

buffer in DSA buff, and DSA adapt. Despite the increase

0

1

2

3

4

5

DSA_segblk DSA_buff DSA_adapt Ozone

La
te

nc
y

no
rm

al
ize

d
to

th

e
ba

se

Fig. 11: Latency of DSA designs (DSA segblk, DSA buff ,

and DSA adapt) and prior work (Ozone [30]) normalized to

the base (baseline of 1). The base is running the original code

while the other architectures are running modified codes.

in latency on DSA adapt, substantial energy savings was

achieved due to frequency scaling and shutting down the out-

of-order backend for all the steps other than segmentation.

While the buffer was a source of some power overhead, its

significant impact on the latency resulted in energy savings.

Similarly, the segblk also reduced the energy compared to

the base despite its power consumption. Furthermore, even

though DSA adapt increased the energy consumption of the

other steps (in order to achieve constant timing), by mitigating

the bottleneck of the segmentation step, the architecture still

achieved significant overall energy savings. Compared to the

generic ARM processor with SRAM caches, incorporating

STTRAM with a specialized retention time and eliminating the

FP and SIMD units achieved significant energy benefits. The

base DSA reduced the energy by 1.77x, while DSA segblk,

DSA buff , and DSA adapt reduced the energy by 3.27x,

9.92x, and 8.20x, respectively.

C. Evaluation with a New EBA Algorithm

To further evaluate the robustness of the DSA, we also

quantified the latency and energy benefits while running a new

EBA algorithm. We used an EBA algorithm similar to [23] that

featured a discrete wavelet transform for feature extraction.

Fig. 12 depicts the latency and energy of DSA buff , and

DSA adapt normalized to the base architecture. For brevity,

only a summary of the overall latency and energy results

are shown. Compared to the base, DSA buff reduced the

latency and energy by 75.43% and 81.58%, respectively, while

DSA adapt reduced the latency and energy by 17.14% and

11

0

0.2

0.4

0.6

0.8

1

DSA_buff DSA_adapt

La
te

nc
y a

nd
 e

ne
rg

y
no

rm
al

ize
d

to
 th

e
ba

se Latency Energy

Fig. 12: Latency and energy of DSA designs (DSA buff ,

and DSA adapt) normalized to the base (baseline of 1) while

running a new EBA algorithm.

77.77%, respectively. Notably, these results were achieved

without any design modifications to the DSA. Furthermore,

DSA adapt achieved a constant timing for the new algorithm

with some code modification and design space exploration (see

Section III), but the DSA remained unchanged.

D. Overhead
The main overheads of our work result from the dedicated

segmentation buffer, controller, and the custom segmentation

block, segblk (Section III-E, Fig. 6). The buffer resulted

in 0.002mm2 and 1.97mW area and power overheads, re-

spectively, and had read and write latencies of 0.250ns and

0.988ns, respectively. We also implemented the controller

(Section III-E) using synthesizable Verilog, and estimated that

the overheads were negligible: the controller’s critical path

was only 4.24ns; the area and power were approximately

0.001mm2 and 3mW , respectively. Finally, we implemented

the segmentation custom block (segblk) on a Zynq-7000

FPGA to evaluate its overheads. The power overhead was

0.3W , and 14829 LUTs were used for the design.

VI. RELATED WORK

In [41], attacks were performed on an FPGA-based convo-

lutional neural network accelerator to recover the input image

from the collected power traces without knowing the detailed

parameters in the neural network. Their investigations resulted

in the reconstruction of digit images of the MNIST dataset.

Another similar work was presented by [42], where they

reverse-engineered a neural network (multilayer perceptron)

by using non-invasive power side-channel leakage information.

Their method is able to recover secret inputs from a known

network with only a single-shot side-channel analysis. In

[43], the authors showed how a Neural Network model is

susceptible to timing side-channel attacks. They proposed a

black box Neural Network extraction attack by exploiting the

timing side-channels to infer the depth of the network.
To the best of our knowledge, our work is the first attempt

to explore countermeasures to side-channel attacks in EBA

systems. The most related work to ours in this respect is

[7], where the authors investigated the vulnerability of stored

features in fingerprint biometric authentication to side-channel

attacks. They presented SPA-based side-channel attacks on

fingerprint matching algorithms. Other prior works [30], [42]

have studied the susceptibility of systems to timing side-

channel attacks and shown the benefits of maintaining constant

timing as a countermeasure against such attacks.

There have also been prior works that employ hardware

accelerators for EBA. Page et al. [4] proposed a 307-node

hidden layer deep neural network design implemented on an

FPGA for EBA targeting embedded systems. Yin et al. [3]

proposed a 65-nm processor that performs real-time biometric

authentication as well as personal cardiac monitoring. Kang

et al. [24] proposed an ECG authentication system design

for mobile and wearable devices using the ARM Cortex-M

processor for their design. In comparison to these prior works,

our work offers the important advantage that it mitigates

timing-based side-channel attacks on EBA systems, while also

allowing the flexibility of executing other applications when

the authentication algorithm is not running.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a domain-specific architecture

(DSA) for an ECG biometric authentication (EBA) system. We

explored multiple versions of the architecture, one of which

uses adaptability to trade off latency and energy minimization

for constant timing across all steps of the authentication

algorithm. Thus, this architecture mitigates the EBA sys-

tem’s vulnerability to timing-based side-channel attacks. The

proposed architectures substantially reduce the latency and

energy of the EBA algorithm compared to a base ARM-based

processor architecture. Our work represents an important step

towards domain-specific architectures for secure EBA systems.

However, studies of side-channel attack in EBA systems is still

nascent. For future work, we plan to expand the architecture

proposed herein to also ensure a constant power profile in

order to mitigate power side-channel attacks. Additionally, we

intend to explore further opportunities for reducing the latency

and energy tradeoffs of the adaptable architecture.

REFERENCES

[1] I. Odinaka, P.-H. Lai, A. D. Kaplan, J. A. O’Sullivan, E. J. Sirevaag, and
J. W. Rohrbaugh, “Ecg biometric recognition: A comparative analysis,”
IEEE Transactions on Information Forensics and Security, vol. 7, no. 6,
pp. 1812–1824, 2012.

[2] W. Meng, D. S. Wong, S. Furnell, and J. Zhou, “Surveying the
development of biometric user authentication on mobile phones,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1268–1293,
2014.

[3] S. Yin, M. Kim, D. Kadetotad, Y. Liu, C. Bae, S. J. Kim, Y. Cao, and
J.-s. Seo, “A 1.06-μw smart ecg processor in 65-nm cmos for real-time
biometric authentication and personal cardiac monitoring,” IEEE Journal
of Solid-State Circuits, 2019.

[4] A. Page, A. Kulkarni, and T. Mohsenin, “Utilizing deep neural nets for
an embedded ecg-based biometric authentication system,” in 2015 IEEE
Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2015,
pp. 1–4.

[5] S. K. Cherupally, G. Srivastava, S. Yin, D. Kadetotad, C. Bae, S. J. Kim,
and J.-s. Seo, “Ecg authentication neural network hardware design with
collective optimization of low precision and structured compression,” in
2019 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2019, pp. 1–5.

[6] M. Borowczak, “Side channel attack resistance: Migrating towards high
level methods,” Ph.D. dissertation, University of Cincinnati, 2013.

[7] M. Dürmuth, D. Oswald, and N. Pastewka, “Side-channel attacks on
fingerprint matching algorithms,” in Proceedings of the 6th International
Workshop on Trustworthy Embedded Devices, ser. TrustED ’16. New
York, NY, USA: ACM, 2016, pp. 3–13.

[8] I. Martinovic, D. Davies, M. Frank, D. Perito, T. Ros, and D. Song,
“On the feasibility of side-channel attacks with brain-computer inter-
faces,” in Presented as part of the 21st {USENIX} security symposium
({USENIX} Security 12), 2012, pp. 143–158.

12

[9] S. Eberz, G. Lovisotto, A. Patane, M. Kwiatkowska, V. Lenders, and
I. Martinovic, “When your fitness tracker betrays you: Quantifying
the predictability of biometric features across contexts,” in 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 2018, pp. 889–905.

[10] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,” in Proceedings of the 2007 interna-
tional symposium on Low power electronics and design (ISLPED’07).
IEEE, 2007, pp. 38–43.

[11] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F.
Wenisch, and S. Mahlke, “Composite cores: Pushing heterogeneity into
a core,” in 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 2012, pp. 317–328.

[12] N. Karimian, P. A. Wortman, and F. Tehranipoor, “Evolving authentica-
tion design considerations for the internet of biometric things (iobt),” in
Proceedings of the Eleventh IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, 2016, pp. 1–10.

[13] F. Agrafioti, K. Martin, and S. Oung, “Preauthorized wearable biometric
device, system and method for use thereof,” Mar. 31 2015, uS Patent
8,994,498.

[14] A. Lourenço, A. P. Alves, C. Carreiras, R. P. Duarte, and A. Fred,
“Cardiowheel: Ecg biometrics on the steering wheel,” in Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 2015, pp. 267–270.

[15] J. Pan and W. J. Tompkins, “A real-time qrs detection algorithm,” IEEE
Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230–
236, March 1985.

[16] J. R. Pinto, J. S. Cardoso, and A. Lourenço, “Evolution, current
challenges, and future possibilities in ecg biometrics,” IEEE Access,
vol. 6, pp. 34 746–34 776, 2018.

[17] A. K. Jain, A. A. Ross, and K. Nandakumar, Introduction to biometrics.
Springer Science & Business Media, 2011.

[18] T. Lugovaya, “Biometric human identification based on electrocar-
diogram,” Master’s thesis, Faculty of Computing Technologies and
Informatics, Electrotechnical University LETI, Saint-Petersburg, Russian
Federation, 2005.

[19] M. A. Garcı́a-González, A. Argelagós-Palau, M. Fernández-Chimeno,
and J. Ramos-Castro, “A comparison of heartbeat detectors for the
seismocardiogram,” in Computing in Cardiology 2013. IEEE, 2013,
pp. 461–464.

[20] R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der ekg-
signaldatenbank cardiodat der ptb über das internet,” Biomedizinische
Technik/Biomedical Engineering, vol. 40, no. s1, pp. 317–318, 1995.

[21] H.-S. Choi, B. Lee, and S. Yoon, “Biometric authentication using noisy
electrocardiograms acquired by mobile sensors,” IEEE Access, vol. 4,
pp. 1266–1273, 2016.

[22] S. Wahabi, S. Pouryayevali, S. Hari, and D. Hatzinakos, “On evaluating
ecg biometric systems: Session-dependence and body posture,” IEEE
Transactions on Information Forensics and Security, vol. 9, no. 11, pp.
2002–2013, 2014.

[23] J. Liu, L. Yin, C. He, B. Wen, X. Hong, and Y. Li, “A multiscale
autoregressive model-based electrocardiogram identification method,”
IEEE Access, vol. 6, pp. 18 251–18 263, 2018.

[24] S. J. Kang, S. Y. Lee, H. I. Cho, and H. Park, “Ecg authentication system
design based on signal analysis in mobile and wearable devices,” IEEE
Signal Processing Letters, vol. 23, no. 6, pp. 805–808, 2016.

[25] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and
evaluation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3,
pp. 10–19, 2018.

[26] N. Karimian, D. Woodard, and D. Forte, “Ecg biometric: Spoofing
and countermeasures,” IEEE Transactions on Biometrics, Behavior, and
Identity Science, vol. 2, no. 3, pp. 257–270, 2020.

[27] D. Genkin, I. Pipman, and E. Tromer, “Get your hands off my laptop:
Physical side-channel key-extraction attacks on pcs,” Journal of Cryp-
tographic Engineering, vol. 5, no. 2, pp. 95–112, 2015.

[28] B. Yang, K. Wu, and R. Karri, “Scan based side channel attack on
dedicated hardware implementations of data encryption standard,” in
2004 International Conferce on Test. IEEE, 2004, pp. 339–344.

[29] S. Faezi, S. R. Chhetri, A. V. Malawade, J. C. Chaput, W. H. Grover,
P. Brisk, and M. A. Al Faruque, “Oligo-snoop: A non-invasive side
channel attack against dna synthesis machines.” in The Network and
Distributed System Security Symposium (NDSS), 2019.

[30] Z. B. Aweke and T. Austin, “Øzone: Efficient execution with zero timing
leakage for modern microarchitectures,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.
1123–1128.

[31] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX Association, Aug.
2014, pp. 719–732.

[32] O. Aciiçmez, c. K. Koç, and J.-P. Seifert, “On the power of simple
branch prediction analysis,” in Proceedings of the 2nd ACM Symposium
on Information, Computer and Communications Security, ser. ASIACCS
07. New York, NY, USA: Association for Computing Machinery, 2007,
p. 312320.

[33] T. Kawahara, “Scalable spin-transfer torque ram technology for
normally-off computing,” IEEE Design & Test of Computers, no. 1, pp.
52–63, 2010.

[34] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
“Relaxing non-volatility for fast and energy-efficient stt-ram caches,”
in 2011 IEEE 17th International Symposium on High Performance
Computer Architecture. IEEE, 2011, pp. 50–61.

[35] K. Kuan and T. Adegbija, “Lars: Logically adaptable retention time stt-
ram cache for embedded systems,” in 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 461–466.

[36] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
javascript,” in Financial Cryptography and Data Security, A. Kiayias,
Ed. Springer International Publishing, 2017, pp. 247–267.

[37] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[38] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[39] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2009, pp. 469–480.

[40] K. C. Chun, H. Zhao, J. D. Harms, T.-H. Kim, J.-P. Wang, and C. H.
Kim, “A scaling roadmap and performance evaluation of in-plane and
perpendicular mtj based stt-mrams for high-density cache memory,”
IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 598–610, 2012.

[41] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you see:
Power side-channel attack on convolutional neural network accelerators,”
in Proceedings of the 34th Annual Computer Security Applications
Conference. ACM, 2018, pp. 393–406.

[42] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse engi-
neering of neural network architectures through electromagnetic side
channel,” in 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, Aug. 2019, pp. 515–532.

[43] V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Stealing neural
networks via timing side channels,” CoRR, vol. abs/1812.11720, 2018.
[Online]. Available: http://arxiv.org/abs/1812.11720

