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Abstract

a-crystallins are small heat-shock proteins that act as holdase chaper-
ones. In humans, aA is expressed only in the eye lens, while aB is
found in many tissues. a-crystallins have a central domain flanked by
flexible extensions and form dynamic, heterogenous oligomers. Struc-
tural models show that both the C- and N- terminal extensions are
important for controlling oligomerization through domain-swapping. o-
crystallin prevents aggregation of damaged fvy-crystallins by binding to
the client protein using a variety of binding modes. a-crystallin chap-
erone activity can be compromised by mutation or post-translational
modifications, leading to protein aggregation and cataract. Because of
their high solubility and their ability to form large, functional oligomers,
a-crystallins are particularly amenable to structure determination by
solid-state NMR. and solution NMR,, as well as cryo-EM.
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1. INTRODUCTION

For the eye lens to function correctly, it must be transparent and refract visible light strongly
enough to form an image on the retina. The bulk of this unique tissue is made of layers of
densely packed fiber cells filled with very stable proteins called crystallins. Crystallins com-
prise over 90% of the dry weight of the human eye lens (1). These proteins exhibit a higher
refractive index than average proteins, and their refractive power is not a simple function of
the amino acid sequence (2). During development, all organelles in fiber cell are degraded
to minimize light scattering, leaving these cells without the machinery needed to synthesize
new proteins. Thus, the crystallin proteins that are made during development remain solu-
ble under crowded conditions for decades, and are used by the organism throughout its life.
Crystallin proteins exist at very high concentrations in the lens, up to 400 mg/mL in humans
(3), and even higher, over 1000 mg/mL in some aquatic species (4). If these proteins aggre-
gate, the light-scattering aggregate formed is called a cataract, the most common cause of
blindness (5). To understand how the eye lens works is to understand the physicochemical
properties of crystallins, including the molecular basis of their extraordinary solubility, the
relationship between sequence and structure, how protein-protein interactions are mediated
under conditions of extreme macromolecular crowding, and what happens when this system
fails, resulting in cataract.

The study of lens crystallins tracks with the beginning of modern chemistry. In 1830,
Berzelius isolated a gelatinous substance from the eye lens that he called crystallin because
of its transparency (6). This material was then further fractionated to show that it was in
fact made up of more than one substance (7), but it was not until 1894 that the individual
protein components were isolated and named a-crystallin and S-crystallin by Morner (8).
Since then great strides have been made in understanding the structure and function of
these proteins. The crystallins themselves are categorized into three broad categories in
the human lens, the a-, 8-, and ~-crystallins. In addition to these ubiquitous vertebrate
crystallins, many more taxon-specific crystallins exist in other organisms, but these are
beyond the scope of this review. The a-crystallins are chaperone proteins that belong
to the small heat-shock protein family (9), while the - and ~- crystallins are a part of
an evolutionarily distinct superfamily of proteins called the Svy-crystallin superfamily (10);
they are mentioned here because they are the most common client proteins for a-crystallins
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in the lens. This review will discuss some history and recent advances in understanding
the physical chemistry underpinnings of the unique and extraordinary properties of o-
crystallins, with a particular focus on comparisons between human and fish crystallins.
We discuss a-crystallin structures, their complex and dynamic oligomerization states, and
most importantly, the intermolecular interactions by which they bind to damaged structural
crystallins and keep them in solution. Finally, the sidebars provide an introduction to several
techniques that are used to obtain this information.

2. a-crystallins are small heat-shock proteins

a-crystallins are small heat-shock proteins (sHSPs) that act as holdase chaperones, mean-
ing they maintain the solubility of damaged client proteins, but are unable to refold them
(11, 12). While aA-crystallin is primarily expressed in the lens (13), aB-crystallin is ex-
pressed in many tissues throughout the body (14, 15), and alterations to its solubility or
substrate binding competence are implicated in a variety of diseases (16). Many studies
of a-crystallin function have been performed using zebrafish as a model organism, as the
vertebrate crystallin functions (17) and expression patterns (18) are strongly conserved.
Furthermore, zebrafish embryos have the advantage of being transparent, enabling detailed
studies of the developing lens (19). Mouse a-crystallin promoters were found to drive GFP
expression in several organs in the zebrafish, including the lens, notochord, heart, and skele-
tal muscle, indicating that mammalian a-crystallin promoter activity can also be screened
in this model organism (20). In zebrafish, knocking out aB-crystallin causes both lens
defects and reduced cardiac stress tolerance (21), while @A was found to have the same
function in the lens as it does in other vertebrates (22).

As in other sSHPs, a-crystallins have a f-sheet rich a-crystallin domain flanked by
flexible N-terminal and C-terminal extensions (23). A schematic view is shown in Figure
1. The a-crystallin domain is main active part of the protein, containing the region that
is responsible for substrate binding; in fact, relatively short peptides from this region, the
mini-a-crystalling, display substantial chaperone activity on their own (24, 25). However,
the tails also play important roles in controlling the activity, oligomeric state, and sub-
strate recognition (26, 27), as illustrated by the different binding surfaces, corresponding to
different sequence regions, that recognize amorphous aggregates and amyloid fibrils (28).
Structures of truncated a-crystallins show the primary dimer interface, which is in the mid-
dle of an extended fS-sheet, but also reveal how the C-terminal extensions can participate
in domain-swapping, leading to oligomers of differing sizes (29). The N-terminal extension
has also been implicated in binding of specific substrates (28).

3. Polydispersity is central to a-crystallin function

Understanding how a-crystallins recognize client proteins and maintain their structural
integrity requires high-resolution structures not only for the monomeric proteins, but also
their complexes. a-crystallins exist as polydisperse mixtures of 10 40-mers (30, 31), with
the most common species in the range of 24-28 (32). Characterizing the equilibrium of
oligomeric states is central to gaining full mechanistic insight into a-crystallin activity:
NMR experiments have shown that polyhedra of varying sizes form, providing different
environments for client proteins (33). Heterogeneous interactions are observed even in

constructs of the isolated a-crystallin domain, as key residues display resonances at more
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than one chemical shift position, indicating multiple conformations (34). However, the
importance of the C- and N-terminal extensions for controlling oligomerization has been
demonstrated in several studies. The IPI motif on the C-terminal domain, embedded in the
palindromic sequence “ERTIPITRE” can interact bidirectionally with the $4/p8 surface of
the a-domain, and these interactions control both the oligomeric state and the ability of the
protein to chaperone amyloid clients (35, 36). Peptides mimicking this sequence readily bind
to the a-crystallin domain in solution, providing support for the importance of this motif
for protein-protein interactions (37). Polydispersity appears to be central to a-crystallin
function: not only does the formation of variable oligomers discourage crystallization or
other deleterious interactions between the a-crystallin molecules themselves, but the ability
of these molecules to self-organize into constantly shifting polyhedra provides a variety of
surfaces that are presented to client proteins of differing sizes and shapes.

Solving the structures of a-crystallins in biologically relevant complexes is a challeng-
ing endeavor. Their dynamic and polydisperse nature makes them particularly suitable for
NMR (38, 39), and in many cases hybrid structural methods are used to integrate infor-
mation across different length scales. Various combinations of experimental and molecular
modeling techniques have been used to model a-crystallin oligomers, sometimes with in-
consistent results, possibly reflecting differences in protein constructs or sample preparation
methods, or true heterogeneity.

For example, building on solid-state and solution NMR structures of smaller oligomers
(40, 41), cryo-EM, solid-state NMR, and small-angle x-ray scattering (SAXS) were used
to generate a model of symmetric aB-crystallin 24-mers (42) (Figure 2A). These oligomers
are built using a hierarchical progression where dimers connected by the -sheet interface
assemble via their C-terminal extensions to form hexamers, which in turn associate via
their N-terminal regions to create higher-order structures. Another hybrid structure of oB-
crystallin 24-mers was generated using a combination of cryo-EM, solid-state NMR, and
molecular modeling also came to the conclusion that the building blocks are dimers, which
then associate to form hexamers (43). This structure also identifies two different dimer
arrangements, consistent with the variable interactions between the palindromic sequence
of one monomer and hydrophobic residues of the other observed in the crystal structures
(35), but in contrast to solution-state NMR data showing only a single set of chemical shifts,
suggesting that all monomers adopt the same conformation (33).

In addition to the most common species, the 24-mers, oligomers ranging from 6-mers
to 48-mers have also been observed in solution. These data and the closed, spherical
shape of the higher-order oligomers suggest that the highly symmetric complexes may be
for storage, whereas the binding-competent species are either smaller complexes (perhaps
dimers) or incomplete spheres allowing room for client proteins. Solution NMR indicates
that ms-timescale dynamics in the C-terminal extensions regulate the oligomerization state
(44). Some details of the dynamic equilibrium among these complexes were revealed using
deuteration-assisted small-angle neutron scattering (DA-SANS) in conjunction with elec-
trospray ionization (ESI) native mass spectrometry (nMS): exchange of subunits between
complexes was common, however oligomer collapse did not appear to occur, even for a subset
of the population (45). Thus, the dynamic quaternary structure of aB-crystallin appears to
be mediated by small oligomers dissociating from and re-associating with larger complexes.
Other studies have suggested that monomers are present under physiological conditions (46)
and have chaperone activity (32), but are compromised from a solubility standpoint (47).
Beyond the size of the oligomers, the morphology of the a-crystallin oligomers can also
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affect chaperone function. a-crystallins can retain function after forming amyloid fibrils or
amorphous aggregates, with amyloid fibrils even showing enhanced affinity for particular
clients (48).

The first structural models of the lens-specific chaperone aA-crystallin in 12-; 16- and
20-mers were generated recently using a combination of cryo-EM, mass spectrometry with
cross-linking, NMR. spectroscopy, and molecular modeling (49)(Figure 2B). This model
suggests that for awA-crystallin, the building block for oligomerization is a tetramer. As
in the case of aB-crystallin, the exact extent of oligomerization is governed in part by the
extent of C-terminal domain swapping (50, 51, 52), although the N-terminus is also involved
in oligomerization, as its truncation shifts the equilibrium to favor smaller oligomers (53, 54).
Domain-swapped oligomers are found in multimers larger than 12, whereas the dodecameric
species can form without any interactions with the C-terminus (49). These results are
consistent with earlier crystal structures of truncated versions of vertebrate «A-crystallins
that showed conformations both with (29) and without domain-swapping (55). Recently, an
alternative splicing variant of human aA-crystallin with a truncated N-terminal sequence
was discovered. On its own, this isoform has only weak chaperone activity and makes only
small oligomers, but it is capable of integrating into larger oligomers of the more common
canonical variant, modulating oligomer size and chaperone activity (56). In contrast, an
alternative splicing variant found in rodents («A***) has a longer N-terminal domain, and
has enhanced activity relative to the standard isoform (57)

4. Cataract-related a-crystallin variants can be aggregation-prone or have
altered chaperone activity

Many cataract-associated variants of a-crystallins feature an altered a-domain, which re-
sults in structural changes and/or compromised chaperone activity. The aB-R69C and
D109H variants are implicated in human disease, including cataract (58, 59). Both cause
considerable structural changes, reduced chaperone activity, and increased aggregation
propensity in vitro (60). The D109H variant is particularly disruptive, probably because
the loss of the negative charge at position 109 disrupts a critical salt bridge that is required
for proper formation of the anti-parallel sheet dimer interface, as does the R120G variant
(61). The R12C variant of aeA-crystallin is more prone to aggregation than WT, especially
in the presence of calcium ions (62). Both the «A-G98R and aA-R21Q variants show de-
creased function, but when mutated together to make an aA-G98R/R12(Q) double variant,
compensating for the difference in charge, much of the function and stability of the protein
is rescued (63).

In other cases, the major driving force of cataract formation is how mutations in a-
crystallin affect the aggregation of other proteins. For example, the R49C and R116C
variants of aA-crystallin have differing affinities for the aggregation-prone client protein
I4F ~D-crystallin (64). The higher affinity R49C variant results in increased aggregation
of vD-I4F, possibly through simple mass action, as the folded form is sequestered by the
chaperone protein, thus pushing the equilibrium toward formation of the denatured form
(64). In mouse models, knocking out A and aB-crystallin leads to increased abundance
and cross-linking of fB2-crystallin (65) the B-R120G and the «A-R49C variants lead to
decreased protein degradation in the lens during development (66), which may lead to an
increased propensity for cataract formation, or alternatively might be an effect of cataract
formation. However, not all mutations are deleterious; for example the R12C variant of
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aB-crystallin exhibits increased chaperone activity in addition to changes in the oligomeric
state of the protein with increased population of a dimer form that is favored as a result
of a disulfide bond (67). This variant also resists thermal and calcium-induced aggregation
compared to WT. However, when exposed to calcium ions the chaperone activity of the
variant is decreased, potentially due to structural changes, as the R12C variant shows
altered chemical environments of its tryptophan residues, suggesting partial unfolding (67).

5. a-crystallins bind divalent cations, with complex effects on their function

Human aB-crystallin binds one equivalent of Cu®", and its chaperone activity is enhanced
by this interaction (68, 69, 70). aB is able to prevent aggregation and co-precipitation of
Cu®" and human 4D at all Cu®":yD ratios, suggesting that oB is acting as a chaperone
rather than a chelator in this situation (71). However, there is also evidence of metal ion
homeostasis through sequestration. Increasing the amount of a-crystallin bound to the
client protein vD; which would occur naturally with age, results in an increase in free iron
and calcium ions (72), which would increase the susceptibility of the eye lens to oxidation.
Schiff bases and rutin, a naturally occurring flavonoid, were shown to inhibit copper-induced
aggregation of human yD and promote the chaperone activity of aB, suggesting a possible
role as a cataract therapeutic (73, 74).

In the case of Zn?*", aB-crystallin was again able to prevent metal ion-induced aggre-
gation, but here it appears to act as a chelator rather than a chaperone, because higher
concentrations of Zn®" were still able to cause aggregation (75). Zinc ions mitigated dia-
betic cataract in mouse models due to their antioxidant properties and positive interactions
with a-crystallin (76, 77, 78). Zn*' interactions with a-crystallin do not restructure the
protein’s secondary or tertiary arrangement, but they do increase its surface hydrophobic-
ity, thereby enhancing the chaperone activity (76). In human lens epithelial cells, treatment

t

with Cd*" or Cu®" promoted the expression of aB-crystallin, whereas Cu®" promoted the

expression of aA-crystallin (79).

6. a-crystallin post-translational modifications can cause age-related cataract

The majority of cases of cataract are caused by aging: most people are born with healthy
lens proteins, which accumulate post-translational modifications (PTMs) over time, leading
to cataract (80, 81). UV irradiation is associated with the formation of cataract (82). In
aA-crystallin, UV damage leads to increased hydrophobic exposure, secondary structure
changes, and diminished chaperone activity (83). Backbone cleavage can lead to the ac-
cumulation of insoluble peptides in the lens, providing nucleation sites for the growth of
aggregates. For example, a 15-residue peptide derived from aA-crystallin aggregates in
aging lenses, recruiting full-length protein and forming S-sheet rich fibril structures (84).
One of the most common PTMs in the lens is isomerization (85), which is difficult to
detect because it does not change the protein mass. Serine and aspartic acid can epimerize
to form their D-counterparts, and Asp can also convert to L- or D-isoAsp (86). These
modifications can alter the protein structure, sometimes causing disruption that goes beyond
the mutation site (87). In the eye lens, Asp isomerization increases with age, with aA-
crystallin being more susceptible to isomerization than aB-crystallin (88). Isomerization
in aA changes the relative populations of different oligomers (89) In aB, isomerization
of Aspl09 disrupts a critical salt bridge at the dimer interface, negatively impacting its
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solubility, while epimerization of Serl62 significantly weakens the dimerization interface
between the palindromic sequence and the $4-88 groove (90). Glycation, particularly of
lysine side chains, can also occur in the crystallins, linking cataract and diabetes (91). In
mice, L-lysine treatment has been shown to reduce glycation in a-crystallin after treatment
with glucose (92). PTMs have even been shown to enhance a-crystallin activity. Acetylation
of lysine residues have been linked to higher hydrophobic exposure and increased chaperone
activity in a-crystallin (93). Recently, the link between the aA-crystallin oxidation state
and oligomerization and function has been characterized. When aA-crystallin is oxidized,
a destabilizing disulfide bond is formed, dispersing higher-order oligomers (49).

Another important post-translational modification that impacts the regulation of pro-
tein function is phosphorylation, which happens to a-crystallins under stress conditions. In
aB-crystallin, phosophorylation occurs in a heterogenous manner, with mixed populations
of proteins phosphorylated at different sites. Overall phosphorylation efficiency is low, due
to the inability of kinases to act on monomers that are part of a large complex; phosphory-
lation appears to happen during subunit exchange (94). Phosphorylation of aB-crystallin
is mostly localized to three serine residues: 19, 45, and 59 (95, 96). When these sites are
phosphorylated, aB-crystallin forms smaller oligomeric complexes, and shows preferential
binding to different client proteins (97). An aB-crystallin variant mimicking hyperphospho-
rylation of these residues showed increased chaperone function relative to wild-type, using
insulin as a client (98). Low levels of phosphorylation appear to improve chaperone ac-
tivity and reduce aggregation propensity, whereas hyperphosphorylation, which sometimes
happens to variant proteins in vivo, leads to increased aggregation (99). Consistent with
this observation, extensive phosphorylation at S45 resulted in uncontrolled aggregation in
vitro (100). Epimerization and phosphorylation can also interact to alter the protein’s
behavior: phosphorylation of Ser59, is precluded by epimerization of this residue, and re-
duced by the isomerization of the nearby residue Asp62 (90). Despite the many advances in
understanding a-crystallin function since Horwitz first discovered its molecular chaperone
properties, studies such as these underscore the importance of recognizing that a-crystallins
may behave differently in dilute, homogenous solutions than they do in the messy, crowded
environment of the cell (101).

7. Client-chaperone interactions

Recognition of misfolded, partially unfolded, or otherwise solubility-compromised proteins
is central to a-crystallin function. Although the exact mechanisms of client recognition are
not yet fully understood, the size, charge, size, and exposed hydrophobic surface of the
client protein all appear to play a role (102). All-atom molecular dynamics (MD) simu-
lations were used to probe the interactions of monomers and oligomers of a small peptide
implicated in Alzheimer’s disease-related plaques (Af17 42) with an aB-crystallin ACD
dimer. The dimer bound more strongly to oligomers of A7 42 relative to monomers, as
each peptide has only limited number of contacts with the ACD dimer, resulting in weak
and transient interactions. However, oligomer formation locks the peptides into a more
rigid conformation, resulting in a larger interaction surface (103). Particular residues in
A, such as D69 (104) and F71 (105) have all been proposed as being critical to chaperone
activity, as have the C-terminal (106) and N-terminal tails (107). An important step in
understanding what governs these protein-protein interactions was the discovery of small
peptides derived from the a-crystallin domain that are active as chaperones. For example,
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the peptide “KFVIFLDVKHFSPEDLTVK?” from «A-crystallin has chaperone activity and
was thus named mini-aA-crystallin (108). In aB-crystallin a similar peptide, “DRFSVNLD-
VKHFSPEELKVK” was identified, and has been called mini-aB-crystallin (see Figure 1B)
(109). The discovery of these peptides has allowed for more focused probing of the molecular
mechanism of the client-chaperone interaction involving the a-crystallin domain.

A common finding when investigating a-crystallin binding interactions is the impor-
tance of hydrophobic interactions. Mini aeA-crystallin is notably hydrophobic, and its con-
firmed site of interaction with human yD-crystallin specifically involves several hydropho-
bic residues (110). In human yD-crystallin, both the I4F and V76D variants stabilize an
aggregation-prone intermediate, leading to early onset cataract. However aB-crystallin
does not recognize either of these variants, whereas it does bind the I4F /V76D double
variant (111), suggesting that a minimum amount of unfolding is needed to trigger a-
crystallin activity. More evidence that full-length «B-crystallin can select between native-
like and strongly aggregation-prone proteins with very similar, folded structures is provided
by the difference between aB-crystallin’s robust binding to the G18V variant of human
~S-crystallin, but not the GI8A variant, which is likewise thermally destabilized, albeit to
a lesser extent (112). Similarly, hydrophobic residues in melittin mediate the interaction
of full-length aA-crystallin with this peptide (113). Although hydrophobic interactions are
clearly important, there is also more to the story. In aB-crystallin alone there are at least 13
peptide sequences related to chaperone activity (114), and each of these could reveal unique
mechanisms that explain aB-crystallin’s prodigious ability to chaperone diverse client pro-
teins. A schematic illustrating the general binding modes is given in Figure 3A; Figure 3B
shows the location of the mini-oA peptide and several other key residues on the a-crystallin
monomer.

One area of current interest is how a-crystallin interacts with UV-damaged client pro-
teins. Current work has shown that a-crystallin forms very large complexes when binding
Br-crystallin, and that the size of the complex is positively correlated with the content of
UV-damaged protein (115). High-resolution structural studies are needed to resolve the de-
tails of these complexes. So far studies have all mostly focused on the role and mechanism of
the a-crystallin domain, but the N- and C- terminal extensions are also important, possibly
for initial client recognition (116), in addition to their role in mediating oligomerization.

7.1. Species-specific adaptations

a-crystallins have species-specific adaptations that enable them to recognize particular
client proteins: bovine a-crystallin effectively protects cow vy-crystallins from aggregation,
while failing to interact with structural crystallins from the Antarctic toothfish, and even
a-crystallins from the bigeye tuna only partially protected toothfish ~-crystallins under
heat stress conditions (117). The cold adaptations required for the lifestyle of the Antarc-
tic toothfish, which lives at a temperature of -2°C year-round provide some clues to this
exquisite specificity. Like humans, the toothfish has two a-crystallin paralogs, oA and oB,
although its lens protein mixture is more complicated due to the much larger number of -
crystallin paralogs (118). Sequence comparison shows that a-crystallins from cold-adapted
fish have more hydrophobic residues than their warm-water counterparts, and mutating key
residues in zebrafish aA-crystallin with their counterparts in the toothfish protein altered
surface hydrophobicity (measured using bis-ANS binding), oligomerization, and chaperone
activity (119). Unlike humans and toothfish, zebrafish have two aB-crystallins, oBa and
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aBb (120). aBb is the more similar to human B, whereas «Ba has unusual oligomeriza-
tion behavior and superior chaperone activity against a panel of destabilized T4 lysozyme
variants (57).

7.2. Human a-crystallin chaperone activity as as a biomedical and therapeutic
target

An important reason for studying the molecular mechanisms of a-crystallin chaperone ac-
tion and aggregation is the long-term goal of using this information in a therapeutic context.
a-crystallin itself is potentially useful as a therapeutic agent against protein deposition
diseases, particularly the a-crystallin domain and component peptides. The a-crystallin
domain binds to, and prevents the fibrillization of Ay 42 (121), a protein found in amy-
loid plaques in Alzheimer’s disease. The ability of a-crystallin to bind amyloid fibrils in a
therapeutic context has also been examined in the context of Multiple Sclerosis (MS). MS
symptoms are linked to the formation of amyloid fibrils of fibronectin, contributing to the
formation of an MS lesion, so maintaining the solubility of these proteins could lead to an
effective treatment for MS. In a clinical trial, doses of aB-crystallin were shown to reduce
the number of MS lesions by 76% over a 9 month period (122). Delivery remains a problem
with this approach: it is difficult to get a-crystallin into the cell efficiently. aB-crystallin
can be fused to the glycoprotein C cell penetrating peptide, followed by stimulation of cell
uptake by applying heparan sulfate (123).

Of course a-crystallin is also associated with disease states, and so it is itself a target
for therapeutics. Attempts at treating a-crystallin associated cataract typically focus on
resolubilizing the protein, as protein turnover in the lens is negligible so degradation in
not a viable option. Aspirin nanorods have shown effectiveness in maintaining a-crystallin
solubility in wvitro, allowing for the possibility of an aspirin-based cataract treatment (124).
Mouse models of hereditary and age-related cataract have been successfully treated with
small molecules; with one compound in particular, 29, 5-cholesten-3b,25-diol, improving
the solubility of a-crystallin by 63% (125). RNA aptamers can act as molecular switches
to control the activity of the targeted proteins. RNA aptamers have been developed that
bind specifically to aB-crystallin while not targeting the very similar aA-crystallin (126).
This work marks an important first step toward selectively and specifically controlling the
activity of aB-crystallin.

8. Conclusion and outlook

We have presented an overview of the current state of knowledge of the molecular mecha-
nisms of a-crystallin oligomerization and chaperone activity. Much of this information has
come from combinations of complementary methodologies, notably solid-state and solution
NMR with cryo-EM. Future progress toward understanding native a-crystallin oligomers
and their interactions with client proteins will require advanced biomolecular simulations.
MD simulations provide a detailed picture of how proteins move, leading to insights into pro-
tein folding, enzyme activity, and solvent interactions (127, 128). MD is also an integral part
of the process of refining macromolecular structures based on X-ray crystallographic (129)
and NMR (130) data. MD simulations are often performed using a detailed structural model
containing all the atoms in the protein as well as atomically detailed solvent molecules, al-
though coarse-grained approaches and implicit solvent treatments are also available. Monte
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Carlo simulations can be used to study the equilibrium behavior of a wide range of physical
systems. In this method, the system starts in an arbitrary configuration, and a perturbation
is applied. Depending on whether the new configuration is lower or higher in energy, the
move is accepted or rejected (131), and a wide range of thermodynamic properties can then
be explored. In the context of systems containing many proteins, rigid-body models are
often used to reduce the computational cost (132). Multiconformation Monte Carlo simu-
lations can reintroduce some conformational complexity at low additional cost by using a
library of predetermined protein conformations (133). For systems that are characterized
by complex interactions among a large number of monomers, another alternative to compu-
tationally expensive all-atom simulations is the network Hamiltonian dynamics approach,
a coarse-grained method in which a network Hamiltonian is written strictly in terms of
connectivity among the protein monomers, eliding the molecular-level details. The prop-
erties being simulated are therefore characteristic of the entire system rather than of the
structural details of any particular protein, allowing long-timescale simulation of systems
comprising hundreds to thousands of monomers. This approach has been used to recapitu-
late all known types of amyloid fibrils observed in the Protein Data Bank (134) and to model
the formation kinetics of several different fibrillization pathways (135). It may also provide
a modeling framework for understanding a-crystallin oligomerization and the dynamic equi-
librium among oligomers of different sizes, even before detailed all-atom simulations for the
full system can be obtained. a-Crystallin forms complex, heterogeneous oligomers that are
built up in a modular fashion based on domain-swapping interactions with its N- and C-
terminal extensions. The full picture of a-crystallin chaperone behavior is very complicated,
with different parts of the chaperone contact- ing its aggregation-prone substrate depending
on specific properties of the client. A clear future direction in this area is the continued
exploration of a-crystallin interactions with a greater variety of misfolded or destabilized
proteins, as the full range of a-crystallin activity has probably not yet been characterized.
Many different client protein modifications have been observed, ranging from amino acid
substitutions to PTMs such as phosphorylation and isomerization. A pattern that emerges
from all of these studies is that there are multiple pathways for aggregation depending on
the nature of the modification. As these aggregates are formed by different mechanisms
and may have different physicochemical properties, pharmaceutical interventions for med-
ical conditions caused by these modifications will require either tailored treatments or a
general solution that encompasses all of the a-crystallin functionalities observed in nature.
In contrast, understanding c-crystallin properties and crystallin crystallin interactions can
also lead to improved designs for artificial lenses that more closely mimic the functionality

of the biological lens.
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8.1. Sidebars and Margin Notes

CRYO-EM

A major advantage of cryo-EM is that it enables structure determination of large complexes, even for
proteins that resist crystallization. Smaller proteins are problematic as the current theoretical limit for
high resolution cryo-EM structures is thought to be 38 kDa for single particles (136), any smaller and the
noise overcomes the signal. The basic principle involves freezing a protein sample in vitreous ice. Then, the
sample is bombarded with electrons and an image is generated of separated single particles of the protein
or complex of interest. The individual particles are then classified based on the orientation of the sample
by a computer. Each class is then averaged to generate a sharp image of that orientation. By combining all
the different orientations, a 3-D model can be generated. For success with this technique, a few things are
required: 1. Particles in the sample must be identical for the class averages to generate a sharp image. 2.
Particles in the sample must take many different orientations, because a bias towards a certain orientations
will lead to lower resolution for the less well-represented orientations.

SOLUTION-STATE NMR

Because the solubility of the crystallin proteins is so central to their function, solution-state NMR is a
natural choice for solving structures of these proteins under native-like conditions. NMR makes use of
the nuclear magnetic moment of atoms that have an odd number of protons or neutrons (137, 138, 139).
When placed in an external magnetic field, the magnetic moment of the nucleus will precess about the
external magnetic field at a characteristic frequency that is influenced by the unique magnetic environment
around that atom. This includes the local magnetic fields produced by electrons in the chemical bonds as
well as other nearby atoms, a phenomenon known as the chemical shift. Here, obtaining a high-resolution
spectrum depends on the rapid, isotropic tumbling of the molecules of interest relative to the timescale of
the experiment. This is the case for relatively small proteins (up to about 30 kDa), although specialized
pulse sequences and labeling schemes can be used to extend the size range of solution-state NMR. to much
larger proteins or complexes (140, 141).
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NMR ASSIGNMENTS AND STRUCTURE DETERMINATION

For small organic molecules, assigning each chemical shift to the atom that gives rise to it is relatively
straightforward, but this is a daunting task for a protein, which has thousands of atoms. Nonetheless, the
first stage in the structure determination process is to obtain a characteristic frequency for every 'H, '*C, and
5N in the protein. This process is greatly facilitated by using recombinant expression, inducing bacteria,
yeast, or cell cultures to produce isotopically labeled proteins in sufficient quantities for NMR. Protein
samples can be uniformly labeled with '*C and "N, can be fully or partially deuterated, or can incorporate
more specialized labeling schemes (142, 143, 144). In addition to increasing sensitivity, isotopic enrichment
is crucial because it enables multidimensional experiments (145) in which two or more correlated Fourier
dimensions reveal connectivity along the protein backbone (146). After the assignments are complete, pairs
of intermolecular distances are measured, either indirectly via cross-relaxation effects (147), or directly
through dipolar couplings in a partially oriented sample (148). These distance restraints, along with other
parameters derived from the chemical shift and the protein sequence (149), are used to constrain a molecular
dynamics simulation to obtain the final structure (150, 151).

SOLID-STATE NMR

Despite its utility for studying the structure and dynamics of small, soluble proteins, an obvious limitation
of solution-state NMR is that the molecules of interest must be dispersed through the sample and rotating
freely. For large or insoluble protein complexes, solid-state NMR is a better choice. Here, anisotropic in-
teractions, such as chemical shift anisotropy and dipolar coupling are not averaged out. These interactions
contain valuable orientational information, but the broadening they impose on the spectra present a chal-
lenge. A static solid-state NMR spectrum can be described by a “powder pattern,” which is very broad
for each equivalent atom as the chemical shift, for example, can vary greatly in different orientations. In
principle, fitting each powder pattern provides a wealth of detailed orientational information, however this
becomes infeasible for even relatively small spin systems.

In solution NMR, anisotropic interactions are averaged to zero by the free rotation of molecules in
solution. In solid-state NMR, it is possible to mimic this rotation by mechanically rotating the sample at
the magic angle, 54.74° relative to the external magnetic field (152). The speed of rotation is chosen based
on the instrumentation used as well as the frequency of the interaction to be averaged out; for example
a 12 kHz dipolar coupling would require a rotation rate faster than 12 kHz (in practice, radiofrequency
decoupling is also used to average this interaction away. Of course, the liquid-like spectra are obtained at
the cost of losing the information found in the powder pattern. However, this information can be recovered
using a variety of dipolar recoupling methods, including a vast library pulse sequences and switched angle
spinning, which uses mechanical reorientation to selectively recover this information. Under magic angle
spinning, multidimensional experiments can be used to obtain assignments and distance restraints, as in
solution-state NMR. (153, 154, 155, 156). Although the practical details and spin transfer pathways are
different, the experiments and structure determination algorithms are conceptually very similar.
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Figure 1

a-crystallin binding to client protein. (A) The initial recognition of the client protein
sometimes occurs at the N- terminal extension of the a-crystallin (116). (B) Mini aA-crystallin
contains many hydrophobic residues that bind to the client protein through hydrophobic
interactions (110). (C) aA-crystallin tightly binds the client protein, keeping it in solution.
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Figure 2

Oligomeric states of a-crystallins. (A) The Jehle (top) (31, 42) and Braun (bottom, PDB: 2YGD)
(143) aB 24mer pscudoatomic models. Homodimers (left) are formed through ACD (yellow)
contacts. Dimers combine to form a hexameric species (middle) through NTR (green) and ACD
contacts. The C-terminal domain is highlighted in blue. Hexamers combine to form the dominant
24-mer structures (right).

(B) Pseudoatomic models of a 16-mer of wild-type reduced human aA-crystallin(49). Top:
aA-crystallin monomers (blue and red) forming the S7-interface dimer. Dimers via inter-
actions between N-terminal extensions, to form z-shaped tetramers that stack to make up
the pillars of the hollow oligomer. Bottom: Monomers (red) binding through N-terminal
interactions. (C) Cryo-EM density maps from the Electron Microscopy Database (EMD)
(49) of the (top) 12-mer (EMD-4895), (middle) 16-mer (EMD-4894), and (bottom) 20-
mer (EMD 4896) with three, four, and five-fold symmetry, respectively, from the apical axis
(right). All oligomers are formed from a z-shaped tetrameric building block. Abbreviations:
ACD, a-crystallin domain; cryo-EM, cryo-electron microscopy; EMD, Electron Microscopy
Database; NTR, N-terminal region; PDB, Protein Data Bank.
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Figure 3

A A schematic of the interaction modes of aB-crystallin with client proteins. There are several
different possible paths for client recognition and chaperone activity. Both the N- (green) and
C-terminal extensions (blue) can act as site for initial recognition or even as the active holdase
region. In the case of initial recognition, the client initially binds the flexible extension and then
becomes bound to the a-crystallin domain. The a-crystallin domain itself can also directly
interact with client proteins for holdase activity, without intermediate binding. B. Many specific
residues and sequence regions are implicated in aB-crystallin holdase activity. The mini-aB
peptide is highlighted in red, while the other key residues throughout the protein are labeled.
These residues are D2, K24, F27 (107), R56 (157), D109 (59), R120(158), R157 (159), K82, K90,
K92, K121, K166, K174, K175 (160).

Abbreviation: PDB, Protein Data Bank.
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SUMMARY POINTS

1.

Summary point 1. a-crystallins bind to damaged structural proteins and maintain
their solubility.

. Summary point 2. The dynamic and heterogeneous oligomerization state of o-

crystallins is critical to their functionality.

. Summary point 3. Multiple sequence regions and structural features are required

for complex formation.

. Summary point 4. The high solubility and complex oligomerization behavior of

these proteins make them particularly amenable to study by NMR and cryo-EM.

FUTURE ISSUES

1.

Future issue 1. Although we are beginning to understand how a-crystallin recog-
nizes and solubilizes its client proteins, more molecular-level studies are required to
develop a general model for its holdase chaperone activity.

. Future issue 2. The activity of a-crystallin monomers, dimers, and larger oligomers

needs further study to determine what is the most active species, or if different
assemblies play different roles.

. Future issue 3. The physicochemical impact of post-translational modifications

under in vivo conditions is only beginning to be understood.

. Future issue 4. The mini-a-crystallin peptides or even more minimal chaperones de-

rived from them may provide a basis for development of future therapeutics against
protein aggregation diseases.
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