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Low-Rank Matrix Recovery With Scaled Subgradient

Methods: Fast and Robust Convergence
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Abstract—Many problems in data science can be treated as
estimating a low-rank matrix from highly incomplete, sometimes
even corrupted, observations. One popular approach is to resort
to matrix factorization, where the low-rank matrix factors are
optimized via first-order methods over a smooth loss function, such
as the residual sum of squares. While tremendous progress has been
made in recent years, the natural smooth formulation suffers from
two sources of ill-conditioning, where the iteration complexity of
gradient descent scales poorly both with the dimension as well as
the condition number of the low-rank matrix. Moreover, the smooth
formulation is not robust to corruptions. In this paper, we propose
scaled subgradient methods to minimize a family of nonsmooth
and nonconvex formulations—in particular, the residual sum of
absolute errors—which is guaranteed to converge at a fast rate that
is almost dimension-free and independent of the condition number,
even in the presence of corruptions. We illustrate the effectiveness
of our approach when the observation operator satisfies certain
mixed-norm restricted isometry properties, and derive state-of-
the-art performance guarantees for a variety of problems such as
robust low-rank matrix sensing and quadratic sampling.

Index Terms—Low-rank matrix recovery, nonsmooth and
nonconvex optimization, residual sum of absolute errors, scaled
subgradient methods.

I. INTRODUCTION

M
ANY problems in data science can be treated as esti-

mating a low-rank matrixX� ∈ R
n1×n2 from highly in-

complete, sometimes even corrupted, observations y = {yi}mi=1

given by

yi ≈ Ai(X�), 1 ≤ i ≤ m. (1)

Here, A(·) = {Ai(·)}mi=1 : R
n1×n2 �→ R

m is the observation

operator that models the measurement process. Instead of oper-

ating in the full matrix space, i.e. R
n1×n2 , a memory-efficient
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approach is to resort to low-rank matrix factorization, by writing

X� = L�R
�
� , if the rank r of X� is known a priori, where

L� ∈ R
n1×r and R� ∈ R

n2×r are of a size that is proportional

to the degrees of freedom of the low-rank matrix. Furthermore,

the low-rank factors can be found by optimizing a smooth loss

function, such as the residual sum of squares

minimize
L∈Rn1×r,R∈Rn2×r

m∑

i=1

(
Ai(LR�)− yi

)2
, (2)

using first-order methods (e.g. gradient descent). While tremen-

dous progress has been made in recent years [1], applying

vanilla gradient descent to the above smooth formulation suffers

from two sources of ill-conditioning that preclude a desirable

computational efficiency from classical optimization principles:
� Due to the heavy-tailed nature of certain measurement op-

erators, such as those encountered in phase retrieval [2] and

quadratic sampling [3], the least-squares formulation (2)

may suffer from a large smoothness parameter (and hence

a large condition number of the loss function) that scales

at least linearly with respect to the ambient dimension,

leading to a conservative choice of stepsizes and a high

iteration complexity when the problem dimension is large.
� Due to the composite nature of the formulation (2), the

iteration complexity of vanilla gradient descent is further

exacerbated by the condition number of the underlying

low-rank matrix X�, which could be large in many ap-

plications of interest.

While there have been encouraging activities [4]–[7] that try to

alleviate these issues regarding ill-conditioning, none of the ex-

isting first-order approaches are able to simultaneously remove

both sources of ill-conditioning and achieve fast convergence.

Therefore, the goal of the current paper is to develop first-order

methods that are guaranteed to converge at a fast rate that is

almost dimension-free and independent of the condition number,

even in the presence of corruptions.

A. Main Contributions

In this paper, we propose to minimize the following nons-

mooth and nonconvex loss function known as the least absolute

deviations, which measures the residual sum of absolute errors

minimize
L∈Rn1×r,R∈Rn2×r

f(LR�) :=
m∑

i=1

∣∣Ai(LR�)− yi
∣∣ , (3)
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TABLE I
LOCAL ITERATION COMPLEXITIES OF THE PROPOSED SCALED SUBGRADIENT METHOD (ScaledSM) IN COMPARISON WITH PRIOR ALGORITHMS FOR MATRIX

SENSING AND QUADRATIC SAMPLING. ScaledSM OUTPERFORMS THE VANILLA SUBGRADIENT METHOD (SM) BY A FACTOR OF κ IN BOTH PROBLEMS, WHILE

OUTPERFORMS SCALED GRADIENT DESCENT (ScaledGD), AND GD WITH ADDITIONAL ROBUSTNESS GUARANTEES. HERE, n = max{n1, n2}, r IS THE RANK,
κ IS THE CONDITION NUMBER OF X�, AND 0 ≤ ps < 1/2 IS THE FRACTION OF OUTLIERS. WE SAY THAT THE OUTPUT X OF AN ALGORITHM REACHES

ε-ACCURACY, IF IT SATISFIES ‖X −X�‖F ≤ εσr(X�), WHERE σr(X�) DENOTES THE r-TH LARGEST SINGULAR VALUE OF X�

via a scaled subgradient method:

Lt+1 := Lt − ηtStRt(R
�
t Rt)

−1,

Rt+1 := Rt − ηtS
�
t Lt(L

�
t Lt)

−1. (4)

Here, St ∈ ∂f(LtR
�
t ) is a subgradient of f(X) :=∑m

i=1 |Ai(X)− yi| at LtR
�
t , and ηt > 0 is a sequence of

carefully-chosen stepsizes. Compared with vanilla subgradient

methods, our new method (4) scales or preconditions the

search directions StRt and S�
t Lt by (R�

t Rt)
−1 and

(L�
t Lt)

−1, respectively.1 As explained in [7] where a similar

preconditioning trick was employed for smooth formulations,

the scaled subgradient enables better search directions and

therefore larger stepsizes. Our main results can be summarized

as follows:
� Under general geometric assumptions on f(·) such as

restricted rank-r Lipschitz continuity and sharpness condi-

tions, we demonstrate that the convergence rate of scaled

subgradient methods using both Polyak’s and geometri-

cally decaying stepsizes is independent of the condition

number of X�.
� Instantiating our theory under the mixed-norm restricted

isometry property (RIP) of the measurement operator, we

demonstrate state-of-the-art computational guarantees for

low-rank matrix sensing and quadratic sampling even when

the observations are noisy and corrupted by outliers. This

leads to improvements over the computational complexity

of scaled gradient methods in [7] for heavy-tailed measure-

ment ensembles, as well as of vanilla subgradient methods

in [4]. Table I provides a detailed comparison of the local

iteration complexities of the proposed scaled subgradi-

ent method in comparison with these prior algorithms,

highlighting its robustness to heavy-tailed observations,

outliers, as well as a large condition number of the true

matrix X�.

Our work leverages exciting advances in nonsmooth opti-

mization [4] and scaled first-order methods [7] for low-rank ma-

trix recovery. Our arguments are concise, which avoid the need

of sophisticated trajectory-dependent analysis as have been used

in [5], [6] to achieve rapid and robust convergence guarantees.

1Under appropriate conditions, the inverse matrices always exist; in practice,
one can use the pseudo-inverse matrices to avoid numerical instabilities.

B. Related Work

Low-rank matrix recovery has been a target of intense interest

in the last decade; we invite the readers to [1], [10], [11] for

recent overviews, and limit our discussions to the most relevant

literature in the sequel.

a) Nonsmooth formulations for low-rank matrix recovery.

Nonsmooth objective functions, such as the least absolute de-

viations, have been adopted earlier in both convex and non-

convex formulations of low-rank matrix recovery, including

phase retrieval [12]–[16], blind deconvolution [17], quadratic

sampling [4], [18]–[20], low-rank matrix sensing [4], [9], [21],

[22], robust synchronization [23], to name a few. Our work is

most closely related to and generalizes the vanilla subgradient

method in [4], by establishing novel performance guarantees of

scaled subgradient methods for robust low-rank matrix recovery.

b) Scaled first-order methods for low-rank matrix recovery.

Variants of the scaled gradient methods are proposed in [7],

[24], [25] for minimizing the least-squares formulation (2),

where strong statistical and computational complexities are first

established in [7]. To the best of our knowledge, the current

paper is the first work that provides rigorous statistical and

computational guarantees for scaled subgradient methods for

addressing nonsmooth formulations. When it comes to problems

with heavy-tail observations such as quadratic sampling, while

it is possible to establish faster convergence rates of vanilla

gradient descent over the smooth least-squares loss function

through a tailored analysis [5], [6] via leave-one-out arguments,

it is unclear if similar analyses are viable for scaled gradient

methods (ScaledGD) in [7]. Unfortunately, a direct application

of the performance guarantee of ScaledGD on minimizing the

smooth least-squares loss function leads to a much slower rate

in terms of the problem dimension (see Table I) for quadratic

sampling. In contrast, our analysis for scaled subgradient meth-

ods yields strong guarantees in a more straightforward manner

since the nonsmooth loss function has much better geometric

properties [4].

c) Robust low-rank matrix recovery via nonconvex optimiza-

tion. A pleasant side benefit of nonsmooth formulations is the

added robustness to adversarial outliers under a simple algorithm

design – the low-rank factors are updated essentially in the same

manner regardless of the presence of outliers. In comparison,

other nonconvex methods based on smooth formulations often
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need to introduce some special treatments to mitigate outliers

before updating the low-rank factors, e.g. truncation or thresh-

olding [9], [26], [27], which can be cumbersome to tune properly.

d) Condition number independent rate of convergence. It is

well-known that first-order methods such as gradient descent

exhibit poor scaling with respect to the condition number of

the low-rank matrix. Possible remedies include alternating least-

squares in the factored space [28], [29], or spectral methods over

the matrix space [30]. However, these approaches either require

the inversion of a large matrix or a higher memory footprint,

compared with the scaled first-order methods adopted herein.

C. Paper Organization and Notation

The rest of this paper is organized as follows. Section II

describes the proposed scaled subgradient method and its con-

nections to existing methods. Section III provides the theoretical

guarantees for the scaled subgradient method in terms of both

statistical and computational complexities, which are then in-

stantiated to robust low-rank matrix sensing and quadratic sam-

pling. Section IV illustrates the superior empirical performance

of the proposed method. Finally, we conclude in Section V. The

proofs are deferred to the appendix.

Throughout the paper, we use boldfaced symbols for vectors

and matrices. For a vector v, we use ‖v‖p to denote its �p
norm. For any matrix A, we use σi(A) to denote its i-th
largest singular value, and let Ai,· and A·,j denote its i-th
row and j-th column, respectively. In addition, ‖A‖op and

‖A‖F denote the spectral norm and the Frobenius norm of a

matrix A, respectively. For matrices A,B of the same size,

we use 〈A,B〉 = ∑
i,j Ai,jBi,j = tr(A�B) to denote their

inner product, where tr(·) denotes the trace. The set of invertible

matrices in R
r×r is denoted by GL(r).

II. PROBLEM FORMULATION AND ALGORITHMS

In this section, we formulate the low-rank matrix recovery

problem, followed by a detailed description of the proposed

scaled subgradient method.

A. Problem Formulation

Let X� ∈ R
n1×n2 be the ground truth rank-r matrix, whose

compact singular value decomposition (SVD) is given by

X� = U�Σ�V
�
� , (5)

where U� ∈ R
n1×r and V � ∈ R

n2×r are composed of r left

and right singular vectors, respectively, and Σ� ∈ R
r×r is a

diagonal matrix consisting of r singular values of X� organized

in a non-increasing order, i.e. σ1(X�) ≥ · · · ≥ σr(X�) > 0.

The condition number of X� is thus defined as

κ := σ1(X�)/σr(X�). (6)

Without loss of generality, we define the ground truth low-rank

factors as

L� := U�Σ
1/2
� , and R� := V �Σ

1/2
� , (7)

so that X� = L�R
�
� . Moreover, we denote the ground truth

stacked factor matrix as

F � := [L�
� ,R

�
� ]

� ∈ R
(n1+n2)×r. (8)

Assume that we have access to a number of observations y =
{yi}mi=1 of X�, given as

yi = Ai(X�) + wi + si, 1 ≤ i ≤ m, (9)

or equivalently,

y = A(X�) +w + s, (10)

where A(X�) = {Ai(X�)}mi=1 is the measurement ensemble,

w = {wi}mi=1 denotes the bounded noise, and s = {si}mi=1

models arbitrary corruptions. The goal of low-rank matrix re-

covery is to reconstruct X� from the noisy and corrupted

observations y in a statistically and computationally efficient

manner.

B. Scaled Subgradient Method

Consider the following nonsmooth and nonconvex optimiza-

tion problem over the factors

minimize
L∈Rn1×r,R∈Rn2×r

L(L,R) := f(LR�), (11)

where f(·) is a nonsmooth surrogate of the observation residuals.

Of particular interest is the residual sum of absolute errors,

defined as

f(X) := ‖A(X)− y‖1. (12)

Correspondingly, the minimizer is called the least absolute de-

viations (LAD) solution.

Let us denote the stacked factor matrix in the t-th iterate as

F t := [L�
t ,R

�
t ]

�. Given an initializationF 0 = [L�
0 ,R

�
0 ]

�, the

proposed scaled subgradient method (ScaledSM) proceeds as

Lt+1 := Lt − ηtStRt(R
�
t Rt)

−1,

Rt+1 := Rt − ηtS
�
t Lt(L

�
t Lt)

−1,
(13)

where St ∈ ∂f(LtR
�
t ) is a subgradient of f(·) at LtR

�
t (and

hence StRt ∈ ∂LL(Lt,Rt) and S�
t Lt ∈ ∂RL(Lt,Rt)), and

ηt > 0 is some properly selected stepsize, which we discuss

next.

a) Stepsize schedules. We consider the following two choices

of stepsize schedules:
� If we know the optimal value f(X�), we can invoke the

following Polyak’s stepsize, given by

ηP
t :=

f(LtR
�
t )− f(X�)

‖StRt(R
�
t Rt)−1/2‖2F + ‖S�

t Lt(L
�
t Lt)−1/2‖2F

,

(14)

where the denominator is the squared norm of the subgradi-

ent under a scaled metric concerted with the precondition-

ers. This schedule is implementable, for example, when

the observations are noise-free, leading to f(X�) = 0.

However, when the observations are noisy and corrupted,

it is not viable to know f(X�) beforehand.
� In general, we can apply the geometrically decaying step-

size originally introduced in [31], given by

ηG
t :=

λqt√
‖StRt(R

�
t Rt)−1/2‖2F+‖S�

t Lt(L
�
t Lt)−1/2‖2F

,

(15)

where the denominator is similarly scaled as (14), and λ >
0 and q ∈ (0, 1) are some parameters to be specified. This
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choice is broadly applicable when dealing with noisy and

corrupted observations.

Compared with the vanilla subgradient method, which pro-

ceeds according to

Lt+1 := Lt − ηtStRt,

Rt+1 := Rt − ηtS
�
t Lt,

(16)

the update rule (13) scales the subgradient StRt and S�
t Lt by

(R�
t Rt)

−1 and (L�
t Lt)

−1, respectively; see [7] for its counter-

part in smooth problems. An important highlight of the scaled

subgradient method is that the update rule is covariant with

respect to the ambiguity of low-rank matrix factorization. To

see this, imagine that we modify the t-th updates as

L̃t := LtQ, R̃t := RtQ
−� (17)

for some invertible matrix Q ∈ GL(r). It is easy to check:

i) both the Polyak’s stepsize (14) and the geometrically

decaying stepsize (15) do not change, since

‖StRt(R
�
t Rt)

−1/2‖2F = 〈St,StRt(R
�
t Rt)

−1R�
t 〉

= 〈St,StR̃t(R̃
�
t R̃t)

−1R̃
�
t 〉

= ‖StR̃t(R̃
�
t R̃t)

−1/2‖2F,
which holds similarly for ‖S�

t Lt(L
�
t Lt)

−1/2‖2F;

ii) The next (t+ 1)-th iterate can be written as

L̃t+1 = L̃t − ηtStR̃t(R̃
�
t R̃t)

−1

=
[
Lt − ηtStRt(R

�
t Rt)

−1
]
Q = Lt+1Q,

and similarly R̃t+1 = Rt+1Q
−�. Therefore, all the iter-

ates are covariant with respect to the invertible transform

(17).

Remark 1 (Comparison with ScaledGD): Although not our

focus, it is instructive to consider the resulting update rule using

the nonsmooth �2-loss function f(X) = ‖A(X)− y‖2 (which

has been studied in [4]), whose subgradient is given by

St =
A∗(rt)

‖rt‖2
,

where A∗(·) is the adjoint operator of A(·), and rt :=
A(LtR

�
t )− y is the residual using the t-th iterate. Conse-

quently, the scaled subgradient method follows the update rule

Lt+1 = Lt −
ηt

‖rt‖2
A∗(rt)Rt(R

�
t Rt)

−1,

Rt+1 = Rt −
ηt

‖rt‖2
A∗(rt)

�Lt(L
�
t Lt)

−1,

for some stepsize ηt. Careful readers might realize that this coin-

cides with the update rule of ScaledGD in [7] when optimizing

the smooth squared �2-loss function g(X) = 1
2‖A(X)− y‖22,

except with an adaptive stepsize ηt

‖rt‖2 . Under the same assump-

tion on A(·) in [7], the convergence behaviors of ScaledSM

applied on f(X) match that of ScaledGD on g(X).
Remark 2 (ScaledSM for PSD matrices): When the low-rank

matrix of interest is positive semi-definite (PSD), we factorize

the matrix X ∈ R
n×n as X = LL�, with L ∈ R

n×r. The

update rule of ScaledSM simplifies to

Lt+1 = Lt − ηtStLt(L
�
t Lt)

−1,

where St ∈ ∂f(LtL
�
t ) is a subgradient of f(·) at LtL

�
t . Our

theory applies to this PSD case in a straightforward manner.

III. THEORETICAL GUARANTEES

In this section, we first provide the theoretical guarantees of

the scaled subgradient method under general geometric assump-

tions on f(·), and then instantiate them to concrete problems in-

cluding robust low-rank matrix sensing and quadratic sampling.

A. Geometric Assumptions

We start by introducing the following geometric properties of

the loss function f(·), which play a key role in the convergence

analysis.

The first condition is similar to the usual Lipschitz property

of a function.

Definition 1 (Restricted Lipschitz continuity): A function

f(·) : R
n1×n2 �→ R is said to be rank-r restricted L-Lipschitz

continuous for some quantity L > 0 if

|f(X1)− f(X2)| ≤ L‖X1 −X2‖F

holds for any X1,X2 ∈ R
n1×n2 such that X1 −X2 has rank

at most 2r.

The second geometric condition is akin to the (one-point)

strong convexity of a function, with the key difference that

strong convexity adopts the squared Euclidean norm whereas

the following one uses the plain Euclidean norm.

Definition 2 (Restricted sharpness): A function f(·) :
R

n1×n2 �→ R is said to be rank-r restricted µ-sharp w.r.t. X�

for some µ > 0 if

f(X)− f(X�) ≥ µ‖X −X�‖F

holds for any X ∈ R
n1×n2 with rank at most r.

For notational simplicity, if a function f is both restricted

L-Lipschitz continuous and µ-sharp, we denote

χf := L/µ. (18)

In some cases, e.g. in the presence of noise, the loss function

f(·) only satisfies an approximate restricted sharpness property,

which is detailed below.

Definition 3 (Approximate restricted sharpness): A function

f(·) : R
n1×n2 �→ R is said to be ξ-approximate rank-r restricted

µ-sharp for some µ, ξ > 0 if

f(X)− f(X�) ≥ µ‖X −X�‖F − ξ

holds for any X ∈ R
n1×n2 with rank at most r.

As shall be seen in Section III-C, these conditions can be

ensured for proper choices of the loss function as long as the

observation operator A(·) satisfies certain mixed-norm RIP,

which holds for a wide number of practical problems.

B. Main Results

Motivated by [7], we measure the performance of F =
[L�,R�]� using the following error metric

dist2(F ,F �) := inf
Q∈GL(r)

∥∥∥(LQ−L�)Σ
1/2
�

∥∥∥
2

F

+
∥∥∥(RQ−� −R�)Σ

1/2
�

∥∥∥
2

F
, (19)
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which takes into consideration both the representational ambigu-

ity of the factorization up to invertible transforms and the scaling

effect of preconditioners. In comparison, the more standard

distance metric [32] in the analysis of vanilla gradient methods

reads as follows

dist2u(F ,F �) := inf
Q∈GL(r)

‖LQ−L�‖2F +
∥∥RQ−� −R�

∥∥2

F
,

which is inadequate to delineate the power of preconditioning.

See [7] for more discussions.

We start with stating the linear convergence of the scaled

subgradient method when f(·) satisfies both the rank-r restricted

L-Lipschitz continuity and µ-sharpness. The proof is deferred

to Appendix B.

Theorem 1 (Scaled subgradient method with exact conver-

gence): Suppose that f(X) : R
n1×n2 �→ R is convex in X ,

and satisfies rank-r restricted L-Lipschitz continuity and µ-

sharpness (cf. Definitions 1 and 2). In addition, suppose that

the initialization F 0 satisfies

dist(F 0,F �) ≤ 0.02σr(X�)/χf , (20)

and the scaled subgradient method in (13) adopts either Polyak’s

stepsizes in (14) or geometrically decaying stepsizes in (15) with

λ =

√√
2−1
2 0.02σr(X�)/χ

2
f and q =

√
1− 0.16/χ2

f . Then for

all t ≥ 0, the iterates satisfy

dist(F t,F �) ≤ (1− 0.16/χ2
f )

t/20.02σr(X�)/χf ,
∥∥LtR

�
t −X�

∥∥
F
≤ (1− 0.16/χ2

f )
t/20.03σr(X�)/χf .

Theorem 1 shows that the iterates of the scaled subgradi-

ent method converges at a linear rate; to reach ε-accuracy,

i.e. ‖LtR
�
t −X�‖F ≤ εσr(X�), it takes at most O(χ2

f log
1
ε )

iterations, which, importantly, is independent of the condition

number κ of X�. In addition, it is still possible to ensure ap-

proximate reconstruction when only the approximate restricted

sharpness property holds, as shown in the next theorem. Again,

we postpone the proof to Appendix C.

Theorem 2 (Scaled subgradient method with approximate

convergence): Suppose that f(·) : R
n1×n2 �→ R is convex,

and satisfies rank-r restricted L-Lipschitz continuity and ξ-

approximate µ-sharpness (cf. Definitions 1 and 3) for some

ξ ≤ 10−3σr(X�)µ/χf . Suppose that the initialization F 0 sat-

isfies dist(F 0,F �) ≤ 0.02σr(X�)/χf , and the scaled subgra-

dient method adopts geometrically decaying stepsizes (15) with

λ =

√√
2−1
2 0.02σr(X�)/χ

2
f and q =

√
1− 0.13/χ2

f . Then for

all t ≥ 0, the iterates satisfy

dist(F t,F �)

≤ max
{
(1− 0.13/χ2

f )
t/20.02σr(X�)/χf , 20ξ/µ

}
,

∥∥LtR
�
t −X�

∥∥
F

≤ max
{
(1− 0.13/χ2

f )
t/20.03σr(X�)/χf , 30ξ/µ

}
.

Theorem 2 shows that as long as the relaxation parameter

ξ is sufficiently small, i.e. ξ � σr(X�)µ/χf , then the scaled

subgradient method with geometrically decaying stepsizes con-

verges at a linear rate until an error floor is hit. In particular, the

iterates satisfy ‖LtR
�
t −X�‖F ≤ 30ξ/µ after at most O(χ2

f )
iterations up to logarithmic factors.

Remark 3: For simplicity of exposition, we have fixed the

values of λ and q for the geometrically decaying stepsizes in

the above theorems. It is possible to allow a wider range of λ

and q by slightly modifying the arguments without sacrificing

the linear convergence. In practice, these parameters should be

tuned in order to yield optimal performance.

C. A Case Study: Robust Low-Rank Matrix Recovery

We now apply the above theorems to robust low-rank matrix

recovery, which showcases the superior performance of the

scaled subgradient method.

a) Noise-free case. We start with the observation model (10)

with clean measurements, i.e.w = 0 and s = 0. To proceed, we

assume that the observation operatorA(·) satisfies the following

mixed-norm RIP.

Definition 4 (mixed-norm RIP [4], [33], [34]): The linear

map A(·) is said to obey the rank-2r mixed-norm RIP with

constants δ1, δ2 if for all matrices M ∈ R
n1×n2 of rank at most

2r, one has

δ1‖M‖F ≤ ‖A(M)‖1 ≤ δ2‖M‖F.

The next proposition verifies that the loss function (12) sat-

isfies restricted Lipschitz continuity and sharpness properties

under the mixed-norm RIP.

Proposition 1: IfA(·) satisfies rank-2r mixed-norm RIP with

constants (δ1, δ2), then f(X) = ‖A(X)− y‖1 = ‖A(X −
X�)‖1 in (12) satisfies the rank-r restricted L-Lipschitz con-

tinuity and µ-sharpness with

L = δ2, and µ = δ1.

Proof: See Appendix D. �

With the geometric characterization of f(·) in place, we

immediately have the following corollary that captures the per-

formance of the scaled subgradient method when A(·) satisfies

the mixed-norm RIP.

Corollary 1: If A(·) satisfies rank-2r mixed-norm RIP with

(δ1, δ2), then the scaled subgradient method over the loss func-

tion f(X) = ‖A(X)− y‖1 using either Polyak’s or geometri-

cally decaying stepsizes achieves ‖LtR
�
t −X�‖F ≤ εσr(X�)

in O(
δ22
δ2
1

log 1
ε ) iterations as long as the initialization satisfies

dist(F 0,F �) ≤ 0.02δ1
δ2

σr(X�).
b) Noisy and corrupted case. We now consider the observation

model (10) where the noise w is bounded with ‖w‖1 ≤ σw

and ‖s‖0 = psm, where ps ∈ [0, 1/2) is the fraction of outliers.

Following [4], we further introduce another important property

of A(·).
Definition 5 (S-outlier bound [4]): The linear map A(·) is

said to obey the rank-2r S-outlier bound w.r.t. a set S with a

constant δ3 if for all matrices M ∈ R
n1×n2 of rank at most 2r,

one has

δ3‖M‖F ≤ ‖ASc(M)‖1 − ‖AS(M)‖1,
where AS(M) = {Ai(M)}i∈S , and ASc(M) =
{Ai(M)}i∈Sc .
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The next proposition verifies that the loss function in (12) sat-

isfies restricted Lipschitz continuity and approximate sharpness

properties under the mixed-norm RIP (cf. Definition 4) and the

S-outlier bound (cf. Definition 5).

Proposition 2 (Matrix sensing with outliers): Denote the

support of the outlier s as S . Suppose that A(·) satisfies rank-2r
mixed-norm RIP with (δ1, δ2) and S-outlier bound with δ3, then

f(X) in (12) satisfies rank-r restricted L-Lipschitz continuity

and ξ-approximate µ-sharpness with

L = δ2, µ = δ3, and ξ = 2σw. (21)

Proof: See Appendix E. �

Similar to the previous noise-free case, this immediately leads

to performance guarantees of the scaled subgradient method

when A(·) satisfies both the mixed-norm RIP and the S-outlier

bound.

Corollary 2: If A(·) satisfies rank-2r mixed-norm RIP

with (δ1, δ2) and S-outlier bound with δ3, and ‖w‖1 ≤
σw ≤ 10−3σr(X�)δ

2
3/δ2, then the scaled subgradient method

over the loss function f(X) = ‖A(X)− y‖1 using the ge-

ometrically decaying stepsizes achieves ‖LtR
�
t −X�‖F ≤

max{εσr(X�), 60σw/δ3} in O(
δ22
δ2
3

log 1
ε ) iterations as long as

the initialization satisfies dist(F 0,F �) ≤ 0.02δ3
δ2

σr(X�).
We now instantiate the above general guarantee to the fol-

lowing two types of observation operators. For simplicity, we

assume there is no dense noise, i.e. σw = 0; see Table I for a

summary of the comparisons.
� matrix sensing: the measurement operator Ai(·) is defined

as Ai(X�) =
1
m 〈Ai,X�〉, where the matrix Ai is com-

posed of i.i.d. Gaussian entries N (0, 1).2 It is shown in [4]

(see also [9]) that A(·) satisfies the mixed-norm RIP and

S-outlier bound with

δ1 � 1, δ2 � 1, δ3 � 1− 2ps,

as long as m �
(n1+n2)r
(1−2ps)2

log( 1
1−2ps

). Hence, the scaled

subgradient method converges linearly to ε-accuracy in

O( 1
(1−2ps)2

log 1
ε ) iterations provided that it is initial-

ized properly, making it robust simultaneously to ill-

conditioning of the matrix X� and the presence of the

outliers.
� quadratic sampling: the measurement operator Ai(·) is

defined as Ai(X�) =
1
m 〈aia

�
i ,X�〉, where X� ∈ R

n×n

is PSD and the vector ai is composed of i.i.d. Gaussian

entries N (0, 1). It is shown in [4] that A(·) satisfies the

mixed-norm RIP and S-outlier bound with

δ1 � 1, δ2 �
√
r, δ3 � 1− 2ps,

as long as m � nr2

(1−2ps)2
log(

√
r

1−2ps
). Hence, the scaled

subgradient method converges linearly to ε-accuracy in

O( r
(1−2ps)2

log 1
ε ) iterations, as long as it is seeded with a

good initialization. In comparison, the iteration complexity

of the scaled gradient descent method over the least-squares

loss function depends polynomially with respect to n, due

to the heavy-tailed nature of the observation operator, let

alone its sensitivity to the outliers.

2The same guarantee also holds for sub-Gaussian measurements.

Remark 4 (Initialization): The above discussions are limited

to the local iteration complexity, assuming a good initialization

satisfying (20) is available. In the absence of outliers, a standard

spectral method can be used, as shown in [7]. In the presence of

outliers, a truncated spectral method could be used; see e.g. [26],

[27].

IV. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to corrob-

orate our theory.

a) Comparisons of ScaledSM and VanillaSM. Since the

vanilla subgradient method (VanillaSM) has been extensively

benchmarked against other methods and established as state-

of-the-art in [4], we focus on comparing the proposed scaled

subgradient method (ScaledSM) toVanillaSM in the sequel.

In general, the geometrically decaying stepsize (15) is a more

practical choice than the Polyak’s stepsize (14), especially in the

presence of noise and outliers. Nonetheless, using properly tuned

geometrically decaying stepsizes essentially matches the perfor-

mance of using Polyak’s stepsizes, for both VanillaSM [9]

and ScaledSM, the latter of which we shall illustrate in the

ensuing experiments. As such, we adopt Polyak’s stepsizes in the

comparisons below, to emulate the scenario where both methods

are tuned to operate under its largest allowable stepsizes and

achieve the fastest convergence. In addition, both algorithms

start from the same initialization.

We consider two low-rank matrix estimation tasks discussed

in Section III-C. Recall the observation model in (10) and its

entrywise version in (9), which we repeat below for convenience:

yi = Ai(X�) + wi + si, 1 ≤ i ≤ m.

In both tasks, the noise entry wi is composed of i.i.d. entries

uniformly drawn from [−σw

m , σw

m ]. The outlier si = s̄iΩi is a

sparse vector whereΩi is a Bernoulli random variable with prob-

ability ps ∈ [0, 1/2), and s̄i is drawn uniformly at random from

[−10‖A(X�)‖∞, 10‖A(X�)‖∞]. For ease of presentation, we

assume that X� ∈ R
n×n is a square matrix with rank as r. We

collect m = 8nr measurements using the following respective

measurement models. The signal-to-noise ratio is defined as

SNR := 20 log10
‖A(X�)‖1

σw
in dB.

� Matrix sensing. Here, the measurement operator Ai(·)
is defined as Ai(X�) =

1
m 〈Ai,X�〉, where the matrix

Ai is composed of i.i.d. Gaussian entries N (0, 1). The

ground truth matrix X� is generated via its compact

SVD X� = U�Σ�V
�
� , where U� ∈ R

n×r is generated

as the orthonormal basis vectors of an n× r matrix with

i.i.d. Rademacher entries, Σ� is a diagonal matrix with

the diagonal entries linearly distributed from 1 to κ, and

V � ∈ R
n×r is generated in a similar fashion to U�.

� Quadratic sampling. Here, the measurement operator

Ai(·) is defined as Ai(X�) =
1
m 〈aia

�
i ,X�〉, where ai

is composed of i.i.d. Gaussian entries N (0, 1). The ground

truth matrix X� is positive semi-definite, and is gener-

ated via its compact SVD X� = U�Σ�U
�
� , where U�

and Σ� are generated in the same manner described

above.
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Fig. 1. Performance comparisons ofScaledSM andVanillaSM for matrix sensing without or with outliers under different condition numbersκ = 1, 5, 10, 20,
where n = 100, r = 10, and m = 8nr.

Fig. 2. Performance comparisons of ScaledSM and VanillaSM for quadratic sampling without or with outliers under different condition numbers κ =
1, 5, 10, 20, where n = 100, r = 5, and m = 8nr.

Fig. 3. Performance comparisons of ScaledSM and VanillaSM for matrix sensing under different noise and outlier models, where n = 100, r = 10,
m = 8nr, and κ = 10.
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Fig. 4. Performance comparisons of ScaledSM and VanillaSM for quadratic sampling under different noise and outlier models, where n = 100, r = 5,
m = 8nr, and κ = 10.

Fig. 5. Performance comparisons of ScaledSM for matrix sensing using geometrically decaying stepsizes with parameters (λ, q) and Polyak’s stepsizes, where
we fix n = 100, r = 10, m = 8nr, κ = 10, and ps = 0.2: (a) the final relative error for various combinations of (λ, q), (b) the relative error versus iteration count
for fixed q = 0.91 and varying λ, (c) the relative error versus iteration count for fixed λ = 5 and varying q, and (d) shows properly tuned geometrically decaying
stepsizes with λ = 1.85 and q = 0.91 essentially match Polyak’s stepsizes.
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Fig. 6. Performance comparisons of ScaledSM for quadratic sampling using geometrically decaying stepsizes with parameters (λ, q) and Polyak’s stepsizes,
where we fix n = 100, r = 5, m = 8nr, κ = 10, and ps = 0.2: (a) the final relative error for various combinations of (λ, q), (b) the relative error versus iteration
count for fixed q = 0.92 and varying λ, (c) the relative error versus iteration count for fixed λ = 2 and varying q, and (d) shows properly tuned geometrically
decaying stepsizes with λ = 1.36, and q = 0.88 essentially match Polyak’s stepsizes.

Denote the index set of the remaining measurements after

discarding ps fraction with largest amplitudes as I = {i : |yi| ≤
|y|(�psm�)}, where |y|(k) denotes the kth largest amplitude of

y. The truncated spectral method in [26], [27] is used for

initialization, where we apply the standard spectral method only

on the subset I of the measurements. For matrix sensing, it

follows the prescription in [27], and for quadratic sampling, it

follows [6].

Fig. 1 shows the relative reconstruction error ‖Xt −
X�‖F/‖X�‖F for matrix sensing without outliers (in (a)) and

with 20% outliers (i.e. ps = 0.2 in (b)) under different condition

numbers κ, where Xt is the estimated low-rank matrix at the

t-th iteration. Fig. 2 shows the relative reconstruction error for

quadratic sampling under the same setting. It can be seen that

ScaledSM is insensitive to κ and converges as a fast rate that

is independent with κ, while the convergence of VanillaSM

slows down dramatically with the increase of κ. In addition,

both algorithms still converge linearly in the presence of outliers,

thanks to the robustness of the least absolute deviations.

Fig. 3 further examines the impact of the amount of outliers

and noise on the convergence speed in matrix sensing with

a fixed condition number κ = 10, where Fig. 3 (a) illustrates

the convergence speed at varying amounts of outliers ps =
0.1, 0.2, 0.3 respectively, and Fig. 3 (b) illustrates the conver-

gence with ps = 0.1 and additional bounded noise with varying

SNR = 40, 60, 80dB. Similarly, Fig. 4 shows the same plots for

quadratic sampling under the same setting. It can be seen that the

convergence rate ofScaledSM slows down with the increase of

outliers, which is again, consistent with the theory. Furthermore,

the reconstruction is robust in the presence of additional bounded

noise, where both ScaledSM and VanillaSM converge to

the same accuracy that is proportional to the noise level, with

ScaledSM converging at a faster speed.

b) Comparisons of stepsize schedules. We now compare the

geometrically decaying stepsize with the Polyak’s stepsize for

ScaledSM, which essentially mirrors similar experiments con-

ducted in [9] for VanillaSM. We run ScaledSM for at most

T = 1000 iterations, and stop early if the relative error achieves

10−12. Fig. 5 and Fig. 6 show the performance comparisons of

ScaledSM under various stepsize schedules for matrix sens-

ing and quadratic sampling, respectively. For both figures, (a)

shows the final relative error of ScaledSM using geometrically
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decaying stepsizes under various (λ, q), where we see that

ScaledSM converges as long as λ is not too large and q is not too

small. We further plot the relative error versus the iteration count

for ScaledSM using geometrically decaying stepsizes with a

fixed q and various λ in (b), and with a fixed λ and various q in

(c), where the performance using Polyak’s stepsizes is plotted for

comparison. It can be seen that using Polyak’s stepsizes yields

the fastest convergence. Indeed, if properly tuned, geometrically

decaying stepsizes match Polyak’s stepsizes, as shown in (d). In

general, we find that there is a wide range of parameters for

geometrically decaying stepsizes where ScaledSM converges

in a fast speed comparable to that of using Polyak’s stepsizes,

as long as λ is not too large and q is not too small.

V. DISCUSSIONS

This paper proposes scaled subgradient methods to minimize

a family of nonsmooth and nonconvex formulations for low-rank

matrix recovery—in particular, the residual sum of absolute

errors—and guarantees its convergence at a rate that is almost

dimension-free and independent of the condition number, even

in the presence of corruptions. We illustrate the effectiveness

of our approach by providing state-of-the-art performance guar-

antees for robust low-rank matrix sensing and quadratic sam-

pling. In the future, it is of interest to study the performance

of scaled subgradient methods for other signal estimation and

statistical inference tasks, such as training student-teacher neural

networks [35], as well as using random initializations [36].

APPENDIX A

TECHNICAL LEMMAS

This section gathers several useful lemmas that will be used

in the proof. Throughout the appendix, we use X� to denote the

ground truth, with its compact SVD as X� = U�Σ�V
�
� , and

F � =
[
L�

R�

]
=

[
U�Σ

1/2
�

V �Σ
1/2
�

]
. For any factor matrix F :=

[
L

R

]
∈

R
(n1+n2)×r, we define the optimal alignment matrixQ between

F and F � as

Q := argmin
Q∈GL(r)

∥∥∥(LQ−L�)Σ
1/2
�

∥∥∥
2

F

+
∥∥∥(RQ−� −R�)Σ

1/2
�

∥∥∥
2

F
, (22)

whenever the minimum is achieved.3

Lemma 1 ([7]): Fix any factor matrix F :=
[
L

R

]
∈

R
(n1+n2)×r. Suppose that dist(F ,F �) < σr(X�), then the

minimizer of the above minimization problem is attained at some

Q ∈ GL(r), i.e. the optimal alignment matrixQ betweenF and

F � exists.

Lemma 2 ([7]): For any factor matrix F :=
[
L

R

]
∈

R
(n1+n2)×r, the following relation holds

dist(F ,F �) ≤
√√

2 + 1 ‖LR� −X�‖F.

3If there exist multiple minimizers, we arbitrarily choose one as Q.

Lemma 3 ([7]): For any L ∈ R
n1×r,R ∈ R

n2×r, de-

note ∆L := L−L� and ∆R := R−R�. Suppose that

max{‖∆LΣ
−1/2
� ‖op, ‖∆RΣ

−1/2
� ‖op} < 1, then one has

∥∥∥L(L�L)−1
Σ

1/2
�

∥∥∥
op

≤ 1

1− ‖∆LΣ
−1/2
� ‖op

; (23a)

∥∥∥R(R�R)−1
Σ

1/2
�

∥∥∥
op

≤ 1

1− ‖∆RΣ
−1/2
� ‖op

; (23b)

∥∥∥L(L�L)−1
Σ

1/2
� −U�

∥∥∥
op

≤
√
2‖∆LΣ

−1/2
� ‖op

1− ‖∆LΣ
−1/2
� ‖op

; (23c)

∥∥∥R(R�R)−1
Σ

1/2
� − V �

∥∥∥
op

≤
√
2‖∆RΣ

−1/2
� ‖op

1− ‖∆RΣ
−1/2
� ‖op

. (23d)

Lemma 4 ([7]): Recall the partial Frobenius norm

‖X‖F,r :=

√√√√
r∑

i=1

σ2
i (X) = ‖Pr(X)‖F, (24)

where Pr(X) is the best rank-r approximation of X . For any

X ∈ R
n1×n2 and R ∈ R

n2×r, one has

‖XR‖F ≤ ‖X‖F,r‖R‖op. (25)

In addition, for any X, X̄ ∈ R
n1×n2 with rank(X̄) ≤ r, one

has

|〈X, X̄〉| ≤ ‖X‖F,r‖X̄‖F. (26)

Lemma 5: Suppose that f(·) : R
n1×n2 �→ R is convex and

rank-r restrictedL-Lipschitz continuous (cf. Definition 1). Then

for any subgradient S ∈ ∂f(X), one has ‖S‖F,r ≤ L.

Proof: Fix any subgradient S ∈ ∂f(X). By the definition of

a subgradient, for any X̃ ∈ R
n1×n2 , one has

f(X̃) ≥ f(X) + 〈S, X̃ −X〉.
In particular, taking X̃ = X + Pr(S) arrives at

f(X + Pr(S)) ≥ f(X) + 〈S,Pr(S)〉 = f(X) + ‖S‖2F,r,
(27)

where the last equality follows from the definition (24). Note that

Pr(S) has rank at most r. By the rank-r restricted L-Lipschitz

continuity of f(·), we have

f(X + Pr(S))− f(X) ≤ L‖Pr(S)‖F = L‖S‖F,r.

Combining the above inequality with (27), we conclude

‖S‖F,r ≤ L. �

APPENDIX B

PROOF OF THEOREM 1

Suppose that the t-th iterate F t obeys the condition

dist(F t,F �) ≤ 0.02σr(X�)/χf . (28)

Lemma 1 ensures thatQt, the optimal alignment matrix between

F t and F � exists. For notational convenience, we denote L :=
LtQt, R := RtQ

−�
t , ∆L := L−L�, ∆R := R−R�, S :=

St, and ε := 0.02/χf . By the definition

dist(F t,F �) =

√
‖∆LΣ

1/2
� ‖2F + ‖∆RΣ

1/2
� ‖2F (29)
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and the relation ‖AB‖F ≥ ‖A‖Fσr(B) ≥ ‖A‖σr(B), we

have

max{‖∆LΣ
−1/2
� ‖op, ‖∆RΣ

−1/2
� ‖op} ≤ ε. (30)

We start by relating ‖LR� −X�‖F to dist(F t,F �) given (30).

Applying the triangle inequality to the basic relation LR� −
X� = LtR

�
t −X� = ∆LR

�
� +L�∆

�
R +∆L∆

�
R, we have

‖LR� −X�‖F

≤ ‖∆LR
�
� ‖F + ‖L�∆

�
R‖F + ‖∆L∆

�
R‖F

≤ ‖∆LR
�
� ‖F + ‖L�∆

�
R‖F +

1

2
‖∆LΣ

−1/2
� ‖op‖∆RΣ

1/2
� ‖F

+
1

2
‖∆LΣ

1/2
� ‖F‖∆RΣ

−1/2
� ‖op

≤
(
1 +

1

2
max{‖∆LΣ

−1/2
� ‖op, ‖∆RΣ

−1/2
� ‖op}

)

(
‖∆LΣ

1/2
� ‖F + ‖∆RΣ

1/2
� ‖F

)

≤
(
1 +

ε

2

)√
2

√
‖∆LΣ

1/2
� ‖2F + ‖∆RΣ

1/2
� ‖2F

≤ 1.5 dist(F t,F �), (31)

where the last line uses the basic inequality ‖∆LΣ
1/2
� ‖F +

‖∆RΣ
1/2
� ‖F ≤

√
2 dist(F t,F �) and (30).

From now on, we focus on proving the distance contraction.

By the definition of dist(F t+1,F �), one has

dist2(F t+1,F �) ≤
∥∥∥(Lt+1Qt −L�)Σ

1/2
�

∥∥∥
2

F

+
∥∥∥(Rt+1Q

−�
t −R�)Σ

1/2
�

∥∥∥
2

F
. (32)

We expand the first square in (32) as

∥∥∥(Lt+1Qt −L�)Σ
1/2
�

∥∥∥
2

F

=
∥∥∥
(
L− ηtSR(R�R)−1 −L�

)
Σ

1/2
�

∥∥∥
2

F

= ‖∆LΣ
1/2
� ‖2F − 2ηt

〈
S,∆LΣ�(R

�R)−1R�〉

+ η2t

∥∥∥SR(R�R)−1
Σ

1/2
�

∥∥∥
2

F

= ‖∆LΣ
1/2
� ‖2F − 2ηt

〈
S,∆LR

�
� +

1

2
∆L∆

�
R

〉

+ η2t

∥∥∥SR(R�R)−1
Σ

1/2
�

∥∥∥
2

F︸ ︷︷ ︸
S1

− 2ηt

〈
S,∆LΣ�(R

�R)−1R� −∆LR
�
� − 1

2
∆L∆

�
R

〉

︸ ︷︷ ︸
S2

,

(33)

where in the first equality, we used the fact that the update rule

(13) is covariant with respect to Qt, implying that

Lt+1Qt = L− ηtSR(R�R)−1.

We proceed to boundS1 andS2. The termS1 can be bounded

by

S1 ≤
∥∥∥SR(R�R)−1/2

∥∥∥
2

F

∥∥∥(R�R)−1/2
Σ

1/2
�

∥∥∥
2

op

≤
∥∥∥SR(R�R)−1/2

∥∥∥
2

F

1

(1− ε)2
,

where the second line follows from the condition (30) and

Lemma 3 (cf. (23b)):∥∥∥(R�R)−1/2
Σ

1/2
�

∥∥∥
op

=
∥∥∥R(R�R)−1

Σ
1/2
�

∥∥∥
op

≤ 1

1− ε
.

For the term S2, note that

∆LΣ�(R
�R)−1R� −∆LR

�
� − 1

2
∆L∆

�
R

= ∆LΣ
1/2
�

(
R(R�R)−1

Σ
1/2
� − V � −

1

2
∆RΣ

−1/2
�

)�

has rank at most r. Hence we can invoke Lemma 4 (cf. (26)) to

obtain

|S2| ≤ ‖S‖F,r

∥∥∥∥∆LΣ�(R
�R)−1R�−∆LR

�
�−

1

2
∆L∆

�
R

∥∥∥∥
F

≤ ‖S‖F,r‖∆LΣ
1/2
� ‖F

(∥∥∥R(R�R)−1
Σ

1/2
� − V �

∥∥∥
op

+
1

2
‖∆RΣ

−1/2
� ‖op

)

≤ L

( √
2ε

1− ε
+

ε

2

)
‖∆LΣ

1/2
� ‖F,

where the second inequality follows from the triangle inequality,

and the third inequality follows from ‖S‖F,r ≤ L (cf. Lemma 5),

(30), and
∥∥∥R(R�R)−1

Σ
1/2
� − V �

∥∥∥
op

≤
√
2ε

1− ε
from Lemma 3 (cf. (23d)).

Plugging collectively the bounds for S1 and S2 into (33)

yields
∥∥∥(Lt+1Qt −L�)Σ

1/2
�

∥∥∥
2

F
≤ ‖∆LΣ

1/2
� ‖2F

− 2ηt

〈
S,∆LR

�
� +

1

2
∆L∆

�
R

〉

+
η2t

(1− ε)2

∥∥∥SR(R�R)−1/2
∥∥∥
2

F

+ ηtL

(
2
√
2ε

1− ε
+ ε

)
‖∆LΣ

1/2
� ‖F.

Similarly, we can obtain the control of ‖(Rt+1Q
−�
t −

R�)Σ
1/2
� ‖2F. Combine them together to reach

dist2(F t+1,F �) ≤ ‖∆LΣ
1/2
� ‖2F + ‖∆RΣ

1/2
� ‖2F

− 2ηt
〈
S,∆LR

�
� +L�∆

�
R +∆L∆

�
R

〉

+
η2t

(1− ε)2

(∥∥∥SR(R�R)−1/2
∥∥∥
2

F
+

∥∥∥S�L(L�L)−1/2
∥∥∥
2

F

)

+ ηtL

(
2
√
2ε

1− ε
+ ε

)(
‖∆LΣ

1/2
� ‖F + ‖∆RΣ

1/2
� ‖F

)
.
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Using the subgradient optimality of S, we obtain

〈S,∆LR
�
� +L�∆

�
R +∆L∆

�
R〉 = 〈S,LR� −X�〉

≥ f(LR�)− f(X�),

together with (29), which further implies that

dist2(F t+1,F �) ≤ dist2(F t,F �)−2ηt
(
f(LR�)−f(X�)

)

+
η2t

(1− ε)2

(∥∥∥SR(R�R)−1/2
∥∥∥
2

F
+

∥∥∥S�L(L�L)−1/2
∥∥∥
2

F

)

+ ηtL

(
4ε

1− ε
+
√
2ε

)
dist(F t,F �), (34)

where the last term uses the basic inequality ‖∆LΣ
1/2
� ‖F +

‖∆RΣ
1/2
� ‖F ≤

√
2 dist(F t,F �).

Before proceeding to different cases of stepsize schedules, we

record two useful properties. First, by the restricted µ-sharpness

of f(·) together with Lemma 2, we have

f(LR�)− f(X�) ≥ µ‖LR� −X�‖F

≥ µ

√√
2− 1 dist(F t,F �). (35)

On the other end, by Lemma 4 (cf. (25)), we have

‖SR(R�R)−1/2‖2F + ‖S�L(L�L)−1/2‖2F

≤ ‖S‖2F,r
(
‖R(R�R)−1/2‖2op + ‖L(L�L)−1/2‖2op

)

≤ 2 L2, (36)

where the second line follows from ‖S‖F,r ≤ L (cf. Lemma 5)

and

‖R(R�R)−1/2‖2op = ‖R(R�R)−1R�‖op = 1,

‖L(L�L)−1/2‖2op = ‖L(L�L)−1L�‖op = 1.

A. Convergence With Polyak’s Stepsizes

Let ηt = ηP
t be the Polyak’s stepsize in (14), which is

ηt =
f(LtR

�
t )− f(X�)

‖StRt(R
�
t Rt)−1/2‖2F + ‖S�

t Lt(L
�
t Lt)−1/2‖2F

=
f(LR�)− f(X�)

‖SR(R�R)−1/2‖2F + ‖S�L(L�L)−1/2‖2F
, (37)

where the second line follows since LtR
�
t = LR�,

Lt(L
�
t Lt)

−1L�
t = L(L�L)−1L� and Rt(R

�
t Rt)

−1R�
t =

R(R�R)−1R�. Plugging (37) into (34), we have

dist2(F t+1,F �) ≤ dist2(F t,F �)

− ηt

(
2− 1

(1− ε)2

)(
f(LR�)− f(X�)

)

+ ηtL

(
4ε

1− ε
+
√
2ε

)
dist(F t,F �)

≤ dist2(F t,F �)− ηtµ

(√√
2− 1

(
2− 1

(1− ε)2

)

−χf

(
4ε

1− ε
+
√
2ε

))
dist(F t,F �), (38)

where the second inequality follows from (35) and χf = L/µ.

To continue, combining (35) and (36), we can lower bound

the Polyak’s stepsize (37) as

ηt ≥
√√

2− 1µ dist(F t,F �)

2 L2
.

This, combined with (38), leads to

dist2(F t+1,F �) ≤ ρ(ε, χf ) dist
2(F t,F �),

where the contraction rate ρ(ε, χf ) is

ρ(ε, χf ) := 1−
√√

2− 1

2χ2
f

(√√
2− 1

(
2− 1

(1− ε)2

)

−χf

(
4ε

1− ε
+
√
2ε

))
. (39)

Under the condition ε = 0.02/χf , we calculate (1−
ρ(ε, χf ))χ

2
f as

√√
2− 1

2

(√√
2− 1

(
2− 1

(1− ε)2

)
− χf

(
4ε

1− ε
+
√
2ε

))

≥ 0.32

(
0.64×

(
2− 1

0.982

)
− 0.02

(
4

0.98
+
√
2

))

≥ 0.16,

thus ρ(ε, χf ) ≤ 1− 0.16/χ2
f . We conclude that

dist2(F t+1,F �) ≤ (1− 0.16/χ2
f ) dist

2(F t,F �),

which is the desired claim.

B. Convergence With Geometrically Decaying Stepsizes

Let ηt = ηG
t be the geometrically decaying stepsize in (15),

which is

ηt =
λqt√∥∥SR(R�R)−1/2

∥∥2

F
+

∥∥S�L(L�L)−1/2
∥∥2

F

.

Plugging the above into (34), we have

dist2(F t+1,F �) ≤ dist2(F t,F �) +
λ
2q2t

(1− ε)2

− ηtµ

(
2

√√
2− 1− χf

(
4ε

1− ε
+
√
2ε

))
dist(F t,F �)

≤ dist2(F t,F �) +
λ
2q2t

(1− ε)2
− λqt√

2χf

(
2

√√
2− 1

−χf

(
4ε

1− ε
+
√
2ε

))
dist(F t,F �),

where the first inequality follows from (35) and χf = L/µ, and

the second inequality follows from ηt ≥ λqt√
2L

due to (36). We

now aim to show that

dist(F t,F �) ≤ (1− 0.16/χ2
f )

t/20.02σr(X�)/χf

in an inductive manner. Assume the above induction hypothesis

holds at the t-iteration. By the setting of parameters, i.e.

λqt =

√√
2− 1

2
(1− 0.16/χ2

f )
t/20.02σr(X�)/χ

2
f ,

we have

dist2(F t+1,F �) ≤ ρ(ε, χf )(1−0.16/χ2
f )

t(0.02σr(X�)/χf )
2,
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where the contraction rate ρ(ε, χf ) matches exactly (39). There-

fore, under the condition ε = 0.02/χf , we have ρ(ε, χf ) ≤
1− 0.16/χ2

f , thus we conclude that

dist(F t+1,F �) ≤ (1− 0.16/χ2
f )

t+1

2 0.02σr(X�)/χf ,

which is the desired claim.

APPENDIX C

PROOF OF THEOREM 2

We start by introducing the short-hand notation dt := (1−
0.13/χ2

f )
t/20.02σr(X�)/χf . The parameters are set as

λqt =

√√
2− 1

2
(1− 0.13/χ2

f )
t/20.02σr(X�)/χ

2
f

=

√√
2− 1

2

dt
χf

.

Therefore, the geometric stepsize

ηt =
λqt√∥∥SR(R�R)−1/2

∥∥2

F
+

∥∥S�L(L�L)−1/2
∥∥2

F

,

in view of (36), satisfies

ηt ≥
λqt√
2L

=

√√
2− 1

2

dt
χ2
fµ

. (40)

Follow the same derivations as the proof of Theorem 1 until

(34). Plugging the stepsize (40) into (34), together with the

approximate restricted sharpness property

f(LR�)− f(X�) ≥ µ‖LR� −X�‖F − ξ

≥
√√

2− 1µ dist(F t,F �)− ξ,

we have

dist2(F t+1,F �) ≤ dist2(F t,F �) +
λ
2q2t

(1− ε)2
+ 2ηtξ

− ηtµ

(
2

√√
2− 1−

(
4

1− ε
+
√
2

)
εχf

)
dist(F t,F �).

Under the conditions χf ≥ 1 and ε = 0.02/χf ≤ 0.02, the

above relation can be simplified to

dist2(F t+1,F �) ≤ dist2(F t,F �)− 1.177ηtµ dist(F t,F �)

+
0.216

χ2
f

d2t + 2ηtξ. (41)

We next prove the theorem by induction, where the base case

is established trivially by the initial condition. By the induction

hypothesis, the distance at the t-th iterate is bounded by

dist(F t,F �) ≤ max {dt, 20ξ/µ} .
To obtain the control of dist(F t+1,F �), we split the discussion

in two cases.

1) If dt ≥ 20ξ/µ, or equivalently, ξ ≤ 0.05µdt, in view of

(41), we have

dist2(F t+1,F �)
(i)

≤ d2t − 1.177ηtµdt +
0.216

χ2
f

d2t

+ 0.1ηtµdt

= d2t − 1.077ηtµdt +
0.216

χ2
f

d2t

(ii)

≤ d2t −
0.346

χ2
f

d2t +
0.216

χ2
f

d2t

= (1− 0.13/χ2
f )d

2
t ,

where (i) uses ξ ≤ 0.05µdt, and (ii) uses the con-

dition (40). We conclude that dist(F t+1,F �) ≤ (1−
0.13/χ2

f )
1/2dt.

2) If 0 ≤ dt < 20ξ/µ, we have

dist2(F t+1,F �) ≤
(
20ξ

µ

)2

− 1.177ηtµ
20ξ

µ

+
0.216

χ2
f

d2t + 2ηtξ

=

(
20ξ

µ

)2

− 1.077ηtµ
20ξ

µ
+

0.216

χ2
f

d2t

≤
(
20ξ

µ

)2

− 1.077
√√

2− 1

2χ2
f

dt
20ξ

µ
+

0.216

χ2
f

d2t

≤
(
20ξ

µ

)2

− 0.13dt
20ξ

µ

≤
(
20ξ

µ

)2

,

where the third line uses the condition (40), and the last

line holds since dt ≥ 0.

In sum, we conclude

dist(F t+1,F �)

≤ max
{
(1− 0.13/χ2

f )
t+1

2 0.02σr(X�)/χf , 20ξ/µ
}
,

which is the desired claim.

APPENDIX D

PROOF OF PROPOSITION 1

For X1 and X2 where X1 −X2 has rank at most 2r, we

have

|f(X1)− f(X2)| =
∣∣∣‖A(X1 −X�)‖1 − ‖A(X2 −X�)‖1

∣∣∣

≤ ‖A(X1 −X2)‖1 ≤ δ2‖X1 −X2‖F,

where the second line follows from the inverse triangle inequal-

ity and the assumed rank-2r mixed-norm RIP (cf. Definition 4)

of A(·). As a result, we have L = δ2. On the other end, we

note

f(X)− f(X�) = ‖A(X −X�)‖1 ≥ δ1‖X −X�‖F,

where the first equality uses f(X�) = 0 and the second inequal-

ity follows from the rank-2r mixed-norm RIP; thus µ = δ1.
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APPENDIX E

PROOF OF PROPOSITION 2

For X1 and X2 with rank(X1 −X2) ≤ 2r, we have

|f(X1)− f(X2)|

=
∣∣∣‖A(X1 −X�)−w − s‖1 − ‖A(X2 −X�)−w − s‖1

∣∣∣

≤ ‖A(X1 −X2)‖1 ≤ δ2‖X1 −X2‖F,

where the second line follows from the inverse triangle in-

equality and the rank-2r mixed-norm RIP; hence L = δ2. For

approximate restricted sharpness, note that

f(X)− f(X�) = ‖A(X −X�)−w − s‖1 − ‖w + s‖1
≥ ‖A(X −X�)− s‖1 − ‖w‖1 − ‖s‖1 − ‖w‖1
= ‖ASc(X−X�)‖1+‖AS(X−X�)−s‖1−‖s‖1−2‖w‖1
≥ ‖ASc(X −X�)‖1 − ‖AS(X −X�)‖1 − 2‖w‖1
≥ δ3‖X −X�‖F − 2‖w‖1
≥ δ3‖X −X�‖F − 2σw,

where the second and the fourth lines follow from the triangle

inequality, the third line follows from the definition of S , and the

last line follows from the definition of the S-outlier bound and

the noise upper bound ‖w‖1 ≤ σw. Therefore, we have µ = δ3
and ξ = 2σw.

REFERENCES

[1] Y. Chi, Y. M. Lu, and Y. Chen, “Nonconvex optimization meets low-rank
matrix factorization: An overview,” IEEE Trans. Signal Process., vol. 67,
no. 20, pp. 5239–5269, Oct. 2019.

[2] E. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval via wirtinger
flow: Theory and algorithms,” IEEE Trans. Inf. Theory, vol. 61, no. 4,
pp. 1985–2007, Apr. 2015.

[3] S. Sanghavi, R. Ward, and C. D. White, “The local convexity of solving sys-
tems of quadratic equations,” Results Math., vol. 71, no. 3-4, pp. 569–608,
2017.

[4] C. Ma, K. Wang, Y. Chi, and Y. Chen, “Implicit Regularization in Non-
convex Statistical Estimation: Gradient Descent Converges Linearly for
Phase Retrieval, Matrix Completion, and Blind Deconvolution,” Found.

Comput. Math., Springer in press, pp. 1–89, 2021.
[5] C. Ma, K. Wang, Y. Chi, and Y. Chen, “Implicit regularization in noncon-

vex statistical estimation: Gradient descent converges linearly for phase
retrieval, matrix completion, and blind deconvolution,” Found. Comput.

Math., Springer, pp. 451–632, 2020.
[6] Y. Li, C. Ma, Y. Chen, and Y. Chi, “Nonconvex matrix factorization from

rank-one measurements,” IEEE Trans. Inf. Theory, vol. 67, no. 3, pp. 1928–
1950, Mar. 2021.

[7] T. Tong, C. Ma, and Y. Chi, “Accelerating ill-conditioned low-rank matrix
estimation via scaled gradient descent,” J. Mach. Learn. Res., 2021,
arXiv:2005.08898.

[8] S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and B. Recht, “Low-
rank solutions of linear matrix equations via procrustes flow,” in Proc. Int.

Conf. Mach. Learn., 2016, pp. 964–973.
[9] X. Li, Z. Zhu, A. M.-C. So, and R. Vidal, “Nonconvex robust low-

rank matrix recovery,” SIAM J. Optim., vol. 30, no. 1, pp. 660–686,
2020.

[10] M. A. Davenport and J. Romberg, “An overview of low-rank matrix recov-
ery from incomplete observations,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 4, pp. 608–622, Jun. 2016.

[11] Y. Chen and Y. Chi, “Harnessing structures in big data via guaranteed
low-rank matrix estimation: Recent theory and fast algorithms via convex
and nonconvex optimization,” IEEE Signal Process. Mag., vol. 35, no. 4,
pp. 14–31, Jul. 2018.

[12] P. Hand, “Phaselift is robust to a constant fraction of arbitrary errors,”
Appl. Comput. Harmon. Anal., vol. 42, no. 3, pp. 550–562, 2017.

[13] D. Davis, D. Drusvyatskiy, and C. Paquette, “The nonsmooth landscape of
phase retrieval,” IMA J. Numer. Anal., Oxford Univ. Press, vol. 40, no. 4,
pp. 2652–2695, 2020, arXiv:1711.03247.

[14] Q. Qing, Y. Zhang, Y. Eldar, and J. Wright, “Convolutional phase re-
trieval via gradient descent,” Neural Inf. Process. Syst., vol. 66, no. 3,
pp. 1785–1821, 2017.

[15] H. Zhang, Y. Zhou, Y. Liang, and Y. Chi, “A nonconvex approach for phase
retrieval: Reshaped wirtinger flow and incremental algorithms,” J. Mach.

Learn. Res., vol. 18, no. 141, pp. 1–35, 2017.
[16] J. C. Duchi and F. Ruan, “Solving (most) of a set of quadratic equalities:

Composite optimization for robust phase retrieval,” Inf. Inference: J. IMA,
vol. 8, no. 3, pp. 471–529, 2019.

[17] M. Díaz, “The nonsmooth landscape of blind deconvolution,” 2019,
arXiv:1911.08526.

[18] Y. Li, Y. Sun, and Y. Chi, “Low-rank positive semidefinite matrix recovery
from corrupted rank-one measurements,” IEEE Trans. Signal Process.,
vol. 65, no. 2, pp. 397–408, Jan. 2017.

[19] Y. Chi and Y. M. Lu, “Kaczmarz method for solving quadratic equations,”
IEEE Signal Process. Lett., vol. 23, no. 9, pp. 1183–1187, Sep. 2016.

[20] S. Bahmani and K. Lee, “Low-rank matrix estimation from rank-one
projections by unlifted convex optimization,” 2020, arXiv:2004.02718.

[21] X. Li, “Compressed sensing and matrix completion with constant pro-
portion of corruptions,” Constructive Approx., vol. 37, no. 1, pp. 73–99,
2013.

[22] J. Wright, A. Ganesh, K. Min, and Y. Ma, “Compressive principal com-
ponent pursuit,” Inf. Inference: J. IMA, vol. 2, no. 1, pp. 32–68, 2013.

[23] L. Wang and A. Singer, “Exact and stable recovery of rotations for robust
synchronization,” Inf. Inference: J. IMA, vol. 2, no. 2, pp. 145–193, 2013.

[24] B. Mishra, K. A. Apuroop, and R. Sepulchre, “A riemannian geometry for
low-rank matrix completion,” 2012, arXiv:1211.1550.

[25] J. Tanner and K. Wei, “Low rank matrix completion by alternating
steepest descent methods,” Appl. Comput. Harmon. Anal., vol. 40, no. 2,
pp. 417–429, 2016.

[26] H. Zhang, Y. Chi, and Y. Liang, “Provable non-convex phase retrieval
with outliers: Median truncated wirtinger flow,” in Proc. Int. Conf. Mach.

Learn., 2016, pp. 1022–1031.
[27] Y. Li, Y. Chi, H. Zhang, and Y. Liang, “Non-convex low-rank matrix

recovery with arbitrary outliers via median-truncated gradient descent,”
Inf. Inference: J. IMA, vol. 9, no. 2, pp. 289–325, 2020.

[28] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion
using alternating minimization,” in Proc. 45th Annu. ACM Symp. Theory

Comput.. ACM, 2013, pp. 665–674.
[29] M. Hardt and M. Wootters, “Fast matrix completion without the condition

number,” in Proc. 27th Conf. Learn. Theory, 2014, pp. 638–678.
[30] P. Jain, R. Meka, and I. S. Dhillon, “Guaranteed rank minimization via

singular value projection,” in Proc. Adv. Neural Inf. Process. Syst., 2010,
pp. 937–945.

[31] J.-L. Goffin, “On convergence rates of subgradient optimization methods,”
Math. Program., vol. 13, no. 1, pp. 329–347, 1977.

[32] C. Ma, Y. Li, and Y. Chi, “Beyond procrustes: Balancing-free gradient
descent for asymmetric low-rank matrix sensing,” IEEE Trans. Signal

Process., vol. 69, pp. 867–877, 2021. 10.1109/TSP.2021.3051425
[33] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions

of linear matrix equations via nuclear norm minimization,” SIAM Rev.,
vol. 52, no. 3, pp. 471–501, 2010.

[34] Y. Chen, Y. Chi, and A. Goldsmith, “Exact and stable covariance estimation
from quadratic sampling via convex programming,” IEEE Trans. Inf.

Theory, vol. 61, no. 7, pp. 4034–4059, Jul. 2015.
[35] D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee, “Stochastic subgradi-

ent method converges on tame functions,” Found. Comput. Math., vol. 20,
no. 1, pp. 119–154, 2020.

[36] Y. Chen, Y. Chi, J. Fan, and C. Ma, “Gradient descent with random
initialization: Fast global convergence for nonconvex phase retrieval,”
Math. Program., vol. 176, no. 1-2, pp. 5–37, 2019.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on April 29,2021 at 01:53:22 UTC from IEEE Xplore.  Restrictions apply. 


