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Carbon dioxide (CO2) emission from inland waters to the 
atmosphere is a major flux in the global carbon (C) cycle, 
four-fold larger than the lateral C export to oceans1. Streams 

and rivers are hotspots for this flux, accounting for ~85% of inland 
water CO2 emissions despite covering <20% of the freshwater sur-
face area2. However, the magnitude of global CO2 emissions from 
streams and rivers remains highly uncertain with estimates updated 
over the past decade from 0.6 to 3.48 PgC yr−1 (refs. 2,3). This revision 
follows improvements in the spatial resolution for upscaling emis-
sions2,4, as well as new studies from previously underrepresented 
areas such as the Congo5, Amazon6,7 and global mountains8. Despite 
recent studies using continuous measurements to show large day–
night changes in stream and river water CO2 concentrations9–13, the 
global importance of sub-daily variation on overall CO2 emissions 
remains unexplored.

Diurnal cycles in solar radiation impose a well-known periodicity 
on stream biogeochemical processes, creating diel (that is, 24-hour 
periods) patterns for many solutes and gases, including nutrients, 
dissolved organic matter and dissolved oxygen (O2)14. Indeed, diel 
variation in O2 arising from photosynthetic activity is the sig-
nal from which whole-system metabolic fluxes are estimated15. 
Photosynthetic production of O2 is stoichiometrically linked to the 
daytime assimilation of dissolved inorganic carbon (principally 
dissolved CO2), lowering CO2 concentrations during the day. The 
resulting diel variation, with higher night-time CO2 concentrations 
when respiration reactions dominate, implies increased emissions 
at night. Despite the obvious connection between photosynthesis 
and CO2 consumption, the implications for total aquatic CO2 emis-
sions have been neglected, most likely due to the lack of sub-daily 
measurements of CO2 in water16. Other processes can also vary at 
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sub-daily timescales and could thus similarly drive diel changes in 
CO2 emissions from streams, including interactions with the car-
bonate system17, photochemical oxidation of organic matter18 and 
diel changes in discharge and subsequently lateral CO2 inputs from 
terrestrial environments19. Regardless of the driving forces, the 
overall magnitude, direction and importance of diel changes in CO2 
emissions remain largely unknown at a global scale.

Current global estimates of CO2 emissions from running waters2,4 
rely almost exclusively on manually collected samples that fail to 
incorporate sub-daily variability. Here, we assess whether widespread 
reliance on discrete daytime sampling creates a strong temporal bias 
that underestimates CO2 emissions from running waters. We use the 
most widely used GLObal RIver CHemistry database (GLORICH; 
ref. 20) and leverage recent technological advances in continuous, 
sensor-based dissolved CO2 monitoring16 to ask if this sampling bias 
is concurrent with consistent day–night differences in CO2 emis-
sions. We compiled high-resolution CO2 time series representing 

a total of 57 years of continuous data from 66 streams worldwide 
(Extended Data Fig. 1a; Supplementary Table 1), spanning a wide 
range of drainage sizes (Extended Data Fig. 1b), climate conditions, 
land cover and stream physicochemical properties (Supplementary 
Table 2). We evaluated the generality of diurnal stream CO2 varia-
tion, quantified the importance of these signals for CO2 emissions 
and identified the main landscape factors that control diurnal varia-
tion. Finally, we evaluated the potential bias in global estimates that 
arises from neglecting nocturnal CO2 emissions.

Results and Discussion
Magnitude and bias of diel changes in CO2 emissions. Water 
samples compiled in the GLORICH database20 were primarily taken 
during the day, with 90% of observations between 08:10 and 15:55 
and a median sampling time of 11:25 (Fig. 1a). Comparing this time 
window of manual sampling with sensor data synthesized in this 
study, we found that only 10% of days had maximum CO2 emissions 
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Fig. 1 | Magnitude and bias of diel variation in CO2 emission fluxes from global streams. a, Distribution of manual sampling times in the GLORICH 
database20 together with the time of maximum CO2 emission fluxes from sensor data (this study). b, Relationship between the median day and night CO2 
emission flux (gC m−2 d−1) for all study sites and days. The black 1:1 line indicates that 75.2% of daily observations exhibit enhanced nocturnal emissions. 
The inset illustrates the distribution of observations in the densest region of the graph.
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within these hours, and there was a consistent pattern of higher  
emission rates at night than during the day (Fig. 1b). Nocturnal  
emission rates were on average 27% greater than daytime rates across 
all sites, with differences ranging from −12 to 193% (Supplementary  
Table 3). This overall pattern was globally consistent, with 56 of 66 
(85%) of sites showing higher average nocturnal CO2 emission rates 
(Fig. 2a and Supplementary Table 3). However, the observed ranges 
in diel change varied among biomes (Fig. 2b). Specifically, streams 
with the largest diel change in emissions drained temperate forests, 
followed by montane grasslands; yet these biomes also had the larg-
est internal variation. We observed generally smaller diel changes 
and less internal variability for boreal and tropical/subtropical sys-
tems. Despite such differences, the large variation observed within 
most biomes suggests that controls on diel CO2 emissions operate 
at finer spatial scales10. Further, because the GLORICH database, 
the foundation of current global estimates of CO2 emissions from 
inland waters2, relies primarily on discrete samples with a strong 
daytime sampling bias, the geographically widespread diel variation 

in CO2 emissions introduces a systematic and potentially large error 
in estimates of aggregate flux rates.

Drivers of diel changes in CO2 emissions. Diel patterns in stream 
CO2 emissions result from a dynamic interplay between biogeo-
chemical and hydrological processes. These diel drivers include 
aquatic primary production10,12, biological21 and photolytic oxida-
tion of organic C (ref. 18) and terrestrial import of CO2 from soil 
respiration and mineral weathering19. Additionally, diel changes in 
water temperature can affect CO2 emissions through its effect on 
the physical exchange rate between air and water (kCO2)22. An initial 
exploration of our continuous data suggests that aquatic processes 
generate considerable temporal variation in the magnitude of diel 
variation in emissions (Fig. 3). Specifically, for sites with annual 
records, the largest diel amplitudes were consistently observed dur-
ing summer and in open-canopy reaches (median = 0.76 gC m−2 d−1). 
Markedly reduced amplitudes were observed in streams with closed 
canopies (median = 0.09 gC m−2 d−1), while intermediate amplitudes 
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were evident at partially covered sites (median = 0.37 gC m−2 d−1). 
Overall, these observations are consistent with greater levels of day-
time CO2 uptake in open-canopy streams during summer, when 
warm temperatures and greater incident light23,24 support elevated 
rates of photosynthesis10. By contrast, wintertime diel changes in 
stream CO2 emissions were more similar across canopy-cover cat-
egories, suggesting reduced aquatic photosynthesis.

We used structural equation modelling (SEM) to further resolve 
factors and causal combinations that underpin variation in sum-
mertime diel emissions, the time period for which we have the most 
complete dataset (Supplementary Fig. 1; Supplementary Table 1). 
Our structural model consisted of two levels of factor interaction, 
or metamodels (Methods contains a more detailed description of 
the SEM). First, we considered whether diel CO2 emission pat-
terns arise from parallel variation in kCO2 and CO2 partial pressure 
( pCO2), the two main factors determining aquatic CO2 emissions25. 
The results from the SEM at this first level (R2 = 0.43; Extended Data 
Fig. 2 and Supplementary Table 4) suggest that diel variation in CO2 
emissions was mostly driven by variation in pCO2 (standardized 
path coefficient, β = 0.65), whereas kCO2 exerted a minor influence 
(β = 0.02). Second, we used SEM to identify statistically significant 
relationships between environmental variables and diel changes 
in pCO2. This second SEM model (R2 = 0.46; Extended Data Fig. 2 
and Supplementary Table 4) indicated that stream canopy cover 
(β = −0.58) was the primary driver of diel variation of pCO2. Together 
with the observed seasonal patterns (Fig. 3), our model supports the 

hypothesis that riparian canopy cover drives diel pCO2 variation by 
regulating the amount of light reaching the stream surface and, in 
turn, daytime rates of stream autotrophic CO2 uptake15,26,27.

Diel patterns in stream CO2 emissions not only varied seasonally 
but also spatially, increasing with channel size (Fig. 4a). In larger 
river systems, terrestrial shading is reduced, increasing the light 
available for primary producers23, which ultimately explains the 
general increase in gross primary production (GPP) with channel 
size28,29. However, larger rivers with open canopies in our dataset did 
not necessarily exhibit large diel changes in CO2 emissions (Fig. 4b).  
The variability in diel CO2 amplitudes among these larger rivers 
probably arises from differences in light attenuation in the water 
column, linked to high concentrations of dissolved organic mat-
ter (DOM) or suspended sediments that inhibit GPP30 (Fig. 4c and 
Extended Data Fig. 3). As such, light attenuation, either by canopy 
cover along small streams or by water colour, turbidity and/or depth 
for larger river systems31, dictates the magnitude of diel variation 
in CO2 emissions along river continua. We further explored the 
influences of water colour at five subtropical Florida sites spanning 
a large range in concentration of dissolved organic carbon (DOC; 
1.0–43.4 mg l−1) and ecosystem size (9–66 m3 s−1 median discharge), 
and for which we have high-frequency CO2 and fluorescent DOM 
(fDOM) measurements. These data confirm that diel changes in 
CO2 emissions are suppressed above ~70 ppb of fDOM (correspond-
ing to ~20 mg l−1 DOC), even when incident light is relatively high 
(Fig. 4d). Despite this potential influence of water colour, more than 
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95% of the sites in the GLORICH database have below 20 mg l−1 of 
DOC (Extended Data Fig. 4), and thus water colour as a constraint 
on diel CO2 patterns is probably not operating for most of the moni-
toring sites from which global estimates of river CO2 emissions are 
currently derived.

The controls on diel variation in CO2 emissions exerted by either 
canopy cover or water colour do not follow obvious geographical pat-
terns (Fig. 2b). However, the probability that one or both constraints 
operate is probably biome-specific, which may aid in predictions of 
which regions of Earth are more prone to strong bias in upscaling. 
For example, boreal and tropical regions are typically characterized 
by forests with dense canopies and can support aquatic systems with 
dark, DOC-rich waters32,33 (Extended Data Fig. 5). Indeed, for these 
biomes we observed, on average, a lower diel change in CO2 emissions 
(Fig. 2b). In this context, observations from the subtropical Florida 
sites (Fig. 4d) probably provide insight into the expected dynamics 
for dark-water systems elsewhere, including tropical rivers that are 
otherwise poorly represented in our analysis. For some biomes (for 
example, montane grasslands and tundra), limited canopy cover and 
low catchment DOC production make light constraints on aquatic 

GPP and diel CO2 emissions less likely, while in other settings (for 
example, human-dominated landscapes) land-cover change and 
nutrient enrichment can amplify diel CO2 variation by stimulating 
rates of algal photosynthesis30. Overall, we suggest that future efforts 
to resolve the fine-scale spatial patterns of canopy cover and DOM 
in running waters are needed to further refine our understanding of 
aquatic GPP and its implications for CO2 emissions.

Implications for global CO2 emissions from running waters. Our 
analysis reveals important consequences for global estimates of CO2 
emissions from running waters: (1) current estimates based on dis-
crete samples are heavily biased towards daytime, (2) CO2 emission 
rates are consistently higher at night due to variations in aquatic 
pCO2 and (3) this pattern is primarily driven by light availability and 
is widespread across biomes and along river continua. To quantify 
this underestimation of CO2 emissions, we compare the measured 
total emissions for each site with the emissions estimated consider-
ing only the CO2 concentrations observed between 10:00 and 14:00 
(the interquartile sampling time in the GLORICH database; Fig. 1a).  
Across all 66 sites, CO2 emissions integrated over a full day were 
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35% higher than those based on samples taken at midday (range: 
−7–369%; 95% confidence interval: 14–47%). Based on the two cur-
rent global estimates of stream CO2 emissions of 0.6–1.8 PgC yr−1 
(refs. 2,4) and our estimate of this proportional bias, we suggest 
that an additional 0.20–0.55 PgC yr−1 of CO2 may be emitted from 
streams globally (95% confidence interval: 0.09–0.30 and 0.25–0.84, 
respectively). However, given that the current global estimates of C 
emissions from running waters are still highly uncertain and remain 
unbalanced by global C budgets34, this additional flux of CO2 should 
be taken with caution as global estimates continue to be refined.

We also emphasize other important sources of uncertainty in the 
global estimates of emissions from running waters, upon which our 
calculations are based. For example, current estimates2,4 are derived 
from indirect determinations of surface water CO2 from alkalinity 
and pH, which can be highly biased35,36. Further, the notoriously 
variable nature of hydrodynamic factors that influence CO2 emis-
sions cannot be easily aggregated at large spatial scales37,38. It is also 
problematic that current estimates are biased towards observations 
from mid-to-high latitudes, even though underrepresented tropical 
systems may be key contributors to global CO2 emissions5,39. Our 
study, while covering most biomes and spanning large gradients in 
canopy cover and water colour, also suffers from this bias. Despite 
this, our assessment provides a compilation of direct, high-frequency 
measurements of CO2 in flowing waters from across the globe that 
helps refine global estimates of CO2 emissions from inland waters. 
While the magnitude of this global estimate will be improved with 
further measurements, the broad consistency and strength of the pat-
terns observed here suggest that nocturnal emissions of CO2 from 
streams and rivers are a major unaccounted flux in the global C cycle.
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Methods
Study sites and data acquisition. We compiled high-frequency dissolved CO2 time 
series (median temporal resolution = 39 minutes; range 5 to 180 minutes) over at 
least 8 days (median time series duration = 317 days; range 8 to 1,553 days) from 66 
headwater streams worldwide (Fig. 2a; Supplementary Table 1). We used median 
annual discharge (which covaried with catchment surface area; Extended Data  
Fig. 1) as a criterion to select streams (that is, median annual discharge equal 
or below 1.5 m3 s−1, catchment area <246 km2; orders 1 to 3 (ref. 40)). Selected 
streams come from multiple biomes, including tropical forests and savannah, 
temperate forests, boreal forest and taiga, Arctic tundra, high-mountain forests and 
grasslands, and, accordingly, a wide range of climatic and biogeographic conditions 
(Supplementary Table 2). Sites also encompass a variety of catchment features 
(for example, land cover, altitude and surface area) and reach-scale hydrological, 
morphometric and physicochemical properties (Supplementary Table 2).

High-frequency CO2 measurements were obtained from a variety of sources, 
including unpublished time series, monitoring network platforms (for example, 
StreamPULSE, https://data.streampulse.org/) and literature datasets8–12,16,41–43 
(Supplementary Table 1). In all cases, CO2 was measured using in-situ automated 
sensors connected to data loggers (Supplementary Table 1). The measurement 
accuracy of the CO2 sensors ranged from ±1% to ±3%. In addition, water 
temperature (in all streams) and discharge (in 57 of 66 streams; continuous 
discharge derived from water depth sensor data) were also measured at the same 
frequency as CO2 using in-situ automated sensors. Additional datasets13,44–47 
were included in this study but not directly used in the main analysis (used 
only to construct Fig. 4b-d) because they were either from considerably larger 
rivers (median discharge above 1.5 m3 s−1, Extended Data Fig. 1), based on 
high-frequency but short-term deployments (<8 days) and/or based in discrete 
(not high-frequency) measurements of CO2 emissions (details for these 
observations are found in Supplementary Table 5).

Time series processing. We standardized each time series to an hourly time 
step by resampling higher frequency measurements and interpolating lower 
frequency measurements. We also normalized CO2 concentrations to CO2 partial 
pressures ( pCO2, ppm), corrected for temperature and pressure variation and 
removed obvious measurement errors ( pCO2 < 0 ppm. In total, the high-frequency 
dataset used for analysis included 457,637 hourly CO2, temperature and discharge 
observations. Of the time series, 32 covered at least one complete year, 7 covered 
more than 200 days and the remaining 27 covered between 8 and 198 days, mostly 
during the summer (Supplementary Fig. 1).

Compilation of ancillary variables. Stream-reach canopy cover was determined 
by visually inspecting orthophotos of the study sites. High-resolution orthophotos 
from Google Earth imagery were downloaded at the highest resolution possible 
using the ggmap package (version 3.0.0) in R and classified in three categories of 
‘open’ (0), ‘intermediate’ (1) or ‘closed’ canopy (2). The ‘open’ category was selected 
when it was possible to see the full extent of the stream channel, ‘intermediate’ 
when some parts of the stream were visible and ‘closed’ when it was not possible to 
detect the presence of a stream based on an orthophoto (Supplementary Fig. 2).

Stream channel slope was determined by measuring the difference in elevation 
between the sampling location and 300 m upstream following the channel. To 
do this, we downloaded digital elevation models (DEMs) at resolutions ranging 
between 1.9 and 14 m (depending on the location) using the elevatr package 
(version 0.2.0) in R. Then, for each site a raster of the flow-accumulation was 
produced using the whitebox package (version 0.5.0) in R, after initially breaching 
depressions for hydrological correctness. By combining the flow-accumulation 
raster with the DEM, we extracted the stream path and the elevation at the site and 
300 m upstream (in QGIS 3.2.1).

Land cover was determined using the Global Land Cover Maps (100 m 
resolution; Copernicus Global Land Service) and the catchment boundaries 
delineated using high-resolution DEMs (2 × 2 m) in QGIS (version 3.2.1). Biome 
classifications were performed according to Olson et al.48.

Mean annual concentrations (not flow-weighted) of DOC, nitrate (NO−

3 ), 
ammonium (NH+

4 ), pH and conductivity for the study streams were obtained 
from unpublished sources or extracted from the literature. Mean annual stream 
discharge and water temperature were computed from continuous time series.

Determination of CO2 emissions. We estimated CO2 emissions as the product of 
the gas transfer velocity (kCO2) and the concentration of dissolved CO2 relative to 
atmospheric equilibrium25. A standardized gas transfer velocity (k600) was obtained 
on the basis of the stream energy dissipation (eD)49, defined as the product of 
channel slope (S; m m−1), water velocity (V; m s−1) and acceleration due to gravity 
(g; 9.8 m s−2). We then calculated k600 as k600 = e(3.1 + 0.35 × log(eD)) for eD < 0.02 m2 s−3; 
and as k600 = e(6.43 + 1.18 × log(eD)) for eD > 0.02 m2 s−3. Water velocity was modelled 
using a power-law relationship with discharge25; in 4 streams discharge data were 
not available and we used a constant velocity of 0.2 m s−1, the average velocity 
of the other sites. The k600 was converted to a gas- and temperature-specific gas 
transfer velocity kCO2, using the temperature-dependent Schmidt numbers for 
CO2 (ref. 25). Potential day–night differences in gas exchange required separate 
night and day kCO2 calculations with time-of-day-specific velocity and temperature 

values. The CO2 disequilibrium relative to the atmosphere was calculated as the 
difference in water and air pCO2,converted to molar CO2 concentrations using the 
temperature-specific Henry’s constant. Atmospheric pCO2 was assigned monthly 
to each site from the global average measured by the National Oceanic and 
Atmospheric Administration’s Global Monitoring Laboratory (https://www.esrl.
noaa.gov/gmd/ccgg/trends/global.html), which contains measurements between 
2007 to 2020 that align spatially with our study. We assessed the importance of 
sub-daily changes in atmospheric concentrations by examining atmospheric 
measurements of pCO2 from 14 streams and 77 ecosystem flux towers globally. We 
concluded that day–night changes in atmospheric pCO2 are small and inconsistent, 
and therefore poorly constrained for extrapolation to other stream sites (section 1 
in the Supplementary Information).

Finally, to assess whether a daytime sampling bias exists, we determined the 
distribution of sampling times in the GLORICH database20. From the database, 
we filtered all sampling occasions where both CO2 (calculated from alkalinity and 
pH) and the time of sampling were available (n = 733,977 occasions from 8,520 
locations), and then extracted summary statistics such as the median, 90% range 
and the interquartile range to compare with sensor measurements.

Statistical analyses. We examined a variety of metrics to characterize sub-daily 
and between-day variation. To quantify the underestimation in CO2 emissions 
due to a daytime bias, we compared total CO2 emissions estimated using hourly 
measurements with total emissions estimated from the average measurements 
between 10:00 and 14:00, the interquartile range of the observations in the 
GLORICH database. Given the non-normality of results among sites, we present 
uncertainty as normal bootstrapped intervals using the boot package (version 
1.3-24) in R, with 10,000 replications. We quantified median CO2 emissions 
(gC m−2 d−1) during the day (between 12:00 and 17:00), median CO2 emissions 
during the night (between 00:00 and 05:00), the absolute difference between day 
and night CO2 emissions and the relative difference in CO2 concentrations between 
day and night (in %; ((CO2, NIGHT – CO2, DAY)/CO2, DAY) × 100). Also, to evaluate 
differences between canopy levels we used the non-parametric Kruskal–Wallis test.

We explored temporal patterns of day–night CO2 emission differences to test 
the influence of seasonality, local canopy cover and their interaction. We used 
piecewise SEM to evaluate causal and directional links between physical and 
biological parameters operating at the reach scale (Supplementary Table 2) and 
variance in daily day–night differences in CO2 emissions. SEM is a theory-oriented 
multivariate statistical approach capable of testing a network of causal hypotheses 
by allowing evaluation of simultaneous influences rather than individual 
(bivariate) causes50. We first devised a metamodel (or metamodels) based on 
a priori theoretical knowledge and known mechanisms (see above; Fig. 3). The 
metamodel was fitted and tested using the function psem() in the piecewiseSEM 
R Package (version 2.1). To evaluate the effect sizes of each relationship (or path) 
within metamodels, the psem() model output provides estimates of individual 
(standardized) path coefficients (β). The evaluation of goodness of fit and 
associated uncertainty is performed through the coefficient of determination 
(R2) and the residual standard error, respectively. Compared with traditional 
variance–covariance-based SEM, piecewise SEM allows for fitting of models to 
different distributions through a generalized linear model. SEM modelling was 
conducted using only summer data, which is when most of the sites are represented 
(Supplementary Fig. 1).

Data availability
Data are freely available at Zenodo (https://doi.org/10.5281/zenodo.4321623). 
Data can be explored interactively at: https://gmrocher.shinyapps.io/
night_co2_emissions_streams/.
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Extended Data Fig. 1 | Geographical and size distribution of the dataset. a) Global distribution of the stream and river sites colored by canopy cover 
category. b) Distribution and relationship between catchment area and median annual discharge, colored by canopy cover category. Symbols indicate the 
origin of the data (see Supplementary Table 1 and Supplementary Table 5 for more information).
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Extended Data Fig. 2 | Drivers of night-day differences of CO2 emissions from streams. Structural equation model (SEM) representing connections 
between reach-scale physical and biological parameters contributing to the relative night-day variation in summertime CO2 emissions (%). The SEM 
consisted of two dependent levels of factor interaction or metamodels. Metamodel 1 assessed the influence of kCO2 and stream water pCO2 on night-day 
differences of CO2 emissions. Metamodel 2 assessed relationships between environmental variables and diel changes in stream water pCO2. Blue arrows 
represent statistically significant effects (p < 0.05). Numbers adjacent to arrows are the standardized effect sizes of each relationship. Arrow width is 
proportional to the effect size. SEM goodness of fit was evaluated based on variance explained by each of the two models (r2). A summary of statistical 
outputs from the SEM model is provided in Supplementary Table 4. Reach-scale properties for each site used in the SEM model are presented in 
Supplementary Table 2.
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Extended Data Fig. 3 | Effect of water colour on the night-day differences in riverine CO2 emission fluxes. Comparison of night-day differences in CO2 
emission fluxes averaged by watercourse and grouped by canopy level and dissolved organic carbon concentration (DOC; mg L−1) level (lower than 
10 mg L−1, between 10 and 20 mg L−1, and higher than 20 mg L−1). Box plots display the 25th, 50th, and 75th percentiles whiskers display minimum and 
maximum values.
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Extended Data Fig. 4 | Distribution of dissolved organic carbon (DOC) in the GLORICH dataset and in this study. Inset table shows a selection of 
summary statistics. In the GLORICH database12, 92.6 and 98.5 % of the samples were below 10 and 20 mg L−1 respectively. 15 observations from the 
GLORICH database (out of 6,771) had DOC > 50 mg L−1 and are not represented in the density plot for better visualization (max. value 839 mg L−1).
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Extended Data Fig. 5 | Distribution of stream canopy cover and DOC concentrations by biome. Panel a shows the canopy cover distribution for each 
biome (note that canopy category can only be 0, 1 or 2). Panel b represents the ranges in DOC for each biome.
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