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Alice’s early work was in the field of classical har-
monic analysis. Sarason had been interested in a question
posed by Douglas in the late 1960s about the boundary
behavior of bounded analytic functions on the unit disc,
which he called “The Douglas Problem.” One of Alice’s
first publications, “A characterization of Douglas subalge-
bras” [4], provided a key part of the solution, and com-
bined with the work of Marshall [20] gave a complete reso-
lution. Both papers appeared in Acta Mathematica in 1976,
and the combined result is now widely referred to as the
Chang–Marshall theorem. Over the next decade Alice con-
tinued making important contributions to the theory of
function algebras, including two papers that appeared in
the Annals of Mathematics: “Carleson measure on the bi-
disc” [5] and “On a continuous version of duality of 𝐻1

with BMO on the bi-disc” [3], the latter coauthored with
Robert Fefferman.

In the mid-1980s her research went in a new direction,
and she was increasingly attracted to problems that were

318 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 67, NUMBER 3



influenced by geometry. In this article we will give an over-
view of Alice’s contributions to geometric analysis, begin-
ning with her work with Carleson on the critical case of
the classical Sobolev embedding theorem. This result, sur-
prising in itself, anticipated several developments in her
subsequent research.

1. The Limiting Case of the Classical
Sobolev Inequalities

The classical Sobolev inequality states that for 1 < 𝑝 < 𝑛,
there is a constant 𝐶(𝑛, 𝑝) such that if 𝑢 ∈ 𝐶∞(ℝ𝑛), then

(∫
ℝ𝑛
|𝑢|

𝑛𝑝
𝑛−𝑝 𝑑𝑥)

𝑛−𝑝
𝑛 ≤ 𝐶(𝑛, 𝑝)∫

ℝ𝑛
|∇𝑢|𝑝 𝑑𝑥. (1)

The optimal constant in this inequality, which we will de-
note by 𝐶𝑛,𝑝(ℝ𝑛), is called the Sobolev constant. If𝑊 1,𝑝(ℝ𝑛)
is the Sobolev space of functions in 𝐿𝑝(ℝ𝑛) with (distribu-
tional) derivative in 𝐿𝑝, then (1) implies that for 1 < 𝑝 < 𝑛
there is a continuous embedding 𝑊 1,𝑝(ℝ𝑛) ↪ 𝐿

𝑛𝑝
𝑛−𝑝 (ℝ𝑛).

Moreover, the normof the embedding is given by the Sobo-
lev constant. When 𝑝 = 1 the embedding is still valid, and
the optimal constant is the isoperimetric constant.

The precise value of the Sobolev constant 𝐶𝑛,𝑝(ℝ𝑛) was
determined by Aubin and Talenti, who also showed that
equality holds in (1) with 𝐶(𝑛, 𝑝) = 𝐶𝑛,𝑝(ℝ𝑛) if and only
if 𝑢 is given by

𝑢𝑎,𝑏,𝑥0(𝑥) = {𝑎 + 𝑏|𝑥 − 𝑥0|𝑝/(𝑝−1)}
1−𝑛/𝑝, (2)

where 𝑥0 ∈ ℝ𝑛 and 𝑎, 𝑏 > 0 are constants.
Now suppose Ω ⊂ ℝ𝑛 is a bounded domain. We

can define the Sobolev space 𝑊 1,𝑝(Ω) as we did for ℝ𝑛,
and we also let 𝑊 1,𝑝

0 (Ω) denote the closure of 𝐶∞
0 (Ω) in

𝑊 1,𝑝(Ω). If𝐶𝑛,𝑝(Ω) denotes the optimal constant in (1) for

all 𝑢 ∈ 𝑊 1,𝑝
0 (Ω), then it turns out that 𝐶𝑛,𝑝(Ω) = 𝐶𝑛,𝑝(ℝ𝑛).

It may seem surprising that 𝐶𝑛,𝑝(Ω) is independent of Ω,
but this fact reflects an important property of the extremal
functions in (2). Namely, if we take 𝑥0 ∈ Ω, then as 𝑎 → 0
and 𝑏 → ∞, the function 𝑢𝑎,𝑏,𝑥0(𝑥) will concentrate near
𝑥0; i.e., 𝑢𝑎,𝑏,𝑥0(𝑥0) → ∞ while 𝑢𝑎,𝑏,𝑥0(𝑥) → 0 for all 𝑥 ≠ 𝑥0.
Bymultiplying by a cut-off functionwe can easily construct
functions 𝑢̃𝑎,𝑏 ∈ 𝐶∞

0 (Ω) so that

( ∫Ω |𝑢̃𝑎,𝑏|
𝑛𝑝
𝑛−𝑝 𝑑𝑥)

𝑛−𝑝
𝑛

∫Ω |∇𝑢̃𝑎,𝑏|𝑝 𝑑𝑥
→ 𝐶𝑛,𝑝(ℝ𝑛),

as 𝑎 → 0, 𝑏 → ∞.
Another consequence of this construction is that there

are sequences of functions that are bounded in 𝑊 1,𝑝(Ω),
but which have no subsequence that converges in 𝐿

𝑛𝑝
𝑛−𝑝 (Ω)

—indeed, the functions 𝑢̃𝑎,𝑏 converge almost everywhere
to zero as 𝑎 → 0, 𝑏 → ∞. A related but less obvious fact
is that the optimal constant 𝐶𝑛,𝑝(Ω) is not attained. If it

were attained by some function 𝑣Ω ∈ 𝑊 1,𝑝
0 (Ω), then it is

not difficult to see that 𝑣Ω would be an extremal for the
inequality (1) as well. This would mean that 𝑣Ω would
be of the form (2), but these functions are not compactly
supported.

A natural question, which also turns out to have impor-
tant geometric consequences, is what happens in the limit-
ing case 𝑝 = 𝑛. Notice that as 𝑝 ↗ 𝑛, 𝑛𝑝

𝑛−𝑝
↗ ∞. However,

it is easy to see that there are functions in𝑊 1,𝑛
0 (Ω) that are

not in 𝐿∞(Ω): If 𝑥0 ∈ Ω, just take 𝑢(𝑥) = log log 1
|𝑥−𝑥0|

(and

multiply by a cut-off function). Nevertheless, when 𝑝 = 𝑛
there is a beautiful inequality proved by Neil Trudinger in
1967 [22]:

Theorem 1.1. Let Ω ⊂ ℝ𝑛. There are constants 𝛽 =
𝛽(𝑛), 𝐶0 = 𝐶0(Ω) with the following property: If 𝑢 ∈ 𝑊 1,𝑛

0 (Ω)
satisfies ∫Ω |∇𝑢|𝑛 𝑑𝑥 ≤ 1, then

∫
Ω
𝑒𝛽|ᵆ|

𝑛
𝑛−1 𝑑𝑥 < 𝐶0.

The proof involves expanding 𝑒𝛽|ᵆ|
𝑛

𝑛−1 by its Taylor se-
ries, then applying the Sobolev inequality to each term.
Trudinger’s proof, however, did not give the optimal value
of the constant 𝛽𝑛. This was later found byMoser [21] to be

𝛽𝑛 = 𝑛(𝜔𝑛−1)
1

𝑛−1 , where 𝜔𝑛−1 is the volume of the (𝑛 − 1)-
dimensional unit sphere in ℝ𝑛−1.

In Alice’s joint work with Carleson [2], they proved a
very surprising result:

Theorem 1.2 ([2]). If Ω = 𝐵 ⊂ ℝ𝑛 is the unit ball, then
an extremal exists for the Moser–Trudinger inequality. That is,
there is a function 𝑢 ∈ 𝑊 1,𝑛

0 (𝐵) with ‖∇𝑢‖𝐿𝑛(𝐵) = 1 and

∫
𝐵
𝑒𝛽𝑛|ᵆ|

𝑛
𝑛−1 𝑑𝑥 = sup

{𝑣∈𝑊1,𝑛
0 (𝐵)∶ ‖∇𝑣‖𝑛≤1}

∫
𝐵
𝑒𝛽𝑛|𝑣|

𝑛
𝑛−1 𝑑𝑥.

As we saw above, there are no extremals of the Sobolev
inequality for functions supported on the ball. Since the
Moser–Trudinger inequality follows from the Sobolev in-
equality (in some sense), the Carleson–Chang result was
quite unexpected.

2. First Digression: Bubbling
Before continuing with our description of Alice’s early
work in geometric analysis, it will be helpful to provide
more mathematical context.

The Moser–Trudinger inequality has a counterpart for
functions defined on the unit sphere 𝑆2. Let (𝑆2, 𝑔0) denote
the unit sphere with its standard Riemannian metric. In
this case the Moser–Trudinger inequality takes the form

∫
𝑆2
𝑒
4𝜋(𝑢−𝑢̄)2

‖∇𝑢‖22 𝑑𝐴 ≤ 𝐶1, (3)

MARCH 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 319



where 𝑑𝐴 is the area form with respect to 𝑔0 and 𝑢̄ de-
notes themean value of 𝑢. This implies another inequality,
sometimes referred to as its “linearized” version:

log ( 14𝜋 ∫
𝑆2
𝑒2ᵆ 𝑑𝐴) ≤ 1

4𝜋 ∫
𝑆2
(|∇𝑢|2 + 2𝑢) 𝑑𝐴 + 𝐶0 (4)

for some constant 𝐶0 that is independent of 𝑢.
Moser was interested in the sharp value of 𝛽𝑛 in part

because this version of the inequality arises in a question
posed by Louis Nirenberg: Given 𝐾 ∈ 𝐶∞(𝑆2), is there a
conformal metric 𝑔 = 𝑒2𝑤𝑔0 such that the Gauss curvature
of 𝑔 is given by 𝐾? A standard calculation shows that this
question can be answered in the affirmative if and only if
one can find a solution of the PDE

Δ0𝑤 + 𝐾𝑒2𝑤 = 1, (5)

where Δ0 is the Laplace–Beltrami operator with respect to
𝑔0.

There is an obvious necessary condition on the can-
didate function 𝐾 given by the Gauss–Bonnet formula
(equivalently, by integrating (5) over the sphere): 𝐾 must
be positive somewhere. Later, Kazdan and Warner proved
that a more subtle condition must hold. However, their
condition is implicit and involves not only the function 𝐾
but the putative solution 𝑤.

Moser used a variational approach to study this ques-
tion, and considered the functional 𝐽 ∶ 𝐻1,2(𝑆2) → ℝ given
by

𝐽𝐾[𝑤] =
1
4𝜋 ∫

𝑆2
(|∇𝑤|2 + 2𝑤) 𝑑𝐴

− log ( 14𝜋 ∫
𝑆2
𝐾𝑒2𝑤 𝑑𝐴).

(6)

It is not difficult to see that 𝑤 is a critical point of 𝐽; i.e.,
𝑑
𝑑𝑠𝐽𝐾[𝑤 + 𝑠𝜙]||𝑠=0 = 0

for all 𝜙 ∈ 𝑊 1,2(𝑆2) if and only if 𝑤 is a weak solution of
(5). In fact, using the Sobolev embedding theorem and
standard elliptic regularity, any critical point of 𝐽 is auto-
matically smooth and therefore a classical solution of (5).

At this point it will be illuminating to explain one of the
fundamental difficulties of the Nirenberg problem, since
the same issue will appear in other contexts. To simplify,
consider the case where 𝐾 ≡ 1. The functional 𝐽1 enjoys
a natural invariance under the action of the conformal
group of 𝑆2. Namely, if 𝑓 ∶ 𝑆2 → 𝑆2 is a conformal trans-
formation of 𝑆2, then 𝑓∗𝑔0 = 𝑒2𝜑𝑓𝑔0 for some function
𝜑𝑓 ∈ 𝐶∞(𝑆2). Therefore, if 𝑔 = 𝑒2𝑤𝑔0, then 𝑓∗𝑔 = 𝑒2𝑤𝑓𝑔0,
where 𝑤𝑓 = 𝑤 ∘ 𝑓 + 𝜑𝑓. One can show that

𝐽1[𝑤] = 𝐽1[𝑤𝑓]. (7)

Since the conformal group of (𝑆2, 𝑔0) (indeed, the round
sphere of any dimension) is noncompact, this means that
𝐽1 is invariant under the action of a noncompact group. As

a consequence, 𝐽1 fails to satisfy the Palais–Smale condition,
andmany standard variationalmethods that are used to es-
tablish the existence of critical points are inapplicable. We
can see this very concretely through the following construc-
tion: If 𝑁 = (0, 0, 1) denotes the “north pole” of 𝑆2 ⊂ ℝ3,
let 𝜎 ∶ 𝑆2 ⧵ {𝑁} → ℝ2 be the stereographic projection map
(i.e., a point 𝑃 in 𝑆2 is sent to the point in the plane deter-
mined by following the light ray from 𝑁 through 𝑃). One
can check by hand that 𝜎 is conformal: 𝜎∗𝑑𝑠2 = 𝑒2ᵆ0𝑔0 for
some function 𝑢0 ∈ 𝐶∞(𝑆2), where 𝑑𝑠2 is the Euclidean
metric. For 𝜆 > 0 let 𝛿𝜆 ∶ ℝ2 → ℝ2 denote dilation by 𝜆−1
(i.e., 𝑥 ↦ 𝜆−1𝑥). Then the map 𝑓𝜆 = 𝜎−1 ∘ 𝛿𝜆 ∘ 𝜎 ∶ 𝑆2 → 𝑆2
is conformal: 𝑓∗𝜆 𝑔0 = 𝑒2ᵆ𝜆𝑔0. Moreover, if we let 𝜆 → ∞,
then the family of conformal factors {𝑒2ᵆ𝜆 }𝜆 will “concen-
trate” (or “bubble”) at the north pole while converging to
zero at other points. Since these metrics arise from pulling
back the round metric, 𝐽1[𝑢𝜆] = 0 for all 𝜆.

Bubbling appears in many geometric variational prob-
lems, from harmonic maps to Yang–Mills connections. In
many cases the fundamental issue is showing that the loss
of compactness can only arise from bubbling when the un-
derlying manifold is the round sphere.

3. Prescribed Scalar Curvature
and the Isospectral Problem

Not long after her work with Carleson, Alice began what
would become a long collaboration with her husband,
Paul Yang. Their first joint paper, “Prescribing Gaussian
curvature on 𝑆2,” was on the Nirenberg problem and ap-
peared in 1987. For a positive function 𝐾 ∈ 𝐶∞(𝑆2), they
gave two different necessary conditions for the existence
of a conformal metric 𝑔 with Gauss curvature 𝐾. The state-
ments are somewhat technical, so we will state only one
of them:

Theorem 3.1 (Theorem II of [14]). Let 𝐾 be a positive
smooth function with only nondegenerate critical points, and
in addition assume that Δ0𝐾(𝑝) ≠ 0, where 𝑝 is any critical
point. Suppose there are at least two local maximum points of
𝐾, and at all saddle points 𝑞 of 𝐾, 𝐾(𝑞) > 0. Then 𝐾 is the
Gauss curvature of some metric conformal to 𝑔0.

The proof of this theorem is quite involved, but keep-
ing in mind our explanation of the bubbling phenome-
non we can give some indication of the strategy. Like the
work of Moser and others, their approach was variational:
that is, the goal is to show the existence of critical points
of the functional 𝐽𝐾 in (6) via a min-max scheme. As we
discussed above, due to the conformal invariance of the
problem, a sequence {𝑤𝑗} produced by the min-max proce-
dure may fail to be bounded in𝑊 1,2(𝑆2). A key step in the
proof of the Chang–Yang result is showing that when this
happens, {𝑒2 𝑗ᴂ } must concentrate at a single point 𝑝 ∈ 𝑆2
(which we can assume is the north pole), just like the
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Partners in life, and often in mathematics.

family of conformal factors {𝑒2ᵆ𝜆 } we constructed above.
In fact, they showed that there is a sequence of dilations
{𝜆𝑗} such that for each 𝑗, 𝑒2 𝑗ᴂ is “close” to 𝑒2𝑤𝑗 . With this
information, they reduce the question of the behavior of
the sequence {𝑤𝑗} to analyzing the behavior of the inte-
gral ∫𝐾𝑒2𝑤𝑗 𝑑𝐴when 𝑒2𝑤𝑗 is highly concentrated, and con-
clude that this can only happen at a saddle point 𝑞 of 𝐾
with Δ0𝐾(𝑞) < 0.

In subsequent papers Alice and Paul continued working
on theNirenberg problem and the higher-dimensional ver-
sion of prescribing the scalar curvature. At about the same
time they became interested in some questions in spectral
geometry with obvious connections to their work. Their
work on the isospectral problem and the regularized deter-
minant, which began in the late 1980s, would continue for
almost two decades and lead in a number of unexpected
directions.

If (𝑀𝑛, 𝑔) is a closed, 𝑛-dimensional Riemannian mani-
fold and Δ𝑔 = 𝑔𝑖𝑗∇𝑖∇𝑗 is the Laplace operator with respect
to 𝑔, then −Δ𝑔 has discrete spectrum

0 = 𝜆0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ → ∞,
where by convention the eigenvalues are counted with
their multiplicities. Two Riemannian metrics are isospec-
tral if their respective Laplace operators have the same
spectrum. One theme of spectral geometry is the extent
to which the spectrum of a Riemannian manifold deter-
mines the metric. For example, are two isospectral metrics
isometric? Milnor showed that this is not the case, but
one can still ask to what extent the spectrum influences
the geometry and vice versa. For example, is the set of

isospectral metrics on a fixed manifold 𝑀 compact? One
way to approach these kinds of questions is to study geo-
metric invariants that are built up from the spectrum.

One such invariant is the trace of the heat kernel, ℎ(𝑡) =
∑𝑗 𝑒

−𝑡𝜆𝑗 , which has an expansion of the form

ℎ(𝑡) ∼ 𝑡−𝑛/2
∞
∑
𝑖=0

𝛼𝑖𝑡𝑖,

where 𝑛 = dim𝑀. An isospectral set of metrics necessarily
has the same heat coefficients {𝛼𝑖}, and the first few coef-
ficients can be explicitly computed. One consequence of
these explicit formulas is that in three dimensions, a set of
isospectral metrics has a uniform bound on the 𝐿2-norm of
their curvature tensors. This is fairly weak control, but by
imposing further constraints on the set or by using other
information derived from the spectrum, one might hope
to get a compactness result.

In work of Brooks–Perry–Yang, they showed that if
the isospectral metrics were in a fixed conformal class on
a three-dimensional manifold 𝑀3, and if the conformal
class admits a metric of negative scalar curvature, then the
family is compact in 𝐶∞. In a series of three papers cul-
minating in [17], Alice and Paul were able to remove all
assumptions on the conformal class and prove compact-
ness modulo the conformal group. The qualifier is crucial:
if the isospectral set is in the conformal class of the stan-
dard sphere, then the conformal group acts on the set, and
once again bubbling can occur.

4. Second Digression:
Regularized Determinants

A spectral invariant that appears prominently in Alice’s
subsequent work in spectral geometry (both with Paul and
other collaborators) is the regularized or functional deter-
minant. Again let (𝑀𝑛, 𝑔) be a closed, 𝑛-dimensional Rie-
mannian manifold, and label the eigenvalues of −Δ𝑔 by
0 = 𝜆0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ counting multiplicities. The spectral
zeta function of (𝑀𝑛, 𝑔) is

𝜁(𝑠) =
∞
∑
𝑗=1

𝜆−𝑠𝑗 . (8)

By Weyl’s asymptotic law, 𝜆𝑗 ∼ 𝑗2/𝑛 as 𝑗 → ∞. Conse-
quently, (8) defines an analytic function for Re(𝑠) > 𝑛/2.
If we were to assume (8) is valid near 𝑠 = 0, then we could
formally differentiate to get

𝜁′(0) = −
∞
∑
𝑗=1

log 𝜆𝑗 = − log det(−Δ𝑔). (9)

On the other hand, Ray–Singer showed that it is possible to
meromorphically continue 𝜁, with 𝑠 = 0 as a regular point.
In view of (9), we therefore define det(−Δ𝑔) = 𝑒−𝜁′(0).

MARCH 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 321



Since the determinant is obviously a global invariant, it
is all the more remarkable that Polyakov was able to write
a local formula for the ratio of the determinants for two
conformal metrics on a closed surface 𝑀2. Suppose ̂𝑔 =
𝑒2𝑤𝑔. Then

log
det(−Δ𝑔̂)
det(−Δ𝑔)

= − 1
12𝜋 ∫

𝑀2
(|∇𝑤|2 + 2𝐾𝑤) 𝑑𝐴, (10)

where 𝐾 = 𝐾𝑔 is the Gauss curvature of 𝑔. The right-hand
side of this formula should be familiar—it is the leading
order terms of the functional 𝐽1 we encountered when dis-
cussing Nirenberg’s problem and the Moser–Trudinger in-
equality! In fact, if 𝑔 = 𝑔0 is the round metric on 𝑆2 and
we fix the area of ̂𝑔 to be 4𝜋, then the Moser–Trudinger
inequality (4) implies that

log
det(−Δ𝑔̂)
det(−Δ0)

≤ 𝐶1. (11)

Onofri showed that 𝐶1 = 0 and that equality occurs if and
only if ̂𝑔 = 𝑓∗𝑔0 for some conformal map 𝑓 ∶ 𝑆2 → 𝑆2.
We therefore conclude that the round metric, and its im-
ages under the action of the conformal group, maximize
the determinant. This is a beautiful example of how the
spectrum of the Laplacian is intimately tied to the geome-
try.

For a general Riemann surface (𝑀, 𝑔) the formula (10)
defines an action on the space of unit volume conformal
metrics, and critical points are precisely those metrics of
constant Gauss curvature. In a series of papers, Osgood–
Phillips–Sarnak used the regularized determinant to study
the compactness of isospectral metrics on surfaces, and the
existence of extremals of the functional determinant in a
fixed conformal class. The latter result gave a spectral the-
oretic proof of the uniformization theorem.

5. The Regularized Determinant
and 𝑄-curvature

In deriving (10) Polyakov exploited a crucial property of
the Laplacian in two dimensions, namely, its conformal
covariance: if ̂𝑔 = 𝑒2𝑤𝑔, then

Δ𝑔̂ = 𝑒−2𝑤Δ𝑔.
In higher dimensions this property fails, but there are
other conformally covariant differential operators. For
example, the conformal Laplacian

𝐿 = −Δ + (𝑛 − 2)
4(𝑛 − 1)𝑅, (12)

where 𝑅 is the scalar curvature, is conformally covariant in
the sense that

𝐿𝑒2𝑤𝑔𝜙 = 𝑒−
𝑛+2
2 𝑤𝐿𝑔(𝑒

𝑛−2
2 𝑤𝜙).

In four dimensions there is another example, and this
operator will play a significant role in what follows. The

Paneitz operator is defined by

𝑃 = (−Δ)2 + 𝛿 (23𝑅𝑔 − 2𝑅𝑖𝑐) ∘ ∇, (13)

where 𝛿 is the divergence operator and the curvature term
2
3
𝑅𝑔 − 2𝑅𝑖𝑐 should be viewed as an endomorphism of the

tangent bundle, by acting on the gradient of a function.
The Paneitz operator is named for S. Paneitz, who wrote
it down in an unpublished preprint before his untimely
death. However, it was actually discovered earlier by physi-
cists. The Paneitz operator is conformally convariant in the
sense that 𝑃𝑒2𝑤𝑔 = 𝑒−4𝑤𝑃𝑔.

As we shall see, in ways beyond conformal covariance
this operator can be viewed as the natural generalization
of the Laplace operator to four-manifolds. For example,
as we saw when discussing the Nirenberg problem, the
Laplace operator arises in the formula (5) relating the
Gauss curvatures of conformally related metrics. In four
dimensions, there is a curvature quantity, which Branson
called the “𝑄-curvature,” defined by

𝑄 = 1
12(−Δ𝑅 + 𝑅2 − 3|𝑅𝑖𝑐|2). (14)

Where does this strange quantity come from? One an-
swer, which we will come to below, is topological: it ap-
pears naturally in the Chern–Gauss–Bonnet formula. But
the answer that is most relevant to the current discussion
is that it is the curvature quantity naturally associated to
the Paneitz operator. More precisely, given two conformal
metrics ̂𝑔 = 𝑒2𝑤𝑔, their respective 𝑄-curvatures are related
by the formula

𝑃𝑤 + 2𝑄 = 2𝑄𝑔̂𝑒4𝑤. (15)

The parallel with (5) is obvious. Moreover, the total 𝑄-
curvature is a conformal invariant:

∫𝑄𝑔̂ 𝑑 ̂𝑉 = ∫𝑄𝑔 𝑑𝑉. (16)

In [1], Branson and Ørsted were able to generalize
Polyakov’s technique to conformally covariant operators
defined on a four-manifold 𝑀4. The resulting formula,
unfortunately, is much more complicated than its prede-
cessor (10). Rather than writing it out explicitly, it may
be more illuminating to give a schematic description. To
this end, suppose 𝐴 = 𝐴𝑔 is a conformally covariant oper-
ator, let ̂𝑔 = 𝑒2𝑤𝑔 be conformal metrics, and consider the
functional

̂𝑔 ↦ log
det 𝐴𝑔̂
det 𝐴𝑔

.

Since the determinant is not scale invariant, we add a nor-
malizing term and consider a normalized version of the
functional 𝐹𝐴, which satisfies 𝐹𝐴[𝑤 + 𝑐] = 𝐹𝐴[𝑤].

The first thing to note is that 𝐹𝐴 can always be expressed
as a linear combination of three universal (i.e., indepen-
dent of the particular operator) terms. Different operators
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will result in different linear combinations of these three
terms. Alice and Paul introduced the convention of ex-
pressing the formula in the following way:

𝐹𝐴[𝑤] = 𝛾1(𝐴)𝐼[𝑤] + 𝛾2(𝐴)𝐼𝐼[𝑤] + 𝛾3(𝐴)𝐼𝐼𝐼[𝑤], (17)

where (𝛾1, 𝛾2, 𝛾3) is a triple of real numbers, and 𝐼, 𝐼𝐼, 𝐼𝐼𝐼
are the three subfunctionals, each of which has a specific
geometric interpretation. The contribution of Branson–
Ørsted was not only the general formula (17) but the cal-
culation of the coefficients for some specific operators. For
example, if𝐴 = 𝐿, the conformal Laplacian, then 𝛾1(𝐿) = 1,
𝛾2(𝐿) = −4, and 𝛾3(𝐿) = −2/3.

Alice and Paul showed that each of the functionals 𝐼, 𝐼𝐼,
and 𝐼𝐼𝐼 is the Lagrangian associated to a natural geometric
variational problem:

̂𝑔 = 𝑒2𝑤𝑔 is a critical point of 𝐼 ⟺ |𝑊𝑔̂|2 = const.,
where 𝑊 denotes the Weyl tensor;

̂𝑔 = 𝑒2𝑤𝑔 is a critical point of 𝐼𝐼 ⟺ 𝑄𝑔̂ = const.;

̂𝑔 = 𝑒2𝑤𝑔 is a critical point of 𝐼𝐼𝐼 ⟺ Δ𝑔̂𝑅𝑔̂ = 0.
Note that critical points of 𝐼𝐼𝐼 correspond tometrics of con-
stant scalar curvature and are therefore related to the Yam-
abe problem. Using these formulas, we see that a metric
̂𝑔 = 𝑒2𝑤𝑔 is a critical point of 𝐹𝐴 if and only if the curvature

of ̂𝑔 satisfies

𝛾1|𝑊𝑔̂|2 + 𝛾2𝑄𝑔̂ − 𝛾3Δ𝑔̂𝑅𝑔̂ = const. (18)

If we express this in terms of the conformal factor 𝑤, it is
a fourth-order semilinear PDE with leading term Δ2𝑤.

In joint work with Branson, Alice and Paul studied 𝐹𝐴 in
the conformal class of the round sphere (𝑆4, 𝑔0) when 𝐴 =
𝐿, the conformal Laplacian. They showed that all three
functionals—𝐼, 𝐼𝐼, and 𝐼𝐼𝐼—are minimized by the round
metric, up to conformal transformations. In particular,
det 𝐿𝑔0 ≤ det 𝐿𝑔 for all conformal metrics 𝑔 = 𝑒2𝑤𝑔0.

After the work with Branson, Alice and Paul wrote a
seminal paper, “Extremal metrics of zeta function deter-
minants on 4-manifolds,” which appeared in Annals of
Mathematics [15]. In addition to giving general existence
results for extremals of the determinant, it also was the
first paper to study the 𝑄-curvature equation and illustrate
the connection between the variational properties of the
functional 𝐼𝐼 and the kernel of the Paneitz operator. Sub-
sequently, the first author of the current article observed
that some of the technical assumptions in [15] could be
dropped in certain cases, so to avoid introducing addition-
al notation we will give a simplified version of one of the
main existence results in [15]:

Theorem 5.1. If the scalar curvature of (𝑀4, 𝑔) is positive,
then there is a metric ̂𝑔 = 𝑒2𝑤𝑔 that extremizes det 𝐿, where 𝐿
is the conformal Laplacian. If 𝜒(𝑀4) ≤ 0, then the extremal
metric is unique.

In the case of surfaces of higher genus the extremal
of the determinant of the Laplacian is also known to be
unique, so we have a beautiful parallel between the two-
and four-dimensional pictures. However, it is also impor-
tant to emphasize that the functional determinant is more
nonlinear in four dimensions, and there are phenomena
that have no parallel with the two-dimensional case. In
fact only recently has progress been made on the existence
of critical points of 𝐹𝐴 when the scalar curvature of (𝑀4, 𝑔)
is negative.

For the functional 𝐼𝐼, Chang–Yang gave the first general
existence result for metrics with constant 𝑄-curvature:

Theorem 5.2. If the total 𝑄-curvature ∫𝑀4 𝑄𝑔 𝑑𝑉 is less than
that of the round sphere, and the Paneitz operator 𝑃𝑔 is posi-
tive with trivial kernel, then there is a conformal metric ̂𝑔 with
constant 𝑄-curvature.

The proof consisted of showing that the functional 𝐼𝐼
can be minimized. They also showed that the triviality of
the kernel was a necessary condition for 𝐼𝐼 to have a lower
bound.

Over the next several years Alice and Paul would con-
tinue working on the analytic and geometric aspects of the
𝑄-curvature. In [16] they proved Liouville-type theorems
for entire solutions. In beautiful work with J. Qing ([11],
[10]), they studied the total 𝑄-curvature of complete, lo-
cally conformally flat (LCF) four-manifolds.

6. Fully Nonlinear Equations
In the late 1990s two developments in conformal geome-
try would lead to Alice’s interest in fully nonlinear equa-
tions. The first arose from her work with Paul on the func-
tional determinant. If the constants 𝛾𝑖 in (17) are chosen
so that 𝛾2+12𝛾3 = 0, then it turns out that the highest-order
terms in the Euler equation (18) cancel, and the equation
becomes a second-order equation in the metric. If we fur-
ther take 𝛾1 = 0 to eliminate the Weyl tensor, then (18)
simplifies to

−3|𝑅𝑖𝑐𝑔̂|2 + 𝑅2𝑔̂ = 𝜅, (19)

where 𝜅 is a constant. The significance of this is the follow-
ing: if the constant 𝜅 > 0, and the scalar curvature of the
critical metric ̂𝑔 = 𝑒2𝑤𝑔 is positive, then a simple calcula-
tion shows that the Ricci curvature of ̂𝑔 must be positive.
This suggests the idea of finding critical points of 𝐹𝐴 in or-
der to construct metrics with positive Ricci curvature. This
was carried out by Alice in joint work with Paul and the
first author of this article in [8]. It will be easier to state
the main result of that paper if we first describe the con-
current development in conformal geometry.
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Given an 𝑛-dimensional Riemannian manifold (𝑀, 𝑔),
one can decompose the curvature tensor as 𝑅𝑖𝑒𝑚 = 𝑊 +
𝐴 ∧ 𝑔, where 𝐴 is the Schouten tensor,

𝐴 = 1
𝑛 − 2(𝑅𝑖𝑐 −

1
2(𝑛 − 1)𝑅𝑔), (20)

and ∧ is the exterior product extended to symmetric
2-tensors (viewed as 𝑇∗𝑀-valued one-forms and often re-
ferred to as the Kulkarni–Nomizu product). Since theWeyl
tensor is conformally invariant, the behavior of the curva-
ture tensor under a conformal change of metric is deter-
mined by the Schouten tensor. In his thesis, Jeff Viaclovsky
initiated the study of the functionals

𝑔 ↦ ∫𝜎𝑘(𝑔−1𝐴𝑔) 𝑑𝑉, (21)

restricted to the space of unit volume conformal metrics
[𝑔]1 = { ̂𝑔 = 𝑒2𝑤𝑔, 𝑉𝑜𝑙( ̂𝑔) = 1}. Here we are using the
convention that (𝑔−1𝐴)𝑗𝑖 = 𝑔𝑗𝑘𝐴𝑖𝑘. When 𝑘 = 1, up to
a multiple the functional (21) is just the total scalar cur-
vature, and critical points are metrics with constant scalar
curvature. When 𝑘 > 1 the situation is more complicated.
If 𝑘 = 2 but 𝑛 ≠ 4, then the same holds: a metric ̂𝑔 ∈ [𝑔]1
is a critical point if and only if

𝜎2( ̂𝑔−1𝐴𝑔̂) = const. (22)

When 𝑘 = 2 and 𝑛 = 4 the integral in (21) is conformally
invariant. In fact, 𝜎2 is related to the 𝑄-curvature:

𝑄 = − 1
12Δ𝑅 + 2𝜎2(𝑔−1𝐴), (23)

so the total 𝑄-curvature (a conformal invariant) is just a
multiple of the total 𝜎2-curvature.

When 𝑘 > 2 but 𝑘 ≠ 𝑛/2, and if we assume the con-
formal structure is locally conformally flat, then critical
points of (21) satisfy

𝜎𝑘( ̂𝑔−1𝐴𝑔̂) = const. (24)

In fact, Branson and Gover showed that conformal flatness
is a necessary condition; otherwise additional terms will
appear in the Euler–Lagrange equation (21).

Viaclovsky proposed the problem of solving the equa-
tions (24) (whether they arise variationally or not) as a
generalization of the Yamabe problem. They are now re-
ferred to as the “𝜎𝑘-curvature equations,” and the problem
of finding solutions as the 𝜎𝑘-Yamabe problem. Since they
are fully nonlinear, one has to impose an ellipticity condi-
tion. Although there is now an extensive existence theory
for solutions, some basic questions (especially about reg-
ularity) remain unanswered.

The connection between the study of the functional
determinant in dimension four and the equations intro-
duced by Viaclovsky is the following: the special case of the
Euler equation (19) is, up to a constant, the equation (22).

Using the determinant functional, Chang–Gursky–Yang
proved

Theorem 6.1 ([8], [7]). Let (𝑀4, 𝑔) be a closed Riemannian
four-manifold with positive scalar curvature. If

∫
𝑀4

𝜎2(𝑔−1𝐴𝑔) 𝑑𝑉 > 0,

then there is a smooth conformal metric ̂𝑔 = 𝑒2𝑤𝑔 solving (22).
Moreover, the Ricci curvature of ̂𝑔 satisfies 0 < 𝑅𝑖𝑐𝑔̂ <

1
2
𝑅𝑔̂ ̂𝑔.

This was the first existence result for the 𝜎𝑘-Yamabe
problem. Moreover, since the conditions are conformally
invariant, it is relatively easy to construct examples of man-
ifolds satisfying the hypotheses. Later, Chang–Gursky–
Yang would use a version of the 𝜎2-curvature equation in
which the right-hand side includes the norm of the Weyl
tensor in order to prove a conformally invariant sphere the-
orem.

When 𝑘 = 𝑛 the 𝜎𝑘-curvature equation shares many fea-
tures with a special case of the equations studied in the
theory of optimal transportation. In joint work of Alice
with the second author ([12], [13]), they proved quermass-
integral inequalities for a large class of nonconvex domains.

In convex geometry, the quermassintegral inequalities
are a family of inequalities comparing the mixed volumes
𝑉𝑘(Ω) of a convex bodyΩ ⊂ ℝ𝑛. IfΩ has a smooth bound-
ary, then the mixed volumes are the intrinsic counterparts
of the functionals introduced by Viaclovsky:

𝑉𝑛−𝑘−1(Ω) = 𝑐𝑘,𝑛∫
𝜕Ω

𝜎𝑘(𝐿) 𝑑𝜇, (25)

where 𝐿 is the second fundamental form of 𝜕Ω. The quer-
massintegral inequalities can be derived as a consequence
of the classical Alexandrov–Fenchel inequalities. For a gen-
eral nonconvex domain, one does not expect the quer-
massintegral (or Alexandrov–Fenchel) inequalities to hold.
Chang–Wang proved that (𝑘 + 1)-convex domains, which
contain a large class of nonconvex domains (for example,
“thin” tori) still satisfy the 𝑘th of quermassintegral inequal-
ity.

7. Conformally Compact Einstein Manifolds
The final area of Alice’s oeuvre we will attempt to summa-
rize includes some of her most recent work. If 𝑋 is a com-
pact manifold of dimension 𝑛 + 1 with nonempty bound-
ary𝑀 = 𝜕𝑋 , a metric 𝑔 defined in the interior of 𝑋 is called
conformally compact if there is a defining function for the
boundary (i.e., a function 𝜌 ∶ 𝑋 → ℝ such that 𝜌 > 0 in 𝑋 ,
𝜌 = 0 on 𝜕𝑋 , and 𝑑𝜌 ≠ 0 on 𝜕𝑋) such that 𝜌2𝑔 extends to a
Riemannian metric on 𝑋 . If |𝑑𝑟|𝑔 = 1 on 𝜕𝑋 , then one can
show that the sectional curvatures of (𝑋, 𝑔) tend to −1 at
infinity, and we say that (𝑋, 𝑔) is asymptotically hyperbolic.

If 𝑔 is an Einstein metric, then (𝑋, 𝑔) is a Poincaré–
Einstein manifold (or CCE manifold, for “conformally
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compact Einstein”). The canonical example of a CCEman-
ifold is the Poincaré ball model of hyperbolic space: in
this case 𝑋 = ̄𝐵𝑛+1 is the unit ball in ℝ𝑛+1, and 𝑔 =
4(1 − |𝑥|2)−2𝑑𝑥2 is the hyperbolic metric. Notice that we
can take 𝜌(𝑥) = (1 − |𝑥|2)/2 as a defining function, and
𝜌2𝑔 = 𝑑𝑥2 is the Euclidean metric. It is easy to see that
CCE metrics are asymptotically hyperbolic.

The defining function of a conformally compact met-
ric is not unique, and the compactified metrics defined by
two different choices of defining function are conformal.
Therefore, one can associate to any conformally compact
metric 𝑔 defined in the interior of 𝑋 a conformal class of
metrics on the compact manifold 𝑋 , and by restricting to
the boundary a conformal class of metrics [ℎ = 𝜌2𝑔|𝑀] on
𝑀 = 𝜕𝑋 . We call [ℎ] the conformal infinity of 𝑔. For example,
if (𝑋, 𝑔) is the hyperbolic metric as above, then the bound-
ary conformal class defined in this way is the conformal
class of the Euclidean metric restricted to 𝑆𝑛 = 𝜕𝐵(0, 1)𝑛+1,
i.e., the conformal class of the round metric.

CCE manifolds appear in the Fefferman–Graham the-
ory of conformal invariants [18] and in the AdS/CFT cor-
respondence in theoretical physics. They have sometimes
unexpected connections to other areas of mathematics, in-
cluding some of the topics mentioned above. Alice’s first
results in the subject were joint with Paul and Jie Qing and
studied the connection between an important invariant of
CCE manifold (𝑋, 𝑔), known as the renormalized volume,
and the topology of 𝑋 .

Given a CCE metric we can always construct a defin-
ing function 𝑟 for which |𝑑𝑟| ≡ 1 near 𝜕𝑋 . Using the
Fefferman–Graham expansions, for 𝜖 > 0 the volume of
the region 𝑋𝜖 = {𝑥 ∈ 𝑋 ∶ 𝑟(𝑥) > 𝜖} has an expansion in
terms of 𝜖 depending on the parity of the dimension. If 𝑛
is odd, then

Vol(𝑋𝜖) = 𝑐0𝜖−𝑛 + 𝑐2𝜖−𝑛+2 + (odd powers)

+ 𝑐𝑛−1𝜖−1 + 𝑉 + 𝑜(1),
(26)

where the 𝑐𝑖’s are given by integrals of polynomials in the
curvature of the induced metric ℎ = 𝑟2𝑔|𝑀 on the bound-
ary. If 𝑛 is even, a logarithmic term appears; to simplify
the exposition we will discuss only the odd-dimensional
case.

Remarkably, the constant term 𝑉 in the expansion (26)
is independent of the choice of defining function, and is
therefore a conformal invariant of the boundary (see [19]).
When 𝑛 = 3, in [9] Chang–Qing–Yang showed that if

𝑉 > 1
3
4𝜋2
3 𝜒(𝑋),

then 𝑋 is homeomorphic to 𝐵4, up to a possible finite
cover. Moreover, if the constant on the right is improved
from 1/3 to 1/2, then 𝑋 is diffeomorphic to 𝐵 and 𝜕𝑋
is diffeomorphic to 𝑆3. Two of the ingredients of their

proof are the sphere theoremof Chang–Gursky–Yangmen-
tioned above and a formula when 𝑛 = 3 due to Anderson
that relates 𝑉 to the Euler characteristic and the 𝐿2-norm
of the Weyl tensor.

In subsequent work, Chang–Qing–Yang showed that
Anderson’s formula is actually a special case of a much
more general formula for 𝑛 odd that expresses the renor-
malized volume of a CCE manifold in terms of the Euler
characteristic and a conformally invariant integral. The in-
tegrand is a sum of contractions of the Weyl tensor and
its covariant derivatives; when 𝑛 = 5 they gave an explicit
formula.

In addition to the conformal Laplacian and Paneitz op-
erator there are other examples of conformally covariant
operators. Graham–Zworksi used scattering theory meth-
ods on asymptotically hyperbolic manifolds to construct
families of conformally invariant operators 𝑃𝛾 with prin-
cipal symbol the same as (−Δ)𝛾 for 𝛾 ∈ (0, 𝑛). When
𝛾 = 𝑘 ∈ (0, 𝑛/2) is an integer, 𝑃𝑘 corresponds to the opera-
tors found earlier by Graham–Jenne–Mason–Sparling, but
for noninteger values their construction gives examples of
conformally covariant nonlocal operators.

Fractional powers of the Laplacian also appear in vari-
ous mathematical models of physical phenomena. On Eu-
clidean space one can use the Fourier transform to define
(−Δ)𝛾, but Caffarelli–Silvestre showed that for 𝛾 ∈ (0, 1)
one can construct these operators by solving a degenerate
elliptic extension problem on the upper half-space ℝ𝑛+1

+ ,
then restricting the solution to the boundary. In joint work
of Chang with Maria del Mar Gonzalez [6], they had the
beautiful insight that the Graham–Zworski construction
and the Caffarelli–Silvestre construction were really the
same idea in different guises: properly interpreted, the
Caffarelli–Silvestre extension problem was the scattering
operator on the upper half-space model of hyperbolic
space. This realization allowed them to recast the
Caffarelli–Silvestre construction in the framework of CCE
manifolds and extend the construction to 𝛾 ∈ (0, 𝑛/2).
In subsequent work with Jeffrey Case they gave an alter-
nate construction of theGraham–Zworski operators 𝑃𝛾 and
showed that under natural geometric conditions 𝑃𝛾 satis-
fies a strong maximum principle. The study of fractional
order problems in geometry and in applied mathematics
is a highly active area, and the Chang–Gonzalez paper pro-
vided a unified way of defining and understanding many
of the properties of these operators.

8. Epilogue
Among Alice’s many professional distinctions was her se-
lection to deliver the EmmyNoether Lecture at the Interna-
tional Congress of Mathematicians in 2018. The citation
for the award includes a brief list of her honors: recipi-
ent of the Ruth Lyttle Satter Prize from the AMS in 1995;
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Fellow of the American Academy of Arts and Sciences since
2008; Member of the National Academy of Sciences of the
USA since 2009; Academician of the Academia Sinica, Re-
public of China, since 2012; Doctor Honoris Causa from
the Université Pierre et Marie Curie in 2013. Alice has also
served the profession inmany roles, including a term as de-
partment chair at Princeton. But beyond her mathemati-
cal contributions, Alice has had a passionate commitment
to her students (as we can personally attest), and her in-
fluence goes beyond her mathematical progeny. “I can
personally testify to the importance of having role mod-
els and the companionship of other women colleagues,”
Alice wrote in her response to receiving the Satter Prize.
Throughout her distinguished career Alice has been such a
role model: a dedicated researcher, teacher, mentor, and
advocate for the profession.
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