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Abstract
Motion stages are widely used for precision positioning in manufacturing and metrology applications. However, they suffer

from nonlinear premotion (i.e. “static”) friction, which adversely affects their speed and motion precision. In this article,

a friction isolator is used as a simple and robust solution to mitigate the undesirable effects of premotion friction in precision

motion stages. For the first time, a theoretical study is carried out to understand the dynamic phenomena associated with

using a friction isolator on a motion stage. Theoretical analysis and numerical simulation are conducted to examine the

dynamical effects of friction isolator on a proportional–integral–derivative-controlled motion stage under LuGre friction

dynamics. The influence of friction isolator on the response and stability of the system is examined through theoretical and

numerical analyses. Parametric analysis is also carried out to study the effects of friction isolator and friction parameters on

the eigenvalue and stability characteristics. The numerical results validate the theoretical findings and demonstrate several

other interesting nonlinear phenomena associated with the introduction of friction isolator. This motivates deeper

nonlinear dynamical analyses of friction isolator for precision motion control.

Keywords
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1. Introduction and background

Motion stages are used for precision positioning in a wide
range of manufacturing- and metrology-related processes,
such as machining, additive manufacturing, and semi-
conductor fabrication (Altintas et al., 2011). Mechanical
bearings (e.g. sliding and especially rolling bearings) are
popular in precision motion stages due to their large
motion range, high off-axis stiffness, and cost-effectiveness
(Altintas et al., 2011). Premotion friction is a common
problem encountered in mechanical bearing–based motion
stages. The adverse effects in performance caused by
premotion friction feature large tracking errors, long settling
times, and stick–slip phenomena (Armstrong-Hélouvry
et al., 1994; Al-Bender and Swevers, 2008; Futami et al.,
1990; Marques et al., 2016). In practice, a common servo
feedback controller for precision motion stages is the
proportional–integral–derivative (PID) controller (Hensen
et al., 2003; Kim and Kim, 2011). While the PID controller
is designed to reduce tracking error, the implementation
of feedback controllers in the frictional system may result
in self-excited limit cycles known as friction-induced

vibrations (Duffour and Woodhouse, 2004; Hensen et al.,
2003; Hinrichs et al., 1998; Hoffmann, 2007; Hoffmann
et al., 2002; Kruse et al., 2015; Nakano and Maegawa,
2009; Niknam and Farhang, 2019; Oestreich et al., 1996;
Pascal, 2017; Saha and Wahi, 2011; Van de Vrande et al.,
1999), which will further afflict the control performance.

In many studies, the compensation of unwanted fric-
tional effects was realized with different controllers. The
traditional high-gain PID controller possesses some ro-
bustness and can quickly overcome frictional effects, but
it may also lead to large overshoots and limit cycles
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(Armstrong-Hélouvry et al., 1994). Robust controllers such
as H∞ feedback controllers and disturbance observer–based
controllers can effectively attenuate model uncertainties and
disturbances (Kempf and Kobayashi, 1999; Sariyildiz et al.,
2019; Zheng et al., 2017). However, these controllers may
be limited in mitigating the highly nonlinear and volatile
premotion friction (Chong and Sato, 2010; Kim et al.,
2009). Finally, all controllers are affected by practical
conditions including computing power, sampling rate, and
noise sensitivities, making complex controllers (e.g. neural
network controllers (Kim et al., 2009; Ren et al., 2008) less
favorable in the application.

The friction isolator (FI), also known as the compliant
joint, is a mechanical device recently proposed to effec-
tively and robustly mitigate premotion friction (Dong et al.,
2017; Dong and Okwudire, 2018). Unlike the rigid con-
nection (i.e. high stiffness) between mechanical bearings
and tables as in the conventional motion stages, FI in-
troduces a lower stiffness between the bearing and the table,
which isolates the frictional dynamics and makes the table
more compliant in the motion direction. Prior works ex-
perimentally demonstrated that with the implementation of
FI, the compliant motion stage greatly reduced tracking
errors, significantly improved robustness toward friction
changes (Dong et al., 2017), and notably shortened settling
time compared with the conventional motion stage (i.e.
without FI) (Dong and Okwudire, 2018).

Given the remarkable improvements in positioning
precision, quickness, and robustness brought by the FI as
observed in experiments (Dong et al., 2017; Dong and
Okwudire, 2018), it is important to fundamentally un-
derstand the beneficial and potentially harmful dynamical
effects the FI introduces into the precision motion stage.
The conventional motion stage is often modeled as a single-
body friction oscillator. The dynamics in single-body
friction oscillators have been extensively investigated in
these works, which feature analyses of stability (Hinrichs
et al., 1998; Hoffmann, 2007; Kruse et al., 2015; Oestreich
et al., 1996; Saha and Wahi, 2011), mode coupling
(Hoffmann, 2007; Hoffmann et al., 2002, nonlinear be-
havior Feeny and Liang, 1997; Hinrichs et al., 1998; Kruse
et al., 2015; Oestreich et al. 1996; Saha andWahi, 2011; Van
de Vrande et al., 1999), and bifurcation (Di Bernardo et al.,
2003; Hinrichs et al., 1998; Oestreich et al., 1996; Saha and
Wahi, 2011; Van de Vrande et al., 1999). Implementing FI
will introduce new inertia, stiffness, and damping elements
into the system. Studies have also been conducted on the
friction-induced vibration of multibody systems (Duffour
and Woodhouse, 2004; Galvanetto, 1999; Nakano and
Maegawa, 2009; Niknam and Farhang, 2019; Pascal,
2017). However, these works either have not considered
premotion frictional dynamics, or they have adopted models
that do not fit with the FI-equipped motion stage system.
Furthermore, while the effect of the integral controller on
the frictional dynamics of single-body systems has been

investigated (Bisoffi et al., 2017; Hensen et al., 2003), none
of the studies has explored the frictional behavior of a PID-
controlled internally coupled multibody slider system.
These problems are investigated for the first time in this
article. The aim is to understand the frictional dynamics of
a PID-controlled motion stage system with and without FI
under matching parameter conditions. As an extension of our
conference paper (Dong et al., 2019), the dynamic models
are established for PID-controlled motion stages both with
and without FI coupled with the LuGre friction model,
whose system parameters are experimentally obtained.
Numerical simulations are carried out to validate the the-
oretical analyses. Parametric studies are conducted to un-
derstate the role of PID control gains, friction parameters, and
FI design parameters on the stability of the motion stage.

The remaining contents of the article are organized as
follows: we first establish and discuss the dynamical models
of the PID-controlled stages with and without FI under
LuGre friction. Next, the linear analysis of the models is
carried out by studying the properties of the state Jacobian
matrices. We then validate the findings and parametrically
study the effect of LuGre friction and FI on the performance
and stability of PID-controlled motion stages through both
analytical and numerical approaches. Finally, we summa-
rized our findings and propose future works in the con-
clusion section.

2. Dynamical modeling of motion stages
with friction

This section introduces the dynamical modeling of the
servo-controlled motion stage systems both with and
without FI. For simplicity of labeling, the motion stage
without FI is referred to as System α, and the motion stage
with FI is referred to as System β hereinafter.

Figure 1(a) shows the schematics of a servo-controlled
conventional motion stage without FI (System α). The mass
of the moving table rigidly connected to the bearing is mt +
mb, where mt > 0 and mb > 0 are the table mass and the
bearing mass, respectively. The table is coupled with the
reference command r by stiffness kp and damping kd, which
are, respectively, equivalent to the proportional and de-
rivative gains of the servo feedback controller that regulate
the table position qt. A supplemental control force us is
added to account for additional servo forces (e.g. feed-
forward force and integral controller) that may be applied to
the table. The friction force ff is directly applied to the table
via a moving platform at velocity vp.

The compliant motion stage with FI (System β) is
modeled as a system of two coupled oscillators as depicted
in Figure 1(b). While System β is largely similar to System
α, the newly introduced FI connects the table and the
bearing via the stiffness kFI and damping cFI, respectively,
resulting in the internal coupling between the two bodies.
The positions of the table and the bearing are qt and qb,
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respectively. The friction force ff acting on the bearing is not
directly applied to the table.

2.1. The LuGre friction model

Avariety of friction models have been proposed in the past
decades. In this study, the LuGre friction model (De Wit
et al., 1995; Hoffmann, 2007) is adopted, which in-
corporates viscous friction, premotion friction (i.e. pre-
sliding/pre-rolling), and hysteresis behaviors. The LuGre
model introduces an internal state z, which is used to
represent the average deflection of the contact bristles be-
tween two surfaces at the friction interface. The dynamics of
z are given by

_z ¼ v� azðvÞz (1)

With

azðvÞ ¼ jvj
gðvÞ; gðvÞ ¼ fC þ ð fS � fCÞe�ðv=vsÞ2

σ0
(2)

Where v is the relative velocity between two moving
surfaces, fC is the Coulomb friction, fS is the static friction, vs
is the Stribeck velocity threshold, and σ0 is the initial
contact stiffness of the bristle. The modeled friction force of
the LuGre model is then calculated as

ff ¼ σ0zþ σ1 _zþ σ2v (3)

where σ1 is the micro-damping of the bristle and σ2 accounts
for the macroscopic viscous friction.

Observe that the dynamics of z are only affected by v.
Hence, the equilibrium points of z can be reached only when

ð1Þ: v ¼ 0 or ð2Þ: z ¼ v

azðvÞ (4)

Equilibrium (1) is known as the sticking equilibrium, and
equilibrium (2) is referred to as the slipping equilibrium.
The fixed points of any dynamic systems that involve the
LuGre friction have to satisfy either of these two conditions.
It should be noted that the dynamical model is a switched
system at v = 0 due the existence of sgn(v) and |v|.

2.2. Connections between servo-controlled stage
and self-excited friction oscillator

As discussed before, the models shown in Figure 1 are often
used to study the dynamics of a servo-controlled motion
stage during trajectory tracking application, assuming r ≠
0 and vp = 0. In this case, the moving table of the stage (i.e.
qt) is controlled to follow a time-varying reference signal
r(t). The resulting tracking error can be obtained as

ϵ ¼ qt � rðtÞ (5)

When the industrial standard linear PID controller is
implemented, the feedback control force can be written as

ub ¼ �ϵi � kpϵ� kd _ϵ (6)

where ϵi = ki
R
ϵdt; and kp, ki, and kd ≥ 0 are respectively the

proportional, integral, and derivative gains. If we denote yi =
ki
R
qtdt as the additional state brought about by the integral

action, the full states of the systems are defined as

xα ¼ ½ qt _qt z yi �T (7a)

xβ ¼ ½ qt qb _qt _qb z yi �T (7b)

And the state equations of the systems with and without
FI are given by

Figure 1. Schematics of servo-controlled motion stage under friction - (a) system α: the conventional motion stage without FI; and

(b) system β: the compliant motion stage with FI. Note: FI: friction isolator.
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_xα ¼

2
6666664

_qt��ff þ u
�

mα

v� azðvÞ
kiqt

3
7777775
; _xβ ¼

2
6666666666666664

_qt

_qb

ð fFI þ uÞ
ðmtÞ��fFI � ff

�
ðmbÞ

v� azðvÞ
kiqt

3
7777777777777775

(8)

Where

fFI ¼ kFIðqb � qtÞ þ cFIð _qb � _qtÞ (9)

Is the coupling force of the friction isolator,mα =mt +mb

is the total mass of the system, and u is the additional control
input (e.g. feedforward action). The above state equations
can be rearranged to obtain the error dynamics as

_x+α ¼

2
6666664

_ϵ��ff þ u
�

mα
� €r

v� azðvÞ
kiϵ

3
7777775

(10a)

_x+β ¼

2
666666666666664

_ϵ

_ϵb

ð fFI þ uÞ
mt

� €r

��fFI � ff
�

mb
�€r

v� azðvÞ
kiϵ

3
777777777777775

(10b)

Where

x+α ¼ ½ ϵ _ϵ z ϵi �T (11a)

x+β ¼ ½ ϵ ϵb _ϵ _ϵb z ϵi �T (11b)

ϵb ¼ qb � r (11c)

In the literature of friction-induced vibrations under
self-excitation (Hinrichs et al., 1998; Hoffmann, 2007; Li
et al., 2016; Saha et al., 2016), friction is often introduced
by fixing the reference and prescribing the platform (e.g.
belt and conveyor) with constant velocity motion (i.e. r =
0, vp ≠ 0, and _vp ¼ 0), as shown in Figure 1. Therefore, the
relative velocity v between the frictional interfaces can be
written as

vα ¼ _qt � vp; vβ ¼ _qb � vp (12)

In the case of servo-controlled motion stage (i.e. r ≠
0 and vp = 0), the relative velocities are obtained as

vα ¼ _qt ¼ _ϵþ vr; vβ ¼ _qb ¼ _ϵb þ vr (13)

Note that by substituting r = 0 in equation (12) (i.e., _qt ¼
_ϵ and _qb ¼ _ϵb) and setting vr ¼ _r ¼ �vp (i.e. reference
trajectory is constant velocity motion) in equation (13), the
relative velocities of these two cases become identical. This
indicates that the dynamical response and stability of self-
excited friction oscillator and servo-controlled motion stage
are equivalent. Even when €r ≠ 0, the equivalence can be
acquired simply by designing the controller u as

u ¼ uf þ ub; uf ¼ mα€r (14)

where uf is the feedforward controller that provides the
acceleration. Therefore, in the rest of this article, we will
focus on the representation pertaining to the servo-
controlled motion stage.

3. Linear stability analysis

The introduction of FI to the servo-controlled motion stage
may pose challenges to the stability of the system. In this
section, the effects of FI and friction parameters on the
feedback controller design of the stage are investigated
using linear stability analysis.

3.1. Equilibrium points and state Jacobian matrices

As part of the stability analysis, the calculation of the state
equilibrium points may vary with the state representations
of the system. For Systems α and β, the equilibrium is
studied with respect to the error dynamics (equations (10a,
b)) and controller dynamics (equation (6)). As mentioned in
the previous section, the equilibrium of the system with the
LuGre friction can be reached only when either of the two
conditions in equation (4) is satisfied. When the
proportional–derivative controller is applied (ki = 0), the
stick equilibrium points (at vr = 0) are calculated as

x+α,0 ¼
�
ϵ0 0 �kpϵ0

σ0
0

�T
(15a)

x+β,0 ¼
�
ϵ0

ðktϵ0 � mb€rÞ
kFI

0 0 � kpϵ0
σ0

0

�T
(15b)

where kt = kp + kFI; and ϵ0 2R is the steady-state position
error. When ki ≠ 0, the sticking equilibrium points become

x+α,0 ¼
h
0 0 � ϵi,0

ðσ0Þ ϵi,0
iT

(16a)
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x+β,0 ¼
�
0

ðϵi,0 � mb€rÞ
kFI

0 0 �ϵi,0
σ0

ϵi,0

�T
(16b)

where ϵi,0 2R is the integral error that balances the un-
modeled system dynamics.

The slipping equilibrium occurs when vr ≠ 0. In the
absence of integral action (i.e. PD control), the equilibrium
points are obtained as

x+α,0 ¼

2
66666664

� ff ,0
kp

0

hðvrÞ
0

3
77777775
; x+β,0 ¼

2
66666666666664

� ff ,0
kp

ϵb,0,pd

0

0

hðvrÞ
0

3
77777777777775

(17)

Where

hðvÞ ¼ v

azðvÞ ¼ sgnðvÞgðvÞ

ff ,0 ¼ σ0 hðvrÞ þ σ2vr

ϵb,0,pd ¼ �
�
ktff ,0 þ kpmb€r

��
kpkFI

�
Similarly, the slipping equilibrium points in the presence

of PID controllers can be calculated as

x+α,0 ¼

0

0

hðvrÞ
� ff ,0

2
6664

3
7775; x+β,0 ¼

2
66666666666664

0

�
�
ff ,0 þ mb€r

�
kFI

0

0

hðvrÞ
� ff ,0

3
77777777777775

(18)

Linear stability analysis is carried out by examining the
Hurwitz properties of the state Jacobian matrix, which is
obtained by linearizing the system around the equilibrium
points (Khalil, 2002; Ogata, 2010). To make sure that the
steady-state solution of a nonlinear system locally converges to
a fixed point, it is necessary for the linearized system at the
fixed point to be stable. The sticking equilibrium assumes vr =
0, which is not relevant to the scope of this article. Therefore,
the stability analysis is conducted at the slipping equilibrium
points. For System α and ki = 0, the state Jacobian matrix is

Aα ¼

2
6664

0 1 0

� kp
ma

aα,½2;2� aα,v,z

0 aα,z,v �azðvÞ

3
7775 (19)

With

aα,½2;2� ¼ �ðkd þ σ1 þ σ2 � σ1zð∂azðvÞ=∂vÞÞ
ma

(20a)

aα,v,z ¼ �ðσ0 � σ1azðvÞÞ
ma

(20b)

aα,z,v ¼ 1� z

�
∂azðvÞ
∂v

�
(20c)

Where

∂azðvÞ
∂v

¼ sgnðvÞ�gðvÞv2s þ 2v2ðgðvÞ � fC=σ0Þ
	

g2ðvÞv2s
(21)

Because z = h(v) at the equilibrium, equations (20a–c)
can be further simplified as

aα,½2;2� ¼ �
�
kd þ σ2 � σ1ρf ðvÞv2

v2s

�
(22a)

aα,z,v ¼ � ρf ðvÞv2
v2s

(22b)

Where

ρf ðvÞ ¼ 2� 2fC
fC þ ð fS � fCÞe�ðv=vsÞ2

(23)

is the ratio bounded by (0, 2( fS � fC)/fS]. Similarly, for
System β and ki = 0, the Jacobian can be calculated as

Aβ ¼

2
666666666664

0 0 1 0 0

0 0 0 1 0

aβ,½3;1�
kFI
mt

aβ,½3;3�
cFI
mt

0

kFI
mb

�kFI
mb

cFI
mb

aβ,½4;4� aβ,v,z

0 0 0 aβ,z,v �azðvÞ

3
777777777775

(24)

Where

aβ,½3;1� ¼ �
�
kFI þ kp

�
mt

(25a)

aβ,½3;3� ¼ �ðcFI þ kdÞ
mt

(25b)

aβ,½4;4� ¼ �
�
cFI þ σ2 � σ1ρf ðvÞv2



v2s
�

mb
(25c)
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aβ,v,z ¼ �ðσ0 � σ1azðvÞÞ
mb

(25d)

aβ,z,v ¼ � ρf ðvÞv2
v2s

(25e)

Notice that the sign of v does not affect the values of state
Jacobian matrices, thus confirming the symmetry property
of the system. These matrices are only dependent on the
states _ϵ (for System α), _ϵb (for System β), and z. The re-
sulting values of Jacobian matrices at the slipping equi-
librium points are obtained by setting v = vr. For the PID
cases, the state Jacobian matrices can be defined as

Aα,i ¼

2
64

0 ½ ki 0 0 ��
0� 1

ma
0

�T
Aα

3
75 (26)

And

Aβ,i ¼

2
64

0 ½ ki 0 0 0 0 ��
0 0 � 1

mt
0 0

�T
Aβ

3
75
(27)

Which are obtained by rearranging the sequence of the
states (i.e. moving ϵi to the first state).

Finally, it is helpful to convert the dimensional Jacobian
matrix to a nondimensional form such that the eigenvalues
are scaled for easier comparison. The general procedure
is to select a principal natural frequency ωn and use the
corresponding nondimensional time tn = ωnt. In this study,
the principal natural frequency for the two systems are
selected as

ωn,α ¼
ffiffiffiffiffiffi
kp
mα

s

ωn,β ¼
ffiffiffiffiffi
kp
mt

s (28)

The nondimensional state Jacobian matrices of the
systems can then be obtained as

An,α,i ¼ Vn,α,1Aα,iVn,α,2 (29a)

An,β,i ¼ Vn,β,1Aβ,iVn,β,2 (29b)

Where

Vn,α,1 ¼ diag
��

1 ω�1
n,α ω�2

n,α ω�1
n,α

	�
(30a)

Vn,α,2 ¼ diag
��

ω�1
n,α 1 ωn,α 1

	�
(30b)

Vn,β,1 ¼ diag
��

1 ω�1
n,β ω�1

n,β ω�2
n,β ω�2

n,β ω�1
n,β

	�
(30c)

Vn,β,2 ¼ diag
��

ω�1
n,β 1 1 ωn,β ωn,β 1

	�
(30d)

Note that the stability implied by the nondimensional
Jacobian matrices are identical to those from the di-
mensional matrices.

3.2. Properties of state Jacobian matrices

To guarantee the stability of the linearized system, the state
matrix has to be Hurwitz, that is, all eigenvalues have
negative real parts. This can be evaluated by directly cal-
culating the eigenvalues or applying the Routh–Hurwitz
criterion (Ogata, 2010) on the characteristic equations
calculated from the state Jacobian matrices. For example,
the characteristic equation of Aα can be calculated as

s3 þ b1s
2 þ b2sþ b3 ¼ 0 (31)

where the roots of this characteristic equation are the ei-
genvalues, and

b1 ¼ azðvÞ þ
�
kd þ σ2 � σ1ρf ðvÞv2



v2s
	

mα
(32a)

b2 ¼
�
kp þ kdazðvÞ þ σ2azðvÞ � σ0ρf ðvÞv2



v2s
	

mα
(32b)

b3 ¼ azðvÞkp
mα

(32c)

If b1b2 > b3, the system is linearly stable. While a complete
symbolical evaluation of the Hurwitz property is very
difficult due to the complexity of the system, for System α
under PD control, it is observed that when σ0 → ∞, other
coefficients have trivial effects on the stability of the system.
This leads to b1 ≈ az(v), and the simplified stability con-
dition can be obtained as

b1b2 � b3 ≈
a2z ðvÞ
m2

α

 
kd þ σ2 � jvjð fS � fCÞe�v=vs2

v2s

!
> 0

(33)

Note that σ1 is not presented in the above expression.
This indicates that micro-damping does not affect system
stability when σ0 → ∞. Also, smaller vs requires larger kd or
σ2 to stabilize the system, especially when v is close to vs. In
addition, for a fixed vs, the lower bounds of kd and σ2 that
stabilize the system reach maximum values when v ¼
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vs=
ffiffiffi
2

p
; this is obtained by taking the derivative of

jvjðfS � fCÞe�ðv=vsÞ2=v2s with respect to v.
Several other interesting properties of the systems can

also be obtained by examining the structure of the Jacobian
matrices. Notice that all the matrices can be decomposed
into the following structure

A ¼
�

AM ½ 0 … 0 av,z �
½ 0 … 0 az,v �T �azðvÞ

�
(34)

where AM is the submatrix corresponding to the states from
the multibody system. For both systems, it can be observed
that ρf (v) → 0 when |v|� vs. As a result, when the relative
velocity at friction surface is significantly larger than the
Stribeck velocity threshold, az,v → 0 and the eigenvalues of
A consist of eigenvalues of AM and �az(v) , respectively;
the latter is negative by default. This indicates that the
effects of friction dynamics and multibody dynamics on the
system stability are decoupled when the velocity is large.
The same conclusion can be drawn when vs �|v| > 0 or fS ≈
fC, which all lead to az,v → 0. Based on this property, the
analysis scope can be reasonably focused on the low speed
range (i.e., when vr is close to vs). Similarly, the structures of
Ai indicate that, when ki is small, the eigenvalues from A
will be unaffected and carried over to Ai. This property
makes it convenient to distinguish the eigenvalue in-
troduced by the additional integral state ϵi.

4. Results and discussion

In this section, we first validate the theoretical ob-
servations using numerical simulation, and then, we ex-
amine the effects of LuGre friction and FI on the
performance and stability of PID-controlled motion stages.
The default design and friction parameters obtained from
the prototype in previous experimental studies (Dong
et al., 2017; Dong and Okwudire, 2018; Dong et al.,
2019) are

mt ¼ 1 kg
mb ¼ 0:5 kg
fS ¼ 6:5N

(35a)

fC ¼ 5:1N
kFI ¼ 4 × 104 N=m
cFI ¼ 2Ns=m

(35b)

vs ¼ 16:7mm=s
σ0 ¼ 2:2 × 106 N=m

(35c)

σ1 ¼ 237Ns=m
σ2 ¼ 14:2Ns=m

(35d)

The default PID controller gains are

kp ¼ 2 × 104 N=m
ki ¼ 1 × 106 N=ms

(36a)

kd ¼ 2 × 102 Ns=m (36b)

The default reference velocity is chosen as vr = 10 mm/s.
The initial conditions of the numerical simulations are
selected as x+α ¼ ½0,� vr,0; 0�T and x+β ¼ ½0; 0,�vr,
�vr, 0; 0�T.

4.1. Numerical validation of the theoretical results

To validate the results from the linear stability analysis,
numerical simulations are first carried out using the built-in
ODE solver ode45 in MATLAB with the nonlinear system
equations. Constant velocity motion is used as the reference
trajectory, that is, r = vrt. The parameters used in the nu-
merical validation are from equations (35a–d) and (36a, b).

It is observed that the numerical stability analysis closely
matches with the one obtained analytically. An example
carried out on System β is demonstrated in Figure 2, which
compares the linear stability regions with the steady-state
oscillation amplitudes, respectively, within the ki-kp domain
and the ki-kd domain. The stability regions are calculated by
evaluating the Hurwitzness of the state matrix Aβ,i through
eigenvalues. The steady state oscillation amplitudes are
calculated by simulating the ODE of System β until the
transient responses are phased out.

The analytical results yield a boundary that separates the
stable and unstable regions. Although the numerical results
do not provide a direct indication of stability, the steady-state
solutions of x+β that converge to zeros (i.e. fixed points) can
be separated from the ones with nonzero amplitudes (i.e.
oscillations). The separation contours match excellently with
the stability boundaries calculated analytically. This is an
indication that the stability of the nonlinear system can be
reliably evaluated through the analytical approach from the
linear analysis, which leads to the following parametric study
on the stability of PID-controlled motion stages.

4.2. Effect of friction on system stability

In the servo-controlled motion stage, the PID controller is
designed to first stabilize the system. Therefore, the effects
of friction on the stability of PID-controlled motion stages
are investigated with a focus on how the ranges of stable
control gains are affected. As discussed in the modeling
section, the LuGre friction force ff is determined by a total of
seven parameters—v, vs, fS, fC, σ0, σ1, and σ2, among which
only v is state dependent. Based on the fact that v = vr at the
equilibrium points, the ranges of stable PD control gains
(i.e. ki = 0) at the default reference velocity vr = 10 mm/s are
compared between System α and β-see Figure 3. It can be
observed that a decrease in the stable gain region occurs
when FI is applied. Similar observation is also shown in
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Figure 4, where the variation of the stable gain boundary
with different vr is presented. In general, it is much harder
to tune the PD gains that can stabilize System β to the
equilibrium point. For System α, the boundary can be
predicted by equation (33). The results suggest that kd
needs to be larger than a certain value to overcome the
destabilizing effect of friction. It is also observed that at
the critical velocity vr ¼ vs=

ffiffiffi
2

p
≈ 11:8 mm/s, System α

has the smallest stable region. This matches with the
finding from equation (33). Although it is harder to obtain
such a value for System β, Figure 4 shows that the
smallest stable gain boundary also appears around
vr ¼ vs=

ffiffiffi
2

p
. The following analysis is carried out at vr =

10 mm/s for simplicity. Notice from Figure 4 that at vr =
10 mm/s, the stability boundary is close to that from the
worst case scenario observed at the critical velocity
vr ¼ vs=

ffiffiffi
2

p
.

In the presence of integral action, the effects of friction
parameters on the ranges of stable control gains are shown
in Figure 5. In general, an extremely large ki leads to in-
stability, which is true for both systems in this study. For
system α, increasing kp and kd allows the tuning of a larger
stable ki. Note that kp(kd + σ2) > kimα is the stability criterion
when the LuGre dynamics are decoupled from the rigid-
body dynamics (i.e. |vr|� vs or vs� |vr|). The coupling with
friction reduces the stability boundaries in both motion
stages (i.e. the orange areas in Figure 5 are subtracted from
the original stable region), which is particularly significant
for System β. Finally, note that the stability boundaries are
hardly affected within the range where ki is small.

Figure 6 shows the stable kp-kd boundaries as the integral
gain ki changes. Observe that the increase of ki reduces and
shifts the stable PD control gain domains for both systems.
This indicates that extra care should be taken when using

Figure 2. The analytical stability region of proportional–integral–derivative control gains and its corresponding steady state oscillation

error amplitude map acquired through the numerical simulation. For analytical results, the stable (light yellow) and unstable (dark blue)

regions are separated by the stability boundaries (red); for numerical results, the white contours enclose the steady state solutions that

converge to zeros (i.e. fixed points).

Figure 3. Region of stable proportional–derivative gain for system α and β at vr = 10 mm/s. The stable (light yellow) and unstable

domains (dark blue) are separated by the stability boundary (red)

8 Journal of Vibration and Control 0(0)



a ki of large magnitude to quickly overcome the disturbance.
For System β, the stability boundaries of the PD control
gains are not much affected by the default value of ki from
equations (36a, b) when compared with the PD control case
(where ki = 0).

To summarize, the friction can cause instabilities of PID-
controlled motion stages both with and without FI. The
observations of the effect of the tracking velocity vr on the
stability boundaries corroborate the analytical findings from
the previous section. It is also observed that FI, with the
default parameters, can further reduce the ranges of stable
PID gains for System β. This indicates that the choice of FI

parameters is critical to the controller design and the sta-
bility of the motion stage.

4.3. Effect of friction isolator on system stability

An interesting phenomenon observed in the previous
subsection is that System β experiences unstable–stable–
unstable transition as kp or kd increases. This is different
from System α, in which stability is guaranteed once kp or
kd is larger than a critical value. To further investigate this,
the trajectories of the eigenvalues of the systems are
evaluated using root locus plots. Based on the default

Figure 4. The evolution of the boundary of the stable proportional–derivative gain domain (enclosed by the boundary) with respect to vr
for both systems, where the white contour is the boundary at vr = 10 mm/s (also observable in Figure 3), and the black contour is the

boundary at vr ¼ vs=
ffiffiffi
2

p
≈ 11:8mm=s. The dash-line edges indicate the openings of the boundary (i.e. the system does not become

unstable with very high kd gains or kp gains).

Figure 5. Stability region of system α and β under proportional–integral–derivative control, where: the light yellow areas (marked as

stable) indicate stability for both vr = 10 mm/s and |vr|� vs (i.e. friction dynamics is isolated) cases; the dark blue areas (marked as

unstable) indicate instability for both vr = 10 mm/s and |vr|� vs; and the remaining orange areas indicate instability for vr = 10 mm/s but

stability when |vr|� vs.
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parameters in equations (35a–d) and (36a, b), it is observed
that the following eigenvalues are critical to system
stability:

1. An eigenvalue λi (for both systems) introduced by the
additional integral state ϵi, that is, λi = 0 at ki = 0.

2. A negative real eigenvalue λz (for both systems) that
is introduced by the bristle dynamics with large
magnitude.

3. Eigenvalues λt and λb (for System β alone) in
complex pairs that are introduced by the table and
bearing.

The root locus of System α for the abovementioned
eigenvalues is presented in Figure 7. Because λz has a very
large magnitude compared with the other eigenvalues, its
trajectories have been excluded from the plot. The figure
demonstrates the transition of system stability from unstable
to stable as kp and kd increase. Note that for System β, two
eigenvalue trajectories (i.e. in blue and red) are very similar
to those in the root locus of System α; they show the same
unstable–stable transition as kp and kd increases. However,
the additional trajectories of the complex eigenvalue pairs
(in green) demonstrate the unstable–stable–unstable tran-
sition as they both cross the imaginary axis twice. This

Figure 7. Non-dimensionalized root locus (excluding λz) of system α and β with respect to kp and kd with vr = 10 mm/s and ki = 1 ×

106 N/ms, where: different colors are used to distinguish eigenvalues; the dotted and solid lines indicate the range of the locus where the

systems are unstable (i.e. one or more eigenvalues have positive real parts) and stable (i.e. all eigenvalues have negative real parts),

respectively; the ”x” and ”+” markers respectively indicate the beginning and the end of the locus. In the zoomed-in subplots, the black

line is the imaginary axis (marked with ”Im.”).

Figure 6. The evolution of the boundary of the stable kp-kd domain (enclosed by the boundary) with respect to ki for both systems,

where the black contour is the boundary at the default ki = 1 × 106 N/ms. The dash-line edges indicate the openings of the boundary (i.e.

the system does not become unstable with very high kd gains or kp gains)
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explains why the presence of FI shrinks the range of kp and
kd values that can stabilize the system. An explanation of the
stable-to-unstable transition in System β is as follows: when
kp and kd become very large, the table is rigidly “con-
strained” to the tracking reference, resulting in qt ≈ r. This
leads to System β being reduced to a one-body system such
as System α, where kFI and cFI play the roles of kp and kd,
respectively. In the current case, cFI is small, which leads to
instability of the system due to the frictional effect.

Therefore, it is very important to study the effects of FI
parameters on system stability. By defining μk , μc 2Rþ, the
FI stiffness and damping can be scaled as kFI = μkkFI,0 and
cFI = μccFI,0, respectively where kFI,0 and cFI,0 are the default
values from equation (35a–d). The resulting stable kp-kd
boundary with respect to different scaling coefficients is
shown in Figure 8. The result indicates that increasing kFI
and cFI both extend the range of stable PID controller gains.
Note that if kFI and cFI are extremely large, the table and
bearing will be rigidly connected, which also reduces
System β to System α.

Previous results show the change of stable PD regions as
the FI parameters vary. Alternatively, the influence of

design parameters can be visualized by examining their
stable combinations with a fixed set of controller param-
eters. Two new coefficients μt, μb 2Rþ are defined so that
the mass of the table and bearing can be scaled as mt = μtmt,

0 and mb = μbmb,0, respectively. The corresponding stability
charts in the μk � μc and μt � μb domains are shown in
Figure 9 with the default controller gains. Similar to the
previous analysis, it is observed that the stability is im-
proved by increasing kFI and cFI. The results on μt and
μb show that the range of stable mt-mb combinations is quite
narrow due to the introduction of FI. This may limit the
payload that a motion stage can handle in practice. This
problem may be alleviated by increasing the FI damping cFI
or adopting smaller integral gain ki as shown in Figure 10.

In summary, the choice of FI parameters is essential to
the stability of the system. There is a trade-off between
better isolation performance (in terms of mitigating un-
desirable effects of premotion friction) and improved sys-
tem stability (in terms of stable regions of PID controller
gains) (Dong et al., 2017; Dong and Okwudire, 2018). The
linear stability analyses from this section can serve as useful
guidelines during the design optimizations of FI.

Figure 9. Stability of the system at different design parameters with the default proportional–integral–derivative gains and vr defined in
equation (36a, b), where stable (light yellow) and unstable (dark blue) domains are separated by the stability boundaries (red)

Figure 8. The development of boundary of the stable kp-kd region (enclosed by the boundary) with respect to μk and μc for system
β with vr = 10 mm/s and ki = 1 × 106 N/ms, where the black contours are the boundary with the default parameters.
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4.4. Effect of FI on the limit cycle amplitude of the
motion stage

This subsection examines the role of the FI on the limit
cycle amplitude of the motion stage using numerical sim-
ulations. Figure 11 shows the time domain data of _ϵ and _ϵb
with different controller gains (i.e., ki and kd). Note that
nondimensional time tn = ωnt is used to provide a good time
span for observation. For both Systems α and β, cases (2)
and (3) are unstable. However, two types of instability are
observed for System α: the instability in case (2) is caused
by an extremely large ki that eventually leads _ϵ to infinity;
the instability in case (3) is the stick–slip phenomenon
caused by the initial instability of the PD controller as

a result of the coupling between friction dynamics and
multibody dynamics (i.e., refer to the stability region in
Figure 3). Although the ranges of stable PID gains are
reduced in the presence of the FI, case (2) indicates that the
implementation of the FI may prevent the error from going
unbounded. In addition, while a large kd causes instability
for System β as shown in case (4), it can be observed that the
corresponding _ϵ has very small oscillation amplitude which
may not affect the precision of the motion stage in practice.

The simulated velocity errors using different design
parameter scaling factors are shown in Figure 12. In general,
the system stability with different combinations of design
parameters is well predicted by the linear analysis. In-
terestingly, the unstable oscillation in case (4) does not show

Figure 11. Comparison of velocity error time trajectories (vr = 10 mm/s) with different ki and kd for System α and β, where (1) solid -

default gains in Equations (36a, b), (2) dot - change in ki = 4.5 × 106 N/ms, (3) dash-dot - changes in ki = 1 × 105 N/ms and kd = 20 Ns/m, (4)

dash - change in kd = 1 × 103 Ns/m.

Figure 10. The evolution of the boundary of stable μt-μb range (enclosed by the boundary) with respect to ki and μc, where the black
contours are the boundary with the default parameters observable from Figure 9. The dot-line edges indicate the openings of boundary

(i.e. smaller μt will not lead to instability).
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any pattern of stick–slip, even though the instability is
related to the coupling between friction dynamics and
multibody dynamics. The numerical results from different
μt and μb combinations in Figure 12 match with the ob-
servation in Figure 10, which shows that the system stability
is very sensitive to the change of masses in the presence of

FI because only case (4) is stable with the choice of scaling
factors between 0.5 and 2.

The above numerical results show that the majority of the
instability behaviors are bounded, indicating the existence
of limit cycles. Existing literature (Johanastrom and
Canudas-De-Wit, 2008; Saha et al., 2016) has studied the

Figure 13. Phase portraits with limit cycles highlighted in solid red lines, where the control gains are (1) system α, limit cycle - ki = 1 ×

106 N/ms, kp = 6.5 × 105 N/m, kd = 20 Ns/m; (2) system β, limit cycle - ki = 1 × 106 N/ms, kp = 6.5 × 105 N/m, kd = 20 Ns/m; (3) system β,
chaotic - ki = 8 × 106 N/ms, kp = 2 × 104 N/m, kd = 2 × 102 Ns/m; and (4) system β, ϵb - ki = 1 × 107 N/ms, kp = 2 × 104 N/m, kd = 2 ×

102 Ns/m.

Figure 12. Comparison of velocity error time trajectories (vr = 10 mm/s) with different scaling factors μ , where for μk & μc: (1) solid -
μk = 0.1, (2) dot - μk = 10, (3) dash-dot - μk = 0.1 and μc = 100, (4) dash - μk = 3 and μc = 0.25; and for μt & μb: (1) solid - μb = 2, (2) dot - μt =
2, (3) dash-dot - μb = 0.5, (4) dash - μt = 0.5.
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amplitudes of limit cycles in the friction oscillator with
LuGre dynamics (which is equivalent to System α).
Therefore, phase portraits of the systems under different
control gains are compared in Figure 13. In the limit cycle
subfigures, the same parameters are used for Systems α and
β. Note that the limit cycle amplitude of System β is sig-
nificantly smaller than that of System α. The corresponding
time domain data of 2 and _ϵ are also plotted in Figure 14.
This shows that the introduction of FI can reduce the
amplitude of friction-induced vibration, thus agreeing with
the previous experimental studies (Dong et al., 2017; Dong
and Okwudire, 2018). Sub-Figure (3) illustrates that chaotic
behavior may be observed with certain parameters in the
presence of FI, and sub-Figure (4) demonstrates the limit
cycle of the bearing states2b, where the stick–slip effect can
be easily noticed.

The numerical study has presented many interesting
observations about the characteristics of the systems. While
these results are in agreement with the stability analysis,
many nonlinear features of the system, such as the cause of
chaotic behaviors and the reduction of limit cycle ampli-
tudes with the FI, will need further study using nonlinear
analysis.

5. Conclusion and future work

This article analytically and numerically examined the
influence of friction isolator on the dynamics of a PID-
controlled motion stage under the LuGre friction dynamics.
Linear stability analysis was performed at the slipping
equilibrium point of the systems. The eigenvalues and
stability of the system were parametrically studied with
respect to the PID control gains, FI design parameters, and
friction parameters. Then, the numerical analysis was carried
out, which validated the analytical results from linear stability
analysis, and provided further insights into the nonlinear
behavior of the system. The main results are as follows:

1. The effects of the friction parameters on the stability
of the system with FI share similar characteristics as
that without FI. Unless a very large integral gain is

used, the stability of the system under the PID controller
is dominated by the proportional and derivative gains.

2. Friction isolator can increase the stability region.
Large kFI or cFI may lead to larger regions for stable
PID gain selection, in particular, allowing larger stable
ki to be paired with small kp and kd for faster steady-
state error convergence. Raising cFI and lowering ki
also allow a more flexible table-bearing mass ratio and
larger payload capacity.

3. The numerical examples show that FI can reduce the
amplitudes of limit cycles and prevent unbounded
error, hence improve the precision of the motion stage.

The findings in this work also lay the foundation for future
investigations, which include the experimental validation of
the dynamical analysis results, the nonlinear analysis of the
motion stage that features the nonlinear FI stiffness and the
friction model, and the optimization of FI design parameters
for better performance and stability of the motion stage.
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