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A B S T R A C T

Precision motion stages are used in advanced manufacturing, metrological applications, and semiconductor
industries for high precision positioning with high speed. However, friction-induced vibration undermines the
performance of a servo-controlled motion stage. Recently, it was found that passive isolation in the form
of friction isolator is very effective to mitigate the undesirable effects of friction in precision motion stages.
This work presents, for the first time, a detailed nonlinear analysis of the dynamics of motion stage with a
friction isolator. We consider a lumped parameter model of the precision motion stage with PID and a friction
isolator modeled as two degrees of freedom system. Linear analysis of the system in the space of integral
gain and reference velocity reveals that the inclusion of friction isolator increases the local stability region of
steady states. We further observe the sensitivity of the stability of steady states towards the internal resonance
between the motion stage and friction isolator. The influence of friction isolator on the nonlinear response of
the system is examined analytically using the method of multiple scales and harmonic balance. We observe
that the inclusion of friction isolator does not change the nature of Hopf bifurcation for higher values of
reference velocity, and it remains subcritical bifurcation with or without friction isolator. However, for lower
values of reference velocity, the inclusion of friction isolator leads to change in bifurcation from supercritical
to subcritical for the given values of parameters. This observation further implies that the inclusion of friction
isolator increases the local stability of steady states, whereas the global stability of steady states depends on the
interaction between friction isolator and operating parameters. Furthermore, a detailed numerical bifurcation
analysis of the system reveals the existence of period-2, period-4, quasi-periodic, and chaotic solutions. Also,
the stability of period-1 solutions near Hopf point is determined by Floquet theory, which further reveals the
existence of period-doubling bifurcation.

1. Introduction

High-speed and high-precision motion stages (at macro and nano-
level) are widely used for inspections and assembly processes in ma-
chining, additive manufacturing, and semiconductor manufacturing in-
dustries [1–4]. Depending on the type of supporting interface between
the motion stage and rigid structure, these high-precision motion stages
can be broadly classified into four different categories: (1) flexural-
based, (2) magnetic-based, (3) fluidic-based, and (4) mechanical-bearing
based [1,5–7]. However, the use of mechanical bearing-based motion
stages (MBMS) has been found more popular as compared to other
motion stages due to their large motion range, high off-axis stiffness,
cost-effectiveness, and easy installation [7]. In most applications, the
motion of MBMS is controlled by either one or a combination of
proportional (P), integral (I), and derivative (D) terms [8–10]. The
increasing demands for high-performance control systems (i.e., high
operating velocity and acceleration) lead to self-excited limit cycles
due to the friction between contact surfaces. These vibrations, further,
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cause errors in positioning precision, long settling times, and stick–slip
phenomena [8,11–16]. Therefore, it would be significantly beneficial
for industries to develop effective methodologies and understand the
dynamics of MBMS to mitigate or control these self-excited vibrations
in the system.

Different compensation methods are used to control or mitigate
friction-induced vibrations. The main idea behind these methods is
to provide an equal and opposite force, through a control system, to
cancel out friction. These methods include (1) high-gain feedback [13],
(2) model-based feedforward and feedback controllers [8,15,17,18],
and (3) advanced controllers (adaptive controller, model predictive
controller) [19–22]. Even though high-gain feedback methods could be
very effective in suppressing friction-induced vibrations, they make the
resulting systems to be very sensitive to instability, sensor noise, chat-
tering, and limit cycles. Whereas, model-based controllers often suffer
from robustness and stability problems due to the rapid and nonlinear
changes of pre-motion friction, thus limiting their practicality [13].
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Fig. 1. Schematic of precision motion stage (i) with FI (System-𝛼) and (ii) without FI (System-𝛽).

Fig. 2. Schematic of the friction dynamics between the contact surfaces.

For the case of advanced controllers, the algorithm complexity (deter-
mined by the structural model) leads to unsatisfactory performance at
high-frequency controls due to hardware limitations [23,24].

Recently an efficient and more robust method has been developed
to mitigate the effect of friction by connecting the mechanical bearing
to the motion stage using a joint that is very compliant in the motion
direction and hence, isolating the motion stage from the nonlinearities
associated with friction. This method is known as a compliant joint
method, and the device is known as friction isolator (FI) [17,18]. It has
been experimentally demonstrated that a motion stage with FI achieves
a significantly reduced settling time compared to the conventional
stage without FI [18]. A detailed parametric analysis on the stability
of the steady states under the effect of dynamical friction model,
i.e., the LuGre model [25] reveals that a proper choice of FI properties
allows to use high values of control gain (PID), which further help in
controlling/suppressing self-excited friction-induced vibrations [26].

We emphasize that the use of FI to control friction-induced in-
stabilities is new in the literature, and existing work only provides
information [26,27] about the local stability properties of steady states.
A detailed nonlinear analysis of a PID controlled motion stage with
FI has not been performed, and therefore, this work is believed to be
the first study to examine this problem. In this work, we model FI as
a lumped parameter model with a linear spring–mass–damper system.
Further, we perform the linear and nonlinear analysis of the combined
system analytically under the effect of the LuGre friction model [25].
We observed that the inclusion of FI increases the local stability of the
steady states of the system in the space of control parameters, more
specifically in the space of integral feedback gain-reference velocity,
and allows the use of higher value of integral feedback gain for a
given value of reference velocity. However, the global stability of
the steady states, i.e., the nature of Hopf bifurcation depends on the
complex interaction between FI and integral control, and can change
from supercritical to subcritical or remains subcritical depending on the
value of reference velocity. The rest of the paper is organized as follows.
In Section 2, we present the complete mathematical model of MBMS.
It also includes a brief description of the LuGre model, along with the
nondimensionalization of governing equations of motion. Linear stabil-
ity analysis and accordingly, the analytical forms of the Hopf points
are presented in Section 3. In Section 4, a detailed analytical nonlinear
analysis of the system is presented using the method of multiple scales
and harmonic balance. Results from linear and nonlinear analysis along

with a numerical bifurcation analysis are presented in Section 5. In
Section 6, some conclusions are drawn from the findings of the analysis.

2. Mathematical formulation

In this section, we formulate a lumped parameter model to study the
dynamics of a PID controlled precision motion stage with and without
friction isolator (FI). We model the PID controlled motion stage as two
degrees of freedom system with FI and single degree of freedom system
without FI as shown in Fig. 1(i) and (ii), respectively. For the sake
of convenience, the motion stage with and without FI are referred to
as System-𝛼 and System−𝛽, respectively. In Fig. 1, 𝑢1 is the feedback
control force from PID, 𝑟(𝑡) is the reference/setpoint signal, 𝑚𝑡 and
𝑚𝑏 are the masses of the motion stage and FI, respectively. Also, the
effect of FI on the dynamics of the precision motion stage is realized
through a spring–damper system with the stiffness 𝑘𝑓𝑖 and the damping
coefficient 𝑐𝑓𝑖. Note that, in the case of System-𝛼, FI is in direct contact
with the supporting rigid surface, and hence, the frictional force, 𝐹𝑓 ,
acts between FI and the supporting surface. However, in the absence
of FI, i.e., in the case of System-𝛽, the precision motion stage is in
direct contact with the rigid surface, and therefore, the friction force
acts between the motion stage and the supporting surface. Therefore,
if 𝑋1(𝑡) and 𝑋2(𝑡) are the motion of precision motion stage and FI,
respectively, then the governing equations of motion for System-𝛼 and
System-𝛽 can be written as
System-𝛼:

𝑚𝑡𝑋̈1 + 𝑘𝑓𝑖
(

𝑋1 −𝑋2
)

+ 𝑐𝑓𝑖
(

𝑋̇1 − 𝑋̇2
)

= 𝑢1 , (1a)

𝑚𝑏𝑋̈2 + 𝑘𝑓𝑖
(

𝑋2 −𝑋1
)

+ 𝑐𝑓𝑖
(

𝑋̇2 − 𝑋̇1
)

= −𝐹𝑓 , (1b)

System-𝛽:

𝑚𝑡𝑋̈1 = 𝑢1 − 𝐹𝑓 . (2)

In the above governing equations of motions, the controller force
from PID, 𝑢1, is defined as

𝑢1 = −𝑘∗𝑝𝑒 − 𝑘∗𝑑 𝑒̇ − 𝑘∗𝑖 ∫ 𝑒 dt , (3)

where 𝑘∗𝑝 , 𝑘
∗
𝑑 , and 𝑘∗𝑖 represent the proportional, differential and in-

tegral gains, respectively, and 𝑒 represents the tracking error. This
tracking error can be expressed in terms of the motion of the stage (𝑋1)
and the reference signal (𝑟) as 𝑒 = 𝑋1 − 𝑟 .

On substituting the expression for control force, 𝑢1, in Eqs. (1), (2),
and rewriting resulting equations in terms of tracking error (𝑒) we get
the modified equations for
System-𝛼:

𝑚𝑡𝑒 + 𝑘∗𝑑 𝑒̇ + 𝑘∗𝑝𝑒 + 𝑘∗𝑖 ∫ 𝑒dt + 𝑘𝑓𝑖
(

𝑒 − 𝑒𝑏
)

+ 𝑐𝑓𝑖
(

𝑒̇ − 𝑒̇𝑏
)

= −𝑚𝑡 𝑟̈ , (4a)

𝑚𝑏𝑒𝑏 + 𝑘𝑓𝑖
(

𝑒𝑏 − 𝑒
)

+ 𝑐𝑓𝑖
(

𝑒̇𝑏 − 𝑒̇
)

= −𝐹𝑓−𝑚𝑏 𝑟̈ , (4b)

and System-𝛽:

𝑚𝑡𝑒 + 𝑘∗𝑑 𝑒̇ + 𝑘∗𝑝𝑒 + 𝑘∗𝑖 ∫ 𝑒dt = −𝐹𝑓−𝑚𝑟̈ . (5)

In the above governing equations of motions for System-𝛼, we define
𝑒𝑏 = 𝑋2 − 𝑟. Next, we model the dynamical friction between the
contact surfaces using the LuGre friction model [25]. The LuGre model
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is one of the most widely used forms of a dynamic friction model as it
includes viscous friction, pre-motion friction (pre-sliding/pre-rolling),
and hysteresis effects together [25,28]. In this model, the asperities in
the contact surfaces are considered as elastic spring-like bristles with
damping, and the microscopic degrees of freedom associated with the
bristle deflections are used to define the friction force (as shown in
Fig. 2). Therefore, the total friction force in the LuGre friction model is
considered to be a summation of the average force associated with the
deflection of the bristles and a viscous term proportional to the relative
velocity between the surfaces in contact. If 𝑧 represents the average
bristle deflection (internal state variable), then the friction force in the
LuGre model is given by

𝐹𝑓 = 𝜎∗0𝑧 + 𝜎∗1 𝑧̇ + 𝜎∗2𝑉𝑟 , (6)

where 𝜎∗0 and 𝜎∗1 are the contact stiffness and the micro-damping of
the bristle, respectively, 𝜎∗2 is the macroscopic viscous friction between
the contact surfaces and 𝑉𝑟 is the relative velocity between moving
surfaces. It can be observed from Eq. (6), that unlike other friction
models, the LuGre friction model does not only depend on the relative
velocity but also on the evolution of the internal state variable 𝑧.
Therefore, instead of providing a unique value of the friction force for a
given relative velocity during acceleration and deceleration, the LuGre
model can give different values of friction force in these two phases
depending on the evolution of the internal state variable.

The evolution of the average bristle deflection, i.e., 𝑧, with time is
governed by the following differential equation:

𝑧̇ = 𝑉𝑟 −
𝜎∗0 |𝑉𝑟|
𝑔(𝑉𝑟)

𝑧 = 𝑉𝑟

(

1 −
𝜎∗0 sgn(𝑉𝑟)

𝑔(𝑉𝑟)
𝑧

)

, (7)

where sgn(.) is the Signum function, and 𝑔(𝑉𝑟) is a positive valued
function, i.e., 𝑔(𝑉𝑟) > 0 which further describes the Stribeck effect
in the system. We emphasize that for the case of System-𝛼, FI is in
direct contact with the supporting rigid surface, therefore, the relative
velocity for System-𝛼, 𝑉𝑟𝛼 , is defined as 𝑋̇2 = 𝑒̇𝑏 + 𝑟̇. However, in
contrary to System-𝛼, for the case of System-𝛽, the motion stage is
in direct contact with the surface, which further implies the relative
velocity for System-𝛽 as 𝑉𝑟𝛽 = 𝑋̇1 = 𝑒̇ + 𝑟̇.

To capture dropping characteristic, Wit et al. [25] suggested the use
of Gaussian function model for 𝑔(𝑉𝑟) in the form of :

𝑔(𝑉𝑟) = 𝑓 ∗
𝐶 + (𝑓 ∗

𝑆 − 𝑓 ∗
𝐶 )𝑒

−(𝑉𝑟∕𝑉𝑠)2 , (8)

where 𝑓 ∗
𝐶 is the Coulomb friction, 𝑓 ∗

𝑆 is the static friction, and 𝑉𝑠
is the Stribeck velocity threshold. However, the limitations of this
model have been observed in the analytical analysis of a system with
the LuGre model [29,30]. To overcome this shortcoming, the positive
valued function 𝑔(𝑉𝑟) was modified and represented by an exponential
function [30]

𝑔(𝑉𝑟) = 𝑓 ∗
𝐶 + (𝑓 ∗

𝑆 − 𝑓 ∗
𝐶 )𝑒

−𝑎̃|𝑉𝑟| , (9)

where 𝑎̃ is the slope parameter. Note that Eq. (7) along with Eqs. (4)
and (5) define the dynamics of System-𝛼 and -𝛽, respectively. Having
defined the equations of motion, now we introduce the following nondi-
mensional scales and parameters to nondimensionalize the system,
which further ease the analytical treatment of the system:

𝑥 = 𝑒
𝑋0

, 𝑥𝑏 =
𝑒𝑏
𝑋0

, 𝑧̃ = 𝑧
𝑋0

, 𝑋0 =
𝑔
𝜔2
𝑝
, 𝜔𝑝 =

√

𝑘∗𝑝
𝑚𝑡

, 𝜏 = 𝜔𝑝𝑡,

𝜁 =
𝑘∗𝑑

2𝑚𝑡𝜔𝑝
, 𝑘𝑖 =

𝑘∗𝑖
𝑚𝑡𝜔3

𝑝
, 𝑣𝑟𝛼 =

𝑉𝑟𝛼
𝑋0𝜔𝑝

,

𝑣𝑟𝛽 =
𝑉𝑟𝛽
𝑋0𝜔𝑝

, 𝜎0 =
𝜎∗0

𝑚𝑡𝜔2
𝑝
, 𝜎1 =

𝜎∗1
𝑚𝑡𝜔𝑝

, 𝜎2 =
𝜎∗2

𝑚𝑡𝜔𝑝
,

𝑓𝑐 =
𝑓 ∗
𝑐

𝑚𝑡𝑋0𝜔2
𝑝
, 𝑓𝑠 =

𝑓 ∗
𝑠

𝑚𝑡𝑋0𝜔2
𝑝
, 𝑎 = 𝑎̃𝜔𝑝𝑋0,

𝜅 =
𝑐𝑓𝑖

2𝑚𝑡𝜔𝑝
, 𝑘𝑟 =

𝑘𝑓𝑖
𝑘𝑝

, 𝑚𝑟 =
𝑚𝑡
𝑚𝑏

. (10)

Using the above-mentioned nondimensional scales and parameters
and assuming constant reference velocity signal (𝑟̈ = 0), the governing
equations of motion can be nondimensionalized and written as for
System-𝛼:

𝑥̈ + 2𝜁𝑥̇ + 𝑥 + 𝑘𝑖 ∫ 𝑥d𝜏 + 𝑘𝑟
(

𝑥 − 𝑥𝑏
)

+ 2𝜅
(

𝑥̇ − 𝑥̇𝑏
)

= 0 , (11a)

𝑥̈𝑏 + 𝑘𝑟𝑚𝑟
(

𝑥𝑏 − 𝑥
)

+ 2𝜅𝑚𝑟
(

𝑥̇𝑏 − 𝑥̇
)

= −𝑚𝑟

(

𝜎0𝑧̃ + 𝜎1𝑣𝑟𝛼

(

1 −
𝜎0sgn(𝑣𝑟𝛼)
𝑔(𝑣𝑟𝛼)

𝑧̃
)

+ 𝜎2𝑣𝑟𝛼

)

, (11b)

̇̃𝑧 = 𝑣𝑟𝛼

(

1 −
𝜎0sgn(𝑣𝑟𝛼)
𝑔(𝑣𝑟𝛼)

𝑧̃
)

, (11c)

and for System-𝛽:

𝑥̈ + 2𝜁𝑥̇ + 𝑥 + 𝑘𝑖 ∫ 𝑥d𝜏 = −
(

𝜎0𝑧̃ + 𝜎1𝑣𝑟𝛽

(

1 −
𝜎0sgn(𝑣𝑟𝛽 )
𝑔(𝑣𝑟𝛽 )

𝑧̃
)

+ 𝜎2𝑣𝑟𝛽

)

,

(12a)

̇̃𝑧 = 𝑣𝑟𝛽

(

1 −
𝜎0sgn(𝑣𝑟𝛽 )
𝑔(𝑣𝑟𝛽 )

𝑧̃
)

. (12b)

In the above governing equations of motion, overhead dot (.) repre-
sents the derivative with respect to the nondimensional time 𝜏. Further,
for the sake of simplicity in the analytical treatment of the governing
equations, we rewrite Eqs. (11) and (12) compactly in the state–space
form as for
System-𝛼:

𝑥̇1𝛼 = 𝑥2𝛼 , (13a)

𝑥̇2𝛼 = −2𝜁𝑥2𝛼 − 𝑥1𝛼 − 𝑘𝑖𝑥3𝛼 − 𝑘𝑟
(

𝑥1𝛼 − 𝑥4𝛼
)

− 2𝜅
(

𝑥2𝛼 − 𝑥5𝛼
)

, (13b)

𝑥̇3𝛼 = 𝑥1𝛼 , (13c)

𝑥̇4𝛼 = 𝑥5𝛼 , (13d)

𝑥̇5𝛼 = −2𝜅𝑚𝑟
(

𝑥5𝛼 − 𝑥2𝛼
)

− 𝑘𝑟𝑚𝑟
(

𝑥4𝛼 − 𝑥1𝛼
)

− 𝑚𝑟

(

𝜎0𝑥6𝛼 + 𝜎1𝑣𝑟𝛼

(

1 −
𝜎0𝑥6𝛼
𝑔
(

𝑣𝑟𝛼
) sgn(𝑣𝑟𝛼)

)

+ 𝜎2𝑣𝑟𝛼

)

, (13e)

𝑥̇6𝛼 = 𝑣𝑟𝛼

(

1 −
𝜎0𝑥6𝛼
𝑔
(

𝑣𝑟𝛼
) sgn(𝑣𝑟𝛼)

)

, (13f)

and for System-𝛽

𝑥̇1𝛽 = 𝑥2𝛽 , (14a)

𝑥̇2𝛽 = −2𝜁𝑥2𝛽 − 𝑥1𝛽 − 𝑘𝑖𝑥3𝛽

−

(

𝜎0𝑥4𝛽 + 𝜎1𝑣𝑟𝛽

(

1 −
𝜎0𝑥4𝛽
𝑔
(

𝑣𝑟𝛽
) sgn(𝑣𝑟𝛽 )

)

+ 𝜎2𝑣𝑟𝛽

)

,
(14b)

𝑥̇3𝛽 = 𝑥1𝛽 , (14c)

𝑥̇4𝛽 = 𝑣𝑟𝛽

(

1 −
𝜎0𝑥4𝛽
𝑔
(

𝑣𝑟𝛽
) sgn(𝑣𝑟𝛽 )

)

. (14d)

For System-𝛼, [𝑥1𝛼 , 𝑥2𝛼 , 𝑥3𝛼 , 𝑥4𝛼 , 𝑥5𝛼 , 𝑥6𝛼] = [𝑥(𝜏), 𝑥̇(𝜏), ∫ 𝑥d𝜏, 𝑥𝑏(𝜏),
𝑥̇𝑏(𝜏), 𝑧̃(𝜏)], whereas for System-𝛽, [𝑥1𝛽 , 𝑥2𝛽 , 𝑥3𝛽 , 𝑥4𝛽 ] = [𝑥(𝜏), 𝑥̇(𝜏),
∫ 𝑥d𝜏, 𝑧̃(𝜏)]. Further, if 𝑣𝑟𝑣 represents the nondimensional constant
reference velocity signal, then the nondimensional relative velocity for
the case of System-𝛼 is 𝑣𝑟𝛼 = 𝑥̇𝑏 + 𝑣𝑟𝑣 = 𝑥5𝛼 + 𝑣𝑟𝑣, however, for the
System-𝛽, 𝑣𝑟𝛽 is determined by 𝑣𝑟𝛽 = 𝑥̇+𝑣𝑟𝑣 = 𝑥2𝛽+𝑣𝑟𝑣. For the analytical
treatment of System-𝛼 and System-𝛽, we expand 1

𝑔(𝑣𝑟)
in a Taylor series

for small amplitude motion and keep terms till third order. This step
leads to:
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for System-𝛼

1
𝑔(𝑣𝑟𝑣 + 𝑥5)

= 𝑔0 + 𝑔1𝑥5 + 𝑔2𝑥
2
5 + 𝑔3𝑥

3
5 , (15)

and for System-𝛽

1
𝑔(𝑣𝑟𝑣 + 𝑥2)

= 𝑔0 + 𝑔1𝑥2 + 𝑔2𝑥
2
2 + 𝑔3𝑥

3
2 , (16)

where 𝑔′𝑖𝑠 are given by

𝑔0 =
1

𝑔(𝑣𝑟𝑣)
= 1

𝑔
, 𝑔1 = − 1

𝑔2
𝜕𝑔
𝜕𝑣𝑟𝑣

, 𝑔2 =
1
𝑔3

[

(

𝜕𝑔
𝜕𝑣𝑟𝑣

)2
−

𝑔
2
𝜕2𝑔
𝜕𝑣2𝑟𝑣

]

,

𝑔3 = − 1
𝑔4

[

(

𝜕𝑔
𝜕𝑣𝑟𝑣

)3
− 𝑔

𝜕𝑔
𝜕𝑣𝑟𝑣

𝜕2𝑔
𝜕𝑣2𝑟𝑣

+
𝑔2

6
𝜕3𝑔
𝜕𝑣3𝑟𝑣

]

.

(17)

On substituting Eqs. (15) and (16) in Eqs. (13) and (14), respec-
tively, and simplifying equations for pure slipping motion, i.e., 𝑣𝑟𝑛 > 0,
for 𝑛 = 𝛼, 𝛽 (which further implies sgn(𝑣𝑟𝑛) = 1 for 𝑛 = 𝛼, 𝛽), we get the
governing equations for System-𝛼

𝑥̇1𝛼 = 𝑥2𝛼 , (18a)

𝑥̇2𝛼 = −2𝜁𝑥2𝛼 − 𝑥1𝛼 − 𝑘𝑖𝑥3𝛼 − 𝑘𝑟
(

𝑥1𝛼 − 𝑥4𝛼
)

− 2𝜅
(

𝑥2𝛼 − 𝑥5𝛼
)

, (18b)

𝑥̇3𝛼 = 𝑥1𝛼 , (18c)

𝑥̇4𝛼 = 𝑥5𝛼 , (18d)

𝑥̇5𝛼 = 𝑚𝑟𝜎1𝜎0𝑥6𝛼𝑔3𝑥
4
5𝛼 +

(

𝑚𝑟𝜎1𝑣𝑟𝑣𝜎0𝑥6𝛼𝑔3 + 𝑚𝑟𝜎1𝜎0𝑥6𝛼𝑔2
)

𝑥35𝛼
+
(

𝑚𝑟𝜎1𝑣𝑟𝑣𝜎0𝑥6𝛼𝑔2 + 𝑚𝑟𝜎1𝜎0𝑥6𝛼𝑔1
)

𝑥25𝛼
−
(

𝑚𝑟𝜎1 + 2𝜅𝑚𝑟 − 𝑚𝑟𝜎1𝜎0𝑥6𝛼𝑔0 + 𝑚𝑟𝜎2 − 𝑚𝑟𝜎1𝑣𝑟𝑣𝜎0𝑥6𝛼𝑔1
)

𝑥5𝛼
− 𝑚𝑟𝜎0𝑥6𝛼 + 2𝜅𝑚𝑟𝑥2𝛼 − 𝑘𝑟𝑚𝑟𝑥4𝛼 + 𝑘𝑟𝑚𝑟𝑥1𝛼

− 𝑚𝑟𝜎2𝑣𝑟𝑣 − 𝑚𝑟𝜎1𝑣𝑟𝑣 + 𝑚𝑟𝜎1𝑣𝑟𝑣𝜎0𝑥6𝛼𝑔0 , (18e)

𝑥̇6𝛼 = −𝜎0𝑥6𝛼𝑔3𝑥45𝛼 −
(

𝜎0 𝑥6𝛼𝑔2 + 𝑣𝑟𝑣 𝜎0 𝑥6𝛼𝑔3
)

𝑥35𝛼
−
(

𝑣𝑟𝑣 𝜎0 𝑥6𝛼𝑔2 + 𝜎0 𝑥6𝛼𝑔1
)

𝑥25𝛼 −
(

−1 + 𝑣𝑟𝑣 𝜎0 𝑥6𝛼𝑔1 + 𝜎0 𝑥6𝛼𝑔0
)

𝑥5𝛼

+ 𝑣𝑟𝑣 − 𝑣𝑟𝑣 𝜎0 𝑥6𝛼𝑔0 , (18f)

and for System-𝛽

𝑥̇1𝛽 = 𝑥2𝛽 , (19a)

𝑥̇2𝛽 = −𝑥1𝛽 − 𝑘𝑖𝑥3𝛽 +
(

𝜎1𝜎0𝑔3𝑥
4
2𝛽 +

(

𝜎1𝜎0𝑔0 + 𝜎1𝑣𝑟𝑣𝜎0𝑔1
)

𝑥2𝛽

+
(

𝜎1𝑣𝑟𝑣𝜎0𝑔2 + 𝜎1𝜎0𝑔1
)

𝑥22𝛽 − 𝜎0 + 𝜎1𝑣𝑟𝑣𝜎0𝑔0

+
(

𝜎1𝜎0𝑔2 + 𝜎1𝑣𝑟𝑣𝜎0𝑔3
)

𝑥32𝛽
)

𝑥4𝛽 − 𝜎1𝑣𝑟𝑣

−
(

2𝜁 + 𝜎2 + 𝜎1
)

𝑥2𝛽 − 𝜎2𝑣𝑟𝑣 , (19b)

𝑥̇3𝛽 = 𝑥1𝛽 , (19c)

𝑥̇4𝛽 =
(

−𝜎0𝑔3𝑥42𝛽 −
(

𝑣𝑟𝑣𝜎0𝑔2 + 𝜎0𝑔1
)

𝑥22𝛽 −
(

𝑣𝑟𝑣𝜎0𝑔1 + 𝜎0𝑔0
)

𝑥2𝛽

−
(

𝜎0𝑔2 + 𝑣𝑟𝑣𝜎0𝑔3
)

𝑥32𝛽 − 𝑣𝑟𝑣𝜎0𝑔0
)

𝑥4𝛽 + 𝑥2𝛽 + 𝑣𝑟𝑣 . (19d)

The steady states of Eqs. (18) and (19) can be obtained by setting
the derivatives of states as 0 to obtain for System-𝛼

𝑥1𝛼𝑠 = 0, 𝑥2𝛼𝑠 = 0, 𝑥3𝛼𝑠 = −
𝑔0𝜎2 𝑣𝑟𝑣 + 1

𝑔0 𝑘𝑖
, 𝑥4𝛼𝑠 = −

𝑔0 𝜎2 𝑣𝑟𝑣 + 1
𝑔0 𝑘𝑟

,

𝑥5𝛼𝑠 = 0, 𝑥6𝛼𝑠 =
1

𝜎0𝑔0
;

(20)

and for System-𝛽

𝑥1𝛽𝑠 = 0, 𝑥2𝛽𝑠 = 0, 𝑥3𝛽𝑠 = −
𝑔0𝜎2 𝑣𝑟𝑣 + 1

𝑔0 𝑘𝑖
, 𝑥4𝛽𝑠 =

1
𝜎0𝑔0

. (21)

Now, we introduce a small parameter 𝜖 (𝜖 ≪ 1), in the governing
equations by shifting the origin of the solution to the equilibrium state
as

𝑥𝑖𝑛(𝑡) = 𝑥𝑖𝑛𝑠 + 𝜖𝑦𝑖𝑛(𝑡) , (𝑖 = 1, 2,… , 6 for 𝑛 = 𝛼, 𝑖 = 1, 2, 3, 4 for 𝑛 = 𝛽) , (22)

where 𝑦𝑖𝑛(𝑡)’s are shifted coordinates. Thus, the governing equations of
motion in these shifted coordinates can be written as for System-𝛼

𝑦̇1𝛼 = 𝑦2𝛼 , (23a)

𝑦̇2𝛼 = −2𝜁𝑦2𝛼 − 𝑦1𝛼 − 𝑘𝑖𝑦3𝛼 − 𝑘𝑟
(

𝑦1𝛼 − 𝑦4𝛼
)

− 2𝜅
(

𝑦2𝛼 − 𝑦5𝛼
)

, (23b)

𝑦̇3𝛼 = 𝑦1𝛼 , (23c)

𝑦̇4𝛼 = 𝑦5𝛼 , (23d)

𝑦̇5𝛼 = 2𝜅𝑚𝑟𝑦2𝛼 − 𝑘𝑟𝑚𝑟
(

𝑦4𝛼 − 𝑦1𝛼
)

− 𝑚𝑟ℎ1𝛼𝑦5𝛼 − 𝑚𝑟ℎ2𝛼𝑦6𝛼
+ 𝜖

(

𝑦25𝛼𝑚𝑟𝜎1ℎ0ℎ3𝛼 + 𝑦6𝛼𝑦5𝛼𝑚𝑟𝜎1ℎ4𝛼
)

+ 𝜖2
(

𝑦25𝛼𝑦6𝛼𝑚𝑟𝜎1𝜎0ℎ3𝛼 + 𝑦35𝛼𝑚𝑟𝜎1ℎ5𝛼
)

+ (𝜖3) , (23e)

𝑥̇6𝛼 = −𝑣𝑟𝑣𝑔1ℎ0𝑦5𝛼 − 𝑣𝑟𝑣𝜎0𝑔0𝑦6𝛼 − 𝜖
(

𝑦25𝛼ℎ0ℎ3𝛼 + 𝑦6𝛼𝑦5𝛼𝜎0ℎ4𝛼
)

− 𝜖2
(

𝑦6𝛼𝑦
2
5𝛼𝜎0ℎ3𝛼 + 𝑦35𝛼ℎ5𝛼

)

+ (𝜖3) , (23f)

and for System-𝛽

𝑦̇1𝛽 = 𝑦2𝛽 , (24a)

𝑦̇2𝛽 = −𝑦1𝛽 − ℎ1𝛽𝑦2𝛽 − 2𝜁𝑦2𝛽 − 𝑘𝑖𝑦3𝛽 − ℎ2𝛽𝑦4𝛽

+ 𝜖
(

ℎ0𝜎1ℎ3𝛽𝑦
2
2𝛽 + 𝜎1ℎ4𝛽𝑦2𝛽𝑦4𝛽

)

+ 𝜖2
(

𝜎1ℎ5𝛽𝑦
3
2𝛽 + 𝜎0𝜎1ℎ3𝛽𝑦4𝛽𝑦

3
2𝛽

)

+ (𝜖3) , (24b)

𝑦̇3𝛽 = 𝑦1𝛽 , (24c)

𝑦̇4𝛽 = −𝑣𝑟𝑣𝑔1ℎ0𝑦2 − 𝑣𝑟𝑣𝜎0𝑔0𝑦4𝛽 − 𝜖
(

ℎ0ℎ3𝛽𝑦
2
2𝛽 + ℎ4𝛽𝑦2𝛽𝑦4𝛽

)

− 𝜖2
(

ℎ5𝛽𝑦
3
3𝛽 + 𝜎0ℎ3𝛽𝑦

2
2𝛽𝑦4𝛽

)

+ (𝜖3) , (24d)

where ℎ0 = 1
𝑔0
, ℎ1𝛼 = 𝜎2 − ℎ0𝜎1𝑣𝑟𝑣𝑔1 + 2𝜅, ℎ2𝛼 = 𝜎0

(

1 − 𝜎1𝑣𝑟𝑣𝑔0
)

,

ℎ3𝛼 =
(

𝑣𝑟𝑣𝑔2 + 𝑔1
)

, ℎ4𝛼 = 𝜎0
(

𝑔0 + 𝑣𝑟𝑣𝑔1
)

, ℎ5𝛼 = ℎ0
(

𝑔2 + 𝑣𝑟𝑣 𝑔3
)

, ℎ1𝛽 =
𝜎2 − ℎ0𝜎1𝑣𝑟𝑣𝑔1, ℎ2𝛽 = 𝜎0

(

1 − 𝜎1𝑣𝑟𝑣𝑔0
)

, ℎ3𝛽 =
(

𝑣𝑟𝑣𝑔2 + 𝑔1
)

, ℎ4𝛽 =
𝜎0

(

𝑔0 + 𝑣𝑟𝑣𝑔1
)

, and ℎ5𝛽 = ℎ0
(

𝑔2 + 𝑣𝑟𝑣 𝑔3
)

. Note that Eqs. (23) and (24)
have been already divided by 𝜖 throughout, to get the above perturbed
differential equations. However, since all the nonlinear terms appears
at higher order of 𝜖, the unperturbed equations obtained by setting
𝜖 = 0 in Eqs. (23) and (24) are system of linear ODEs, and hence,
there are no complications in the linear and nonlinear analysis to be
presented in subsequent sections.

3. Linear stability analysis

In this section, the linear stability analysis of System-𝛼 and System-
𝛽 is presented to identify different stable and unstable regimes in the
space of control parameters. We emphasize here that this linear analysis
not only provides information about the stability but also provides the
solution to an unperturbed linear equation, which will be further used
in the nonlinear analysis of our system. Therefore, the linear analysis of
both systems is essential and has to be performed carefully. For the sake
of brevity, we present a detailed linear stability analysis of System-𝛼
only and use the same approach to get information about the stability of
System-𝛽. The linearized coupled system of the equations for System-𝛼
can be obtained by setting 𝜖 = 0 in Eq. (23) to obtain

𝑦̇1𝛼 = 𝑦2𝛼 , (25a)

𝑦̇2𝛼 = −2𝜁𝑦2𝛼 − 𝑦1𝛼 − 𝑘𝑖𝑦3𝛼 − 𝑘𝑟
(

𝑦1𝛼 − 𝑦4𝛼
)

− 2𝜅
(

𝑦2𝛼 − 𝑦5𝛼
)

, (25b)

𝑦̇3𝛼 = 𝑦1𝛼 , (25c)

4
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𝑦̇4𝛼 = 𝑦5𝛼 , (25d)

𝑦̇5𝛼 = 2𝜅𝑚𝑟𝑦2𝛼 − 𝑘𝑟𝑚𝑟
(

𝑦4𝛼 − 𝑦1𝛼
)

− 𝑚𝑟ℎ1𝛼𝑦5𝛼 − 𝑚𝑟ℎ2𝛼𝑦6𝛼 , (25e)

𝑦̇6𝛼 = −𝑣𝑟𝑣𝑔1ℎ0𝑦5𝛼 − 𝑣𝑟𝑣𝜎0𝑔0𝑦6𝛼 . (25f)

The corresponding characteristic equation is obtained by assuming
synchronous solution for 𝑦𝑖𝛼 (for 𝑖 = 1..6) and accordingly, setting

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑦1𝛼(𝜏)
𝑦2𝛼(𝜏)
𝑦3𝛼(𝜏)
𝑦4𝛼(𝜏)
𝑦5𝛼(𝜏)
𝑦6𝛼(𝜏)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑦1𝛼0
𝑦2𝛼0
𝑦3𝛼0
𝑦4𝛼0
𝑦5𝛼0
𝑦6𝛼0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑒𝜆𝜏 , (26)

into Eq. (25) to get

𝑦1𝛼0𝜆 − 𝑦2𝛼0 = 0 , (27a)

(1 + 𝑘𝑟)𝑦1𝛼0 + (𝜆 + 2𝜁 + 2𝜅) 𝑦2𝛼0 + 𝑘𝑖𝑦3𝛼0 − 𝑘𝑟𝑦4𝛼0 − 2𝜅𝑦5𝛼0 = 0 , (27b)

𝑦1𝛼0 − 𝜆𝑦3𝛼0 = 0 , (27c)

𝑦5𝛼0 − 𝑦4𝛼0 = 0 , (27d)
𝑘𝑟𝑚𝑟𝑦1𝛼0 + 2𝜅𝑚𝑟𝑦2𝛼 − 𝑘𝑟𝑚𝑟𝑦4𝛼0 −

(

𝜆 + 𝑚𝑟ℎ1𝛼
)

𝑦5𝛼0 − 𝑚𝑟ℎ2𝛼𝑦6𝛼0 = 0 ,
(27e)

𝑣𝑟𝑣𝑔1ℎ0𝑦5𝛼0 +
(

𝜆 + 𝑣𝑟𝑣𝜎0𝑔0
)

𝑦6𝛼0 = 0 . (27f)

To get the non-trivial solutions for 𝑦𝑖𝛼0 (for 𝑖 = 1..6), we set the
determinant of the coefficient matrix of Eqs. (27) to zero which further
leads to the characteristic equation as

𝜆6 + 𝑓1𝜆
5 + 𝑓2𝜆

4 + 𝑓3𝜆
3 + 𝑓4𝜆

2 + 𝑓5𝜆 + 𝑓6 = 0 . (28)

with 𝑓𝑖 (for 𝑖 = 1..6) are the involved functions of system and control
parameters, and are reported in Appendix A. The roots of this charac-
teristic equation determine the stability of the system in the space of
control parameters. If all roots lie in the left half-plane, i.e., if all roots
have negative real part (ℜ(𝜆) < 0) then the system is stable. However, if
any root lies in the right half-plane, i.e., existence of a root with positive
real part (ℜ(𝜆) > 0) in the system leads to instability. Therefore, if the
system gains or loses its stability, a pair of complex conjugate roots
crosses the imaginary axis, i.e, ℜ(𝜆 = 0) and Hopf bifurcation occurs.
In the case of Hopf bifurcation, we let 𝜆 = 𝑖𝜔 for 𝜔 > 0 in the above
equation (Eq. (28)) and separate real and imaginary parts to get

−𝜔6 + 𝑓2 𝜔
4 − 𝑓4 𝜔

2 + 𝑓6 = 0 , (29a)

𝑓1 𝜔
5 − 𝑓3 𝜔

3 + 𝑓5 𝜔 = 0 . (29b)

It can be noted that separating real and imaginary parts gives us
two simultaneous equations, which can be utilized to solve for any
of two control parameters at critical/Hopf point in terms of other
parameters and frequency 𝜔. In the current analysis, we use nondimen-
sional integral gain, 𝑘𝑖, and nondimensional reference/setpoint velocity
signal, 𝑣𝑟𝑣, as our control parameters. However, the appearance of
exponential functions of 𝑣𝑟𝑣, i.e., 𝑔0 and 𝑔1 (recall Eq. (17)) in the
above equations makes them as transcendental equations and difficult
to get the analytical closed-form for 𝑘𝑖,𝑐𝑟 and 𝑣𝑟𝑣,𝑐𝑟. Therefore, we use
numerical methods to solve Eqs. (29a) and (29b) to get the critical
values of nondimensional integral gain and reference velocity signal,
i.e., 𝑘𝑖,𝑐𝑟 and 𝑣𝑟𝑣,𝑐𝑟 corresponding to Hopf point.

Furthermore, the stability of the steady states in the space of operat-
ing parameters is determined by calculating the real part of the rate of
change of eigenvalue with respect to one of the parameters at the Hopf
point. If the real part of the rate of change of eigenvalue at the Hopf
point is positive, then the steady states lose stability at the Hopf point.
If it is negative, then the steady states gain stability at the Hopf-point.

We emphasize that the solution of the linearized equations of the
system (given by Eq. (25)) will be a periodic solution at the Hopf point,
therefore, it can be represented in terms of the eigenvectors as

𝐲𝛼(𝜏) = 𝐴1𝛼𝐫1𝛼e𝑖𝜔𝜏 + 𝐴2𝛼𝐫2𝛼e−𝑖𝜔𝜏 , (30)

where 𝐲𝛼(𝜏) = [𝑦1𝛼(𝜏), 𝑦2𝛼(𝜏), 𝑦3𝛼(𝜏), 𝑦4𝛼(𝜏), 𝑦5𝛼(𝜏), 𝑦6𝛼(𝜏)]𝑇 , 𝐴1𝛼 and 𝐴2𝛼
are the arbitrary complex conjugate constants (for the real values of
𝐲𝛼(𝜏)), and 𝐫1𝛼 and 𝐫2𝛼 are the right eigenvectors of the characteristic
matrix for System-𝛼 corresponding to eigenvalues 𝜆 = 𝑖𝜔 and 𝜆 = −𝑖𝜔,
respectively. The right eigenvector 𝐫1𝛼 for System-𝛼 is

𝐫1𝛼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝑖𝜔

−𝑖∕𝜔
𝑅𝑒1𝛼 + 𝑖𝐼𝑚1𝛼
𝑅𝑒2𝛼 + 𝑖𝐼𝑚2𝛼
𝑅𝑒3𝛼 + 𝑖𝐼𝑚3𝛼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (31)

where 𝑅𝑒𝑛𝛼 and 𝐼𝑚𝑛𝛼 for 𝑛 = 1, 2, 3 are defined in Appendix A. Note
that the right eigenvector 𝐫2𝛼 (corresponding to the eigenvalue 𝜆 = −𝑖𝜔)
is the complex conjugate of 𝐫1𝛼 and hence, not reported here for the
sake of brevity. For the nonlinear analysis of our coupled system of
equations, we also require the generalized left eigenvectors for the
removal of secular terms [31]. Therefore, we also determine the left
eigenvectors of the characteristic matrix for System-𝛼 corresponding to
the eigenvalues 𝜆 = 𝑖𝜔 and 𝜆 = −𝑖𝜔, and these are

𝐥1𝛼 =
[

1 𝐿𝑟𝑒1𝛼 + 𝑖𝐿𝑖𝑚1𝛼 𝐿𝑟𝑒2𝛼 + 𝑖𝐿𝑖𝑚2𝛼 𝐿𝑟𝑒3𝛼 + 𝑖𝐿𝑖𝑚3𝛼 𝐿𝑟𝑒4𝛼 + 𝑖𝐿𝑖𝑚4𝛼 𝐿𝑟𝑒5𝛼 + 𝑖𝐿𝑖𝑚5𝛼

]

,

(32)

corresponding to the eigenvalue 𝜆 = 𝑖𝜔 and its complex conjugate as
𝐥2𝛼 for the eigenvalue 𝜆 = −𝑖𝜔. 𝐿𝑟𝑒𝑛𝛼 and 𝐿𝑖𝑚𝑛𝛼 , for 𝑛 = 1, 2, 3, 4, 5 are
functions of the system and control parameters and they are defined in
Appendix A.

The transcendental equations governing the critical values of 𝑘𝑖 and
𝑣𝑟𝑣 (at the Hopf point) for System-𝛽 can be obtained by following the
steps mentioned above for System-𝛼 and are given by

𝜔4 −
(

(ℎ1𝛽 + 2𝜁 )𝑣𝑟𝑣 𝜎0𝑔0 − 𝑣𝑟𝑣𝑔1ℎ0ℎ2𝛽 + 1
)

𝜔2 + 𝑘𝑖𝑣𝑟𝑣𝜎0𝑔0 = 0 , (33a)

and

−
(

ℎ1𝛽 + 2𝜁 + 𝑣𝑟𝑣𝜎0 𝑔0
)

𝜔3 +
(

𝑘𝑖 + 𝑣𝑟𝑣𝜎0𝑔0
)

𝜔 = 0 . (33b)

Accordingly, the solution for the linearized System-𝛽 at the Hopf point
can be represented in terms of right eigenvectors as

𝐲𝛽 (𝜏) = 𝐴1𝛽𝐫1𝛽e𝑖𝜔𝜏 + 𝐴2𝛽𝐫2𝛽e−𝑖𝜔𝜏 , (34)

where 𝐲𝛽 (𝜏) = [𝑦1𝛽 (𝜏), 𝑦2𝛽 (𝜏), 𝑦3𝛽 (𝜏), 𝑦4𝛽 (𝜏)]𝑇 , 𝐴1𝛽 and 𝐴2𝛽 are the ar-
bitrary complex conjugate constants, and 𝐫1𝛽 and 𝐫2𝛽 are the right
eigenvectors of the characteristic matrix for System-𝛽 corresponding
to eigenvalues 𝜆 = 𝑖𝜔 and 𝜆 = −𝑖𝜔, respectively, and are defined in
Appendix A. Having established the solution for the linearized System-𝛼
and System-𝛽 at the Hopf point, next we present the nonlinear analysis
of our system using the method of multiple scales.

4. Nonlinear analysis using the method of multiple scales

The linear analysis in Section 3 gives us information about the
stability of the steady states in different regimes of control parame-
ter space, i.e., small perturbations around the steady states die out
with time in linear stable regime, and increase in the linear unstable
regime. However, the time-evolution of these perturbations in stable
and unstable regimes truly depends on the existing nonlinearities in
the system and, accordingly, decides the global stability of the steady
states. If all perturbations, irrespective of the value of amplitude, decay
with time and settle down to the steady states in the linearly stable
regime, then the steady states are considered to be globally stable.
However, if the time-evolution of perturbations is sensitive towards
initial conditions in linear stable regime, i.e., if small perturbations
decay and large perturbations lead to limit cycles, then the steady
states will no longer be considered to be globally stable in the linearly
stable regime. We emphasize that these dynamical characteristics of
the system depend on the nature of nonlinearity present in the system
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and cannot be assessed by linear stability analysis only. Therefore, it
is required to carry out a detailed nonlinear analysis of System-𝛼 and
System-𝛽, specifically around the stability boundaries, to establish the
global stability of steady states. Again, for the sake of brevity, we
present a detailed analysis of System-𝛼 only.

We use the method of multiple scales (MMS) for the nonlinear
analysis of our systems with pure slipping motion, and obtain the
amplitude of limit cycles emerging from the Hopf point. We first start
with defining multiple time scales as

𝑇0 = 𝜏 , 𝑇1 = 𝜖𝜏 , 𝑇2 = 𝜖2𝜏 ,… (35)

with 𝑇0 as the fast time scale, and 𝑇𝑖 (for 𝑖 = 1, 2, …) are the slow time
scales. Accordingly, the time-derivative operator gets perturbed to
d
d𝜏

= 𝐷0 + 𝜖𝐷1 + 𝜖2𝐷2 + (𝜖3) , (36)

d2

d𝜏2
= 𝐷0,0 + 2𝜖𝐷0,1 + 𝜖2

(

2𝐷0,2 +𝐷1,1
)

+ (𝜖3) , (37)

where 𝐷𝑛 =
𝜕
𝜕𝑇𝑛

and 𝐷𝑚,𝑛 =
𝜕2

𝜕𝑇𝑚𝜕𝑇𝑛
. Due to the introduction of multi-

ple time scales in the system, the solution of the perturbed nonlinear
equation (Eq. (23)) can be assumed to be a series in powers of 𝜖 till
(𝜖2) and written as

𝐲𝛼(𝜏) = 𝐲0𝛼
(

𝑇0, 𝑇1, 𝑇2
)

+ 𝜖𝐲1𝛼
(

𝑇0, 𝑇1, 𝑇2
)

+ 𝜖2𝐲2𝛼
(

𝑇0, 𝑇1, 𝑇2
)

= 𝐲0𝛼 + 𝜖𝐲1𝛼 + 𝜖2𝐲2𝛼 . (38)

where 𝐲𝛼(𝜏) = [𝑦1,𝛼(𝜏), 𝑦2,𝛼(𝜏), 𝑦3,𝛼(𝜏), 𝑦4,𝛼(𝜏), 𝑦5,𝛼(𝜏), 𝑦6,𝛼(𝜏)]𝑇 , 𝐲𝑚𝛼(𝜏)
(𝑇0, 𝑇1, 𝑇2) = [𝑦1,𝑚𝛼(𝑇0, 𝑇1, 𝑇2), 𝑦2,𝑚𝛼(𝑇0, 𝑇1, 𝑇2), 𝑦3,𝑚𝛼(𝑇0, 𝑇1, 𝑇2), 𝑦4,𝑚𝛼
(𝑇0, 𝑇1, 𝑇2), 𝑦5,𝑚𝛼(𝑇0, 𝑇1, 𝑇2), 𝑦6,𝑚𝛼(𝑇0, 𝑇1, 𝑇2)]𝑇 for 𝑚 = 0, 1, 2. Now, to
understand the nature of Hopf bifurcation on the stability boundaries
we perturb one of the control parameters close to the Hopf point.
For the sake of simplicity of the analysis, we choose non-dimensional
integral gain 𝑘𝑖 as the bifurcation parameter and accordingly, perturb
𝑘𝑖 from its critical value as

𝑘𝑖 = 𝑘𝑖,𝑐𝑟 + 𝜖2𝑘1 , (39)

where 𝑘𝑖,𝑐𝑟 is the value of 𝑘𝑖 at the Hopf point with 𝑣𝑟𝑣 = 𝑣𝑟𝑣,𝑐𝑟. We
emphasize that the sign of 𝑘1 is chosen such that 𝑘𝑖 always lies in the
unstable regime. Therefore, 𝑘1 can be negative or positive, depending
on the location of the unstable region with respect to the Hopf point.

Next, we substitute Eqs. (36)–(39) in Eq. (23), expand in Taylor
series for smaller values of 𝜖 and equate the coefficients of different
orders of 𝜖 to zero to get:
(𝜖0)

𝐷0𝑦1,0𝛼 − 𝑦2,0𝛼 = 0 , (40a)
𝐷0𝑦2,0𝛼 − 2 𝜅 𝑦5,0𝛼 + 𝑦3,0𝛼𝑘𝑖𝑐 − 𝑘𝑟 𝑦4,0𝛼 + (2 𝜁 + 2 𝜅) 𝑦2,0𝛼

+
(

𝑘𝑟 + 1
)

𝑦1,0𝛼 = 0 , (40b)

𝐷0𝑦3,0𝛼 − 𝑦1,0𝛼 = 0 , (40c)

𝐷0𝑦4,0𝛼 − 𝑦5,0𝛼 = 0 , (40d)
𝐷0𝑦5,0𝛼 + 𝑚𝑟 𝑘𝑟 𝑦4,0𝛼 − 𝑚𝑟 𝑘𝑟 𝑦1,0𝛼 − 2 𝜅 𝑚𝑟 𝑦2,0𝛼 + 𝑚𝑟 ℎ1𝛼 𝑦5,0𝛼

+ 𝑚𝑟ℎ2𝛼 𝑦6,0𝛼 = 0 , (40e)

𝐷0𝑦6,0𝛼 + 𝑣𝑟𝑣𝑔1ℎ0𝑦5,0𝛼 + 𝑣𝑟𝑣𝜎0𝑔0𝑦6,0𝛼 = 0 , (40f)

(𝜖1)

𝐷0𝑦1,1𝛼 − 𝑦2,1𝛼 = −𝐷1𝑦1,0𝛼 , (41a)
𝐷0𝑦2,1𝛼 − 2 𝜅 𝑦5,1𝛼 + 𝑦3,1𝛼𝑘𝑖𝑐 − 𝑘𝑟 𝑦4,1𝛼 + (2 𝜁 + 2 𝜅) 𝑦2,1𝛼 +

(

𝑘𝑟 + 1
)

𝑦1,1𝛼

= −𝐷1𝑦2,0𝛼 , (41b)

𝐷0𝑦3,1𝛼 − 𝑦1,1𝛼 = −𝐷1𝑦3,0𝛼 , (41c)

𝐷0𝑦4,1𝛼 − 𝑦5,1𝛼 = −𝐷1𝑦4,0𝛼 , (41d)
𝐷0𝑦5,1𝛼 + 𝑚𝑟 𝑘𝑟 𝑦4,1𝛼 − 𝑚𝑟 𝑘𝑟 𝑦1,1𝛼 − 2 𝜅 𝑚𝑟 𝑦2,1𝛼 + 𝑚𝑟 ℎ1𝛼 𝑦5,1𝛼 + 𝑚𝑟ℎ2𝛼 𝑦6,1𝛼

= 𝑚𝑟 𝜎1 ℎ4𝛼 𝑦5,0𝛼𝑦6,0𝛼 −𝐷1𝑦5,0𝛼 + 𝑚𝑟 𝜎1 ℎ0 ℎ3𝛼𝑦
2
5,0𝛼 , (41e)

𝐷0𝑦6,1𝛼 + 𝑣𝑟𝑣𝑔1ℎ0𝑦5,1𝛼 + 𝑣𝑟𝑣𝜎0𝑔0𝑦6,1𝛼 = −𝐷1𝑦6,0𝛼 − ℎ0ℎ3𝛼𝑦
2
5,0𝛼

− ℎ4𝛼 𝑦5,0𝛼𝑦6,0𝛼 , (41f)

(𝜖2)

𝐷0𝑦1,2𝛼 − 𝑦2,2𝛼 = 𝐷2𝑦1,0𝛼 −𝐷1𝑦1,1𝛼 , (42a)
𝐷0𝑦2,2𝛼 − 2 𝜅 𝑦5,2𝛼 + 𝑦3,2𝛼𝑘𝑖𝑐 − 𝑘𝑟 𝑦4,2𝛼 + (2 𝜁 + 2 𝜅) 𝑦2,2𝛼 +

(

𝑘𝑟 + 1
)

𝑦1,2𝛼

= −𝐷1𝑦2,1𝛼 −𝐷2𝑦2,0𝛼 − 𝑦3,0𝛼𝑘1 , (42b)

𝐷0𝑦3,2𝛼 − 𝑦1,2𝛼 = −𝐷2𝑦3,0𝛼 −𝐷1𝑦3,1𝛼 , (42c)

𝐷0𝑦4,2𝛼 − 𝑦5,2𝛼 = −𝐷2𝑦4,0𝛼 −𝐷1𝑦4,1𝛼 , (42d)
𝐷0𝑦5,2𝛼 + 𝑚𝑟 𝑘𝑟 𝑦4,2𝛼 − 𝑚𝑟 𝑘𝑟 𝑦1,2𝛼 − 2 𝜅 𝑚𝑟 𝑦2,2𝛼 + 𝑚𝑟 ℎ1𝛼 𝑦5,2𝛼 + 𝑚𝑟ℎ2𝛼 𝑦6,2𝛼

= −
(

−𝑚𝑟 𝜎1 ℎ5𝛼 𝑦
3
5,0𝛼 − 𝑚𝑟 𝜎1 ℎ4𝛼 𝑦5,1𝛼𝑦6,0𝛼

+𝐷2𝑦5,0𝛼 +𝐷1𝑦5,1𝛼 − 𝑚𝑟 𝜎1 ℎ4𝛼 𝑦5,0𝛼𝑦6,1𝛼

−𝑚𝑟 𝜎1 𝜎0 ℎ3𝛼 𝑦
2
5,0𝛼𝑦6,0𝛼 − 2𝑚𝑟 𝜎1 ℎ0 ℎ3𝛼 𝑦5,0𝛼𝑦5,1𝛼

)

, (42e)

𝐷0𝑦6,2𝛼 + 𝑣𝑟𝑣𝑔1ℎ0𝑦5,2𝛼 + 𝑣𝑟𝑣𝜎0𝑔0𝑦6,2𝛼

= −
(

ℎ5𝛼 𝑦
3
5,0𝛼 +𝐷2𝑦6,0𝛼 + ℎ4𝛼 𝑦5,1𝛼𝑦6,1𝛼 + ℎ4𝛼 𝑦5,1𝛼𝑦6,0

+𝐷1𝑦6,1𝛼 + 𝜎0 ℎ3𝛼 𝑦
2
5,0𝛼𝑦6,0𝛼 + 2ℎ0 ℎ3𝛼 𝑦5,0𝛼𝑦5,1𝛼

)

, (42f)

It can be easily noted that equations for the order of 𝜖0 (Eq. (40))
are identical to the linearized unperturbed coupled equations (Eq. (25))
with critical control parameters (at the Hopf point). Using similar
approach, the solution for the (𝜖0) can be written as

𝐲0𝛼(𝑇0 , 𝑇1 , 𝑇2) = 𝐴1𝛼
(

𝑇1 , 𝑇2
)

𝐫1𝛼e𝑖𝜔𝑇0 + 𝐴2𝛼
(

𝑇1 , 𝑇2
)

𝐫2𝛼e−𝑖𝜔𝑇0 . (43)

We emphasize that unlike the solution for the unperturbed linear
equations, i.e., Eq. (30), 𝐴1𝛼 and 𝐴2𝛼 instead of being complex conju-
gate constants are now complex conjugate functions of slow time scales
𝑇1 and 𝑇2. On the substitution of this assumed form of the solution
for 𝐲0𝛼 (Eq. (43)) in (𝜖1) equations (Eq. (41)), 𝑒2𝑖𝜔𝑇0 , 𝑒−2𝑖𝜔𝑇0 , 𝑒𝑖𝜔𝑇0
and 𝑒−𝑖𝜔𝑇0 appear on the right-side of the equations as forcing terms.
However, note that terms 𝑒𝑖𝜔𝑇0 and 𝑒−𝑖𝜔𝑇0 act as resonant forcing terms,
causing an unbounded growth in the solution for 𝐲1𝛼 . These terms are
known as secular terms. Therefore, to get the bounded solution for the
𝐲1𝛼 , removal of these secular terms from the resulting equations is nec-
essary. This step further requires that left eigenvectors corresponding
to 𝑒𝑖𝜔𝑇0 and 𝑒−𝑖𝜔𝑇0 and the vectors consisting coefficient of 𝑒𝑖𝜔𝑇0 and
𝑒−𝑖𝜔𝑇0 to be perpendicular to each other [31]. The coefficient vectors
𝐮1𝛼 and 𝐮2𝛼 corresponding to 𝑒𝑖𝜔𝑇0 and 𝑒−𝑖𝜔𝑇0 are

𝐮1𝛼 =
𝜕𝐴1𝛼

(

𝑇1, 𝑇2
)

𝜕𝑇1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝑖𝜔

−𝑖∕𝜔
𝑅𝑒1𝛼 + 𝑖𝐼𝑚1𝛼
𝑅𝑒2𝛼 + 𝑖𝐼𝑚2𝛼
𝑅𝑒3𝛼 + 𝑖𝐼𝑚3𝛼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐮2𝛼 =
𝜕𝐴2𝛼

(

𝑇1, 𝑇2
)

𝜕𝑇1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
−𝑖𝜔
𝑖∕𝜔

𝑅𝑒1𝛼 − 𝑖𝐼𝑚1𝛼
𝑅𝑒2𝛼 − 𝑖𝐼𝑚2𝛼
𝑅𝑒3𝛼 − 𝑖𝐼𝑚3𝛼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(44)

We can observe that 𝐮1𝛼 and 𝐮2𝛼 are complex conjugate of each
other and have a structure similar to right eigenvectors corresponding
to 𝑒𝑖𝜔𝑇0 and 𝑒−𝑖𝜔𝑇0 . This observation can be further justified from the
fact that in (𝜖1) equations, only quadratic nonlinear terms appear
along with linear ones on the right-side further giving rise to only 𝑒2𝑖𝜔𝑇0
and 𝑒𝑖𝜔𝑇0 (and their complex conjugate). As discussed above, removal
of secular terms corresponding to e𝑖𝜔𝑇0 at (𝜖) leads to 𝐥1𝛼 ⋅𝐮1𝛼 = 0. This
solvability condition further leads to

𝜕𝐴1𝛼
(

𝑇1, 𝑇2
)

𝜕𝑇1

[

1 − 𝜔𝐿𝑖𝑚1𝛼 +
𝐿𝑖𝑚2𝛼
𝜔

+ 𝐿𝑟𝑒3𝛼𝑅𝑒1𝛼 − 𝐿𝑖𝑚3𝛼𝐼𝑚1𝛼

+ 𝐿𝑟𝑒4𝛼𝑅𝑒2𝛼 − 𝐿𝑖𝑚4𝛼𝐼𝑚2𝛼 + 𝐿𝑟𝑒5𝛼𝑅𝑒3𝛼 − 𝐿𝑖𝑚5𝛼𝐼𝑚3𝛼

+ 𝑖
(

𝐿𝑟𝑒5𝛼𝐼𝑚3𝛼 + 𝐿𝑖𝑚4𝛼𝑅𝑒2𝛼 −
𝐿𝑟𝑒2𝛼
𝜔

+ 𝐿𝑟𝑒4𝛼𝐼𝑚2𝛼 + 𝐿𝑖𝑚5𝛼𝑅𝑒3𝛼
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Fig. 3. Comparison of stability curves with and without FI for different values of 𝜅 for (i) larger values of 𝑣𝑟𝑣, and (ii) for smaller values of 𝑣𝑟𝑣. Other parameters are 𝜎0 = 110,
𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝜁 = 0.02, 𝑎 = 2.5, 𝑘𝑟 = 0.5, and 𝑚𝑟 = 2. (For interpretation of color in this figure, the reader is referred to the web version of this article.)

+ 𝜔𝐿𝑟𝑒1𝛼 + 𝐿𝑖𝑚3𝛼𝑅𝑒1𝛼 + 𝐿𝑟𝑒3𝛼𝐼𝑚1𝛼

)]

= 0 . (45)

For the general values of system and operating parameters, term
inside the brackets will not be zero, which further implies

𝜕𝐴1𝛼
(

𝑇1, 𝑇2
)

𝜕𝑇1
= 0 . (46)

Since the second solvability condition corresponding to removal of
secular term for 𝑒−𝑖𝜔𝑇0 , i.e, 𝐥2𝛼 ⋅𝐮2𝛼 = 0, gives rise to complex conjugate

equation of Eq. (45), we get
𝜕𝐴2𝛼

(

𝑇1, 𝑇2
)

𝜕𝑇1
= 0. These results suggest

that 𝐴1𝛼 and 𝐴2𝛼 does not depend on the slow time scale 𝑇1 and are only
the functions of slow time-scale 𝑇2. Further, for the non-trivial solutions
of 𝐴1𝛼 and 𝐴2𝛼 , we need to proceed to the equations corresponding to
the higher order of 𝜖, i.e., (𝜖2). Since in the equations corresponding
to (𝜖2) 𝐲1𝛼 appears on the right side along with 𝐲0𝛼 as forcing terms,
we first solve Eqs. (41) for 𝐲1𝛼 using harmonic balance method.

After substituting the solution for 𝐲0𝛼 in Eq. (41) with the above
drawn observation that 𝐴1 and 𝐴2 are independent of 𝑇1, we substitute
the following assumed form of the solution for 𝐲1𝛼 as a function of
slow-time scale 𝑇2

𝐲1𝛼
(

𝑇0, 𝑇1, 𝑇2
)

= 𝐴2
1𝛼

(

𝑇2
)

𝐁11e2𝑖𝜔𝑇0 + 𝐴2
2𝛼

(

𝑇2
)

𝐁22e−2𝑖𝜔𝑇0

+ 𝐴1𝛼
(

𝑇2
)

𝐴2𝛼
(

𝑇2
)

𝐁12 , (47)

where coefficient vector 𝐁11, 𝐁22 and 𝐁12 are defined as

𝐁11 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏11
𝑏12
𝑏13
𝑏14
𝑏15
𝑏16

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐁22 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏21
𝑏22
𝑏23
𝑏24
𝑏25
𝑏26

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, and 𝐁12 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏31
𝑏32
𝑏33
𝑏34
𝑏35
𝑏36

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (48)

On substituting this assumed form of the solution for 𝐲1𝛼 and per-
forming harmonic balance, we get 18 algebraic simultaneous equations
that can be solved for 𝑏𝑚𝑛 (for 𝑚 = 1, 2, 3 and 𝑛 = 1..6). These are
reported in Appendix B. Since the elements of vectors 𝐁12 are the
complex conjugate of 𝐁11, these are not reported here for the sake of
brevity. Next, we substitute the solutions for 𝐲0𝛼 and 𝐲1𝛼 in terms of
𝐴1𝛼(𝑇2) and 𝐴2𝛼(𝑇2) in the equations corresponding to (𝜖2). Again,
the secular terms in the resulting equations can be removed using the
solvability conditions of 𝐥1𝛼 ⋅ 𝐕1𝛼 = 0 and 𝐥2𝛼 ⋅ 𝐕2𝛼 = 0, where 𝐕1𝛼
and 𝐕2𝛼 are the coefficients vectors corresponding to e𝑖𝜔𝑇0 and e−𝑖𝜔𝑇0 ,

respectively, and complex conjugate of each other. These vectors are

𝐕1𝛼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐴1𝛼
(

𝑇2
)

𝜕𝑇2

𝑖
𝜕𝐴1𝛼

(

𝑇2
)

𝜕𝑇2
𝜔 − 𝑖

𝜔
𝑘1𝐴1𝛼 (𝑇 [2])

− 𝑖
𝜔
𝜕𝐴1𝛼

(

𝑇2
)

𝜕𝑇2
𝜕𝐴1𝛼

(

𝑇2
)

𝜕𝑇2

(

𝑅𝑒1𝛼 + 𝑖𝐼𝑚1𝛼
)

𝜕𝐴1𝛼
(

𝑇2
)

𝜕𝑇2
𝑣11 + 𝐴1𝛼

(

𝑇2
)2 𝐴2𝛼

(

𝑇2
)

𝑣12

𝜕𝐴1𝛼
(

𝑇2
)

𝜕𝑇2
𝑣21 + 𝐴1𝛼

(

𝑇2
)2 𝐴2𝛼

(

𝑇2
)

𝑣22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, and

𝐕2𝛼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐴2𝛼
(

𝑇2
)

𝜕𝑇2

−𝑖
𝜕𝐴2𝛼

(

𝑇2
)

𝜕𝑇2
𝜔 + 𝑖

𝜔
𝑘1𝐴2𝛼 (𝑇 [2])

𝑖
𝜔
𝜕𝐴2𝛼

(

𝑇2
)

𝜕𝑇2
𝜕𝐴2𝛼

(

𝑇2
)

𝜕𝑇2

(

𝑅𝑒1𝛼 − 𝑖𝐼𝑚1𝛼
)

𝜕𝐴2𝛼
(

𝑇2
)

𝜕𝑇2
𝑣̄11 + 𝐴2𝛼

(

𝑇2
)2 𝐴1𝛼

(

𝑇2
)

𝑣̄12

𝜕𝐴2𝛼
(

𝑇2
)

𝜕𝑇2
𝑣̄21 + 𝐴2𝛼

(

𝑇2
)2 𝐴1𝛼

(

𝑇2
)

𝑣̄22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(49)

Since 𝑣̄𝑚𝑛 are complex conjugate of 𝑣𝑚𝑛, we have only defined 𝑣𝑚𝑛
in Appendix B for sake of brevity. Next, we switch to polar coordinates
by substituting

𝐴1𝛼(𝑇2) =
𝑅(𝑇2)e𝑖𝜙(𝑇2)

2
, and 𝐴2𝛼(𝑇2) =

𝑅(𝑇2)e−𝑖𝜙(𝑇2)

2
, (50)

into the equation resulting from 𝐥1 ⋅ 𝐕1 = 0 and separate real and
imaginary parts. On separating real and imaginary parts we get two
equations and can be solved for 𝜕𝑅

(

𝑇2
)

∕𝜕𝑇2 and 𝜕𝜙
(

𝑇2
)

∕𝜕𝑇2 as

𝜕𝑅
(

𝑇2
)

𝜕𝑇2
= 𝑝11𝑘1𝑅 + 𝑝12𝑅

3 , (51)

𝜕𝜙
(

𝑇2
)

𝜕𝑇2
= 𝑝21𝑘1 + 𝑝22𝑅

2 , (52)

where 𝑝11, 𝑝12, 𝑝21, and 𝑝22 are functions of system parameters, control
parameters at the Hopf-point, and frequency. Since the functional forms

7
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Fig. 4. Comparison of stability curves with and without FI for different values of 𝑘𝑟 for (i) larger values of 𝑣𝑟𝑣, and (ii) for smaller values of 𝑣𝑟𝑣. Other parameters are 𝜎0 = 110,
𝜎1 = 1.37, 𝜎2 = 0.0823, 𝜇𝑠 = 0.44, 𝜇𝑘 = 0.35, 𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, and 𝑚𝑟 = 2.(For interpretation of color in this figure, the reader is referred to the web version of this article.)

of these terms are very lengthy, these are not reported in the paper
for sake of brevity. Finally, the equation governing the evolution of
amplitude 𝑅 and phase 𝜙 in the original time scale 𝜏 can be written
using Eq. (36) as
d𝑅
d𝜏

= 𝜖 𝜕𝑅
𝜕𝑇1

+ 𝜖2 𝜕𝑅
𝜕𝑇2

= 𝜖2
(

𝑝11𝑘1𝑅 + 𝑝12𝑅
3) , (53a)

𝜕𝜙
𝜕𝜏

= 𝜖
𝜕𝜙
𝜕𝑇1

+ 𝜖2
𝜕𝜙
𝜕𝑇2

= 𝜖2
(

𝑝21𝑘1 + 𝑝22𝑅
2) . (53b)

Accordingly, the solution in the original variables 𝑥𝑖𝛼(𝜏) can be
obtained by utilizing Eqs. (22), (38), (43), (50) and (53). Note that
Eq. (53) can also be used to determine the amplitude and stability
of limit-cycles originating from Hopf point which further dictates the
nature of Hopf-bifurcation. Using similar approach we can get the slow
flow equations for System-𝛽, however, for the sake of brevity this is
not reported in the paper. A detailed discussion on these slow flow
equations and verification of our analytical approach with numerical
simulation is presented in the next section.

5. Results and discussions

As discussed in Section 3, linear stability analysis plays an important
role in the subsequent nonlinear analysis since it provides information
about the Hopf points on the stability boundary. Therefore, in this
section, we first start with the parametric study on the linear stability
of the steady states of System-𝛼 and System-𝛽, i.e., the motion stage
with and without FI, respectively. Later on, we present the validation of
our analytical approach (using MMS) by comparing it against numerical
simulations, which is followed by the criticality of bifurcation on the
stability boundary and a detailed bifurcation analysis.

5.1. Linear stability curves

We have used the parameter values given in Table 1 for the linear
and subsequent nonlinear analysis. Note that the values of 𝑘𝑖, 𝑣𝑟𝑣, 𝜅, 𝑘𝑟,
and 𝑚𝑟 vary throughout the analysis, and hence, the numerical values of
these are not reported in Table 1. The linear stability curves produced
on the control parameter space of 𝑘𝑖 − 𝑣𝑟𝑣 are shown in Figs. 3–5 for
different parameter values. As discussed in Section 3, it is difficult
to obtain the closed-form expressions for 𝑘𝑖,𝑐𝑟 and 𝑣𝑟𝑣,𝑐𝑟 in terms of
other system parameters and frequency, 𝜔, these stability curves are
produced by solving Eqs. (29a)–(29b) numerically using the arc-length
continuation scheme discussed in [32] over a frequency range. To get
a complete understanding of the effect of FI on the stability of steady-
states, multiple stability curves are produced for different combinations

Table 1
Dimensional and non-dimensional parameters used in the simulation.
𝑚𝑡 [kg] 1.5 𝑘𝑝 2𝑒4

𝑘𝑑 [N-s/m] 7 𝑋0 [m] 0.0007353
𝜎∗
0 [N/m] 2.2𝑒6 𝜎∗

1 , 𝜎
∗
2 [N-s/m] 237, 14.25

𝑓 ∗
𝑐 [N] 5.1 𝑓 ∗

𝑠 [N] 6.5
𝜔0 [rad/s] 115.5 𝜁 0.02
𝜎0 110 𝜎1 1.37
𝜎2 0.0823 𝑓𝑠 0.44
𝑓𝑐 0.35 𝑎 2.5

of 𝜅, 𝑘𝑟, and 𝑚𝑟. On these stability plots, the stable and unstable regions
are marked by ‘Stable’, and ‘Unstable’, respectively.

As mentioned earlier, stability curves in the control parameter space
of 𝑘𝑖−𝑣𝑟𝑣 are obtained by solving Eqs. (29a) and (29b) numerically for
a given range of frequency 𝜔 ∈ [𝜔1, 𝜔2], where 𝜔1 < 𝜔2, and are the
functions of system parameters. On solving Eqs. (29a) and (29b), over
the specified range, we get negative values of 𝑘𝑖 and 𝑣𝑟𝑣 also. However,
as we are only interested in the positive values of control parameters,
these stability curves are shown in the upper right-half plane of control
parameters. Furthermore, from Figs. 3–5, we can observe that two
stable regimes exist on the positive space of control parameters for
given values of system properties, viz., stable regime corresponding to
higher values of 𝑣𝑟𝑣 and stable regime corresponding to very low values
of 𝑣𝑟𝑣. Therefore, in the subsequent analysis we present the dynamics
of the motion stage for both stability regimes.

Figs. 3, 4, and 5 show the variation of stability regime for System-
𝛼, i.e., the motion stage with FI for different values of 𝜅, 𝑘𝑟, and 𝑚𝑟,
respectively. For the sake of completeness, we also compared these
stability regimes with those corresponding to System-𝛽, i.e., the motion
stage without FI. From Fig. 3(i) we can observe that the increase in
damping in the FI increases the overall stability of the steady-states as
compared to the stability of the system without FI, and allows the use
of higher values of 𝑘𝑖 for a given value of 𝑣𝑟𝑣. We emphasize that these
non-dimensional values can be easily translated to dimensional values
using nondimensional scales and parameters (Eq. (10)). As an example,
in the dimensional space of parameters, the critical value of integral
gain 𝑘∗𝑖 (above which system becomes unstable) is 1.34 𝑒5 N/ms for
𝑉𝑟𝑣 = 0.42 m∕s without FI. However, for the system with FI, the critical
value of integral gain becomes 2.224 𝑒5 N/ms for 𝑉𝑟𝑣 = 0.42 m∕s and
𝑐𝑓𝑖 = 13.86 Ns/m. A similar observation can be drawn from Fig. 3(ii),
i.e., for very small values of 𝑣𝑟𝑣, higher values of feedback gain can be
used to suppress friction-induced vibrations. This observation can also
be drawn from the fact that, in general, damping in the system increases

8
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Fig. 5. Comparison of stability curves with and without FI for different values of 𝑚𝑟 for (i) larger values of 𝑣𝑟𝑣, and (ii) for smaller values of 𝑣𝑟𝑣. Other parameters are 𝜎0 = 110,
𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, and 𝑘𝑟 = 0.5. (For interpretation of color in figure, the reader is referred to the web version of this article.)

Fig. 6. Comparison of time-response of the System-𝛼 obtained from MMS and numerical simulation for two different values of 𝑘𝑖 corresponding to (i) 𝑘𝑖 = 0.1636 > 𝑘𝑖,𝑐𝑟 = 0.1536,
(ii) 𝑘𝑖 = 0.1436 < 𝑘𝑖,𝑐𝑟 = 0.1536. The other parameters for numerical simulation are 𝜎0 = 110, 𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑘 = 0.35, 𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, 𝑘𝑟 = 0.5, 𝑚𝑟 = 2,
and 𝑣𝑟𝑣 = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the stability of the steady states. On a similar trend, Fig. 4 shows the
variation of stability regime with the variation in stiffness ratio 𝑘𝑟. From
this, it can be noticed that as the value of 𝑘𝑟 increases from 𝑘𝑟 = 0.5, the
overall stability of the steady-state starts decreasing and even becomes
smaller than the one corresponding to system-𝛽, i.e., the motion stage
without FI. This observation at first glance suggests the use of FI with
stiffness lower than the stiffness of the motion stage to increase the
overall stability and allow the use of higher values of feedback gain.
However, on careful observation of Fig. 5, i.e., the variation of stability
with variation in 𝑚𝑟, we notice that the overall stability of the system
increases with increase in 𝑚𝑟, and becomes maximum at 𝑚𝑟 = 2.
With further increase in 𝑚𝑟 from 𝑚𝑟 = 2, the stability boundary start
decreasing. We emphasize here that for Fig. 4, we have chosen 𝑚𝑟 = 2,
and for Fig. 5, we have used 𝑘𝑟 = 0.5. In both of these scenarios product
of 𝑘𝑟 and 𝑚𝑟, which also presents the ratio of the natural frequencies of
the motion stage to natural frequency of FI, becomes 1 for 𝑘𝑟 = 0.5 in
Fig. 4, and for 𝑚𝑟 = 2 in Fig. 5. Therefore, from these observations, it
can be concluded that the overall stability of the steady-states becomes
maximum in the case of internal resonance between the motion stage
and FI.

Before proceeding any further to ascertain the nature of bifurcation
on the stability lobes and the amplitude of limit cycles from the slow
flow equations close to the Hopf point, it is required to validate the

analytical results with numerical simulation. This is presented in the
next section.

5.2. Validation of analytical results from MMS

In this section, we present the validity of the analytical solutions
for System-𝛼 obtained from the slow-flow equations (Eq. (53)) by com-
paring it with numerical simulations of Eq. (18). For this, we compare
the time-response of the system (Eq. (18)) using Matlab routine ‘ode45’
with those obtained from the slow-flow equation and establish the
accuracy of the MMS. To achieve this, we first start with System-𝛼
and choose two different sets of parameters close to Hopf point such
that one point corresponds to the unstable regime (𝑣𝑟𝑣,𝑐𝑟 = 1, 𝑘𝑖 =
0.1636 > 𝑘𝑖,𝑐𝑟 = 0.1536) while the other point lies in the stable regime
(𝑣𝑟𝑣,𝑐𝑟 = 1, 𝑘𝑖 = 0.1436 < 𝑘𝑖,𝑐𝑟 = 0.1536). Accordingly, we get a
gradually increasing periodic response (till it settles down to stable
limit cycle) and gradually decreasing periodic response (till it settles
down to steady-state). From Fig. 6, we can easily observe that the
time-response of the system obtained from MMS matches excellently
with that obtained numerically using MATLAB routine ‘ode45’. For the
sake of completeness, we also present this comparison for System-𝛽.
The comparison between analytical and numerical simulations, cor-
responding to a different set of control parameters, for system-𝛽 is

9
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Fig. 7. Comparison of time-response of the System-𝛽 obtained from MMS and numerical simulation for two different values of 𝑘𝑖 corresponding to (i) 𝑘𝑖 = 0.1139 > 𝑘𝑖,𝑐𝑟 = 0.1039,
(ii) 𝑘𝑖 = 0.0939 < 𝑘𝑖,𝑐𝑟 = 0.1039. The other parameters for numerical simulation are 𝜎0 = 110, 𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝜁 = 0.01, 𝑎 = 2.5, and 𝑣𝑟𝑣 = 1.

Fig. 8. Criticality of Hopf bifurcation in the System-𝛼, i.e, motion stage with FI (i) for higher values of 𝑣𝑟𝑣, and (ii) zoomed view of (i) for lower values of 𝑣𝑟𝑣. The other parameters
are 𝜎0 = 110, 𝜎1 = 1.37. 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, 𝑘𝑟 = 0.5, and 𝑚𝑟 = 2.

shown in Fig. 7. We again observe an excellent match between both
approaches for System-𝛽. Both of these observations for System-𝛼 and
System-𝛽 further act as a validation of our analytical approach. Having
established this agreement for both systems, next, we present the
criticality of Hopf bifurcation on the stability curves.

5.3. Criticality of Hopf bifurcation

In this section, we show the nature of Hopf bifurcation associated
with stability curves for System-𝛼 and System-𝛽 as obtained analyti-
cally using MMS. As discussed earlier, if either or both of the control
parameters, i.e., 𝑘𝑖 and 𝑣𝑟𝑣 changes their values such that the steady-
states of the system move from the stable to the unstable regime,
Hopf bifurcation occurs, and the system settles down to stable limit
cycles close to stability boundaries. The amplitude of these stable
limit cycles closed to stability boundaries can be determined with the
help of slow flow equations (Eq. (53)) and, eventually, the nature of
Hopf bifurcation. The appearance of stable limit cycles in the unstable
regime closed to Hopf point implies the existence of supercritical Hopf
bifurcation and global stability of the steady states in the linearly
stable regime. Also, the existence of supercritical bifurcation implies
that nonlinearity in the system is stabilizing in nature. However, if
small-amplitude unstable limit cycles appear in the linearly stable
regime, then subcritical bifurcation occurs, and steady-states lose global

stability in the linearly stable regime. Therefore, in the linear stable
regime small perturbation decays, while sufficiently large perturbation
grows to large-amplitude solution and leading to loss of global stability.

To determine the global stability of the steady states close to the
Hopf point and hence, the nature of Hopf bifurcation, we need to
calculate the steady-state amplitude of limit cycles and its location
relative to stability boundaries. The amplitude of limit cycles close to
Hopf point can be obtained by nontrivial fixed points of the slow-flow
equations, i.e., by setting 𝑅̇ = 0 in Eq. (53). Therefore, the nontrivial
fixed point of Eq. (53) or the amplitude of limit cycles close to Hopf
point is given by

𝑅 = ±

√

−𝑝11𝑘1
𝑝12

. (54)

We emphasize here that the quantity 𝑝11𝑘1 is always positive in
the linear unstable regime and negative in the linear stable regime.
Therefore, the nature of Hopf-bifurcation depends on the sign of 𝑝12
only. If 𝑝12 is negative, then limit cycles will exist in linearly unstable
regimes only, and the Hopf bifurcation will be supercritical in nature.
However, if 𝑝12 becomes positive, then the limit cycles will exist in
the linear stable regimes, and the Hopf-bifurcation will be subcritical
in nature. Therefore, the set of control parameters on the stability
boundary corresponding to the transition point from subcritical to
supercritical or vice-versa can be found by setting the denominator to
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Fig. 9. Criticality of Hopf bifurcation in the System-𝛽, i.e, motion stage without FI (i) for higher values of 𝑣𝑟𝑣, and (ii) zoomed view of (i) for lower values of 𝑣𝑟𝑣. Other parameters
are 𝜎0 = 110, 𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝜁 = 0.02, and 𝑎 = 2.5. (For interpretation of color in figure, the reader is referred to the web version of this article.)

Fig. 10. Numerical bifurcation diagram with 𝑘𝑖 as bifurcation parameter with 𝑣𝑟𝑣 = 1 for (i) System-𝛼, and (ii) System-𝛽. Other parameters are 𝜎0 = 110, 𝜎1 = 1.37, 𝜎2 = 0.0823,
𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, 𝑘𝑟 = 0.5, and 𝑚𝑟 = 2. (For interpretation of color in this figure, the reader is referred to the web version of this article.)

Fig. 11. Comparison of bifurcation diagram from numerical simulation and MMS with 𝑘𝑖 as bifurcation parameter (i) System-𝛼, and (ii) System-𝛽. Other parameters are 𝜎0 = 110,
𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, 𝑘𝑟 = 0.5, 𝑚𝑟 = 2, and 𝑣𝑟𝑣 = 1. (For interpretation of color in this figure, the reader is referred to the web
version of this article.)

0. Note that 𝑝12 is a function of system parameters and critical control
parameters, i.e., control parameters at the Hopf point. Accordingly, we

substitute 𝑘𝑖,𝑐𝑟, 𝑣𝑟𝑣,𝑐𝑟, and associated frequency along with other system
parameters and check for the sign of 𝑝12 to determine the nature of Hopf
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Fig. 12. Phase portraits for the stable limit cycles close to Hopf point with stick–slip motion (i) System-𝛼, and (ii) System-𝛽. The other parameters for numerical simulation are
𝜎0 = 110, 𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝑣𝑟𝑣 = 1 𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, 𝑘𝑟 = 0.5, and 𝑚𝑟 = 2.

Fig. 13. Zoomed view of the numerical bifurcation near Hopf point (i) System-𝛼, and (ii) System-𝛽. The other parameters for the numerical simulation are 𝜎0 = 110, 𝜎1 = 1.37,
𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝑣𝑟𝑣 = 1 𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, 𝑘𝑟 = 0.5, and 𝑚𝑟 = 2. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

bifurcation. The stability curves with associated Hopf bifurcations for
System-𝛼 and System-𝛽 has been shown in Figs. 8 and 9, respectively.
From Figs. 8i and 9i, we can easily observe that there is no transition
point on the stability curves and hence, no change in the nature of
Hopf bifurcation from supercritical to subcritical or vice versa. Also,
we observe that there is no change in the nature of Hopf bifurcation
on the inclusion of FI in the motion stage, and it remains subcritical
in nature for higher values of 𝑣𝑟𝑣. However, for lower values of 𝑣𝑟𝑣,
the nature of Hopf bifurcation changes from supercritical to subcritical
due to the interaction between FI and integral control of the system (as
shown in Figs. 8(ii) and 9(ii)). This observation further implies that for
lower values of 𝑣𝑟𝑣, the introduction of FI in the system increases the
linear stability of steady states at the cost of losing global stability of
steady states for the given system parameters.

It is to be noted here that the analytical results using MMS only
give information about the amplitude of limit cycles close to Hopf-
point and do not provide the overall nonlinear global behavior of our
system. Therefore, we use numerical bifurcation analysis to get an
understanding of the large-amplitude response of the precision motion
stage, and this is presented in the next section. This step further acts as
another verification of our analytical results.

5.4. Bifurcation analysis

In this section, we present numerical bifurcation analysis of System-
𝛼 and System-𝛽. For this, we have used built-in MATLAB routine ‘ode45’
with a high value of relative and absolute tolerance of ‘1e−13’ to solve
our six first-order system of odes. The bifurcation diagrams, showing
the extrema for 𝑥1 (corresponding to 𝑥2 = 0), for System-𝛼 and System-
𝛽 are shown in Fig. 10(i) and (ii), respectively. These bifurcation
diagrams can be plotted by fixing either of the control parameters,
i.e., 𝑘𝑖 or 𝑣𝑟𝑣 and varying other. Since in our analytical analysis, we
have chosen 𝑘𝑖 as our bifurcation parameter, we fix the value of 𝑣𝑟𝑣
and vary 𝑘𝑖 in forward and backward direction. From both figures, we
can observe the existence of subcritical Hopf bifurcation in System-𝛼
and System-𝛽 as predicted by the analytical results using MMS in the
previous section. Also, the overall picture of these bifurcation diagrams
is complex due to the existence of quasi-periodic and period-2 solutions
and will be discussed later in this section.

After establishing a qualitative match from the analytical and nu-
merical findings, we perform the quantitative match as well. For this
step, we obtained the branch of limit cycles using fixed-arc-length
continuation scheme [32]. These results are shown in Fig. 11(i) and
(ii) for System-𝛼 and System-𝛽, respectively. In these figures, solid
lines represent the stable steady-state response, whereas dashed lines
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Fig. 14. Phase portraits showing the stability of limit cycles for System-𝛼 with different values of 𝑘𝑖 close to Hopf point (i) period-1 solution, (ii) period-2 solution, (iii) period-4
solution, (iv) quasi-periodic solution, (v) period-3 solution, and (vi) period-1 solution. The other parameters for numerical simulation are 𝜎0 = 110, 𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44,
𝑓𝑐 = 0.35, 𝑣𝑟𝑣 = 1 𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, 𝑘𝑟 = 0.5, and 𝑚𝑟 = 2.

represent unstable steady-states. From both figures, we observe that
there is a decent match between the numerical results from the con-
tinuation method and the MMS results for moderate amplitudes. The
coexistence of unstable limit cycles with a stable equilibrium indicates
that Hopf-bifurcation is subcritical in nature. Further, it can be noted
from Fig. 11 the subcritical branch of limit cycles undergoes a smooth
turning bifurcation resulting in limit cycles involving stick–slip motion.
The illustrative phase portraits for stable limit cycles with stick–slip
close to Hopf point are shown in Fig. 12.

To further explore the dynamics of a motion stage with and without
FI, we examine the numerical bifurcation close to the Hopf point and
away from the Hopf point. The dynamics of the motion stage with and
without FI close to Hopf point is shown in Fig. 13. From Fig. 13, we
can observe that for both cases, i.e., motion stage with and without
FI, stable period-1 solutions lose stability and period-2, period-4, and
subsequently quasi-periodic solutions start appearing as the value of 𝑘𝑖
approaches towards 𝑘𝑖,𝑐𝑟. The occurrence of period-2 solutions signifies
supercritical period-doubling bifurcation near the Hopf point for both
cases of the motion stage. Period-doubling bifurcation preceded by
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Fig. 15. Phase portraits showing the stability of limit cycles for System-𝛽 with different values of 𝑘𝑖 close to Hopf point (i) period-1 solution, (ii) period-2 solution, (iii) period-4
solution, (iv) quasi-periodic solution, (v) period-3 solution, and (vi) period-1 solution. The other parameters for numerical simulation are 𝜎0 = 110, 𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44,
𝑓𝑐 = 0.35, 𝑣𝑟𝑣 = 1 𝜁 = 0.02, 𝑎 = 2.5.

symmetry-breaking bifurcation has been observed for a system with
symmetrical solution (trivial fixed points) [33]. However, this dynamic
phenomenon does not take place in the current system, i.e., here the
periodic solutions do not hold inversion symmetry (𝑥(𝜏) = −𝑥(𝜏 +
𝑇 ∕2) with T as time-period) before period-doubling bifurcation. This
observation can be explained through the appearance of asymmetrical
solutions, i.e., non-trivial fixed points of System-𝛼 and 𝛽 (Eqs. (18)–
(21)). For illustrative purpose we start with the stable periodic solution
for System-𝛼 (Fig. 13(i)). As we start decreasing the value of 𝑘𝑖, stable

stick–slip limit cycle loses stability through supercritical period-2 bifur-
cation, and period-2 solutions start appearing in the system. On further
decreasing the value of 𝑘𝑖, we observe the existence of period-4 and
quasi-periodic solutions, and close to Hopf point, stick–slip limit cycle
again retains stability and undergoes smooth subcritical bifurcation.
The representative phase-portraits for this dynamical phenomenon for
both systems, i.e., for System-𝛼 and System-𝛽 are shown in Figs. 14 and
15, respectively.

The appearance of period-2 limit cycles and hence, occurrence of
period-2 bifurcation can be better understood with the help of the
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Fig. 16. Floquet multiplier crossing the unit circle through period-doubling bifurcation with blue, magenta and red colors for earlier, intermediate and final stage of Floquet
multiplier with different values of 𝑘𝑖 (i) for System-𝛼 (𝑘𝑖 = 0.13, 𝑘𝑖 = 0.1290 and 𝑘𝑖 = 0.1281), and (ii) for System-𝛽 (𝑘𝑖 = 0.1088, 𝑘𝑖 = 0.1057 and 𝑘𝑖 = 0.1047). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Numerical bifurcation Hopf point (i) System-𝛼, and (ii) System-𝛽. The other parameters for numerical simulation are 𝜎0 = 110, 𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35,
𝑣𝑟𝑣 = 1 𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, 𝑘𝑟 = 0.5, and 𝑚𝑟 = 2.

stability of the period-1 solution, preceding the period-2 solutions,
using Floquet theory. The movement of the various Floquet multipliers
associated with the period-1 solution with decreasing 𝑘𝑖 around the
initiation of the period-2 solution for System-𝛼 and −𝛽 are shown in
Fig. 16i and ii, respectively. It can be easily observed that for both
cases, the dominant Floquet multiplier crosses the unit circle at −1 on
the real axis and hence, signifies the loss of stability of period-1 solution
through a period-doubling bifurcation [34].

Having established the existence of supercritical period doubling
bifurcation close to Hopf points, next we present the dynamics of
the motion stage away from the Hopf point. For this we present the
Poincare section of the system dynamics corresponding to 𝑥2 = 0 for
both cases, i.e., for System-𝛼 and System-𝛽 as shown in Fig. 17i and ii,
respectively. From Fig. 17ii, we can observe that for System-𝛽, period-
1 solutions do not lose stability and remains stable as the value of
𝑘𝑖 increases. However, for System-𝛼, more complicated dynamics viz.
period-2, period-4, quasi-periodic and finally chaotic solutions appear
as 𝑘𝑖 increases. The illustrative phase portraits corresponding to the lost
of stability of period-1 limit cycles for System-𝛼 are shown in Fig. 18.

The appearance of chaotic solutions in System-𝛼 and eventually
loss of stability of limit cycles can be further explained with the help
of variation of Lyapunov exponents. Since the real part of a Floquet
exponent represents Lyapunov exponent [35], we can use the following

relation to determine the Lyapunov exponent

𝐿.𝐸. = ℜ
(

log(𝛷)
𝑇

)

, (55)

where 𝐿.𝐸. represents the Lyapunov exponent, 𝛷 represents the Floquet
multiplier, and 𝑇 represents the time-period. The variation of domi-
nant, i.e., maximum Lyapunov exponent with 𝑘𝑖 is shown in Fig. 19. It
can be easily observed from Fig. 19 that for 𝑘𝑖 >≈ 0.539, the dominant
L.E. becomes positive, thus confirming the existence of chaotic attractor
in the system. From this observation we can conclude that though the
inclusion of FI in the system improves the stability of the system for
a choice of design parameters and reduces the amplitude of motion,
it also introduces complex dynamics in the system such as period-2,
period-4, quasi-periodic, and chaotic solutions.

6. Conclusion

In this work, we studied the nonlinear dynamics of a servo
-controlled motion stage with and without friction isolator. To include
the dynamical effect of friction in the system, we have considered
the LuGre model. Earlier studies with the LuGre model suggest that
the nature of Hopf bifurcation always remains subcritical in nature.
However, the current analysis revealed that for the given value of
reference velocity, the nature of Hopf bifurcation can change due to
the complex interplay between FI and integral control. A parametric
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Fig. 18. Phase portraits showing the stability of limit cycles for System-𝛼 with different values of 𝑘𝑖 away from Hopf point (i) period-1 solution, (ii) period-2 solution, (iii)
quasi-periodic solution, and (iv) chaotic solution. The other parameters for numerical simulation are 𝜎0 = 110, 𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝑣𝑟𝑣 = 1 𝜁 = 0.02, 𝑎 = 2.5,
𝜅 = 0.001, 𝑘𝑟 = 0.5, and 𝑚𝑟 = 2.

study on the linear stability boundaries revealed that damping in the FI
increases the overall stability of the steady states in the space of control
parameters. Furthermore, we observed that the internal resonance
between FI and the servo-controlled motion stage increases the stability
significantly in the control parameter space.

The nonlinear dynamics of the motion stage with and without FI was
analyzed analytically using the method of multiple scales and harmonic
balance. We verified these analytical results by comparing them against
numerical simulations. We observed an excellent match between the
two approaches for both cases of motion stage with and without FI. A
thorough nonlinear analysis was carried out to understand the nature
of the bifurcation and limit cycle. We obtained the criticality of Hopf
bifurcation on the different regions of the stability curves, and accord-
ingly, different regions of supercritical and subcritical Hopf bifurcation
were obtained. We observed that the inclusion of FI in the system
did not change the nature of Hopf bifurcation and remains subcritical
for higher values of control parameters. However, for lower values
of control parameters, the inclusion of FI changes Hopf bifurcation
from supercritical to subcritical. Therefore, it can be concluded that
although FI increased the overall local stability of steady states, the
global stability of steady states decreased. Furthermore, we explored
the dynamics of the motion stage for both cases numerically to get a
complete understanding of the effect of FI on the system and observed
very rich dynamics in the system including period-doubling bifurcation,
quasi-periodic, and chaotic solution. However, unlike systems with
symmetrical solutions, we did not observe the occurrence of symmetry

Fig. 19. Variation of dominant Lyapunov exponent with 𝑘𝑖. The other parameters for
numerical simulation are 𝜎0 = 110, 𝜎1 = 1.37, 𝜎2 = 0.0823, 𝑓𝑠 = 0.44, 𝑓𝑐 = 0.35, 𝑣𝑟𝑣 = 1
𝜁 = 0.02, 𝑎 = 2.5, 𝜅 = 0.001, 𝑘𝑟 = 0.5, and 𝑚𝑟 = 2.

breaking bifurcation before period-doubling bifurcation due to the
appearance of asymmetrical solutions, i.e., non-trivial fixed points.
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Overall, our findings suggested that the inclusion of a FI in the
system can increase the local stability and decrease the limit cycle
amplitudes of a PID controlled motion stage, thus improving the per-
formance of the manufacturing machine. However, this improvement
comes at the cost of introducing more complex dynamics in the system.
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Appendix A. Expressions used in Section 3

A.1. System-𝛼

𝑓1 =
(

𝑚𝑟 ℎ1𝛼 + 2 𝜅 𝑚𝑟 + 𝑔0 𝑣𝑟𝑣 𝜎0 + 2 𝜁 + 2 𝜅
)

(56)

𝑓2 =
(

𝑘𝑟 𝑚𝑟 + 𝑘𝑟 + 4 𝜁 𝜅 𝑚𝑟 + 𝑚𝑟 ℎ1𝛼 𝑔0 𝑣𝑟𝑣 𝜎0 + 2 𝜅 𝑚𝑟 𝑔0 𝑣𝑟𝑣 𝜎0
− 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣 𝑔1 ℎ0 + 2 𝜁 𝑔0 𝑣𝑟𝑣 𝜎0 + 2 𝜅 𝑔0 𝑣𝑟𝑣 𝜎0 + 2 𝜁 𝑚𝑟 ℎ1𝛼

+2 𝜅 𝑚𝑟 ℎ1𝛼 + 1
)

(57)

𝑓3 =
(

2 𝜅 𝑚𝑟 + 𝑚𝑟 ℎ1𝛼 + 𝑘𝑖 + 𝑔0 𝑣𝑟𝑣 𝜎0 + 𝑘𝑟 𝑚𝑟 𝑔0 𝑣𝑟𝑣 𝜎0 + 2 𝜁 𝑘𝑟 𝑚𝑟

+ 𝑘𝑟 𝑚𝑟 ℎ1𝛼 − 2 𝜁 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣 𝑔1 ℎ0 + 2 𝜅 𝑚𝑟 ℎ1𝛼 𝑔0 𝑣𝑟𝑣 𝜎0
+ 𝑘𝑟 𝑔0 𝑣𝑟𝑣 𝜎0 + 4 𝜁 𝜅 𝑚𝑟 𝑔0 𝑣𝑟𝑣 𝜎0 − 2 𝜅 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣 𝑔1 ℎ0

+2 𝜁 𝑚𝑟 ℎ1𝛼 𝑔0 𝑣𝑟𝑣 𝜎0
)

(58)

𝑓4 =
(

2 𝜅 𝑚𝑟 𝑔0 𝑣𝑟𝑣 𝜎0 + 𝑘𝑖 𝑔0 𝑣𝑟𝑣 𝜎0 − 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣 𝑔1 ℎ0 + 𝑚𝑟 ℎ1𝛼 𝑔0 𝑣𝑟𝑣 𝜎0
+ 𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑔0 𝑣𝑟𝑣 𝜎0 + 𝑘𝑟 𝑚𝑟 − 𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣 𝑔1 ℎ0 + 2 𝑘𝑖 𝜅 𝑚𝑟

+𝑘𝑖 𝑚𝑟 ℎ1𝛼 + 2 𝜁 𝑘𝑟 𝑚𝑟 𝑔0 𝑣𝑟𝑣 𝜎0
)

(59)

𝑓5 =
(

−𝑘𝑖 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣 𝑔1 ℎ0 + 2 𝑘𝑖 𝜅 𝑚𝑟 𝑔0 𝑣𝑟𝑣 𝜎0 + 𝑘𝑖 𝑚𝑟 ℎ1𝛼 𝑔0 𝑣𝑟𝑣 𝜎0

+𝑘𝑟 𝑚𝑟 𝑔0 𝑣𝑟𝑣 𝜎0 + 𝑘𝑖 𝑘𝑟 𝑚𝑟
)

(60)

𝑓6 = 𝑘𝑖 𝑘𝑟 𝑚𝑟 𝑔0 𝑣𝑟𝑣 𝜎0 (61)

𝑅𝑒1𝛼 =
𝜔𝑘𝑟2 + 𝑘𝑟 𝜔 − 𝜔3𝑘𝑟 + 4𝜔3𝜅 𝜁 + 4𝜔3𝜅2 − 2𝜔𝜅 𝑘𝑖

𝜔𝑘𝑟2 + 4𝜔3𝜅2
,

𝐼𝑚1𝛼 =
−2𝜔2𝜅 + 2𝜔4𝜅 + 2 𝑘𝑟 𝜔2𝜁 − 𝑘𝑖 𝑘𝑟

𝜔𝑘𝑟2 + 4𝜔3𝜅2

(62)

𝑅𝑒2𝛼 =
2𝜔2𝜅 − 2𝜔4𝜅 − 2 𝑘𝑟 𝜔2𝜁 + 𝑘𝑖 𝑘𝑟

𝑘𝑟2 + 4𝜔2𝜅2
,

𝐼𝑚2𝛼 =
𝜔𝑘𝑟2 + 𝑘𝑟 𝜔 − 𝜔3𝑘_𝑟 + 4𝜔3𝜅 𝜁 + 4𝜔3𝜅2 − 2𝜔𝜅 𝑘𝑖

𝑘𝑟2 + 4𝜔2𝜅2

(63)

𝑅𝑒3𝛼 =
(

−2𝜔2𝑣𝑟𝑣
2𝑔1 ℎ0 𝜅 𝜎0 𝑔0 + 2𝜔4𝑣𝑟𝑣

2𝑔1 ℎ0 𝜅 𝜎0 𝑔0 − 𝜔2𝑣𝑟𝑣 𝑔1 ℎ0 𝑘𝑟
2

− 𝜔2𝑣𝑟𝑣 𝑔1 ℎ0 𝑘𝑟 + 𝜔4𝑣𝑟𝑣 𝑔1 ℎ0 𝑘𝑟 + 2 𝑣𝑟𝑣2𝑔1 ℎ0 𝜔2𝜁 𝑘𝑟 𝜎0 𝑔0
− 𝑣𝑟𝑣

2𝑔1 ℎ0 𝑘𝑖 𝑘𝑟 𝜎0 𝑔0 − 4 𝑣𝑟𝑣 𝑔1 ℎ0 𝜔4𝜅 𝜁 − 4 𝑣𝑟𝑣 𝑔1 ℎ0 𝜔4𝜅2

+2 𝑣𝑟𝑣 𝑔1 ℎ0 𝜔2𝜅 𝑘𝑖
)

∕
(

𝑘𝑟
2𝑣𝑟𝑣

2𝜎0
2𝑔0

2 + 𝜔2𝑘𝑟
2

+4𝜔2𝜅2𝑣𝑟𝑣
2𝜎0

2𝑔0
2 + 4𝜔4𝜅2) (64)

𝐼𝑚3𝛼 =
(

−𝑣𝑟𝑣2𝑔1 ℎ0 𝜔𝑘𝑟
2𝜎0 𝑔0 − 𝑣𝑟𝑣

2𝑔1 ℎ0 𝜔𝑘𝑟 𝜎0 𝑔0
+ 𝑣𝑟𝑣

2𝑔1 ℎ0 𝜔
3𝑘𝑟 𝜎0 𝑔_0 + 2 𝑣𝑟𝑣 𝑔1 ℎ0 𝜔3𝜅 − 2 𝑣𝑟𝑣 𝑔1 ℎ0 𝜔5𝜅

− 4 𝑣𝑟𝑣2𝑔1 ℎ0 𝜔3𝜅 𝜎0 𝑔0 𝜁 − 4 𝑣𝑟𝑣2𝑔1 ℎ0 𝜔3𝜅2𝜎0 𝑔0
+2 𝑣𝑟𝑣2𝑔1 ℎ0 𝜔𝜅 𝜎0 𝑔0 𝑘𝑖 − 2 𝑣𝑟𝑣 𝑔1 ℎ0 𝜔3𝑘𝑟 𝜁 + 𝑣𝑟𝑣 𝑔1 ℎ0 𝜔𝑘𝑖 𝑘𝑟

)

∕

×
(

𝑘𝑟
2𝑣𝑟𝑣

2𝜎0
2𝑔0

2 + 𝜔2𝑘𝑟
2 + 4𝜔2𝜅2𝑣𝑟𝑣

2𝜎0
2𝑔0

2 + 4𝜔4𝜅2) (65)

𝐿𝑟𝑒1𝛼 =

(

2𝜔2𝜅𝑘𝑟 + 2𝜅2𝑘_𝑖 + 𝑘𝑟2𝜁 − 𝑘𝑟𝜅
)

𝜔2

𝜔4𝑘𝑟2 + 4𝜔2𝑘𝑟𝜅𝑘𝑖 + 4𝜅2𝑘𝑖2 + 4𝑘𝑟2𝜔2𝜁2 − 8𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2
(66)

𝐿𝑖𝑚1𝛼 = −
𝜔
(

𝜔2𝑘𝑟2 + 2𝑘𝑖𝜅𝑘𝑟 − 4𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2)

𝜔4𝑘𝑟2 + 4𝜔2𝑘𝑟𝜅𝑘𝑖 + 4𝜅2𝑘𝑖2 + 4𝑘𝑟2𝜔2𝜁2 − 8𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2

(67)

𝐿𝑟𝑒2𝛼 =

(

𝜔2𝑘𝑟2 + 2𝑘𝑖𝜅𝑘𝑟 − 4𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2) 𝑘𝑖
𝜔4𝑘𝑟2 + 4𝜔2𝑘𝑟𝜅𝑘𝑖 + 4𝜅2𝑘𝑖2 + 4𝑘𝑟2𝜔2𝜁2 − 8𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2

(68)

𝐿𝑖𝑚2𝛼
2
(

𝜔2𝜅𝑘𝑟 + 2𝜅2𝑘𝑖 + 𝑘𝑟2𝜁 − 𝑘𝑟𝜅
)

𝑘𝑖𝜔

𝜔4𝑘𝑟2 + 4𝜔2𝑘𝑟𝜅𝑘𝑖 + 4𝜅2𝑘𝑖2 + 4𝑘𝑟2𝜔2𝜁2 − 8𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2
(69)

𝐿𝑟𝑒3𝛼 =
𝑘𝑟

(

4𝜅𝜔2𝜁 − 2𝜔2𝜅𝑘𝑖 − 𝜔4𝑘𝑟 − 4𝜁2𝜔2𝑘𝑟 + 2𝑘𝑖𝑘𝑟𝜁 + 𝜔2𝑘𝑟
)

𝜔4𝑘𝑟2 + 4𝜔2𝑘𝑟𝜅𝑘𝑖 + 4𝜅2𝑘𝑖2 + 4𝑘𝑟2𝜔2𝜁2 − 8𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2
(70)

𝐿𝑖𝑚3𝛼 =

(

4𝑘𝑖𝜁𝜅𝜔2 + 2𝜔4𝜅 − 2𝜅𝑘𝑖2 − 2𝜔2𝜅 − 𝜔2𝑘𝑟𝑘𝑖 + 2𝑘𝑟𝜔2𝜁
)

𝑘𝑟
(

𝜔4𝑘𝑟2 + 4𝜔2𝑘𝑟𝜅𝑘𝑖 + 4𝜅2𝑘𝑖2 + 4𝑘𝑟2𝜔2𝜁2 − 8𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2
)

𝜔

(71)

Eqs. (72) and (73) are given in Box I.

𝐿𝑟𝑒5𝛼 = ℎ2𝛼
(

𝜔2𝑘𝑟𝑣𝑟𝑣𝜎0𝑔0𝑘𝑖 − 2𝜔4𝑘𝑟𝑣𝑟𝑣𝜎0𝑔0𝜅 − 4𝜅𝑣𝑟𝑣𝜎0𝑔0𝑘𝑖𝜔2𝜁

− 4𝜅2𝑣𝑟𝑣𝜎0𝑔0𝑘𝑖𝜔
2 + 2𝜅𝑣𝑟𝑣𝜎0𝑔0𝑘𝑖2 − 4𝜔4𝜁2𝑘𝑟 − 4𝜔4𝜁𝜅𝑘𝑟

+ 2𝑘𝑖𝜔2𝑘𝑟𝜁 + 4𝜔4𝜅𝜁 + 4𝜔4𝜅2 + 𝜔4𝑘𝑟
2 + 𝜔4𝑘𝑟 − 𝜔6𝑘𝑟

+ 2𝜔2𝑘𝑟𝜅𝑘𝑖 − 2𝜔4𝜅𝑘𝑖 − 2𝜔2𝑣𝑟𝑣𝜎0𝑔0𝑘𝑟
2𝜁 − 2𝜔2𝜁𝑘𝑟𝑣𝑟𝑣𝜎0𝑔0

+ 2𝜔2𝜅𝑘𝑟𝑣𝑟𝑣𝜎0𝑔0
+2𝜅𝑣𝑟𝑣𝜎0𝑔0𝜔2 − 2𝜔4𝜅𝑣𝑟𝑣𝜎0𝑔0

)

∕
((

𝑣𝑟𝑣
2𝜎0

2𝑔0
2 + 𝜔2)

×
(

𝜔4𝑘𝑟
2 + 4𝜔2𝑘𝑟𝜅𝑘𝑖 + 4𝜅2𝑘𝑖

2 + 4𝑘𝑟2𝜔2𝜁2 − 8𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2))

(74)

𝐿𝑖𝑚5𝛼 =
(

𝜔ℎ2𝛼
(

2𝜔4𝑘𝑟𝜅 − 𝜔2𝑘𝑟𝑘𝑖 + 4𝑘𝑖𝜁𝜅𝜔2 + 4𝜅2𝑘𝑖𝜔
2 − 2𝜅𝑘𝑖2

− 4𝑣𝑟𝑣𝜎0𝑔0𝑘𝑟𝜁2𝜔2 − 4𝑣𝑟𝑣𝜎0𝑔0𝑘𝑟𝜁𝜔2𝜅 + 2𝑣𝑟𝑣𝜎0𝑔0𝑘𝑟𝜁𝑘𝑖
+ 4𝜅𝑣𝑟𝑣𝜎0𝑔0𝜔2𝜁 + 4𝜔2𝜅2𝑣𝑟𝑣𝜎0𝑔0 + 𝜔2𝑣𝑟𝑣𝜎0𝑔0𝑘𝑟

2

+ 𝜔2𝑘𝑟𝑣𝑟𝑣𝜎0𝑔0 − 𝜔4𝑘𝑟𝑣𝑟𝑣𝜎0𝑔0 + 2𝜅𝑣𝑟𝑣𝜎0𝑔0𝑘𝑖𝑘𝑟 − 2𝜅𝑣𝑟𝑣𝜎0𝑔0𝑘𝑖𝜔2

+2𝜔2𝑘𝑟
2𝜁 + 2𝑘𝑟𝜔2𝜁 − 2𝜔2𝜅𝑘𝑟 − 2𝜔2𝜅 + 2𝜔4𝜅

))

∕

×
((

𝑣𝑟𝑣
2𝜎0

2𝑔0
2 + 𝜔2) (𝜔4𝑘𝑟

2 + 4𝜔2𝑘𝑟𝜅𝑘𝑖 + 4𝜅2𝑘𝑖
2 + 4𝑘𝑟2𝜔2𝜁2

−8𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2)) (75)
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𝐿𝑟𝑒4𝛼 =
2𝜔4𝑘𝑟𝜅 − 𝜔2𝑘𝑟𝑘𝑖 + 4𝑘𝑖𝜁𝜅𝜔2 + 4𝜅2𝑘𝑖𝜔2 − 2𝜅𝑘𝑖2 + 2𝜔2𝑘𝑟2𝜁 + 2𝑘𝑟𝜔2𝜁 − 2𝜔2𝜅𝑘𝑟 − 2𝜔2𝜅 + 2𝜔4𝜅

𝑚𝑟
(

𝜔4𝑘𝑟2 + 4𝜔2𝑘𝑟𝜅𝑘𝑖 + 4𝜅2𝑘𝑖2 + 4𝑘𝑟2𝜔2𝜁2 − 8𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2
)

(72)

𝐿𝑖𝑚4𝛼 =
𝜔
(

4𝜁2𝜔2𝑘𝑟 + 4𝑘𝑟𝜔2𝜁𝜅 − 2𝑘𝑖𝑘𝑟𝜁 − 4𝜅𝜔2𝜁 − 4𝜔2𝜅2 − 𝜔2𝑘𝑟2 − 𝜔2𝑘𝑟 + 𝜔4𝑘𝑟 − 2𝑘𝑖𝜅𝑘𝑟 + 2𝜔2𝜅𝑘𝑖
)

𝑚𝑟
(

𝜔4𝑘𝑟2 + 4𝜔2𝑘𝑟𝜅𝑘𝑖 + 4𝜅2𝑘𝑖2 + 4𝑘𝑟2𝜔2𝜁2 − 8𝑘𝑟𝜔2𝜁𝜅 + 4𝜔2𝜅2
)

(73)

Box I.

A.2. System-𝛽

𝐫𝟏𝛽 =

⎡

⎢

⎢

⎢

⎢

⎣

1
𝑖𝜔

−𝑖∕𝜔
𝑅𝑒1𝛽 + 𝑖𝐼𝑚1𝛽

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐥𝟏𝛽 =
[

1 𝐿𝑟𝑒1𝛽 + 𝑖𝐿𝑖𝑚1𝛽 𝐿𝑟𝑒2𝛽 + 𝑖𝐿𝑖𝑚2𝛽 𝐿𝑟𝑒3𝛽 + 𝑖𝐿𝑖𝑚3𝛽
]

(76)

𝑅𝑒1𝛽 = −
𝑣𝑟𝑣𝑔1ℎ0𝜔2

𝑣𝑟𝑣2𝜎02𝑔02 + 𝜔2
𝐼𝑚1𝛽 =

−𝑣𝑟𝑣2𝜎0𝑔0𝑔1ℎ0𝜔
𝑣𝑟𝑣2𝜎02𝑔02 + 𝜔2

𝐿𝑟𝑒1𝛽 =
𝑘𝑖𝜔2

𝑘𝑖2 + 𝜔2
, 𝐿𝑖𝑚1𝛽 = −𝜔3

𝑘𝑖2 + 𝜔2
, 𝐿𝑟𝑒2𝛽 =

𝑘𝑖𝜔2

𝑘𝑖2 + 𝜔2
,

𝐿𝑖𝑚2𝛽 =
𝑘𝑖2𝜔

𝑘𝑖2 + 𝜔2

𝐿𝑟𝑒3𝛽 =
𝜔2ℎ2𝛽

(

𝑘𝑖𝑣𝑟𝑣𝜎0𝑔0 − 𝜔2)

(

𝑣𝑟𝑣2𝜎02𝑔02 + 𝜔2
) (

−𝑘𝑖2 − 𝜔2
)
,

𝐿𝑖𝑚3𝛽 =
𝜔3ℎ2𝛽

(

𝑣𝑟𝑣𝜎0𝑔0 + 𝑘𝑖
)

(

𝑣𝑟𝑣2𝜎02𝑔02 + 𝜔2
) (

−𝑘𝑖2 − 𝜔2
)

Appendix B. Expressions used in Section 4

𝑏11 =
(

−2 𝑖
(

𝑖𝑅𝑒3𝛼ℎ4𝛼 + 𝑖𝑅𝑒2𝛼ℎ0 ℎ3𝛼 − 𝐼𝑚2𝛼ℎ0 ℎ3𝛼 − 𝐼𝑚3𝛼ℎ4𝛼
)

×
(

−𝐼𝑚2𝛼 + 𝑖𝑅𝑒2𝛼
)

𝑚𝑟
(

−ℎ3𝛼 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 𝜎1 + 2 𝑖𝜔 𝜎1 + ℎ2𝛼

+𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜎1 + 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝜎1

)

𝜔
(

𝑘𝑟 + 4 𝑖𝜅 𝜔
))

∕
(

−8 𝑖𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜔3 + 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜔
3

− 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜔3ℎ5𝛼 𝜅 𝑚𝑟 ℎ2𝛼 − 16 𝑖𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼

− 64𝜔6 − 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔
3 − 8 𝑖𝜔3𝑘𝑟 𝑚𝑟 ℎ1𝛼

+ 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 𝜅 + 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 𝜅

+ 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 − 16 𝑖𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜅 𝜔3𝑚𝑟 ℎ1𝛼

+ 32𝜔4𝜁 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 16𝜔4𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

+ 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼 + 32𝜔4𝜅 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼

− 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 − 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼

− 4𝜔2𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 4𝜔2𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
× ℎ0 ℎ3𝛼 + 4𝜔2𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟

3ℎ0 − 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

+ 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 − 4𝜔2𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 − 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼

+ 32𝜔4𝜁 𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32𝜔4𝜅 𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

+ 16𝜔4 + 16𝜔4𝑘𝑟 𝑚𝑟 − 64𝜔4𝜅2𝑚𝑟 − 8 𝑖𝑘𝑖𝑐 𝜔3 + 64 𝑖𝜔5𝜁 + 16𝜔4𝑘𝑟
− 4𝜔2𝑘𝑟 𝑚𝑟 + 16 𝑖𝜔3𝜅 𝑚𝑟 𝑘𝑟 + 64 𝑖𝜔5𝜅 − 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2
+ 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2

− 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2
+ 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 + 4𝜔2𝑘𝑟
× 𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟

3ℎ0 + 16𝜔4𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 16𝜔4𝑚𝑟 ℎ1𝛼

× 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 − 16𝜔4𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟

3ℎ0

+ 32 𝑖𝑚𝑟 ℎ1𝛼 𝜔
5 − 8 𝑖𝑚𝑟 ℎ1𝛼 𝜔

3 − 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

+ 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 8 𝑖𝜔3𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼

+ 32 𝑖𝜔5𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑘𝑖𝑐 − 16 𝑖𝑚𝑟 𝜔

3𝑘𝑟 𝜁 + 16 𝑖𝑚𝑟 ℎ0

× ℎ2𝛼 ℎ3𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟 𝜁 − 2 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟

2 − 2 𝑖𝑚𝑟 ℎ0 ℎ2𝛼

× ℎ3𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟 − 16 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝜁 + 16 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼

× 𝜔3𝑣𝑟𝑣,𝑐𝑟
3𝜁 + 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝜔

3𝜎0 𝑣𝑟𝑣,𝑐𝑟
2𝜁 + 2 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟

3

− 2 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟
3 − 4ℎ4𝛼 𝑘𝑖𝑐 𝜔

2𝑣𝑟𝑣,𝑐𝑟 − 4𝑚𝑟 ℎ1𝛼 𝑘𝑖𝑐 𝜔
2

− 4 𝑔2 𝑘𝑖𝑐 𝜔2𝜎0 𝑣𝑟𝑣,𝑐𝑟
3 + 4ℎ3𝛼 𝑘𝑖𝑐 𝜔

2𝜎0 𝑣𝑟𝑣,𝑐𝑟
2 + 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝑘𝑖𝑐

− 8 𝑖𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝜔

3 + 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 𝜔

3

+ 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 − 16 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼

× 𝜔3𝑣𝑟𝑣,𝑐𝑟
2𝜁 − 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ4𝛼 𝜔

3𝑣𝑟𝑣,𝑐𝑟 𝜁 + 2 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟
2

+ 2 𝑖𝑚𝑟 ℎ1𝛼 ℎ4𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟 − 32 𝑖𝑚𝑟 𝜔
3𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝜅
2 + 32 𝑖𝑚𝑟

× 𝜔3𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝜅

2 + 𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝑘𝑖𝑐 − 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝑘𝑖𝑐
−8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔

3 + 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝑚𝑟 𝜔
3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅

2)

(77)

𝑏12 = 4
((

𝑖𝑅𝑒3𝛼ℎ4𝛼 + 𝑖𝑅𝑒2𝛼ℎ0 ℎ3𝛼 − 𝐼𝑚2𝛼ℎ0 ℎ3𝛼 − 𝑖𝑚𝑟3ℎ4𝛼
)

×
(

−𝐼𝑚2𝛼 + 𝑖𝑅𝑒2𝛼
)

𝑚𝑟
(

−ℎ3𝛼 𝑣𝑟𝑣,𝑐𝑟2𝜎0 𝜎1 + 2 𝑖𝜔 𝜎1 + ℎ2𝛼
+𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜎1 + 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝜎1
) (

𝑘𝑟 + 4 𝑖𝜅 𝜔
)

𝜔2)

∕
(

−8 𝑖𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜔3 + 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜔3

− 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜔3ℎ5𝛼 𝜅 𝑚𝑟 ℎ2𝛼 − 16 𝑖𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 − 64𝜔6

− 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔3 − 8 𝑖𝜔3𝑘𝑟 𝑚𝑟 ℎ1𝛼 + 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 𝜅

+ 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 𝜅 + 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼

− 16 𝑖𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜁 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟

2𝜎0
× ℎ3𝛼 + 16𝜔4𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟

2ℎ5𝛼
+ 32𝜔4𝜅 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

− 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼 − 4𝜔2𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2
+ 4𝜔2𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 + 4𝜔2𝑚𝑟 ℎ2𝛼
× 𝑔3 𝑣𝑟𝑣,𝑐𝑟

3ℎ0 − 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼
− 4𝜔2𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 − 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟

2ℎ5𝛼 + 32𝜔4𝜁 𝑚𝑟 ℎ1𝛼
+ 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32𝜔4𝜅 𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 16𝜔4

+ 16𝜔4𝑘𝑟 𝑚𝑟 − 64𝜔4𝜅2𝑚𝑟 − 8 𝑖𝑘𝑖𝑐 𝜔3 + 64 𝑖𝜔5𝜁 + 16𝜔4𝑘𝑟
− 4𝜔2𝑘𝑟 𝑚𝑟 + 16 𝑖𝜔3𝜅 𝑚𝑟 𝑘𝑟 + 64 𝑖𝜔5𝜅 − 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2
+ 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝜎0
× 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2
+ 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼
+ 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟

3ℎ0 + 16𝜔4𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2

− 16𝜔4𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼

− 16𝜔4𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 + 32 𝑖𝑚𝑟 ℎ1𝛼 𝜔

5 − 8 𝑖𝑚𝑟 ℎ1𝛼 𝜔
3

− 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼

− 8 𝑖𝜔3𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 32 𝑖𝜔5𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2

+ 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑘𝑖𝑐 − 16 𝑖𝑚𝑟 𝜔
3𝑘𝑟 𝜁 + 16 𝑖𝑚𝑟 ℎ0 ℎ2𝛼 ℎ3𝛼 𝜔

3𝑣𝑟𝑣,𝑐𝑟 𝜁

18
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− 2 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟
2 − 2 𝑖𝑚𝑟 ℎ0 ℎ2𝛼 ℎ3𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟

− 16 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝜁 + 16 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟

3𝜁

+ 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

2𝜁 + 2 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟
3

− 2 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟
3 − 4ℎ4𝛼 𝑘𝑖𝑐 𝜔2𝑣𝑟𝑣,𝑐𝑟 − 4𝑚𝑟 ℎ1𝛼 𝑘𝑖𝑐 𝜔

2

− 4 𝑔2 𝑘𝑖𝑐 𝜔2𝜎0 𝑣𝑟𝑣,𝑐𝑟
3 + 4ℎ3𝛼 𝑘𝑖𝑐 𝜔2𝜎0 𝑣𝑟𝑣,𝑐𝑟

2 + 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝑘𝑖𝑐
− 8 𝑖𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝜔
3 + 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝜔
3 + 2 𝑖𝑚𝑟 𝜔𝑘𝑟

× 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 − 16 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟

2𝜁

− 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ4𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟 𝜁 + 2 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟

2 + 2 𝑖𝑚𝑟 ℎ1𝛼
× ℎ4𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟 − 32 𝑖𝑚𝑟 𝜔

3𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 𝜅

2 + 32 𝑖𝑚𝑟 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝜅
2

+ 𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝑘𝑖𝑐 − 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝑘𝑖𝑐 − 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔
3

+2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝑚𝑟 𝜔
3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅

2) (78)

𝑏13 =
(

−𝑖
(

𝑖𝐼𝑚3𝛼ℎ4𝛼 + 𝑅𝑒2𝛼ℎ0 ℎ3𝛼 + 𝑖𝐼𝑚2𝛼ℎ0 ℎ3𝛼 + ℎ4𝛼 𝑟𝑒𝑟3
)

×
(

−𝐼𝑚2𝛼 + 𝑖𝑅𝑒2𝛼
)

𝑚𝑟
(

−ℎ3𝛼 𝑣𝑟𝑣,𝑐𝑟2𝜎0 𝜎1 + 2 𝑖𝜔 𝜎1 + ℎ2𝛼
+𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜎1 + 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝜎1
) (

𝑘𝑟 + 4 𝑖𝜅 𝜔
))

∕

×
(

−8 𝑖𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜔3 + 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜔3 − 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜔3ℎ5𝛼
× 𝜅 𝑚𝑟 ℎ2𝛼 − 16 𝑖𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 − 64𝜔6 − 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔3

− 8 𝑖𝜔3𝑘𝑟 𝑚𝑟 ℎ1𝛼 + 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 𝜅 + 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼
× 𝑔3 𝑣𝑟𝑣,𝑐𝑟

3ℎ0 𝜅 + 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 − 16 𝑖𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2
× 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜁 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼

+ 16𝜔4𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼 + 32𝜔4𝜅 𝜎0

× 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 − 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼
− 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟

2ℎ5𝛼 − 4𝜔2𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 4𝜔2𝑚𝑟 ℎ1𝛼

× 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 + 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 + 4𝜔2𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟

3ℎ0
− 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 − 4𝜔2𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼
− 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟

2ℎ5𝛼 + 32𝜔4𝜁 𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼
+ 32𝜔4𝜅 𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 16𝜔4 + 16𝜔4𝑘𝑟 𝑚𝑟 − 64𝜔4𝜅2𝑚𝑟

− 8 𝑖𝑘𝑖𝑐 𝜔3 + 64 𝑖𝜔5𝜁 + 16𝜔4𝑘𝑟 − 4𝜔2𝑘𝑟 𝑚𝑟 + 16 𝑖𝜔3𝜅 𝑚𝑟 𝑘𝑟 + 64 𝑖𝜔5𝜅

− 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟

× 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 − 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2

+ 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 + 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼

+ 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 + 16𝜔4𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 16𝜔4𝑚𝑟

× ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 − 16𝜔4𝑚𝑟 ℎ2𝛼 𝑔3

× 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 + 32 𝑖𝑚𝑟 ℎ1𝛼 𝜔

5 − 8 𝑖𝑚𝑟 ℎ1𝛼 𝜔
3 − 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

+ 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 8 𝑖𝜔3𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2
− 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 32 𝑖𝜔5𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑘𝑖𝑐

− 16 𝑖𝑚𝑟 𝜔
3𝑘𝑟 𝜁 + 16 𝑖𝑚𝑟 ℎ0 ℎ2𝛼 ℎ3𝛼 𝜔

3𝑣𝑟𝑣,𝑐𝑟 𝜁 − 2 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝑘𝑖𝑐
× 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟

2 − 2 𝑖𝑚𝑟 ℎ0 ℎ2𝛼 ℎ3𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟 − 16 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝜔
3𝜎0

× 𝑣𝑟𝑣,𝑐𝑟
3𝜁 + 16 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝜔

3𝑣𝑟𝑣,𝑐𝑟
3𝜁 + 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝜔

3𝜎0 𝑣𝑟𝑣,𝑐𝑟
2𝜁

+ 2 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟
3 − 2 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟

3

− 4ℎ4𝛼 𝑘𝑖𝑐 𝜔2𝑣𝑟𝑣,𝑐𝑟 − 4𝑚𝑟 ℎ1𝛼 𝑘𝑖𝑐 𝜔
2 − 4 𝑔2 𝑘𝑖𝑐 𝜔2𝜎0 𝑣𝑟𝑣,𝑐𝑟

3

+ 4ℎ3𝛼 𝑘𝑖𝑐 𝜔2𝜎0 𝑣𝑟𝑣,𝑐𝑟
2 + 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝑘𝑖𝑐 − 8 𝑖𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝜔
3

+ 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 𝜔

3 + 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 2 𝑖𝑚𝑟 𝜔𝑘𝑟

× 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 16 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝜔

3𝑣𝑟𝑣,𝑐𝑟
2𝜁 − 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ4𝛼 𝜔

3𝑣𝑟𝑣,𝑐𝑟 𝜁

+ 2 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟
2 + 2 𝑖𝑚𝑟 ℎ1𝛼 ℎ4𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟

− 32 𝑖𝑚𝑟 𝜔
3𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝜅
2 + 32 𝑖𝑚𝑟 𝜔

3𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝜅

2 + 𝑚𝑟 𝑘𝑟 𝜎0
× 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝑘𝑖𝑐 − 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 𝑘𝑖𝑐 − 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔

3

+2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝑚𝑟 𝜔
3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅

2) (79)

𝑏14 = −
((

𝑖𝑅𝑒3𝛼ℎ4𝛼 + 𝑖𝑅𝑒2𝛼ℎ0 ℎ3𝛼 − 𝐼𝑚2𝛼ℎ0 ℎ3𝛼 − 𝐼𝑚3𝛼ℎ4𝛼
)

×
(

−𝐼𝑚2𝛼 + 𝑖𝑅𝑒2𝛼
)

𝑚𝑟
(

−ℎ3𝛼 𝑣𝑟𝑣,𝑐𝑟2𝜎0 𝜎1 + 2 𝑖𝜔 𝜎1 + ℎ2𝛼
+𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜎1 + 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝜎1
) (

𝑘𝑖𝑐 + 2 𝑖𝜔 𝑘𝑟 − 8𝜔2𝜁 + 2 𝑖𝜔

−8 𝑖𝜔3 − 8𝜔2𝜅
))

∕
(

−8 𝑖𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜔3 + 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜔3

− 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜔3ℎ5𝛼 𝜅 𝑚𝑟 ℎ2𝛼 − 16 𝑖𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 − 64𝜔6

− 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔3 − 8 𝑖𝜔3𝑘𝑟 𝑚𝑟 ℎ1𝛼 + 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 𝜅

+ 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 𝜅 + 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼

− 16 𝑖𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜁 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟

2𝜎0
× ℎ3𝛼 + 16𝜔4𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟

2ℎ5𝛼
+ 32𝜔4𝜅 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

− 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼 − 4𝜔2𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 + 4𝜔2𝑚𝑟

× ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 + 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 + 4𝜔2𝑚𝑟 ℎ2𝛼 𝑔3

× 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 − 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 − 4𝜔2𝑚𝑟

× ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 − 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼 + 32𝜔4𝜁 𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜁

× 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32𝜔4𝜅 𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 16𝜔4 + 16𝜔4𝑘𝑟 𝑚𝑟

− 64𝜔4𝜅2𝑚𝑟 − 8 𝑖𝑘𝑖𝑐 𝜔3 + 64 𝑖𝜔5𝜁 + 16𝜔4𝑘𝑟 − 4𝜔2𝑘𝑟 𝑚𝑟

+ 16 𝑖𝜔3𝜅 𝑚𝑟 𝑘𝑟 + 64 𝑖𝜔5𝜅 − 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 8𝜔2𝜁 𝑘𝑟 𝑚𝑟

× 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼

− 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼
+ 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 + 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟

3ℎ0 + 16𝜔4𝑚𝑟

× ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 16𝜔4𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 − 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
× ℎ0 ℎ3𝛼 − 16𝜔4𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟

3ℎ0 + 32 𝑖𝑚𝑟 ℎ1𝛼 𝜔
5 − 8 𝑖𝑚𝑟 ℎ1𝛼 𝜔

3

− 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼

− 8 𝑖𝜔3𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 32 𝑖𝜔5𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2

+ 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑘𝑖𝑐 − 16 𝑖𝑚𝑟 𝜔
3𝑘𝑟 𝜁 + 16 𝑖𝑚𝑟 ℎ0 ℎ2𝛼 ℎ3𝛼 𝜔

3𝑣𝑟𝑣,𝑐𝑟 𝜁

− 2 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟
2 − 2 𝑖𝑚𝑟 ℎ0 ℎ2𝛼 ℎ3𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟

− 16 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝜁 + 16 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟

3𝜁

+ 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

2𝜁 + 2 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟
3

− 2 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟
3 − 4ℎ4𝛼 𝑘𝑖𝑐 𝜔2𝑣𝑟𝑣,𝑐𝑟 − 4𝑚𝑟 ℎ1𝛼 𝑘𝑖𝑐 𝜔

2

− 4 𝑔2 𝑘𝑖𝑐 𝜔2𝜎0 𝑣𝑟𝑣,𝑐𝑟
3 + 4ℎ3𝛼 𝑘𝑖𝑐 𝜔2𝜎0 𝑣𝑟𝑣,𝑐𝑟

2 + 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝑘𝑖𝑐
− 8 𝑖𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝜔
3 + 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝜔
3 + 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝜎0

× 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 − 16 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟

2𝜁

− 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ4𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟 𝜁 + 2 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟

2 + 2 𝑖𝑚𝑟 ℎ1𝛼
× ℎ4𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟 − 32 𝑖𝑚𝑟 𝜔

3𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 𝜅

2 + 32 𝑖𝑚𝑟 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝜅
2

+ 𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝑘𝑖𝑐 − 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝑘𝑖𝑐 − 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

× ℎ4𝛼 𝜔
3 + 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝑚𝑟 𝜔

3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅
2) (80)

𝑏15 =
(

−2 𝑖
(

𝑖𝑅𝑒3𝛼ℎ4𝛼 + 𝑖𝑅𝑒2𝛼ℎ0 ℎ3𝛼 − 𝐼𝑚2𝛼ℎ0 ℎ3𝛼 − 𝑖𝑚𝑟3ℎ4𝛼
)

×
(

−𝐼𝑚2𝛼 + 𝑖𝑅𝑒2𝛼
)

𝑚𝑟
(

−ℎ3𝛼 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 𝜎1 + 2 𝑖𝜔 𝜎1 + ℎ2𝛼

+𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜎1 + 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝜎1

) (

𝑘𝑖𝑐 + 2 𝑖𝜔 𝑘𝑟 − 8𝜔2𝜁 + 2 𝑖𝜔

−8 𝑖𝜔3 − 8𝜔2𝜅
)

𝜔
)

∕
(

−8 𝑖𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜔3 + 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜔
3

− 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜔3ℎ5𝛼 𝜅 𝑚𝑟 ℎ2𝛼 − 16 𝑖𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 − 64𝜔6

− 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔
3 − 8 𝑖𝜔3𝑘𝑟 𝑚𝑟 ℎ1𝛼 + 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 𝜅

+ 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 𝜅 + 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼

− 16 𝑖𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜁 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟

2𝜎0
× ℎ3𝛼 + 16𝜔4𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟

2ℎ5𝛼 + 32𝜔4𝜅

× 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 − 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

− 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼 − 4𝜔2𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2
+ 4𝜔2𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 + 4𝜔2𝑚𝑟

× ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 − 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

− 4𝜔2𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 − 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼 + 32𝜔4𝜁 𝑚𝑟 ℎ1𝛼

+ 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32𝜔4𝜅 𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 16𝜔4

+ 16𝜔4𝑘𝑟 𝑚𝑟 − 64𝜔4𝜅2𝑚𝑟 − 8 𝑖𝑘𝑖𝑐 𝜔3 + 64 𝑖𝜔5𝜁 + 16𝜔4𝑘𝑟 − 4𝜔2𝑘𝑟 𝑚𝑟

+ 16 𝑖𝜔3𝜅 𝑚𝑟 𝑘𝑟 + 64 𝑖𝜔5𝜅 − 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 8𝜔2𝜁 𝑘𝑟

19



S.K. Gupta, J. Wang and O.R. Barry International Journal of Non-Linear Mechanics 126 (2020) 103554

× 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼

− 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼

+ 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 + 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0

+ 16𝜔4𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 16𝜔4𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 − 16𝜔4𝑚𝑟

× ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 − 16𝜔4𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 + 32 𝑖𝑚𝑟 ℎ1𝛼 𝜔

5

− 8 𝑖𝑚𝑟 ℎ1𝛼 𝜔
3 − 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼

− 8 𝑖𝜔3𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 32 𝑖𝜔5𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2

+ 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑘𝑖𝑐 − 16 𝑖𝑚𝑟 𝜔
3𝑘𝑟 𝜁 + 16 𝑖𝑚𝑟 ℎ0 ℎ2𝛼 ℎ3𝛼 𝜔

3𝑣𝑟𝑣,𝑐𝑟 𝜁

− 2 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟
2 − 2 𝑖𝑚𝑟 ℎ0 ℎ2𝛼 ℎ3𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟

− 16 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝜁 + 16 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟

3𝜁

+ 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

2𝜁 + 2 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟
3

− 2 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟
3 − 4ℎ4𝛼 𝑘𝑖𝑐 𝜔

2𝑣𝑟𝑣,𝑐𝑟 − 4𝑚𝑟 ℎ1𝛼 𝑘𝑖𝑐 𝜔
2

− 4 𝑔2 𝑘𝑖𝑐 𝜔2𝜎0 𝑣𝑟𝑣,𝑐𝑟
3 + 4ℎ3𝛼 𝑘𝑖𝑐 𝜔

2𝜎0 𝑣𝑟𝑣,𝑐𝑟
2 + 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝑘𝑖𝑐

− 8 𝑖𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝜔

3 + 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 𝜔

3 + 2 𝑖𝑚𝑟 𝜔𝑘𝑟
× 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 16 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝜔

3𝑣𝑟𝑣,𝑐𝑟
2𝜁

− 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ4𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟 𝜁 + 2 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟

2 + 2 𝑖𝑚𝑟 ℎ1𝛼

ℎ4𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟 − 32 𝑖𝑚𝑟 𝜔
3𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝜅
2 + 32 𝑖𝑚𝑟 𝜔

3𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝜅

2

+ 𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝑘𝑖𝑐 − 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝑘𝑖𝑐 − 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔
3

+2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝑚𝑟 𝜔
3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅

2) (81)

𝑏16 =
(

𝑖
(

𝑖𝑅𝑒3𝛼ℎ4𝛼 + 𝑖𝑅𝑒2𝛼ℎ0 ℎ3𝛼 − 𝐼𝑚2𝛼ℎ0 ℎ3𝛼 − 𝐼𝑚3𝛼ℎ4𝛼
)

×
(

−𝐼𝑚2𝛼 + 𝑖𝑅𝑒2𝛼
) (

32𝜔5 − 8𝜔3 − 8𝜔3𝑘𝑟 + 32𝑚𝑟 𝜔
3𝜅2

+ 2𝑚𝑟 𝜔𝑘𝑟 − 8𝑚𝑟 𝜔
3𝑘𝑟 + 4 𝑖𝑘𝑖𝑐 𝜔2 − 32 𝑖𝜔4𝜁 − 32 𝑖𝜔4𝜅

− 16 𝑖𝑚𝑟 ℎ1𝛼 𝜔
4 − 𝑖𝑚𝑟 𝑘𝑟 𝑘𝑖𝑐 + 4 𝑖𝑚𝑟 ℎ1𝛼 𝜔

2 − 16 𝑖𝑚𝑟 ℎ0 ℎ3𝛼 𝜔
4𝜎1 𝑣𝑟𝑣,𝑐𝑟

− 4 𝑖𝑚𝑟 ℎ5𝛼 𝑘𝑟 𝜔
2𝜎1 𝑣𝑟𝑣,𝑐𝑟

2 − 16 𝑖𝑚𝑟 𝑔3 ℎ0 𝜔
4𝜎1 𝑣𝑟𝑣,𝑐𝑟

3 + 4 𝑖ℎ3𝛼 ℎ0

× 𝑚𝑟 𝜎1 𝜔
2𝑣𝑟𝑣,𝑐𝑟 + 4 𝑖ℎ0 𝑚𝑟 𝜎1 𝑔3 𝜔

2𝑣𝑟𝑣,𝑐𝑟
3 + 16 𝑖𝑚𝑟 ℎ5𝛼 𝜔

4𝜎1 𝑣𝑟𝑣,𝑐𝑟
2

× −4 𝑖𝑚𝑟 𝜎1 ℎ5𝛼 𝜔
2𝑣𝑟𝑣,𝑐𝑟

2 + 4 𝑖𝑚𝑟 𝑔3 ℎ0 𝑘𝑟 𝜔
2𝜎1 𝑣𝑟𝑣,𝑐𝑟

3 + 4 𝑖𝑚𝑟 ℎ0

× ℎ3𝛼 𝑘𝑟 𝜔
2𝜎1 𝑣𝑟𝑣,𝑐𝑟 + 8 𝑖𝑚𝑟 𝜔

2𝜁 𝑘𝑟 + 4 𝑖𝑚𝑟 ℎ1𝛼 𝑘𝑟 𝜔
2 − 8 𝑖𝑚𝑟 𝜔

2𝜅 𝑘𝑟
× −16𝑚𝑟 𝑔3 ℎ0 𝜅 𝜔3𝜎1 𝑣𝑟𝑣,𝑐𝑟

3 − 16𝑚𝑟 𝑔3 ℎ0 𝜔
3𝜎1 𝑣𝑟𝑣,𝑐𝑟

3𝜁

+ 2𝑚𝑟 𝑔3 ℎ0 𝑘𝑖𝑐 𝜔𝜎1 𝑣𝑟𝑣,𝑐𝑟
3 − 16𝑚𝑟 ℎ0 ℎ3𝛼 𝜅 𝜔3𝜎1 𝑣𝑟𝑣,𝑐𝑟

− 16𝑚𝑟 ℎ0 ℎ3𝛼 𝜔
3𝜎1 𝑣𝑟𝑣,𝑐𝑟 𝜁 + 2𝑚𝑟 ℎ0 ℎ3𝛼 𝑘𝑖𝑐 𝜔𝜎1 𝑣𝑟𝑣,𝑐𝑟

+ 2𝑚𝑟 ℎ1𝛼 𝑘𝑖𝑐 𝜔 − 16𝑚𝑟 ℎ1𝛼 𝜔
3𝜁 − 16𝑚𝑟 ℎ1𝛼 𝜅 𝜔3 + 16𝑚𝑟 ℎ5𝛼 𝜅

× 𝜔3𝜎1 𝑣𝑟𝑣,𝑐𝑟
2 + 16𝑚𝑟 ℎ5𝛼 𝜔

3𝜎1 𝑣𝑟𝑣,𝑐𝑟
2𝜁 − 2𝑚𝑟 ℎ5𝛼 𝑘𝑖𝑐 𝜔𝜎1 𝑣𝑟𝑣,𝑐𝑟

2)) ∕

×
(

−8 𝑖𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜔3 + 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜔
3 − 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜔3ℎ5𝛼

× 𝜅 𝑚𝑟 ℎ2𝛼 − 16 𝑖𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 − 64𝜔6 − 8 𝑖𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔
3

− 8 𝑖𝜔3𝑘𝑟 𝑚𝑟 ℎ1𝛼 + 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 𝜅 + 16 𝑖𝜔3𝑚𝑟 ℎ2𝛼 𝑔3
× 𝑣𝑟𝑣,𝑐𝑟

3ℎ0 𝜅 + 16 𝑖𝑣𝑟𝑣,𝑐𝑟2𝜎0 ℎ3𝛼 𝜅 𝜔3𝑚𝑟 ℎ1𝛼 − 16 𝑖𝜎0 𝑣𝑟𝑣,𝑐𝑟3𝑔2 𝜅 𝜔3𝑚𝑟 ℎ1𝛼

+ 32𝜔4𝜁 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 16𝜔4𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

+ 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼 + 32𝜔4𝜅 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼

− 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 − 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼 − 4𝜔2𝑚𝑟 ℎ1𝛼

× 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 4𝜔2𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼

+ 4𝜔2𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 − 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

− 4𝜔2𝑚𝑟 ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 − 4𝜔2𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟
2ℎ5𝛼 + 32𝜔4𝜁 𝑚𝑟 ℎ1𝛼

+ 32𝜔4𝜁 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32𝜔4𝜅 𝑚𝑟 ℎ1𝛼 + 32𝜔4𝜅 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 16𝜔4

+ 16𝜔4𝑘𝑟 𝑚𝑟 − 64𝜔4𝜅2𝑚𝑟 − 8 𝑖𝑘𝑖𝑐 𝜔3 + 64 𝑖𝜔5𝜁 + 16𝜔4𝑘𝑟
− 4𝜔2𝑘𝑟 𝑚𝑟 + 16 𝑖𝜔3𝜅 𝑚𝑟 𝑘𝑟 + 64 𝑖𝜔5𝜅 − 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2
+ 8𝜔2𝜁 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 + 8𝜔2𝜅 𝑘𝑟 𝑚𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 − 8𝜔2𝜅

× 𝑘𝑟 𝑚𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 4𝜔2𝑘𝑟 𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 + 4𝜔2𝑘𝑟 𝑚𝑟

× ℎ1𝛼 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 + 4𝜔2𝑘𝑟 𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 + 4𝜔2𝑘𝑟 𝑚𝑟

× ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟
3ℎ0 + 16𝜔4𝑚𝑟 ℎ1𝛼 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 16𝜔4𝑚𝑟 ℎ1𝛼

× 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 16𝜔4𝑚𝑟 ℎ2𝛼 𝑣𝑟𝑣,𝑐𝑟 ℎ0 ℎ3𝛼 − 16𝜔4𝑚𝑟 ℎ2𝛼 𝑔3 𝑣𝑟𝑣,𝑐𝑟

3ℎ0

+ 32 𝑖𝑚𝑟 ℎ1𝛼 𝜔
5 − 8 𝑖𝑚𝑟 ℎ1𝛼 𝜔

3 − 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼

+ 8 𝑖𝜔3𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 8 𝑖𝜔3𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 32 𝑖𝜔5𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼

+ 32 𝑖𝜔5𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 + 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑘𝑖𝑐 − 16 𝑖𝑚𝑟 𝜔

3𝑘𝑟 𝜁 + 16 𝑖𝑚𝑟 ℎ0 ℎ2𝛼

× ℎ3𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟 𝜁 − 2 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟

2 − 2 𝑖𝑚𝑟 ℎ0 ℎ2𝛼 ℎ3𝛼

× 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟 − 16 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝜁 + 16 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟

3𝜁

+ 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ3𝛼 𝜔
3𝜎0 𝑣𝑟𝑣,𝑐𝑟

2𝜁 + 2 𝑖𝑚𝑟 𝑔2 ℎ1𝛼 𝑘𝑖𝑐 𝜔𝜎0 𝑣𝑟𝑣,𝑐𝑟
3

− 2 𝑖𝑚𝑟 𝑔3 ℎ0 ℎ2𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟
3 − 4ℎ4𝛼 𝑘𝑖𝑐 𝜔

2𝑣𝑟𝑣,𝑐𝑟 − 4𝑚𝑟 ℎ1𝛼 𝑘𝑖𝑐 𝜔
2

− 4 𝑔2 𝑘𝑖𝑐 𝜔2𝜎0 𝑣𝑟𝑣,𝑐𝑟
3 + 4ℎ3𝛼 𝑘𝑖𝑐 𝜔

2𝜎0 𝑣𝑟𝑣,𝑐𝑟
2 + 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝑘𝑖𝑐

− 8 𝑖𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝜔

3 + 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 𝜔

3 + 2 𝑖𝑚𝑟 𝜔𝑘𝑟
× 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 − 2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 ℎ3𝛼 − 16 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝜔

3𝑣𝑟𝑣,𝑐𝑟
2𝜁

− 16 𝑖𝑚𝑟 ℎ1𝛼 ℎ4𝛼 𝜔
3𝑣𝑟𝑣,𝑐𝑟 𝜁 + 2 𝑖𝑚𝑟 ℎ2𝛼 ℎ5𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟

2 + 2 𝑖𝑚𝑟 ℎ1𝛼

× ℎ4𝛼 𝑘𝑖𝑐 𝜔𝑣𝑟𝑣,𝑐𝑟 − 32 𝑖𝑚𝑟 𝜔
3𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝜅
2 + 32 𝑖𝑚𝑟 𝜔

3𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝜅

2

+ 𝑚𝑟 𝑘𝑟 𝜎0 𝑣𝑟𝑣,𝑐𝑟
3𝑔2 𝑘𝑖𝑐 − 𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟

2𝜎0 ℎ3𝛼 𝑘𝑖𝑐 − 8 𝑖𝑚𝑟 𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜔
3

+2 𝑖𝑚𝑟 𝜔𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 + 32 𝑖𝑚𝑟 𝜔
3𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜅

2) (82)

𝑏33 = 2
((

ℎ2𝛼 + 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜎1 − ℎ3𝛼 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 𝜎1 + 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝜎1
)

×
(

ℎ4𝛼 𝐼𝑚2𝛼𝐼𝑚3𝛼 + ℎ0 ℎ3𝛼 𝑅𝑒2𝛼
2 + ℎ4𝛼 𝑅𝑒2𝛼𝑟𝑒𝑟3 + ℎ0 ℎ3𝛼 𝐼𝑚2𝛼

2)) ∕

×
(

𝑘𝑖𝑐 𝑣𝑟𝑣,𝑐𝑟
(

−𝑣𝑟𝑣,𝑐𝑟 𝜎0 ℎ3𝛼 + 𝜎0 𝑣𝑟𝑣,𝑐𝑟
2𝑔2 + ℎ4𝛼

))

(83)

𝑏34 = 2
((

ℎ2𝛼 + 𝑣𝑟𝑣,𝑐𝑟 ℎ4𝛼 𝜎1 − ℎ3𝛼 𝑣𝑟𝑣,𝑐𝑟
2𝜎0 𝜎1 + 𝜎0 𝑣𝑟𝑣,𝑐𝑟

3𝑔2 𝜎1
)

×
(

ℎ4𝛼 𝐼𝑚2𝛼𝐼𝑚3𝛼 + ℎ0 ℎ3𝛼 𝑅𝑒2𝛼
2 + ℎ4𝛼 𝑅𝑒2𝛼𝑟𝑒𝑟3 + ℎ0 ℎ3𝛼 𝐼𝑚2𝛼

2)) ∕

×
(

𝑘𝑟 𝑣𝑟𝑣,𝑐𝑟
(

−𝑣𝑟𝑣,𝑐𝑟 𝜎0 ℎ3𝛼 + 𝜎0 𝑣𝑟𝑣,𝑐𝑟
2𝑔2 + ℎ4𝛼

))

(84)

𝑏36 = −2

(

ℎ4𝛼 𝐼𝑚2𝛼𝐼𝑚3𝛼 + ℎ0 ℎ3𝛼 𝑅𝑒2𝛼2 + ℎ4𝛼 𝑅𝑒2𝛼𝑟𝑒𝑟3 + ℎ0 ℎ3𝛼 𝐼𝑚2𝛼
2)

𝑣𝑟𝑣,𝑐𝑟
(

−𝑣𝑟𝑣,𝑐𝑟 𝜎0 ℎ3𝛼 + 𝜎0 𝑣𝑟𝑣,𝑐𝑟2𝑔2 + ℎ4𝛼
)

(85)

𝑣11 = 𝑅𝑒2𝛼 + 𝑖𝐼𝑚2𝛼 (86)

𝑣12 = −3𝑚𝑟 𝜎1 𝜎0 ℎ3𝛼 𝑅𝑒2𝛼
2𝑅𝑒3𝛼 + 𝑖 𝑚𝑟 𝜎1 ℎ4𝛼 𝑏115𝐼𝑚3𝛼 − 3𝑚𝑟 𝜎1 ℎ5𝛼

× 𝑅𝑒2𝛼𝐼𝑚2𝛼
2 − 3 𝑖 𝑚𝑟 𝜎1 ℎ5𝛼 𝐼𝑚2𝛼

3 − 𝑚𝑟 𝜎1 𝜎0 ℎ3𝛼 𝐼𝑚2𝛼
2𝑅𝑒3𝛼

− 3 𝑖𝑚𝑟 𝜎1 ℎ5𝛼 𝐼𝑚2𝛼𝑅𝑒2𝛼
2 − 3𝑚𝑟 𝜎1 ℎ5𝛼 𝑅𝑒2𝛼

3 − 2𝑚𝑟 𝜎1 𝜎0 ℎ3𝛼
× 𝑅𝑒2𝛼𝐼𝑚2𝛼𝑖𝑚𝑟3 − 𝑖𝑚𝑟 𝜎1 ℎ4𝛼 𝐼𝑚2𝛼𝑏316 + 𝑖𝑚𝑟 𝜎1 ℎ4𝛼 𝐼𝑚2𝛼𝑏116
− 3 𝑖𝑚𝑟 𝜎1 𝜎0 ℎ3𝛼 𝐼𝑚2𝛼

2𝐼𝑚3𝛼 − 2 𝑖𝑚𝑟 𝜎1 ℎ0 ℎ3𝛼 𝐼𝑚2𝛼𝑏315
+ 2 𝑖𝑚𝑟 𝜎1 ℎ0 ℎ3𝛼 𝐼𝑚2𝛼𝑏115 − 𝑚𝑟 𝜎1 ℎ4𝛼 𝑅𝑒2𝛼𝑏316 − 2𝑚𝑟 𝜎1 ℎ0 ℎ3𝛼
× 𝑅𝑒2𝛼𝑏315 − 2 𝑖𝑚𝑟 𝜎1 𝜎0 ℎ3𝛼 𝑅𝑒2𝛼𝑖𝑚𝑟2𝑅𝑒3𝛼 − 𝑖𝑚𝑟 𝜎1 ℎ4𝛼 𝑏315𝐼𝑚3𝛼

− 𝑚𝑟 𝜎1 ℎ4𝛼 𝑏315𝑅𝑒3𝛼 − 2𝑚𝑟 𝜎1 ℎ0 ℎ3𝛼 𝑅𝑒2𝛼𝑏115 − 𝑖𝑚𝑟 𝜎1 𝜎0 ℎ3𝛼

× 𝑅𝑒2𝛼
2𝐼𝑚3𝛼 − 𝑚𝑟 𝜎1 ℎ4𝛼 𝑏115𝑅𝑒3𝛼 − 𝑚𝑟 𝜎1 ℎ4𝛼 𝑅𝑒2𝛼𝑏116 (87)

𝑣21 = 𝑅𝑒3𝛼 + 𝑖𝐼𝑚3𝛼 (88)

𝑣22 = 2ℎ3𝛼 𝜎0 𝑅𝑒2𝛼𝐼𝑚2𝛼𝐼𝑚3𝛼 − 𝑖ℎ4𝛼 𝑏115𝐼𝑚3𝛼 + 3 𝑖ℎ5𝛼 𝐼𝑚2𝛼
3 − 𝑖ℎ4𝛼

× 𝐼𝑚2𝛼𝑏116 + 3ℎ5𝛼 𝑅𝑒2𝛼3 + 3ℎ5𝛼 𝑅𝑒2𝛼𝐼𝑚2𝛼
2 + 3ℎ3𝛼 𝜎0 𝑅𝑒2𝛼2𝑅𝑒3𝛼

+ 𝑖ℎ4𝛼 𝑏135𝐼𝑚3𝛼 + ℎ3𝛼 𝜎0 𝐼𝑚2𝛼
2𝑅𝑒3𝛼 + 𝑖ℎ3𝛼 𝜎0 𝑅𝑒2𝛼

2𝐼𝑚3𝛼

+ 3 𝑖ℎ3𝛼 𝜎0 𝐼𝑚2𝛼
2𝐼𝑚3𝛼 − 2 𝑖ℎ0 ℎ3𝛼 𝐼𝑚2𝛼𝑏115 + ℎ4𝛼 𝑏135𝑟𝑒𝑟3

+ ℎ4𝛼 𝑅𝑒2𝛼𝑏136 + 2ℎ0 ℎ3𝛼 𝑅𝑒2𝛼𝑏135 + 2 𝑖ℎ0 ℎ3𝛼 𝐼𝑚2𝛼𝑏135
+ ℎ4𝛼 𝑏115𝑟𝑒𝑟3 + 𝑖ℎ4𝛼 𝐼𝑚2𝛼𝑏136 + 2ℎ0 ℎ3𝛼 𝑅𝑒2𝛼𝑏115

+ 2 𝑖ℎ3𝛼 𝜎0 𝑅𝑒2𝛼𝐼𝑚2𝛼𝑅𝑒3𝛼 + 3 𝑖ℎ5𝛼 𝐼𝑚2𝛼𝑅𝑒2𝛼
2 + ℎ4𝛼 𝑅𝑒2𝛼𝑏116 (89)
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