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ARTICLE INFO ABSTRACT
Keywords: Precision motion stages are used in advanced manufacturing, metrological applications, and semiconductor
Precision motion stage industries for high precision positioning with high speed. However, friction-induced vibration undermines the
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Subcritical and supercritical bifurcation
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performance of a servo-controlled motion stage. Recently, it was found that passive isolation in the form
of friction isolator is very effective to mitigate the undesirable effects of friction in precision motion stages.
This work presents, for the first time, a detailed nonlinear analysis of the dynamics of motion stage with a
friction isolator. We consider a lumped parameter model of the precision motion stage with PID and a friction
isolator modeled as two degrees of freedom system. Linear analysis of the system in the space of integral
gain and reference velocity reveals that the inclusion of friction isolator increases the local stability region of
steady states. We further observe the sensitivity of the stability of steady states towards the internal resonance
between the motion stage and friction isolator. The influence of friction isolator on the nonlinear response of
the system is examined analytically using the method of multiple scales and harmonic balance. We observe
that the inclusion of friction isolator does not change the nature of Hopf bifurcation for higher values of
reference velocity, and it remains subcritical bifurcation with or without friction isolator. However, for lower
values of reference velocity, the inclusion of friction isolator leads to change in bifurcation from supercritical
to subcritical for the given values of parameters. This observation further implies that the inclusion of friction
isolator increases the local stability of steady states, whereas the global stability of steady states depends on the
interaction between friction isolator and operating parameters. Furthermore, a detailed numerical bifurcation
analysis of the system reveals the existence of period-2, period-4, quasi-periodic, and chaotic solutions. Also,
the stability of period-1 solutions near Hopf point is determined by Floquet theory, which further reveals the
existence of period-doubling bifurcation.

1. Introduction cause errors in positioning precision, long settling times, and stick—slip
phenomena [8,11-16]. Therefore, it would be significantly beneficial
High-speed and high-precision motion stages (at macro and nano- for industries to develop effective methodologies and understand the

level) are widely used for inspections and assembly processes in ma- dynamics of MBMS to mitigate or control these self-excited vibrations
chining, additive manufacturing, and semiconductor manufacturing in- in the system.

dustries [1-4]. Depending on the type of supporting interface between
the motion stage and rigid structure, these high-precision motion stages
can be broadly classified into four different categories: (1) flexural-
based, (2) magnetic-based, (3) fluidic-based, and (4) mechanical-bearing
based [1,5-7]. However, the use of mechanical bearing-based motion
stages (MBMS) has been found more popular as compared to other
motion stages due to their large motion range, high off-axis stiffness,
cost-effectiveness, and easy installation [7]. In most applications, the
motion of MBMS is controlled by either one or a combination of
proportional (P), integral (I), and derivative (D) terms [8-10]. The
increasing demands for high-performance control systems (i.e., high
operating velocity and acceleration) lead to self-excited limit cycles from robustness and stability problems due to the rapid and nonlinear
due to the friction between contact surfaces. These vibrations, further, changes of pre-motion friction, thus limiting their practicality [13].

Different compensation methods are used to control or mitigate
friction-induced vibrations. The main idea behind these methods is
to provide an equal and opposite force, through a control system, to
cancel out friction. These methods include (1) high-gain feedback [13],
(2) model-based feedforward and feedback controllers [8,15,17,18],
and (3) advanced controllers (adaptive controller, model predictive
controller) [19-22]. Even though high-gain feedback methods could be
very effective in suppressing friction-induced vibrations, they make the
resulting systems to be very sensitive to instability, sensor noise, chat-
tering, and limit cycles. Whereas, model-based controllers often suffer
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Fig. 1. Schematic of precision motion stage (i) with FI (System-«) and (ii) without FI (System-p).

Fig. 2. Schematic of the friction dynamics between the contact surfaces.

For the case of advanced controllers, the algorithm complexity (deter-
mined by the structural model) leads to unsatisfactory performance at
high-frequency controls due to hardware limitations [23,24].

Recently an efficient and more robust method has been developed
to mitigate the effect of friction by connecting the mechanical bearing
to the motion stage using a joint that is very compliant in the motion
direction and hence, isolating the motion stage from the nonlinearities
associated with friction. This method is known as a compliant joint
method, and the device is known as friction isolator (FI) [17,18]. It has
been experimentally demonstrated that a motion stage with FI achieves
a significantly reduced settling time compared to the conventional
stage without FI [18]. A detailed parametric analysis on the stability
of the steady states under the effect of dynamical friction model,
i.e., the LuGre model [25] reveals that a proper choice of FI properties
allows to use high values of control gain (PID), which further help in
controlling/suppressing self-excited friction-induced vibrations [26].

We emphasize that the use of FI to control friction-induced in-
stabilities is new in the literature, and existing work only provides
information [26,27] about the local stability properties of steady states.
A detailed nonlinear analysis of a PID controlled motion stage with
FI has not been performed, and therefore, this work is believed to be
the first study to examine this problem. In this work, we model FI as
a lumped parameter model with a linear spring-mass—damper system.
Further, we perform the linear and nonlinear analysis of the combined
system analytically under the effect of the LuGre friction model [25].
We observed that the inclusion of FI increases the local stability of the
steady states of the system in the space of control parameters, more
specifically in the space of integral feedback gain-reference velocity,
and allows the use of higher value of integral feedback gain for a
given value of reference velocity. However, the global stability of
the steady states, i.e., the nature of Hopf bifurcation depends on the
complex interaction between FI and integral control, and can change
from superecritical to subcritical or remains subcritical depending on the
value of reference velocity. The rest of the paper is organized as follows.
In Section 2, we present the complete mathematical model of MBMS.
It also includes a brief description of the LuGre model, along with the
nondimensionalization of governing equations of motion. Linear stabil-
ity analysis and accordingly, the analytical forms of the Hopf points
are presented in Section 3. In Section 4, a detailed analytical nonlinear
analysis of the system is presented using the method of multiple scales
and harmonic balance. Results from linear and nonlinear analysis along

with a numerical bifurcation analysis are presented in Section 5. In
Section 6, some conclusions are drawn from the findings of the analysis.

2. Mathematical formulation

In this section, we formulate a lumped parameter model to study the
dynamics of a PID controlled precision motion stage with and without
friction isolator (FI). We model the PID controlled motion stage as two
degrees of freedom system with FI and single degree of freedom system
without FI as shown in Fig. 1(i) and (ii), respectively. For the sake
of convenience, the motion stage with and without FI are referred to
as System-a and System-—p, respectively. In Fig. 1, u; is the feedback
control force from PID, r(r) is the reference/setpoint signal, m, and
m,, are the masses of the motion stage and FI, respectively. Also, the
effect of FI on the dynamics of the precision motion stage is realized
through a spring-damper system with the stiffness k ; and the damping
coefficient c ;. Note that, in the case of System-a, FI is in direct contact
with the supporting rigid surface, and hence, the frictional force, F/,
acts between FI and the supporting surface. However, in the absence
of FI, i.e., in the case of System-p, the precision motion stage is in
direct contact with the rigid surface, and therefore, the friction force
acts between the motion stage and the supporting surface. Therefore,
if X;(r) and X,(r) are the motion of precision motion stage and FI,
respectively, then the governing equations of motion for System-a and
System-f can be written as

System-a:
m,X1+kfi (XI—X2)+cf,- (Xl—X2)=ul, (1a)
myXy +kpi (Xy = Xy) + ey (Xo = Xy) = —F, (1b)
System-f:
m,X,:ul—Ff. (2

In the above governing equations of motions, the controller force
from PID, u,, is defined as

u, =—k;e—k;é—k;‘/ edt, 3

where k7, k7, and k; represent the proportional, differential and in-
tegral gains, respectively, and e represents the tracking error. This
tracking error can be expressed in terms of the motion of the stage (X)
and the reference signal (r) ase= X, —r.

On substituting the expression for control force, u;, in Egs. (1), (2),
and rewriting resulting equations in terms of tracking error (e) we get
the modified equations for

System-a:
mé+kye+koe+k; / edt + kg (e —ey) +cp; (¢ —¢p) = —mF, (4a)
myéy + kg (eb — e) +cy; (éb - é) = —Fp—myf, (4b)

and System-f:
m,é+k§é+k:e+k;‘/edt=—Ff—mi". 5)

In the above governing equations of motions for System-«a, we define
e, = X, — r. Next, we model the dynamical friction between the
contact surfaces using the LuGre friction model [25]. The LuGre model



S.K. Gupta, J. Wang and O.R. Barry

is one of the most widely used forms of a dynamic friction model as it
includes viscous friction, pre-motion friction (pre-sliding/pre-rolling),
and hysteresis effects together [25,28]. In this model, the asperities in
the contact surfaces are considered as elastic spring-like bristles with
damping, and the microscopic degrees of freedom associated with the
bristle deflections are used to define the friction force (as shown in
Fig. 2). Therefore, the total friction force in the LuGre friction model is
considered to be a summation of the average force associated with the
deflection of the bristles and a viscous term proportional to the relative
velocity between the surfaces in contact. If z represents the average
bristle deflection (internal state variable), then the friction force in the
LuGre model is given by

Fr=oyz+0]2+0V,, (6)

where o and o} are the contact stiffness and the micro-damping of
the bristle, respectively, o} is the macroscopic viscous friction between
the contact surfaces and V, is the relative velocity between moving
surfaces. It can be observed from Eq. (6), that unlike other friction
models, the LuGre friction model does not only depend on the relative
velocity but also on the evolution of the internal state variable z.
Therefore, instead of providing a unique value of the friction force for a
given relative velocity during acceleration and deceleration, the LuGre
model can give different values of friction force in these two phases
depending on the evolution of the internal state variable.

The evolution of the average bristle deflection, i.e., z, with time is
governed by the following differential equation:

oy IVl o, sgn(V,)
z=V, - z=V|1- —— s
g gV

where sgn(.) is the Signum function, and g(V,) is a positive valued
function, i.e., g(V,) > 0 which further describes the Stribeck effect
in the system. We emphasize that for the case of System-a, FI is in
direct contact with the supporting rigid surface, therefore, the relative
velocity for System-a, V,,, is defined as X, = ¢, + . However, in
contrary to System-a, for the case of System-f, the motion stage is
in direct contact with the surface, which further implies the relative
velocity for System-§ as V,; = X| = é +F.

To capture dropping characteristic, Wit et al. [25] suggested the use
of Gaussian function model for g(¥,) in the form of :

gV = fa+ (fh— f)eV/h, ®)

where féis the Coulomb friction, f5is the static friction, and V;
is the Stribeck velocity threshold. However, the limitations of this
model have been observed in the analytical analysis of a system with
the LuGre model [29,30]. To overcome this shortcoming, the positive
valued function g(V,) was modified and represented by an exponential
function [30]

W) = [+ (f5— e, ©

where a is the slope parameter. Note that Eq. (7) along with Egs. (4)
and (5) define the dynamics of System-a and -f, respectively. Having
defined the equations of motion, now we introduce the following nondi-
mensional scales and parameters to nondimensionalize the system,
which further ease the analytical treatment of the system:

)

e ¢ ~_ = g Ky
X=Xy = o 2= o= X = =, 0, = [ —, 1=y,
Xo Xo Xo w "
* *
= kd ki _ Vra
- - 3> Yra >
2mw, ma, X,
* *
Vg % o] o
B = s 0 5: 01 = » 0) = s
Xow, mw; 0 mw,
* *
R -
fc z’fs z’a_awp 0>
m,XOa)p m,Xoa)p
Cri kfi m
k=2 k=L =L (10
2mw, k, my,
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Using the above-mentioned nondimensional scales and parameters
and assuming constant reference velocity signal (i = 0), the governing
equations of motion can be nondimensionalized and written as for
System-a:

5é+2(§5c+x+k,-/xdr+k,(x—x,,)+21c(x—5c,,):0, (11a)
%y + kom, (xp = x) + 2kcm, (X, — )
_ 00SgN(v,,) _
=_ ] - /= e , 11b
m, <ooz + 010, < 20 z> + azum> (11b)
Z:vm<l—mi>, 110
8(Wyrq)

and for System-p:

oo N 00S8N(rp) _
X+20x+x+k; [ xdt=—|0pZ+ 010, I_WZ + o304 |
B

(12a)

§=v,ﬁ<l—wi> : (12b)

8(vrp)

In the above governing equations of motion, overhead dot () repre-
sents the derivative with respect to the nondimensional time z. Further,
for the sake of simplicity in the analytical treatment of the governing
equations, we rewrite Egs. (11) and (12) compactly in the state-space
form as for

System-a:
Xig = Xog» (13a)
xZa = _24x2a —Xlg — kix3a - kr (xla - x4a) -2k (XZa - x5a) ) (13b)
X3q = Xiq > (13c)
X4q = X5¢» (13d)
XSa = _ZKmr (XSa - x20{) - krmr (x4a - xla)
0oX
-m, (o’oxéa + 0V <1 - Msgn(um)) + o'zvm> , (13e)
g (vra)
GoX
Xﬁa = Upg (1 -0 Sgl’l(Um)> ’ (13f)
g (vra)
and for System-$
X5 =X, (14a)
Yop = =20xp5 — x15 — kX3
00X4p (14b)
—| ooxsptorvp| 1 - sgn(v,p) | + 020,58 | »
g (Urﬂ)
X35 = X1p, (14c)
) 0pXy
X45 = Uyp <1 - F sgn(v,ﬁ)> . (14d)
g (Urﬁ)
For System-a, [Xi,,Xpq: X305 X4q> X505 Xge] = [x(7), )'c(r),f xdz, x,(7),
%p(7), Z(r)], whereas for System-f, [xjz,Xp5, X35, X45] = [x(7),X(1),

[ xdz, %(r)]. Further, if v,, represents the nondimensional constant
reference velocity signal, then the nondimensional relative velocity for
the case of System-« is v,, = %, + v,, = X5, + v,,, however, for the
System-f, v, is determined by v,; = %+v,, = xp5+v,,. For the analytical

treatment of System-a and System-f, we expand o in a Taylor series
8(v,

for small amplitude motion and keep terms till third order. This step
leads to:
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for System-a

2 3
—————— =gy + 81 X5 + x5 + g3x:, (15)
4 (Uru + xS) 3 3
and for System-p

1

2 3
—————— =g+ 81Xy + X5 + 83X, ae)
g(UrU+X2) 0 142 249 34

where g/s are given by

go L1l 1o 1 <0g >2_§02g
0 8(,,) g ! g2 avrv’ : g 00y, 2 0v ’
S T N
} g4 aurv aU’U aU%u 6 av;v .
On substituting Eqs. (15) and (16) in Egs. (13) and (14), respec-
tively, and simplifying equations for pure slipping motion, i.e., v,, > 0,

for n = a, p (which further implies sgn(v,,) = 1 for n = a, p), we get the
governing equations for System-a

Xig = X2g» (18a)
Xog = 20Xy = X1q = kiXag = ky (X1q = Xaq) = 2K (X2q = Xs4) (18b)
X3¢ = Xiq> (18¢)
Fog = sy (18d)

Xsq = M,0100X6483X3, + (M,010,,00X6a83 + M,0100X6a82) x;,
+ (m,010,,00X6q82 + M, 0100 X6481) xﬁa
~ (m,o1 +2Km, — m,0160Xea80 + M,y = M0 Uy,00X6481) X5
- m,0pXgy + 2KmrXZLx - krmrx4ot + krmrxla

— MGV, — MO Uy, + MG 0,00 X648 » (1 86)

. 4 3
X6a = —00X6a83X5, — (00 X6a82 T Ury Og X6a83) X3
2
= (0ry 00 X682 + 00 X081 X5, — (=14 0,y 60 X641 + 00 X6280) Xs4

+ Upy = Uy 00 X6a80 » (18f)

and for System-$

X1 = X2 (19a)
. 4
Xop = —Xx15 — kixzg + (01 0083%,5 + (Glffogo + Ul”ruf’ogl) Xop
2
+ (010,008 + 010081 X35 ~ 00+ 010,,0080
3
+ (61 0082 + 01 Uru60g3) xg,;) X4p — O Upy
= (28 + 05+ 06)) X5 — 030, (19b)
X35 =X1p, (190)
Xq5 = | —0 x4—(UO' + o )xz—(ua + o )x
48 = 083%55 rv0082 081) Xa5 00081 080) X2p
— (608 + 0,,0083) x;ﬂ - Uwaogo) Xap+ Xop + Uy - (19d)

The steady states of Egs. (18) and (19) can be obtained by setting
the derivatives of states as 0 to obtain for System-a

_ _ 80020, t+1 80020 +1
Xlas = 0, Xogs = 0, X3qs = _T’ X4as = _g—k
0 i 0 *r (20)
X5qs =0, Xgos = — 3
as as O_Ogo
and for System-f
8002 Upy + 1 1
X1ps = 0, Xpp, = 0, X35 = _T;‘U" X4ps = w0t 21
1
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Now, we introduce a small parameter ¢ (¢ < 1), in the governing
equations by shifting the origin of the solution to the equilibrium state
as

Xin() = Xjs + €y (1), (i=1,2,...,6forn=a, i =1,2,3,4forn=p), (22)

where y,,(t)’s are shifted coordinates. Thus, the governing equations of
motion in these shifted coordinates can be written as for System-«

yla = V2> (233)
yZa = _chZa ~Via — kiy3a - kr (yla - y4a) -2k (y2a - ySa) ’ (23b)
y3a:yla7 (23(:)
y4a = Ys5a> (23(1)
YSa = 2Kmry2a - krmr (y4a - yw) - mrhlaySa - mrh2ay6a
2

+e (ySamrUl Rohsy + YeaVsaO1hag)

+ €7 (V2 Yo 01003 + y3,m 01 hs, ) + O(E) (23e)
xﬁa = _UruglhOySa ~Ur0080Y6a — € (ygahOhSa + yéay5a60h4a)

= € (V6uaV2 0030 + Vihse) + O, (23
and for System-$
Yip = Y2p» (24a)
Vog ==Yip — higyop — 20vap — kiy3p — hopyag

+e€ (hoo'lhwy%ﬁ + 0 h4ﬁy2ﬂy4ﬂ)

2 3

+e (‘71 hspygﬁ + 0001h3pJ’4/3y2ﬂ) +0(e). (24b)
Vig =Yip» (24¢)
Vap = —Ur81hoY2 — Upy0080Yap — € (hohspygﬂ + h4ﬁ.V2ﬂ.V4ﬂ>

-é (hsﬁyi,, + Gohsﬂyi,;m) +0(), (24d)

1
where hy = = hie = 03 — hyo10,,8 + 2k, hyy = 064 (1= 00,,8),

0
hse = (V082 +81)s haa = 00 (80 + Uru81)s hsa = ho (82 + Vny 83), hip =
0y — hyo10,,81, hyy = 0 (1 —lemgo), hyy = (UrugZ +g1), hyg =
6o (o + V81 ), and hs; = hy (g2 + v, g3). Note that Eqs. (23) and (24)
have been already divided by e throughout, to get the above perturbed
differential equations. However, since all the nonlinear terms appears
at higher order of ¢, the unperturbed equations obtained by setting
e = 0 in Egs. (23) and (24) are system of linear ODEs, and hence,
there are no complications in the linear and nonlinear analysis to be
presented in subsequent sections.

3. Linear stability analysis

In this section, the linear stability analysis of System-a and System-
p is presented to identify different stable and unstable regimes in the
space of control parameters. We emphasize here that this linear analysis
not only provides information about the stability but also provides the
solution to an unperturbed linear equation, which will be further used
in the nonlinear analysis of our system. Therefore, the linear analysis of
both systems is essential and has to be performed carefully. For the sake
of brevity, we present a detailed linear stability analysis of System-a
only and use the same approach to get information about the stability of
System-f. The linearized coupled system of the equations for System-a
can be obtained by setting ¢ = 0 in Eq. (23) to obtain

Vie = Y2a» (25a)
yZa = —ZCJ’za Ve~ kiy3n( - kr (y](x - y4a) -2k (y2(x - yS(l) ’ (25b)
y3a =Vla» (25C)
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y4rx = Vs5a» (25d)
ySn = 2Kmry2(t - krmr (y4n - yl(t) - mrhlnyS(l - mth(xy&t ’ (256)
Voa = —Ur&1 hOySDt —Ur0080Y60a - (25f)

The corresponding characteristic equation is obtained by assuming
synchronous solution for y,, (for i = 1..6) and accordingly, setting

Y1a(7) Y1a0
Y2a(T) Y2a0
y3a(T) V3a0 | it (26)
V44(7) YVaa0
Y54(7) Y500
Yoa(7) Y6a0

into Eq. (25) to get

Y1004 = Y240 =0, (27a)
(I + kY10 + (A 428 +2K) ¥ou0 + ki V300 — ki Vaa0 — 2KV500 =0, (27b)
Yia0 = AV300 = 0. (27¢)
V5q0 — Va0 =0, 274d)
ke, Y140 + 26, Y2 = Ky Yaqo = (A+mphyg) Vseo = mMphygVeao = 0.
(27e)
Uro81h0Y540 + (4 + 01,0080) Yeao = 0- (271)

To get the non-trivial solutions for y;,, (for i = 1..6), we set the
determinant of the coefficient matrix of Egs. (27) to zero which further
leads to the characteristic equation as

Br AP+ LA+ 3+ 22+ fsA+ fo=0. (28)

with f; (for i = 1..6) are the involved functions of system and control
parameters, and are reported in Appendix A. The roots of this charac-
teristic equation determine the stability of the system in the space of
control parameters. If all roots lie in the left half-plane, i.e., if all roots
have negative real part (R(4) < 0) then the system is stable. However, if
any root lies in the right half-plane, i.e., existence of a root with positive
real part (R(4) > 0) in the system leads to instability. Therefore, if the
system gains or loses its stability, a pair of complex conjugate roots
crosses the imaginary axis, i.e, R(4 = 0) and Hopf bifurcation occurs.
In the case of Hopf bifurcation, we let 1 = iw for @ > 0 in the above
equation (Eq. (28)) and separate real and imaginary parts to get

—a)6+f2a)4—f4a)2+f6:0,

fla)s—f3w3+f5a):O.

(29a)
(29b)

It can be noted that separating real and imaginary parts gives us
two simultaneous equations, which can be utilized to solve for any
of two control parameters at critical/Hopf point in terms of other
parameters and frequency w. In the current analysis, we use nondimen-
sional integral gain, k;, and nondimensional reference/setpoint velocity
signal, v,,, as our control parameters. However, the appearance of
exponential functions of v,,, i.e., g, and g, (recall Eq. (17)) in the
above equations makes them as transcendental equations and difficult
to get the analytical closed-form for k; .. and v,, .. Therefore, we use
numerical methods to solve Egs. (29a) and (29b) to get the critical
values of nondimensional integral gain and reference velocity signal,
ie., k;. and v,, ., corresponding to Hopf point.

Furthermore, the stability of the steady states in the space of operat-
ing parameters is determined by calculating the real part of the rate of
change of eigenvalue with respect to one of the parameters at the Hopf
point. If the real part of the rate of change of eigenvalue at the Hopf
point is positive, then the steady states lose stability at the Hopf point.
If it is negative, then the steady states gain stability at the Hopf-point.

We emphasize that the solution of the linearized equations of the
system (given by Eq. (25)) will be a periodic solution at the Hopf point,
therefore, it can be represented in terms of the eigenvectors as

Vo (7) = Amrlaei“” + A2ar2ne_iw’ R (30)
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where ¥, (1) = [¥14(2), ¥24(2), 34(2), 4 (9), Y50 (0); Yeu (D17, Ay, and Ay,
are the arbitrary complex conjugate constants (for the real values of
¥.(7)), and r,, and r,, are the right eigenvectors of the characteristic
matrix for System-a corresponding to eigenvalues 1 = iw and 1 = —iw,
respectively. The right eigenvector r;, for System-« is

1
iw
—i/w
Rey, +ilmy,
Rey, +ilmy,
Rez, +ilmy,

ry, = (31)

where Re,, and I'm,, for n = 1, 2, 3 are defined in Appendix A. Note
that the right eigenvector r,, (corresponding to the eigenvalue 4 = —iw)
is the complex conjugate of r;, and hence, not reported here for the
sake of brevity. For the nonlinear analysis of our coupled system of
equations, we also require the generalized left eigenvectors for the
removal of secular terms [31]. Therefore, we also determine the left
eigenvectors of the characteristic matrix for System-a corresponding to
the eigenvalues 1 = iw and A = —iw, and these are

L, =|1 Lre,+iLim,, Lrey, +iLimy, Lresy,+iLimy, Lrey, +iLimy, Lres, +iLim5a] s
(32)

corresponding to the eigenvalue A = iw and its complex conjugate as
1,, for the eigenvalue A = —iw. Lre,, and Lim,,, for n =1,2,3,4,5 are
functions of the system and control parameters and they are defined in
Appendix A.

The transcendental equations governing the critical values of k; and
v,, (at the Hopf point) for System-f# can be obtained by following the
steps mentioned above for System-« and are given by

@* = (5 + 200, 6080 — Vro8ihohag + 1) 0 + k;,,008) =0, (33a)
and
= (hip +2¢ + 0,400 &) @ + (k; + v,,008)) @ =0. (33b)

Accordingly, the solution for the linearized System-f at the Hopf point
can be represented in terms of right eigenvectors as

Yp(T) = Aypry €T + Agpry e (€Y

where y;(7) = [y15(2), y24(7), y35(2), y4ﬁ(r)]T, A,y and A,; are the ar-
bitrary complex conjugate constants, and r;; and r,; are the right
eigenvectors of the characteristic matrix for System-f corresponding
to eigenvalues 4 = iw and A = —iw, respectively, and are defined in
Appendix A. Having established the solution for the linearized System-a
and System-p at the Hopf point, next we present the nonlinear analysis
of our system using the method of multiple scales.

4. Nonlinear analysis using the method of multiple scales

The linear analysis in Section 3 gives us information about the
stability of the steady states in different regimes of control parame-
ter space, i.e., small perturbations around the steady states die out
with time in linear stable regime, and increase in the linear unstable
regime. However, the time-evolution of these perturbations in stable
and unstable regimes truly depends on the existing nonlinearities in
the system and, accordingly, decides the global stability of the steady
states. If all perturbations, irrespective of the value of amplitude, decay
with time and settle down to the steady states in the linearly stable
regime, then the steady states are considered to be globally stable.
However, if the time-evolution of perturbations is sensitive towards
initial conditions in linear stable regime, i.e., if small perturbations
decay and large perturbations lead to limit cycles, then the steady
states will no longer be considered to be globally stable in the linearly
stable regime. We emphasize that these dynamical characteristics of
the system depend on the nature of nonlinearity present in the system



S.K. Gupta, J. Wang and O.R. Barry

and cannot be assessed by linear stability analysis only. Therefore, it
is required to carry out a detailed nonlinear analysis of System-a and
System-f, specifically around the stability boundaries, to establish the
global stability of steady states. Again, for the sake of brevity, we
present a detailed analysis of System-a only.

We use the method of multiple scales (MMS) for the nonlinear
analysis of our systems with pure slipping motion, and obtain the
amplitude of limit cycles emerging from the Hopf point. We first start
with defining multiple time scales as

Ty=t, Ty=er, Tzzezr,... (35)

with Tj, as the fast time scale, and T; (for i = 1, 2, ...) are the slow time
scales. Accordingly, the time-derivative operator gets perturbed to

% = Dy+eD, +¢Dy + O, (36)
2
dd? = Dy +2eDy, +¢€* (2Dg, + Dy ) + O, 37)

. Due to the introduction of multi-

where D, = 6% and D, , = 3T o7

ple time scales"in the system, the solution of the perturbed nonlinear
equation (Eq. (23)) can be assumed to be a series in powers of e till
O(e?) and written as

Yo(®) =Yoo (To. T1.T2) + €314 (To. T, Ta) + €2y2, (To. Ty, T)
= You + €Yig + € Yaq - (38)

where y,(t) = [¥14(1), ¥24(7): ¥34()s Ya0()s Y54(0)s Yooa@IT 5 Yina()
Ty, T1, 1) = imeTos T1s T2)s Yo.maTos T1s 12)s ¥3,ma(Tos Tis T2)s Yama
Tos T1s T2)s Y5 ma(Tos T1s T2)s Yo ma(Tos T Tz)]T for m =0, 1, 2. Now, to
understand the nature of Hopf bifurcation on the stability boundaries
we perturb one of the control parameters close to the Hopf point.
For the sake of simplicity of the analysis, we choose non-dimensional
integral gain k; as the bifurcation parameter and accordingly, perturb
k; from its critical value as

ki = ki +€%ky (39

where k; ., is the value of k; at the Hopf point with v,, = v,,... We
emphasize that the sign of k; is chosen such that k; always lies in the
unstable regime. Therefore, k; can be negative or positive, depending
on the location of the unstable region with respect to the Hopf point.

Next, we substitute Egs. (36)-(39) in Eq. (23), expand in Taylor
series for smaller values of ¢ and equate the coefficients of different
orders of e to zero to get:

O
Doy 00 = Y200 =0, (402)
Doys0a = 2K Y500 + V3 0aKic = kr Ya0a T 2E+2K) ¥ 04

+(ky + 1) y100 =0, (40b)
Dyy300 = Y100 =0, (40¢)
Dyy40a = Y500 =0, (40d)
Doysoq + M, Ky Yapg = Mp ke Y1 0o = 2K M, Y300 + My iy Y50

+m.hyg V6o =0, (40e)
DyYe0a + Urv&1hoYs0a + Ur0080Y6.0a = 0 (4010)
O(eh)
Dyyy1a = Y210 = —D1 Y104 (41a)

Dyyy 1o — 2K V510 + Viiakic = ke Vaja + QE+26) ya 10 + (ke + 1) Y110

==D¥04> (41b)
Doy31a = Yiia = ~D1¥300 > (41c)
Doy 1a = Y500 = ~D1 Y404 (41d)

Doys o+ m Ky Ya1a =Mk Yi1g —2Km ¥y 10+ M Ryg Y514 + MeRog Y6 1a
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= m, 61 hyq V5,00¥600 = D1¥s5.00 + My 01 o h3g V2 gy 5 (41e)
Dyye.1a + Vro81h0Y5 10 + Uru0080Y6,1a = ~D1Y60a — h0h3ay;0a

— h4g ¥5.0aY6,0a 5 (416
O(?)
Dyyir¢ = Y200 = DaYiga = DiVita» (42a)

Doyasg = 2K Vsnq + V32akic = Ky Yasa + 28 +26) ya0q + (K +1) Y124

=Dy 14 — D2¥20a — ¥300K1 5 (42b)
Dyy32a = Y120 = =D2¥300 = D1¥3 10> (420)
Doysoa = Y520 = —D2YV400 = D1Ya1a» (42d)

Dyyspq + MKy Yana = M Ky Y10g = 2K M. ¥y 00 + My Rig Y504 + MRog Y620
_ 3
== (_mr o1 hs, Y50a ~ Mr 01 N4g ¥5,10Y6,0a

+ Dy Y500 + D1Y51a = Mr 01 hag ¥5.00V6,1a

—m, oy 60 h3, y;o(,ys,()a —2m, 0y hyhs, yS,ans,la) , (42e)
Dy yspq + V8110524 + Vru0080Y6,24
== (hSa yﬁm + D2Y60a + Naq Vs5,1aY6,1a + Paa ¥5,1aY60
+D1 Y610 + 00 h3q y;zs,og,ye,Oa +2hg hy, yS,an5.1a> , (42

It can be easily noted that equations for the order of e (Eq. (40))
are identical to the linearized unperturbed coupled equations (Eq. (25))
with critical control parameters (at the Hopf point). Using similar
approach, the solution for the 9(¢®) can be written as

Yoa(Ty. 7. 75) = Ata (T1:T2) 116870 + Agy (T1, Ty) 1p0e 770 (43)

We emphasize that unlike the solution for the unperturbed linear
equations, i.e., Eq. (30), 4,, and A,, instead of being complex conju-
gate constants are now complex conjugate functions of slow time scales
T, and T,. On the substitution of this assumed form of the solution
for yo, (Eq. (43)) in O(e') equations (Eq. (41)), e¥@To, ¢=2i@To  oiwTy
and e~*®To appear on the right-side of the equations as forcing terms.
However, note that terms ¢/®’0 and e~*®"o act as resonant forcing terms,
causing an unbounded growth in the solution for y,,. These terms are
known as secular terms. Therefore, to get the bounded solution for the
Y14, Femoval of these secular terms from the resulting equations is nec-
essary. This step further requires that left eigenvectors corresponding
to e/To and ¢~®To and the vectors consisting coefficient of ¢/*T0 and
e~@To to be perpendicular to each other [31]. The coefficient vectors
u,, and u,, corresponding to ¢/“T0 and e~’*T0 are

1 1
io —iw
_— 041, (T, T») —i/w . = 04y, (T}, T5) i/o
la ™ oT, Rej +ilmy,|” 2~ T, Rey, —ilmy,

Rey, +ilmy,
Res, +ilmy,

Re,, —ilmy,
Res, —ilms,
44

We can observe that u;, and u,, are complex conjugate of each
other and have a structure similar to right eigenvectors corresponding
to eTo and e~To. This observation can be further justified from the
fact that in O(e') equations, only quadratic nonlinear terms appear
along with linear ones on the right-side further giving rise to only e?®7o
and ¢/’o (and their complex conjugate). As discussed above, removal
of secular terms corresponding to e/®70 at O(e) leads to 1, -u;, = 0. This
solvability condition further leads to

0A1, (T}, Tr)
o7,
+ Lrey, Rey, — Limy, Imy, + Lres, Res, — Lims, I'ms,
Lre,,

Limy,
0]

[1 —Lim, + + Lres,Re, — Limy, Imy,

+i <Lre5a1m3a + Limy, Rey, — + Lrey,Imy, + Lims, Res,
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Fig. 3. Comparison of stability curves with and without FI for different values of x for (i) larger values of v,,, and (ii) for smaller values of v,,. Other parameters are o, = 110,
o, =137, 0, =0.0823, f, =044, f, =035, =0.02, a=25, k, =0.5, and m, = 2. (For interpretation of color in this figure, the reader is referred to the web version of this article.)

+a)Lre]a+Lim3aRe1a+Lre3aIm1a>] =0. (45)

For the general values of system and operating parameters, term
inside the brackets will not be zero, which further implies

04, (T}, T») _

oT, (46)

Since the second solvability condition corresponding to removal of
secular term for e=“7o, i.e, 1, -u,, = 0, gives rise to complex conjugate
04y, (T}, T,)

T,
that A, and A,, does not depend on the slow time scale T; and are only

the functions of slow time-scale T,. Further, for the non-trivial solutions
of A;, and A,,, we need to proceed to the equations corresponding to
the higher order of ¢, i.e., O(e?). Since in the equations corresponding
to O(e?) y,, appears on the right side along with y,, as forcing terms,
we first solve Egs. (41) for y,, using harmonic balance method.

equation of Eq. (45), we get = 0. These results suggest

After substituting the solution for y,, in Eq. (41) with the above
drawn observation that A, and A, are independent of 7}, we substitute
the following assumed form of the solution for y,, as a function of
slow-time scale T,

Yie (T0.T1.Ty) = A2_(Ty) By e?@T0 4 A2 (T,) Bye~2eTo

1
+ A1, (Ty) Ay (T2) By, (47)

where coefficient vector B;;, B,, and B,, are defined as

by by b3
byy by b3,
b b b
B, = bi , By = bii ,and B, = bjj (48)
bys bys bss
bis by bg

On substituting this assumed form of the solution for y,, and per-
forming harmonic balance, we get 18 algebraic simultaneous equations
that can be solved for b,, (for m = 1,2,3 and n = 1..6). These are
reported in Appendix B. Since the elements of vectors B, are the
complex conjugate of B,;, these are not reported here for the sake of
brevity. Next, we substitute the solutions for y,, and y,, in terms of
A1,(T») and A,,(T,) in the equations corresponding to O(e?). Again,
the secular terms in the resulting equations can be removed using the
solvability conditions of 1,, - V;, = 0 and 1,, - V,, = 0, where V,,
and V,, are the coefficients vectors corresponding to ¢'®70 and e~/*7o,

respectively, and complex conjugate of each other. These vectors are

04, (Ty)
( oT,
04y, (Ty) j
i%w_ ke Ay, (T12])
i 941 (D)
o 0T,
Vie = Ay, (T3)

oT,
04, (Ty)

oT,

0A,, (T
—ZT( 2) Uy + Ay (Tz)z Agg (T2) 032
2 i

04y, (Ty)
oT,

,and
(Rejq +iImy,)

v+ Ay (Tz)z Agy (T2) 012

(49)

Ay, (T ;
2 lTy) Z’T(z ) s Zky Ay, (T12])
i 045 (Tr)
® T,
04y, (T,)

oT,
04y, (Ty)

T,

0A,, (T
%f&l + Ay (T2)” Aty (T3) 522
2

(Rela - iIm]a)

Oy + Agg (Tz)z Ay (T2) 01

Since 7,,, are complex conjugate of v,,,, we have only defined v,,,
in Appendix B for sake of brevity. Next, we switch to polar coordinates
by substituting

R(T)ei®(T2) R(T,)e~¢(T2)
A = —0——.  and Ay (Ty) = ————, (50)
into the equation resulting from 1, - V; = 0 and separate real and

imaginary parts. On separating real and imaginary parts we get two
equations and can be solved for R (T,) /9T, and d¢ (T,) /9T, as

OR (T>)
o, =pik R+pp R, (D
¢ (T,)

o, parky + pnR?, 62)

where p;,, p12, P21, and py, are functions of system parameters, control
parameters at the Hopf-point, and frequency. Since the functional forms



S.K. Gupta, J. Wang and O.R. Barry

2
1.5¢
Stable
£
Unstable
0.5l — Without FI
: —With FI k&, = 0.5
—With FT k. =1
—With FT k, = 1.5
With FI1 k, =2
00 0.05 0.1 0.15 0.2
@)

International Journal of Non-Linear Mechanics 126 (2020) 103554

5X 10~ ‘
Without FI
—With FI k., = 0.5
—With FI1 k, =1
4 — With FI &k, = 1.5]]
With F1 k, =2
3, 4
5
Unstable

n Stable

0 0.05 0.1 0.15 02

(if)

Fig. 4. Comparison of stability curves with and without FI for different values of k, for (i) larger values of v,,, and (ii) for smaller values of v,,. Other parameters are o, = 110,
o, =137, 0, =0.0823, pu, =0.44, p, =0.35, { =0.02, a = 2.5, k = 0.001, and m, = 2.(For interpretation of color in this figure, the reader is referred to the web version of this article.)

of these terms are very lengthy, these are not reported in the paper
for sake of brevity. Finally, the equation governing the evolution of
amplitude R and phase ¢ in the original time scale r can be written
using Eq. (36) as

dR _ _OR  ,0R _ ;
= _ +e€ kiR+p;pR
ar Cor, T om, ¢ (pu k) .

¢ _ 0(15 g 9% _
o ‘or, "¢ om,

Accordingly, the solution in the original variables x;,(r) can be
obtained by utilizing Egs. (22), (38), (43), (50) and (53). Note that
Eq. (53) can also be used to determine the amplitude and stability
of limit-cycles originating from Hopf point which further dictates the
nature of Hopf-bifurcation. Using similar approach we can get the slow
flow equations for System-p#, however, for the sake of brevity this is
not reported in the paper. A detailed discussion on these slow flow
equations and verification of our analytical approach with numerical
simulation is presented in the next section.

(53a)

€ (pyky +ppR?) . (53b)

5. Results and discussions

As discussed in Section 3, linear stability analysis plays an important
role in the subsequent nonlinear analysis since it provides information
about the Hopf points on the stability boundary. Therefore, in this
section, we first start with the parametric study on the linear stability
of the steady states of System-a and System-p, i.e., the motion stage
with and without FI, respectively. Later on, we present the validation of
our analytical approach (using MMS) by comparing it against numerical
simulations, which is followed by the criticality of bifurcation on the
stability boundary and a detailed bifurcation analysis.

5.1. Linear stability curves

We have used the parameter values given in Table 1 for the linear
and subsequent nonlinear analysis. Note that the values of k;, v,,, x, k,,
and m, vary throughout the analysis, and hence, the numerical values of
these are not reported in Table 1. The linear stability curves produced
on the control parameter space of k; — v,, are shown in Figs. 3-5 for
different parameter values. As discussed in Section 3, it is difficult
to obtain the closed-form expressions for k; .. and v,,. in terms of
other system parameters and frequency, w, these stability curves are
produced by solving Egs. (29a)-(29b) numerically using the arc-length
continuation scheme discussed in [32] over a frequency range. To get
a complete understanding of the effect of FI on the stability of steady-
states, multiple stability curves are produced for different combinations

Table 1
Dimensional and non-dimensional parameters used in the simulation.
m, [kgl 1.5 k, 2¢*
k, [N-s/m] 7 X, [m] 0.0007353
oy [N/m] 2.2¢0 o}, 0y [N-s/m] 237, 14.25
I IN] 5.1 S IN] 6.5
w, [rad/s] 115.5 ¢ 0.02
o) 110 o 1.37
o, 0.0823 fs 0.44
f. 0.35 a 2.5

of x, k,, and m,. On these stability plots, the stable and unstable regions
are marked by ‘Stable’, and ‘Unstable’, respectively.

As mentioned earlier, stability curves in the control parameter space
of k; —v,, are obtained by solving Egs. (29a) and (29b) numerically for
a given range of frequency w € [w;,w,], where w; < w,, and are the
functions of system parameters. On solving Egs. (292a) and (29b), over
the specified range, we get negative values of k; and v,, also. However,
as we are only interested in the positive values of control parameters,
these stability curves are shown in the upper right-half plane of control
parameters. Furthermore, from Figs. 3-5, we can observe that two
stable regimes exist on the positive space of control parameters for
given values of system properties, viz., stable regime corresponding to
higher values of v,, and stable regime corresponding to very low values
of v,,. Therefore, in the subsequent analysis we present the dynamics
of the motion stage for both stability regimes.

Figs. 3, 4, and 5 show the variation of stability regime for System-
a, i.e., the motion stage with FI for different values of «, k,, and m,,
respectively. For the sake of completeness, we also compared these
stability regimes with those corresponding to System-§, i.e., the motion
stage without FI. From Fig. 3(i) we can observe that the increase in
damping in the FI increases the overall stability of the steady-states as
compared to the stability of the system without FI, and allows the use
of higher values of k; for a given value of v,,. We emphasize that these
non-dimensional values can be easily translated to dimensional values
using nondimensional scales and parameters (Eq. (10)). As an example,
in the dimensional space of parameters, the critical value of integral
gain ki (above which system becomes unstable) is 1.34 e’ N/ms for
V,, = 0.42 m/s without FI. However, for the system with FI, the critical
value of integral gain becomes 2.224¢> N/ms for V,, = 0.42 m/s and
¢y = 13.86 Ns/m. A similar observation can be drawn from Fig. 3(ii),
i.e., for very small values of v,,, higher values of feedback gain can be
used to suppress friction-induced vibrations. This observation can also
be drawn from the fact that, in general, damping in the system increases
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Fig. 5. Comparison of stability curves with and without FI for different values of m, for (i) larger values of v,,, and (ii) for smaller values of v,,. Other parameters are o, = 110,
o, =137, 0, =0.0823, f, =044, f, =035, { =0.02, a=2.5, x =0.001, and k, = 0.5. (For interpretation of color in figure, the reader is referred to the web version of this article.)
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Fig. 6. Comparison of time-response of the System-a obtained from MMS and numerical simulation for two different values of k; corresponding to (i) k; = 0.1636 > k, ., = 0.1536,

(ii) k; = 0.1436 < k, .,
and v,

the stability of the steady states. On a similar trend, Fig. 4 shows the
variation of stability regime with the variation in stiffness ratio k,. From
this, it can be noticed that as the value of k, increases from k, = 0.5, the
overall stability of the steady-state starts decreasing and even becomes
smaller than the one corresponding to system-p, i.e., the motion stage
without FI. This observation at first glance suggests the use of FI with
stiffness lower than the stiffness of the motion stage to increase the
overall stability and allow the use of higher values of feedback gain.
However, on careful observation of Fig. 5, i.e., the variation of stability
with variation in m,, we notice that the overall stability of the system
increases with increase in m,, and becomes maximum at m, = 2.
With further increase in m, from m, = 2, the stability boundary start
decreasing. We emphasize here that for Fig. 4, we have chosen m, =2,
and for Fig. 5, we have used k, = 0.5. In both of these scenarios product
of k. and m,, which also presents the ratio of the natural frequencies of
the motion stage to natural frequency of FI, becomes 1 for k, = 0.5 in
Fig. 4, and for m, = 2 in Fig. 5. Therefore, from these observations, it
can be concluded that the overall stability of the steady-states becomes
maximum in the case of internal resonance between the motion stage
and FL

Before proceeding any further to ascertain the nature of bifurcation
on the stability lobes and the amplitude of limit cycles from the slow
flow equations close to the Hopf point, it is required to validate the

=0.1536. The other parameters for numerical simulation are ¢, = 110, o, = 1.37, 5, = 0.0823, f, =0.44, f, =035, { =0.02, a =25, k =0.001, kK, =05, m, =2,
., = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

analytical results with numerical simulation. This is presented in the
next section.

5.2. Validation of analytical results from MMS

In this section, we present the validity of the analytical solutions
for System-a obtained from the slow-flow equations (Eq. (53)) by com-
paring it with numerical simulations of Eq. (18). For this, we compare
the time-response of the system (Eq. (18)) using Matlab routine ‘ode45’
with those obtained from the slow-flow equation and establish the
accuracy of the MMS. To achieve this, we first start with System-a
and choose two different sets of parameters close to Hopf point such
that one point corresponds to the unstable regime (v,,. = 1,k; =
0.1636 > k; ., = 0.1536) while the other point lies in the stable regime
Wpper = Lk, = 01436 < k;,, = 0.1536). Accordingly, we get a
gradually increasing periodic response (till it settles down to stable
limit cycle) and gradually decreasing periodic response (till it settles
down to steady-state). From Fig. 6, we can easily observe that the
time-response of the system obtained from MMS matches excellently
with that obtained numerically using MATLAB routine ‘ode45’. For the
sake of completeness, we also present this comparison for System-g.
The comparison between analytical and numerical simulations, cor-
responding to a different set of control parameters, for system-g is
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Fig. 8. Criticality of Hopf bifurcation in the System-a, i.e, motion stage with FI (i) for higher values of v,,, and (ii) zoomed view of (i) for lower values of v,,. The other parameters
are o, = 110, o, = 1.37. 0, = 0.0823, f, = 044, f, =035, { =0.02, a = 2.5, k = 0.001, k, = 0.5, and m, = 2.

shown in Fig. 7. We again observe an excellent match between both
approaches for System-p. Both of these observations for System-a and
System-f further act as a validation of our analytical approach. Having
established this agreement for both systems, next, we present the
criticality of Hopf bifurcation on the stability curves.

5.3. Criticality of Hopf bifurcation

In this section, we show the nature of Hopf bifurcation associated
with stability curves for System-a and System-f as obtained analyti-
cally using MMS. As discussed earlier, if either or both of the control
parameters, i.e., k; and v,, changes their values such that the steady-
states of the system move from the stable to the unstable regime,
Hopf bifurcation occurs, and the system settles down to stable limit
cycles close to stability boundaries. The amplitude of these stable
limit cycles closed to stability boundaries can be determined with the
help of slow flow equations (Eq. (53)) and, eventually, the nature of
Hopf bifurcation. The appearance of stable limit cycles in the unstable
regime closed to Hopf point implies the existence of supercritical Hopf
bifurcation and global stability of the steady states in the linearly
stable regime. Also, the existence of supercritical bifurcation implies
that nonlinearity in the system is stabilizing in nature. However, if
small-amplitude unstable limit cycles appear in the linearly stable
regime, then subcritical bifurcation occurs, and steady-states lose global

stability in the linearly stable regime. Therefore, in the linear stable
regime small perturbation decays, while sufficiently large perturbation
grows to large-amplitude solution and leading to loss of global stability.

To determine the global stability of the steady states close to the
Hopf point and hence, the nature of Hopf bifurcation, we need to
calculate the steady-state amplitude of limit cycles and its location
relative to stability boundaries. The amplitude of limit cycles close to
Hopf point can be obtained by nontrivial fixed points of the slow-flow
equations, i.e., by setting R = 0 in Eq. (53). Therefore, the nontrivial
fixed point of Eq. (53) or the amplitude of limit cycles close to Hopf
point is given by

-k
P12

We emphasize here that the quantity p; k, is always positive in
the linear unstable regime and negative in the linear stable regime.
Therefore, the nature of Hopf-bifurcation depends on the sign of p,,
only. If p, is negative, then limit cycles will exist in linearly unstable
regimes only, and the Hopf bifurcation will be supercritical in nature.
However, if p;, becomes positive, then the limit cycles will exist in
the linear stable regimes, and the Hopf-bifurcation will be subcritical
in nature. Therefore, the set of control parameters on the stability
boundary corresponding to the transition point from subcritical to
supercritical or vice-versa can be found by setting the denominator to

(54)
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Fig. 9. Criticality of Hopf bifurcation in the System-p, i.e, motion stage without FI (i) for higher values of v,,, and (ii) zoomed view of (i) for lower values of v,,. Other parameters
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Fig. 10. Numerical bifurcation diagram with k; as bifurcation parameter with v,, = 1 for (i) System-a, and (ii) System-g. Other parameters are o, = 110, 6, = 1.37, 0, = 0.0823,
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Fig. 11. Comparison of bifurcation diagram from numerical simulation and MMS with k; as bifurcation parameter (i) System-a, and (ii) System-g. Other parameters are o, = 110,
o, =137, 6, =0.0823, f, =044, f. =035, { =002, a =25, k =0.001, k. =0.5, m, =2, and v,, = 1. (For interpretation of color in this figure, the reader is referred to the web
version of this article.)

0. Note that p,, is a function of system parameters and critical control substitute k; ., v, ., and associated frequency along with other system
parameters, i.e., control parameters at the Hopf point. Accordingly, we parameters and check for the sign of p;, to determine the nature of Hopf

11
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Fig. 13. Zoomed view of the numerical bifurcation near Hopf point (i) System-a, and (ii) System-g. The other parameters for the numerical simulation are ¢, = 110, o, = 1.37,
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bifurcation. The stability curves with associated Hopf bifurcations for
System-a and System-p has been shown in Figs. 8 and 9, respectively.
From Figs. 8i and 9i, we can easily observe that there is no transition
point on the stability curves and hence, no change in the nature of
Hopf bifurcation from supercritical to subcritical or vice versa. Also,
we observe that there is no change in the nature of Hopf bifurcation
on the inclusion of FI in the motion stage, and it remains subcritical
in nature for higher values of v,,. However, for lower values of v,,,
the nature of Hopf bifurcation changes from supercritical to subcritical
due to the interaction between FI and integral control of the system (as
shown in Figs. 8(ii) and 9(ii)). This observation further implies that for
lower values of v,,, the introduction of FI in the system increases the
linear stability of steady states at the cost of losing global stability of
steady states for the given system parameters.

It is to be noted here that the analytical results using MMS only
give information about the amplitude of limit cycles close to Hopf-
point and do not provide the overall nonlinear global behavior of our
system. Therefore, we use numerical bifurcation analysis to get an
understanding of the large-amplitude response of the precision motion
stage, and this is presented in the next section. This step further acts as
another verification of our analytical results.

12

5.4. Bifurcation analysis

In this section, we present numerical bifurcation analysis of System-
a and System-p. For this, we have used built-in MATLAB routine ‘ode45’
with a high value of relative and absolute tolerance of ‘le~!3’ to solve
our six first-order system of odes. The bifurcation diagrams, showing
the extrema for x; (corresponding to x, = 0), for System-a and System-
p are shown in Fig. 10(i) and (ii), respectively. These bifurcation
diagrams can be plotted by fixing either of the control parameters,
i.e., k; or v,, and varying other. Since in our analytical analysis, we
have chosen k; as our bifurcation parameter, we fix the value of v,,
and vary k; in forward and backward direction. From both figures, we
can observe the existence of subcritical Hopf bifurcation in System-a
and System-f as predicted by the analytical results using MMS in the
previous section. Also, the overall picture of these bifurcation diagrams
is complex due to the existence of quasi-periodic and period-2 solutions
and will be discussed later in this section.

After establishing a qualitative match from the analytical and nu-
merical findings, we perform the quantitative match as well. For this
step, we obtained the branch of limit cycles using fixed-arc-length
continuation scheme [32]. These results are shown in Fig. 11(i) and
(ii) for System-a and System-f, respectively. In these figures, solid
lines represent the stable steady-state response, whereas dashed lines
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Fig. 14. Phase portraits showing the stability of limit cycles for System-a with different values of k, close to Hopf point (i) period-1 solution, (ii) period-2 solution, (iii) period-4

solution, (iv) quasi-periodic solution, (v) period-3 solution, and (vi) period-1 solution. The other parameters for numerical simulation are ¢, = 110, o,

£, =035, v, =1¢=002, a=25, x =0.001, k, =0.5, and m, =2.

represent unstable steady-states. From both figures, we observe that
there is a decent match between the numerical results from the con-
tinuation method and the MMS results for moderate amplitudes. The
coexistence of unstable limit cycles with a stable equilibrium indicates
that Hopf-bifurcation is subcritical in nature. Further, it can be noted
from Fig. 11 the subcritical branch of limit cycles undergoes a smooth
turning bifurcation resulting in limit cycles involving stick—slip motion.
The illustrative phase portraits for stable limit cycles with stick-slip
close to Hopf point are shown in Fig. 12.
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1.37, 6, = 0.0823, f, = 0.4,

To further explore the dynamics of a motion stage with and without
FI, we examine the numerical bifurcation close to the Hopf point and
away from the Hopf point. The dynamics of the motion stage with and
without FI close to Hopf point is shown in Fig. 13. From Fig. 13, we
can observe that for both cases, i.e., motion stage with and without
FI, stable period-1 solutions lose stability and period-2, period-4, and
subsequently quasi-periodic solutions start appearing as the value of k;
approaches towards k; ... The occurrence of period-2 solutions signifies
supercritical period-doubling bifurcation near the Hopf point for both
cases of the motion stage. Period-doubling bifurcation preceded by
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Fig. 15. Phase portraits showing the stability of limit cycles for System-§ with different values of k; close to Hopf point (i) period-1 solution, (ii) period-2 solution, (iii) period-4
solution, (iv) quasi-periodic solution, (v) period-3 solution, and (vi) period-1 solution. The other parameters for numerical simulation are ¢, = 110, 6, = 1.37, 6, = 0.0823, f, = 0.4,

f, =035,

L U, =1¢=002 a=25.

symmetry-breaking bifurcation has been observed for a system with
symmetrical solution (trivial fixed points) [33]. However, this dynamic
phenomenon does not take place in the current system, i.e., here the
periodic solutions do not hold inversion symmetry (x(z) = —x(r +
T/2) with T as time-period) before period-doubling bifurcation. This
observation can be explained through the appearance of asymmetrical
solutions, i.e., non-trivial fixed points of System-a and f (Egs. (18)—
(21)). For illustrative purpose we start with the stable periodic solution
for System-a (Fig. 13(i)). As we start decreasing the value of k;, stable
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stick—slip limit cycle loses stability through supercritical period-2 bifur-
cation, and period-2 solutions start appearing in the system. On further
decreasing the value of k;, we observe the existence of period-4 and
quasi-periodic solutions, and close to Hopf point, stick-slip limit cycle
again retains stability and undergoes smooth subcritical bifurcation.
The representative phase-portraits for this dynamical phenomenon for
both systems, i.e., for System-a and System-f are shown in Figs. 14 and
15, respectively.

The appearance of period-2 limit cycles and hence, occurrence of
period-2 bifurcation can be better understood with the help of the
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Fig. 17. Numerical bifurcation Hopf point (i) System-a, and (ii) System-j. The other parameters for numerical simulation are ¢, = 110, ¢, = 1.37, 0, = 0.0823, f, = 0.44, f. = 0.35,

U, =1¢=002, a=25, x =0001, k, =0.5, and m, =2.

stability of the period-1 solution, preceding the period-2 solutions,
using Floquet theory. The movement of the various Floquet multipliers
associated with the period-1 solution with decreasing k; around the
initiation of the period-2 solution for System-a and —p are shown in
Fig. 16i and ii, respectively. It can be easily observed that for both
cases, the dominant Floquet multiplier crosses the unit circle at —1 on
the real axis and hence, signifies the loss of stability of period-1 solution
through a period-doubling bifurcation [34].

Having established the existence of supercritical period doubling
bifurcation close to Hopf points, next we present the dynamics of
the motion stage away from the Hopf point. For this we present the
Poincare section of the system dynamics corresponding to x, = 0 for
both cases, i.e., for System-a and System-f as shown in Fig. 17i and ii,
respectively. From Fig. 17ii, we can observe that for System-g, period-
1 solutions do not lose stability and remains stable as the value of
k; increases. However, for System-a, more complicated dynamics viz.
period-2, period-4, quasi-periodic and finally chaotic solutions appear
as k; increases. The illustrative phase portraits corresponding to the lost
of stability of period-1 limit cycles for System-a are shown in Fig. 18.

The appearance of chaotic solutions in System-a and eventually
loss of stability of limit cycles can be further explained with the help
of variation of Lyapunov exponents. Since the real part of a Floquet
exponent represents Lyapunov exponent [35], we can use the following
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relation to determine the Lyapunov exponent

LE =R <10g(®)> ;
T

(55)

where L.E. represents the Lyapunov exponent, @ represents the Floquet
multiplier, and T represents the time-period. The variation of domi-
nant, i.e., maximum Lyapunov exponent with k; is shown in Fig. 19. It
can be easily observed from Fig. 19 that for k; >~ 0.539, the dominant
L.E. becomes positive, thus confirming the existence of chaotic attractor
in the system. From this observation we can conclude that though the
inclusion of FI in the system improves the stability of the system for
a choice of design parameters and reduces the amplitude of motion,
it also introduces complex dynamics in the system such as period-2,
period-4, quasi-periodic, and chaotic solutions.

6. Conclusion

In this work, we studied the nonlinear dynamics of a servo
-controlled motion stage with and without friction isolator. To include
the dynamical effect of friction in the system, we have considered
the LuGre model. Earlier studies with the LuGre model suggest that
the nature of Hopf bifurcation always remains subcritical in nature.
However, the current analysis revealed that for the given value of
reference velocity, the nature of Hopf bifurcation can change due to
the complex interplay between FI and integral control. A parametric
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Fig. 18. Phase portraits showing the stability of limit cycles for System-a with different values of k; away from Hopf point (i) period-1 solution, (ii) period-2 solution, (iii)
quasi-periodic solution, and (iv) chaotic solution. The other parameters for numerical simulation are o, = 110, o, = 1.37, 6, = 0.0823, f, =0.44, f, =035, v,, =1 ¢(=0.02, a =25,

= 0.001, k, = 0.5, and m, = 2.

study on the linear stability boundaries revealed that damping in the FI
increases the overall stability of the steady states in the space of control
parameters. Furthermore, we observed that the internal resonance
between FI and the servo-controlled motion stage increases the stability
significantly in the control parameter space.

The nonlinear dynamics of the motion stage with and without FI was
analyzed analytically using the method of multiple scales and harmonic
balance. We verified these analytical results by comparing them against
numerical simulations. We observed an excellent match between the
two approaches for both cases of motion stage with and without FI. A
thorough nonlinear analysis was carried out to understand the nature
of the bifurcation and limit cycle. We obtained the criticality of Hopf
bifurcation on the different regions of the stability curves, and accord-
ingly, different regions of supercritical and subcritical Hopf bifurcation
were obtained. We observed that the inclusion of FI in the system
did not change the nature of Hopf bifurcation and remains subcritical
for higher values of control parameters. However, for lower values
of control parameters, the inclusion of FI changes Hopf bifurcation
from supercritical to subcritical. Therefore, it can be concluded that
although FI increased the overall local stability of steady states, the
global stability of steady states decreased. Furthermore, we explored
the dynamics of the motion stage for both cases numerically to get a
complete understanding of the effect of FI on the system and observed
very rich dynamics in the system including period-doubling bifurcation,
quasi-periodic, and chaotic solution. However, unlike systems with
symmetrical solutions, we did not observe the occurrence of symmetry
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Fig. 19. Variation of dominant Lyapunov exponent with k,. The other parameters for
numerical simulation are ¢, = 110, 6, = 1.37, 6, = 0.0823, f, =044, f, =035, v, =1
¢=0.02, a=25, k=0.001, k, =0.5, and m, =2.

breaking bifurcation before period-doubling bifurcation due to the
appearance of asymmetrical solutions, i.e., non-trivial fixed points.
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Overall, our findings suggested that the inclusion of a FI in the
system can increase the local stability and decrease the limit cycle
amplitudes of a PID controlled motion stage, thus improving the per-
formance of the manufacturing machine. However, this improvement
comes at the cost of introducing more complex dynamics in the system.
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Appendix A. Expressions used in Section 3

A.1. System-a

fi=(m by +2Km +gyv,,00+2¢ +2k) (56)

f2= (krmr+kr+4§Kmr+mrh1ag0urvo-0+2K—mrg()vruo'0
—m g U,y 81 hg +28 8o,y 00 + 2K 8 Uy O + 28 m Ry

+2km, by, +1) (57)

f3= (2Km,+m,hla+k,-+g0 U, 00+ k. m.gyv,,00+2C k. m,
+krmrh1a _ZCmrh2a Ury &1 h0+2KmrhlagOUrvo_O
+ k. & UrUUO+4§KmrgOUruo_0_2Kmrh2a Uy &1 hO

+2¢ m, h]a 80 Ury 00) (58)

fa = (2K m, g0V, 60 + ki 80 Vyy 00 = My hog Uy 81 g + 1y g 89 Vry 6

+krmrhlag0UrUGO+krmr_krmrh2a Urp 81 h0+2kiKmr

+k;m.hyg +2¢ k. m,. gy v,,00) (59)
fS = (_ki m hZa Urp 81 hO + 2ki K m, gy Upy 00 + ki m, hla 80 Ury 00
+k,m, gy v,, 00+ k; k. m,) (60)
S =kik.m.gyv,, 00 (61)
R ok +k o—-o’k, +40c{ +40°> - 20k k;
e, = ,
@ ok, + 432
(62)
I 20’k + 2wk + 2k, 0*¢ — k; k,
m =
@ ok’ + 4032
20k = 2wtk — 2k, 0?C + k; k,
Re,, = 3 s
k,* + 4 wk?
(63)
ok +k o—-oPkr+4o’c{+40’c? - 2wkk;
ImZa =

k% +402k?
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Rez, = (—20%0,,%8) ho k 00 89 +2@* 0,781 ho k 0 89 — @7V, 81 ho K,
— @70y, &1 ho ky + "0, 81 ho Ky + 20,81 By @7 K, 00 8
~ 0,781 ho ki K, 00 80 — 40, 81 ho @' & = v, 8 hy '
+20,, g hg @’k k;)/ (k,zvm2602g02 + 0k’
+4 mzkzv,uzaozgoz + 40}4K2) (64)

Imy, = (=v,,°81 hg @k, %60 89 — v,,°81 ho @k, 69 &

+ Uwzgl hg a)3kr 008 0+2v,,8 hy @’k -2 v, 81 hy @’k
— 40,781 hy@’ k098¢ — 40,78 hg @’ Koy g
+20,,%8) hg @ Kk 09 8 k; =20, 8 hg @'k, £ + 0, 8 hg @k K, ) /

X (k,zvrvzaozgoz + @0?’k,? + 4 0’k?v,, 20028y +4 co4rc2) (65)

(20?xk, + 2x2k_i + k¢ — k,x) 0*
Lrey, = (66)
otk + 4wk, ick; + 42k + 4,202 2 — 8k, w2l K + 4wk

o (0?k,? + 2k;xk, — 4k, 0%k + 40K?)
wtk,? + 4wk, ick; + 4k2k;? + 4k, 2022 — 8k, {K + 4w’k?

(67)

Limy, = —

(a)zk,2 + 2k;xk, — 4k, 0*C K + 4a)21<2) k;
Lrey, = 47 2 5 27 2 2 252 2 242 (68)
w0k, + 4w’k xk; + 4k%k;” + 4k, “0*$? — 8k, 0*CKk + 4w’k

2 (@Pkk, +262k; + k,2¢ — k.k) ko

Lim,
* Wtk ? + 402k, kk; + 42k + 4k, 20?2 — 8k, 2Lk + daK?

(69

. k, (4c?¢ — 20 kk; — @'k, — 452wk, + 2k;k, ¢ + ?k,) 70)
res, =
> wtk,? + 4wk, kk; + 4k2k;? + 4k, 20?2 — 8k, w2l K + 4alk?

(4k;Cxa® + 20%k — 2xk;? — 207Kk — Wk, k; + 2k,0*C) k,
(w0*k,? + 40k, kk; + 4x2k;* + 4k, 2022 — 8k, 0k + 40?K2) o

(71)

Limy, =

Egs. (72) and (73) are given in Box 1.

Lres, = hy, (a)zk,vmaogok,» - 2w4k,vrvaog01< - 4Ku,voog0kia)26
— 4x20,,0080k;0° + 20,0080k, — 40 2k, — 4Kk,
+ 2k’ k,{ + 40kl + 4o + 0*k,2 + 0k, — 0Ok,
+ 202k, xk; — 20 kk; — 20%0,,0080k,>¢ — 207 Ck, 0,008
+ ZwZKk,v,UaOgo
+2K0,,00800"° — 2w4KU,U0'0g0) / ((U,Uzo'ozgo2 + wz)
X (0*k,? + 40’k kk; +4x7k;% + 4k, 20’ = 8k, Lk + daK?))
74
Lims, = (0hyy (20*k,k — 0k, k; + 4k,(k0* + k% k0 — 2k,
— 40,0080k, C " — 40,0080k, L& K + 20,0080k, Ck;
+ 4KU,UGOg0a)2C + 4a)2xzuwaog0 + o? U,U(fogok,2
+ @7k, 0,,0080 — @'k, U,,0080 + 2KV, 0080k K, = 2K0,,0080k;
+20°k, 3¢ + 2k, 0*¢ = 20Kk, — 207K + 2a)41c)) /
X ((vmzaozgoz + a)z) (a)4kr2 + 4wk, ick; + 4%k + 4k, 20?2

—8k, @’k + 40*k?)) (75)
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A.2. System-f
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i k;w? Li -0 I3 k;0?
re; o imyy = ———, rey; = ————,
= k2 +w? I P
Li k[ w
imyy = ———
g k2 + o?
Lrew = wzhzﬁ (k,-u,uaogo - wz)
3p = >
(vr200°80% + @?) (=k;* — @?)
Limes = w3h2ﬁ (Umaogo + k,—)
3p = >
(002002802 + @?) (—k;* — @?)
Appendix B. Expressions used in Section 4
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3 4 3 4
X, hog 83 Uy e o + 16 07m, 1y, 00 0, "8 — 1607 m, By,
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2 4 4 3
X Urper 00 h3a -1l6w m, h2a Urper hO h}a - 16w m, hZa 83 Urper hO

+32im, hy, @ = 8im, hy, @ — 8i@ vy, hyy +32i0°0,, ¢, hy,

ro,cr
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+8iw Urper 00 h3u —8iw 00 Urper 82— 2iw Urper 00 h3a
+32i0°a, vm,cfgz +2im wk, k;, — 16im, 0k, { +16im, h,
2 —2im, hy hy,

3¢+ 16im, g3 ho hy,

3 A
X Nyy M3g @0y, § = 2im, hyy hag ki 000 0,

: 3
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C +2 im. g hla kic WO Upyy er
2

rbcr_4m hlmkica)
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3 3 i 3
X @ Urper g + 16lmr hla h?a [

—4hy, k, @0
3+4h3nkica) ooV,

—2im, g3 ho hyy ki @0
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2
- 4g2 kic =0, Urv,cr rocr
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-8 im, k. oy Urper 820" + 8 im, k, Urper

2
0y g @
+2im. 0k, o, Urv,cr3g2 —2im, wk, Urper 60 hyq = 16im, hy, hs,
2 —16im, hy, hy, @*v

3 .
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260 hyy K2+ 32im,
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biy =4 ((iResyhy, + iRey hg hyy — Imy,hy hy,
X (—Imz(l + iRe2a)

—imr3hy,)

m, (—h3a 0,0’6,200 o1 +2imwoy + hy,
+Urv,cr h4a o1t oy Uru,cr3g2 o] ) (kr +4ix O)) wZ)
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— 160y Uype, 82 K @, hyy +320%¢ 60 Uy o 82 = 320 0, 0
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+2im, wk, ki, — 16im, @k, ¢ + 16im, hy hyy hs, w3vmc,£j




S.K. Gupta, J. Wang and O.R. Barry

b3 =

by =

. 2 .
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- 16 im,. g hla w360 Uru,crag +16 im, g h() hZa w3vru,cr3c
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X K w3m, hy, +32 o*¢ ) Um’”3g2 —-Ro'¢ U,U,C,ZO'O N3,
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+32 iwsuru,cr h4a +38 iw3uru,cr260 h3a -8 iw360 Urv,cr3g2
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— 160, U,U,L,,ng Kw3m, hy, +32 w*¢ oy U,U’cr3g2 -RNo'¢ Urv,crzgo
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ho hsy + 40k, m,

X kr My Uy e

2 2
X hlnr Uru,cr ) h3a +4w kr m, hZat Urp,er

3 4 3 4
X Roy &3 Vpyer g + 1607 m, Ny 00U, 80 — 16 07m, Ry,

2 4 4 3
X Urper 00 h}a - 16w m, hla Uru,cr h() hSa - 16w m, h2a &3 Urbx,cr h()
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+32im, hyy @ — 8im, hyy @ — 8iw v,y ey hyg +32i0° 0y, hyy

i3 2 ;3 3 ;S 2
+8iw Urper 00 h3a - 8iw 00 Urper 82— 32iw Uryer 00 h3a

+32i0’a, Umcfg2 +2im, ok, ki, — 16im, @*k, £ + 16im, hy hy,
7-2 im, h() hZa h3a

¢+ 16im, gy hy by, @0,,,.,¢

3 .
X h?uz [ g -2 tm, hla hSa kic WO Uy er

: 3
X kic DUy e — 16 tm, g hla W00 Vpper

+16 [mr h]a h3rx w360 Uru,crzg +2 imr &2 hl(l kic w0, Uru,cr3

-2 im, g, hO h211 kic w Uru,cr3 -4 h4rx kic wzurv,cr -4 m, h]a km wZ
-4 &2 kic a)zgﬂ Urv,cr3 +4 h3rx kic wzo-() Urv,crz +m, kr Drper h4(x kic
—8im, k.o vmcfgz @ +8im, k, U,U’C,Zao hs, @ +2im, 0k,

X 0y Uru,cr3g2 -2 imr a) kr Urv,cr2o-0 h3a —-16 imr hZa hSa 0)3 Urv,crzg

. 3 . 2 .
- 16’mr hla h4a W Uy er i+ 2lmr h2a hSu kic DUy er + Zlmr h]a

f 3 2 2 : 3 3 2
X h4a kic DUy cr — 32 im, @~y " 00 h3a K™+ 32 tm, w0 Uy e 8o K
3 2 : 3
+m, kg Uy e 82 Kie = My Ky Uy " 00 g Ky = 8im, K, 0, 0 By @
+2im, wk, v,, ., hy, +32im, o’ Urpor Mg l(z) (82)

2 3
((hZa + Uru,cr h4a o] — h3a Uru,cr 0p 01 + 0] UrU,cr &2 Gl)

(h4a I'my, Ims, + hg hs, Re2a2 + hy, Rey,rers + hy hs, lmz‘,z)) /
(83)

by3 =2
X
X

(kic Urp.er (_UrUA,cr 00 h}a ) Uru,crng + h4a))

2 2
(h4a I'my, I'msy, + ho hy, Rey,” + hy, Rey rers + hy hy, Imy, )) /

2 3
b34 =2 ((hZa + Urper h4a 5 h}a Urp,er 00 01 +0p Vrper 82 O'l)
X
X (84)

(kr Uru,cr (_Uru,cr 4] h3a + 4] UrUA,crng + h4a))

(h4a Imyy Ims, + hy hs, Rezw2 + hyy Reygrers + hy hy, Im2a2)

by = —
Uru,tr (_Uru,cr 4] h3a + o0 Uru,cr2g2 + h4(1)

(85)

vy = Reyy +ilmy, (86)

Up = =3m, 0y 0y h3, Rez,szeM +im, oy hyy bl1sImy, —3m, o hs,
X Reyy Imy > —3im, o) hs, Imy,® —m, 6y 6o hy, Imy,* Res,
—3im, 0y hsy Imyy Reyy? —3m, 6 hsy Reyy® —2m, 0y 6 hsg
X Rey Imy imry — im,. oy hyy Imy b31¢ + im, o1 hyy, Im,, b11g
—3im, 6, 6y hyy Imy,>Tmy, —2im, oy ho hay Imayyb31s
+2im, o1 hy hyy Imy,blls —m, oy hyy Rey b31g —2m, oy hy hy,
X Rey,b315 —2im, 0| 6y h3, Rey,imr, Res, —im, oy hy, b3151my,
—m, 0y hy, b315Re3, —2m, oy hy hy, Rey, blls —im, oy 0y hs,

X Reyy2Imy, —m, 6 hyy bl15Res, —m, 6 hyy Reyybllg 87)

Uy = Res, + ilms, (88)

Uyy = 2 hy, 0 Regy Iy Imsy — ihgy b115Imy, + 3ihs, Imy,> — ihy,
X Imy,bl1g +3 hs, Reyy” + 3 hsy Resy Imyy® + 3 hy, 0 Rey,” Res,
+ ihgy b135Tmy, + hy, 60 Imyy > Resy + ihs, 6 Reyy > Iy,
+3ihy, 09 Imyy > Imyy, — 2ihg hay Imagbl1s + by, b13srers
+ hgy Regyb13g +2 ho by Regyb13s + 2 ihg by Imyyb13s
+ Ngy bl1srers + iy, Imy,b13¢ +2 ho hs, Regybl1s

+2ihy, 09 Regy Imyy Res, + 3ihs, Imyy Reyy” + hyy Reyybllg  (89)
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