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This paper builds upon two key principles behind the Bourgain–Dyatlov quantitative

uniqueness theorem for functions with Fourier transform supported in an Ahlfors

regular set. We first provide a characterization of when a quantitative uniqueness

theorem holds for functions with very quickly decaying Fourier transform, thereby

providing an extension of the classical Paneah–Logvinenko–Sereda theorem. Secondly,

we derive a transference result which converts a quantitative uniqueness theorem

for functions with fast decaying Fourier transform to one for functions with Fourier

transform supported on a fractal set. In addition to recovering the result of Bourgain–

Dyatlov, we obtain analogous uniqueness results for denser fractals.

1 Introduction

The Fourier transform is the extension to L2(Rd) of the operator which acts on f ∈
L1(Rd)∩L2(Rd) by f̂ (ξ) = ∫

Rd f (t)e−2π iξ ·tdmd(t), where md is the d-dimensional Lebesgue

measure. This paper builds upon two principles underlying Bourgain and Dyatlov’s

breakthrough uniqueness theorem for functions with Fourier transform supported in

an Ahlfors regular set [3] (see Section 1.2 below):
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2 B. Jaye and M. Mitkovski

1. Classical uniqueness theorems for functions with compactly supported

Fourier transform extend to functions with sufficiently fast decaying Fourier

transform, and

2. these results can be transferred to uniqueness theorems for functions

with sparsely supported Fourier transform by appealing to the Beurling–

Malliavin theorem.

In [3] these two principles are somewhat intertwined in the proof. Our goal here

is to separate them and develop some theory for a general weight function (in the spirit

of Koosis’ books [11, 12]). By doing so, we

1. obtain a characterization of when a uniqueness theorem holds for functions

with fast decaying Fourier transform (under a convexity assumption on the

weight), see Theorem 1.3, and

2. prove a general transference principle which converts a quantitative unique-

ness theorem for functions with fast decaying Fourier transform to one for

functions with sparsely supported Fourier transform (Theorem 5.2).

Besides recovering the uniqueness result in [3], this point of view enables one to obtain

analogous results for functions whose Fourier transform is integrable with respect to

the end-point weight given by exp
( |t|
log(e+|t|)

)
.

1.1 On the uniqueness (or strong annihilation) property for functions with fast decaying

Fourier transform

Denote by md the Lebesgue measure on Rd, d ≥ 1.

Definition 1.1. A Borel set E ⊂ Rd is (γ , �)- relatively dense if md(E ∩ Q) ≥ γ �d for any

cube Q ⊂ Rd of side-length �.

The role of relatively dense sets in uniqueness theorems is exhibited by the

classical Paneah–Logvinenko–Sereda theorem for band-limited functions ([14, 20], see

also [7, 10, 13, 16, 19]), one of the prototypical forms of the uncertainty principle, see

Chapter 1 of [21].
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Quantitative Uniqueness Properties 3

The Paneah-Logvinenko-Sereda Theorem. Fix E ⊂ Rd. For every N > 0, there is a

constant C > 0 such that

‖f ‖L2(Rd) ≤ C‖f ‖L2(E) for every f with supp(̂f ) ⊂ B(0,N) (1.1)

if and only if E is (γ , �)-relatively dense for some γ ∈ (0, 1) and � > 0. �

In particular, the theorem says that a band-limited function admits a stable

reconstruction by sampling its values on a relatively dense set. The first result of

this paper will be an extension of the Paneah–Logvinenko–Sereda theorem to functions

which, instead of being band limited, have sufficiently fast decaying Fourier transform.

Definition 1.2. A weight W : [0,∞) → [0,∞] has the Paneah–Logvinenko–Sereda (PLS)

property if, for every d ∈ N, γ ∈ (0, 1), � > 0, and CW > 0, there exists a finite constant

C = C(d,W,CW , γ , �) > 0 such that if f ∈ L2(Rd) satisfies

∫
Rd

|̂f (ξ)W(|ξ |)|2dmd(ξ) ≤ C2
W‖f ‖2L2(Rd)

, (1.2)

and E is a (γ , �)-relatively dense set, then

‖f ‖L2(Rd) ≤ C‖f ‖L2(E). (1.3)

Notice that the ‘if’ direction of the Paneah–Logvinenko–Sereda theorem can be

rephrased as the statement that for any N > 0, the weight

W(t) =
⎧⎨
⎩1 for |t| ≤ N,

+∞ for |t| > N

has the PLS property.

Theorem 1.3. Suppose that W : [0,∞) → [0,∞] satisfies

1. W(0) = 1, W is non-decreasing, W is lower semi-continuous, and

limt→∞ W(t) = ∞.

2. the mapping log r �→ logW(r) is convex1 on [1,∞).

1 This permits an interval (t0,∞) on which W(t) = +∞.
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4 B. Jaye and M. Mitkovski

Then W satisfies the PLS property if and only if

∫ ∞

0

logW(t)

1 + t2
dm1(t) = ∞. (1.4)

Our motivation for formulating Theorem 1.3 came from the paper [3], where the

following uniqueness theorem for functions with fast Fourier decay is presented: If δ ∈
(0, 1), and �(ξ) = |ξ |

logδ(e+|ξ |) , then

‖e�(ξ )̂f (ξ)‖L2(R) ≤ C0‖f ‖L2(R) implies c‖f ‖L2(R) ≤ ‖f ‖L2(E)

where E is an infinite union of well-separated intervals of some fixed side-length, and c

depends on δ,C0, and the sidelength of the intervals (see (1.6) in [3]). Although stated in

terms of intervals, it appears that one could adapt their proof to yield the stronger PLS

property. Very recently, Han and Schlag [6] extended this estimate to several dimensions

using Cartan set techniques.

Observe that Theorem 1.3 applies to the end-point weight W(ξ) = e�(ξ) with

�(ξ) = |ξ |
log(e+|ξ |) . It is remarked in [3] (see Remark 2 after Lemma 3.1 in [3]) that

this weight does not grow quickly enough for their proof to be applicable. Our

approach is therefore necessarily rather different to that taken in [3], or [6], relying

on quasianalyticity2 rather than harmonic measure estimates.

The constant C > 0 in (1.3) that is obtained in the proof takes quite an

explicit form that can be calculated given a particular choice of W satisfying (1.4), see

Proposition 3.1 below. As an example, and since it will be used in the sequel, here we

formulate a quantitative result for the end-point weight in the case d = 1.

Proposition 1.4. Put W(ξ) = e�(ξ) with �(ξ) = |ξ |
log(e+|ξ |) . Fix γ ∈ (0, 1), α ∈ (0, 1] and

CW > 1. If f ∈ L2(R) satisfies (1.2) with W replaced by Wα, and E is (γ , 1)-relatively

dense, then

‖f ‖L2(R) ≤
(A

γ

)(log[A·CW ])eA/α

‖f ‖L2(E)

for an absolute constant A > 0.

2 As we shall see, a function f whose Fourier transform is square integrable with respect to a weight W as
in Theorem 1.3 satisfying (1.4) is quasi-analytic.
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Quantitative Uniqueness Properties 5

1.2 A uniqueness result for functions whose Fourier transform is supported in a regular set

In Section 5, we will introduce a general condition of sparsity of the support of the

Fourier transform of a function, which is a quantification of the classical short intervals

condition of Beurling (see Definition 5.1). In Theorem 5.2 we will prove quantitative

uniqueness results for functions whose Fourier supported in such sparse sets.

For simplicity, and for the sake of comparison with the results in [3, 9], in the

introduction we restrict our attention to a special case.

Definition 1.5 ϕ-regular sets. Fix an increasing continuous function ϕ : [0,∞) →
[0,∞) with ϕ(0) = 0. A set Q is ϕ-regular if, for every N > 1, t ∈ R, and 1 ≤ � ≤ N, there

is a cover of the set Q ∩ [t − N, t + N] by ϕ(N/�) intervals of length �. �

For δ ∈ (0, 1), every δ-regular set in the terminology of [3] is ϕ-regular with ϕ(t) =
Ctδ (see Lemma 2.8 of [3]).

A uniqueness result for functions whose spectrum lies in a ϕ-regular set

necessarily requires a bit more structure of the set E beyond relative density (see

point (2) in the comments following Theorem 1.6). For σ > 0 set Eσ to be the open σ -

neighbourhood of E.

Theorem 1.6. Suppose that ϕ satisfies

∑
n∈N

1

n2 ϕ(n) ≤ Cϕ for a constant Cϕ > 1.

For every γ , σ ∈ (0, 1), there is a constant C = C(Cϕ , σ , γ ) such that for any (γ , 1)-

relatively dense set E, and ϕ-regular set Q,

‖f ‖L2(R) ≤ C‖f ‖L2(Eσ ) for every f ∈ L2(R) with supp(̂f ) ⊂ Q.

Moreover, the constant C(C0, σ , γ ) may be taken to be of the form

exp
(
log(A/γ )

{
exp

[
exp

(A · Cϕ

σ

)]})
(1.5)

for an absolute constant A > 0.

Several comments regarding this result are in order:
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6 B. Jaye and M. Mitkovski

(1) Notice that in Theorem 1.6 one controls the L2 norm of f by the L2 norm on a

σ -neighbourhood of E. It is natural to ask if this is necessary, and in the appendix we

show that one cannot take σ = 0 via a modification of a well-known example involving

Riesz products.

(2) The uniqueness result in [3] corresponds to the case of a δ-regular set with

δ ∈ (0, 1). By characterizing the PLS property, we are able to obtain uniqueness results

for fractal sets denser than the class considered by Bourgain and Dyatlov in [3].

The result in [3] is stated in terms of separated intervals, which is equivalent to a

neighbourhood of a relatively dense set.

(3) In order to obtain the effective bound (1.5), we incorporate the modification

to the Bourgain–Dyatlov scheme introduced in Jin-Zhang [9]—replacing the use of the

Beurling–Malliavan theorem (used in [3]) with the simpler effective multiplier theorem

proved in [9]. In the setting of δ-regular sets, Jin and Zhang [9] obtained a version of

Theorem 1.6 with an effective bound of the form exp exp exp
(C(σ ,γ )

(1−δ)
log 1

1−δ

)
(see Theorem

4.4 in [9]). For δ-regular sets, the constant Cϕ may be taken to be C/(1 − δ) for some

absolute C > 0 and so we obtain a bound of the form exp exp exp(
C(σ ,γ )
1−δ

).

2 Background material in quasi-analytic functions required for Theorem 1.3

The main direction of the proof of Theorem 1.3 is the proof that (1.4) implies that the

PLS property holds. The idea behind the proof is simple: The property on W yields that

f belongs to a certain quasi-analytic class. Using the localization principle behind the

proof of the Paneah–Logvinenko–Sereda theorem [14] as presented in [13] or [16], we

can reduce matters to a Remez-type inequality for quasi-analytic functions, which is

provided by an extension to several variables of a theorem of Nazarov–Sodin–Volberg

[18]. This is carried out in Section 3. For readers who are not so concerned about the

particular form of the constant C > 0 in (1.3) that arises in the proof, we also provide

a short proof of a more qualitative statement relying only on the Denjoy–Carleman

theorem.

On the other hand, if (1.4) fails to hold, the Paley–Wiener multiplier theorem,

see [11] p.97, yields the existence of functions supported on arbitrarily small balls for

which
∫
Rd |̂f (ξ)|2W(|ξ |)2dm1(ξ) < ∞, thereby exhibiting that such W fail to satisfy the

PLS property. For the benefit of the reader we sketch the argument in Section 4.

Until the conclusion of the proof of Theorem 1.3, assume that W is a weight

satisfying hypotheses (1) and (2) of Theorem 1.3. There is no loss of generality by
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Quantitative Uniqueness Properties 7

assuming that W ≡ 1 on [0, 1], and W grows faster than any power function at infinity,3

so we shall always do so. Set

Mn = sup
ξ∈R

|ξ |n
W(|ξ |) = sup

t≥1

tn

W(t)
.

Notice that Mn is an increasing log-convex sequence: M2
n ≤ Mn−1Mn+1. Therefore,

setting M0 = maxξ∈R 1
W(|ξ |) = 1 we have that the sequence μn = Mn−1

Mn
is non-increasing,

and μn ≤ 1.

We begin by revisiting some very well-known elementary inequalities (e.g.,[11])

in order to make our discussion self-contained. The property (2) of the weight W from

the assumptions of Theorem 1.3 is used in the following lemma:

Lemma 2.1. For r > 1 with W(r) < ∞, there exists an integer n ≥ 0 with

logW(r) ≤ (n + 1) log r − logMn.

Proof. Fix r > 1 and choose some supporting line to the graph {(log t, logW(t)) : t > 0}
with finite slope ν at the point (log r, logW(r)) (ν ≥ 0 since W is increasing). With n equal

the integer part of ν we observe that logMn ≤ (n + 1) log r − logW(r) (see [11] p.99-100),

as required. �

Proposition 2.2. The following inequalities hold:

∑
n

μn ≤
∫ ∞

1

logW(t)

t2
dm1(t) ≤

∑
n

μn + 1.

To prove this consider the Ostrowski function

ρ(r) = sup
n∈N

rn

Mn
.

Notice that, since the sequence μn is decreasing, ρ(r) = 
{n: rμn>1}(rμn). The proposition

is an immediate consequence of combining the following two lemmas.

3 The Fourier transform of a compactly supported bump function is in the Schwartz class, so power
bounded weights certainly fail to satisfy the PLS property.
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8 B. Jaye and M. Mitkovski

Lemma 2.3. For r > 1,

log ρ(r) ≤ logW(r) ≤ log ρ(r) + log r. (2.1)

Proof. The left hand inequality is trivial. If r lies in the set I = {W < ∞}, then we

use Lemma 2.1 to fix n ≥ 0 with logW(r) ≤ (n + 1) log r − logMn. But then logW(r) ≤
(n + 1) log r − logMn ≤ ρ(r) + log r, and so (2.1) holds in I. In the case that I = [0, r0) is

a bounded interval, and W(r0) = ∞, then limr→r−
0

W(r) = ∞ (W is increasing and lower

semi-continuous), and since (2.1) holds in I, we get that ρ(r0) = +∞ and hence ρ(r) = ∞
for all r > r0 (ρ is non-decreasing). Finally, if I = [0, r0] and W(r0) < ∞, Mn ≤ rn

0 for every

n, and therefore ρ(r) ≥ supn∈N
( r

r0

)n= ∞ for r > r0. �

Lemma 2.4. The following identity holds:

∫ ∞

1

log ρ(t)

t2
dm1(t) =

∑
n

μn

Proof. The left hand side equals (using that μn ≤ 1)

∫ ∞

1

∑
n: tμn>1 log(tμn)

t2
dm1(t) =

∑
n

∫ ∞

1/μn

log(μnt)

t2
dm1(t).

With a change of variable, we see that

∫ ∞

1/μn

log(μnt)

t2
dm1(t) = μn

∫ ∞

1

log(t)

t2
dm1(t) = μn,

as required. �

2.1 The Nazarov–Sodin–Volberg Theorem

Given any logarithmically convex sequence M = {Mn}n∈N with M0 = 1, we consider the

class CM([0, 1]) of smooth functions which satisfy ‖f (n)‖L∞[0,1] ≤ Mn for every n ≥ 0.

A sequence M generates a quasi-analytic class if whenever f ∈ CM([0, 1]) vanishes to

infinite order at a point in [0, 1] (f (k)(x0) = 0 for every k ≥ 0 for some x0 ∈ [0, 1]), then

f ≡ 0 on [0, 1]. The Denjoy–Carleman theorem (see e.g., [11]) ensures that M generates a
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Quantitative Uniqueness Properties 9

quasi-analytic class if and only if

∞∑
n=1

Mn−1

Mn
= ∞. (2.2)

With a slight abuse of notation, we call a logarithmically convex sequence M satisfying

(2.2) quasi-analytic.

For f ∈ CM([0, 1]), the Bang degree nf is defined by

nf = sup
{
N :

∑
log ‖f ‖−1

L∞([0,1])<n≤N

Mn−1

Mn
< e

}
. (2.3)

A powerful theorem of Bang (see [1] or [18]) states that the Bang degree controls the

number of zeros of a function f ∈ CM([0, 1]) counting multiplicities. It is therefore

natural that it should depend on both the growth of the ratios of Mn−1/Mn and a lower

bound for ‖f ‖L∞([0,1]). For our purposes we will want uniform bounds on the Bang degree

of a function given the class M. Therefore, we set, for t ∈ (0, 1],

nM,t = sup
{
N :

∑
− log t<n≤N

Mn−1

Mn
< e

}
,

so if f ∈ CM([0, 1]) satisfies ‖f ‖L∞([0,1]) ≥ t, then nf ≤ nM,t. Following [18], we also define

(compare with (1.7) in [18])

γM(n) = sup
1≤j≤n

j
[Mj+1Mj−1

M2
j

− 1
]
, and �M(n) = 4e4+4γM(n).

We are now in a position to state the Nazarov–Sodin–Volberg theorem, which builds

upon the techniques developed by Bang [1].

Theorem 2.5. Theorem B from [18]

Suppose that f ∈ CM([0, 1]). Then for any interval I ⊂ [0, 1] and measurable set

E ⊂ I with m1(E) > 0, we have

sup
I

|f | ≤
(�M(2nf )|I|

m(E)

)2nf
sup

E
|f |.

Again, the constant in this inequality must depend on the ratio of the value of

t = ‖f ‖L∞([0,1]) to its apriori upper bound of M0 = 1: the smaller the value of t, the more
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10 B. Jaye and M. Mitkovski

zeroes f can have in the interval [0, 1] while controlling the size of a fixed number of

derivatives.

Theorem 2.5 does not require the sequence M to be quasi-analytic, but we shall

only use it in this case.

Since there has been interest in obtaining quantitative uniqueness bounds, see

e.g.[9], we thought it worthwhile to present Theorem 2.5, where the constant is rather

sharp4 . However, if the reader is not bothered by the particular form of the constant

in Theorem 2.5, then the following qualitative result can be quickly derived from the

Denjoy–Carleman theorem.

Remark 2.6. A quick qualitative bound. If γ > 0, t > 0, and M is a quasi-analytic

sequence, then there is a finite constant C = C(γ , t,M) such that whenever f ∈ CM([0, 1])

satisfies ‖f ‖L∞[0,1] ≥ t and E ⊂ [0, 1] satisfies m1(E) ≥ γ , then

‖f ‖L∞([0,1]) ≤ C(γ , t,M)‖f ‖L∞(E). (2.4)

Proof. Proof of Remark 2.6 Suppose the result fails to hold, then for some γ > 0 and

t > 0, there is a sequence {fn}n ∈ CM([0, 1]) satisfying ‖fn‖L∞([0,1]) ≥ t and a set En ⊂ [0, 1]

with m1(En) ≥ γ such that ‖fn‖L∞(En) ≤ 1
n‖fn‖L∞([0,1]) ≤ 1

n . For any k ≥ 0, the sequence

{Dkfn}n is certainly equicontinuous, and so, with the aid of a diagonal argument and

relabelling the sequence if necessary, we may assume that fn converges uniformly to a

function f ∈ CM([0, 1]). But then ‖f ‖L∞([0,1]) ≥ t (since [0, 1] is compact), while f ≡ 0 on

the set E = ⋂
n

⋃
m≥n Em (if x ∈ E, then x ∈ Enm

for some subsequence nm → ∞, but then

|f (x)| = limm→∞ |fnm
(x)| = 0). Of course, m1(E) ≥ γ . However, a smooth function that

vanishes on a set of positive measure has a zero of infinite order (for instance, at each

Lebesgue point of the zero set), so f ≡ 0 on [0, 1] since M generates a quasi-analytic

class. This contradiction establishes (2.4). �

We shall require an extension of Theorem 2.5 for quasi-analytic functions of

several variables. To do this we shall appeal to an inductive argument of Fontes-Merz

[5], but first it will be useful to introduce some further notation.

For Q ⊂ Rd a cube (whose sides are parallel to the coordinate axes), we say that

f : Q → R lies in CM(Q) if for any multi-index α with order |α| := α1 + · · · + αd = n, it

holds that ‖Dαf ‖L∞(Q) ≤ Mn.

4 We also like its proof.
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Quantitative Uniqueness Properties 11

For d ∈ N, a quasi-analytic class M, t ∈ (0, 1], and s ∈ (0, 1], put �M(d, t, s) to be

the least non-negative number such that the inequality

‖f ‖L∞(Q) ≤ �M(d, t, s)‖f ‖L∞(E)

holds for every cube Q ⊂ Rd of sidelength 1, every f ∈ CM(Q) satisfying ‖f ‖L∞(Q) ≥ t,

and every Borel measurable set E ⊂ Q with md(E) ≥ s.

Proposition 2.7. For every d ∈ N, quasi-analytic class M, t ∈ (0, 1], and s ∈ (0, 1], the

quantity �M(d, t, s) is finite. Moreover, for d ≥ 2, we have the estimate

�M(d, t, s) ≤ �M
(
1, t,

s

2

)
�M

(
d − 1,

t

�M(1, t, s
2 )

,
s

2

)
.

Observe that Theorem 2.5 ensures that

�M(1, t, s) ≤
(�M(2nM,t)

s

)2nM,t
, (2.5)

so one can calculate an effective bound on �M(d, ·, ·) for any dimension, albeit of a tower

exponential form.

Proof. We follow the inductive scheme in [5]. Without loss of generality, assume

Q = [0, 1]d. The base case d = 1 is covered by the Nazarov–Sodin–Volberg theorem

(or Remark 2.6). Suppose now that d ≥ 2 and the proposition is proved for d − 1. Fix

f ∈ CM([0, 1]d), ‖f ‖L∞([0,1]d) ≥ t and E ⊂ [0, 1]d with md(E) ≥ s. For x ∈ Rd, put x = (x′,u)

where x′ ∈ Rd−1 and u ∈ R. We set Eu = {x′ ∈ Rd−1 : (x′,u) ∈ E}. Define the set

L = {u ∈ [0, 1] : md−1(Eu) ≥ 1

2
md(E)}.

Then

md(E) ≤
∫

L
md−1(Eu)dm1(u) +

∫
[0,1]\L

md−1(Eu)dm1(u).

We bound the first integral by m1(L) (since Eu ⊂ [0, 1]d−1), and the second integral by
1
2md(E) (for u ∈ [0, 1]\L, md−1(Eu) < 1

2md(E)). Therefore, m1(L) ≥ 1
2md(E) ≥ s

2 .
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12 B. Jaye and M. Mitkovski

Suppose (x′,u) ∈ [0, 1]d satisfies |f (x′,u)| = supx∈[0,1]d |f (x)|. Applying the d = 1

case to the function f (x′, · ) ∈ CM([0, 1]) and the set L yields that

t ≤ ‖f ‖L∞([0,1]d) = |f (x′,u)| ≤ �M(1, t, s/2) sup
u∈L

|f (x′,u)|.

Let ε > 0 and fix u0 ∈ L with |f (x′,u0)| + ε ≥ supu∈L |f (x′,u)|. Then by definition of L,

md−1(Eu0
) ≥ md(E)/2 ≥ s/2. Also,

sup
y′∈[0,1]d−1

|f (y′,u0)| ≥ |f (x′,u0)| ≥ t

�M(1, t, s/2)
− ε.

Consequently, we may apply the inductive hypothesis that the proposition holds for d−1

to the function f (·,u0) and the set Eu0
to obtain

sup
y′∈[0,1]d−1

|f (y′,u0)| ≤ �M
(
d − 1,

t

�M(1, t, s
2 )

− ε,
s

2

)
sup

y′∈Eu0

|f (y′,u0)|.

But if y′ ∈ Eu0
, then (y′,u0) ∈ E so supy′∈Eu0

|f (y′,u0)| ≤ supx∈E |f (x)|. Letting ε → 0, we

conclude that

‖f ‖L∞([0,1]d) ≤ �M(1, t, s/2)�M
(
d − 1,

t

�M(1, t, s
2 )

,
s

2

)
· sup

x∈E
|f (x)|,

as required. �

We will require an L2-version of Proposition 2.7.

Corollary 2.8. Suppose that f ∈ CM([0, 1]d) satisfies ‖f ‖L∞([0,1]d) ≥ t > 0. Then for any

Borel measurable set E ⊂ [0, 1]d with positive measure, we have

∫
[0,1]d

|f |2dmd ≤ 2�M(d, t,md(E)/2)2

md(E)

∫
E

|f |2dmd.

Proof. Consider the set Ẽ =
{
x ∈ E : |f (x)|2 ≤ 2

md(E)

∫
E |f |2dmd

}
. Then md(Ẽ) ≥ 1

2md(E).

Applying Proposition 2.7 with the set Ẽ, it follows that

sup
[0,1]d

|f | ≤ �M(d, t,md(E)/2) sup
Ẽ

|f |.
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Quantitative Uniqueness Properties 13

But supẼ |f |2 ≤ 2
md(E)

∫
E |f |2dmd, and so

∫
[0,1]d

|f |2dmd ≤ sup
[0,1]d

|f |2 ≤ 2�M(d, t,md(E)/2)2

md(E)

∫
E

|f |2dmd,

as required. �

3 The sufficiency of (1.4) for the PLS property

Without loss of generality, we shall put � = 1 in the definition of relative density (for

any � > 0, W satisfies (1.4) if and only if W(� · ) does). Suppose that

∫ ∞

0

logW(t)

1 + t2
dm1(t) = ∞.

With Mn = maxξ∈R
|ξ |n

W(|ξ |) and μn = Mn−1
Mn

, we infer from Proposition 2.2 that
∑

n μn =
+∞, so M = {Mn}n≥0 is a quasi-analytic class with M0 = 1.

A slightly modified quasi-analytic class will arise naturally in the proof, so we

introduce it here. For A > 1, we define

MA = {M̃n}n≥0 with M̃0 = 1 and M̃n = An Mn+d

Md
. (3.1)

Observe that MA is a log-convex sequence since M is log-convex.

Proposition 3.1. There exists A = A(d) > 1 such that for any f ∈ L2(Rd) satisfying

(1.2), γ ∈ (0, 1), and (γ , 1)-relatively dense subset E ⊂ Rd,

∫
Rd

|f |2dmd ≤ 4

γ
�MA

(
d,

1

CWA1+dMd
,
γ

2

)2∫
E

|f |2dmd.

Proof. Suppose ‖f ‖L2(Rd) = 1. Partition Rd into cubes of side-length 1. Fix B > 2. A

cube Q is said to be bad if there exists a multi-index α such that

∫
Q

|Dαf |2dmd > B2(|α|+1)M2|α|C2
W

∫
Q

|f |2dmd. (3.2)

If a cube isn’t bad, then it is called good. If Q is a good cube, then we have good

derivative control:

∫
Q

|Dαf |2dmd ≤ B2(|α|+1)M2|α|C2
W

∫
Q

|f |2dmd for everyα ∈ Zd+. (3.3)
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14 B. Jaye and M. Mitkovski

Notice that if |α| = n, then by Plancherel’s identity, we have that Dαf ∈ L2(Rd), and

moreover

∫
Rd

|Dαf |2dmd = (2π)2n
∫
Rd

|ξα|2 |̂f (ξ)|2dmd(ξ)

≤ (2π)2n
[
max
ξ∈Rd

|ξ |n
W(|ξ |)

]2∫
Rd

|̂f (ξ)|2W(|ξ |)2dmd(ξ)

≤ (2π)2nM2
nC2

W .

(3.4)

Therefore, if Bn denotes the union of all cubes that are bad for derivatives of order n

(i.e. the union of cubes for which (3.2) holds for some multi-index of order n), then

∫
Bn

|f |2dmd ≤ 1

B2(n+1)M2
nC2

W

∑
α:|α|=n

∫
Rd

|Dαf |2dmd ≤ (2π)2nC(n)

B2(n+1)
,

where C(n) denotes the number of possible multi-indices of order n. By induction one

can readily see that C(n) ≤ (n + 1)d.

Consequently, if B denotes the union of all bad cubes, and B is large enough,

then

∫
B

|f |2dmd ≤ 1

B2

∑
n≥0

(2π)2n(n + 1)d

B2n ≤ 1

2
=

‖f ‖2
L2(Rd)

2
.

and so

∫
⋃{Q good}

|f |2dmd ≥ 1

2
‖f ‖2L2(Rd)

. (3.5)

Now fix a good cube Q (which we recall has sidelength 1). Recall the elementary

Sobolev inequality (see Chapter 1 of [15])

‖g‖L∞(Q) ≤ C(d)‖g‖L2(Q) + C(d)
∑

|α|=d

‖∂αg‖L2(Q).

From (3.3) we infer that for every n ≥ 0 and |α| = n,

‖Dαf ‖L∞(Q) ≤ C(d)(Bn+d+1Mn+d)CW‖f ‖L2(Q)

≤ An+d+1Mn+dCW‖f ‖L2(Q),
(3.6)

for A = A(d).
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Quantitative Uniqueness Properties 15

Consider the function f̃ = f
Ad+1MdCW‖f ‖L2(Q)

. Then f̃ belongs to the class CMA
(Q)

with the sequence MA defined in (3.1). Also

‖̃f ‖L∞(Q) ≥ 1

CWA1+dMd
.

Therefore, applying Corollary 2.8 with the function f̃ and the set E ∩ Q, which has

measure at least γ , results in

∫
Q

|̃f |2dmd ≤ 2

γ
�MA

(
d,

1

CWA1+dMd
,
γ

2

)2∫
E∩Q

|̃f |2dmd.

By homogeneity, this inequality also holds with f replacing f̃ .

Finally, summing over good cubes, we conclude from (3.5)

1

2

∫
Rd

|f |2dmd ≤ 2

γ
�MA

(
d,

1

CWA1+dMd
,
γ

2

)2∫
E

|f |2dmd.

Proposition 3.1 is proved. �

3.1 The proof of Proposition 1.4

We will make a rough calculation of the order of magnitude of the constant appearing

in Proposition 3.1 (see also (2.5)). To this end, it is slightly more convenient to work with

the weight

W(t) =
⎧⎨
⎩1 for t ≤ e

e
t

log t −e for t > e,

which changes the value of CW by at most an absolute constant multiple. Adjusting the

absolute constant appearing in the statement of Proposition 1.4 if necessary, we may

assume that α ≤ 1/100, 1/α ∈ N and CW ≥ 100. Throughout the proof C > 0 denotes an

absolute constant that can change from line to line.

Setting Mn = supt>0
tn

W(t) and Mα,n = supt>0
tn

Wα(t) , we observe that Mα,n =
(Mn/α)α. Put M := {Mα,n}n and

MA = {M̃n}n≥0 with M̃0 = 1 and M̃n = An Mα,n+1

Mα,1
,

where A > 0 is the absolute constant appearing in the statement of Proposition 3.1.
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16 B. Jaye and M. Mitkovski

At least for n ≥ 1/α, the value tn for which Mn is achieved is the solution to the

equation

n

tn
− 1

log tn
+ 1

(log tn)2
= 0, or n = tn

log tn

(
1 − 1

log tn

)
. (3.7)

From the intermediate value theorem we deduce that, for n ≥ 1/α,

n logn < tn < 2n logn. (3.8)

Therefore, we have

Mα,n−1

Mα,n
≥ tn−1

n/α /Wα(tn/α)

tn
n/α/Wα(tn/α)

= 1

tn/α

≥ 1

2[n/α] · log(n/α)
.

Consequently,

nMA,t ≤ sup
N

{ ∑
− log t<n<N

1

[(n + 1)/α] · log((n + 1)/α)
� Ae

}
,

but

∑
− log t<n<N

1

[(n + 1)/α] · log((n + 1)/α)

� α
(
log log

{
[N + 1]/α

}− log log
{
(log[e/t])/α

})

and therefore

nMA,t ≤
( log(e/t)

α

)exp(C/α)

.

In our case, t = 1
CWA2Mα,1

� α
CW ·log 1/α

, so,

nMA,t ≤ (logCW)exp(C/α).

Finally, in order to calculate a bound for �MA
(2nMA,t), we need to estimate, for j ∈ N,

M̃j−1M̃j+1

M̃2
j

= Mj,αMj+2,α

M2
j+1,α

.
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Quantitative Uniqueness Properties 17

By definition,

Mj+1,α ≥ max
{ tj+1

j/α

Wα(tj/α)
,

tj+1
(j+2)/α

Wα(t(j+2)/α)

}
,

and hence

Mj,αMj+2,α

M2
j+1,α

≤ t(j+2)/α

tj/α
(3.9)

First, by (3.7), we observe that for n ≥ 1/α,

tn − tn−1 = n log tn

(
1 − 1

log tn

)−1−(n − 1) log tn−1 ·
(
1 − 1

log tn−1

)−1
,

but since α ≤ 1/100,

1 − 1

log tn−1
� 1,

and therefore, employing the mean value inequality, we obtain that

|tn − tn−1| � log tn + n

tn−1
|tn − tn−1| + (n − 1)

tn−1 log tn−1
|tn − tn−1|.

Plugging in the bounds (3.8) and simplifying yields that

|tn/tn−1 − 1| � 1/n. (3.10)

Employing straightforward inequalities yields the following bound

t(j+2)/α

tj/α
= exp

( (j+2)/α∑
n=j/α+1

log tn/tn−1

)
≤ exp

( (j+2)/α∑
�=j/α+1

|tn/tn−1 − 1|
)
.

But (3.10) ensures that

(j+2)/α∑
n=j/α+1

|tn/tn−1 − 1| � 1

α
· α

j
� 1/j,
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18 B. Jaye and M. Mitkovski

and therefore, recalling (3.9),

j
(M̃j−1M̃j+1

M̃2
j

− 1
)
� j ·

(j+1)/α∑
n=(j−1)/α+1

|tn/tn−1 − 1| � 1,

Consequently, �MA
(2nMA,t) � 1. (A bound of the form �MA

(2nMA,t) � e1/α would still be

permissible.) Proposition 1.4 now follows from Proposition 3.1 (see (2.5)).

4 The necessity of (1.4) for the PLS property

We only consider d = 1. We shall assume

∫ ∞

0

logW(t)

1 + t2
dm1(t) < ∞,

and therefore (Proposition 2.2),
∑

n μn < ∞.

We shall sketch the Paley–Wiener construction (also the construction used in

many presentations of the Denjoy–Carleman theorem, see e.g.[4, 11]) to show that there

exist functions f supported on arbitrarily small intervals with
∫
R

|̂f (ξ)|2W(|ξ |)2dm(ξ) <

∞. Therefore, W fails to have the PLS property.

Fix ε > 0. Choose n0 ≥ 10 such that
∑

n≥n0
μn < ε. We set

f̂ (ξ) = Mn0−1

(sin((ε/n0)ξ)

(ε/n0)ξ

)2n0 ∏
k≥n0

sin(μkξ)

μkξ
. (4.1)

As in (for example) Koosis, [11], p. 90-91, we infer that

• f̂ is the Fourier transform of a function that vanishes outside of an interval

of width Cε, for some absolute constant C > 0, and

• for n ≥ 0, and |ξ | > 1,

|ξ |n |̂f (ξ)| ≤ C(n0, ε)
max(Mn,Mn0

)

|ξ |n0+1 . (4.2)

To see (4.2), observe that, recalling the definition of μn, the inequality sin t ≤ min(1, t),

yields for any � ≥ n0,

Mn0−1

∣∣∣ ∏
k≥n0

sin(μkξ)

μkξ

∣∣∣≤ Mn0−1

∣∣∣ ∏
n0≤k≤�

1

μkξ

∣∣∣= M�

|ξ |�−n0+1 .
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Quantitative Uniqueness Properties 19

Plugging this inequality into (4.1) with � = n in the case n ≥ n0 and � = n0 otherwise

results in (4.2).

From Lemma 2.1 we therefore infer that for |ξ | > 1 there exists n such that

logW(|ξ |) ≤ (n + 1) log |ξ | − logMn.

But when combined with (4.2) this yields that

W(|ξ |) ≤ C(n0,Mn0
, ε)

|̂f (ξ)||ξ |n0
.

Therefore,

∫
R

|̂f (ξ)|2W(|ξ |)2dm1(ξ) < ∞.

5 From fast decay to sparse support: A transference principle

To develop a transference principle we shall lean on the scheme developed in [3]. In

particular our considerations are based on use of a simple variant of the Buerling–

Mallivan multiplier theorem (see, e.g. [8, 9, 12]), which will restrict our discussion to

uniqueness theorems in one dimension. Han and Schlag [6] adapted the techniques in

[3, 9] to derive a multidimensional analogue of the Bourgain–Dyatlov fractal uncertainty

principle for certain Ahlfors regular subsets of Rd with (possibly distorted) product

structure, still making use of a multiplier theorem in one dimension. There are

analogues of Theorem 5.2 below in this product setting.

The condition of sparsity that arises is a modification of the short intervals

condition (cf. the Beurling gap theorem [21]) taking into account that

• the result here is an L2-theorem, so the condition of sparsity should be stable

under translations in the Fourier domain, and,

• our conclusion is quantitative, so there should be some uniformity in the

shortness condition.

With this in mind, we make the following definitions.

Definition 5.1. Fix a weight W : [0,∞) → [0,∞) with W > 1 on [1,∞).

• A collection {Jn}n is a W-short cover of a set Q ⊂ R if for every n ∈ N, Jn is

comprised of intervals of length �n = logW(en) such that
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20 B. Jaye and M. Mitkovski

1.
⋃

J∈Jn
J ⊃ Q ∩ ([−en+1,−en] ∪ [en, en+1]), and

2. ‖{Jn}n‖W := ∑
n∈N

(
�n
en

)2
card(Jn) < ∞.

• A set Q is called W-sparse if, for every t ∈ R, the set Q−t has a W-short cover

{J (t)
n }n, and moreover

‖Q‖W = sup
t∈R

inf
J (t)

n a W−short
cover ofQ−t

‖{J (t)
n }n‖W < ∞.

Remark. If Q has a short W-cover and W̃ ≤ W, then Q has a short W̃ cover. To see this

cover each interval J ∈ Jn of length logW(en) with no more than �logW(en)/ log W̃(en)�+
1 intervals of length log W̃(en), and set J̃n to be the resulting collection of intervals of

length log W̃(en). Thus

∑
n

( log W̃(en)

en

)2
card(J̃n) ≤ 2

∑
n

( logW(en) log W̃(en)

e2n

)
card(Jn),

and the right-hand side is smaller than 2‖{Jn}n‖W . As such, a slower growing weight W

will have more W-sparse sets associated to it.

The transference principle that we prove will (necessarily) be for neighbour-

hoods of relatively dense sets.

Theorem 5.2. Fix an increasing weight W ≥ 1 such that

1. for every α > 0, Wα has the PLS property5 ,

2. there is a constant Cdoub such that logW(et) ≤ Cdoub logW(t), and logW(t) ≤
t/4, for every t > 1.

For every � > 0, γ > 0 and σ > 0, there is a constant C = C(Cdoub,W,�, γ , σ), such that

for every W-sparse set Q with ‖Q‖W ≤ �, every (γ , 1)-relatively dense set E, and every

f ∈ L2(R) with supp(̂f ) ⊂ Q,

‖f ‖L2(R) ≤ C‖f ‖L2(Eσ ). (5.1)

5 Notice that conditions (1)–(2) of Theorem 1.3, and the validity of (1.4), are invariant under this transfor-
mation.
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Quantitative Uniqueness Properties 21

Remark. One cannot expect Theorem 5.2 (or Theorem 1.6 below) to hold for in the case

σ = 0. An example is included in the appendix.

The proof of Theorem 5.2 consists of a reorganization of the ideas presented

in [3]—incorporating the Jin-Zhang [9] effective multiplier theorem—combined with a

localization trick.

6 An application of the multiplier theorem

We begin with the effective multiplier theorem proved by Jin-Zhang [9] which replaces

use of the Beurling–Malliavan theorem in scheme of [2]. See [12] for (much) more

information on the Beurling–Malliavin theorem and the instances when it can be

applied. The precise formulation we use may be found in Appendix B of Han–Schlag

[6].

For a (Borel measurable) function f : R → R satisfying

∫
R

|f (t)|
1 + t2

dm1(t) < ∞,

we define the Hilbert transform

H(f )(x) = 1

π
P.V.

∫
R

( 1

x − t
+ t

1 + t2

)
f (t)dm1(t).

Theorem 6.1. Appendix B of [6]

Fix σ > 0. Suppose that W̃ = e�̃ : R → R satisfies W̃ ≥ 1,

∫ ∞

0

�̃(t)

1 + t2
dm1(t) < ∞ and ‖H(�̃)′‖∞ <

π

2
σ .

then there exists ϕ ∈ L2(R) satisfying

1. supp(ϕ) ⊂ [0, σ),

2. |ϕ̂(ξ)| � σ 10W̃−1(ξ) for ξ ∈ [−3/4, 3/4], and

3. |ϕ̂(ξ)| ≤ W̃−1(ξ) on R.

In addition to giving quantitative results, the use of Theorem 6.1 has the

additional benefit that its proof is simpler than the proof of the full Buerling–Malliavin

theorem (for instance, as it is presented in [8]).

In this section, we shall apply Theorem 6.1 to prove the following proposition.
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22 B. Jaye and M. Mitkovski

Proposition 6.2. Suppose that W = e� satisfies the assumptions of Theorem 5.2. There

is a constant c > 0, that may depend on Cdouble, such that for every σ > 0 and � > 1, the

following statement holds:

If Q ⊂ R satisfies ‖Q‖W ≤ �, then there exists ϕ ∈ C∞
0 (R) satisfying

1. supp(ϕ) ⊂ [0, σ ],

2.
∫
[−1,1] |ϕ̂(ξ)|2dm1(ξ) � σ 20,

3. |ϕ̂(ξ)| � exp
(
−cσ

√|ξ |
)
on R, and

4. |ϕ̂(ξ)| � exp
(− cσ�(ξ)

�+1

)
on Q2 (the 2-neighbourhood of Q).

The remainder of this section is devoted to the proof of this proposition. All

constants may depend on Cdouble without further mention.

Suppose that {J̃n}n is a W-short cover of a set Q with ‖{J̃n}n‖W ≤ �. We begin

by regularizing the cover.

Lemma 6.3. Suppose that {J̃n}n is a W-short cover of a set Q. Then there is a W-short

cover {Jn}n of Q satisfying that for every n, {12J : J ∈ Jn} are pairwise disjoint, and

‖{Jn}n‖W ≤ 7‖{J̃n}n‖W .

Proof. Fix n, and pick a maximal collection of �n
2 -separated points {tm}m in Q ∩

[[−en+1,−en]∪ [en, en+1]]. Consider the intervals Jm centred at tm of sidelength �n. Since

{tm}m are �n
2 -separated, 1

2Jm are disjoint (for an interval J, 1
2J denotes the interval with

the same mid-point as J and half of the side-length). On the other hand, by maximality,

Q ∩ [[−en+1,−en] ∪ [en, en+1]] ⊂ ⋃
m Jm. But at most seven intervals Jm can intersect any

interval J ∈ J̃n. Therefore, if Jn = {Jm}m, then card(Jn) ≤ 7 · card(J̃n). �

Going back to our W-short cover {J̃n}n, we set {Jn}n as in the lemma, and so

‖{Jn}n‖W ≤ 7�. Put J = ⋃
n Jn.

Claim 6.4. For each J ∈ Jn,

3J ⊂ [−en+2,−en−1] ∪ [en−1, en+2].

�

Proof. Since logW(en) ≤ en

4 , the claim follows from the fact J ∈ Jn intersects

[en, en+1] ∩ [−en+1,−en]. �
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Claim 6.5. There is a constant C > 0 depending on Cdoub such that any interval 3J,

J ∈ J , can intersect at most C of the intervals {3I}I∈J . �

Proof. Fix J ∈ J , so J ∈ Jn for some n. From Claim 6.4, we infer that if I ∈ J satisfies

3I ∩ 3J �= ∅, then I ∈ Jm with |n − m| ≤ 4. Fix such an m and consider all I ∈ Jm with

3I ∩ 3J �= ∅. Since W satisfies the doubling condition, C−4
doub ≤ | logW(em)/ logW(en)| =

|�m/�n| ≤ C4
doub. Consequently, any such interval I is contained in the 15C4

doub dilation

of J, and has length at least C−4
doub�(J). Finally, since the collection of intervals {12 I : I ∈

Jm} are pairwise disjoint, there can be at most
15C4

doub
1
2C−4

doub
= 30C8

doub such intervals I ∈ Jm.

Since there are at most nine choices of m, the claim is proved. �

Now, observe that since logW is doubling, we obtain from Claim 6.4 that

logW(t) ≤�n+2 ≤ C2
doub logW(en) ≤ C3

doub logW(t)

for any t ∈ 3J ∈ Jn.
(6.1)

Whence

∫
{⋃ 3J:J∈J }

logW(t)

1 + t2
dm1(t) ≤ C

∑
n

�2
n
card(Jn)

e2n

≤ C‖{Jn}n‖W ≤ C�.

(6.2)

Fix η ∈ C∞
0 ([−3, 3]) with η ≡ 1 on [−2, 2].

For every J ∈ Jn, set ηJ = η
( ·−xJ

�n

)
, where xJ is the centre of J. Set

�̃(1)(t) =
∑

n

∑
J∈Jn

�n+2ηJ .

Observe from (6.1) that

�̃(1) ≥ logW on
⋃
J∈J

2J, (6.3)

while from (6.2) we derive that

∫ ∞

0

�̃(1)(t)

1 + t2
dm1(t) � � + 1. (6.4)
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24 B. Jaye and M. Mitkovski

Claim 6.6.

‖H(�̃(1))′‖∞ � 1 + �. (6.5)

�

Proof. Insofar as η ∈ C∞
0 ([−3, 3]),

|H(η)′(x)| � 1

1 + x2 for every x ∈ R,

and consequently

|H(ηJ)′(x)| � �n

�2
n + (x − xJ)2

for every x ∈ R. (6.6)

But (6.1) shows that �n+2 � �n, and therefore (6.6) implies that

∣∣H(�̃(1))′(x)
∣∣� ∑

n

∑
J∈Jn

�2
n

�2
n + (x − xJ)2

Recall that for each n ∈ N, the points xJ , J ∈ Jn, are �n/2 separated, and so

∑
J∈Jn

�2
n

�2
n + (x − xJ)2

�
∞∑

k=0

1

1 + k2 � 1. (6.7)

On the other hand, if |n − lnx| > 2, then |x − xJ | � en for every J ∈ Jn. Whence,

∑
n: |n−ln x|>2

∑
J∈Jn

�2
n

�2
n + (x − xJ)2

�
∑

n

(�n

en

)2
card(Jn) � �.

Since at most five of the natural numbers n can satisfy |n − lnx| ≤ 2, we conclude that

(6.5) holds from (6.7). �

Now put �̃(2)(t) = 4
√
1 + t2. It is a straightforward calculation to show that

‖H(�̃(2))′‖∞ � 1. (6.8)
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Proof. Proof of Proposition 6.2 As a consequence of (6.4), (6.5), and (6.8), we observe

Theorem 6.1 is applicable with the weight

�̃ = cσ

� + 1
�̃(1) + cσ�̃(2)

for a suitable small constant c > 0, and provides us with a multiplier ϕ. Properties (1)–

(3) of Proposition 6.2 follow immediately. It is also immediate from (6.3) that |ϕ̂(ξ)| �
exp

(− cσ�(ξ)
�

)
on

⋃
n

⋃
J∈Jn

2J.

Finally, we observe that since the weight W is increasing, there exists (a

smallest) n0 depending on W, such that �(J) = �n ≥ 4 whenever J ∈ Jn, n ≥ n0. Setting

Q2 to be the closed 2-neighbourhood of Q, we therefore infer that

⋃
n≥n0

⋃
J∈Jn

2J ⊃ Q2 ∩ [(−∞,−en0 ] ∪ [en0 ,∞)]

(recall that
⋃

n≥n0

⋃
J∈Jn

J ⊃ Q ∩ [(−∞,−en0 ] ∩ [en0 ,∞)]). But if t < en0 , we have that

�(t) ≤ 4. Taking into account that σ < 1, we get that |ϕ̂(ξ)| � exp
(− cσ�(ξ)

�+1

)
on Q2. �

7 The proof of Theorem 5.2

We need a simple preparatory lemma.

Lemma 7.1. Suppose that supp(̂f ) ⊂ ⋃
k Ik, where Ik = [tk − 1, tk + 1]. Fix � > 0, and a

sequence ϕk ∈ L2(R) with ‖ϕ̂k‖2
L2([−1,1])

≥ � > 0. Then

‖f ‖2L2(R)
≤ 1

�

∫ 2

−2

∑
k

∥∥̂f (· − τ − tk)ϕ̂k

∥∥2
L2(R)

dm1(τ ).

Proof. Fix k and observe that, with a change of variable,

‖̂f ‖2L2(Ik)
= ‖̂f (· − tk)‖L2([−1,1])

≤ 1

�

∫ 1

−1

∫ 1

−1
|̂f (ξ − tk)|2|ϕ̂k(ζ )|2dm1(ζ )dm1(ξ)

≤ 1

�

∫ 2

−2

∫ 1

−1
|̂f (ζ − τ − tk)|2|ϕ̂k(ζ )|2dm1(ζ )dm1(τ )

≤ 1

�

∫ 2

−2

∥∥̂f (· − τ − tk)ϕ̂k

∥∥2
L2(R)

dm1(τ ).
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26 B. Jaye and M. Mitkovski

The lemma follows by summation over k (along with Plancherel’s identity). �

Let us now begin the proof in earnest. Recall that Q2 is the closed 2-

neighbourhood of Q.

Fix {t�}� to be a maximal one-separated subset6 of Q2, so Q2 ⊂ ⋃
� I�, where

I� = [t� − 1, t� + 1].

Suppose that Q and f satisfy the hypotheses of Theorem 5.2 (so ‖Q‖W ≤ � and

supp(̂f ) ⊂ Q). For every �, we can apply the construction of Proposition 6.2 with σ > 0

to obtain a function ϕ� satisfying

1. |ϕ̂�| � W−2α on Q2 − t�

2. |ϕ̂�(t)| ≤ e−c0σ
√
max(1,|t|) on R

3. supp(ϕ�) ⊂ [0, σ ], and

4. ‖ϕ̂�‖L2([−1,1]) � σ 10.

where α = c0σ
�+1 , and c0 > 0 can depend on Cdouble.

We will need the following simple auxiliary lemma.

Lemma 7.2. For any g ∈ L2(R),

∑
�

∫ 2

−2
‖̂g(· − τ − t�)e

−c0σ
√| · |‖2L2(R)

dm1(τ ) � 1

σ 2 ‖g‖2L2(R)

Proof. The left-hand side of the inequality is bounded by

∫ 2

−2

∑
�

‖̂ge−c0σ
√|( · +τ+t�)|‖2L2(R)

dm1(τ ).

But, since the points {t�}� are one-separated,

sup
ξ ,τ∈R

∑
�

e−2c0σ
√|(ξ+τ+t�)| � 1

σ 2 .

and the lemma follows. �

For any τ ∈ [−2, 2], consider function

fτ ,� = F−1(̂f (· − τ − t�)ϕ̂�) = (f · eτ+t� ) ∗ ϕ�,

6 A maximal set satisfying |t� − t�′ | ≥ 1 if � �= �′.
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where et(x) = e2π itx. Recall that supp(̂f ) ⊂ Q0, and so the function fτ ,� has its Fourier

transform supported in the set Q2 − t� and so satisfies that

|f̂τ ,�| � |̂f (· − τ − t�)|
√|ϕ̂�|W−α on R.

Consequently,

‖f̂τ ,�W
α‖L2(R) ≤ C‖̂f (· − τ − t�)

√|ϕ̂�|‖L2(R)

and so by combining property (2) of ϕ� and Lemma 7.2 we infer that

∫ 2

−2

∑
�

∥∥f̂τ ,�W
α
∥∥2

L2(R)
dm1(τ ) � 1

σ 2 ‖f ‖2L2(R)
. (7.1)

We apply a localization technique: Fix D > 1. We call a pair (τ , �) bad if

∥∥f̂τ ,�W
α
∥∥2

L2(R)
> D

∥∥f̂τ ,�

∥∥2
L2(R)

.

Otherwise (τ , �) is called good. If (τ , �) is good, then fτ ,� satisfies the condition to apply

the PLS property with CW = D. Notice first that,

∫ 2

−2

∑
�: (τ ,�) bad

∥∥f̂τ ,�

∥∥2
L2(R)

dm1(τ ) ≤ 1

D

∫ 2

−2

∑
�

∥∥f̂τ ,�W
α
∥∥2

L2(R)
dm1(τ )

(7.1)

� 1

Dσ 2 ‖f ‖2L2(R)
.

Employing Lemma 7.1 with � = cσ 20 with a suitable constant c > 0 (cf. property (4) of

the functions ϕ�), we obtain

(
σ 20 − C

Dσ 2

)
‖f ‖2L2(R)

�
∫ 2

−2

∑
� : (�,τ) is good

‖f̂τ ,�

∥∥2
L2(R)

dm1(τ ), (7.2)

and the left-hand side of this inequality can be made at least a constant multiple of

σ 20‖f ‖2
L2(R)

by choosing D to be a suitable multiple of σ−22.

We are now in a position to use the assumption of the PLS property for Wα. Since

E is γ -relatively dense, and Wα has the PLS property, there is a constant CPLS depending
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28 B. Jaye and M. Mitkovski

on W,�, γ , and σ , such that for every good pair (τ , �) we have

‖fτ ,�‖L2(R) ≤ CPLS‖fτ ,�‖L2(E). (7.3)

Next, since supp(ϕ�) ⊂ [−σ , σ ] we infer that on the set E, (f · et�+τ ) ∗ ϕ� = (f χEσ
et�+τ ) ∗ ϕ�,

and hence

‖fτ ,�‖L2(E) = ‖(f χEσ
· et�+τ ) ∗ ϕ�‖L2(E) ≤ ‖(f χEσ

· et�+τ ) ∗ ϕ�‖L2(R).

Writing
∥∥(f χEσ

·et�+τ )∗ϕ�

∥∥
L2(R)

= ∥∥f̂ χEσ
(·− t� −τ)ϕ̂�

∥∥
L2(R)

(Plancherel’s identity), it follows

by 7.3 that

∫ 2

−2

∑
� : (�,τ) is good

‖f̂τ ,�‖2L2(R)
dm1(τ )

≤ CPLS

∫ 2

−2

∑
�

∥∥∥f̂ χEσ
(· − τ − t�)ϕ̂�

∥∥∥2
L2(R)

dm1(τ )

Lemma7.2
� CPLS

σ 2 ‖f̂ χEσ
‖2L2(R)

,

Finally, bringing this estimate together with (7.2) yields

‖f ‖2L2(R)
� CPLS

σ 22 ‖f̂ χEσ
‖2L2(R)

� CPLS

σ 22 ‖f ‖2L2(Eσ )
, (7.4)

as required.

Theorem 5.2 is proved.

8 Proof of Theorem 1.6

Consider the weight W(t) = exp
( t
4 log(e+t)

)
. Then W satisfies the assumptions of

Theorem 5.2 (for any α > 0, Wα the PLS property from Theorem 1.3). Appealing to the

ϕ-regularity of Q, we infer that for every t ∈ R and n ≥ 1, the set (Q − t) ∩ [−en+1,−en] ∪
[en, en+1] can be covered by at most 2ϕ((e − 1)4(n + 1)) ≤ 2ϕ(8(n + 1)) intervals of length

�n = logW(en) (notice that �n ≥ en

4(n+1)
, and [en, en+1] has length (e − 1)en). Therefore,

‖Q‖W ≤ 2
∑
n≥1

1

n2 ϕ(8(n + 1)) ≤ 2
∑
n≥1

1

n2 ϕ(16n) ≤ 2 · 162 · Cϕ ,

and we conclude that (5.1) holds with C = C(Cϕ , γ ).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab075/6236096 by G

eorgia Institute of Technology,  bjaye3@
gatech.edu on 29 April 2021



Quantitative Uniqueness Properties 29

To prove the moreover statement, we need to keep track of the form of the

constant CPLS that appears in the proof of Theorem 5.2—see (7.4). For this we shall

appeal to Proposition 1.4. Recall that

α = c0
σ

Cϕ + 1
, andCW = D = Cσ−22.

It clearly suffices to prove the result for large Cϕ , and so we may assume that α is much

smaller than one.

Since α is smaller than σ , from Proposition 1.4 we infer that

CPLS �
(C

γ

)exp[exp{C(Cϕ+1)/σ }]
,

and therefore the constant appearing in Theorem 1.6 may be taken of the form

σ−22
(C

γ

)exp[exp{C(Cϕ+1)/σ }]
�

(C

γ

)exp[exp{C(Cϕ+1)/σ }]

(where the constant C has been changed to go from the first expression to the second).

A Riesz Products

The purpose of this appendix is to illustrate that one requires the interval structure in

the definition of a relative dense collection of intervals to arrive at Theorems 5.2 or 1.6,

and these theorems are not valid for general relatively dense sets. We will use the well-

known example of Riesz products.

Set T = R/Z. Suppose σn ∈ N, n ∈ N, satisfies σn+1/σn > 3. For ‖an‖�∞(N) ≤ 1,

define the Riesz product as

μ =
∞∏

n=1

(1 + an cos(2πσnt))

interpreted as a weak limit of finite products pN = ∏N
n=1(1 + an cos(2πσnt)). The

sequence Fourier coefficients μ̂(n) = ∫ 1
0 e−2π inxdμ(x), n ∈ Z, is supported in

� =
{∑

n

εnσn where εn ∈ {−1, 0, 1}
}
,
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30 B. Jaye and M. Mitkovski

and, due to the lacunarity condition on σn, there is a unique representation of each

element of � (see, e.g., Chapter 2.3 of [7]). Recall (again see [7]) that if

∞∑
n=1

a2
n = +∞,

then the resulting Riesz product μ is singular with respect to Lebesgue measure.

Put σn = dn for d ∈ N, d > 3. We claim that � is ϕ-regular, with ϕ(t) = Ctlog 3/ logd

(see Definition 1.5).

To verify this claim, it suffices to show that, given any point λ = ∑
n=1 εnσn, and

N, � ∈ N, the interval [λ−2dN , λ+2dN ] can be covered by C3N−� intervals of width d�. But

only way to generate points in � that belong to [λ − 2dN , λ + 2dN ] belonging to different

intervals of width d� centred on � is to alter the digits εn in the expansion λ = ∑
n εnσn

with n ∈ [�,N]. There are 3N−�+1 such digits.

Now fix N ∈ N and consider the set

KN =
{
x ∈ T : pN(x) ≤ 2

∫
T

pNdx = 2
}
.

Then m(KN) ≥ 1/2 (recall here that pn ≥ 0). We next claim that there cannot exist an

absolute constant C > 0 such that∫
T

|pN |2dm1 ≤ C
∫

KN

|pN |2dm1 for everyN ∈ N,

since if there did then

sup
N

∫
T

|pN |2dm1 ≤ 4C,

(recall the definition of KN ) and pN would be uniformly bounded in L2(T), contradicting

the fact that μ is singular with respect to Lebesgue measure.

Now consider the measure

μ̃ = μψ2 onR,

where |ψ | > 0 on (−1, 1), and ψ̂ ∈ C∞
0 ((−1/4, 1/4)). Let K̃N be the periodization KN to R,

and p̃N = pNψ ∈ L2(R). Then the support of p̃N is ϕ-regular with ϕ(t) = Ctlog 3/ logd (the

convolution only spreads the support � a small amount), and KN is 1/2-relatively dense

for all N, but

sup
N

∫
K̃N

|̃pN |2dm1∫
R

|̃pN |2dm1
= 0.
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