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This paper builds upon two key principles behind the Bourgain-Dyatlov quantitative
uniqueness theorem for functions with Fourier transform supported in an Ahlfors
regular set. We first provide a characterization of when a quantitative uniqueness
theorem holds for functions with very quickly decaying Fourier transform, thereby
providing an extension of the classical Paneah-Logvinenko-Sereda theorem. Secondly,
we derive a transference result which converts a quantitative uniqueness theorem
for functions with fast decaying Fourier transform to one for functions with Fourier
transform supported on a fractal set. In addition to recovering the result of Bourgain—

Dyatlov, we obtain analogous uniqueness results for denser fractals.

1 Introduction

The Fourier transform is the extension to L2(R%) of the operator which acts on f €
L'RYNLZRY) by f(£) = Jga f()e~27% tdm 4 (t), where my is the d-dimensional Lebesgue
measure. This paper builds upon two principles underlying Bourgain and Dyatlov's
breakthrough uniqueness theorem for functions with Fourier transform supported in

an Ahlfors regular set [3] (see Section 1.2 below):
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2 B. Jaye and M. Mitkovski

1.

Classical uniqueness theorems for functions with compactly supported
Fourier transform extend to functions with sufficiently fast decaying Fourier
transform, and

these results can be transferred to uniqueness theorems for functions
with sparsely supported Fourier transform by appealing to the Beurling-

Malliavin theorem.

In [3] these two principles are somewhat intertwined in the proof. Our goal here

is to separate them and develop some theory for a general weight function (in the spirit

of Koosis’ books [11, 12]). By doing so, we

1.

obtain a characterization of when a uniqueness theorem holds for functions
with fast decaying Fourier transform (under a convexity assumption on the
weight), see Theorem 1.3, and

prove a general transference principle which converts a quantitative unique-
ness theorem for functions with fast decaying Fourier transform to one for

functions with sparsely supported Fourier transform (Theorem 5.2).

Besides recovering the uniqueness result in [3], this point of view enables one to obtain

analogous results for functions whose Fourier transform is integrable with respect to

the end-point weight given by exp (s-14—+).

log(e+]t)

1.1 On the uniqueness (or strong annihilation) property for functions with fast decaying

Fourier transform

Denote by m, the Lebesgue measure on R%, d > 1.

Definition 1.1. A Borel set E C R% is (y, £)- relatively dense if my(ENQ) > y£% for any
cube Q c R? of side-length ¢.

The role of relatively dense sets in uniqueness theorems is exhibited by the

classical Paneah-Logvinenko-Sereda theorem for band-limited functions ([14, 20], see

also [7, 10, 13, 16, 19]), one of the prototypical forms of the uncertainty principle, see
Chapter 1 of [21].
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Quantitative Uniqueness Properties 3

The Paneah-Logvinenko-Sereda Theorem. Fix E ¢ R<. For every N > 0, there is a

constant C > 0 such that
I lz2ray < CllfllL2g) for every f with supp(?) C B(O,N) (1.1)
if and only if E is (y, £)-relatively dense for some y € (0,1) and ¢ > 0. |

In particular, the theorem says that a band-limited function admits a stable
reconstruction by sampling its values on a relatively dense set. The first result of
this paper will be an extension of the Paneah-Logvinenko-Sereda theorem to functions

which, instead of being band limited, have sufficiently fast decaying Fourier transform.

Definition 1.2. A weight W : [0, 00) — [0, co] has the Paneah-Logvinenko-Sereda (PLS)
property if, for every d e N, y € (0,1), £ > 0, and Cy, > O, there exists a finite constant
C=C(d,W,Cy,y,¢) > 0such that if f € L?(R%) satisfies

/R L FOWEDPdm @) < CylIf 12 ga), (1.2)

and E is a (y, £)-relatively dense set, then

”f”LZ(Rd) < C”f”LZ(E) (13)

Notice that the ‘if’ direction of the Paneah-Logvinenko-Sereda theorem can be

rephrased as the statement that for any N > 0, the weight

1 for |t| < N,
w(t) =
+oo for |t| > N

has the PLS property.

Theorem 1.3. Suppose that W : [0, 00) — [0, oo] satisfies
1. W) = 1, W is non-decreasing, W is lower semi-continuous, and
lim, ,  W(t) = .

2. the mapping logr +— log W(r) is convex' on [1, c0).

1 This permits an interval (¢, co) on which W(t) = +oc.
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4 B. Jaye and M. Mitkovski

Then W satisfies the PLS property if and only if

| im0 = . (1.4
0

14 ¢2

Our motivation for formulating Theorem 1.3 came from the paper [3], where the
following uniqueness theorem for functions with fast Fourier decay is presented: If § €

— &
(0,1), and ® (&) = o CE] then

1e®©F )l 2wy < Collfllz2r, implies clfllzm) < Iz,

where E is an infinite union of well-separated intervals of some fixed side-length, and ¢
depends on §, Cy, and the sidelength of the intervals (see (1.6) in [3]). Although stated in
terms of intervals, it appears that one could adapt their proof to yield the stronger PLS
property. Very recently, Han and Schlag [6] extended this estimate to several dimensions
using Cartan set techniques.

Observe that Theorem 1.3 applies to the end-point weight W(&) = €°¢ with
OE) = log(lfw. It is remarked in [3] (see Remark 2 after Lemma 3.1 in [3]) that
this weight does not grow quickly enough for their proof to be applicable. Our
approach is therefore necessarily rather different to that taken in [3], or [6], relying
on quasianalyticity? rather than harmonic measure estimates.

The constant C > 0 in (1.3) that is obtained in the proof takes quite an
explicit form that can be calculated given a particular choice of W satisfying (1.4), see
Proposition 3.1 below. As an example, and since it will be used in the sequel, here we
formulate a quantitative result for the end-point weight in the case d = 1.

Proposition 1.4. Put W(¢) = €°¢ with ©(&) = mgﬁ' Fix y € (0,1), « € (0,1] and
Cw > 1. If f € L?(R) satisfies (1.2) with W replaced by W, and E is (y, 1)-relatively

dense, then

A ) (1og[A~Cw])eA/a

|mm®s(; I 2,

for an absolute constant A > 0.

2 As we shall see, a function f whose Fourier transform is square integrable with respect to a weight W as
in Theorem 1.3 satisfying (1.4) is quasi-analytic.
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Quantitative Uniqueness Properties 5
1.2 A uniqueness result for functions whose Fourier transform is supported in a regular set

In Section 5, we will introduce a general condition of sparsity of the support of the
Fourier transform of a function, which is a quantification of the classical short intervals
condition of Beurling (see Definition 5.1). In Theorem 5.2 we will prove quantitative
uniqueness results for functions whose Fourier supported in such sparse sets.

For simplicity, and for the sake of comparison with the results in [3, 9], in the

introduction we restrict our attention to a special case.

Definition 1.5 ¢-regular sets. Fix an increasing continuous function ¢ : [0,00) —
[0, 00) with ¢(0) = 0. A set Q is ¢-regular if, forevery N > 1,t € R,and 1 < £ < N, there
is a cover of the set Q N[t — N, t + N] by ¢(N/¢) intervals of length <. [ |

For § € (0,1), every §-regular set in the terminology of [3] is ¢-regular with ¢(t) =
Ct (see Lemma 2.8 of [3]).

A uniqueness result for functions whose spectrum lies in a ¢-regular set
necessarily requires a bit more structure of the set E beyond relative density (see
point (2) in the comments following Theorem 1.6). For ¢ > 0 set E_ to be the open o-

neighbourhood of E.
Theorem 1.6. Suppose that ¢ satisfies

1

Z —¢n) <C, for a constant C, > 1L
n

neN

For every y,o0 € (0,1), there is a constant C = C(CWU,)/) such that for any (y,1)-

relatively dense set E, and ¢-regular set Q,

Iflz2@ < Cllf 2@, for every f € L2(R) with supp(f) C Q.

Moreover, the constant C(C,, o, y) may be taken to be of the form

exp(log(A/y){exp[eXp(A ;f};)]}) (1.5)

for an absolute constant A > 0.

Several comments regarding this result are in order:
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6 B. Jaye and M. Mitkovski

(1) Notice that in Theorem 1.6 one controls the L? norm of f by the L? norm on a
o-neighbourhood of E. It is natural to ask if this is necessary, and in the appendix we
show that one cannot take o = 0 via a modification of a well-known example involving
Riesz products.

(2) The uniqueness result in [3] corresponds to the case of a §-regular set with
8 € (0,1). By characterizing the PLS property, we are able to obtain uniqueness results
for fractal sets denser than the class considered by Bourgain and Dyatlov in [3].
The result in [3] is stated in terms of separated intervals, which is equivalent to a
neighbourhood of a relatively dense set.

(3) In order to obtain the effective bound (1.5), we incorporate the modification
to the Bourgain-Dyatlov scheme introduced in Jin-Zhang [9]—replacing the use of the
Beurling-Malliavan theorem (used in [3]) with the simpler effective multiplier theorem

proved in [9]. In the setting of §-regular sets, Jin and Zhang [9] obtained a version of

Cloy)
(1-9)

4.4 in [9]). For §-regular sets, the constant C, may be taken to be C/(1 — §) for some

Clo,y)
=5 )"

Theorem 1.6 with an effective bound of the form exp exp exp( log 1%;) (see Theorem

absolute C > 0 and so we obtain a bound of the form exp exp exp(

2 Background material in quasi-analytic functions required for Theorem 1.3

The main direction of the proof of Theorem 1.3 is the proof that (1.4) implies that the
PLS property holds. The idea behind the proof is simple: The property on W yields that
f belongs to a certain quasi-analytic class. Using the localization principle behind the
proof of the Paneah-Logvinenko-Sereda theorem [14] as presented in [13] or [16], we
can reduce matters to a Remez-type inequality for quasi-analytic functions, which is
provided by an extension to several variables of a theorem of Nazarov-Sodin-Volberg
[18]. This is carried out in Section 3. For readers who are not so concerned about the
particular form of the constant C > 0 in (1.3) that arises in the proof, we also provide
a short proof of a more qualitative statement relying only on the Denjoy-Carleman
theorem.

On the other hand, if (1.4) fails to hold, the Paley—-Wiener multiplier theorem,
see [11] p.97, yields the existence of functions supported on arbitrarily small balls for
which [pq FE2W(E])2dm, (€) < oo, thereby exhibiting that such W fail to satisfy the
PLS property. For the benefit of the reader we sketch the argument in Section 4.

Until the conclusion of the proof of Theorem 1.3, assume that W is a weight

satisfying hypotheses (1) and (2) of Theorem 1.3. There is no loss of generality by

120Z 1udy 62 uo npa-yosieb@eakelq ‘ABojouyos ] Jo aynnsu| e1610ss) AQ 9609€29/S.0GBUL/UIWISE0 L 0L /I0P/3]o1B-00UBAPE/UIWI/WO2 dNo olwapede//:sdjy WoJ) papeojuMo(]



Quantitative Uniqueness Properties 7

assuming that W = 1 on [0, 1], and W grows faster than any power function at infinity,*

so we shall always do so. Set

| n tn
M,, = sup = sup .
EeR W(|§|) t>1 W(t)
Notice that M, is an increasing log-convex sequence: M2 < M,_ M, . Therefore,
setting My = maXx, g m = 1 we have that the sequence p,, = MZ\Z ! is non-increasing,
and pn, < 1.

We begin by revisiting some very well-known elementary inequalities (e.g.,[11])
in order to make our discussion self-contained. The property (2) of the weight W from

the assumptions of Theorem 1.3 is used in the following lemma:
Lemma 2.1. Forr > 1 with W(r) < oo, there exists an integer n > 0 with
logW(r) < (n+1)logr —logM,,.

Proof. Fixr > 1 and choose some supporting line to the graph {(logt,log W(t)) : t > 0}
with finite slope v at the point (logr,log W(r)) (v > 0 since W is increasing). With n equal
the integer part of v we observe that logM,, < (n + 1) logr — log W(r) (see [11] p.99-100),

as required. |

Proposition 2.2. The following inequalities hold:

To prove this consider the Ostrowski function

n

r
p(r) =sup —
neN M

Notice that, since the sequence u,, is decreasing, p(r) = Iy, -~ 1,("i,,). The proposition

is an immediate consequence of combining the following two lemmas.

3 The Fourier transform of a compactly supported bump function is in the Schwartz class, so power
bounded weights certainly fail to satisfy the PLS property.
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8 B. Jaye and M. Mitkovski

Lemma 2.3. Forr>1,
log p(r) <logW(r) <logp(r) +logr. (2.1)

Proof. The left hand inequality is trivial. If r lies in the set I = {W < oo}, then we
use Lemma 2.1 to fix n > 0 with logW(r) < (n + 1)logr — log M,,. But then log W(r) <
(n+1)logr —logM, < p(r) +logr, and so (2.1) holds in I. In the case that I = [0, 1) is
a bounded interval, and W(ry) = oo, then limr_)ra W(r) = oo (W is increasing and lower
semi-continuous), and since (2.1) holds in I, we get that p(ry) = +o00 and hence p(r) =

forall r > r; (p is non-decreasing). Finally, if I = [0, ry] and W (ry) < oo, M,, < rg for every

n, and therefore p(r) > supneN(%)n: oo for r > ry. [ |

Lemma 2.4. The following identity holds:

] t
/1 ng() l(t)—ZMn

Proof. The left hand side equals (using that p,, < 1)

n: > lo (t n) 1 nt
/ 2 ml gtu 1<t>—Z/ Og(u )y .

1/pn

With a change of variable, we see that

] t <1 t
| B dmy @ = [ dm 0 =

2
/Hn t
as required. |

2.1 The Nazarov-Sodin-Volberg Theorem

Given any logarithmically convex sequence M = {M,,},, .y With My = 1, we consider the
class C,,([0, 1]) of smooth functions which satisfy ||f(”)||Loo[0,1] < M,, for every n > 0.
A sequence M generates a quasi-analytic class if whenever f € C,,([0, 1]) vanishes to
infinite order at a point in [0, 1] (f*)(x,) = 0 for every k > 0 for some x, € [0, 1]), then

f =0on [0, 1]. The Denjoy—Carleman theorem (see e.g., [11]) ensures that M generates a
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Quantitative Uniqueness Properties 9

quasi-analytic class if and only if

oo
M
E =l _ . (2.2)
M,

n=1

With a slight abuse of notation, we call a logarithmically convex sequence M satisfying
(2.2) quasi-analytic.

For f € C),([0, 1), the Bang degree n¢ is defined by

— . n—1
ne = sup{N. Z U < e}. (2.3)
log IIf 00 10,17y <P<N

A powerful theorem of Bang (see [1] or [18]) states that the Bang degree controls the
number of zeros of a function f e C,,([0,1]) counting multiplicities. It is therefore
natural that it should depend on both the growth of the ratios of M,,_;/M,, and a lower
bound for ||flz g 13- For our purposes we will want uniform bounds on the Bang degree

of a function given the class M. Therefore, we set, for t € (0, 1],

Npge = sup{N : Z

—logt<n<N

so if f € C ([0, 1]) satisfies ||f||Loc([0,1]) > t, then ne <My Following [18], we also define
(compare with (1.7) in [18])

[MjHMj—l

Y R 1], and Iy (n) = 4e*t4rm®™,
J

Ym(n) = sup j
1<j<n
We are now in a position to state the Nazarov—-Sodin-Volberg theorem, which builds

upon the techniques developed by Bang [1].

Theorem 2.5. Theorem B from [18]
Suppose that f € C,,([0, 1]). Then for any interval I C [0, 1] and measurable set
E C I with m(E) > 0, we have

T (200)[I] 20
M) f u If].

8111p Ifl < ( @)

Again, the constant in this inequality must depend on the ratio of the value of

t = [If o (o,17) to its apriori upper bound of M, = 1: the smaller the value of ¢, the more
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10 B. Jaye and M. Mitkovski

zeroes f can have in the interval [0, 1] while controlling the size of a fixed number of
derivatives.

Theorem 2.5 does not require the sequence M to be quasi-analytic, but we shall
only use it in this case.

Since there has been interest in obtaining quantitative uniqueness bounds, see
e.g.[9], we thought it worthwhile to present Theorem 2.5, where the constant is rather
sharp* . However, if the reader is not bothered by the particular form of the constant
in Theorem 2.5, then the following qualitative result can be quickly derived from the

Denjoy-Carleman theorem.

Remark 2.6. A quick qualitative bound. If y > 0, t > 0, and M is a quasi-analytic
sequence, then there is a finite constant C = C(y, t, M) such that whenever f € C,,([0, 1)
satisfies ”f”Loo[O,l] > tand E C [0, 1] satisfies m,(E) > y, then

||f||1,00([0,1]) <C(y, t,M)”f”LOO(E)- (2.4)

Proof. Proof of Remark 2.6 Suppose the result fails to hold, then for some y > 0 and
t > 0, there is a sequence {f},},, € C»,([0, 1]) satisfying ||fn||LOO([0'1D >tandasetE, C[0,1]
with m, (E,) > y such that |f,llz~@E,) < %||fn||Loo([Oll]) < % For any k > 0O, the sequence
{Dkfn}n is certainly equicontinuous, and so, with the aid of a diagonal argument and
relabelling the sequence if necessary, we may assume that f,, converges uniformly to a
function f € C,,([0, 1]). But then ||f||LOO([0'1]) > t (since [0, 1] is compact), while f = 0 on
the set E = (1, Uyon En (if x € E, then x € E,, for some subsequence n,, — oo, but then
f)| = lim,,,_, |fnm (x)| = 0). Of course, m;(E) > y. However, a smooth function that
vanishes on a set of positive measure has a zero of infinite order (for instance, at each
Lebesgue point of the zero set), so f = 0 on [0, 1] since M generates a quasi-analytic

class. This contradiction establishes (2.4). [ |

We shall require an extension of Theorem 2.5 for quasi-analytic functions of
several variables. To do this we shall appeal to an inductive argument of Fontes-Merz
[5], but first it will be useful to introduce some further notation.

For Q C R? a cube (whose sides are parallel to the coordinate axes), we say that
f Q@ — Rlies in C,,(Q) if for any multi-index o with order |o| := a; + - -+ gz = n, it
holds that [D*f|l;x(q) < M,.

4 We also like its proof.
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Quantitative Uniqueness Properties 11

For d € N, a quasi-analytic class M, t € (0, 1], and s € (0, 1], put © ,,(d, t, s) to be

the least non-negative number such that the inequality

||f||Loc(Q) =< ®M(d:t, S)”f”Lw(E)

holds for every cube Q c R? of sidelength 1, every f € Cr(Q) satistying [|fllpecq) = ¢

and every Borel measurable set E C Q with m,(E) > s.

Proposition 2.7. For every d € N, quasi-analytic class M, t € (0,1], and s € (0, 1], the

quantity © ,,(d, t, s) is finite. Moreover, for d > 2, we have the estimate
s t s
O 1,9 = 0 (1t, D)o (d—1, 1, %),
Ml )= Oum 2) M Op(1,t,5)" 2

Observe that Theorem 2.5 ensures that

FM (an,t) )ZnM,t
S

O (1,t,8) < ( , (2.5)

so one can calculate an effective bound on ® ,,(d, -, -) for any dimension, albeit of a tower

exponential form.

Proof. We follow the inductive scheme in [5]. Without loss of generality, assume
Q = [0,1]%. The base case d = 1 is covered by the Nazarov-Sodin-Volberg theorem
(or Remark 2.6). Suppose now that d > 2 and the proposition is proved for d — 1. Fix
f € C (10,119, If 1l 0,114y = t and E C [0, 114 with my(E) > s. For x € R?, put x = (x, u)
where x' € R4 and u € R. We set E, = {x' € R : (x', u) € E}. Define the set

1
L={uel0,1l:my_,(E,) > Emd(E)}.

Then

my(E) < /md_l(Eu)dml(u) +/ my_(E)dm, (u).
L [0,1\L
We bound the first integral by m, (L) (since E,, C [0, 119-1), and the second integral by

smy(E) (for u € [0, 11\L, my_,(E,) < $my(E)). Therefore, m (L) > $my(E) > 5.
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12 B. Jaye and M. Mitkovski
Suppose (x,u) € [0,1]¢ satisfies |f(x,u)| = SUD,c(0,11¢ L (*)|. Applying the d = 1

case to the function f(x/, -) € C,4([0, 1]) and the set L yields that

t < f lzoqo,gay = P, W < O (1,8,5/2) sup [f (X, wl.

uel
Let ¢ > 0 and fix u, € L with |f(x', up)| + ¢ > sup,; If(x', u)|. Then by definition of L,

mg_1(E,) > mg(E)/2 > s/2. Also,

t
sup If(V, ugl = f X up)| > —————— —¢
pet T ol 2 VO = 5 G )

Consequently, we may apply the inductive hypothesis that the proposition holds for d—1
to the function f(-, uy) and the set E,, | to obtain

t S
sup f (¥, up)l < O,y (d -1, m —é&, E) sup |f(y, ug)l.
y'elo,1]d-1 Mg V'€Ey,
Butif y’ € E, , then (¥, ug) € E so SUPy ek, (7, ug)l < supyeg If(®)]. Letting e — 0, we

conclude that

t N
||f||Loc([011]d) < @M(l,t,S/2)®M(d -1, W,E)Sgg |f(X)|,
r%r 9 X

as required. |

We will require an L?-version of Proposition 2.7.

Corollary 2.8. Suppose that f € C,,([0, 119) satisfies Il 010,114y = t > 0. Then for any

Borel measurable set E C [0, 1]¢ with positive measure, we have

20 ,(d, t, m4(E)/2)?
2d M d / 2d )
/W fl2dm, < L [ f2dm,

Proof. Consider the setE = {X cE: [1“()()|2 < % Iz [f|2dmd}. Then m,(E) > tmy(E).
Applying Proposition 2.7 with the set E, it follows that

sup |f| < ©p(d, t, my(E)/2) sup [f].
[0,114 E
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Quantitative Uniqueness Properties 13

But supz |f|2 < % Jz If1?dmg, and so

20 (d, t,m (E)/2)2/
2 2 M d 2
fl“dm, < sup |f|° < dmyg,
[0,1]4 | d = [O,IFd "= ”Ld(E) E |f| d

as required. |

3 The sufficiency of (1.4) for the PLS property

Without loss of generality, we shall put £ = 1 in the definition of relative density (for
any ¢ > 0, W satisfies (1.4) if and only if W(¢-) does). Suppose that

/ * log W(t) dmy(t) = .
0

14 ¢2

With M,, = max, g % and u, = Mﬁ:, we infer from Proposition 2.2 that >, u, =

+00, 80 M = {M, },,- is a quasi-analytic class with M, = 1.
A slightly modified quasi-analytic class will arise naturally in the proof, so we

introduce it here. For A > 1, we define

_ _ _ M,
M, = {M,},,- with My = 1 and M,, = A"M”—”. (3.1)
- d

Observe that M, is a log-convex sequence since M is log-convex.

Proposition 3.1. There exists A = A(d) > 1 such that for any f € L?(R%) satisfying
(1.2), y € (0,1), and (y, 1)-relatively dense subset E C R4,

4 1 Y\ 2
2 2
dmg < -0, (d, ————, % dmg.
/Rdtfl =7 MA( CATH, 2)/Elfl d

Proof. Suppose ||f|l;2gae) = 1. Partition R? into cubes of side-length 1. Fix B > 2. A

cube Q is said to be bad if there exists a multi-index « such that
/a ID*f|?dm > BZ“""“)M@‘C%V/O \fI2dm,. (3.2)

If a cube isn't bad, then it is called good. If Q is a good cube, then we have good

derivative control:

/ ID*f|12dm, < Bz('“'“)M@lcﬁ,/ [f12dm, for everya € Z9. (3.3)
Q Q
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14 B. Jaye and M. Mitkovski

Notice that if |«| = n, then by Plancherel’s identity, we have that D*f € L%(R%), and

moreover
/ IDf*dmg = (27)*" / E912[f (&) 1Pdmy (&)
R4 R4

. £
= @m [?i‘%ff W(ED

2 P
][ Forwieamae G4
< (27)*"M2AC%,.

Therefore, if B, denotes the union of all cubes that are bad for derivatives of order n

(i.e. the union of cubes for which (3.2) holds for some multi-index of order n), then

1 (2m)*"C(n)
/ fldmy < ————u > / IDfPdmy <~
2(n+1) 2 o2 2(n+1)
Bn B2n+tLMZCE, wilamn /R B2(n
where C(n) denotes the number of possible multi-indices of order n. By induction one
can readily see that C(n) < (n + 1),

Consequently, if B denotes the union of all bad cubes, and B is large enough,

then
2
1 « C0?m+ D¢ 1 Wl g,
T e e
/B B2 ~ B2n 2 2
and so
fPdmy > Lir1? (3.5)
Ut@ good) d=95 L2(R4)" ’

Now fix a good cube Q (which we recall has sidelength 1). Recall the elementary

Sobolev inequality (see Chapter 1 of [15])

I9llz 0y < C@DIglz2@) + C@ D 110%gl12(q)-
la|=d

From (3.3) we infer that for every n > 0 and |¢| = n,

IDf I (q) < CDB™ M, ) CyIf 120

< A" Clif 2y

for A = A(d).
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Quantitative Uniqueness Properties 15

Consider the function f = . Then f belongs to the class Cp, (Q)

f
AIMaCw fll 2 g
with the sequence M, defined in (3.1). Also

~ . 1
1 llzee @) = Cp AT,
Therefore, applying Corollary 2.8 with the function f and the set E N Q, which has

measure at least y, results in

~ 2 1 7\ 2 ~
2 2

dm, < —0© d———,= dm,.

Aqu a= y MA( C 41+de 2) o Vil d

By homogeneity, this inequality also holds with f replacing f

Finally, summing over good cubes, we conclude from (3.5)

1 , 2 1 v 2/ ,
- dm, <%0, (d— Y dm,,.
2/Rd fFrdmg =~ MA( CyATFN, 2) | 1dmg

Proposition 3.1 is proved. |

3.1 The proof of Proposition 1.4

We will make a rough calculation of the order of magnitude of the constant appearing
in Proposition 3.1 (see also (2.5)). To this end, it is slightly more convenient to work with

the weight

lfort<e
w(t) = t e
elgt ~ fort > e,

which changes the value of Cy;, by at most an absolute constant multiple. Adjusting the
absolute constant appearing in the statement of Proposition 1.4 if necessary, we may
assume that « < 1/100, 1/« € N and Cj;, > 100. Throughout the proof C > 0 denotes an
absolute constant that can change from line to line.

Setting M,, = sup,.q Mﬁ—(nt) and M, , = sup,.g Wﬂ—n(t), we observe that M, , =
(M, ,)*. Put M :={M, ,},, and

Vi 7 ~ M
My = {M,},>0 with My = 1 and M, = A" ;4’”+1 ,

«,l

where A > 0 is the absolute constant appearing in the statement of Proposition 3.1.
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16 B. Jaye and M. Mitkovski

At least for n > 1/«, the value t,, for which M,, is achieved is the solution to the

equation

1 1 t 1
E_ + =0, o0orn= n (1— ) (3.7)
t, logt, (ogt,)? logt, logt,

From the intermediate value theorem we deduce that, for n > 1/«,
nlogn < t, < 2nlogn. (3.8)

Therefore, we have

-1
Moz,nfl - tz/a /Wa(tn/a) _ 1 - 1
M,n ~ th/We(tye)  tne  2In/al-log(n/e)

Consequently,

1
< A I
Mpg, e = Sll\lfp{log%:n<N [(m+1)/a] - log((n+1)/a) ~ e}

but

1
2 [(n+ 1)/al-log((n +1)/a)

—logt<n<N

> a(log log{IN + 1]/a}—1log log{(log[e/t])/a})

and therefore

log(e/t))BXP(C/a)

Uyt = ( a

1 > o
CwAZM,; ~ Cwloglja’ SO

In our case, t =

g, < (0g Cy)TPE/),

Finally, in order to calculate a bound for Cpq, (2rpg, ) we need to estimate, forj € N,

WMy _ My My
N2 - 2
M ML,
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Quantitative Uniqueness Properties 17
By definition,
j+1 j+1
M,,,. > max [ £ tj42)/a }
+ K —_— 4 r
. W (i) W (E12)/0)
and hence
M. M: t.
.]raz J+2,a < J+2)/a (39)
ij+1,ot tj/a
First, by (3.7), we observe that forn > 1/«,
1 1 o 1)1 1 S
b~ tas = nlogty (1 =) - logh (1 )
n n—1 g n ].Og tn ( ) g n—1 logtn_l
but since @ < 1/100,
1
1-— >1,
log tn—l
and therefore, employing the mean value inequality, we obtain that
n (n—1)
t,—t <logt —It, —t —_—|t, —t .
| n n—1|N g n+tn71| n n_1|+tn7110gtn71| n n—1|
Plugging in the bounds (3.8) and simplifying yields that
lty/tn_ 1 — 11 S 1/m. (3.10)

Employing straightforward inequalities yields the following bound

(+2)/a (J+2)/a

Lt
(It' e exp( Z logtn/tn_l)f exp( Z 1ty /th 1 — 1|)‘
Jlo n=j/a+1 0=j/a+1
But (3.10) ensures that
(G+2)/a | o
Z |tn/tn71 - 1| ,S - ,S 1/j,
N o J
n=j/a+1
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18 B. Jaye and M. Mitkovski

and therefore, recalling (3.9),

(M M U
N TR S
J n=(—-1)/a+1

Consequently, I"y(, (20, ;) S 1. (A bound of the form I' \, (2np, 1) S e!/? would still be

permissible.) Proposition 1.4 now follows from Proposition 3.1 (see (2.5)).

4 The necessity of (1.4) for the PLS property

We only consider d = 1. We shall assume

m,(t) < oo,

/°° log W (t)
0 14 ¢2

and therefore (Proposition 2.2), > u,, < .

We shall sketch the Paley—Wiener construction (also the construction used in
many presentations of the Denjoy—Carleman theorem, see e.g.[4, 11]) to show that there
exist functions f supported on arbitrarily small intervals with fR |J?($)|2W(|$|)2dm($) <
0o. Therefore, W fails to have the PLS property.

Fix ¢ > 0. Choose ny > 10 such that 3., 1, < e. We set

(4.1)

f(é) no l(sin((s/no)é))Zno H Sin(Mké%)‘

(e/mg)§ 1073

kzno

As in (for example) Koosis, [11], p. 90-91, we infer that

. f is the Fourier transform of a function that vanishes outside of an interval
of width Ce¢, for some absolute constant C > 0, and

e forn >0, and |§| > 1,

n max(M,,, Mno)
EI"MF(E)] < C(ng, &) ——————. (4.2)

|é|n0+l

To see (4.2), observe that, recalling the definition of 1, the inequality sin¢ < min(1, t),

yields for any ¢ > n,,

sm(uké) 1 M,
My, 1‘ H ‘—Mno—1’ H _‘: f—no+1"
k=mo 7523 no<k<t 7% S 1 s
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Quantitative Uniqueness Properties 19

Plugging this inequality into (4.1) with £ = n in the case n > ny and ¢ = n, otherwise
results in (4.2).

From Lemma 2.1 we therefore infer that for |§| > 1 there exists n such that
logW(l¢]) < (n +1)log|&] — logM,,.

But when combined with (4.2) this yields that

C(ng, My, )

w < —
(15D = If(&)][&]m0

Therefore,

/R F&1PW(gD3dm, (&) < oco.

5 From fast decay to sparse support: A transference principle

To develop a transference principle we shall lean on the scheme developed in [3]. In
particular our considerations are based on use of a simple variant of the Buerling—
Mallivan multiplier theorem (see, e.g. [8, 9, 12]), which will restrict our discussion to
uniqueness theorems in one dimension. Han and Schlag [6] adapted the techniques in
[3, 9] to derive a multidimensional analogue of the Bourgain—-Dyatlov fractal uncertainty
principle for certain Ahlfors regular subsets of R with (possibly distorted) product
structure, still making use of a multiplier theorem in one dimension. There are
analogues of Theorem 5.2 below in this product setting.

The condition of sparsity that arises is a modification of the short intervals

condition (cf. the Beurling gap theorem [21]) taking into account that

e theresult here is an L?-theorem, so the condition of sparsity should be stable
under translations in the Fourier domain, and,
e our conclusion is quantitative, so there should be some uniformity in the

shortness condition.

With this in mind, we make the following definitions.

Definition 5.1. Fix a weight W : [0, c0) — [0, 00) with W > 1 on [1, 00).

e A collection {7,},, is a W-short cover of a set Q C R if for every n € N, J,, is

comprised of intervals of length @, = log W(e™) such that
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20 B. Jaye and M. Mitkovski

1. Ujsegz,J 2 QN ([-e™t!, —e"ule”, ")), and

0. \2
2. Tl = ZneN(e—,y) card(J,) < oo.
e AsetQiscalled W-sparse if, for every t € R, the set Q —t has a W-short cover

{J,E”}n, and moreover

: ®
IQlly = sup inf H{Tn nllw < oo.
teR jnt) a W—short
cover ofQ—t

Remark. If Q has a short W-cover and W < W, then Q has a short W cover. To see this
cover each interval J € J,, of length log W(e") with no more than |log W(e")/log ﬁ/(e”)J +
1 intervals of length log W(e"), and set jn to be the resulting collection of intervals of
length log W(e"). Thus

eZn

Z(log Z(en‘) )ZCard(in) <2 Z(log e o8 W(en))card(J n)

n

and the right-hand side is smaller than 2|[{7,}, |lv- As such, a slower growing weight W

will have more W-sparse sets associated to it.

The transference principle that we prove will (necessarily) be for neighbour-

hoods of relatively dense sets.

Theorem 5.2. Fix an increasing weight W > 1 such that

1. for every a > 0, W* has the PLS property® ,
2. there is a constant Cy,,;, such that log W(et) < Cg4,,3, log W(t), and log W (¢) <
t/4, for every t > 1.

For every A > 0, y > 0 and o > O, there is a constant C = C(Cyyy,, W, A, y,0), such that
for every W-sparse set Q with |Qlly, < A, every (y, 1)-relatively dense set E, and every
f e L2(R) with supp(f) C Q,

||f||L2 R) = C||f||L2 E- (5.1)
(R) (Es)

5 Notice that conditions (1)-(2) of Theorem 1.3, and the validity of (1.4), are invariant under this transfor-
mation.
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Quantitative Uniqueness Properties 21

Remark. One cannot expect Theorem 5.2 (or Theorem 1.6 below) to hold for in the case

o = 0. An example is included in the appendix.

The proof of Theorem 5.2 consists of a reorganization of the ideas presented
in [3]—incorporating the Jin-Zhang [9] effective multiplier theorem—combined with a

localization trick.

6 An application of the multiplier theorem

We begin with the effective multiplier theorem proved by Jin-Zhang [9] which replaces
use of the Beurling—Malliavan theorem in scheme of [2]. See [12] for (much) more
information on the Beurling—Malliavin theorem and the instances when it can be
applied. The precise formulation we use may be found in Appendix B of Han-Schlag
[6].

For a (Borel measurable) function f : R — R satisfying

If @)l

= H——tzdml(t) < 00,

we define the Hilbert transform

1 t

1
H(F)(x) = ;P.V./ (— +

(=t i) wdmo.

Theorem 6.1. Appendix B of [6]
Fix o > 0. Suppose that W =e% : R — R satisfies W >1,
Q)

00 ., .
/0 H——tzdml(t) < oo and ||H(Q) ||oo < EU.

then there exists ¢ € L?(R) satisfying

1. supp(y) C[0,0),
2. [9&)| 2 o°W1(#) for & € [-3/4,3/4], and
3. 19| =W ) onR.

In addition to giving quantitative results, the use of Theorem 6.1 has the
additional benefit that its proof is simpler than the proof of the full Buerling-Malliavin
theorem (for instance, as it is presented in [8]).

In this section, we shall apply Theorem 6.1 to prove the following proposition.
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22 B. Jaye and M. Mitkovski

Proposition 6.2. Suppose that W = e% satisfies the assumptions of Theorem 5.2. There
is a constant ¢ > 0, that may depend on Cy, ., such that for every o > 0 and A > 1, the
following statement holds:

If Q C R satisfies ||Qlly; < A, then there exists ¢ € C3°(R) satisfying

supp(¢) C [0,01],
. f[,lyl] [g&)12dm, (&) 2 020,
)] < eXp(—caJ|E_|) on R, and

|P(&)| < exp (—%ﬁf)) on Q, (the 2-neighbourhood of Q).

W b=

The remainder of this section is devoted to the proof of this proposition. All
constants may depend on Cg,,3,. Without further mention.
Suppose that {jn}n is a W-short cover of a set Q with ||{~7n}n||w < A. We begin

by regularizing the cover.

Lemma 6.3. Suppose that {7,},, is a W-short cover of a set Q. Then there is a W-short
cover {7}, of Q satisfying that for every n, {%J : J € J,} are pairwise disjoint, and
T nllw < 7T nllw-

Proof. Fix n, and pick a maximal collection of %-separated points {t,,},, in @ N

[[—e™t1, —e™U[e™, e"]]. Consider the intervals J,, centred at t,, of sidelength €,,. Since
{ty,}, are %—separated, 3J,, are disjoint (for an interval J, J denotes the interval with
the same mid-point as J and half of the side-length). On the other hand, by maximality,
anfl—e**!, —e"ule", el c U,, J,m- But at most seven intervals J,, can intersect any

interval J € jn Therefore, if 7, = {J,,},,,, then card(J,) < 7- card(jn). [ |

Going back to our W-short cover {7,},, we set {7,}, as in the lemma, and so
T nllw < 7A. Put T = U, T

Claim 6.4. ForeachJ e J,,

3J C [_en+2, _en—l] U [en_l,e”+2].

Proof. Since logW(e") < %, the claim follows from the fact J € J, intersects

[en, en—i—l] N [_en-ﬁ—l, _en]‘ ]
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Quantitative Uniqueness Properties 23

Claim 6.5. There is a constant C > 0 depending on Cg,;, such that any interval 3J,

J € J, can intersect at most C of the intervals {3I}I€J. [ |

Proof. FixJ e J,soJ € J, for some n. From Claim 6.4, we infer that if I € J satisfies
3IN3J # @, then I € J,, with [n — m| < 4. Fix such an m and consider all I € 7, with
3IN3J # @. Since W satisfies the doubling condition, Ca:ub < |logW(e™)/logW(e™)| =
192,,/2,| < Cﬁoub. Consequently, any such interval I is contained in the ISCﬁoub dilation

of J, and has length at least ngubZ(J). Finally, since the collection of intervals {%I T e
15¢%

. . o e . 8 .
Jn) are pairwise disjoint, there can be at most %652‘1}:’ = 30C,,1, such intervals I € 7,,,.
ou.
Since there are at most nine choices of m, the claim is proved. [ |

Now, observe that since log W is doubling, we obtain from Claim 6.4 that

log W(t) <Q,.p < C3,u log W(e™) < C3,;, log W(2)

(6.1)
foranyt e 3J € J,,.
Whence
log W (¢t d
/ - Tl (z)dml(t) <cy @2 Cen z(njn)
(Ussgegy 1+t 7 e (6.2)
= Cl{Tp}nllw = CA.
Fix n € C3°([-3,3]) with n =1 on [-2, 2].
For every J € J,,, set n; = ﬁ(%)r where x; is the centre of J. Set
AVt =2 > Yoy
n jeJn
Observe from (6.1) that
QW > log W on U 2J, (6.3)
JeJ
while from (6.2) we derive that
QM (1)
—d t) < A+1. 6.4
/0 L dm 0 A+ (6.4)
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24 B. Jaye and M. Mitkovski

Claim 6.6.

<1+A. (6.5)

~

IHE@QMY [l

Proof. Insofar asn e C([-3,3]),

Hm) x)| < for every x € R,

1+x2
and consequently

Qn

/ < __ Yn
M) 01 S =5

for every x € R. (6.6)

But (6.1) shows that Q,,, < ,,, and therefore (6.6) implies that

o Q0
HOQY®IZ2 2 grr e

n JE\_’]n

Recall that for each n € N, the points x;, J € J,,, are 2,,/2 separated, and so

2: 2, g: :
. _ - <. (6.7)
T, Q%+ (x — x;) = 1+Kk

On the other hand, if |n — Inx| > 2, then |x — x;| 2 e" for every J € J,,. Whence,

Q2 Q.2
2 2 araaens > (52) card(7y) < A.
n

n:|\n—Inx|>2JeJy,

Since at most five of the natural numbers n can satisfy |[n — Inx| < 2, we conclude that
(6.5) holds from (6.7). [ |

Now put Q@ (t) = /1 + 2. It is a straightforward calculation to show that

IHEQPY || S 1. 6.8)
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Quantitative Uniqueness Properties 25

Proof. Proof of Proposition 6.2 As a consequence of (6.4), (6.5), and (6.8), we observe
Theorem 6.1 is applicable with the weight
=% 30 ceo®
A+1

for a suitable small constant ¢ > 0, and provides us with a multiplier ¢. Properties (1)-
(3) of Proposition 6.2 follow immediately. It is also immediate from (6.3) that |p(&)| <
exp(—%) on U, Usez, 2J.

Finally, we observe that since the weight W is increasing, there exists (a
smallest) ny depending on W, such that ¢£(J) = Q,, > 4 whenever J € J,,, n > n,. Setting
Q, to be the closed 2-neighbourhood of Q, we therefore infer that

U U 2720,;nl(—00,—€™1Ule™, 00)]

nzno JjeJy,

(recall that Unzno UJeJnJ D QN [(—oo,—e™] N [e",00)]). But if t < €™, we have that

Q(t) < 4. Taking into account that o < 1, we get that |[p(¢)| < exp (—%) on Q,. [ |

7 The proof of Theorem 5.2

We need a simple preparatory lemma.

Lemma 7.1. Suppose that supp(f) C Ui Iy, where I, = [t —1,t; + 1]. Fix > > 0, and a

2

R 0. Then

sequence ¢, € L2(R) with [|@|l

1 2 -~ 2
”f”iZ(R) = ;/2 Z”f( -7 tk)(pk ||L2(R)dm1 (7).
c k
Proof. Fix k and observe that, with a change of variable,

=12 _~
”f”LZ(Ik) = ”f( - tk)“Lz([—l,l])

IA

1 1 1 R
;/1/1 IF € — t 2@ (O 17 dm, (0)dm, (§)

IA

1 /2 o
;/2/1 F(¢ = =t P16 (O)12dm, (§)dmy (7)

IA

1 (% .
% /_2 lf¢ -7~ tk)‘Pk”iZ(R)dmﬁf)-
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26 B. Jaye and M. Mitkovski

The lemma follows by summation over k (along with Plancherel’s identity). |

Let us now begin the proof in earnest. Recall that Q, is the closed 2-
neighbourhood of Q.

Fix {t,}, to be a maximal one-separated subset® of Q,, so Q, C |J,I,, where
I, =1It,—1,t, + 11

Suppose that Q and f satisfy the hypotheses of Theorem 5.2 (so ||Q|;; < A and
supp(?) C Q). For every ¢, we can apply the construction of Proposition 6.2 with ¢ > 0
to obtain a function ¢, satisfying
@] S W™ on Q, — ¢,
1G,(8)] < e~Coo Vmax(LIi op R

supp(g,) C [0,0], and

W N

~ 10
l9ellz2q—1,1) Z0o

CoOo
A+1"

We will need the following simple auxiliary lemma.

where o = and ¢, > 0 can depend on Cyyypie-

Lemma 7.2. For any g € L?>(R),
2 JTTy2 LI
= —CoO0 .
;/_2 ”g( -7 t[)e 0 ”LZ(R)dm] (T) S O-_ZH‘g”LZ(R)
Proof. The left-hand side of the inequality is bounded by

2
/2 Z ||/g\e—coa«/|(-+r+tz)| ”?ﬁ(R)dml(T)‘
4

But, since the points {t,}, are one-separated,

1
sup Ze—ZCOU«/|(E+t+t()| < =
£1eR o

and the lemma follows. [ |

For any 7 € [-2, 2], consider function

f‘[,fz 71(?('_1_tf)@):(.f'er+t5)*()0£l

6 A maximal set satisfying |t, — t,| > 1if £ # €.
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where e,(x) = e2"!*, Recall that supp(f) C Qq, and so the function f; , has its Fourier

transform supported in the set Q, — ¢, and so satisfies that

|fr,£| 5 |f( -7 tg)|\/ |§/0\E|W_a on R.

Consequently,

||fr,£Wa||L2(]R) <ClIf(—1t —t)+ |€/5g|||LZ(]R)

and so by combining property (2) of ¢, and Lemma 7.2 we infer that

2
v 2 1 2

/2 ;”fr,fwa ||L2(R)dm1('5) S ﬁ”f”LZ(R)‘ (7.1)

We apply a localization technique: Fix ® > 1. We call a pair (z,¢) bad if

HEZW" ’|§2(R) > Hfr\e HEZ(R)‘

Otherwise (7, ¢) is called good. If (, ¢) is good, then f, , satisfies the condition to apply
the PLS property with Cy; = ®. Notice first that,

2 — 12—
[, Fliedmo =g [ S g dm o
e

T2 ¢ (t,0) bad

(7.1) 1 5
S F”f”LZ(R)
o

Employing Lemma 7.1 with x = co?? with a suitable constant ¢ > 0 (cf. property (4) of

the functions ¢,), we obtain

Cc z 2
(o% — 592) 12wy /z 2 Welpgdm©, 7.2

T ¢e:(¢,7) is good

and the left-hand side of this inequality can be made at least a constant multiple of
020||f||§2(R) by choosing D to be a suitable multiple of o =22
We are now in a position to use the assumption of the PLS property for W*. Since

E is y-relatively dense, and W* has the PLS property, there is a constant Cp; g depending
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28 B. Jaye and M. Mitkovski

on W, A, y, and o, such that for every good pair (z, £) we have

Ifz ellzzw) < Corslf ellz2e)- (7.3)

Next, since supp(g,) C [0, 0] we infer that on the set E, (f - e;,,..) x ¢, = (fXxg, €;,4.) * @4,

and hence

||ff,e||L2(E) = (fxg, - e40) * Pllp2m) = I(Fxg, € 4) * ¢l

Writing | (fxg, -€¢,1) 9| 12y = £ X5, ¢ =t =% | 125, (Plancherel’s identity), it follows
by 7.3 that

/ > WelZgdmy (@)

Z (¢,7) is good

2 — 2
= CPLS/2 ZHfXE(, (=T =1)%,
27

Lemma7.2 (7
PLS

d
@™

Finally, bringing this estimate together with (7.2) yields

C. C.
I lZe) S — 25 “ELS | Fxg, oy S —S 1f 2 s, 0 (7.4)

as required.

Theorem 5.2 is proved.

8 Proof of Theorem 1.6

Consider the weight W(t) = exp(m). Then W satisfies the assumptions of
Theorem 5.2 (for any ¢ > 0, W* the PLS property from Theorem 1.3). Appealing to the
p-regularity of Q, we infer that for every t € R and n > 1, the set (Q — t) N [-e"*1, —e™] U
[e” e"*!] can be covered by at most 2<p((e —14(n+1)) < 2¢(8(n+ 1)) intervals of length

= log W(e") (notice that Q,, > 4(n+1), and [e”, e"!] has length (e — 1)e™). Therefore,

1 1
lQllw =23 —¢@n+1) <23 —¢(16n) <2-16°-C,,

n>1 n>1

and we conclude that (5.1) holds with C = C(C(p, y).
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To prove the moreover statement, we need to keep track of the form of the
constant Cp;g that appears in the proof of Theorem 5.2—see (7.4). For this we shall

appeal to Proposition 1.4. Recall that
a= COL, and Cy, =D = Co %2
c,+1

It clearly suffices to prove the result for large C,, and so we may assume that « is much
smaller than one.

Since « is smaller than o, from Proposition 1.4 we infer that

c < (E)exp[exp{C(Cw—&-l)/a}]
PLS ~ y

’

and therefore the constant appearing in Theorem 1.6 may be taken of the form

0__22 (E)exp[exp{C(C¢+l)/a}]< (E)exp[exp{C(C(erl)/cr}]
Y Y

(where the constant C has been changed to go from the first expression to the second).

A Riesz Products

The purpose of this appendix is to illustrate that one requires the interval structure in
the definition of a relative dense collection of intervals to arrive at Theorems 5.2 or 1.6,
and these theorems are not valid for general relatively dense sets. We will use the well-
known example of Riesz products.

Set T = R/Z. Suppose o, € N, n € N, satisfies o,,,,/0, > 3. For [|a,ll;~q, < 1,

define the Riesz product as

nw=[]a +a,cos@roy,t)

n=1

interpreted as a weak limit of finite products py = []5_,(1 + a,cos(2ro,t)). The

sequence Fourier coefficients i(n) = fol e 2minxq, (x), n € Z, is supported in

A = {anan where ¢, € {-1,0, 1}},
n
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30 B. Jaye and M. Mitkovski

and, due to the lacunarity condition on o, there is a unique representation of each

element of A (see, e.g., Chapter 2.3 of [7]). Recall (again see [7]) that if

00
> a2 = +oo,
n=1
then the resulting Riesz product u is singular with respect to Lebesgue measure.
Put o, = d" ford € N, d > 3. We claim that A is ¢-regular, with ¢(t) = Ct1°83/10gd
(see Definition 1.5).
To verify this claim, it suffices to show that, given any pointA =>",_, ¢,0,,and
N, ¢ € N, the interval [» —2d", A4 2d"] can be covered by C3Y~¢ intervals of width d*. But
only way to generate points in A that belong to [» — 2d”, A 4+ 2d"] belonging to different
intervals of width d‘ centred on A is to alter the digits ¢, in the expansion » = >, ¢,0,,
with n € [¢, N]. There are 3V—¢*1 such digits.

Now fix N € N and consider the set

KN:{XE’}I‘:pN(X)§2/TdeX:2}.

Then m(Ky) > 1/2 (recall here that p,, > 0). We next claim that there cannot exist an

absolute constant C > 0 such that
/ lpyl?dm, < C/ lpy|2dm, for everyN € N,
T Ky
since if there did then
sup/ |pN|2dm1 <4c(C,
N JT

(recall the definition of K)) and p, would be uniformly bounded in L?(T), contradicting
the fact that u is singular with respect to Lebesgue measure.

Now consider the measure
~ 2
w = puy“ onR,

where || > 0 on (—1,1), and 1’/7 € C3°((—=1/4,1/4)). Let I?N be the periodization K to R,
and Py = py¥ € L%(R). Then the support of py is ¢-regular with ¢(t) = Ct1°83/1984 (the
convolution only spreads the support A a small amount), and Kj; is 1/2-relatively dense
for all N, but

ff{N Byl*dm;

sup —
v JgIPyl2dm,
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