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Abstract

Microbial water quality is currently assessed by fecal indicator
bacteria that are poor representatives of viral pathogens in the
environment. Viruses are predicted to account for the majority
of infectious risk from exposure to sewage contaminated water.
Previously developed viral indicators suffer from a lack of
human specificity, low concentrations in sewage, or both. In
this commentary review, we discuss recent advances in
developing cross-assembly phage (crAssphage) and pepper
mild mottle virus (PMMoV) as viral water quality indicators.
CrAssphage and PMMoV are abundant in and highly associ-
ated with human sewage, correlate with viral pathogens in
sewage contaminated environments and globally present.
Future work is necessary to describe crAssphage and PMMoV
fate in the environment, local variation in abundance and ge-
netic makeup, and relationship between molecular detections
and pathogen viability, among other areas. These de-
velopments will allow the integration of crAssphage and
PMMoV into quantitative microbial risk assessment and water
quality regulation.
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Introduction
Direct measurements of waterborne pathogens are
currently impractical for routine monitoring of drinking
and recreational water. Instead, fecal indicator bacteria
are monitored as proxies for fecal-oral pathogens. While
fecal indicator bacteria are widely used for routine water
quality monitoring, the fate and transport of fecal indi-
cator bacteria do not adequately mimic viral pathogens.
The results of this discrepancy are outbreaks of water-
borne disease associated with viruses despite fecal in-
dicator bacteria being absent or in compliance with
regulations [25,36,55,60]. Both epidemiology [27] and

risk assessments [15,20,52,69] indicate that viruses are
responsible for a significant portion of waterborne dis-
ease. Viral fecal pollution indicators would have a wide
variety of potential applications, including recreational
and irrigation water quality monitoring, as well as pro-
cess monitoring for wastewater treatment and water
reuse applications.

Prior targets have been developed as viral water
quality indicators. Bacteriophages, particularly somatic
coliphages and F-specific RNA phages infecting E. coli
and phages infecting Bacteroides fragilis, have been
tested as viral water quality indicators [12,28,38,40].
Both coliphages and phages infecting Bacteroides are
not specific to a sole-source wastewater stream and
are inconsistently associated with human viruses in
water [16,17,39,49,68,84] and waterborne disease
[1,19,41,47,81,82]. In addition to bacteriophages,
human enteric viruses including adenoviruses [2,86],
polyomaviruses [34,54], enteroviruses [56], and
noroviruses [86] have also been examined as more
specific fecal pollution indicators and microbial source

tracking markers [4]. While human viruses are more
specific indicators of waterborne disease risks than
nonpathogenic fecal indicators, in general they are
less abundant in wastewater streams which makes
their detection in contaminated environments
challenging.
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CrAssphage and PMMoV as viral water quality tools Bivins et al. 55
Currently, a viral pollution indicator that is both abun-
dant in and specific to wastewater is needed. Here, we
focus on pepper mild mottle virus (PMMoV) and cross-
assembly phage (crAssphage) as recently developed viral
fecal pollution indicators. PMMoV is a plant pathogen
that is abundant in human feces [89], likely from the
consumption of infected pepper products, such as hot
sauce. PMMoV was subsequently proposed as a viral

fecal pollution indicator [62]. Reviews covering the
development and application of PMMoV as a viral water
quality monitoring tool have recently been published
[43,74,77]. CrAssphage is a highly abundant human gut
bacteriophage [21]. CrAssphage has been confirmed as a
Bacteroides bacteriophage by culture [66] and identified
as a prototypical member of an entirely new viral family
[88]. While crAssphage as a viral water quality moni-
toring tool is a fairly recent development, a recent
review paper briefly covered its development and use
[14].

Some selected similarities and differences between
crAssphage and PMMoVare compared in Table 1. In this
commentary, we highlight recent findings applying
crAssphage and PMMoV as viral water quality tools, as
well as research needs to support their continued
development as we move toward their application in
water quality regulation.
CrAssphage and PMMoV fate in the
environment
The principal driver for using viral water quality markers
such as PMMoV and crAssphage is both their improved
ability to detect sewage contamination because of their
high enrichment in sewage and that their fate (i.e.
transport and persistence) in the environment more
closely mimics pathogenic viruses than bacterial in-

dicators. Here, we discuss previous work on the
comparative fate of crAssphage and PMMoV with both
water quality indicators and pathogens. Representative
Table 1

Comparison between crAssphage and PMMoV.

CrAssphage

Genome dsDNA
~90 kbp

Shape Isometric with tail
Size Diameter ~75 nm

Tail ~36 nm
Host organism Bacteria

(Bacteroides spp.)
Sewage concentrationa 7–9.5 log GC/L
Culturable? Single isolate cultured in s

Bacteroides intestinalis

a Range from Ref. [20].
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environmental crAssphage concentrations from these
studies are shown in Table 2; PMMoV concentrations in
environmental water samples have recently been
reviewed [43,74].

In general, crAssphage correlates well with existing
bacterial fecal indicators immediately following sewage
contamination events. CrAssphage has similar concen-

trations to the bacterial fecal indicator target HF183 in
untreated and treated sewage [44,70]. CrAssphage also
correlates well with HF183, E. coli, and enterococci in
sewage and surface water samples before and after rain
events but is present at higher concentrations
[5,6,13,70]. CrAssphage also co-occurs with antibiotic
resistance genes in sewage-impacted environments
[71]. In recently contaminated environments, crAss-
phage co-occurs with human viruses such as adenovirus,
polyomavirus, and norovirus in sewage but has concen-
trations up to five orders of magnitude higher than these

viruses [23,70]. Previous studies have shown correlation
between crAssphage and other viral targets and patho-
gens throughout the wastewater treatment process
[23,51]. A recent study found that crAssphage statisti-
cally correlated with adenovirus, polyomavirus, and so-
matic coliphage during activated sludge wastewater
treatment process [87]. The similar behavior between
crAssphage and other sewage-associated viral pathogens
in sewage-contaminated environments suggests it may
be a reliable indicator of human fecal pollution; however,
additional work, especially mechanistic work demon-

strating crAssphage fate, is necessary to confirm these
observations.

Similar to crAssphage, PMMoV correlates well with
existing bacterial fecal indicators following fresh sewage
contamination events, including HF183 in sewage and
sewage-impacted surface waters [3,73] and E. coli and
enterococci in sewage-impacted waters [64]. PMMoV
also co-occurs with antibiotic resistance genes in sewage
PMMoV

ssRNA
~6.3 kb
Elongated rods
Diameter ~18 nm
Length ~300 nm
Plants
(Peppers)
~6–10.3 log GC/L

train of Culturable in pepper plants; difficult to
quantify via culture
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Table 2

Observed crAssphage concentrations ranges. All valuesmeasured bymolecular methods (qPCR or dPCR). Concentrations are reported
as described in the original study with the exception of unit conversion.

Environment Location Concentration Range (Log10 copies/100 mL) % Positive Reference

Wastewater
Untreated Thailand 4.23–6.19 100 [44]
Untreated United Kingdom 5.3–9.3 100 [23]
Untreated United States 7.23 ± 0.36 100 [87]
Untreated Spain 7.4–8.9 100 [26]
Untreated Japan 9.98–11.03 100 [51]
Treated Thailand 3.78–4.89 100 [44]
Treated Spain 5.34 ± 0.59 100 [13]
Treated United Kingdom 7–8 100 [23]
Treated United States 4.35 ± 0.80 100 [87]
Treated Japan 8.54–10.00 100 [51]
Environmental waters
Stream United States 4.02–6.04 100 [70]
River Spain 5.42 ± 0.60 100 [13]
River United Kingdom 3.5–7.5 94 [23]
Variable Nepal 3.1 ± 0.9 62 [50]
Stream Spain 3.46 ± 1.29 100 [13]
Urban lake Australia ND-2.44 (dry weather)

2.61–5.33 (wet weather)
10 (dry weather)

95 (wet weather)
[5]

Urban lake Australia 2.06 ± 0.04 (dry weather)
3.53 ± 0.89 (wet weather)

31 (dry weather)
89 (wet weather)

[6]

Storm drain United States 2.60–3.65 (dry weather)
2.62–3.91 (wet weather)

41.6 (dry weather)
66.6 (wet weather)

[3]

ND-non-detect; PCR, polymerase chain reaction.

56 Occupational safety and health: Emerging microbial contaminants and human health effects
and sewage-impacted environments [46]. PMMoV
occurred more frequently and at higher concentrations
than adenovirus, polyomavirus, and norovirus in sewage-

impacted surface waters [37,51,53,74,78]. Additionally,
PMMoV correlated with and had higher concentrations
than enterovirus, Aichi virus, and polyomavirus in
sewage contaminated waters [50]. PMMoV reduction
levels (0.7e0.9 log10 reduction) during wastewater
treatment were also less than other viruses, suggesting
resistance to wastewater treatment [42,65]. This im-
plies PMMoV may be more applicable as a conservative
indicator of fecal pollution.

Both crAssphage and PMMoV have longer environ-

mental persistence than bacterial indicators [8,31].
CrAssphage persistence correlates with other viral
pathogens such as adenovirus, polyomavirus, and coli-
phage [8,13], whereas PMMoV decay is slower than
other viral indicators, including adenovirus, poly-
omavirus, and torque teno virus [31]. The difference in
crAssphage and PMMoV persistence is likely driven by
differences in their genomes (dsDNA versus ssRNA,
respectively); however, additional work is necessary to
examine the comparative decay of crAssphage, PMMoV,
and viral pathogens in diverse aquatic environments.

The enhanced persistence of PMMoV should be more
fully described to determine the suitability of PMMoV
application to detect an aged sewage release.
Current Opinion in Environmental Science & Health 2020, 16:54–61
Transport of viral fecal indicators in the environment has
remained relatively understudied because of the
inherent difficulty and variability of performing trans-

port experiments in the environment. Previous studies
have examined viral transport on the small-scale labo-
ratory-controlled level and have shown viral capsid
structure to play a crucial role [10,11]. Few studies,
however, have examined fecal indicator transport at
larger scales and even fewer have mechanistically
examined the transport of novel fecal indicators [10,24].
Additional research is necessary to evaluate the differ-
ence in transport between crAssphage, PMMoV, and
viral pathogens.
Geographic variability of CrAssphage and
PMMoV
Fecal pollution indicators have previously demonstrated
differential performance across geographical areas
[35,83]. This variability is likely driven at least in part by

geographic variations in diet (PMMoV), human gut
microbiomes (crAssphage), or both. The potential for
differential performance by viral fecal pollution in-
dicators makes it necessary to determine variability in
geographic performance during viral indicator assay
development, selection, and evaluation [14,80].

CrAssphage has been detected in wastewater globally.
Edwards et al. sequenced crAssphage PCR products
www.sciencedirect.com

www.sciencedirect.com/science/journal/24685844


CrAssphage and PMMoV as viral water quality tools Bivins et al. 57
from wastewater from 70 different locations in 23
countries across five continents demonstrating global
occurrences [22]. We note that this study did not pro-
vide quantitative detections. CrAssphage has also been
quantified in wastewater in the United States [72],
Spain [26], Nepal [50], Japan [51], Thailand [44], and
the United Kingdom [23]. Finally, given the recent
description of crAssphage as a fecal pollution indicator,

we expect additional reports of crAssphage occurrence
in wastewater to be forthcoming.

PMMoV was detected globally in wastewater as well,
including in Australia [37], Bolivia [75], Costa Rica [79],
Germany [31], Japan [48], Nepal [67], South Korea
[32], the United States of America [42,62,65], New
Zealand [29], and Vietnam [46]. PMMoV has also been
detected in groundwater [63], recreational water (e.g.
Ref. [3]), and in constructed wetlands treating waste-
water [61].

While global presence suggests the high potential of
both crAssphage and PMMoV, one possible challenge is
local variability in target abundance in sewage and
specificity to sewage. For example, assessments of
crAssphage specificity in the US and Europe have shown
strong human association [26,72]; however, a recent
assessment in Kathmandu, Nepal, suggested much
lower specificity with detections in multiple animal
fecal samples [50]. Local target variations are likely
because of variability in diet and human gut micro-

biomes, including both target abundance and strain
variability. CrAssphage diversity has recently been
shown to be locally clustered within countries, cities,
and individuals with thousands of strains of crAssphage
spread around the world from human feces-associated
environments [22]. Similarly, country-wide PMMoV
variation has been observed in Japanese drinking water
[33].

Metagenomic methods could be used to examine
crAssphage and PMMoV diversity [14]; however, this
approach is currently severely limited by bias from

sampling locations. As an example of sample bias, in a
recent meta-analysis of the human gut metagenomes,
88.35% of samples were fromNorth America and Europe
[9]. Greater metagenome geographic sample diversity is
needed to inform the development and application of
viral fecal pollution indicators. Working with sewage for
this application has considerable advantages, even
potentially generating complete genomes of novel un-
cultivated viruses with fewer restrictions than working
with samples from individual patients [85].
CrAssphage and PMMoV application in
quantitative microbial risk assessment
Novel indicator viruses such as crAssphage and PMMoV
have significant potential advantages in risk-based
www.sciencedirect.com
analyses of human contact with wastewater-impacted
environments (Figure 1). Specific advantages include
improved representation of pathogenic viruses and high
concentrations in wastewater which improves our ability
to detect wastewater contamination in the environment
and quantify subsequent human health risk. Quantita-
tive Microbial Risk Assessment (QMRA) is a tool that
enables quantifying human health risk and the associ-

ated uncertainty for decision making. Directly
measuring infectious pathogens is the most accurate way
to estimate risk; however, measuring all pathogens in an
environment may not be feasible, either because of low
concentration and prevalence or the diversity of poten-
tial pathogen targets. One approach to address this is to
use a ratio to estimate pathogen concentrations based on
indicator concentrations. This method assumes
contamination from a single source (typically waste-
water) and identical fate and transport of both the in-
dicator and pathogens. This method is based on the

current World Health Organization recommendation to
convert between FIB concentrations and viral pathogen
concentrations [57,76]. Recent QMRAs have applied a
variety of viral indicators including crAssphage, PMMoV,
and adenovirus to represent viral pathogens using a ratio
approach [18,20,45]. Crank et al. used this approach
with crAssphage and PMMoV in a QMRA that showed
the potential to reduce the current USEPA Recreational
Water Criteria (based on fecal indicator bacteria detec-
tion limits) of approximately 32 illnesses per 1000
swimmers to approximately 1 illness per 1000 swimmers

[20].

A key limitation to this approach is the assumed ratio of
indicator to pathogen, which is generally representative
only of a fresh sewage contamination event. Improved
research on the fate and transport of crAssphage and
PMMoV in relation to viral pathogens, as well as the
local occurrence of crAssphage and PMMoV will enable
modeling of more complex scenarios and improve the
utility of QMRA for this approach. The WHO ac-
knowledges that a risk-based approach is vital to un-
derstanding and preventing human disease, and as viral

diseases account for the majority of gastrointestinal ill-
nesses, improved methods for quantification and risk
characterization are needed to move forward [58,59].
Research needs
Multiple critical research needs are necessary to move
crAssphage and PMMoV from research to regulatory use.

Detection of both crAssphage and PMMoV relies on
molecular methods, as they are not currently culturable
from environmental samples. Both qPCR and ddPCR
methods have been applied to detect crAssphage and
PMMoV; a recent review paper discussed the relative
advantages of each approach [30]. Molecular detections
have unknown correlation with infectious viral
Current Opinion in Environmental Science & Health 2020, 16:54–61
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Figure 1

Advantages of crAssphage and PMMoV in regulatory and quantitative microbial risk assessment applications.
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pathogens [30]. QMRAs have corrected for this using a
live/dead fraction or assuming that all organisms are in-
fectious; however, more research is necessary for

modeling the infectious risk based on concentration
values from molecular methods alone [7,20,45], or
alternatively, methods to culture crAssphage or PMMoV.

Another potential challenge is sample processing. A
major reason why crAssphage and PMMoV have been
proposed as novel indicators is their abundance in
wastewater, but sample concentration is typically still
necessary, even in high biomass samples. Thus far, all
viral concentration methods have been largely tested ad
hoc. Further comparison of viral concentration tech-

niques is required to optimize molecular methods and to
quantify concentration efficiency to connect detected
concentrations with regulatory limits and QMRA.

There is also a need to connect the detection of crAss-
phage and PMMoV with the fate of viral pathogens in
the environment to support their application in QMRA.
Vital research needs that must be addressed are the
differential fate and transport of crAssphage and
PMMoV compared with the pathogens they represent
and improved models to represent crAssphage, PMMoV,

and viral pathogen decay. While observations to date
support the co-occurrence of crAssphage and PMMoV
Current Opinion in Environmental Science & Health 2020, 16:54–61
with viral pathogens, most studies have been conducted
in locations with known sewage impacts. Future studies
should include more pristine sites to support crAssphage

and PMMoV application in those settings.

Finally, there is a need for local validation and verifica-
tion of crAssphage and PMMoV to confirm their local
utility despite their global prevalence. Analysis of sam-
ples taken at exposure sites do not allow highly accurate
pathogen exposure risk without further characterization
of the source of fecal pollution. The continued global
evaluation of crAssphage, PMMoV, and other viral tar-
gets will further support their use in regulatory appli-
cations and QMRA. In addition to local assay validation,

it would be beneficial to conduct multilaboratory assay
validation for widely used crAssphage and PMMoV
assays.
Conclusions
The high abundance in sewage and human association of

crAssphage and PMMoV supports their continued
development as viral water quality monitoring tools.
Multiple research needs, including improved descrip-
tion of fate in the environment of crAssphage, PMMoV,
and viral pathogens; geographic variability of the abun-
dance and genetic makeup of crAssphage and PMMoV;
www.sciencedirect.com
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and improved connection between molecular crAss-
phage and PMMoV detections and viral pathogen in-
fectious risk will support the use of crAssphage and
PMMoV in QMRA and regulatory applications.
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