ScienceDirect

Cross-assembly phage and pepper mild mottle virus as viral water quality monitoring tools—potential, research gaps, and way forward

Aaron Bivins^a, Katherine Crank^a, Justin Greaves^a, Devin North^a, Zhenyu Wu^a and Kyle Bibby

Abstract

Microbial water quality is currently assessed by fecal indicator bacteria that are poor representatives of viral pathogens in the environment. Viruses are predicted to account for the majority of infectious risk from exposure to sewage contaminated water. Previously developed viral indicators suffer from a lack of human specificity, low concentrations in sewage, or both. In this commentary review, we discuss recent advances in developing cross-assembly phage (crAssphage) and pepper mild mottle virus (PMMoV) as viral water quality indicators. CrAssphage and PMMoV are abundant in and highly associated with human sewage, correlate with viral pathogens in sewage contaminated environments and globally present. Future work is necessary to describe crAssphage and PMMoV fate in the environment, local variation in abundance and genetic makeup, and relationship between molecular detections and pathogen viability, among other areas. These developments will allow the integration of crAssphage and PMMoV into quantitative microbial risk assessment and water quality regulation.

Addresses

Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA

Corresponding author: Bibby, Kyle (KBibby@nd.edu)

^a Authors ordered alphabetically.

Current Opinion in Environmental Science & Health 2020, 16:54-61

This review comes from a themed issue on Occupational Safety and Health: Emerging Microbial Contaminants and Human Health Effects

Edited by Warish Ahmed and Kerry Hamilton

For a complete overview see the Issue and the Editorial

https://doi.org/10.1016/j.coesh.2020.02.001

2468-5844/© 2020 Published by Elsevier B.V.

Kevwords

crAssphage, Pepper mild mottle virus, Water quality, Virus, Pathogen, Quantitative microbial risk assessment.

Introduction

Direct measurements of waterborne pathogens are currently impractical for routine monitoring of drinking and recreational water. Instead, fecal indicator bacteria are monitored as proxies for fecal-oral pathogens. While fecal indicator bacteria are widely used for routine water quality monitoring, the fate and transport of fecal indicator bacteria do not adequately mimic viral pathogens. The results of this discrepancy are outbreaks of waterborne disease associated with viruses despite fecal indicator bacteria being absent or in compliance with regulations [25,36,55,60]. Both epidemiology [27] and risk assessments [15,20,52,69] indicate that viruses are responsible for a significant portion of waterborne disease. Viral fecal pollution indicators would have a wide variety of potential applications, including recreational and irrigation water quality monitoring, as well as process monitoring for wastewater treatment and water reuse applications.

Prior targets have been developed as viral water quality indicators. Bacteriophages, particularly somatic coliphages and F-specific RNA phages infecting E. coli and phages infecting Bacteroides fragilis, have been tested as viral water quality indicators [12,28,38,40]. Both coliphages and phages infecting Bacteroides are not specific to a sole-source wastewater stream and are inconsistently associated with human viruses in water [16,17,39,49,68,84] and waterborne disease [1,19,41,47,81,82]. In addition to bacteriophages, human enteric viruses including adenoviruses [2,86], polyomaviruses [34,54], enteroviruses [56], and noroviruses [86] have also been examined as more specific fecal pollution indicators and microbial source tracking markers [4]. While human viruses are more specific indicators of waterborne disease risks than nonpathogenic fecal indicators, in general they are less abundant in wastewater streams which makes their detection in contaminated environments challenging.

Currently, a viral pollution indicator that is both abundant in and specific to wastewater is needed. Here, we focus on pepper mild mottle virus (PMMoV) and crossassembly phage (crAssphage) as recently developed viral fecal pollution indicators. PMMoV is a plant pathogen that is abundant in human feces [89], likely from the consumption of infected pepper products, such as hot sauce. PMMoV was subsequently proposed as a viral fecal pollution indicator [62]. Reviews covering the development and application of PMMoV as a viral water quality monitoring tool have recently been published [43,74,77]. CrAssphage is a highly abundant human gut bacteriophage [21]. CrAssphage has been confirmed as a Bacteroides bacteriophage by culture [66] and identified as a prototypical member of an entirely new viral family [88]. While crAssphage as a viral water quality monitoring tool is a fairly recent development, a recent review paper briefly covered its development and use [14].

Some selected similarities and differences between crAssphage and PMMoV are compared in Table 1. In this commentary, we highlight recent findings applying crAssphage and PMMoV as viral water quality tools, as well as research needs to support their continued development as we move toward their application in water quality regulation.

CrAssphage and PMMoV fate in the environment

The principal driver for using viral water quality markers such as PMMoV and crAssphage is both their improved ability to detect sewage contamination because of their high enrichment in sewage and that their fate (i.e. transport and persistence) in the environment more closely mimics pathogenic viruses than bacterial indicators. Here, we discuss previous work on the comparative fate of crAssphage and PMMoV with both water quality indicators and pathogens. Representative environmental crAssphage concentrations from these studies are shown in Table 2; PMMoV concentrations in environmental water samples have recently been reviewed [43,74].

In general, crAssphage correlates well with existing bacterial fecal indicators immediately following sewage contamination events. CrAssphage has similar concentrations to the bacterial fecal indicator target HF183 in untreated and treated sewage [44,70]. CrAssphage also correlates well with HF183, E. coli, and enterococci in sewage and surface water samples before and after rain events but is present at higher concentrations [5,6,13,70]. CrAssphage also co-occurs with antibiotic resistance genes in sewage-impacted environments [71]. In recently contaminated environments, crAssphage co-occurs with human viruses such as adenovirus, polyomavirus, and norovirus in sewage but has concentrations up to five orders of magnitude higher than these viruses [23,70]. Previous studies have shown correlation between crAssphage and other viral targets and pathogens throughout the wastewater treatment process [23,51]. A recent study found that crAssphage statistically correlated with adenovirus, polyomavirus, and somatic coliphage during activated sludge wastewater treatment process [87]. The similar behavior between crAssphage and other sewage-associated viral pathogens in sewage-contaminated environments suggests it may be a reliable indicator of human fecal pollution; however, additional work, especially mechanistic work demonstrating crAssphage fate, is necessary to confirm these observations.

Similar to crAssphage, PMMoV correlates well with existing bacterial fecal indicators following fresh sewage contamination events, including HF183 in sewage and sewage-impacted surface waters [3,73] and E. coli and enterococci in sewage-impacted waters [64]. PMMoV also co-occurs with antibiotic resistance genes in sewage

	CrAssphage	PMMoV	
Genome	dsDNA	ssRNA	
	~90 kbp	~6.3 kb	
Shape	Isometric with tail	Elongated rods	
Size	Diameter ~75 nm	Diameter ~18 nm	
	Tail ~36 nm	Length ~300 nm	
Host organism	Bacteria	Plants	
	(Bacteroides spp.)	(Peppers)	
Sewage concentration ^a	7-9.5 log GC/L	~6-10.3 log GC/L	
Culturable?	Single isolate cultured in strain of Bacteroides intestinalis	Culturable in pepper plants; difficult to quantify via culture	

Table 2 Observed crAssphage concentrations ranges. All values measured by molecular methods (gPCR or dPCR). Concentrations are reported as described in the original study with the exception of unit conversion.

Environment	Location	Concentration Range (Log10 copies/100 mL)	% Positive	Referen
Wastewater				
Untreated	Thailand	4.23-6.19	100	[44]
Untreated	United Kingdom	5.3-9.3	100	[23]
Untreated	United States	7.23 ± 0.36	100	[87]
Untreated	Spain	7.4-8.9	100	[26]
Untreated	Japan	9.98-11.03	100	[51]
Treated	Thailand	3.78-4.89	100	[44]
Treated	Spain	5.34 ± 0.59	100	[13]
Treated	United Kingdom	7–8	100	[23]
Treated	United States	4.35 ± 0.80	100	[87]
Treated	Japan	8.54-10.00	100	[51]
Environmental v	waters			
Stream	United States	4.02-6.04	100	[70]
River	Spain	5.42 ± 0.60	100	[13]
River	United Kingdom	3.5-7.5	94	[23]
Variable	Nepal	3.1 ± 0.9	62	[50]
Stream	Spain	3.46 ± 1.29	100	[13]
Urban lake	Australia	ND-2.44 (dry weather) 2.61-5.33 (wet weather)	10 (dry weather) 95 (wet weather)	[5]
Urban lake	Australia	2.06 ± 0.04 (dry weather) 3.53 ± 0.89 (wet weather)	31 (dry weather) 89 (wet weather)	[6]
Storm drain	United States	2.60-3.65 (dry weather) 2.62-3.91 (wet weather)	41.6 (dry weather) 66.6 (wet weather)	[3]

ND-non-detect; PCR, polymerase chain reaction.

and sewage-impacted environments [46]. PMMoV occurred more frequently and at higher concentrations than adenovirus, polyomavirus, and norovirus in sewageimpacted surface waters [37,51,53,74,78]. Additionally, PMMoV correlated with and had higher concentrations than enterovirus, Aichi virus, and polyomavirus in sewage contaminated waters [50]. PMMoV reduction levels (0.7-0.9 log₁₀ reduction) during wastewater treatment were also less than other viruses, suggesting resistance to wastewater treatment [42,65]. This implies PMMoV may be more applicable as a conservative indicator of fecal pollution.

Both crAssphage and PMMoV have longer environmental persistence than bacterial indicators [8,31]. CrAssphage persistence correlates with other viral pathogens such as adenovirus, polyomavirus, and coliphage [8,13], whereas PMMoV decay is slower than other viral indicators, including adenovirus, polyomavirus, and torque teno virus [31]. The difference in crAssphage and PMMoV persistence is likely driven by differences in their genomes (dsDNA versus ssRNA, respectively); however, additional work is necessary to examine the comparative decay of crAssphage, PMMoV, and viral pathogens in diverse aquatic environments. The enhanced persistence of PMMoV should be more fully described to determine the suitability of PMMoV application to detect an aged sewage release.

Transport of viral fecal indicators in the environment has remained relatively understudied because of the inherent difficulty and variability of performing transport experiments in the environment. Previous studies have examined viral transport on the small-scale laboratory-controlled level and have shown viral capsid structure to play a crucial role [10,11]. Few studies, however, have examined fecal indicator transport at larger scales and even fewer have mechanistically examined the transport of novel fecal indicators [10,24]. Additional research is necessary to evaluate the difference in transport between crAssphage, PMMoV, and viral pathogens.

Geographic variability of CrAssphage and **PMMoV**

Fecal pollution indicators have previously demonstrated differential performance across geographical areas [35,83]. This variability is likely driven at least in part by geographic variations in diet (PMMoV), human gut microbiomes (crAssphage), or both. The potential for differential performance by viral fecal pollution indicators makes it necessary to determine variability in geographic performance during viral indicator assay development, selection, and evaluation [14,80].

CrAssphage has been detected in wastewater globally. Edwards et al. sequenced crAssphage PCR products

from wastewater from 70 different locations in 23 countries across five continents demonstrating global occurrences [22]. We note that this study did not provide quantitative detections. CrAssphage has also been quantified in wastewater in the United States [72], Spain [26], Nepal [50], Japan [51], Thailand [44], and the United Kingdom [23]. Finally, given the recent description of crAssphage as a fecal pollution indicator, we expect additional reports of crAssphage occurrence in wastewater to be forthcoming.

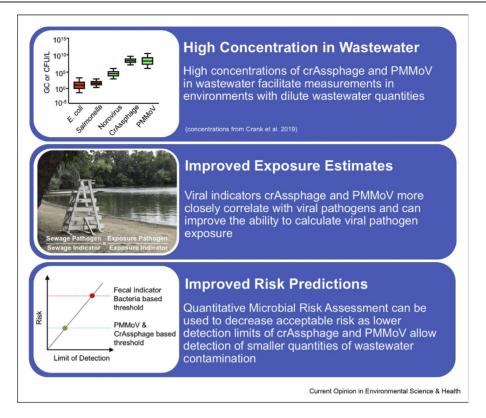
PMMoV was detected globally in wastewater as well, including in Australia [37], Bolivia [75], Costa Rica [79], Germany [31], Japan [48], Nepal [67], South Korea [32], the United States of America [42,62,65], New Zealand [29], and Vietnam [46]. PMMoV has also been detected in groundwater [63], recreational water (e.g. Ref. [3]), and in constructed wetlands treating wastewater [61].

While global presence suggests the high potential of both crAssphage and PMMoV, one possible challenge is local variability in target abundance in sewage and specificity to sewage. For example, assessments of crAssphage specificity in the US and Europe have shown strong human association [26,72]; however, a recent assessment in Kathmandu, Nepal, suggested much lower specificity with detections in multiple animal fecal samples [50]. Local target variations are likely because of variability in diet and human gut microbiomes, including both target abundance and strain variability. CrAssphage diversity has recently been shown to be locally clustered within countries, cities, and individuals with thousands of strains of crAssphage spread around the world from human feces-associated environments [22]. Similarly, country-wide PMMoV variation has been observed in Japanese drinking water [33].

Metagenomic methods could be used to examine crAssphage and PMMoV diversity [14]; however, this approach is currently severely limited by bias from sampling locations. As an example of sample bias, in a recent meta-analysis of the human gut metagenomes, 88.35% of samples were from North America and Europe [9]. Greater metagenome geographic sample diversity is needed to inform the development and application of viral fecal pollution indicators. Working with sewage for this application has considerable advantages, even potentially generating complete genomes of novel uncultivated viruses with fewer restrictions than working with samples from individual patients [85].

CrAssphage and PMMoV application in quantitative microbial risk assessment

Novel indicator viruses such as crAssphage and PMMoV have significant potential advantages in risk-based analyses of human contact with wastewater-impacted environments (Figure 1). Specific advantages include improved representation of pathogenic viruses and high concentrations in wastewater which improves our ability to detect wastewater contamination in the environment and quantify subsequent human health risk. Quantitative Microbial Risk Assessment (QMRA) is a tool that enables quantifying human health risk and the associated uncertainty for decision making. Directly measuring infectious pathogens is the most accurate way to estimate risk; however, measuring all pathogens in an environment may not be feasible, either because of low concentration and prevalence or the diversity of potential pathogen targets. One approach to address this is to use a ratio to estimate pathogen concentrations based on This method assumes indicator concentrations. contamination from a single source (typically wastewater) and identical fate and transport of both the indicator and pathogens. This method is based on the current World Health Organization recommendation to convert between FIB concentrations and viral pathogen concentrations [57,76]. Recent QMRAs have applied a variety of viral indicators including crAssphage, PMMoV, and adenovirus to represent viral pathogens using a ratio approach [18,20,45]. Crank et al. used this approach with crAssphage and PMMoV in a OMRA that showed the potential to reduce the current USEPA Recreational Water Criteria (based on fecal indicator bacteria detection limits) of approximately 32 illnesses per 1000 swimmers to approximately 1 illness per 1000 swimmers


A key limitation to this approach is the assumed ratio of indicator to pathogen, which is generally representative only of a fresh sewage contamination event. Improved research on the fate and transport of crAssphage and PMMoV in relation to viral pathogens, as well as the local occurrence of crAssphage and PMMoV will enable modeling of more complex scenarios and improve the utility of QMRA for this approach. The WHO acknowledges that a risk-based approach is vital to understanding and preventing human disease, and as viral diseases account for the majority of gastrointestinal illnesses, improved methods for quantification and risk characterization are needed to move forward [58,59].

Research needs

Multiple critical research needs are necessary to move crAssphage and PMMoV from research to regulatory use.

Detection of both crAssphage and PMMoV relies on molecular methods, as they are not currently culturable from environmental samples. Both qPCR and ddPCR methods have been applied to detect crAssphage and PMMoV; a recent review paper discussed the relative advantages of each approach [30]. Molecular detections have unknown correlation with infectious

Figure 1

Advantages of crAssphage and PMMoV in regulatory and quantitative microbial risk assessment applications.

pathogens [30]. QMRAs have corrected for this using a live/dead fraction or assuming that all organisms are infectious; however, more research is necessary for modeling the infectious risk based on concentration values from molecular methods alone [7,20,45], or alternatively, methods to culture crAssphage or PMMoV.

Another potential challenge is sample processing. A major reason why crAssphage and PMMoV have been proposed as novel indicators is their abundance in wastewater, but sample concentration is typically still necessary, even in high biomass samples. Thus far, all viral concentration methods have been largely tested *ad hoc*. Further comparison of viral concentration techniques is required to optimize molecular methods and to quantify concentration efficiency to connect detected concentrations with regulatory limits and QMRA.

There is also a need to connect the detection of crAssphage and PMMoV with the fate of viral pathogens in the environment to support their application in QMRA. Vital research needs that must be addressed are the differential fate and transport of crAssphage and PMMoV compared with the pathogens they represent and improved models to represent crAssphage, PMMoV, and viral pathogen decay. While observations to date support the co-occurrence of crAssphage and PMMoV

with viral pathogens, most studies have been conducted in locations with known sewage impacts. Future studies should include more pristine sites to support crAssphage and PMMoV application in those settings.

Finally, there is a need for local validation and verification of crAssphage and PMMoV to confirm their local utility despite their global prevalence. Analysis of samples taken at exposure sites do not allow highly accurate pathogen exposure risk without further characterization of the source of fecal pollution. The continued global evaluation of crAssphage, PMMoV, and other viral targets will further support their use in regulatory applications and QMRA. In addition to local assay validation, it would be beneficial to conduct multilaboratory assay validation for widely used crAssphage and PMMoV assays.

Conclusions

The high abundance in sewage and human association of crAssphage and PMMoV supports their continued development as viral water quality monitoring tools. Multiple research needs, including improved description of fate in the environment of crAssphage, PMMoV, and viral pathogens; geographic variability of the abundance and genetic makeup of crAssphage and PMMoV;

and improved connection between molecular crAssphage and PMMoV detections and viral pathogen infectious risk will support the use of crAssphage and PMMoV in QMRA and regulatory applications.

Funding information

This work was supported by United States National Science Foundation grants 1748019 and 1818412 to K.B.

Conflict of interest statement

K.B. is a co-inventor on a US patent application entitled "Cross-Assembly Phage DNA Sequences, Primers and Probes for PCR-based Identification of Human Fecal Pollution Sources" (Application Number: 62/386,532). United States universities and non-profit researchers interested in using this technology must obtain a research license from the US EPA. To apply for a research license, please request additional information from ftta@epa.gov. The authors declare no other conflict of interest.

References

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- Abdelzaher AM, Wright ME, Ortega C, Hasan A, Shibata T, Solo-Gabriele HM, Kish J, Withum K, He G, Elmir SM: **Daily measures** of microbes and human health at a non-point source marine beach. J Water Health 2011, 9:443-457.
- Ahmed W, Goonetilleke A, Gardner T: Human and bovine adenoviruses for the detection of source-specific fecal pollution in coastal waters in Australia. Water Res 2010a. 44: 4662-4673
- Ahmed W, Hamilton KA, Lobos A, Hughes B, Staley C, Sadowsky MJ, Harwood VJ: Quantitative microbial risk assessment of microbial source tracking markers in recreational water contaminated with fresh untreated and secondary treated sewage. Environ Int 2018, 117:243-249

Applies molecular markers, including crAssphage, to conduct a quatitative microbial risk assessment.

Ahmed W, Harwood V: Human and animal enteric viral markers for tracking the sources of faecal pollution. In Part 2 indicators and microbial source tracking markers. Edited by Blanch A; 2017. Global Water Pathogen Project.

Describes current 'state of the art' methods using viruses to track fecal

- Ahmed W, Payyappat S, Cassidy M, Besley C: Enhanced insights from human and animal host-associated molecular marker genes in a freshwater lake receiving wet weather overflows. Sci Rep 2019a, 9:1-13.
- Ahmed W, Payyappat S, Cassidy M, Harrison N, Besley c: Sewage-associated marker genes illustrate the impact of wet weather overflows and dry weather leakage in urban estuarine waters of Sydney, Australia. Sci Total Environ 2019.
- Ahmed W, Vieritz A, Goonetilleke A, Gardner T: Health risk from the use of roof-harvested rainwater in southeast queensland, Australia, as potable or nonpotable water, determined using quantitative microbial risk assessment. 2010.

Describes the decay of fecal pollution indicators, including crAssphage.

Ahmed W, Zhang Q, Kozak S, Beale D, Gyawali P, Sadowsky MJ, Simpson S: Comparative decay of sewage-associated marker genes in beach water and sediment in a subtropical region. Water Res 2019c, 149:511-521.

- Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD, Finn RD: A new genomic blueprint of the human gut microbiota. Nature 2019, 568:499.
- Armanious A, Aeppli M, Jacak R, Refardt D, Sigstam T, Kohn T, Sander M: Viruses at solid-water interfaces: a systematic assessment of interactions driving adsorption. Environ Sci Technol 2015, 50:732-743.
- 11. Armanious A, Munch M, Kohn T, Sander M: Competitive coadsorption dynamics of viruses and dissolved organic matter to positively charged sorbent surfaces. Environ Sci Technol 2016. **50**:3597-3606.
- 12. Armon R, Kott Y: Bacteriophages as indicators of pollution. Crit Rev Environ Sci Technol 1996, 26:299-335
- Balleste E, Pascual-Benito M, Martin-Diaz J, Blanch AR, Lucena F, Muniesa M, Jofre J, Garcia-Aljaro C: Dynamics of crAssphage as a human source tracking marker in potentially faecally polluted environments. Water Res 2019, 155:233-244.

Describes the fate and transport of crAssphage in the environment.

14. Bibby K, Crank K, Greaves J, Li X, Wu Z, Hamza IA, Stachler E: Metagenomics and the development of viral water quality tools. npj Clean Water 2019, 2:9.

Describes metagenomic approaches to develop viral water quality monitoring tools, including crAssphage and PMMoV.

- Boehm AB, Soller JA, Shanks OC: Human-associated fecal quantitative polymerase chain reaction measurements and simulated risk of gastrointestinal illness in recreational waters contaminated with raw sewage. Environ Sci Technol Lett 2015. 2:270-275.
- Boehm AB, Yamahara KM, Love DC, Peterson BM, McNeill K, Nelson KL: Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach. Environ Sci Technol 2009, 43: 8046-8052
- 17. Borchardt MA, Haas NL, Hunt RJ: Vulnerability of drinkingwater wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions. Appl Environ Microbiol 2004, **70**:5937-5946.
- 18. Brown KI, Graham KE, Soller JA, Boehm AB: Estimating the probability of illness due to swimming in recreational water with a mixture of human- and gull-associated microbial source tracking markers. Environ Sci J Integr Environ Res: Processes & Impacts 2017, 19:1528-1541.
- 19. Colford Jr JM, Wade TJ, Schiff KC, Wright CC, Griffith JF Sandhu SK, Burns S, Sobsey M, Lovelace G, Weisberg SB: Water quality indicators and the risk of illness at beaches with nonpoint sources of fecal contamination. Epidemiology 2007, **18**:27-35.
- Crank K, Petersen S, Bibby K: Quantitative microbial risk assessment of swimming in sewage impacted waters using CrAssphage and pepper mild mottle virus in a customizable model. Environ Sci Technol Lett 2019, 6:571-57

Applies crAssphage and PMMoV in a quantitative microbial risk assessment model.

- Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, Boling L, Barr JJ, Speth DR, Seguritan V, Aziz RK: **A highly abundant** bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 2014, 5:4498. Describes the discovery of crAssphage.
- 22. Edwards RA, Vega AA, Norman HM, et al.: Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol 2019, 4:1727-1736, https:// doi.org/10.1038/s41564-019-0494-6.

Demonstrates global occurrence and diversity of crAssphage.

- Farkas K, Adriaenssens EM, Walker DI, McDonald JE Malham SK, Jones DL: Critical evaluation of CrAssphage as a molecular marker for human-derived wastewater contamination in the aquatic environment. Food Environ Virol 2019, 11: 113-119.
- Ferguson C, Husman AMdR, Altavilla N, Deere D, Ashbolt N: Fate and transport of surface water pathogens in watersheds. Environ Sci Technol 2010, 33:299-361.

- Foy HM, Cooney MK, Hatlen JB: Adenovirus type 3 epidemic associated with intermittent chlorination of a swimming pool. Arch Environ Health 1968, 17:795–802.
- García Aljaro C, Ballesté E, Muniesa M, Jofre J: Determination of crAssphage in water samples and applicability for tracking human faecal pollution. Microbial biotechnology 2017, 10: 1775–1780.

Describes and evaluates a novel assay for crAssphage quantification in the environment.

- Gibson KE: Viral pathogens in water: occurrence, public health impact, and available control strategies. Current opinion in virology 2014, 4:50-57.
- 28. Grabow W: Bacteriophages: update on application as models for viruses in water. WaterSA 2001, 27:251–268.
- Gyawali P, Croucher D, Ahmed W, Devane M, Hewitt J: Evaluation of pepper mild mottle virus as an indicator of human faecal pollution in shellfish and growing waters. Water Res 2019, 154:370–376.
- Hamza IA, Bibby K: Critical issues in application of molecular methods to environmental virology. J Virol Methods 2019, 266: 11–24.
- Hamza IA, Jurzik L, Uberla K, Wilhelm M: Evaluation of pepper mild mottle virus, human picobirnavirus and Torque teno virus as indicators of fecal contamination in river water. Water Res 2011, 45:1358–1368.
- Han T-H, Kim S-C, Kim S-T, Chung C-H, Chung J-Y: Detection of norovirus genogroup IV, klassevirus, and pepper mild mottle virus in sewage samples in South Korea. Arch Virol 2014, 159: 457–463.
- Haramoto E, Kitajima M, Kishida N, Konno Y, Katayama H, Asami M, Akiba M: Occurrence of pepper mild mottle virus in drinking water sources in Japan. Appl Environ Microbiol 2013, 79:7413–7418.
- Harwood VJ, Brownell M, Wang S, Lepo J, Ellender R, Ajidahun A, Hellein KN, Kennedy E, Ye X, Flood C: Validation and field testing of library-independent microbial source tracking methods in the Gulf of Mexico. Water Res 2009, 43: 4812–4819.
- Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A: Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol Rev 2014, 38:1–40.
- Hauri A, Schimmelpfennig M, Walter-Domes M, Letz A, Diedrich S, Lopez-Pila J, Schreier E: An outbreak of viral meningitis associated with a public swimming pond. Epidemiol Infect 2005, 133:291–298.
- Hughes B, Beale D, Dennis P, Cook S, Ahmed W: Cross-comparison of human wastewater-associated molecular markers in relation to fecal indicator bacteria and enteric viruses in recreational beach waters. Appl Environ Microbiol 2017, 83. e00028-00017.
- Jebri S, Muniesa M, Jofre J: General and host-associated bacteriophage indicators of faecal pollution. Global Water Pathogen Project; 2017.
- Jiang S, Noble R, Chu W: Human adenoviruses and coliphages in urban runoff-impacted coastal waters of Southern California. Appl Environ Microbiol 2001, 67:179–184.
- Jofre J: Indicators of waterborne enteric viruses. Perspect Med Virol 2007, 17:227–249.
- 41. Kfir R, Cabelli V, Franklin L, Joubert G: Morbidity among bathers exposed to polluted seawater. A prospective epidemiological study. South African medical journal= Suid-Afrikaanse tydskrif vir geneeskunde 1992, 81:543–546.
- Kitajima M, Iker BC, Pepper IL, Gerba CP: Relative abundance and treatment reduction of viruses during wastewater treatment processes — Identification of potential viral indicators. Sci Total Environ 2014, 488–489:290–296.

- 43. Kitajima M, Sassi HP, Torrey JR: Pepper mild mottle virus as a water quality indicator. NPJ Clean Water 2018, 1:1–9.
- 44. Kongprajug A, Mongkolsuk S, Sirikanchana K: CrAssphage as a potential human sewage marker for microbial source tracking in southeast asia. Environ Sci Technol 2019, 6:159–164.
- Kundu A, McBride G, Wuertz S: Adenovirus-associated health risks for recreational activities in a multi-use coastal watershed based on site-specific quantitative microbial risk assessment. Water Res 2013, 47:6309

 –6325.
- 46. Kuroda K, Nakada N, Hanamoto S, Inaba M, Katayama H, Do AT, Nga TTV, Oguma K, Hayashi T, Takizawa S: Pepper mild mottle virus as an indicator and a tracer of fecal pollution in water environments: comparative evaluation with wastewater-tracer pharmaceuticals in Hanoi, Vietnam. Sci Total Environ 2015, 506:287–298.
- Lee J, Dawson S, Ward S, Surman S, Neal K: Bacteriophages are a better indicator of illness rates than bacteria amongst users of a white water course fed by a lowland river. Water Sci Technol 1997, 35:165–170.
- Lee S, Hata A, Yamashita N, Tanaka H: Evaluation of virus reduction by ultrafiltration with coagulation-sedimentation in water reclamation. Food Environ Virol 2017, 9:453–463.
- Love DC, Rodriguez RA, Gibbons CD, Griffith JF, Yu Q, Stewart JR, Sobsey MD: Human viruses and viral indicators in marine water at two recreational beaches in Southern California, USA. J Water Health 2013, 12:136–150.
- Malla B, Ghaju Shrestha R, Tandukar S, Sherchand JB,
 Haramoto E: Performance evaluation of human-specific viral markers and application of pepper mild mottle virus and CrAssphage to environmental water samples as fecal pollution markers in the Kathmandu valley, Nepal. Food Environ Virol 2019a, 11:274–287.

Comparative evaluation of crAssphage and PMMoV in Nepal.

Malla B, Makise K, Nakaya K, Mochizuki T, Yamada T,
 Haramoto E: Evaluation of human- and animal-specific viral markers and application of CrAssphage, pepper mild mottle virus, and tobacco mosaic virus as potential fecal pollution markers to river water in Japan. Food Environ Virol 2019b, 11: 446-452

Comparative evaluation of crAssphage and PMMoV in Japan.

- McBride GB, Stott R, Miller W, Bambic D, Wuertz S: Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States. Water Res 2013, 47:5282–5297.
- McGinnis S, Spencer S, Firnstahl A, Stokdyk J, Borchardt M, McCarthy DT, Murphy HM: Human Bacteroides and total coliforms as indicators of recent combined sewer overflows and rain events in urban creeks. Sci Total Environ 2018, 630: 967–976.
- 54. McQuaig SM, Scott TM, Lukasik JO, Paul JH, Harwood VJ: Quantification of human polyomaviruses JC virus and BK virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples. Appl Environ Microbiol 2009, 75:3379–3388.
- Mookerjee S, Batabyal P, Halder M, Palit A: Specificity of coliphages in evaluating marker efficacy: a new insight for water quality indicators. J Virol Methods 2014, 208:115–118.
- Noble RT, Allen SM, Blackwood AD, Chu W, Jiang SC, Lovelace GL, Sobsey MD, Stewart JR, Wait DA: Use of viral pathogens and indicators to differentiate between human and non-human fecal contamination in a microbial source tracking comparison study. J Water Health 2003, 1:195–207.
- WHO: WHO guidelines for the safe use ofWastewater, excreta, and greywater. Geneva, Switzerland: WHO; 2006.
- 58. WHO: Preventing diarrhoea through better water, sanitation and hygiene: exposures and impacts in low- and middle-income countries. 2014. Geneva, Switzerland.
- WHO: Quantitative microbial risk assessment: application for water safety management. Geneva, Switzerland: WHO; 2016.

- Papapetropoulou M, Vantarakis A: Detection of adenovirus outbreak at a municipal swimming pool by nested PCR **amplification**. *J Infect* 1998, **36**:101–103.
- 61. Rachmadi Andri T, Kitajima Masaaki, Pepper lan L, Gerba Charles P: Enteric and indicator virus removal by surface flow wetlands. Sci Total Environ 2016, 542:976-982
- Rosario K, Symonds EM, Sinigalliano C, Stewart J, Breitbart M: Pepper mild mottle virus as an indicator of fecal pollution. Appl Environ Microbiol 2009. 75:7261-7267.

First description of PMMoV as a viral water quality indicator.

- Rosiles-González G, Ávila-Torres G, Moreno-Valenzuela OA, Acosta-González G, Leal-Bautista RM, Grimaldo-Hernández CD, Brown JK, Chaidez-Quiroz C, Betancourt WQ, Gerba CP, Hernández-Zepeda C: Occurrence of pepper mild mottle virus (PMMoV) in groundwater from a karst aquifer system in the Yucatan Peninsula, Mexico. Food Environmental Virol 2017, 9: 487-497
- Saeidi N, Gu X, Tran NH, Goh SG, Kitajima M, Kushmaro A, Schmitz BW, Gin KY: Occurrence of traditional and alternative fecal indicators in tropical urban environments under different land use patterns. Appl Environ Microbiol 2018, 84.
- Schmitz BW, Kitajima M, Campillo ME, Gerba CP, Pepper IL: Virus reduction during advanced Bardenpho and conventional wastewater treatment processes. Environ Sci Technol 2016. 50:9524-9532.
- Shkoporov AN, Khokhlova EV, Fitzgerald CB, Stockdale SR, Draper LA, Ross RP, Hill C: Φ CrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat Commun 2018, 9:4781.

Confirms crAssphage host as Bacteroides and describes first cultivation of crAssphage.

- Shrestha S, Shrestha S, Shindo J, Sherchand JB, Haramoto E: Virological quality of irrigation water sources and pepper mild mottle virus and tobacco mosaic virus as index of pathogenic virus contamination level. Food Environ Virol 2018, **10**:107-120.
- Skraber S, Gassilloud B, Gantzer C: Comparison of coliforms and coliphages as tools for assessment of viral contamination in river water. Appl Environ Microbiol 2004, 70:3644-3649.
- Soller JA, Schoen ME, Bartrand T, Ravenscroft JE, Ashbolt NJ: Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res 2010, 44:4674-4691
- Stachler E, Akyon B, Carvalho NAd, Ference C, Bibby K: Correlation of crAssphage qPCR markers with culturable and molecular indicators of human fecal pollution in an impacted urban watershed. Environ Sci Technol 2018, 53:7505-7512.

Evaluates crAssphage occurrence and correlation with other fecal pollution indicators in a sewage-impacted environment.

71. Stachler E, Crank K, Bibby K: Co-occurrence of crAssphage with antibiotic resistance genes in an impacted urban watershed. Environ Sci Technol 2019, 6:216-221.

Desmonstrates crAssphage and antibiotic resistance gene cooccurrence in a sewage impacted environment.

Stachler E, Kelty C, Sivaganesan M, Li X, Bibby K, Shanks OC: Quantitative CrAssphage PCR assays for human fecal pollution measurement. Environ Sci Technol 2017, 51: 9146-9154

Describes and evaluates a crAssphage quantitative assay.

- Staley C, Gordon KV, Schoen ME, Harwood VJ: Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters. Appl Environ Microbiol 2012, 78:7317-7326.
- Symonds E, Nguyen KH, Harwood V, Breitbart M: Pepper mild mottle virus: a plant pathogen with a greater purpose in (waste) water treatment development and public health management. Water Res 2018, 144:1-12.

Review of PMMoV as a viral water quality indicator.

- 75. Symonds E, Verbyla M, Lukasik J, Kafle R, Breitbart M, Mihelcic J: A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia. Water Res 2014, 65: 257-270.
- 76. Symonds EM, Breitbart M: Affordable enteric virus detection techniques are needed to support changing paradigms in water quality management. Clean 2015, 43:8–12.
- 77. Symonds EM, Rosario K, Breitbart M: Pepper mild mottle virus:
 * agricultural menace turned effective tool for microbial water quality monitoring and assessing (waste) water treatment technologies. PLoS Pathog 2019, 15. e1007639.

 Discussion of the path forward using PMMoV as a viral water quality

indicator.

- Symonds EM, Sinigalliano C, Gidley M, Ahmed W, McQuaig-Ulrich SM, Breitbart M: Faecal pollution along the southeastern coast of Florida and insight into the use of pepper mild mottle virus as an indicator. J Appl Microbiol 2016, 121: 1469-1481.
- Symonds EM, Young S, Verbyla M, McQuaig-Ulrich S, Ross E,
 Jimenez J, Harwood VJ, Breitbart M: Microbial source tracking in shellfish harvesting waters in the Gulf of Nicoya, Costa Rica. Water Res 2017, 111:177–184.

Application of PMMoV for fecal pollution source tracking in Costa Rica.

- 80. Tandukar S, Sherchand J, Bhandari D, Sherchan S, Malla B, Ghaju Shrestha R, Haramoto E: **Presence of human enteric** viruses, protozoa, and indicators of pathogens in the Bagmati River, Nepal. Pathogens 2018, 7:38.
- 81. van Asperen IA, Medema G, Borgdorff MW, Sprenger MJ, Havelaar AH: Risk of gastroenteritis among triathletes in relation to faecal pollution of fresh waters. Int J Epidemiol 1998, **27**:309-315.
- Wade TJ, Calderon RL, Sams E, Beach M, Brenner KP, Williams AH, Dufour AP: Rapidly measured indicators of recreational water quality are predictive of swimming-associated gastrointestinal illness. Environ Health Perspect 2005, 114: 24-28.
- 83. Wang D, Green HC, Shanks OC, Boehm AB: New performance metrics for quantitative polymerase chain reaction-based microbial source tracking methods. Environ Sci Technol Lett 2013. 1:20-25.
- 84. Westrell T, Teunis P, van den Berg H, Lodder W, Ketelaars H, Stenström TA, de Roda Husman AM: Short-and long-term variations of norovirus concentrations in the Meuse river during a 2-year study period. Water Res 2006, 40:2613-2620.
- White DJ, Wang J, Hall RJ: Assessing the impact of assemblers on virus detection in a de novo metagenomic analysis pipeline. *J Comput Biol* 2017, **24**:874–881.
- 86. Wolf S, Hewitt J, Greening GE: Viral multiplex quantitative PCR assays for tracking sources of fecal contamination. Appl Environ Microbiol 2010, 76:1388–1394.
- 87. Wu Z, Greaves J, Arp L, Stone D, Bibby K: Comparative fate of CrAssphage with culturable and molecular fecal pollution indicators during activated sludge wastewater treatment. Environ Int 2020, 136:105452.
- 88. Yutin N, Makarova KS, Gussow AB, Krupovic M, Segall A, Edwards RA, Koonin EV: Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nature Microbiology 2018, 3:38-46. Description of the family of crAss-like phages.
- Zhang T, Breitbart M, Lee WH, Run J-Q, Wei CL, Soh SWL, Hibberd ML, Liu ET, Rohwer F, Ruan Y: RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol 2005, 4:e3.