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ABSTRACT 

Introduction: Human movement is among the essential forces that drive spatial spread of 

infectious diseases. To date, reducing and tracking human movement during the pandemic have 

proven effective in limiting the spread of COVID-19. Existing methods for monitoring and 

modeling the spatial spread of infectious diseases rely on various data sources as proxies of 

human movement, such as airline travel data, mobile phone data, and dollar bills tracking. 

However, intrinsic limitations of these data sources prevent us from systematic monitoring and 

analyses of human movement from different spatial scales (from local to global). Big social 

media data such as geotagged tweets have been widely used in human mobility studies, yet more 

research are needed to validate the capabilities and limitations of using such data for studying 

human movement at different geographic scales (e.g., from local to global) in the context of 

global infectious disease transmission.  

Method and Analysis: This research will first develop a database with optimized spatiotemporal 

indexing to store and manage the multi-source datasets collected in this project. This database 

will be connected to our in-house Hadoop computing cluster for efficient big data computing and 

analytics. This research will then develop a novel data-driven approach, including innovative 

data models, predictive models, and computing algorithms, to effectively extract and analyze 

human movement patterns from big geotagged Twitter data for enhancing situational awareness 

and risk prediction in public health emergency response and disease surveillance systems. 

Research findings can help government officials, public health managers and emergency 

responders to answer critical questions during the pandemic regarding the current and future 

infectious risk of a state, county, or community and the effectiveness of the social/physical 

distancing practice in curtaining the spread of the virus.   



Ethics and Dissemination: This research does not involve human subjects and received an 

exempt review from the Institutional Review Board (IRB). All data collected in this project are 

from public domains. Geotagged Twitter data are collected using the official Twitter Streaming 

Application Programming Interface (API). Twitter developer polices are strictly followed when 

collecting and dissimiating Twitter data. The raw individual geotagged tweets with exact latitude 

and longitude will not be published in any way including maps, technical report, or journal 

publications. All data collected in this project will be stored in an in-house Hadoop computing 

cluster hosted at the University of South Carolina with firewall protection and two-factor 

authentication & endpoint security. Results of this project will be disseminated as maps, 

summary graphics, news reports, and research articles.  
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INTRODUCTION 

The coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), was originally detected in Wuhan, China, in December 

2019. The World Health Organization (WHO) declared COVID-19 outbreak as a pandemic on 

March 11, 2020 [1] due to its rapid spread to several geographic regions. To contain the spread 

of COVID-19, unprecedented measures such as mass quarantines of cities such as Wuhan, and 

even lockdown of entire countries, such as Italy, have been taken. Due to the rapid human-to-

human transmission of COVID-19, models or measurements that help understand potential 

infectious risk at different geographic levels can play an essential role for residents, medical 

workers, and governments. Such models can help local authorities and communities better 

allocate resources and efforts at a community-level. Meanwhile, it is equally important for policy 



makers and emergency responders to understand how people practice the social/physical 

distancing and how effective these control measures are at curbing the spatial propagation of 

virus. 

Human movement is an important driver of the geographic spread of infectious diseases 

[2]. For example, studies on Severe Acute Respiratory Syndrome (SARS) [3], Middle East 

Respiratory Syndrome (MERS) [4], and influenza H1N1[5,6] all confirmed that airline travel 

was a major transmission mechanism at a large spatial scale. From a public health perspective, 

prediction and control of the spread of infectious disease benefits greatly from our growing 

capacity to quantify human movement [7]. COVID-19 has a high human-to-human transmission 

rate and can be transmitted during the pre-clinical incubation period. So far, limiting and tracking 

human movement during the outbreak has proven effective at reducing the spread of COVID-19 

in different countries [8–10]. In this sense, monitoring and analyzing human movement patterns 

or population flows at different spatial scales (global, country, state, county, and community) is 

critical for us to gain better understanding on the current and future infectious risk at population 

level during the pandemic. Such situational awareness can help governments at all levels (local, 

state, federal, and international) proactively reallocate medical supplies and medical workforces 

to more vulnerable areas for better preparation and readiness in fighting the COVID-19 

pandemic.  

Existing studies have used various data sources to quantify human movement for 

infectious disease modeling. At large scale, airline data are important sources in understanding 

global transmission of infectious diseases. For example, global spread of SARS simulation 

models have been generated with airline data [11]. However, airline travel data have shown a 

limited usefulness in understanding transmission across short distances [12]. While airline data 



deepened understanding for transmission mechanism of infectious disease at large geographical 

scale, at small scale, the transmission mechanism can be different [13]. At local scale, mobile 

phone data were used as a measurement of human mobility and demonstrated its utility in 

understanding spatial transmission patterns of malaria [14], cholera [15], and influenza [16]. 

However, due to privacy issues, mobile phone data are limited in terms of accessibility and in 

situations where such data are available and sampled populations are often biased to users of 

sponsored carrier companies [17]. In addition, mobile phone data are often limited to a local 

region or at most a country and cannot provide a systematic global coverage. Besides mobile 

phone data, commuting patterns derived from census data also play important roles in 

understanding the spread patterns of virus at local scale [13,18].  

With the increasing prevalence of location-enabled social media, geotagged Twitter data 

have been widely used in human mobility studies (e.g., [19–21]), yet limited research has been 

conducted to validate the potential and limitations of using these data for studying human 

movement at different geographic scales (e.g., from global to local) in the context of global 

infectious disease transmission. Meanwhile, the recent development of Artificial Intelligence 

(AI) has been proven useful in assisting diagnosis, drug analysis, data collection, and outbreak 

prediction [22]. Various types of neural network algorithms have demonstrated capacity in 

predicting HIV epidemic[23], influenza-like illness [24], and SARS [25]. However, the majority 

of these AI-based prediction algorithms have focused on mathematical models of trend 

development and outbreak identification, in which limited geospatial information (especially at 

different geographic scales) is considered. The recent COVID-19 pandemic provides us with a 

unique opportunity to explore innovative approaches to effectively use big Twitter data and AI-



based algrithms, and examine their efficiency for enhancing situational awareness and risk 

prediction in public health emergency response and disease surveillance systems.  

By leveraging the interdisciplinary team’s collective expertise in spatio-temporal 

modeling, big data analytics, infectious disease, spatial epidemiology, and health promotion and 

behavior modification, we propose to develop a novel data-driven public health approach using 

big Twitter data and AI to monitor and analyze human movement at different spatial scales (from 

global to regional to local) for enhancing situational awareness and risk prediction in public 

health emergency response and disease surveillance systems. With the proposed approach, we 

aim to answer the following critical questions during the COVID-19 pandemic: (1) Where are 

people coming from and going to during the pandemic? We will answer this question by 

developing an Origin-Destination-Time data cube (ODT cube) to efficiently extract historical 

and near real-time population flows from worldwide geotagged tweets; (2) What is the current 

and future infectious risk of a country, state, or county? This will be estimated using a spatial-

temporal fused neural network considering the historical human movement patterns and real-

time population flows; (3) How well are people following the social/physical distancing orders? 

This question will be examined by performing spatial-temporal aggregation of the ODT cube at 

different spatial scales and temporal resolutions to quantify the human movement at different 

spatial scales; and (4) How effective are the social/physical distancing practice in curtailing the 

spread of the virus? We will answer this question by conducting spatio-temporal and 

geostatistical analysis (e.g., regression and correlation) for the aggregated population flows, the 

daily confirmed cases, and other factors such as face mask policies.  The answers to these 

questions will be compiled as maps, diagrams, and news releases, technique reports, and peer-

reviewed journal articles.  



 

METHODS AND ANALYSIS 

DATA COLLECTION AND DATABASE 

This project will collect the following four types of data worldwide (where data are 

available): 1) geotagged Twitter data, 2) daily confirmed COVID-19 cases at the available 

highest spatial resolution for all countries, 3) most recent socioeconomic and demographic 

information (county level in the U.S. and similar level of administrative unit for other countries), 

and 4) data from other human mobility data sources such as mobile phone data-based human 

mobility, Google Mobility report, and Apple Mobility report. We have developed a computer 

program to stream geotagged tweets using Twitter’s streaming application programming 

interface (API). Worldwide historical geotagged Twitter data collected by the team over the past 

five year will also be used to construct past population flows and identify spatio-temporal 

patterns of human movement. We will develop a database to store and manage the 

aforementioned multi-source datasets collected in this project. The database will be indexed with 

multi-level spatial scales (e.g., country, state, and county) and temporal resolutions (e.g., year, 

month, day) and will be connected to our in-house Hadoop computing cluster for efficient big 

data computing and analytics.  

ANALYTIC APPROACH 

Develop an Origin-Destination-Time data cube for efficient analysis of human movement 

from massive geotagged tweets with varying spatio-temporal scales  

Data cube has been widely used to model high dimensional spatio-temporal data (e.g., 

[26,27]). We will develop an Origin-Destination-Time data cube (ODT cube) as a high-level 

conceptual model for quantifying the human movement across different places or locations over 



time (Figure 1) from billions of geotagged tweets. The ODT cube will serve as a foundation data 

model for efficiently conducting human movement analysis at different spatial and temporal 

scales.  In the ODT cube, origin (O) and destination (D) is a set of places or locations (e.g., 

administrative boundaries such as county, state, and country, or latitude/longitude grids) that can 

be displayed with a map. Each cell in the data cube has a value that indicates the number of 

people moved from the origin location to the destination location during a specific time period 

(e.g., in an hour, a day, or a month). In other words, each cell value indicates the connection 

(measured by population movement) between two locations. With the cube, we can efficiently 

retrieve the number of people moved from Oi to Dj at time Tk.    

 

Figure 1. Illustration of Origin-Destination-Time Cube for modeling human movement 



Three types of matrices will be derived from the data cube: origin-destination (OD) 

matrix quantifies the population flows between all the origin and destination locations during a 

time period. Destination-time (DT) matrix captures the number of incoming people to all 

destination locations from a specific origin location over a series of times. Similarly, an origin-

time (OT) matrix captures the number of outgoing people from all origins to a specific 

destination over a series of times. In addition, the number of unique Twitter users can be 

calculated for a specific location over time. This enables us to efficiently conduct spatial-

temporal aggregations of human movement at varying spatial and temporal resolutions.  

The OD matrix is a 𝑛 × 𝑛 matrix, where 𝑛 is the number of geographic entities included 

in the study. Column 𝑂𝑥 and row 𝐷𝑥 are the same location (𝑥). An entry 𝑣𝑖𝑗 in this matrix 

represents number of people moving from origin 𝑖 to destination 𝑗. It should be noted that human 

movements are directional. Therefore, 𝑣𝑖𝑗 and 𝑣𝑗𝑖 stand for two different spatiotemporal 

movements that they are likely to have different values. We define the values in the diagonal 

cells (grey cells in the OD matrix), 𝑣𝑖𝑖, as the number of unique Twitter users in location 𝑖.  

The process of constructing the ODT cube is extremely data- and computationally 

intensive because we need to perform massive number of point-in-polygon spatial operations, 

and the output will contain billions of connections. We will leverage our expertise in geospatial 

big data computing to perform the computation using an in-house Hadoop-based computing 

cluster. Based on the generated ODT cube, we will further derive a number of indices to quantify 

human mobility at varying spatio-temporal scales including county level daily number of Twitter 

visitors for a county, state level average travel distance, and place connectedness index between 

two counties.  



Develop population-level infectious risk maps at different spatial scales based on population 

flows to enhance situational awareness  

The ODT cube quantifies human movement among different places (e.g., US counties) 

during a given time period. Knowing such movement information is essential in assessing the 

infectious risk at the population level in a place. We propose to model the current infection risk 

of a given place (e.g., county) by integrating the following information: 1) population flows 

derived from the ODT cube during the recent time period among all places (e.g., past 14 days), 

2) number of total infected cases for each place, and 3) socioeconomic and demographic 

variables that relate to the infection risk of this location (e.g., a county’s population density, age, 

and race).  

 

Figure 2. Illustration of (a) the infection risk modeling based on the incoming population to a 

location; and (b) the impact modeling of an infected location to other locations.  

We will create an infection risk index for each place by combining the above mentioned 

factors. For example, suppose, based on the ODT cube, we observe a significant population flow 

from county A to county B during the past week and county A already has a number of infected 

cases, then the infectious risk for county B is high (people from highly infected area is likely to 



carry the virus). Note that the real scenario is more complex due to the fact that the risk of county 

B is also affected by other infected counties that have connections with county A and that 

population movement is not the only factor for the infectious risk.  In other words, infection risk 

of destination 𝐷𝑗  can be considered as a function of local factors (𝑃𝑗), combined with population 

flow from each origin (𝑣1𝑗 , 𝑣2𝑗 , … 𝑣𝑛𝑗) weighted by infected cases at each origin (I1, I2, ..., In) 

(Figure 2(a)). Risk index will be calculated for each location to produce an infectious risk map. 

Based on the ODT data cube, the risk map generation can be efficiently implemented using 

matrix computation. Such risk maps would be useful for targeting surveillance and outbreak 

control activities for a region.  

Besides modeling the infection risk of a location using the incoming populations, we will 

also estimate the risk impact of an infected location on other locations. For example, since Italy 

was severely infected at the early stage of the pandemic, it would be helpful to understand where 

the outgoing population from Italy traveled to. As illustrated in Figure 2(b), we will build a 

model that combines the population movement information between the targeted location (Oi) to 

other locations (D1, D2, ..., Dn) as well as other factors associated with each location (P1, P2, ..., 

Pn). The output of the model would be a map showing the potential impact caused by the 

incoming populations from the targeted location (e.g., Italy).   

Develop a predictive model to estimate future infectious risk using a fused neural network by 

considering both spatial patterns and temporal trends of the popoplation movement  

In this research task, we aim to explore the feasibility and performance of a predictive 

model for future infectious disease potential at the US county level based on the following 

information: 1) historical population movement patterns among counties (based on historical 

tweets), 2) near real-time human movement information (from real-time twitter data streams), 3) 



the daily infection count of each county (will be collected/compiled each day), and  4) other 

socioeconomic/demographic factors.  Specifically, the historical population movement patterns 

between any two counties at different time resolutions (daily, weekly, monthly) will be extracted 

from the ODT cube. The extracted movement patterns will be used as the proxy to infer future 

population movement among the counties.  

 

Figure 3. Conceptual architecture of the CNN-LSTM fused neural network for infectious risk 

prediction 

Given the complex epidemiological and geographic processes among different infectious 

factors, we propose to use deep learning to learn the complex infectious processes from the large 

volumes and high dimensions of the input data. Deep learning is one type of machine learning in 

artificial intelligence. Unlike traditional machine learning, in which parameters of an algorithm 

(e.g., support vector machine) are configured by experts, deep learning determines these 



parameters by learning the patterns in a large amount of data based on artificial neural networks, 

which offers a promising solution in predicting the infectious risk. Specifically, we will develop 

a fused neural network that integrates two types of neural networks, CNN (convolutional neural 

network) and LSTM (long short-term memory recurrent neural network), to consider the spatial 

patterns and temporal trends simultaneously in the predictive model (Figure 3). The fused neural 

network will include a serious of CNN layers in the front end followed by LSTM layers with a 

Dense layer on the output. The locations in the ODT cube (e.g., counties) would be treated as 

pixels (neurons) in the CNN network to capture the spatial relationships and local patterns, and 

the temporal trend will be predicted with the LSTM network. Different combinations of 

socioeconomic/demographic factors will be tested during the model building, training, and 

validation process, and the combination yield highest accuracy will be used in the final model. 

Patient and Public Involvement  

Patients or the public WERE NOT involved in the design, or conduct, or reporting, or 

dissemination plans of our research. 

 

DISCUSSIONS  

In this paper, we report a research protocol that will utilize big social media data to derive 

information on human movement or population flows to monitor the spatial spread of COVID-

19, quantify the effectiveness of the control measures, and predict the current and future 

infectious risk at various geospatial scales. We believe geotagged Twitter data are sufficient for 

studying the population flows in a large spatial scale with low or medium spatial resolutions, 

such as the movement between countries and between states in the U.S. For the county level, our 

previous studies indicate that these data perform well for examining human movement between 

https://drive.google.com/file/d/14vnXwTJ2CDn2KQsuNpuEnSwad69gc7dR/view


different U.S. counties [28–30]. For finer resolutions than county, we have successfully 

conducted human mobility studies at the census tract level [21] and street/community level 

within a city [31]. However, we are aware that studies at a spatial resolution higher than city or 

county only work in highly populated areas since at this resolution we can only use the tweets 

with exact coordinates. Considering this issue, we will only perform the community level 

analysis for highly populated cities such as New York City. In addition, we will devise a method 

to extract finer location from the city level tweets by geocoding the location names in the tweet 

message.  

Another limitation we would like to point out is that Twitter is not proportionally used by 

different population groups and thus shows demographic and socioeconomic biases as examined 

in a few studies [32–34]. However, this is less of a concern in this study since we will not 

examine how the population movements derived from Twitter data represent different population 

groups. Instead, we are more interested in how well the geotagged tweets sample can represent 

the overall population movement (e.g., the number of people travelled to a county during a time 

period). [19] confirms that geotagged tweets are exceptionally useful in quantifying country to 

country population movement. Our recent study suggests that the county level population 

movement derived from Twitter data can accurately reflect regular (such as holidays) and non-

regular events such as the Hurricanes. [28].  In addition, we are comparing and integrating 

Twitter-derived human mobility with other human mobility data sources such as Apple mobility 

data, Google mobility data, and mobile phone data, to better understand human movement during 

the pandemic [35]. 

Lastly, geotagged Twitter data contains location information and may contain some 

personal information provided by the users directly. We are fully aware of the potential privacy 



concerns and will remove or mask the personal information when detected. The raw individual 

tweets with exact latitude and longitude will not be published in any way including maps, 

technical report, or journal publications.  All data collected in this study will be stored in an in-

house Hadoop computing cluster hosted in a secured server room at the University of South 

Carolina with firewall protection and two-factor authentication and endpoint security. 

 

CONCLUSION 

Human movement is among the essential forces that drive the spatial spread of COVID-

19. During a global pandemic, monitoring and analyzing human movement patterns or 

population flows are critical for us to gain a better understanding into current and future 

infectious risk at the population level. This research aims to use big social media data (Twitter), 

artificial intelligence (AI), and spatio-temporal analysis to monitor and model the spatial spread 

of COVID-19 at different spatial scales (from local to regional to global) through the lens of 

human movement. Results of this study will not only provide enhanced situation awareness for 

the government at all levels, but also offer valuable contributions to building collective public 

awareness of the role people play in the evolution of the COVID-19 crisis.  

 The findings of the research may also have implications on policy domain by assisting 

the policy makers and general public to evalue the effectiveness of various control measures that 

aim to reduce the human movement during the pandemic. For example, the debate about the true 

effectiveness of social distancing as a public health tool in limiting COVID-19 transmission  

requires mobility research to generate evidence-based facts [36]. This is important especially in 

an era with mixed research findings about COVID-19 aerosolization [32,37,38] or the true 

effectiveness and costs of social distancing [39,40]. As universities and schools reopen, and 



traditional socialization activities like sporting/musical events resume, measuring and tracking 

the impact of human mobility takes on greater significance for populations.  

We hope that the results can help government officials, public health managers and 

emergency responders to answer critical questions during the pandemic as elaborated above. 

Although this research is a response to the current COVID-19 pandemic, the proposed research 

will make significant contributions to the data sources, applications, models, and methodology in 

a variety of human mobility studies. This research is expected to have a broad impact on diverse 

fields that can benefit from a better understanding of human movement at varying spatial scales, 

such as infectious disease spread in public health, transportation, tourism, and economics.   
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