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Abstract:  

The current COVID-19 pandemic raises concerns worldwide, leading to serious health, 

economic, and social challenges. The rapid spread of the virus at a global scale highlights 

the need for a more harmonized, less privacy-concerning, easily accessible approach to 

monitoring the human mobility that has proven to be associated with viral transmission. In 

this study, we analyzed over 580 million tweets worldwide to see how global collaborative 

efforts in reducing human mobility are reflected from the user-generated information at the 

global, country, and U.S. state scale. Considering the multifaceted nature of mobility, we 

propose two types of distance: the single-day distance and the cross-day distance. To 

quantify the responsiveness in certain geographic regions, we further propose a mobility-

based responsive index (MRI) that captures the overall degree of mobility changes within 

a time window. The results suggest that mobility patterns obtained from Twitter data are 

amenable to quantitatively reflect the mobility dynamics. Globally, the proposed two 

distances had greatly deviated from their baselines after March 11, 2020, when WHO 

declared COVID-19 as a pandemic. The considerably less periodicity after the declaration 

suggests that the protection measures have obviously affected people’s travel routines. The 

country scale comparisons reveal the discrepancies in responsiveness, evidenced by the 

contrasting mobility patterns in different epidemic phases. We find that the triggers of 

mobility changes correspond well with the national announcements of mitigation measures, 

proving that Twitter-based mobility implies the effectiveness of those measures. In the 

U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the 

impacts vary substantially among states.  
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1. Introduction 

The outbreak of Coronavirus disease (COVID-19) caused by the SARS-CoV-2 virus is a 

public health emergency that raises concerns worldwide, leading to serious health, 

economic, and social challenges. As of June 23, 2020, there had been a total of 8,993,659 

infections and 469,587 deaths globally [1], and these figures are progressively increasing 

every day. On March 11, 2020, the World Health Organization (WHO) reassessed the 

situation and officially declared COVID-19 as a pandemic, urging countries and regions 

worldwide to join forces [2]. Since then, major behavioral, clinical, and intervention 

policies (both strict and loose) have been undertaken to reduce the spread and prevent the 

persistence of the virus in human populations. 

An initial outbreak of COVID-19 was first declared in Wuhan, China in January 

2020 [2], before cases were reported in European countries, most notably Italy, France, 

and the UK. In the United States, the first confirmed case occurred on January 19, 2020, 

in Snohomish County, Washington. Shortly after, the U.S. has become the new epicenter 

of the disease as it surpassed Italy in terms of confirmed cases on March 26, 2020 [3]. As 

of June 23, 2020, there had been a total of 2,268,753 confirmed cases (25.2% of global 

cases) and 119,761 deaths (25.5% of global deaths) in the U.S. alone [1]. To contain the 

COVID-19 pandemic, one of the non-pharmacological epidemic control measures is to 

reduce the transmission rate of SARS-COV-2 in the population via social distancing or 

other similar (self) quarantine measures [4], with the ultimate goal to reduce person-to-

person interactions. Studies have found notable declines in transmission rates after the 

implementation of mobility-reducing policies in China, Korea, and many European 

countries [5-8]. Despite the success of these efforts, not all countries/regions chose to 

handle the pandemic in a similar manner [9, 10]. The discrepancies in policies and 

measures at different geographical levels urge an approach to monitoring the mobility 



 

 

dynamics in response to the pandemic, as mobility patterns largely indicate how people 

respond to the pandemic and whether policies are implemented effectively [11-13]. 

Since the initial outbreak of COVID-19, numerous efforts have been made, by 

incorporating the emerging concept of “Web 2.0” [14], “Big Data” [15], and “Citizen as 

Sensors” [16], to obtain timely information regarding whether people are actively 

reducing their exposure to COVID-19 by reducing distances traveled, and by how much. 

Companies like Google and Apple have released their aggregated and anonymized 

community mobility reports based on data collected from their services (i.e., Google 

Location Services and Apple Maps). Those reports are updated on a daily basis and can 

be easily downloaded. In addition, authorities started to collaborate with mobile network 

operators to estimate and visualize the effectiveness of control measures [11, 17], in light 

of the previous success of mobile phone data in assisting the modeling of the spread of 

other epidemics [18-20]. Shortly after the outbreak in China, mobility data from Baidu, a 

famous Chinese online platform, have been put into use to evaluate the effectiveness of 

the lockdown measure in Wuhan [5]. Leading telecommunication firms also contribute 

by collaborating with local authorities to estimate the efficiency of travel restrictions as 

well as to identify the impact of other mobility-reducing related measures [21, 22]. In the 

U.S., Descarte Lab (www.descarteslabs.com/mobility) has released mobility statistics 

derived from mobile devices, aiming to facilitate the acquisition of rapid situational 

awareness at the State- and County-level. City-level studies have also been conducted. 

For example, locational data from Cuebiq (https://www.cuebiq.com/), gathered via over 

180 mobile applications, were used to monitor how social distancing guidelines are 

implemented on a daily basis in the city of Boston, MA [11]. However, privacy advocates 

have voiced concerns on whether sharing customer data is appropriate, even in a time of 

crisis [23, 24]. The rapid spread of the COVID-19 at the global level highlights the need 



 

 

for a more harmonized, less privacy-concerning, easily accessible approach to monitoring 

human mobility. 

The rise of social media platforms such as Twitter (twitter.com), Flickr 

(www.flickr.com), and Instagram (www.instagram.com) offers another possible solution 

to closely monitoring human mobility changes, thanks to the timely geospatial 

information from the enormous sensing network constituted by millions of users. The 

huge volume of user-generated content from social media platforms greatly facilitates the 

real-time or near real-time monitoring of human mobility, providing timely data of how 

people respond to the COVID-19 pandemic geographically, especially within different 

epidemic phases. The advantages of social media with respect to the aforementioned 

sources of digital information are that they are extensive (covering large spatial areas), 

easily accessible, with less privacy concern, and at low cost [25-28]. Extracting useful 

information from social media is not new, as the valuable geospatial insights from social 

media have been explored in a wide range of fields, including hazard mitigation [29-31], 

evacuation monitoring [27, 32, 33], urban analytics [34-37], and public health [38, 39], 

to list a few. Despite the existing applications, the potential of human mobility derived 

from social media data has not been fully explored. Questions like whether the mobility 

data from social media can quantitatively reflect the collaborative effort in fighting the 

COVID-19 pandemic and how it corresponds to the everchanging policies in different 

geographical regions deserve answers. 

To answer the above questions, we focus on Twitter, a popular social media 

platform, and analyze over 580 million tweets from all over the world to see how the 

worldwide collaborative efforts in reducing mobility are reflected from this user-

generated information in three different scales: global scale, country scale, and 

Conterminous U.S. (CONUS) state scale. We propose two types of distance, respectively 

http://twitter.com/
http://www.flickr.com/


 

 

termed as single-day distance and cross-day distance, to quantify different aspects of 

public mobility observed from Twitter. We further normalize these distances by setting 

up their corresponding baselines. The baseline mobility values are calculated for each 

region separately (globe, countries, and U.S. states) using data collected before strict 

mobility-reducing measures are implemented. To quantify the responsiveness in certain 

geographic regions within different epidemic phases, we propose a mobility-based 

responsive index (MRI) to capture the overall degree of mobility changes in response to 

the COVID-19 pandemic within a specific time window. Finally, we contextualize the 

mobility dynamics derived from Twitter with detailed measures from local authorities to 

shed light on their effectiveness. The theoretical, methodological, and contextual 

knowledge in this study is expected to inspire future applications of these easily accessible, 

less privacy-concerning, highly spatiotemporal data. 

2. Datasets and computing environment 

We collect a total of 583,748,902 geotagged tweets from 10,324,191 unique Twitter users 

using the official Twitter Streaming Application Programming Interface (API), 

comprising a five-month period from January 1, 2020 to May 31, 2020. These tweets are 

stored and queried in a tweet repository managed in an in-door Hadoop cluster with 13 

servers using Apache Hive and Impala. A geotagged tweet is a Twitter post with 

embedded geolocation in the format of exact coordinates (latitude and longitude) from 

the device’s GPS or placenames (e.g., state, county, city).  While the locational accuracy 

of a geotagged tweet varies, depending on the settings of the account and how a user 

chooses to share his/her location, we exclude the tweets that are geotagged with spatial 

resolution lower than the city level to increase the accuracy and credibility of the mobility 

pattern. Following Martin et al. [40], we filter out the non-human tweets (e.g., automated 



 

 

weather reports, job offers, and advertising) by checking the tweet source from which 

application a tweet is posted. For example, tweets automatically posted for job offers from 

the source TweetMyJOBS and CareerArc are removed. After the filtering, a total of 

496,068,100 tweets remain from 9,502,266 unique Twitter users (details of the user count 

with the number of tweets posted per day can be found in the supporting information S2 

Fig). The computation of travel distance requires locational information from at least two 

positions. Thus, only users who post tweets on two consecutive days are included in the 

calculation of cross-day distance, a measure that quantifies displacement between two 

consecutive days (details in Section 3.1). For the single-day distance, a measure that 

highlights the daily travel pattern, only users who post at least twice a day are included 

in the calculation (details in Section 3.1). In our dataset, 53.7% of users tweet at least 

twice a day (for the calculation of single-day distance), while 49% of users tweet cross-

day (for the calculation of cross-day distance). Note that all distances computed in this 

study are Great Circle distances.  

3. Methods 

3.1 Single-day distance and cross-day distance 

To quantify daily human mobility from collected Twitter data, we propose two 

different types of distance, respectively referred to as single-day distance (𝐷𝑠𝑑) and cross-

day distance (𝐷𝑐𝑑). The concepts of the two distances are presented in Fig 1. To reduce 

the computational complexity, the calculation of 𝐷𝑠𝑑  is adopted and modified from 

Warren and Skillman [41]. In general, 𝐷𝑠𝑑 represents the users’ daily maximum travel 

distance of all locations relative to the initial location. Its calculation is confined within a 

single day so that users’ daily travel patterns can be revealed. Different from 𝐷𝑠𝑑, 𝐷𝑐𝑑 

measures the mean center shift between two consecutive days. 



 

 

 

Fig 1. Conceptualization of single-day distance (𝑫𝒔𝒅) and cross-day distance (𝑫𝒄𝒅).  

 

For a selected Twitter user 𝑖, let 𝑃𝑖,𝑗
𝑚 = {𝑃𝑖,𝑗

1 , 𝑃𝑖,𝑗
2 , …, 𝑃𝑖,𝑗

𝑛 } denote the collection of 

locations derived from his/her tweets within a certain day 𝑗 . Among the total of 𝑛 

locations in day 𝑗, 𝑃𝑖,𝑗
1  denotes the initial location and 𝑃𝑖,𝑗

𝑚 always precedes 𝑃𝑖,𝑗
𝑚+1 in time. 

To compute 𝐷𝑠𝑑, a collection of location pairs (A) is first formed by coupling 𝑃𝑖,𝑗
𝑚 with 

the initial location 𝑃𝑖,𝑗
1 , i.e., A = {(𝑃𝑖,𝑗

1 , 𝑃𝑖,𝑗
2 ),( 𝑃𝑖,𝑗

1 , 𝑃𝑖,𝑗
3 ),…( 𝑃𝑖,𝑗

1 , 𝑃𝑖,𝑗
𝑛 )}. The Great Circle 

Distance (GCD) is applied to compute the distance of each location pair within collection 

A. For a given location pair (𝑃𝑖,𝑗
1 , 𝑃𝑖,𝑗

𝑚), their GCD can be represented as 𝐺𝐶𝐷𝑖,𝑗
1,𝑚

. 𝐷𝑠𝑑 for 

user 𝑖 in day 𝑗, referred to as 𝐷𝑠𝑑𝑖,𝑗
, is computed by selecting the maximum value of 

𝐺𝐶𝐷𝑖,𝑗
1,𝑚

, i.e., 𝐷𝑠𝑑𝑖,𝑗
= 𝑚𝑎𝑥 {𝐺𝐶𝐷𝑖,𝑗

1,2, 𝐺𝐶𝐷𝑖,𝑗
1,3, … , 𝐺𝐶𝐷𝑖,𝑗

1,𝑛} . To compute 𝐷𝑐𝑑 , for a 

collection of locations from user 𝑖 in day 𝑗, i.e., {𝑃𝑖,𝑗
1 , 𝑃𝑖,𝑗

2 , …, 𝑃𝑖,𝑗
𝑛 }, a mean center (𝑃𝑖,𝑗

̅̅ ̅̅ ) is 

first calculated by respectively averaging the coordinates of locations in {𝑃𝑖,𝑗
1 , 𝑃𝑖,𝑗

2 , …, 

𝑃𝑖,𝑗
𝑛 }: 

𝑃𝑖,𝑗
̅̅ ̅̅ =  𝜇{𝑃𝑖,𝑗

1 , 𝑃𝑖,𝑗
2 , … , 𝑃𝑖,𝑗

𝑛 }                                         (1) 

where 𝑃𝑖,𝑗
̅̅ ̅̅  denotes the mean center for user 𝑖  in day 𝑗  and 𝜇  denotes the mean center 

operator. 𝐷𝑐𝑑 for user 𝑖 in day 𝑗, referred to as 𝐷𝑐𝑑𝑖,𝑗
, is the GCD between 𝑃𝑖,𝑗

̅̅ ̅̅  and 𝑃𝑖,𝑗+1. 

Intuitively, 𝐷𝑠𝑑  and 𝐷𝑐𝑑  represent different aspects of mobility with 𝐷𝑠𝑑 

measuring maximum single-day travel distance and 𝐷𝑐𝑑  measuring cross-day 

displacement. The dynamics of 𝐷𝑠𝑑 and 𝐷𝑐𝑑 are expected to reflect on how the COVID-

19 pandemic affects people’s mobility patterns geographically, presumably indicating the 

regional degree of responsiveness.  



 

 

3.2 Normalized mobility index 

Inspired by the methodological design in mobility reports from Google 

(www.google.com/covid19/mobility) and Apple (www.apple.com/covid19/mobility), we 

set up baselines for 𝐷𝑠𝑑 and 𝐷𝑐𝑑 respectively. Unlike studies that utilize a single baseline 

value summarized from a fixed period, our mobility baselines are set for each 

corresponding day of a week, as a week has been widely recognized as an independent 

cycle in mobility [25, 42]. That is to say, we calculate a total of fourteen baseline values, 

seven for 𝐷𝑠𝑑 and seven for 𝐷𝑐𝑑, corresponding to each day of a week. For a geographical 

region ℝ (globe, a country, or a state), let 𝐷𝑠𝑑𝑗

ℝ  and 𝐷𝑐𝑑𝑗

ℝ  represent the 𝐷𝑠𝑑 and 𝐷𝑐𝑑 of ℝ 

in day 𝑗, respectively. We define that 𝐷𝑠𝑑𝑗

ℝ  is the mean value of all 𝐷𝑠𝑑𝑖,𝑗

ℝ  in day 𝑗, i.e., 

𝐷𝑠𝑑𝑗

ℝ =  
∑ 𝐷𝑠𝑑𝑖,𝑗

ℝ
𝑖

𝑁
, where 𝑁 denotes the total number of selected users in day 𝑗 within ℝ and 

𝑃𝑖,𝑗 
1 𝜖 ℝ. Similarly, 𝐷𝑐𝑑𝑗

ℝ  is the mean value of all 𝐷𝑐𝑑𝑖,𝑗

ℝ  in day 𝑗 , i.e., 𝐷𝑐𝑑𝑖,𝑗

ℝ =  
∑ 𝐷𝑐𝑑𝑖,𝑗

ℝ
𝑖

𝑁
, 

where 𝑃𝑖,𝑗
̅̅ ̅̅ 𝜖 ℝ. Consequently, the normalized mobility index of region ℝ in day 𝑗  for 

single-day distance (𝑁𝑀𝐼𝑠𝑑𝑗

ℝ ) and cross-day distance (𝑁𝑀𝐼𝑐𝑑𝑗

ℝ ) are respectively defined 

as the ratios of 𝐷𝑠𝑑𝑗

ℝ  and 𝐷𝑐𝑑𝑖,𝑗

ℝ  to their baseline values of a corresponding day in a week. 

Given their calculations, 𝑁𝑀𝐼𝑠𝑑𝑗

ℝ  and 𝑁𝑀𝐼𝑐𝑑𝑗

ℝ  both have a range of [0, +∞), with 1 being 

the critical value. When the 𝑁𝑀𝐼𝑠𝑑𝑗

ℝ  (or 𝑁𝑀𝐼𝑐𝑑𝑗

ℝ ) is less than 1, it suggests that within 

region ℝ in day 𝑗, reduced mobility is observed compared with the baseline mobility 

when measuring single-day distance (or cross-day distance). 

3.3 Mobility-based responsive index 

After the normalization in the previous section, a baseline of 𝑁𝑀𝐼 (i.e., 𝑁𝑀𝐼 = 1) that 

separates patterns of increased mobility and reduced mobility is formed. Intuitively, for a 



 

 

time series of 𝑁𝑀𝐼 values, the size of the area under the NMI  baseline (𝑆𝐴𝑈𝐵) represents 

the degree of positive responses (i.e., reduce in mobility) for a given period, while the 

size of the area above the NMI  baseline ( 𝑆𝐴𝐴𝐵 ) indicates otherwise (Fig 2). 

Hypothetically, the area in perfect condition (𝑆𝐴𝑃𝐶) represents a perfect scenario where 

mobility instantly reduced to 0 from the beginning and remains 0 until the time series 

ends. Apparently, such a scenario is purely theoretical and certainly does not exist in the 

real world. However, it provides a baseline where other scenarios are compared against, 

facilitating the quantification of how close other scenarios are compared to the perfect 

scenario. Conceptually, the mobility-based responsive index we propose is the ratio 

between the net positive response to the perfect scenario, i.e.,  
∑ 𝑆𝐴𝑈𝐵−∑ 𝑆𝐴𝐴𝐵

𝑆𝐴𝑃𝐶
, where 

∑ 𝑆𝐴𝑈𝐵 and ∑ 𝑆𝐴𝐴𝐵 respectively denote the summation of areas under the curve and the 

summation of areas above the curve, given a specific period.  

Fig 2. Mobility-based responsive index 

 

To remove noises and reveal the general trend, we smooth the time series using a 

one-dimensional Gaussian filter (𝜎 = 2), one of the most popular filters widely applied 

in many temporal smoothing tasks [43, 44]. Further calculations regarding the size of the 

areas are all based on the smoothed time series. Given the different nature of the two 

proposed distances, we calculate their 𝑀𝑅𝐼 separately: 

𝑀𝑅𝐼𝑠𝑑 =  
∑ 𝑆𝐴𝑈𝐵𝑠𝑑

−∑ 𝑆𝐴𝐴𝐵𝑠𝑑

𝑆𝐴𝑃𝐶
                                           (2) 

𝑀𝑅𝐼𝑐𝑑 =  
∑ 𝑆𝐴𝑈𝐵𝑐𝑑

−∑ 𝑆𝐴𝐴𝐵𝑐𝑑

𝑆𝐴𝑃𝐶
                                            (3) 

where 𝑀𝑅𝐼𝑠𝑑  and 𝑀𝑅𝐼𝑐𝑑  denote the 𝑀𝑅𝐼  with 𝐷𝑠𝑑  and 𝐷𝑐𝑑  being measured, 

respectively. We further compute an integrated 𝑀𝑅𝐼  by weighting 𝑀𝑅𝐼𝑠𝑑  and 𝑀𝑅𝐼𝑐𝑑 



 

 

using their total sample sizes: 

𝑀𝑅𝐼 =  
𝑀𝑅𝐼𝑠𝑑×𝑢𝑠𝑑+ 𝑀𝑅𝐼𝑐𝑑×𝑢𝑐𝑑

𝑢𝑠𝑑+ 𝑢𝑐𝑑
                                         (4) 

where 𝑢𝑠𝑑  and 𝑢𝑐𝑑  denote the total sample sizes used to calculate 𝑀𝑅𝐼𝑠𝑑  and 𝑀𝑅𝐼𝑐𝑑 , 

respectively. Intuitively, 𝑀𝑅𝐼𝑠𝑑 captures the mobility responsiveness confined in a single 

day, revealing the dynamics of daily travel patterns while 𝑀𝑅𝐼𝑐𝑑 captures the mobility 

responsiveness between two consecutive days, revealing the dynamics of cross-day travel 

patterns. The rationale of deriving an integrated 𝑀𝑅𝐼 by fusing 𝑀𝑅𝐼𝑠𝑑 and 𝑀𝑅𝐼𝑐𝑑 is that, 

despite their different calculations, they reflect human mobility from diverse perspectives, 

and therefore their integration serves as an overall index that better summarizes the 

general degree of mobility-based responsiveness geographically. The derived 𝑀𝑅𝐼 has a 

range of (−∞, 1]. In general, the higher the value, the better responsiveness a region has, 

with 𝑀𝑅𝐼 = 1  suggesting hypothetically perfect responsiveness. A positive 𝑀𝑅𝐼 

(𝑀𝑅𝐼 > 0) suggests positive responsiveness (reduce in mobility) for a region, while a 

negative one suggests otherwise.   

4. Results 

4.1 Global scale 

As most countries in the world started to aggressively respond to the COVID-19 

pandemic after March, 2020, we set our baselines in a temporal period from January 13, 

2020 (to exclude abnormal mobility patterns due to the New Year holiday season) to 

February 29, 2020. Since the outbreak in China and the dramatic increase in cases in 

Europe, many countries have imposed and continue to impose travel bans and lockdowns 

[45]. As a result, both 𝐷𝑠𝑑  and 𝐷𝑐𝑑  have greatly deviated from their corresponding 

baselines, especially after March 11, 2020, when WHO declared COVID-19 as a 



 

 

pandemic (Fig 3). Because both our baselines are set for the individual day in a week, 

their projections exhibit a clear weekly pattern. In comparison, the time series of 𝐷𝑠𝑑 and 

𝐷𝑐𝑑, especially after the declaration of COVID-19 as a pandemic, show considerably less 

periodicity (Fig 3), suggesting that the protection measures (e.g., travel restrictions, social 

distancing policies, stay-at-home orders) have obviously affected people’s weekly 

routines. The gap between baselines proves the different nature of 𝐷𝑠𝑑  and 𝐷𝑐𝑑 , well 

explaining our rationale of normalizing 𝐷𝑠𝑑 and 𝐷𝑐𝑑 separately. We further observe that, 

throughout the entire time series, the daily value of 𝐷𝑐𝑑 is considerably lower than the 

daily value of 𝐷𝑠𝑑. This phenomenon can be explained by the existence of a large amount 

of Twitter users who, despite their large single-day travel distance (high 𝐷𝑠𝑑 value), keep 

a similar daily posting routine, which leads to no significant shift of mean centers between 

two consecutive days (low 𝐷𝑐𝑑 value).  

 

Fig 3. Temporal distribution of global 𝑫𝒔𝒅 and 𝑫𝒄𝒅 in the four-month period 

(February, March, April, and May).  

 

We observe similar mobility dynamics when 𝐷𝑠𝑑  and 𝐷𝑐𝑑  are respectively 

normalized to 𝑁𝑀𝐼𝑠𝑑 and 𝑁𝑀𝐼𝑠𝑑 according to their baselines (Fig 4). Both 𝑁𝑀𝐼𝑠𝑑 and 

𝑁𝑀𝐼𝑠𝑑  started to deviate from the baseline (𝑁𝑀𝐼 = 1 ) around ten days before the 

pandemic declaration from the WHO, suggesting that strong mobility-reducing measures 

had been taken before the declaration on March 11, 2020. This mobility pattern coincides 

with strong early travel restrictions implemented in Europe and Asia at the beginning of 

March [6, 46]. At the end of March, both 𝑁𝑀𝐼𝑠𝑑 and 𝑁𝑀𝐼𝑐𝑑 reached the bottom with the 

lowest 𝑁𝑀𝐼𝑠𝑑 = 0.70 and the lowest 𝑁𝑀𝐼𝑐𝑑 = 0.45, indicating that single-day distance 

and cross-day distance respectively reduced to 70% and 45% of the ones in the normal 



 

 

situation. Starting from the end of April, however, both 𝑁𝑀𝐼𝑠𝑑  and 𝑁𝑀𝐼𝑐𝑑  started to 

bounce back, and the increasing trend continued to the end of May, presumably resulting 

from the gradually lifted quarantine measures [47]. Compared with the hypothetically 

perfect scenario (𝑀𝑅𝐼 = 1) where mobility instantly halts and remains 0 throughout the 

time series, the overall 𝑀𝑅𝐼 for the three-month combined is 0.32, and the 𝑀𝑅𝐼𝑠 for the 

March, April, and May, respectively are 0.24, 0.39, and 0.33, revealing the less 

responsiveness in May compared with April.  

 

Fig 4. Global 𝐍𝐌𝐈𝐬𝐝 (normalized 𝐃𝐬𝐝) and 𝐍𝐌𝐈𝐜𝐝 (normalized 𝐃𝐜𝐝) in the four-

month period, and the monthly 𝐌𝐑𝐈 for March, April, and May. 

4.2 Country scale 

For country scale study, we set the mobility baseline in a period from January 13, 2020 

to February 15, 2020, as some countries (e.g., Italy and South Korea) already imposed 

strict or voluntary mobility-reducing policies as early as in late-February. To ensure that 

Twitter records are sufficient enough to generate a reasonable and stable time series, we 

mainly target the top 20 countries with most Twitter users, according to the Digital 2020 

April Global Statshot Report [48]. The selection of those countries mostly agrees with the 

Twitter data we collected 

In general, the impact of the COVID-19 pandemic on mobility derived from 

Twitter is obvious, as the mobility of the selected 20 countries, measured by single-day 

distance and cross-day distance, is mostly below the mobility baseline in March, April, 

and May (Fig 5), suggesting that mobility-reducing measures have been suggested and 

adopted in those countries. However, the country-level discrepancies in the time series of 

𝑁𝑀𝐼𝑠𝑑 and 𝑁𝑀𝐼𝑐𝑑 can be clearly observed. The mobility in Japan started to drop in late-



 

 

February (Fig 5), presumably in response to the announcement by Prime Minister Shinzo 

Abe on February 27, 2020 to close all Japanese elementary, junior high, and high school 

[49]. The further decline of mobility from early-April to late-April can be explained by 

the proclamation of the State of Emergency for Tokyo (April 7) and for the rest of the 

country (April 16) [50]. The mobility of Japan is expected to bounce back, as Japan ended 

the state of emergency in all of Japan On May 25, 2020 [51]. Given the limited temporal 

coverage of our data, however, its impact on mobility remains unknown. The mobility of 

the United States started to drop in mid-March when a series of statements were 

announced, including the declaration of COVID-19 as a pandemic by the WHO (March 

11) and the declaration of National Emergency by the White House (March 13, 2020). 

The mobility remained consistently low in April, then gained an upward momentum in 

May, largely due to the gradually loosened measures [52]. A similar mobility pattern can 

also be observed in India, where mobility reduced following the WHO’s declaration in 

mid-March and gradually rose in May. Mobility in Malaysia was slightly below the 

baseline in late-February and early-March. The sudden mobility drop appeared on March 

18, which coincides with the date when the Movement Control Order (MCO) from the 

federal government took effect [53]. The rapid mobility reduction in Malaysia 

demonstrates that the MCO was effectively and efficiently executed. In Saudi Arabia, 

mobility started to reduce as early as March 2, when the first case was confirmed [54]. 

However, 𝑁𝑀𝐼𝑠𝑑 and 𝑁𝑀𝐼𝑐𝑑 gradually diverged as 𝑁𝑀𝐼𝑐𝑑 remained stably low in April 

and May, while 𝑁𝑀𝐼𝑠𝑑 became unstable and eventually recovered and even surpassed 

baseline mobility in mid-May. The divergence in trends of the two types of distances can 

be partially explained by the suspension of flights and mass land transport (trains, buses, 

and taxis) that took effect on March 21 [55]. The lack of public transit is responsible for 

the consistently low cross-day distance.  



 

 

 

Fig 5. Temporal distribution of 𝑵𝑴𝑰𝒔𝒅 and 𝑵𝑴𝑰𝒄𝒅 for the top 20 countries with 

most Twitter users in February, March, April, and May. 

 

Compared with the hypothetically perfect scenario, i.e., 𝑀𝑅𝐼 = 1, Turkey has the 

highest three-month 𝑀𝑅𝐼 (0.49), followed by Spain (0.43), Japan (0.42), Malaysia (0.41), 

and the U.K. (0.41) (Table 1). Russia has the lowest three-month 𝑀𝑅𝐼 (0.18), followed 

by Australia (0.22), Indonesia (0.25), Philippines (0.25), Canada (0.26), and the U.S. 

(0.29) (Table 1). The high 𝑀𝑅𝐼 (0.44) of March in South Korea, a country that suffered 

from the initial spread of the epidemic in its early stage besides China, indicates that the 

early and strong mitigation measures were announced and implemented effectively. In 

light of the gradually easing situation [56], the social distancing measures in South Korea 

started to be lifted, evidenced by the fact that its 𝑀𝑅𝐼 decreased respectively by 0.09 and 

0.15 in April and May. In the U.S., the mobility-based responsiveness in March (0.20) is 

among the weakest in the 20 selected countries (Table 1). In April, the 𝑀𝑅𝐼 of the U.S. 

reached 0.38, a net gain of 0.18 compared to the 𝑀𝑅𝐼  in March. The strong 

responsiveness of mobility in April is largely due to the gradually issued statewide stay-

at-home orders since late-March that eventually affected at least 316 million people in at 

least 42 states [57]. With the lifting of orders in late-April and May, however, the U.S. 

showed reduced responsiveness, evidenced by its 0.09 loss in 𝑀𝑅𝐼 of May compared to 

April. As the U.S. has become the new COVID-19 epicenter, the reduced mobility 

responsiveness, along with the rocketing number of confirmed cases, deserves more 

attention. 

 



 

 

Table 1. Mobility-based Responsive index (𝑴𝑹𝑰) for the top 20 countries with most 

Twitter users 

 

 

Besides the countries presented in Fig 5, the temporal distribution of 𝑁𝑀𝐼𝑠𝑑 and 

𝑁𝑀𝐼𝑐𝑑 for the other 16 countries with relatively fewer Twitter samples can be found in 

the Fig in S1 Fig. Information regarding the accumulated user count for distance 

calculation (both 𝐷𝑠𝑑 and 𝐷𝑐𝑑) in selected countries is presented in the Table in S1 Table. 

4.2 States in the CONUS 

Given that the first State of Emergency related to COVID-19 in the U.S. was declared by 

Washington State (WA) on February 29, 2020, while the majority of the states started to 

react aggressively after mid-March, we set the U.S. mobility baseline in a period from 

January 13 to February 29, 2020. In general, the influence of the COVID-19 pandemic 

Country names 

 𝑀𝑅𝐼 

Mar Apr May 
Three-month 

average 
∇(Apr-Mar) ∇(May-Apr) 

Argentina 0.32 0.39 0.35 0.35 0.07 -0.04 

Australia 0.23 0.22 0.20 0.22 -0.01 -0.02 

Brazil 0.25 0.38 0.27 0.30 0.13 -0.11 

Canada 0.21 0.35 0.23 0.26 0.14 -0.12 

Germany 0.32 0.39 0.37 0.36 0.07 -0.02 

Spain 0.32 0.49 0.45 0.42 0.17 -0.04 

France 0.31 0.41 0.29 0.34 0.1 -0.12 

The United Kingdom 0.27 0.48 0.47 0.41 0.21 -0.01 

Indonesia 0.24 0.25 0.26 0.25 0.01 0.01 

India 0.21 0.40 0.35 0.32 0.19 -0.05 

Japan 0.25 0.49 0.53 0.42 0.24 0.04 

South Korea 0.44 0.35 0.20 0.33 -0.09 -0.15 

Mexico 0.16 0.38 0.38 0.31 0.22 0.00 

Malaysia 0.34 0.50 0.40 0.41 0.16 -0.1 

Philippines 0.28 0.28 0.20 0.25 0.00 -0.08 

Russia 0.12 0.23 0.20 0.18 0.11 -0.03 

Saudi Arabia 0.36 0.41 0.23 0.33 0.05 -0.18 

Thailand 0.30 0.34 0.39 0.34 0.04 0.05 

Turkey 0.29 0.57 0.60 0.49 0.28 0.03 

The United States 0.20 0.38 0.29 0.29 0.18 -0.09 



 

 

on mobility is distinct, as the drop of mobility in most of the states happened in mid-

March (Fig 6), potentially triggered by the events that include the pandemic declaration 

(March 11) and the National Emergency declaration (March 13). Although social 

distancing guidelines that aim to curb the spread have been suggested in the entire nation, 

the impacts varied substantially among states (Fig 6). Heavily hit states, e.g., NY, NJ, IL, 

CA, MA, and PA, generally experienced sharp mobility reduction, and their mobility 

remained stably low since mid-March. States with low numbers of cases, e.g., DE, MT, 

ME, WV, SD, and WY, despite the fluctuations in their time series, exhibited relatively 

marginal mobility reduction compared with heavily hit states. As the first state to 

announce the State of Emergency at the end of February, the mobility in WA remained 

close to the baseline in early March. It was not until mid-March that the mobility of WA 

started to noticeably decrease, which potentially indicates that the early mitigation 

policies in WA were not implemented effectively. The time series of mobility in states 

that include KS, MN, MS, AL, WV, SC, and WY, presents a bowl-shaped pattern, 

suggesting the strong recovery of mobility with some even bouncing beyond the baseline 

due to the gradually loosened measures. In response to the COVID-19 pandemic, eight 

states, including AR, IA, ND, NE, SD, UT, OK, and WY, decline to impose statewide 

stay-at-home orders by favoring other restrictions [57]. Without the orders, however, the 

aforementioned states still present considerable mobility reduction amid the pandemic, 

indicating the effectiveness of the federal guidelines and other mitigation approaches 

from the local government. Given the insufficient samples in the calculation of the 

baseline mobility, the mobility pattern in VT is not presented in Fig 6. The state names 

associated with their abbreviations and the accumulated user count for distance 

calculation in each state are presented in the supporting information S2 Table. 

 



 

 

Fig 6. Temporal distribution of 𝑵𝑴𝑰𝒔𝒅 and 𝑵𝑴𝑰𝒄𝒅 for states in CONUS (DC 

included; VT not included) in March, April, and May. 

 

 In late-May, the risk of transmission in the U.S. was further complicated by the 

protests demanding justice after Mr. George Floyd died following an altercation with 

police. A noticeable mobility increase following the incident can be found in MN, where 

the incident happened (Fig 7). Carried by the existed mobility recovering momentum in 

mid-May, MN saw a significant increasing trend in both 𝑁𝑀𝐼𝑠𝑑 and 𝑁𝑀𝐼𝑐𝑑 at the end of 

the time series. A distinct spike can be found on May 29, 2020, when the raw 𝑁𝑀𝐼𝑠𝑑 and 

raw  𝑁𝑀𝐼𝑐𝑑  all went beyond the baseline, with the 𝑁𝑀𝐼𝑠𝑑  (representing single-day 

maximum travel distance) reaching about 2.5 times than usual as a consequence of the 

increased activity during the protests. The divergent functionality of the smoothed 𝑁𝑀𝐼 

and the raw 𝑁𝑀𝐼 is well illustrated, as the former highlights the general trend while the 

latter is able to capture the spikes caused by disruptive events. At the time of writing, the 

protests have gradually spread across the U.S. and even overseas. The increase in mobility 

resulting from the protests deserves close monitoring, as standing in a crowd for long 

periods undoubtedly raises the risk of increased transmission and further worsens the 

situation. 

Fig 7. Temporal distribution of 𝑵𝑴𝑰𝒔𝒅 and 𝑵𝑴𝑰𝒄𝒅 for Minnesota 

 

The monthly 𝑀𝑅𝐼 at the state level further highlights the responsiveness of each 

state in the three-month period. As expected, states with early spikes of cases and early 

strong mitigation policies tend to have a higher 𝑀𝑅𝐼 in March (Fig 8). WA (0.41) leads 

the 𝑀𝑅𝐼 in March, followed by NY (0.33), NH (0.32), and MA (0.32) (Table 2). The high 

responsiveness at the early stage suggests that the mobility-reducing guidelines were 



 

 

implemented timely and efficiently in those states. In April, the responsiveness in all the 

states continued to strengthen (Fig 8), given the rising of cases and gradually tightened 

measures (Table 2). From March to April, MD, FL, and MI are the top three states with 

the most increase of 𝑀𝑅𝐼, respectively by 0.42, 0.41, and 0.39 (Table 2). The significant 

boost of mobility-based responsiveness reflects not only the severity of the situation but 

also the strong implementation of the mitigation measures. However, with the lifting of 

orders, 47 states (except MT) have shown reduced responsiveness in May compared to 

April (Fig 8). In light of the increasing number of cases in the U.S. with no sign of slowing 

down (at the time of writing), the reduced mobility responsiveness can potentially foster 

a second wave of infections. Because of the insufficient samples in the baseline 

calculation, the 𝑀𝑅𝐼 for VT is not presented in Fig 8 and Table 2. 

 

Fig 8. Mobility-based Responsive index (𝑴𝑹𝑰) for CONUS states in March, April,  

May, and the difference between two consecutive months. State boundaries are 

retrieved from the U.S. Census Bureau 

(https://www.census.gov/geographies/mapping-files/time-series/geo/carto-

boundary-file.html). 

 

 

 

 

Table 2. Mobility-based Responsive index (𝑴𝑹𝑰) for states in the CONUS. 

 

State 

abbreviations 

 𝑀𝑅𝐼 

Mar Apr May 
Three-month 

average 
∇(Apr-Mar) ∇(May-Apr) 

AL 0.09 0.45 0.15 0.23 0.37 -0.30 

AR 0.13 0.44 0.23 0.27 0.32 -0.21 

AZ 0.19 0.57 0.46 0.40 0.38 -0.11 

CA 0.30 0.55 0.45 0.43 0.25 -0.10 

CO 0.25 0.57 0.46 0.42 0.32 -0.11 

https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html


 

 

 

CT 0.27 0.60 0.50 0.46 0.34 -0.10 

DC 0.30 0.56 0.47 0.44 0.26 -0.09 

DE 0.10 0.48 0.25 0.28 0.38 -0.23 

FL 0.22 0.63 0.48 0.44 0.41 -0.14 

GA 0.15 0.51 0.29 0.31 0.36 -0.22 

IA 0.26 0.58 0.44 0.43 0.32 -0.14 

ID 0.07 0.36 0.15 0.19 0.29 -0.21 

IL 0.24 0.60 0.50 0.45 0.35 -0.10 

IN 0.19 0.55 0.36 0.37 0.36 -0.19 

KS 0.14 0.45 0.15 0.25 0.32 -0.30 

KY 0.16 0.51 0.30 0.32 0.35 -0.20 

LA 0.18 0.55 0.37 0.37 0.37 -0.18 

MA 0.32 0.65 0.57 0.51 0.34 -0.08 

MD 0.23 0.65 0.49 0.46 0.42 -0.17 

ME 0.19 0.42 0.39 0.33 0.23 -0.03 

MI 0.20 0.60 0.40 0.40 0.39 -0.19 

MN 0.30 0.64 0.44 0.46 0.35 -0.20 

MO 0.26 0.60 0.44 0.43 0.33 -0.15 

MS 0.07 0.42 0.16 0.22 0.35 -0.26 

MT 0.11 0.16 0.19 0.15 0.06 0.03 

NC 0.11 0.47 0.36 0.31 0.36 -0.12 

ND 0.10 0.36 0.25 0.24 0.26 -0.11 

NE 0.23 0.56 0.40 0.40 0.34 -0.16 

NH 0.32 0.64 0.57 0.51 0.31 -0.07 

NJ 0.23 0.57 0.46 0.42 0.33 -0.11 

NM 0.15 0.45 0.32 0.31 0.30 -0.13 

NV 0.30 0.63 0.53 0.48 0.33 -0.10 

NY 0.33 0.62 0.55 0.50 0.29 -0.07 

OH 0.16 0.53 0.38 0.36 0.37 -0.16 

OK 0.18 0.45 0.23 0.29 0.27 -0.22 

OR 0.30 0.54 0.43 0.42 0.24 -0.10 

PA 0.22 0.57 0.46 0.42 0.35 -0.12 

RI 0.30 0.63 0.62 0.52 0.33 -0.01 

SC 0.11 0.45 0.18 0.25 0.34 -0.27 

SD 0.11 0.42 0.21 0.24 0.31 -0.20 

TN 0.16 0.54 0.31 0.34 0.37 -0.22 

TX 0.20 0.55 0.34 0.36 0.35 -0.20 

UT 0.27 0.59 0.47 0.44 0.32 -0.12 

VA 0.22 0.58 0.43 0.41 0.35 -0.14 

WA 0.41 0.66 0.61 0.56 0.25 -0.05 

WI 0.22 0.51 0.42 0.38 0.30 -0.10 

WV 0.07 0.41 0.23 0.24 0.34 -0.18 

WY 0.13 0.34 0.05 0.18 0.22 -0.29 

Note. VT (Vermont) is not included due to the insufficient samples in baseline calculation.  



 

 

5. Discussion 

5.1 Merits of social media data in gauging human 

mobility dynamics 

The rise of social media platforms in recent years offers a potential solution to closely 

monitoring human mobility dynamics, given their real-time high-volume user-generated 

content. Public health crises like the COVID-19 pandemic uniquely highlight several 

merits of social media data. First, social media data are a more harmonized source 

compared to cellphone records from certain providers that differ geographically. Twitter, 

for example, has 330 million monthly active users and 500 million daily posts worldwide 

[58]. Its popularity allows it to serve as a valuable venue where derived mobility dynamics 

can be cross-compared in different regions, especially for a global epidemic event like 

the COVID-19. Second, social media data offer both immediacy and spatially explicit 

geo-information that traditional approaches like surveys and censuses are often not 

capable of. The rapid spread of the SARS-CoV-2 virus and the everchanging mitigation 

policies greatly magnify the merit of timeliness in real-time crowdsourcing platforms, 

including social media. Third, social media data are relatively less privacy-concerning 

compared to passive data-collecting approaches that include phone calls, cellular records, 

and smart cards. The privacy issues in the above passive methods preclude the analysis 

in a more spatial explicit manner, as data collected via those methods are usually de-

identified and aggregated before application. Finally, despite the required computational 

resources and storage that are essential to handle the large volume and velocity of Twitter 

data, such data are easily accessible and cost-efficient. In these respects, geotagged tweets 

can and should be considered as a valuable proxy for human mobility, especially during 

times of crisis (like the COVID-19 pandemic we are facing) that usually cause dramatic 



 

 

mobility changes. 

5.2 Limitations 

The results of this study should be interpreted in light of several important limitations. 

First, the representativeness of Twitter data may not reflect the characteristics of the 

population as a whole in terms of socioeconomic status, age, gender, or race. Furthermore, 

the representativeness may vary geographically. Despite the attempts to improve the 

understanding of the demographics of Twitter users via profile scrutiny and tweets mining 

[27, 59], the intrinsic biases in Twitter samples should be considered when the results of 

this study are interpreted. The problem of representativeness, however, exists in all digital 

services. Mobility patterns derived from phone calls and cell phone applications (e.g., 

Google Maps and Apple Maps) also have to face the criticisms that people left behind by 

the “Digital Divide” [60] are underrepresented. 

Second, the Twitter API allows unrestricted access to only about 1% of the total 

records [61]. From the tweets that streamed down via the Twitter API, we only use tweets 

that are geotagged with spatial resolution lower than the city level. Despite the “Big Data” 

nature of Twitter as a data source, the available records that can be used to derive human 

mobility patterns are still insufficient in some regions at a temporal resolution of daily. 

Mobility time series computed from insufficient samples tend to have more fluctuations, 

making the general pattern less recognizable and less reliable. In this respect, the mobility 

dynamics identified in the study only account for the reaction of Twitter in response to 

the COVID-19 pandemic and should not be generalized to infer the mobility of the total 

population without caution. 

Third, the less privacy-concerning nature of social media data also creates many 

challenges. Unlikely the passively collected data from mobile telephone records, smart 



 

 

cards, and wireless networks, social media data own intrinsic active nature, as users must 

grant permission to share their data and determine the locational accuracy of their posts, 

all depending on their personal settings. Thus, the two types of distances proposed in this 

study, single-day distance and cross-day distance, only reflect the travel behaviors that 

users are willing to share. This active nature protects privacy to some degree. At the same 

time, however, it dilutes the total amount of available trajectory data both spatially and 

temporally, potentially causing skewness in the extracted origin-destination information.  

Finally, our mobility baseline, where mobility patterns from other periods are 

compared against, is derived from a one-month period that starts from mid-January. We 

further compute baselines for each corresponding day of a week by recognizing a week 

as an independent mobility cycle, without considering the monthly discrepancies that 

mobility patterns may present. Studies have shown that mobility may vary regularly on a 

monthly basis [62, 63], and the variations differ geographically due to the different 

cultural and societal settings. The uncertainty resulting from the short baseline period that 

specifically covers late-January and February needs to be acknowledged. 

5.3 Future directions 

Despite these limitations, we believe the strengths and valuable findings in this study 

outweigh the shortcomings. However, several lines of future studies are still in need. First, 

future work should investigate the representativeness of Twitter data by delving into the 

demographics of Twitter users. The mobility patterns documented in this study only 

reflect Twitter users’ collective activities responding to the COVID-19 pandemic. Thus, 

the representativeness of the findings largely depends on the demographics of the local 

users in relation to the demographics of the local population. Another research direction 

is to examine the similarity and dissimilarity in mobility patterns derived from various 



 

 

sources (social media, phone calls, cellular records, smart cards, etc.), as they reflect 

human mobility from different yet valuable perspectives. Following the mathematical 

design in this study, we compared Twitter mobility with the Apple mobility report, the 

Google mobility report, and mobility data from Descartes Labs [64]. Future studies are 

needed to investigate the characteristics of other heterogeneous mobility sources to 

understand the strengths and pitfalls of each source. The third line of research is to explore 

the potential in the integration of mobility indices from heterogeneous data sources. An 

integrated mobility index from multiple sources is expected to better reflect the 

multifaceted nature of human mobility, thus greatly facilitating comprehensive mobility 

monitoring. Fourth, research on more extensive Twitter datasets is needed to investigate 

the possible improvement in mobility that can be captured. Although millions of spatially 

explicit Twitter posts collected in this study are sufficient to quantitatively reflect the 

human mobility dynamics during the pandemic, an increasing amount of tweets are 

expected to generate more stable and reliable trends with fewer random fluctuations. 

Despite the fact that the licenses for other sample sizes, such as Gecahose (returning 10% 

of the public data) and Firehose (returning 100% of the public data), are costly, difficult 

to obtain, and requiring a demanding computational environment [65], their potential in 

obtaining reliable mobility dynamics at much finer spatiotemporal resolutions deserves 

attention. Finally, as human population movement is among the critical dimension that 

drives the spatial spread of COVID-19, how to leverage such Twitter derived mobility 

information for better predicting the future infectious risk of a state, county, or community 

warrants investigation. 

6. Conclusion 

As the whole world is now fighting the COVID-19 pandemic, the effectiveness of 



 

 

mobility-reducing measures (e.g., social/physical distancing) at varying scales needs 

rapid investigation. This article examines the reaction in social media, specifically Twitter, 

spatially and temporally in response to the COVID-19 pandemic as a more harmonized, 

less privacy-concerning, and cost-efficient approach to assessing human mobility 

dynamics promptly. Through analyzing more than 580 million tweets worldwide, we 

present how our collaborative efforts in mobility reduction are reflected from this user-

generated information in three different geographic scales: global scale, country scale, 

and U.S. state scale. To quantify various aspects of mobility from Twitter, we propose 

two types of distance, i.e., the single-day distance that highlights daily travel behavior 

and the cross-day distance that highlights the displacement between two consecutive 

days. To facilitate the comparison with normal situations, we further normalize these 

distances by separately setting up their baselines for each corresponding day of a week. 

We also propose a mobility-based responsive index (𝑀𝑅𝐼) to capture the overall degree 

of mobility-related responsiveness of particular geographic regions in response to the 

COVID-19 pandemic. 

The results suggest that mobility patterns obtained from Twitter data are amenable 

to quantitatively reflect the mobility dynamics in COVID-19 pandemic at various 

geographic scales. Globally, the proposed two distances measured from Twitter had 

greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-

19 as a pandemic. The considerably less periodicity after the declaration suggests that the 

protection measures have obviously affected people’s weekly routines. The global 𝑀𝑅𝐼 

reveals less responsiveness in May compared with April. At the country scale, the 

country-level discrepancies in responsiveness are obvious, evidenced by the contrasting 

mobility patterns in different epidemic phases. We further find that the triggers of 

mobility changes correspond well with the announcements of mitigation measures, which 



 

 

in return proves that Twitter-based mobility, to some degree, implies the effectiveness of 

those measures. At the U.S. state scale, the influence of the COVID-19 pandemic on 

mobility is distinct, as the drop of mobility in most of the states happened in mid-March 

following the National Emergency declaration on March 13. However, the impacts varied 

substantially among states. Heavily hit states generally experienced sharp mobility 

reduction while states with low numbers of cases exhibited relatively marginal mobility 

reduction. With orders gradually being lifted since late-April, 45 states (except MT, NH, 

and WA) have shown reduced responsiveness in May compared to April. The 

methodological knowledge and contextual findings in this study seed future applications 

of the easily accessible, less privacy-concerning, highly spatiotemporal Twitter data in 

monitoring multi-scale mobility dynamics during disaster events. 
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