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The characteristics of multi-source mobility datasets and how they
reveal the luxury nature of social distancing in the U.S. during the

COVID-19 pandemic

In this study, we reveal the similarity and dissimilarity of mobility from various
sources, and the luxury nature of social distancing in the U.S during the COVID-
19 pandemic by highlighting the disparities in mobility dynamics from lower-
income and upper-income counties. We collect, preprocess, and compute mobility
data from four sources: 1) Apple mobility trend reports, 2) Google community
mobility reports, 3) mobility data from Descartes Labs, and 4) Twitter mobility
calculated via weighted distance. We further design a Responsive Index (RI) based
on the time series of mobility change percentages to quantify the general degree of
mobility-based responsiveness at the U.S. county level. We find statistically
significant positive correlations in Responsive Index (RI) between either two data
sources, revealing their general similarity, albeit with varying Pearson’s r
coefficients. Despite the similarity, however, mobility from each source presents
unique and even contrasting characteristics, demonstrating the multifaceted nature
of human mobility. The positive correlation between R/ and income is significant
in all mobility datasets, suggesting that counties with higher income tend to react
more aggressively in terms of reducing more mobility in response to the COVID-
19 pandemic. Most states present a positive difference in RI between their upper-
income and lower-income counties, where diverging patterns in time series of
mobility changes percentages can be found. This is the first study that cross-
compares multi-source mobility datasets. The findings contribute to gaining the
knowledge of not only the characteristics of multi-source mobility data but also the

mobility disparity in tandem with the wealth disparity.
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1. Introduction

The outbreak of Coronavirus disease (COVID-19) has undoubtedly raised worldwide



concerns. On March 11, the World Health Organization (WHO) officially declared
COVID-19 as a pandemic, hoping countries and regions worldwide to join forces. By the
end of June (June 30, 2020), there had been 10,185,374 confirmed cases and 503,862
deaths worldwide (WHO, 2020). As the new epicenter of the COVID-19, there had been
2,581,229 cases and 126,739 deaths in the U.S by June 30, respectively accounting for
25.3% and 25.2% of the global statistics according to the Centers for Disease Control and
Prevention (CDC). As the COVID-19 pandemic progresses, social distancing, one of the
non-pharmacological control measures to reduce person-to-person contact, has emerged
as an effective measure to restrain the spread of infections (Jawaid, 2020). Studies
discovered that the considerable mobility reduction following the implementation of
social distancing measures is greatly responsible for the reduction of effective
reproduction number, i.e., the R, consequently reducing the transmission rate of SARS-
COV-2, the virus that caused the COVID-19 pandemic (Kraemer et al., 2020; Qiu et al.,
2020; Buckee et al., 2020; Oliver et al., 2020).

Despite the success of China in controlling the spread of the virus via stringent
measures, it is rather difficult for other countries and regions to follow the same degree
of mitigation. Most European countries and the U.S. have decided to implement relatively
loose mitigation policies that encourage and largely rely on individual responsibility, as
opposed to imposing stringent government actions (Anderson et al., 2020; Kraemer et al.,
2020; Fang et al., 2020). Given the current situation and projected course of the confirmed
cases in the U.S., the effectiveness of those policies remains debatable, as many scholars
have voiced that stronger social distancing measures need to be implemented before the
pandemic causes severe consequences that may last for a long period of time (Kissler et
al., 2020; Nacoti et al., 2020; Wong et al., 2020; Sjodin et al., 2020). The intrinsic

volunteering nature within the enforcement of social distancing measures facilitates the



protection of individual freedom (Evans, 2020). At the same time, however, it creates
noticeable discrepancies in people’s responses that potentially drive from their underlying
beliefs regarding the severity of the COVID-19 pandemic (Painter and Qiu, 2020; Garrett,
2020) and, as pointed out in many studies, their socioeconomic status (Almagro and
Orane-Hutchinson, 2020; Coven and Gupta, 2020; Hopman et al., 2020). The
disproportionate responses in mobility due to the different socioeconomic status reflects
the long-standing disparities in health outcomes and potentially leave more vulnerable
populations uniquely exposed to the COVID-19 pandemic.

The investigation of inequality and disease is not new in literature, as many pieces
of epidemiological evidence that prove a robust relationship between social inequality
and health outcomes have been found (Nguyen and Peschard, 2003; Muennig et al., 2005;
Cooper, 2001; Gaziano et al., 2010). Income, particularly, as one of the major factors in
socioeconomic status, is responsible for the noticeable disparities in the exposure of many
diseases (Siddharthan et al., 2018; Muennig et al., 2005; Breteler et al., 2013). For the
COVID-19 pandemic, Barnett-Howell and Mobarak (2020) prove that the
epidemiological and economic benefits of social distancing are much smaller in poorer
countries, as the poor place relatively greater value on their livelihood concerns compared
to contracting COVID-19. A recent study by Nayak et al. (2020) links the socioeconomic
vulnerability with mortality rates in U.S. counties and finds that counties with higher
social vulnerability (primarily driven by low income) are experiencing greater mortality
rates. By investigating the role of income inequality in moderating the effectiveness of
social distancing measures, Chiou and Tucker (2020) find that people with high income
are more likely to self-isolate at home, and the evidence further suggests that the presence
of high-speed Internet in high-income regions plays an important role. To make things

worse, the existing income-induced disparities in the responses of COVID-19 are



expected to be exaggerated by the recognized shortcomings of the U.S. protection
measures (e.g., health insurance, minimum incomes, unemployment benefits, and paid
parental leave), potentially causing long-term negative outcomes for the low-income
populations (Coven and Gupta, 2020; Lou et al., 2020). Despite the above efforts,
multisource and multiscale evidence is still needed to understand whether/how the
wealthy and the poor respond to the CONVID-19 pandemic differently.

Fortunately, the disproportionate exposures to the risk from the COVID-19
between the lower-income and upper-income groups can be properly measured by the
human mobility data, given the close relationship between human mobility and the
transmission of SARS-COV-2 (Tian et al., 2020; Xu and Li, 2020; Fauver et al., 2020).
Since the outbreak of COVID-19, many mobility data sources have been made available
to facilitate rapid monitoring in human mobility, most notably Google mobility report
derived from Google Maps (www.google.com/covid19/mobility) and Apple mobility
report derived from Apple Maps (www.apple.com/covid19/mobility). Those reports are
updated on a daily basis and can be easily downloaded. In addition to the mobility data
collected from cellphone navigation applications, mobile network operators start to
collaborate with local authorities and the federal government to estimate the impact of
mobility-reducing related measures (Oliver et al., 2020; Scott et al., 2020). One notable
effort is by Descartes Labs (www.descarteslabs.com), a platform that has open-sourced
the daily mobility statistics in the U.S. collected via mobile devices (Warren and
Skillman, 2020). As a more harmonized and less privacy-concerning data source, social
media (e.g., Twitter and Facebook) are also favored by many scholars to study the
mobility dynamics during the COVID-19 pandemic (Chen et al., 2020; Huang et al.,
2020; Yang et al., 2020). Given the existence of many publically available mobility

datasets from various sources, understanding their similarities and dissimilarities is in



great need. Owing to the multifaceted nature of human mobility (Gonzalez et al., 2008),
however, neither cellular records, navigation applications, nor social media, can solely
represent human mobility as a whole. Instead, they reflect human mobility from varying
yet valuable perspectives. Linking these perspectives with wealth disparities contributes
to a better understanding of the mobility dynamics of groups with different levels of
income in response to the COVID-19 pandemic.

In this study, we aim to reveal 1) the similarity and dissimilarity of mobility from
various sources, and 2) the luxury nature of social distancing in the U.S during the
COVID-19 pandemic by highlighting the disparities in mobility dynamics from lower-
income and upper-income groups. We collect and compute mobility data from a variety
of sources, including Google and Apple mobility reports (navigation applications),
Descartes Labs mobility (cellular records), and Twitter (social media). To quantify the
general degree of mobility changes at the county level, we designed a responsive index
(RI') via the time series of mobility change percentage using the sources above.
Specifically, we attempt to answer whether a consensus can be achieved from various
mobility sources that the lower- and upper-income groups present contrasting mobility
dynamics during the pandemic, eventually leading to disproportionate exposures that
disfavor the lower-income group. Our study extends the increasing amount of literature
in understanding social injustice via big mobility data. The findings of this study help us
gain knowledge of not only the similarities and dissimilarities in multi-source mobility
data but also the wealth disparity in tandem with the implementation of social distancing,
greatly benefiting epidemic modeling and policy design for better mitigation of future

epidemics and pandemics.

2. Mobility datasets and preprosessing

We collect and compute four open-source mobility datasets that cover the U.S., which



include 1) Mobility records from Descartes Labs using commercially available mobile
device dataset (Section 2.1); 2) Apple mobility reports mainly from Apple Maps (Section
2.2); 3) Google community mobility reports mainly from Google Maps (Section 2.3), and
4) Twitter-based mobility from geotagged tweets (Section 2.4). The highest spatial
resolution of the mobility data from Descartes Labs, Apple, and Google, is the U.S.
county level. Given that the U.S. National Emergency was announced on March 13 and
the majority of the U.S. states started to react aggressively after mid-March, we present
the daily mobility change percentage from March 1, 2020, to June 30, 2020. We believe
this four-month period well covers different epidemic phases in the U.S., thus providing
valuable knowledge of how people react to the COVID-19 pandemic by adjusting their
travel behaviors accordingly. Although the four mobility datasets in this study differ from
each other in terms of data quantity, data quality, and baseline calculations, we apply
several preprocessing steps to make them more comparable (details can be found in the
following subsections). Note that the problem of data missing widely exists in all mobility
datasets. To ensure that data records are sufficient enough to generate reliable and stable
time series of mobility changes, we only map the time series for counties with more than
100 days of mobility records (out of 122 days from March 1 to June 30). To fill the gaps,
we apply a simple linear interpolation, under the assumption that mobility changes

linearly between two consecutive available records.

2.1 Mobility data from Descartes Labs

The mobility dataset from Descartes Labs, a predictive intelligence company that makes
data-agnostic platforms for large-scale analysis, is open-sourced at Github
(https://github.com/descarteslabs/DL-COVID-19) and updated on a daily basis. The data
cover a total of 2668 counties (2612 counties have mobility records in more than 100 days

from March 1 to June 30) and are derived from a collection of mobile devices reporting



consistently throughout the day. The distance measured in this dataset is the daily
maximum distance of a certain user, i.e., the maximum distance between a user’s initial
location of a day and other locations within the same day (details can be found in Warren
and Skillman et al. (2020)). The county-level mobility baseline is defined as the median
of the maximum distance of all users in a certain county on weekdays from February 17,
2020, to March 7, 2020. The mobility change percentage is further calculated by
comparing daily mobility to the baseline. Due to the data quality issues, mobility data on
April 20 and May 29 are not released (Warren and Skillman et al., 2020). To facilitate a
smooth time series mapping, we generate mobility change percentage on these two
missing days for all available counties by averaging the values of the corresponding days
in the preceding week and following week. That is, the mobility change percentage for
April 20 is the average value of mobility change percentages on April 13 and April 27,

and May 29 is the average of May 22 and June 5.

2.2 Apple mobility reports

The raw mobility reports from Apple (www.apple.com/covid19/mobility) cover major
cities and a total of 63 countries (the U.S. included) and regions. Unlike Descartes Labs'
mobility data that measure the travel distance, Apple mobility reports are generated by
counting the number of requests made to Apple Maps for directions (Apple Mobility
Trends Reports, 2020). Despite the difference in measurement, the daily changes in the
number of requests from navigation services like Apple Maps still offer valuable insights
into people’s mobility changes in response to the COVID-19 pandemic. Although Apple
provides mobility records in three different categories that include “transit”, “walking”,
and “driving”, only “driving” is available for the U.S. at the county level. Apple mobility

reports cover 2070 U.S. counties, and all the counties have mobility records in more than

100 days in the designated period. However, data for May 11 and May 12 are not



available. Following the same procedure in the Descarte Labs mobility, we generate
mobility data of the two missing days by averaging the corresponding days in the
preceding week and the following week. In addition, Apple defines the mobility from
January 13 as the baseline value. To make it comparable with Descartes Labs mobility,
we compute a new baseline value from February 17 to March 7 (the baseline period
defined in Descartes Labs mobility) and use it to adjust the mobility in the entire Apple

mobility dataset.

2.3 Google mobility reports

Google mobility reports use aggregated, anonymized data to chart movement trends over
time, across six different categories in “retail and recreation”, “groceries and
pharmacies”, “parks”, “transit stations”, “workplaces”, and “residential” (Google
Community Mobility Reports, 2020). Although a total of 2794 U.S. counties are covered,
our investigation reveals that the quantity of the records varies greatly across categories,
with “workplaces” having the most records and other categories insufficient for deriving
stable time series. Therefore, we select mobility in the category of “workplaces” for
further analysis. Google defines the baseline of the dataset as the median value for the
corresponding day of the week, during the 5-week period January 3 to February 6. To
make it comparable with other datasets, we adjust the Google mobility records by
computing a new baseline value from February 17 to March 7. Within 2794 counties
covered by the dataset, 2110 counties have records in more than 100 days from March 1

to June 30 and are therefore selected to derive the mobility time series.

2.4 Twitter-based mobility

We have collected 200 million geotagged (embedded with geolocation in the format of

exact coordinates or place names) tweets in a time period from January 1, 2020, to June



30, 2020, from over 52 million unique Twitter users in the U.S. using the official Twitter
Streaming Application Programming Interface (API). We store and manage those tweets
in an in-door Hadoop cluster with 13 servers using Apache Hive and Impala. Following
the work by Huang et al. (2020), we compute the weighted distance of each Twitter user
by integrating single-day distance that reveals users’ daily travel patterns and cross-day
displacement that reveals users’ displacement between two consecutive days (details in
Section 3.1). Our investigation suggests that a stable time series can be achieved when
the daily user count for the distance calculation reaches 30 (see Figure A in the
Appendices). Within the 2981 counties covered by the Twitter dataset, 565 counties are
qualified for the time series mapping as their daily user counts are greater than or equal
to 30 for more than 100 days between March 1 and June 30. Following the baseline
settings of the aforementioned mobility dataset, we compute the mobility change

percentage by setting the baseline between February 17 to March 7.

3. Methods

3.1 Weighted distance from Twitter

The calculation of weighted distance (d,, ) from Twitter involves two types of commonly
used distance in mobility: 1) single-day distance (d) and 2) cross-day displacement (d.).

The concept of these two distances is presented in Figure 1. Given a total of n positions

from Twitter user i in day j: {r. 1(11)’ rl(jz), ooy l(jn)} where (11) denotes the first post in day

I ] ) denotes the second post, and so forth. Let G (a, b) denote the Great Circle Distance

between position a and b. The computation of d; is the selection of the maximum Great

€Y

Circle Distance between the initial position 7;";” and all other positions in day j:
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In comparison, d. measures the mean center shift of a certain user’s positions in
) C

two consecutive days. For the same position collection, {r: 1(11)’ ri’(jz), . l(]n)} that
o @ rm
represents n positions from Twitter user i inday j, let {r; ;1. %; 11, .-, 1j j41 } denote the

the m positions from the same user in the next day (day j + 1). Mean centers 7;; and
7, ,+1 are respectively calculated by averaging the x and y coordinates of positions in day
j and day j + 1. The cross-day displacement for day j (d,) is the Great Circle Distance

between the mean center in day j and mean center inday j + 1, 1i.e.,d. = G(7;, T, ;+1)-
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Figure 1. Concept of single-day distance and cross-day displacement (modified from

Huang et al., 2020).

Intuitively, dg and d. reflect different aspects of mobility with dg reflecting
users’ travel patterns in a single day, while d. reflecting users’ position shift between two
consecutive days. The weighted distance (d,,) is the integration of dg and d, and is
expected to reflect the overall mobility dynamics from Twitter. To compute d,,, we

derive the weighted arithmetic mean of d; and d..:

d,, = st dexue )

Us+ Uc



where u; and u, denote the user counts for the calculation of dg and d.., respectively. We
then aggregate the users’ daily d,, at the county level and compute the change percentage
by comparing the aggregated county-level d,, with the county-level d,, during the

baseline period (February 17 to March 7).

3.2 Conceptualization of responsive index (RI)

The time series of the mobility change percentage from the various mobility sources
generally quantify the level of reaction in response to the COVID-19 pandemic. A
reduction in mobility denotes the positive response while an increase in mobility denotes
otherwise. The strength of the response is assumed to be proportional to the degree in
mobility changes. Figure 2 describes the concept of the responsive index (RI) using time

series in mobility change percentage.
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Figure 2. The concept of the responsive index using time series in mobility changes.
We first smooth the time series using a one-dimensional Gaussian filter to remove
the noises so that the general trend of mobility changes is revealed. The baseline
(representing no mobility change) divides the space into two parts: positive response with
reduced mobility (Sp) and negative response with increased mobility (Sp) (Figure 2). The

area between the baseline and the smooth time series is denoted as a, while space excepts



@ is denoted as . In Figure 2, there are three individual Sp_ regions, respectively denoted
as S ,%a, S Ea, and S Sa, and four Sy regions, respectively denoted as S ,%,a, S 1%,“, S f’,a, and

1 2 3
SPa+SPa+SPa

S 1‘\*,“. We then quantify the response by computing two ratios: 1) and 2)

s},a+s§,a+s,3,a+spﬁ

1 2 3 4
SN[I+SN[I+SN[I+SN(Z

— , Where the former ratio quantifies the strength of the positive
SNa+SRiatSNatSNatSN g

response, and the latter ratio quantifies the strength of the negative response (Figure 2).
The RI we propose is the difference between the two ratios. Given that Figure 2, for the
illustration purpose, confines the mobility change in a range from -100% to 100%, we
have S,}a + S;Z,a + Sga + SPB = S},a + Sf,a + Sﬁ,a + Sf\",a + SNB' In this study, however,
the mobility change percentage is unrestricted from 0% to 100% in the calculation of RI.
Generally, the RI can be calculated via the following equation:

Rl = Z'iSIiDa _ 2i51iva 3)
Zisﬁa*'SPﬁ Zisfva‘FSNﬁ

Our proposed R/ has a range of [-1, 1] with RI = 1 suggesting a hypothetically
perfect responsiveness. Positive RI suggests that the accumulative response within a
specific period of time is positive, while negative RI suggests otherwise. The higher the

RI, the stronger the accumulative responsiveness a geographic region has.

3.3 Comparison of mobility datasets and their association with income

In this study, we aim to cross-compare mobility datasets from various sources and reveal
the linkage between mobility dynamics and income at the U.S. county level, as a county
is the finest geographical unit in mobility datasets from Apple, Google, and Descartes.
Let MCP; denote the mobility change percentage of a certain county on day j. We derive
the heat map by plotting all the available pairs, i.e., (j, MC ij), within the time frame

(March 1 to June 30) for each mobility dataset. In addition, we apply the Pearson



correlation analysis for the four open-source mobility datasets to determine 1) the
correlation of the derived county-level RI from each pair of mobility sources, and 2) the
correlation between county median income (from the latest ACS 5-year (2014-2018)
estimates) and the county-level RI. To reveal the disparity in mobility changes between
lower-income and upper-income counties, we first rank the available counties in each
dataset based on the median income and derive the time series of mobility change
percentages respectively for lower-income and higher-income counties by selecting the
median values. Given the fact that state policies may greatly shape county-level
mitigation strategies, we also visualize the statewide disparity in the time series of
mobility change percentages and the difference in RI for upper-income counties and
lower-income counties within each CONUS state to remove the potential impact resulting

from the statewide policies.

4. Results

4.1 Comparison of the four mobility datasets

In general, the impact of the COVID-19 pandemic is well documented from all four
mobility datasets, evidenced by the clear deviations in mobility from the baseline since
mid-March (Figure 3), when the WHO declared COVID-19 as a pandemic (March 11)
and the United States declared a National Emergency (March 13). In April, mobility from
all four datasets descended to the bottom and remained considerably lower than baseline
throughout the month. With the gradually loosened measures from the “Opening Up
America Again” guidelines, the mobility gained an upward momentum and started to
bounce back in early-May, resulting in the “U” shape distribution that can be observed
from all four datasets. Despite the similarity in the general trend, mobility from each

source presents unique and even contrasting characteristics. Data from Apple mobility



trend reports show that mobility in the U.S. had returned to the baseline in mid-May and
remained above the baseline in the entire June (Figure 3a), which contradicts the mobility
dynamics from the other three datasets where mobility is found not fully recovered to the
pre-pandemic level in May and June (Figure 3b-d). This characteristic of the Apple
mobility dataset can be explained by its single-day (January 13) baseline setting.
Although we adjust Apple’s baseline by extending the baseline temporal coverage, the
intrinsic monthly discrepancies in mobility between January and other months still exist.
That is, the above-the-baseline mobility in May and June is arguably the exaggeration
that results from the low baseline value observed on January 13. Compared with March
and April, the mobility change percentages show a more dispersed distributing pattern in
May and June (Figure 3a), indicating the inconsistency of counties in the recovering
phase. The dataset from Descartes Labs also suggests a strong recovery in mobility
following the lifting of strict measures since early-May (Figure 3b). In comparison to the
other three datasets, the reduction is more obvious in April, evidenced by the high
concentration close to -100% in mobility change. We investigate the counties with barely
any recorded mobility in April and find that they coincide well with the counties that were
the epicenter and faced strict stay-at-home orders (e.g., County of New York, Queens,
and Kings in the State of New York, and County of Alameda and Santa Clara in the State
of California). The close-to-none mobility in these counties can be explained by the data
sources (i.e., commercially available mobile device location dataset) (Warren and
Skillman, 2020), which own a more passive nature compared to the data collected via
smartphone applications. Despite the slight recovery in May and June, Google mobility
shows a more concentrated distribution that mostly remains below the baseline
throughout the time period, suggesting that the recovery of mobility in the category of

“workplaces” is presumably slower than other types. In addition, the reduction in April



from Google mobility is relatively less dramatic compared with other datasets. Our
Twitter-based mobility dataset reveals a similar reducing-and-recovering pattern (Figure
3d), although its heat map presents a rather scattered distribution largely due to the
uncertainties introduced from the limited number of geotagged tweets in certain counties.
Despite the scattered distribution pattern, the significant mobility drop in mid-March and

the constantly low mobility in April are well captured by the heat map (Figure 3d).

, (b) Descartes
1

Mobility change

100% -100% T T T ¥ T T
3/01 3/11 3/21 3/31 #4/10 4/20 4/30 5/10 5/20 5/30 6/09 6/19 6/29 3/01 3/11 3/21  3/31 410 420 4/30 5/10  5/20 5/30 /09 6/19 6/29

Date Date
100%
..] (@) Google

Mobility change
Mobility change

EJ

1008 ~100%

% )
ajor 3 3/31  4/10 4/20 4/30 5/10 5/20 5/30 609 6/19 6/29 3/01 3/11 321 3/31  4/10 4/20 4/30 5/10 5/20 5/30 6/09 6/19 6/29
Date Date

[ B |

Low Medium High

Figure 3. Heat map of the county-level mobility change percentages for four sources
(confined from -100% to 100%). (a) Apple mobility trend reports; (b) Mobility data
from Descartes Labs; (¢) Google community mobility reports; (d) mobility calculated

via weighted distance from Twitter.

The results from the Pearson correlation analysis reveal the similarity in computed
county-level RI from these four mobility datasets (Figure 4). As expected, we find
statistically significant positive correlations in RI between either two data sources, albeit
with varying Pearson’s r coefficients (Figure 4). Google and Apple share the highest

correlation (r = 0.60) owning to the fact that both of their mobility records are from



navigation applications in smartphones (i.e., Google Maps and Apple Maps). Despite the
high correlation between Apple and Google, however, the correlation between Apple and
the other two datasets is relatively weak (r = 0.33 for Apple and Descartes, and r = 0.31
for Apple and Twitter). Google and Descartes share the second-highest correlation (r =
0.58), followed by Twitter and Descartes (r = 0.58), and Twitter and Google (r = 0.47).
The histograms of the four datasets suggest that the distribution of their county-level RI
follows the normal distribution, but the descriptive statistics vary markedly (Figure 4).
Given the low standard deviation, mobility computed from Google Maps reveals less
county-level variance in mobility changes in response to the COVID-19 pandemic, which
is supported by its concentrated heat map (Figure 3a). The RI calculated from Apple
mobility (Mean = 0.07 and Median = 0.06) is considerably lower than the other three
sources because of documented strong negative responses (above the baseline) in most
counties since early-June (Figure 3a). As noted above, however, Apple’s low baseline
value on January 13 potentially shifts the entire time series upwards, consequently
responsible for the low RIs. Twitter and Descartes share a similar distribution, indicating

that Twitter data is a good proxy of mobile phone data in capturing the human mobility.



RI (Google) RI (Descartes)

RI (Twitter)

RI (Apple)

0254

1 Median: 0.06

Mean: 0.07

0254

025+

Median: 0.26

J 1 /;‘:ﬂ
SD: 0.14 1 b
Pearsonr =0.33 | Mean: 0.38
e Median: 0.38
p<0.001 1 SD: 0.19 7
— T T T T T T 1 T T T T T T 1 T T T T T 1 T T T T 1
Pearson 1 = 0,60 Pearson r = 0.58 Mean: 0.27

0.754

p<0.001 | p<0.001 | 5D: 0.07
T T T T T T 1 T T T T T 1 T T T T T 1 T T T T T )
Pearson r = 0.31 | Pearsonr = 0.53 | Pearsonr = 0.47 | Mean: 0.32
Median: 0.33
o
p<0.001 | p<0.001 | p <0.001 SD: 0.14
v r T T T T T ! v r T T T r T . . T T r T T r ) ! T T T T T T )
04 0.2 0.0 0z 0.4 0.6 08 L0 0.4 0.2 0.0 0.z 04 0.6 s 1.0 0.4 0.2 0.0 0.z 0.4 0.6 08 1.0 0.4 02 00 0.z 04 0.6 08 1.0
RI (Apple) RI (Descartes) RI (Google) RI (Twitter)

Figure 4. Scatter matrix of county-level Responsive Index (RI) calculated from Apple,
Descartes, Google, and Twitter mobility datasets. The lower triangle shows the bivariate
scatter plots; the upper triangle shows the 2-D kernel density estimations; the diagonal

shows the univariate distribution histograms.

4.2 Correlation between RI and income

Recognizing that the human mobility-based response to the COVID-19 pandemic
includes both negative responses (RI < 0) and positive responses (Rl > 0), we explore
the correlation between the full spectrum county-level RI and the county median income
(Figure 5). In general, all mobility datasets reveal a statistically significant positive
correlation between RI and income, suggesting that counties with higher income tend to
react more aggressively in response to the COVID-19 pandemic by reducing more
moving activities compared to the pre-pandemic baseline. Nonetheless, we acknowledge

that correlation, no matter strong or weak, doesn’t necessarily imply causation. A detailed



discussion regarding this issue can be found in Section 5.2. Despite the statistical
significance, the strength of the correlation varies among datasets due to the intrinsic
nature of their sources. The RI calculated from the Google dataset is strongly correlated
with income (r = 0.65) (Figure 5c1-5c2). In comparison, Apple mobility derived from
Apple Maps, also a navigation service, shows a rather weak correlation between its
calculated R/ and income (r = 0.29) (Figure 5al-a2). Three reasons are arguably behind
the Google-Apple difference in the strength of the correlation. First, Google mobility in
this study only includes the category of “workplaces” (given the insufficient records from
other categories) while Apple mobility considers all types of requests. Thus, the
workplace-related mobility can have a strong linkage with income, consequently leading
to the highly correlated RI. Second, it is reported that the median income for iPhone users
inthe U.S. is 40% higher than that of Android users (Greenough, 2014). As a result, Apple
Maps users possibly fail to cover as much demographic spectrum as Google Maps users.
Third, the concepts of mobility changes from Apple and Google differ, as Apple measures
the change in the number of requests while Google measures the change in the travel
distance. Although both concepts are able to reflect the impact of COVID-19 pandemic
on human behaviors, the difference in calculation potentially causes the difference in the
correlation strength. The correlations between income and RI calculated from Descartes
mobility and Twitter mobility are both significant, and the correlation coefficients are
respectively 0.45 (Figure b1-b2) and 0.37 (Figure d1-d2). The existence of many outlying
counties in datasets from Descartes and Twitter, i.e., counties with strong negative

responsiveness (Rl < 0) (marked in blue bubbles), likely weakens the correlation.
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Figure 5. Correlation between RI and income at the county level for four mobility

datasets.

4.3 Disparities in mobility between lower-income and upper-income counties

We further explore the county-level disparity in mobility dynamics between lower-
income and upper-income counties in response to the COVID-19 pandemic. Figure 6
presents the time series of mobility change percentages for all available counties in the
four mobility datasets. Specifically, counties in the top 10% and bottom 10% in wealth

are highlighted respectively in red lines and blue lines (Figure 6). In general, the disparity



in mobility dynamics is well manifested in all mobility datasets, evidenced by the obvious
gaps between blue lines and red lines, especially after the declaration of the National
Emergency on March 13 (Figure 6). The increase in gaps after March 13 suggests the
diverging mobility pattern between lower-income and upper-income counties in response
to the pandemic. In addition, rich counties are found more responsive as they present
more reduction in mobility compared to poor counties, which is evidenced by the fact that
the red line (top 10% in wealth) consistently lies below the blue line (bottom 10% in
wealth) in all four mobility datasets. Among the four datasets, Descartes mobility presents
the most obvious diverging pattern compared to the other three datasets (Figure 6b).
Considering the low standard deviation, however, the separation in Google mobility
between the rich and poor counties is also noteworthy, as the red line and blue line are
too separated that the gap between them covers most of the time series (Figure 6¢). In
comparison, the county-level disparities between rich and poor counties from Apple
(Figure 6a) and Twitter (Figure 6d) are less dramatic but still noticeable. Note that the
number of available counties varies among datasets (e.g., the Twitter dataset contains 565
counties, while the Descartes dataset contains 2,612 counties), which potentially
introduces a certain level of inconsistency and uncertainty when heterogeneous mobility

data are cross-compared.
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Figure 6. Time series in mobility change percentages of the top 10% and the bottom
10% in wealth for all available counties in the four mobility sources; (a) Apple mobility
trend report; (b) mobility data from Descartes Labs; (¢) Google community reports; (d)

mobility calculated via weighted distance from Twitter.

To reveal the disparity in mobility dynamics within each state, we derive the time
series of mobility change percentages for the top 20% and bottom 20% counties in wealth
within each CONUS state, removing the potential impact from the difference in statewide
mitigation policies. The rationale in selecting “20%” (in contrast to the 10% in Figure 6)
is to include more counties in each state, especially for states with a small number of
counties. Figure 7 shows the statewise time series derived from Descartes mobility in a
pseudo-geographical representation of the CONUS states. The results from Apple
mobility and Google mobility can be found respectively in Figure A and Figure B in the
Appendices. Due to the insufficient number of counties available in each state, the results
from Twitter mobility are not presented.

For Descartes mobility, rich counties (the top 20%) within a certain state generally

tend to react more aggressively in mobility reduction compared to the poor counties (the



bottom 20%) within the same state (Figure 7). The disparity tends to be exaggerated in
the mobility recovery phase, i.e., May and June. For example, WA has seen a consistent
mobility drop after March 13, suggested by the overlapped blue line and red line.
However, the recovery phase in WA highlights the disparity in mobility dynamics, as the
poor counties (blue line) obviously gained earlier and greater upward momentum than the
rich counties (red line). This similar pattern can also be found in PA, MN, MI, and MA
(Figure 7). In comparison, NV stands out by showing the opposite pattern, and states that
include LA, TX, CA, MS, and MD present unnoticeable disparity between the rich and
the poor counties.

Despite the heterogeneity in sources compared with Descartes mobility, the
results from Apple (Figure B) and Google (Figure C) also reveal the general pattern that
rich counties tend to be more responsive by showing a higher mobility reduction rate
within most CONUS states in the selected time period. However, contrasting patterns,
although only a few, can still be found in some states from different mobility data sources.
For example, KS presents higher responsiveness for rich counties from Descartes
mobility but lower responsiveness for the rich counties from Apple mobility. In addition,

the pattern in ND from Google mobility contradicts the pattern from Apple mobility.
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Figure 7. Time series of Descartes mobility change percentages for the top 20% and

bottom 20% counties in wealth at each CONUS state (pseudo-geographical

representation). For a state with less than five available counties, counties with the most

median income and the least median income are selected as the top 20% and the bottom

20%, respectively.

To quantitatively reveal the disparity in mobility responsiveness between the rich and the

poor counties, we calculate the difference in RI between the top 20% and bottom 20%

counties in wealth (VRI) at each CONUS state (Figure 8). The values of VRI are

presented in Table 1. In general, states with positive VRI (in blue) are dominant in number,

as 40 states from Descartes mobility, 32 states from Apple mobility, and 42 states from

Google mobility, out of the 48 states in the CONUS, are with VRI > 0 (Figure 8 and

Table 1). Mobility datasets from the three sources suggest that, despite the noticeable



variances in VRI, wealthy counties within each state are likely to have more mobility-
based responsiveness during the COVID-19 pandemic. However, the inconsistencies
from different mobility datasets need to be recognized, as it presumably results from the
intrinsic nature of the data sources and therefore warrants caution for further studies that

rely on only a single mobility data source.
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Figure 8. The difference in Responsive Index (RI) between the top 20% and bottom
20% counties in wealth at each CONUS state; (a) Apple mobility trend report; (b)

mobility data from Descartes Labs; (¢) Google community reports



Table 1.

The difference in Responsive Index (RI) between the top 20% and bottom 20% counties in
wealth at each CONUS state from Descartes mobility, Apple mobility, and Google mobility

Rltop 20% — Rlpottom 209 measured from

States in the CONUS Descartes mobility Apple mobility Google mobility
Alabama 0.12 -0.08 0.04
Arizona 0.10 0.34 0.06
Arkansas 0.02 0.04 0.07
California -0.02 0.03 0.08
Colorado 0.32 0.39 0.17
Connecticut 0.03 0.06 0.06
Delaware 0.18 0.09 0.07
Florida 0.18 -0.02 0.09
Georgia 0.13 0.03 0.12

Idaho 0.08 -0.19 0.02

Illinois 0.22 0.03 0.08
Indiana 0.11 -0.04 0.05

Iowa 0.18 0.08 0.07

Kansas 0.19 -0.09 0.04
Kentucky 0.07 0.03 0.12
Louisiana 0.07 0.09 0.08
Maine 0.18 -0.03 0.12
Maryland 0.03 -0.09 -0.04
Massachusetts 0.17 0.11 0.14
Michigan 0.15 0.08 0.11
Minnesota 0.22 0.08 0.06
Mississippi -0.05 -0.04 0.04
Missouri 0.13 -0.02 0.09
Montana -0.01 0.15 0.04
Nebraska 0.09 0.06 0.02
Nevada -0.43 -0.24 -0.02

New Hampshire 0.03 -0.06 0.10
New Jersey -0.03 -0.03 -0.02
New Mexico 0.34 0.20 0.11
New York 0.17 0.09 0.09
North Carolina 0.14 0.19 0.10
North Dakota -0.01 0.06 -0.13
Ohio 0.12 0.03 0.09
Oklahoma 0.05 0.13 0.06
Oregon 0.32 0.37 0.13
Pennsylvania 0.27 0.13 0.11
Rhode Island -0.05 -0.15 -0.03
South Carolina 0.08 0.17 0.10
South Dakota 0.12 -0.09 -0.13
Tennessee 0.09 0.13 0.09
Texas 0.05 0.05 0.07



Utah 0.45 0.06 0.01

Vermont 0.08 -0.07 0.06
Virginia 0.16 -0.03 0.06
Washington 0.19 0.23 0.10
West Virginia -0.02 0.03 0.05
Wisconsin 0.28 0.16 0.05
Wyoming 0.11 0.01 0.01

5. Discussions

5.1 The fusion value in heterogeneous mobility data

Our investigation in Descartes, Apple, Google, and Twitter mobility reveals that they well
capture the impact of the COVID-19 pandemic on human mobility by showing clear
deviations from the pre-pandemic baseline. Nevertheless, we observe considerable
dissimilarities among the datasets as each source presents unique characteristics. The four
selected mobility datasets in this study demonstrate the multifaceted nature of human
mobility that has been documented by many (Gonzalez et al., 2008; Cui et al., 2018), and
some believe these heterogeneous data sources reflect human mobility from different yet
valuable perspectives (Zhang et al., 2014; Lau et al., 2019). Zhang et al. (2014) argue that
most of the state-of-the-art theory and practice on human mobility focus on single-source
data in isolation from one another, inevitably leading to limited representativeness. In our
study, although dataset from Google and Apple are both derived mainly from cellphone
navigation applications, the time series in mobility change percentages and the correlation
analysis greatly highlight their difference. Due to the fact that Google Maps is mainly
targeted by Android users while Apple Maps by 10OS (iPhone Operating System) users,
the difference between Google mobility and Apple mobility can be partly explained by
the difference in their user’s demographics. Twitter mobility also shows a unique pattern

in response to the COVID-19 pandemic, different from all other three mobility datasets.



However, we need to acknowledge the strong bias in Twitter data towards a specific
group of the population, i.e., active Twitter users.

It is reasonable to assume that the fusion of these mobility datasets mitigates the
biases to some degree and provides a holistic view of mobility dynamics in a broad
spectrum of the population. Numerous studies have been conducted, attempting to fuse
multi-source mobility data towards a more comprehensive one. To list but a few, Zhang
et al. (2014) proposed a systematic framework to integrate transit records and cellphone
records to mitigate biased sampling. Similarly, Montero et al. (2019) found that the fusion
of heterogeneous mobility data sources facilities robust urban transportation models.
Despite these attempts, however, mobility data fusion is still scarce in the literature,
especially scarce in studies that tackle public health emergencies by means of mobility
monitoring. Global crises, including COVID-19 pandemic we are facing, uniquely
highlights the need for monitoring mobility dynamics in a comprehensive manner, as
integrated human dynamics from multiple sources is expected to better reflect the
multifaceted nature of human mobility, leading to the acquisition of overall knowledge
in mobility dynamics that cover a broader spectrum of the population. At the same time,
however, we argue that the representativeness of each source largely depends on the
demographics of the service users in relation to the demographics of the local population.
Thus, a proper weighting scheme based on their representativeness needs to be considered

when multi-source mobility data are fused.

5.2 The luxury nature of social distancing

Our exploration of the correlation between county-level RI and county median income
indicates that counties with higher income tend to be more responsive in terms of mobility
reduction compared to the pre-pandemic baseline, evidenced by the statistically

significant positive correlation between RI and income from all four mobility datasets.



Most states show a positive difference in RI between their upper-income and lower-
income counties, where diverging patterns in time series of mobility changes percentages
can also be found. However, we need to acknowledge that correlation doesn’t necessarily
imply causation. The reasons behind the disparity in mobility patterns for upper-income
and lower-income counties are multifaceted. Geographically, high-income counties in the
U.S. often coexist with large cities or urban fabrics, in which the dense population is hit
first and hardest by the COVID-19 pandemic. A recent study found that 54% of urban
residents in the states view the disease as a major threat to day-to-day life, which
compares with 42% of those living in the suburbs and just 27% of rural residents in the
same states (Jones, 2020). The urban-rural discrepancy in threat awareness presumably
translates to the different mobility patterns in upper-income and lower-income counties.
In addition, upper-income counties within a certain state (usually with high urbanization)
tend to be the job centers that receive the commuting inflow of workers from nearby
lower-income counties (McKenzie, 2013). This difference in the commuting pattern is
also responsible for the county-level disparity in mobility dynamics. Other possible
explanations of less mobility responsiveness for lower-income counties can be traced to
the policies that sometimes unintentionally create inequity among different groups (Lou
et al., 2020). People respond to the mobility-restrict measures differently, largely
depending on their financial resources. The outcome of these measures may reflect the
preferences of the affluent but not the interests of the lower-income group (Lou et al.,
2020). Given the close relationship between human mobility and the transmission of
SARS-COV-2 reported from numerous studies (Gatto et al., 2020; Sirkeci and Yucesahin,
2020), the low mobility responsiveness in lower-income counties deserves more
attention, as slow reduction and fast recovery in mobility may foster the second ware of

infections, which could be exacerbated by the wvulnerability in the low-income



populations.

5.3 Future directions

The findings from this study point to some potential areas for future research. First, future
research should investigate the representativeness of different mobility data sources,
setting up the foundations for integrated multi-source mobility that reveals the travel
behaviors for a broad spectrum of the population. Similarly, mobility monitoring studies
need to work towards a comprehensive mobility index preparing for future emergency
events, especially for global crises like the COVID-19 pandemic. Studies based on single-
source data should acknowledge the underlying biases in the sample and the potential
issues following these biases. Second, our study compares four open-sourced datasets that
include mobility records from Descarte Labs, Apple, Google, and Twitter. Future studies
can examine the similarity and dissimilarity in mobility patterns derived from other
passive/active citizen-sensor data, e.g., smart cards, Wi-Fi, Bluetooth, etc. Public surveys
and official mobility records from transportation services can serve as ground truth that
these mobility data are compared against. Comparative studies that include multiple
sources comparing against official records are still needed. The COVID-19 pandemic, an
event with dramatic mobility changes on a large scale, provides a great opportunity for
us to learn the strengths and pitfalls of each data source, laying the foundation for the
potential multi-source integration. Third, given that county is the smallest geographical
unit from Apple, Descartes, and Google mobility datasets, we explore the correlation
between county-level income and county-level mobility-based responsiveness. However,
changes in aggregated units (e.g., from counties to Census tracts) might alter the
conclusions due to the famous Modifiable Areal Unit Problem (MAUP) (Fotheringham
and Wong, 1991). Future studies should investigate the disparity in mobility at various

spatial units or scales. Although income is one of the fundamental factors in



socioeconomic status, other factors may also contribute to the disparity in responsiveness
revealed in this study, therefore deserve further investigation. Finally, the spatial
incontinuity of the available counties in all four mobility datasets precludes a detailed
spatial examination. However, we acknowledge that spatial non-stationarity (regional
variation) may exist in the contribution of socioeconomic factors to the mobility
dynamics. Future studies can apply Geographic Weighted Regression (GWR) (Brunsdon
et al.,, 1998) or other methods that consider spatial autocorrelation when using other

spatially continuous mobility datasets.

6. Conclusion

This study reveals the similarity and dissimilarity of mobility from various sources and
the luxury nature of social distancing in the U.S during the COVID-19 pandemic by
highlighting the disparities in mobility dynamics from lower-income and upper-income
counties. We collect and compute mobility data from four sources: 1) Apple mobility
trend reports, 2) Google community mobility reports, 3) mobility data from Descartes
Labs, and 4) mobility calculated via weighted distance from Twitter. We further design a
Responsive Index (RI) based on the time series of mobility change percentages to
quantify the general degree of mobility-based responsiveness at the U.S. county level.
The results reveal that the impact of the COVID-19 pandemic is well documented,
as all mobility datasets show clear deviations in mobility from the pre-pandemic baseline.
We find statistically significant positive correlations in RI between either two data
sources, revealing their general similarity, albeit with varying Pearson’s r coefficients.
The RIs calculated from Google and Apple share the highest correlation (r = 0.60)
presumably owning to the fact that both of their mobility records are from navigation

applications in smartphones (i.e., Google Maps and Apple Maps). Despite the similarity,



however, mobility from each source presents unique and even contrasting characteristics,
demonstrating the multifaceted nature of human mobility. When correlation RI with
income, we find that positive correlation between RI and income is significant in all
mobility datasets, suggesting that counties with higher income tend to react more
aggressively in terms of reducing more mobility in response to the COVID-19 pandemic.
Despite the statistical significance, the strength of the correlation varies among datasets.
The RI calculated from the Google dataset is strongly correlated with income (r = 0.65),
but the correlation is rather weak between the RI from Apple and income. The disparity
in mobility dynamics between lower-income and upper-income counties is well
manifested from all mobility datasets. Most states present a positive difference in
RI between their upper-income and lower-income counties, where diverging patterns in
time series of mobility changes percentages can be found.

To our best knowledge, this is the first study that cross-compares mobility datasets
from various sources during the COVID-19 pandemic. The findings contribute to gaining
the knowledge of not only the characteristics of multi-source mobility data but also the
mobility disparity in tandem with the wealth disparity, benefiting policy design for better

mitigation of future epidemics and pandemics.
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Figure B. Time series of Apple mobility change percentages for the top 20% and bottom
20% counties in wealth at each CONUS state (pseudo-geographical representation). For
a state with less than five available counties, counties with the most median income and

the least median income are selected as the top 20% and the bottom 20%, respectively.
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Figure C. Time series of Google mobility change percentages for the top 20% and bottom

20% counties in wealth at each CONUS state (pseudo-geographical representation). For

a state with less than five available counties, counties with the most median income and

the least median income are selected as the top 20% and the bottom 20%, respectively.
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