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The characteristics of multi-source mobility datasets and how they 

reveal the luxury nature of social distancing in the U.S. during the 

COVID-19 pandemic 

 

In this study, we reveal the similarity and dissimilarity of mobility from various 

sources, and the luxury nature of social distancing in the U.S during the COVID-

19 pandemic by highlighting the disparities in mobility dynamics from lower-

income and upper-income counties. We collect, preprocess, and compute mobility 

data from four sources: 1) Apple mobility trend reports, 2) Google community 

mobility reports, 3) mobility data from Descartes Labs, and 4) Twitter mobility 

calculated via weighted distance. We further design a Responsive Index (𝑅𝐼) based 

on the time series of mobility change percentages to quantify the general degree of 

mobility-based responsiveness at the U.S. county level. We find statistically 

significant positive correlations in Responsive Index (𝑅𝐼) between either two data 

sources, revealing their general similarity, albeit with varying Pearson’s 𝑟 

coefficients. Despite the similarity, however, mobility from each source presents 

unique and even contrasting characteristics, demonstrating the multifaceted nature 

of human mobility. The positive correlation between RI and income is significant 

in all mobility datasets, suggesting that counties with higher income tend to react 

more aggressively in terms of reducing more mobility in response to the COVID-

19 pandemic. Most states present a positive difference in 𝑅𝐼 between their upper-

income and lower-income counties, where diverging patterns in time series of 

mobility changes percentages can be found. This is the first study that cross-

compares multi-source mobility datasets. The findings contribute to gaining the 

knowledge of not only the characteristics of multi-source mobility data but also the 

mobility disparity in tandem with the wealth disparity. 
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1. Introduction 

The outbreak of Coronavirus disease (COVID-19) has undoubtedly raised worldwide 



concerns. On March 11, the World Health Organization (WHO) officially declared 

COVID-19 as a pandemic, hoping countries and regions worldwide to join forces. By the 

end of June (June 30, 2020), there had been 10,185,374 confirmed cases and 503,862 

deaths worldwide (WHO, 2020). As the new epicenter of the COVID-19, there had been 

2,581,229 cases and 126,739 deaths in the U.S by June 30, respectively accounting for 

25.3% and 25.2% of the global statistics according to the Centers for Disease Control and 

Prevention (CDC). As the COVID-19 pandemic progresses, social distancing, one of the 

non-pharmacological control measures to reduce person-to-person contact, has emerged 

as an effective measure to restrain the spread of infections (Jawaid, 2020). Studies 

discovered that the considerable mobility reduction following the implementation of 

social distancing measures is greatly responsible for the reduction of effective 

reproduction number, i.e., the R, consequently reducing the transmission rate of SARS-

COV-2, the virus that caused the COVID-19 pandemic (Kraemer et al., 2020; Qiu et al., 

2020; Buckee et al., 2020; Oliver et al., 2020).  

Despite the success of China in controlling the spread of the virus via stringent 

measures, it is rather difficult for other countries and regions to follow the same degree 

of mitigation. Most European countries and the U.S. have decided to implement relatively 

loose mitigation policies that encourage and largely rely on individual responsibility, as 

opposed to imposing stringent government actions (Anderson et al., 2020; Kraemer et al., 

2020; Fang et al., 2020). Given the current situation and projected course of the confirmed 

cases in the U.S., the effectiveness of those policies remains debatable, as many scholars 

have voiced that stronger social distancing measures need to be implemented before the 

pandemic causes severe consequences that may last for a long period of time (Kissler et 

al., 2020; Nacoti et al., 2020; Wong et al., 2020; Sjödin et al., 2020). The intrinsic 

volunteering nature within the enforcement of social distancing measures facilitates the 



protection of individual freedom (Evans, 2020). At the same time, however, it creates 

noticeable discrepancies in people’s responses that potentially drive from their underlying 

beliefs regarding the severity of the COVID-19 pandemic (Painter and Qiu, 2020; Garrett, 

2020) and, as pointed out in many studies, their socioeconomic status (Almagro and 

Orane-Hutchinson, 2020; Coven and Gupta, 2020; Hopman et al., 2020). The 

disproportionate responses in mobility due to the different socioeconomic status reflects 

the long-standing disparities in health outcomes and potentially leave more vulnerable 

populations uniquely exposed to the COVID-19 pandemic. 

The investigation of inequality and disease is not new in literature, as many pieces 

of epidemiological evidence that prove a robust relationship between social inequality 

and health outcomes have been found (Nguyen and Peschard, 2003; Muennig et al., 2005; 

Cooper, 2001; Gaziano et al., 2010). Income, particularly, as one of the major factors in 

socioeconomic status, is responsible for the noticeable disparities in the exposure of many 

diseases (Siddharthan et al., 2018; Muennig et al., 2005; Breteler et al., 2013). For the 

COVID-19 pandemic, Barnett-Howell and Mobarak (2020) prove that the 

epidemiological and economic benefits of social distancing are much smaller in poorer 

countries, as the poor place relatively greater value on their livelihood concerns compared 

to contracting COVID-19. A recent study by Nayak et al. (2020) links the socioeconomic 

vulnerability with mortality rates in U.S. counties and finds that counties with higher 

social vulnerability (primarily driven by low income) are experiencing greater mortality 

rates. By investigating the role of income inequality in moderating the effectiveness of 

social distancing measures, Chiou and Tucker (2020) find that people with high income 

are more likely to self-isolate at home, and the evidence further suggests that the presence 

of high-speed Internet in high-income regions plays an important role. To make things 

worse, the existing income-induced disparities in the responses of COVID-19 are 



expected to be exaggerated by the recognized shortcomings of the U.S. protection 

measures (e.g., health insurance, minimum incomes, unemployment benefits, and paid 

parental leave), potentially causing long-term negative outcomes for the low-income 

populations (Coven and Gupta, 2020; Lou et al., 2020). Despite the above efforts, 

multisource and multiscale evidence is still needed to understand whether/how the 

wealthy and the poor respond to the CONVID-19 pandemic differently. 

Fortunately, the disproportionate exposures to the risk from the COVID-19 

between the lower-income and upper-income groups can be properly measured by the 

human mobility data, given the close relationship between human mobility and the 

transmission of SARS-COV-2 (Tian et al., 2020; Xu and Li, 2020; Fauver et al., 2020). 

Since the outbreak of COVID-19, many mobility data sources have been made available 

to facilitate rapid monitoring in human mobility, most notably Google mobility report 

derived from Google Maps (www.google.com/covid19/mobility) and Apple mobility 

report derived from Apple Maps (www.apple.com/covid19/mobility). Those reports are 

updated on a daily basis and can be easily downloaded. In addition to the mobility data 

collected from cellphone navigation applications, mobile network operators start to 

collaborate with local authorities and the federal government to estimate the impact of 

mobility-reducing related measures (Oliver et al., 2020; Scott et al., 2020). One notable 

effort is by Descartes Labs (www.descarteslabs.com), a platform that has open-sourced 

the daily mobility statistics in the U.S. collected via mobile devices (Warren and 

Skillman, 2020). As a more harmonized and less privacy-concerning data source, social 

media (e.g., Twitter and Facebook) are also favored by many scholars to study the 

mobility dynamics during the COVID-19 pandemic (Chen et al., 2020; Huang et al., 

2020; Yang et al., 2020). Given the existence of many publically available mobility 

datasets from various sources, understanding their similarities and dissimilarities is in 



great need. Owing to the multifaceted nature of human mobility (Gonzalez et al., 2008), 

however, neither cellular records, navigation applications, nor social media, can solely 

represent human mobility as a whole. Instead, they reflect human mobility from varying 

yet valuable perspectives. Linking these perspectives with wealth disparities contributes 

to a better understanding of the mobility dynamics of groups with different levels of 

income in response to the COVID-19 pandemic. 

In this study, we aim to reveal 1) the similarity and dissimilarity of mobility from 

various sources, and 2) the luxury nature of social distancing in the U.S during the 

COVID-19 pandemic by highlighting the disparities in mobility dynamics from lower-

income and upper-income groups. We collect and compute mobility data from a variety 

of sources, including Google and Apple mobility reports (navigation applications), 

Descartes Labs mobility (cellular records), and Twitter (social media). To quantify the 

general degree of mobility changes at the county level, we designed a responsive index 

( 𝑅𝐼 ) via the time series of mobility change percentage using the sources above. 

Specifically, we attempt to answer whether a consensus can be achieved from various 

mobility sources that the lower- and upper-income groups present contrasting mobility 

dynamics during the pandemic, eventually leading to disproportionate exposures that 

disfavor the lower-income group. Our study extends the increasing amount of literature 

in understanding social injustice via big mobility data. The findings of this study help us 

gain knowledge of not only the similarities and dissimilarities in multi-source mobility 

data but also the wealth disparity in tandem with the implementation of social distancing, 

greatly benefiting epidemic modeling and policy design for better mitigation of future 

epidemics and pandemics.  

2. Mobility datasets and preprosessing 

We collect and compute four open-source mobility datasets that cover the U.S., which 



include 1) Mobility records from Descartes Labs using commercially available mobile 

device dataset (Section 2.1); 2) Apple mobility reports mainly from Apple Maps (Section 

2.2); 3) Google community mobility reports mainly from Google Maps (Section 2.3), and 

4) Twitter-based mobility from geotagged tweets (Section 2.4). The highest spatial 

resolution of the mobility data from Descartes Labs, Apple, and Google, is the U.S. 

county level. Given that the U.S. National Emergency was announced on March 13 and 

the majority of the U.S. states started to react aggressively after mid-March, we present 

the daily mobility change percentage from March 1, 2020, to June 30, 2020. We believe 

this four-month period well covers different epidemic phases in the U.S., thus providing 

valuable knowledge of how people react to the COVID-19 pandemic by adjusting their 

travel behaviors accordingly. Although the four mobility datasets in this study differ from 

each other in terms of data quantity, data quality, and baseline calculations, we apply 

several preprocessing steps to make them more comparable (details can be found in the 

following subsections). Note that the problem of data missing widely exists in all mobility 

datasets. To ensure that data records are sufficient enough to generate reliable and stable 

time series of mobility changes, we only map the time series for counties with more than 

100 days of mobility records (out of 122 days from March 1 to June 30). To fill the gaps, 

we apply a simple linear interpolation, under the assumption that mobility changes 

linearly between two consecutive available records. 

2.1 Mobility data from Descartes Labs 

The mobility dataset from Descartes Labs, a predictive intelligence company that makes 

data-agnostic platforms for large-scale analysis, is open-sourced at Github 

(https://github.com/descarteslabs/DL-COVID-19) and updated on a daily basis. The data 

cover a total of 2668 counties (2612 counties have mobility records in more than 100 days 

from March 1 to June 30) and are derived from a collection of mobile devices reporting 



consistently throughout the day. The distance measured in this dataset is the daily 

maximum distance of a certain user, i.e., the maximum distance between a user’s initial 

location of a day and other locations within the same day (details can be found in Warren 

and Skillman et al. (2020)). The county-level mobility baseline is defined as the median 

of the maximum distance of all users in a certain county on weekdays from February 17, 

2020, to March 7, 2020. The mobility change percentage is further calculated by 

comparing daily mobility to the baseline. Due to the data quality issues, mobility data on 

April 20 and May 29 are not released (Warren and Skillman et al., 2020). To facilitate a 

smooth time series mapping, we generate mobility change percentage on these two 

missing days for all available counties by averaging the values of the corresponding days 

in the preceding week and following week. That is, the mobility change percentage for 

April 20 is the average value of mobility change percentages on April 13 and April 27, 

and May 29 is the average of May 22 and June 5. 

2.2 Apple mobility reports 

The raw mobility reports from Apple (www.apple.com/covid19/mobility) cover major 

cities and a total of 63 countries (the U.S. included) and regions. Unlike Descartes Labs' 

mobility data that measure the travel distance, Apple mobility reports are generated by 

counting the number of requests made to Apple Maps for directions (Apple Mobility 

Trends Reports, 2020). Despite the difference in measurement, the daily changes in the 

number of requests from navigation services like Apple Maps still offer valuable insights 

into people’s mobility changes in response to the COVID-19 pandemic. Although Apple 

provides mobility records in three different categories that include “transit”, “walking”, 

and “driving”, only “driving” is available for the U.S. at the county level. Apple mobility 

reports cover 2070 U.S. counties, and all the counties have mobility records in more than 

100 days in the designated period. However, data for May 11 and May 12 are not 



available. Following the same procedure in the Descarte Labs mobility, we generate 

mobility data of the two missing days by averaging the corresponding days in the 

preceding week and the following week. In addition, Apple defines the mobility from 

January 13 as the baseline value. To make it comparable with Descartes Labs mobility, 

we compute a new baseline value from February 17 to March 7 (the baseline period 

defined in Descartes Labs mobility) and use it to adjust the mobility in the entire Apple 

mobility dataset. 

2.3 Google mobility reports 

Google mobility reports use aggregated, anonymized data to chart movement trends over 

time, across six different categories in “retail and recreation”, “groceries and 

pharmacies”, “parks”, “transit stations”, “workplaces”, and “residential” (Google 

Community Mobility Reports, 2020). Although a total of 2794 U.S. counties are covered, 

our investigation reveals that the quantity of the records varies greatly across categories, 

with “workplaces” having the most records and other categories insufficient for deriving 

stable time series. Therefore, we select mobility in the category of “workplaces” for 

further analysis. Google defines the baseline of the dataset as the median value for the 

corresponding day of the week, during the 5-week period January 3 to February 6. To 

make it comparable with other datasets, we adjust the Google mobility records by 

computing a new baseline value from February 17 to March 7. Within 2794 counties 

covered by the dataset, 2110 counties have records in more than 100 days from March 1 

to June 30 and are therefore selected to derive the mobility time series. 

2.4 Twitter-based mobility 

We have collected 200 million geotagged (embedded with geolocation in the format of 

exact coordinates or place names) tweets in a time period from January 1, 2020, to June 



30, 2020, from over 52 million unique Twitter users in the U.S. using the official Twitter 

Streaming Application Programming Interface (API). We store and manage those tweets 

in an in-door Hadoop cluster with 13 servers using Apache Hive and Impala. Following 

the work by Huang et al. (2020), we compute the weighted distance of each Twitter user 

by integrating single-day distance that reveals users’ daily travel patterns and cross-day 

displacement that reveals users’ displacement between two consecutive days (details in 

Section 3.1). Our investigation suggests that a stable time series can be achieved when 

the daily user count for the distance calculation reaches 30 (see Figure A in the 

Appendices). Within the 2981 counties covered by the Twitter dataset, 565 counties are 

qualified for the time series mapping as their daily user counts are greater than or equal 

to 30 for more than 100 days between March 1 and June 30. Following the baseline 

settings of the aforementioned mobility dataset, we compute the mobility change 

percentage by setting the baseline between February 17 to March 7.  

3. Methods 

3.1 Weighted distance from Twitter 

The calculation of weighted distance (𝑑𝑤) from Twitter involves two types of commonly 

used distance in mobility: 1) single-day distance (𝑑𝑠) and 2) cross-day displacement (𝑑𝑐). 

The concept of these two distances is presented in Figure 1. Given a total of 𝑛 positions 

from Twitter user 𝑖 in day 𝑗: {𝑟𝑖,𝑗
(1)

, 𝑟𝑖,𝑗
(2)

, …, 𝑟𝑖,𝑗
(𝑛)

}, where 𝑟𝑖,𝑗
(1)

 denotes the first post in day 

𝑗, 𝑟𝑖,𝑗
(2)

 denotes the second post, and so forth. Let 𝐺(𝑎, 𝑏) denote the Great Circle Distance 

between position 𝑎 and 𝑏. The computation of 𝑑𝑠 is the selection of the maximum Great 

Circle Distance between the initial position 𝑟𝑖,𝑗
(1)

 and all other positions in day 𝑗: 

𝑑𝑠 = 𝑚𝑎𝑥{𝐺(𝑟𝑖,𝑗
(1)

, 𝑃𝑖,𝑗
(2)

), 𝐺( 𝑟𝑖,𝑗
(1)

, 𝑟𝑖,𝑗
(3)

),…𝐺( 𝑟𝑖,𝑗
(1)

, 𝑟𝑖,𝑗
(𝑛)

)}                 (1) 



In comparison, 𝑑𝑐 measures the mean center shift of a certain user’s positions in 

two consecutive days. For the same position collection, {𝑟𝑖,𝑗
(1)

, 𝑟𝑖,𝑗
(2)

, …, 𝑟𝑖,𝑗
(𝑛)

}, that 

represents 𝑛 positions from Twitter user 𝑖 in day 𝑗, let {𝑟𝑖,𝑗+1
(1)

, 𝑟𝑖,𝑗+1
(2)

, …, 𝑟𝑖,𝑗+1
(𝑚)

} denote the 

the 𝑚 positions from the same user in the next day (day 𝑗 + 1). Mean centers 𝑟𝑖,𝑗̅̅ ̅ and 

𝑟𝑖,𝑗+1̅̅ ̅̅ ̅̅  are respectively calculated by averaging the 𝑥 and 𝑦 coordinates of positions in day 

𝑗 and day 𝑗 + 1. The cross-day displacement for day 𝑗 (𝑑𝑐) is the Great Circle Distance 

between the mean center in day 𝑗 and mean center in day 𝑗 + 1, i.e., 𝑑𝑐 = 𝐺(𝑟𝑖,𝑗̅̅ ̅, 𝑟𝑖,𝑗+1̅̅ ̅̅ ̅̅ ). 

 

Figure 1. Concept of single-day distance and cross-day displacement (modified from 

Huang et al., 2020). 

 

Intuitively, 𝑑𝑠  and 𝑑𝑐  reflect different aspects of mobility with 𝑑𝑠  reflecting 

users’ travel patterns in a single day, while 𝑑𝑐 reflecting users’ position shift between two 

consecutive days. The weighted distance (𝑑𝑤) is the integration of 𝑑𝑠  and 𝑑𝑐  and is 

expected to reflect the overall mobility dynamics from Twitter. To compute 𝑑𝑤 , we 

derive the weighted arithmetic mean of 𝑑𝑠 and 𝑑𝑐: 

𝑑𝑤 =  
𝑑𝑠×𝑢𝑠+ 𝑑𝑐×𝑢𝑐

𝑢𝑠+ 𝑢𝑐
                                                   (2) 



where 𝑢𝑠 and 𝑢𝑐 denote the user counts for the calculation of 𝑑𝑠 and 𝑑𝑐, respectively. We 

then aggregate the users’ daily 𝑑𝑤 at the county level and compute the change percentage 

by comparing the aggregated county-level 𝑑𝑤  with the county-level 𝑑𝑤  during the 

baseline period (February 17 to March 7). 

3.2 Conceptualization of responsive index (RI) 

The time series of the mobility change percentage from the various mobility sources 

generally quantify the level of reaction in response to the COVID-19 pandemic. A 

reduction in mobility denotes the positive response while an increase in mobility denotes 

otherwise. The strength of the response is assumed to be proportional to the degree in 

mobility changes. Figure 2 describes the concept of the responsive index (RI) using time 

series in mobility change percentage.  

Figure 2. The concept of the responsive index using time series in mobility changes. 

We first smooth the time series using a one-dimensional Gaussian filter to remove 

the noises so that the general trend of mobility changes is revealed. The baseline 

(representing no mobility change) divides the space into two parts: positive response with 

reduced mobility (𝑆𝑃) and negative response with increased mobility (𝑆𝑃)  (Figure 2). The 

area between the baseline and the smooth time series is denoted as 𝛼, while space excepts 



𝛼 is denoted as 𝛽. In Figure 2, there are three individual 𝑆𝑃𝛼
 regions, respectively denoted 

as 𝑆𝑃𝛼

1 , 𝑆𝑃𝛼

2 , and 𝑆𝑃𝛼

3 , and four 𝑆𝑁𝛼
 regions, respectively denoted as 𝑆𝑁𝛼

1 , 𝑆𝑁𝛼

2 , 𝑆𝑁𝛼

3 , and 

𝑆𝑁𝛼

4 . We then quantify the response by computing two ratios: 1) 
𝑆𝑃𝛼

1 +𝑆𝑃𝛼
2 +𝑆𝑃𝛼

3

𝑆𝑃𝛼
1 +𝑆𝑃𝛼

2 +𝑆𝑃𝛼
3 +𝑆𝑃𝛽

 and 2) 

𝑆𝑁𝛼
1 +𝑆𝑁𝛼

2 +𝑆𝑁𝛼
3 +𝑆𝑁𝛼

4

𝑆𝑁𝛼
1 +𝑆𝑁𝛼

2 +𝑆𝑁𝛼
3 +𝑆𝑁𝛼

4 +𝑆𝑁𝛽

, where the former ratio quantifies the strength of the positive 

response, and the latter ratio quantifies the strength of the negative response (Figure 2). 

The 𝑅𝐼 we propose is the difference between the two ratios. Given that Figure 2, for the 

illustration purpose, confines the mobility change in a range from -100% to 100%, we 

have 𝑆𝑃𝛼

1 + 𝑆𝑃𝛼

2 + 𝑆𝑃𝛼

3 + 𝑆𝑃𝛽
= 𝑆𝑁𝛼

1 + 𝑆𝑁𝛼

2 + 𝑆𝑁𝛼

3 + 𝑆𝑁𝛼

4 + 𝑆𝑁𝛽
. In this study, however, 

the mobility change percentage is unrestricted from 0% to 100% in the calculation of 𝑅𝐼. 

Generally, the 𝑅𝐼 can be calculated via the following equation: 

𝑅𝐼 =  
∑ 𝑆𝑃𝛼

𝑖
𝑖

∑ 𝑆𝑃𝛼
𝑖 +𝑆𝑃𝛽𝑖

−  
∑ 𝑆𝑁𝛼

𝑖
𝑖

∑ 𝑆𝑁𝛼
𝑖 +𝑆𝑁𝛽𝑖

                                      (3) 

Our proposed RI has a range of [-1, 1] with 𝑅𝐼 = 1 suggesting a hypothetically 

perfect responsiveness. Positive RI suggests that the accumulative response within a 

specific period of time is positive, while negative 𝑅𝐼 suggests otherwise. The higher the 

RI, the stronger the accumulative responsiveness a geographic region has.  

3.3 Comparison of mobility datasets and their association with income 

In this study, we aim to cross-compare mobility datasets from various sources and reveal 

the linkage between mobility dynamics and income at the U.S. county level, as a county 

is the finest geographical unit in mobility datasets from Apple, Google, and Descartes. 

Let 𝑀𝐶𝑃𝑗 denote the mobility change percentage of a certain county on day 𝑗. We derive 

the heat map by plotting all the available pairs, i.e., (𝑗, 𝑀𝐶𝑃𝑗
𝑘), within the time frame 

(March 1 to June 30) for each mobility dataset. In addition, we apply the Pearson 



correlation analysis for the four open-source mobility datasets to determine 1) the 

correlation of the derived county-level 𝑅𝐼 from each pair of mobility sources, and 2) the 

correlation between county median income (from the latest ACS 5-year (2014-2018) 

estimates) and the county-level 𝑅𝐼. To reveal the disparity in mobility changes between 

lower-income and upper-income counties, we first rank the available counties in each 

dataset based on the median income and derive the time series of mobility change 

percentages respectively for lower-income and higher-income counties by selecting the 

median values. Given the fact that state policies may greatly shape county-level 

mitigation strategies, we also visualize the statewide disparity in the time series of 

mobility change percentages and the difference in 𝑅𝐼  for upper-income counties and 

lower-income counties within each CONUS state to remove the potential impact resulting 

from the statewide policies.  

4. Results 

4.1 Comparison of the four mobility datasets 

In general, the impact of the COVID-19 pandemic is well documented from all four 

mobility datasets, evidenced by the clear deviations in mobility from the baseline since 

mid-March (Figure 3), when the WHO declared COVID-19 as a pandemic (March 11) 

and the United States declared a National Emergency (March 13). In April, mobility from 

all four datasets descended to the bottom and remained considerably lower than baseline 

throughout the month. With the gradually loosened measures from the “Opening Up 

America Again” guidelines, the mobility gained an upward momentum and started to 

bounce back in early-May, resulting in the “U” shape distribution that can be observed 

from all four datasets. Despite the similarity in the general trend, mobility from each 

source presents unique and even contrasting characteristics. Data from Apple mobility 



trend reports show that mobility in the U.S. had returned to the baseline in mid-May and 

remained above the baseline in the entire June (Figure 3a), which contradicts the mobility 

dynamics from the other three datasets where mobility is found not fully recovered to the 

pre-pandemic level in May and June (Figure 3b-d). This characteristic of the Apple 

mobility dataset can be explained by its single-day (January 13) baseline setting. 

Although we adjust Apple’s baseline by extending the baseline temporal coverage, the 

intrinsic monthly discrepancies in mobility between January and other months still exist. 

That is, the above-the-baseline mobility in May and June is arguably the exaggeration 

that results from the low baseline value observed on January 13. Compared with March 

and April, the mobility change percentages show a more dispersed distributing pattern in 

May and June (Figure 3a), indicating the inconsistency of counties in the recovering 

phase. The dataset from Descartes Labs also suggests a strong recovery in mobility 

following the lifting of strict measures since early-May (Figure 3b). In comparison to the 

other three datasets, the reduction is more obvious in April, evidenced by the high 

concentration close to -100% in mobility change. We investigate the counties with barely 

any recorded mobility in April and find that they coincide well with the counties that were 

the epicenter and faced strict stay-at-home orders (e.g., County of New York, Queens, 

and Kings in the State of New York, and County of Alameda and Santa Clara in the State 

of California). The close-to-none mobility in these counties can be explained by the data 

sources (i.e., commercially available mobile device location dataset) (Warren and 

Skillman, 2020), which own a more passive nature compared to the data collected via 

smartphone applications. Despite the slight recovery in May and June, Google mobility 

shows a more concentrated distribution that mostly remains below the baseline 

throughout the time period, suggesting that the recovery of mobility in the category of 

“workplaces” is presumably slower than other types. In addition, the reduction in April 



from Google mobility is relatively less dramatic compared with other datasets. Our 

Twitter-based mobility dataset reveals a similar reducing-and-recovering pattern (Figure 

3d), although its heat map presents a rather scattered distribution largely due to the 

uncertainties introduced from the limited number of geotagged tweets in certain counties. 

Despite the scattered distribution pattern, the significant mobility drop in mid-March and 

the constantly low mobility in April are well captured by the heat map (Figure 3d). 

 

Figure 3. Heat map of the county-level mobility change percentages for four sources 

(confined from -100% to 100%). (a) Apple mobility trend reports; (b) Mobility data 

from Descartes Labs; (c) Google community mobility reports; (d) mobility calculated 

via weighted distance from Twitter. 

 

The results from the Pearson correlation analysis reveal the similarity in computed 

county-level 𝑅𝐼 from these four mobility datasets (Figure 4). As expected, we find 

statistically significant positive correlations in 𝑅𝐼 between either two data sources, albeit 

with varying Pearson’s 𝑟 coefficients (Figure 4). Google and Apple share the highest 

correlation (𝑟 = 0.60) owning to the fact that both of their mobility records are from 



navigation applications in smartphones (i.e., Google Maps and Apple Maps). Despite the 

high correlation between Apple and Google, however, the correlation between Apple and 

the other two datasets is relatively weak (𝑟 = 0.33 for Apple and Descartes, and 𝑟 = 0.31 

for Apple and Twitter). Google and Descartes share the second-highest correlation (𝑟 =

0.58), followed by Twitter and Descartes (𝑟 = 0.58), and Twitter and Google (𝑟 = 0.47). 

The histograms of the four datasets suggest that the distribution of their county-level 𝑅𝐼 

follows the normal distribution, but the descriptive statistics vary markedly (Figure 4). 

Given the low standard deviation, mobility computed from Google Maps reveals less 

county-level variance in mobility changes in response to the COVID-19 pandemic, which 

is supported by its concentrated heat map (Figure 3a). The 𝑅𝐼 calculated from Apple 

mobility (Mean = 0.07 and Median = 0.06) is considerably lower than the other three 

sources because of documented strong negative responses (above the baseline) in most 

counties since early-June (Figure 3a). As noted above, however, Apple’s low baseline 

value on January 13 potentially shifts the entire time series upwards, consequently 

responsible for the low 𝑅𝐼s. Twitter and Descartes share a similar distribution, indicating 

that Twitter data is a good proxy of mobile phone data in capturing the human mobility. 



 

Figure 4. Scatter matrix of county-level Responsive Index (𝑅𝐼) calculated from Apple, 

Descartes, Google, and Twitter mobility datasets. The lower triangle shows the bivariate 

scatter plots; the upper triangle shows the 2-D kernel density estimations; the diagonal 

shows the univariate distribution histograms. 

 

4.2 Correlation between 𝑹𝑰 and income 

Recognizing that the human mobility-based response to the COVID-19 pandemic 

includes both negative responses (𝑅𝐼 < 0) and positive responses (𝑅𝐼 > 0), we explore 

the correlation between the full spectrum county-level 𝑅𝐼 and the county median income 

(Figure 5). In general, all mobility datasets reveal a statistically significant positive 

correlation between 𝑅𝐼 and income, suggesting that counties with higher income tend to 

react more aggressively in response to the COVID-19 pandemic by reducing more 

moving activities compared to the pre-pandemic baseline. Nonetheless, we acknowledge 

that correlation, no matter strong or weak, doesn’t necessarily imply causation. A detailed 



discussion regarding this issue can be found in Section 5.2. Despite the statistical 

significance, the strength of the correlation varies among datasets due to the intrinsic 

nature of their sources. The 𝑅𝐼 calculated from the Google dataset is strongly correlated 

with income (𝑟 = 0.65) (Figure 5c1-5c2). In comparison, Apple mobility derived from 

Apple Maps, also a navigation service, shows a rather weak correlation between its 

calculated 𝑅𝐼 and income (𝑟 = 0.29) (Figure 5a1-a2). Three reasons are arguably behind 

the Google-Apple difference in the strength of the correlation. First, Google mobility in 

this study only includes the category of “workplaces” (given the insufficient records from 

other categories) while Apple mobility considers all types of requests. Thus, the 

workplace-related mobility can have a strong linkage with income, consequently leading 

to the highly correlated 𝑅𝐼. Second, it is reported that the median income for iPhone users 

in the U.S. is 40% higher than that of Android users (Greenough, 2014). As a result, Apple 

Maps users possibly fail to cover as much demographic spectrum as Google Maps users. 

Third, the concepts of mobility changes from Apple and Google differ, as Apple measures 

the change in the number of requests while Google measures the change in the travel 

distance. Although both concepts are able to reflect the impact of COVID-19 pandemic 

on human behaviors, the difference in calculation potentially causes the difference in the 

correlation strength. The correlations between income and 𝑅𝐼 calculated from Descartes 

mobility and Twitter mobility are both significant, and the correlation coefficients are 

respectively  0.45 (Figure b1-b2) and 0.37 (Figure d1-d2). The existence of many outlying 

counties in datasets from Descartes and Twitter, i.e., counties with strong negative 

responsiveness (𝑅𝐼 < 0) (marked in blue bubbles), likely weakens the correlation.  



 

Figure 5. Correlation between RI and income at the county level for four mobility 

datasets.  

4.3 Disparities in mobility between lower-income and upper-income counties 

We further explore the county-level disparity in mobility dynamics between lower-

income and upper-income counties in response to the COVID-19 pandemic. Figure 6 

presents the time series of mobility change percentages for all available counties in the 

four mobility datasets. Specifically, counties in the top 10% and bottom 10% in wealth 

are highlighted respectively in red lines and blue lines (Figure 6). In general, the disparity 



in mobility dynamics is well manifested in all mobility datasets, evidenced by the obvious 

gaps between blue lines and red lines, especially after the declaration of the National 

Emergency on March 13 (Figure 6). The increase in gaps after March 13 suggests the 

diverging mobility pattern between lower-income and upper-income counties in response 

to the pandemic. In addition, rich counties are found more responsive as they present 

more reduction in mobility compared to poor counties, which is evidenced by the fact that 

the red line (top 10% in wealth) consistently lies below the blue line (bottom 10% in 

wealth) in all four mobility datasets. Among the four datasets, Descartes mobility presents 

the most obvious diverging pattern compared to the other three datasets (Figure 6b). 

Considering the low standard deviation, however, the separation in Google mobility 

between the rich and poor counties is also noteworthy, as the red line and blue line are 

too separated that the gap between them covers most of the time series (Figure 6c). In 

comparison, the county-level disparities between rich and poor counties from Apple 

(Figure 6a) and Twitter (Figure 6d) are less dramatic but still noticeable. Note that the 

number of available counties varies among datasets (e.g., the Twitter dataset contains 565 

counties, while the Descartes dataset contains 2,612 counties), which potentially 

introduces a certain level of inconsistency and uncertainty when heterogeneous mobility 

data are cross-compared. 

 



 

Figure 6. Time series in mobility change percentages of the top 10% and the bottom 

10% in wealth for all available counties in the four mobility sources; (a) Apple mobility 

trend report; (b) mobility data from Descartes Labs; (c) Google community reports; (d) 

mobility calculated via weighted distance from Twitter. 

 

To reveal the disparity in mobility dynamics within each state, we derive the time 

series of mobility change percentages for the top 20% and bottom 20% counties in wealth 

within each CONUS state, removing the potential impact from the difference in statewide 

mitigation policies. The rationale in selecting “20%” (in contrast to the 10% in Figure 6) 

is to include more counties in each state, especially for states with a small number of 

counties. Figure 7 shows the statewise time series derived from Descartes mobility in a 

pseudo-geographical representation of the CONUS states. The results from Apple 

mobility and Google mobility can be found respectively in Figure A and Figure B in the 

Appendices. Due to the insufficient number of counties available in each state, the results 

from Twitter mobility are not presented. 

For Descartes mobility, rich counties (the top 20%) within a certain state generally 

tend to react more aggressively in mobility reduction compared to the poor counties (the 



bottom 20%) within the same state (Figure 7). The disparity tends to be exaggerated in 

the mobility recovery phase, i.e., May and June. For example, WA has seen a consistent 

mobility drop after March 13, suggested by the overlapped blue line and red line. 

However, the recovery phase in WA highlights the disparity in mobility dynamics, as the 

poor counties (blue line) obviously gained earlier and greater upward momentum than the 

rich counties (red line). This similar pattern can also be found in PA, MN, MI, and MA 

(Figure 7). In comparison, NV stands out by showing the opposite pattern, and states that 

include LA, TX, CA, MS, and MD present unnoticeable disparity between the rich and 

the poor counties.  

Despite the heterogeneity in sources compared with Descartes mobility, the 

results from Apple (Figure B) and Google (Figure C) also reveal the general pattern that 

rich counties tend to be more responsive by showing a higher mobility reduction rate 

within most CONUS states in the selected time period. However, contrasting patterns, 

although only a few, can still be found in some states from different mobility data sources. 

For example, KS presents higher responsiveness for rich counties from Descartes 

mobility but lower responsiveness for the rich counties from Apple mobility. In addition, 

the pattern in ND from Google mobility contradicts the pattern from Apple mobility.



 

Figure 7. Time series of Descartes mobility change percentages for the top 20% and 

bottom 20% counties in wealth at each CONUS state (pseudo-geographical 

representation). For a state with less than five available counties, counties with the most 

median income and the least median income are selected as the top 20% and the bottom 

20%, respectively. 

 

To quantitatively reveal the disparity in mobility responsiveness between the rich and the 

poor counties, we calculate the difference in 𝑅𝐼 between the top 20% and bottom 20% 

counties in wealth ( ∇𝑅𝐼 ) at each CONUS state (Figure 8). The values of ∇𝑅𝐼  are 

presented in Table 1. In general, states with positive ∇𝑅𝐼 (in blue) are dominant in number, 

as 40 states from Descartes mobility, 32 states from Apple mobility, and 42 states from 

Google mobility, out of the 48 states in the CONUS, are with ∇𝑅𝐼 > 0 (Figure 8 and 

Table 1). Mobility datasets from the three sources suggest that, despite the noticeable 



variances in ∇𝑅𝐼, wealthy counties within each state are likely to have more mobility-

based responsiveness during the COVID-19 pandemic. However, the inconsistencies 

from different mobility datasets need to be recognized, as it presumably results from the 

intrinsic nature of the data sources and therefore warrants caution for further studies that 

rely on only a single mobility data source. 

 

 

Figure 8. The difference in Responsive Index (RI) between the top 20% and bottom 

20% counties in wealth at each CONUS state; (a) Apple mobility trend report; (b) 

mobility data from Descartes Labs; (c) Google community reports



Table 1. 

The difference in Responsive Index (RI) between the top 20% and bottom 20% counties in 

wealth at each CONUS state from Descartes mobility, Apple mobility, and Google mobility 

States in the CONUS 
𝑅𝐼𝑡𝑜𝑝 20% − 𝑅𝐼𝑏𝑜𝑡𝑡𝑜𝑚 20% measured from  

Descartes mobility Apple mobility Google mobility 

Alabama 0.12 -0.08 0.04 

Arizona 0.10 0.34 0.06 

Arkansas 0.02 0.04 0.07 

California -0.02 0.03 0.08 

Colorado 0.32 0.39 0.17 

Connecticut 0.03 0.06 0.06 

Delaware 0.18 0.09 0.07 

Florida 0.18 -0.02 0.09 

Georgia 0.13 0.03 0.12 

Idaho 0.08 -0.19 0.02 

Illinois 0.22 0.03 0.08 

Indiana 0.11 -0.04 0.05 

Iowa 0.18 0.08 0.07 

Kansas 0.19 -0.09 0.04 

Kentucky 0.07 0.03 0.12 

Louisiana 0.07 0.09 0.08 

Maine 0.18 -0.03 0.12 

Maryland 0.03 -0.09 -0.04 

Massachusetts 0.17 0.11 0.14 

Michigan 0.15 0.08 0.11 

Minnesota 0.22 0.08 0.06 

Mississippi -0.05 -0.04 0.04 

Missouri 0.13 -0.02 0.09 

Montana -0.01 0.15 0.04 

Nebraska 0.09 0.06 0.02 

Nevada -0.43 -0.24 -0.02 

New Hampshire 0.03 -0.06 0.10 

New Jersey -0.03 -0.03 -0.02 

New Mexico 0.34 0.20 0.11 

New York 0.17 0.09 0.09 

North Carolina 0.14 0.19 0.10 

North Dakota -0.01 0.06 -0.13 

Ohio 0.12 0.03 0.09 

Oklahoma 0.05 0.13 0.06 

Oregon 0.32 0.37 0.13 

Pennsylvania 0.27 0.13 0.11 

Rhode Island -0.05 -0.15 -0.03 

South Carolina 0.08 0.17 0.10 

South Dakota 0.12 -0.09 -0.13 

Tennessee 0.09 0.13 0.09 

Texas 0.05 0.05 0.07 



Utah 0.45 0.06 0.01 

Vermont 0.08 -0.07 0.06 

Virginia 0.16 -0.03 0.06 

Washington 0.19 0.23 0.10 

West Virginia -0.02 0.03 0.05 

Wisconsin 0.28 0.16 0.05 

Wyoming 0.11 0.01 0.01 

 

5. Discussions 

5.1 The fusion value in heterogeneous mobility data 

Our investigation in Descartes, Apple, Google, and Twitter mobility reveals that they well 

capture the impact of the COVID-19 pandemic on human mobility by showing clear 

deviations from the pre-pandemic baseline. Nevertheless, we observe considerable 

dissimilarities among the datasets as each source presents unique characteristics. The four 

selected mobility datasets in this study demonstrate the multifaceted nature of human 

mobility that has been documented by many (Gonzalez et al., 2008; Cui et al., 2018), and 

some believe these heterogeneous data sources reflect human mobility from different yet 

valuable perspectives (Zhang et al., 2014; Lau et al., 2019). Zhang et al. (2014) argue that 

most of the state-of-the-art theory and practice on human mobility focus on single-source 

data in isolation from one another, inevitably leading to limited representativeness. In our 

study, although dataset from Google and Apple are both derived mainly from cellphone 

navigation applications, the time series in mobility change percentages and the correlation 

analysis greatly highlight their difference. Due to the fact that Google Maps is mainly 

targeted by Android users while Apple Maps by IOS (iPhone Operating System) users, 

the difference between Google mobility and Apple mobility can be partly explained by 

the difference in their user’s demographics. Twitter mobility also shows a unique pattern 

in response to the COVID-19 pandemic, different from all other three mobility datasets. 



However, we need to acknowledge the strong bias in Twitter data towards a specific 

group of the population, i.e., active Twitter users. 

It is reasonable to assume that the fusion of these mobility datasets mitigates the 

biases to some degree and provides a holistic view of mobility dynamics in a broad 

spectrum of the population. Numerous studies have been conducted, attempting to fuse 

multi-source mobility data towards a more comprehensive one. To list but a few, Zhang 

et al. (2014) proposed a systematic framework to integrate transit records and cellphone 

records to mitigate biased sampling. Similarly, Montero et al. (2019) found that the fusion 

of heterogeneous mobility data sources facilities robust urban transportation models. 

Despite these attempts, however, mobility data fusion is still scarce in the literature, 

especially scarce in studies that tackle public health emergencies by means of mobility 

monitoring. Global crises, including COVID-19 pandemic we are facing, uniquely 

highlights the need for monitoring mobility dynamics in a comprehensive manner, as 

integrated human dynamics from multiple sources is expected to better reflect the 

multifaceted nature of human mobility, leading to the acquisition of overall knowledge 

in mobility dynamics that cover a broader spectrum of the population. At the same time, 

however, we argue that the representativeness of each source largely depends on the 

demographics of the service users in relation to the demographics of the local population. 

Thus, a proper weighting scheme based on their representativeness needs to be considered 

when multi-source mobility data are fused. 

5.2 The luxury nature of social distancing 

Our exploration of the correlation between county-level 𝑅𝐼 and county median income 

indicates that counties with higher income tend to be more responsive in terms of mobility 

reduction compared to the pre-pandemic baseline, evidenced by the statistically 

significant positive correlation between 𝑅𝐼 and income from all four mobility datasets. 



Most states show a positive difference in 𝑅𝐼 between their upper-income and lower-

income counties, where diverging patterns in time series of mobility changes percentages 

can also be found. However, we need to acknowledge that correlation doesn’t necessarily 

imply causation. The reasons behind the disparity in mobility patterns for upper-income 

and lower-income counties are multifaceted. Geographically, high-income counties in the 

U.S. often coexist with large cities or urban fabrics, in which the dense population is hit 

first and hardest by the COVID-19 pandemic. A recent study found that 54% of urban 

residents in the states view the disease as a major threat to day-to-day life, which 

compares with 42% of those living in the suburbs and just 27% of rural residents in the 

same states (Jones, 2020). The urban-rural discrepancy in threat awareness presumably 

translates to the different mobility patterns in upper-income and lower-income counties. 

In addition, upper-income counties within a certain state (usually with high urbanization) 

tend to be the job centers that receive the commuting inflow of workers from nearby 

lower-income counties (McKenzie, 2013). This difference in the commuting pattern is 

also responsible for the county-level disparity in mobility dynamics. Other possible 

explanations of less mobility responsiveness for lower-income counties can be traced to 

the policies that sometimes unintentionally create inequity among different groups (Lou 

et al., 2020). People respond to the mobility-restrict measures differently, largely 

depending on their financial resources. The outcome of these measures may reflect the 

preferences of the affluent but not the interests of the lower-income group (Lou et al., 

2020). Given the close relationship between human mobility and the transmission of 

SARS-COV-2 reported from numerous studies (Gatto et al., 2020; Sirkeci and Yucesahin, 

2020), the low mobility responsiveness in lower-income counties deserves more 

attention, as slow reduction and fast recovery in mobility may foster the second ware of 

infections, which could be exacerbated by the vulnerability in the low-income 



populations. 

5.3 Future directions 

The findings from this study point to some potential areas for future research. First, future 

research should investigate the representativeness of different mobility data sources, 

setting up the foundations for integrated multi-source mobility that reveals the travel 

behaviors for a broad spectrum of the population. Similarly, mobility monitoring studies 

need to work towards a comprehensive mobility index preparing for future emergency 

events, especially for global crises like the COVID-19 pandemic. Studies based on single-

source data should acknowledge the underlying biases in the sample and the potential 

issues following these biases. Second, our study compares four open-sourced datasets that 

include mobility records from Descarte Labs, Apple, Google, and Twitter. Future studies 

can examine the similarity and dissimilarity in mobility patterns derived from other 

passive/active citizen-sensor data, e.g., smart cards, Wi-Fi, Bluetooth, etc. Public surveys 

and official mobility records from transportation services can serve as ground truth that 

these mobility data are compared against. Comparative studies that include multiple 

sources comparing against official records are still needed. The COVID-19 pandemic, an 

event with dramatic mobility changes on a large scale, provides a great opportunity for 

us to learn the strengths and pitfalls of each data source, laying the foundation for the 

potential multi-source integration. Third, given that county is the smallest geographical 

unit from Apple, Descartes, and Google mobility datasets, we explore the correlation 

between county-level income and county-level mobility-based responsiveness. However, 

changes in aggregated units (e.g., from counties to Census tracts) might alter the 

conclusions due to the famous Modifiable Areal Unit Problem (MAUP) (Fotheringham 

and Wong, 1991). Future studies should investigate the disparity in mobility at various 

spatial units or scales. Although income is one of the fundamental factors in 



socioeconomic status, other factors may also contribute to the disparity in responsiveness 

revealed in this study, therefore deserve further investigation. Finally, the spatial 

incontinuity of the available counties in all four mobility datasets precludes a detailed 

spatial examination. However, we acknowledge that spatial non-stationarity (regional 

variation) may exist in the contribution of socioeconomic factors to the mobility 

dynamics. Future studies can apply Geographic Weighted Regression (GWR) (Brunsdon 

et al., 1998) or other methods that consider spatial autocorrelation when using other 

spatially continuous mobility datasets. 

6. Conclusion 

This study reveals the similarity and dissimilarity of mobility from various sources and 

the luxury nature of social distancing in the U.S during the COVID-19 pandemic by 

highlighting the disparities in mobility dynamics from lower-income and upper-income 

counties. We collect and compute mobility data from four sources: 1) Apple mobility 

trend reports, 2) Google community mobility reports, 3) mobility data from Descartes 

Labs, and 4) mobility calculated via weighted distance from Twitter. We further design a 

Responsive Index (𝑅𝐼 ) based on the time series of mobility change percentages to 

quantify the general degree of mobility-based responsiveness at the U.S. county level.  

The results reveal that the impact of the COVID-19 pandemic is well documented, 

as all mobility datasets show clear deviations in mobility from the pre-pandemic baseline. 

We find statistically significant positive correlations in 𝑅𝐼  between either two data 

sources, revealing their general similarity, albeit with varying Pearson’s 𝑟 coefficients. 

The 𝑅𝐼𝑠  calculated from Google and Apple share the highest correlation (𝑟 = 0.60) 

presumably owning to the fact that both of their mobility records are from navigation 

applications in smartphones (i.e., Google Maps and Apple Maps). Despite the similarity, 



however, mobility from each source presents unique and even contrasting characteristics, 

demonstrating the multifaceted nature of human mobility. When correlation 𝑅𝐼  with 

income, we find that positive correlation between 𝑅𝐼 and income is significant in all 

mobility datasets, suggesting that counties with higher income tend to react more 

aggressively in terms of reducing more mobility in response to the COVID-19 pandemic. 

Despite the statistical significance, the strength of the correlation varies among datasets. 

The 𝑅𝐼 calculated from the Google dataset is strongly correlated with income  (𝑟 = 0.65), 

but the correlation is rather weak between the 𝑅𝐼 from Apple and income. The disparity 

in mobility dynamics between lower-income and upper-income counties is well 

manifested from all mobility datasets. Most states present a positive difference in 

𝑅𝐼 between their upper-income and lower-income counties, where diverging patterns in 

time series of mobility changes percentages can be found. 

To our best knowledge, this is the first study that cross-compares mobility datasets 

from various sources during the COVID-19 pandemic. The findings contribute to gaining 

the knowledge of not only the characteristics of multi-source mobility data but also the 

mobility disparity in tandem with the wealth disparity, benefiting policy design for better 

mitigation of future epidemics and pandemics.  
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Appendix A 

 

Figure A. Heat map of the county-level mobility change percentages of Twitter 

mobility with different thresholds of daily user count (confined from -100% to 100%); 

(a) daily user count larger than 0; (b) daily user count larger than 30; (c) daily user 

count larger than 50; (d) daily user count larger than 100. 



Appendix B 

 

Figure B. Time series of Apple mobility change percentages for the top 20% and bottom 

20% counties in wealth at each CONUS state (pseudo-geographical representation). For 

a state with less than five available counties, counties with the most median income and 

the least median income are selected as the top 20% and the bottom 20%, respectively. 



Appendix C 

 

Figure C. Time series of Google mobility change percentages for the top 20% and bottom 

20% counties in wealth at each CONUS state (pseudo-geographical representation). For 

a state with less than five available counties, counties with the most median income and 

the least median income are selected as the top 20% and the bottom 20%, respectively.  
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