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Abstract 

 

Evacuation is an effective and commonly taken strategy to minimize death and injuries from an 

incoming hurricane. For decades, interdisciplinary research has contributed to a better 

understanding of evacuation behavior. Evacuation destination choice modeling is an essential 

step for hurricane evacuation transportation planning. Multiple factors are identified associated 

with evacuation destination choices, in which long-term social factors have been found essential, 

yet neglected, in most studies due to difficulty in data collection. This study utilized long-term 

human movement records retrieved from Twitter to (1) reinforce the importance of social factors 

in evacuation destination choices, (2) quantify individual-level familiarity measurement and its 

relationship with an individual’s destination choice, (3) develop a big data approach for 

aggregated county-level social distance measurement, and (4) demonstrate how gravity models 

can be improved by including both social distance and physical distance for evacuation 

destination choice modeling.  
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1. Introduction 

Hurricanes are one of the most common yet costliest natural hazards in the United States. 

In 2016, hurricanes and associated heavy rainfall, storm surges, and strong winds caused death, 

injuries, and economic losses to coastal areas in the United States (NOAA, n.d.). One of the 

primary mechanisms for protecting people from impending hurricanes and their hazards is 

evacuating the potentially affected area. Many disciplines, including geography, sociology, 

engineering, and political science, have contributed to a better understanding of evacuation 

behavior. Generally speaking, there are two different perspectives or foci for the research 

(Trainor et al., 2013). Transportation engineering studies focus on routing and destinations 

employing three-step models for evacuation: trip generation, trip distribution, and route 

assignment. The trip generation step models the evacuating population size and their response 

time (Herrera et al., 2019; Zhu et al., 2018). The second step, trip distribution, models where 

trips end based on opportunities provided by each potential destination using origin-destination 

metrics (et al., Bian et al., 2019; Cheng G. 2011). Then, in the last step, trips are assigned to 

different routes to optimize infrastructure usage (Bayram & Yaman, 2018; Ukkusuri et al., 

2017).  

Social scientists, however, focused more on individual- and household-level decision-

making, aiming to gain a better understanding of how different factors affect evacuation 

decisions and behaviors. For example, studies have identified factors that affect evacuation 

decisions, including vehicle ownership, age, income, housing type, and other factors (Dow & 

Cutter, 1998; 2002; Huang et al., 2016). Also, multiple social factors have been found essential 

to understanding evacuation time estimate (Lindell & Perry, 1992; Lindell & Prater, 2007), 

departure time distribution (Huang et al., 2012; 2017), transportation mode (Lindell & Perry, 



1992; Lindell & Prater, 2007), evacuation route choices (Dow & Cutter, 2002; Prater et al., 

2000), and other evacuation logistics, including travel time, destinations, and accommodation 

(Bian et al., 2019; Lindell et al., 2011; Wu et al., 2012). Findings of social factors in evacuation 

models have been reviewed by Lindell et al. (2019), Lindell et al. (2020), and Sorensen et al. 

(2020). 

One challenge here is that some potentially useful social factors have not been examined 

in previous evacuation research. This is especially true for long-term related social factors. For 

example, how many counties has an individual visited in the last three years, and how much time 

he/she has visited each county? One potential solution is to collect social media data to retrieve 

digital footprints left by social media users. Social media data have been widely used in natural 

hazard-related research to understand evacuation behavior (Kumar & Ukkusuri, 2018; Martin et 

al., 2017; Sadri et al., 2017). Besides the ability to provide rapid and easily accessible data, 

another advantage of social media is that long-term records can be retrieved. However, only 

limited studies have utilized the long-term records from social media for evacuation behavior 

studies (Jiang et al., 2019b). 

This study aims to extend the functionality of social media data in evacuation behavior 

studies by utilizing users’ long-term traveling records from Twitter. Specifically, this study asks 

the following questions:  

1) Are social media users more likely to evacuate to places they are familiar with? 

2) How can social distance derived from social media data help to improve evacuation 

modeling? 

To address these two questions, this study first reinforces findings from existing studies 

that social factors do play important roles in evacuation destination choices by quantifying the 



individual-level familiarity of each evacuated Twitter user, and then introduces a big data 

approach to measure county-to-county social distance based on geotagged tweets. Lastly, this 

study demonstrates how social distance can be integrated into gravity models to improve 

evacuation transportation planning. 

2. Literature Review 

2.1 Human Mobility Measured by Distance 

Power law is one of the most commonly used distributions to model displacement 

distance in human movements. For example, the trip occurrence probability decreases as travel 

distance increases (Eq. 1), with the power law written as 

 

Eq. 1 

where 𝑝(𝑑) is the trip occurrence probability, 𝑑 is the trip distance, 𝛼 is a constant, and 𝛽 is the 

scaling parameter (Brockmann et al., 2006; Mandelbrot, 1983). Researchers further confirmed 

that the scaling parameter 𝛽 should be larger than 1 and smaller than 3. When 𝛽 > 1, the trip 

occurrence probability forms an inverse proportional relationship with trip distance. When 𝛽 >

3, this movement is Brownian, where the length of trip exhibits a Gaussian distribution (Jiang et 

al., 2009).  

Benefitting from the prevalence of Global Positioning System (GPS) and location-

enabled social media platforms, the availability of geotagged social media posts provides 

researchers with opportunities to advance understanding of human mobility. Noulas et al. (2011) 

collected 12 million user check-in data on Foursquare generated by more than 679,000 users in 

111 days. This study provided an exploratory analysis of spatiotemporal distribution of users’ 

check-in locations for multiple categories of places. Similarly, Cheng Z. et al. (2011) collected 

𝑝(𝑑) ~𝛼𝑑−𝛽
 



about 22 million check-in data from nine social media platforms and modeled individuals’ travel 

distance with power-law distribution. Their power-law model agrees with previous human 

mobility studies using non-social media data sources (Brockmann et al., 2006; Gonzalez et al., 

2008). In a cross-city study conducted by Noulas et al. (2012), more than 35 million trips were 

retrieved from Foursquare check-in data in 31 cities from different countries. This study shows 

that power law governs human mobility patterns in all the cities, though 𝛽 varies with city size 

and population density.  

Human mobility patterns were also studied during previous natural hazards using social 

media data. Based on geotagged tweets, for example, Wang and Taylor (2014) examined New 

York City residents’ daily travel patterns under the impact of Hurricane Sandy. This study found 

that although an individual’s activity center was shifted, their daily travel distances still follow 

power-law distribution. The shift of the activity center was caused by evacuation from flood-

prone areas to safer areas. However, the shift of activity center was not the focus of their study 

and thus was not further examined. In another study by Wang and Taylor (2016), they further 

confirmed their findings by testing whether human travel distance follows power-law distribution 

under multiple natural hazards. They collected Twitter users’ movement data during four 

typhoons (two in Japan and two in the Philippines), three earthquakes (in the Philippines, Chile, 

and the U.S.), three winter storms (in Britain, Germany, and the U.S.), three extreme rainstorms 

in the U.S., and two wildfires in Australia.  

These studies provided two important contributions. First, although natural hazards 

caused perturbation for human movements, an individual’s travel distance distribution was still 

governed by the power-law distribution. Second, a shift of an individual’s activity space center 

can be observed, but the relationship between traveling center shift distance and an individual’s 



daily activity space was unrelated. These studies demonstrated the feasibility of using Twitter 

data to study human mobility patterns during natural hazards and the fitness of power-law 

distribution of travel distance during natural hazards. Also, the two studies by Wang and Taylor 

(2014, 2016) revealed the shift in activity centers caused by hazard-related evacuations, but 

patterns of such shifts were not further examined. This latter point raised the question about 

whether evacuation distances of individuals still fit power-law distribution, which was examined 

in this paper. 

 

2.2 Evacuation Destination Choices 

 

Existing studies have developed multiple origin-destination models for evacuation 

transportation management at the aggregated geographical level. Evacuation destination choice 

is an important factor in determining evacuation transportation distribution (Murray-Tuite & 

Wolshon, 2013). Evacuation destination choice decisions vary among evacuees and are affected 

by multiple factors. Among those factors, accommodation is an important one that may decide 

evacuation destination. Common accommodation choices include, but are not limited to, friends’ 

relatives’ places, hotels/motels, and public shelters. Post-hurricane survey data showed that most 

evacuees chose to stay at a friend’s or relative’s home, as illustrated from evacuation behavior 

studies for Hurricane Floyd (Cheng et al., 2008) and Hurricane Ivan (Mesa-Arango et al., 2013). 

To examine factors that affect evacuees’ destination choices, Cheng et al. (2008) developed 

multinomial logit models for evacuees who went to friend’s/relative’s places and to 

hotels/motels. Their study found influential variables, including evacuation distance, whether the 

destination is affected by hurricane, population composition of destination, whether the 

destination is in a metropolitan statistical area, transportation convenience, and the probability of 

finding a place to stay at the destination. With evacuation-specified Traffic Analysis Zones 



(TAZs), Wilmot et al. (2006) developed three models for zonal aggregated evacuation 

destination choice. Comparing their gravity model, intervening opportunity model, and an 

extended intervening opportunity model that considered evacuation direction and hurricane path, 

only small differences were found (Wilmot et al., 2006). They further tested the transferability of 

the gravity model. The gravity model calibrated using data from Hurricane Floyd in South 

Carolina also worked with Hurricane Andrew in Louisiana (Wilmot et al., 2006). With the same 

survey data from Hurricane Floyd in South Carolina, Cheng et al. (2011) further extended the 

gravity model with dynamic features considering the storm path, road situation, and destination 

accommodation availability. However, the transferability of this dynamic model has not been 

tested (Cheng et al., 2011).  

Current gravity-derived trip distribution models calculate opportunities to each 

destination based on several factors, including pushing factors at origin, pulling at destination, 

and travel distance between origin and destination. Social factors included in existing models 

focus heavily on the pushing force at origins, such as information hurricane characteristics and 

evacuees’ vehicle ownership, risk perceptions of local residents (Dow & Cutter, 2002; Lindell et 

al., 2005), and pulling force at destinations, such as lodging options and cost (Lindell et al., 

2011).  

Since most evacuation studies rely on survey data, very limited long-term travel 

information can be collected. One of the advantages of using social media data is the availability 

of long-term data. For example, Jiang et al. (2019b) revealed that evacuated social media users 

have significantly larger long-term activity space than non-evacuated social media users.  



3. Data and Study Area 

3.1 Hurricane Matthew and Its Affected Area 

Hurricane Matthew was formed on September 28, 2016, and rapidly developed into a 

Category 5 storm, becoming the first Category 5 hurricane since 2007 in Atlantic basin (Stewart, 

2017). It caused 585 direct deaths, with 34 in the United States. Based on the predicted track and 

the intensity of Hurricane Matthew, coastal residents from Georgia, South Carolina, and North 

Carolina were ordered to evacuate.  

This study focuses on evacuation behavior of Twitter users living in these ten coastal 

counties before Hurricane Matthew: Chatham, GA; Brunswick, NC; Beaufort, Berkeley, 

Charleston, Colleton, Dorchester, Georgetown, Horry, and Jasper in SC (Figure 1).  

 

 



 

Figure 1. Hurricane Matthew Path and the 10 Selected Counties 

 

3.2 Data Collection and Preprocessing 

Geotagged tweets were collected with the Twitter Stream Application Programming 

Interface (API) between July 2016 and December 2016. Streamed tweets were stored in a 

Hadoop environment and queried with Apache Impala in this study. We defined the resident 

county of a Twitter user as the county from which the user has posted the largest number of 

tweets (Martin et al., 2017; McNeill et al., 2017; Martin et al., 2020a; Jiang et al., 2019b). From 

the massive Twitter dataset we collected, we identified local users whose resident county was 

one of these 10 counties.  



The Twitter selection process followed Martin et al. (2017) and Jiang et al. (2019b). 

Based on the predicted path of Hurricane Matthew, the governor of South Carolina issued a 

mandatory evacuation order on October 4th, 2016 (hereinafter “10/4”), followed by the governor 

of North Carolina and the governor of Georgia, who issued evacuation orders on October 6th. 

Given these evacuation orders, we considered the pre-evacuation time span as October 2nd, 2016 

(hereinafter “10/2”) to 10/4, as evacuation was assumed to start after the evacuation order (10/4). 

The selected counties were under the impact of Hurricane Matthew between October 7th 

(hereinafter “10/7”) and October 9th (hereinafter “10/9”). We assumed the evacuation process 

had finished before the arrival of Hurricane Matthew (10/7) and that evacuees would not return 

before Hurricane Matthew had left (10/9). Therefore, we considered the post-evacuation time 

span as 10/7 to 10/9. 

If a local user identified from the previous step posted during both pre-evacuation and 

post-evacuation periods, this user was collected for further analysis. Then, we compared each 

user’s posting location during the pre-evacuation and post-evacuation periods. If this user posted 

from within the 10 counties during pre-evacuation time and posted from outside the 10 counties 

during post-evacuation time, this user was considered an evacuated user. Also, each user’s pre-

evacuation and post-evacuation locations must be at county level or finer to be considered a valid 

location. Users with state-level locations were eliminated as they could not be located in a 

specific county. 

All the users we collected so far were manually checked to insure they were real, 

personally owned accounts. We used Twitter API to retrieve the most recent 3,200 tweets those 

users had posted (3,200 was the maximum number of historical tweets allowed to be queried by 

Twitter). Those who denied permission or deleted their accounts were eliminated from our 



dataset. Eventually, we collected 1,286 evacuated users with accessible historical tweets for 

further analysis. 

 

4. Power-Law Distribution 

Existing studies agree that power-law distribution governs individuals’ daily travel 

distance distribution during multiple natural hazards (Wang & Taylor, 2014; 2016), but not many 

tested whether evacuation distance follows power-law distribution (Martin et al., 2017). As 

evacuation distance is one of the most important factors for evacuation transportation planning, 

understanding the distribution of evacuation distance is an essential step.  

The poweRlaw package (Gillespie, 2015) in R was used for this test. This package applies the 

bootstrap method to search for the best parameter using maximum likelihood estimation (MLE). 

The null hypothesis in this test was that evacuation distance distribution follows power-law 

distribution. The bootstrap process converged at about 3,500 iterations and remained stable 

through 5,000 iterations. The estimated value was β = 2.1776 with a 95% confidence interval 

between 2.176 and 2.178. The scaling variable 𝛼 = 115.03. The final estimation generated a 

power-law distribution function as:  

 

Eq. 2 

The p-value for the power-law fitness test was 0.526. As a result, we could not reject the 

null hypothesis that evacuation distance distribution follows power-law distribution. Also, the 

resulted 𝛽 = 2.1776 agreed with previous human mobility studies that 1 < 𝛽 < 3 (Cheng et al., 

2011; Jurdak et al., 2015).  

 

𝑓(𝑑) = 115.03 × 𝑑−2.1776 



Figure 2 shows a histogram of evacuation distance distribution among the evacuees. There were 

a few evacuees who traveled less than 50 miles. They stopped immediately after they left the 

evacuation zone. Most of the evacuees evacuated to places about 150 miles away from coastal 

areas. That is about the distance from Charleston to Columbia in South Carolina. As one of the 

state evacuation strategies was to reverse lanes of Interstate Highway 26 (I-26) so that all the 

lanes of I-26 were directed from Charleston to Columbia to accelerate the evacuation process, 

29.2% of evacuees from Charleston ended in the Columbia metropolitan area. 

Unlike ideal power-law distribution (the green line in Figure 2), the peak evacuation 

distance appears at the range between 100 and 150 miles, rather than at the beginning. Also, a 

bump can be found in Figure 2, about 600 miles at the distance. The power-law distribution of 

evacuation distances implicitly assumes that hotels, shelters, and other accommodations are 

uniformly distributed on a featureless space. However, in reality, accommodation opportunities 

are nonuniformly distributed. This explains why the evacuation distance distribution pattern 

differs from the power-law distribution. 

 



 

Figure 2. Evacuation Distance Distribution 

 

5. Familiarity Measurement Using Twitter Data for Destination Choice 

Survey data collected from multiple hurricane evacuations reported that over half of 

evacuees chose friends’ or relatives’ places as evacuation destinations (Mesa-Arango et al., 

2013; Bian et al., 2019; Lindell et al., 2019; Smith & McCarty, 2009). Mesa-Arango et al. (2013) 

developed a household-level nested logit model to analyze demographic and socioeconomic 

characteristics that affect evacuation destination choices based on survey data. Variables used in 

the model were directly from survey, such as race, income, previous experience with hurricanes, 

and whether need to work during evacuation (Mesa-Arango et al., 2013). Long-term travel 

behaviors were undiscussed since they were directly unavailable from survey data. Bian et al. 

(2019) tackled this problem using community-level data from the American Community Survey 



(ACS) as a surrogate measurement for social factors. For example, length of living in the current 

community was used to measure the social network size in that study.  

This section examines the relationship between evacuation destination choices and long-

term social factors retrieved from social media. We used social media data to quantify the 

familiarity of destination for evacuees, using the assumption that people who evacuated to 

friends’ or relatives’ have a high degree of familiarity with that destination. Specifically, we 

focused on all the places an individual had visited before, and the likelihood that this individual 

would choose a place where he/she spent more time than a place he/she spent less time.  

For all the evacuated users, we retrieved each user’s most recent 3,200 historical tweets; 

the maximum number of historical tweets allowed to access using Twitter API. An independent 

dataset was built to store each user’s historical tweets for further individual-level analysis. Then, 

we applied three steps to test these two hypotheses. First, for each evacuated Twitter user, we 

searched all the counties from which this user tweeted. Second, we retrieved all the available 

tweets for users identified from the previous step. As all the users’ historical tweets can be traced 

back to 2014, we identified how many days a user tweeted from each county since 2014 as 

tweeting frequency. Third, we ranked familiarity for all the counties from which this user had 

tweeted based on tweeting frequency identified in the previous step. For example, if an 

individual user tweeted from County A 200 days and County B 100 days, for this specific user, 

County A was ranked as the highest familiarity. If this user evacuated to County A, we counted 

this user chose the first in rank.  

We excluded evacuation origin county from the familiarity rank, so this rank represents 

each user’s familiarity rank to evacuation destination county. In other words, the more days a 

user tweeted from the county, the more likely this user would evacuate to the county. All the 



counties an individual had been to were ranked. This process was applied to all evacuated users, 

and their destination choice rank was summarized. Since evacuation origin county, the 

residential county of each user, was excluded from the familiarity ranking, all the counties 

included in the rank can be viewed as a potential evacuation destination for the specific user. 

 

Figure 3. Evacuation Destination Popularity vs. Familiarity Rank  

 

 Figure 3 shows evacuees’ destination choices. The x-axis is the familiarity rank, and each 

bar represents the percentage of evacuees who chose to evacuate to a county with a 

corresponding familiarity rank. Among 1,286 evacuees, 82.4% (1,060 evacuees) chose to 

evacuate to a county he/she had visited before. Specifically, 24.7% (318 evacuees) chose the 

county with the highest familiarity rank as evacuation destination. Also, 22.9% (295 evacuees) 

chose to evacuate to the county with the second highest familiarity rank. This result was further 

tested with Spearman’s rank order correlation test (Spearman, 1904). This test resulted in p < 



0.001, indicating that the evacuee number and familiarity rank are significantly negatively 

correlated, whereby the former decreases with the latter’s increase.  

This analysis illustrated that familiarity with places is associated with evacuation 

destination decisions. Most evacuees chose their evacuation destination to be a county with a 

high familiarity rank. The higher familiarity rank a county has, the more likely an evacuation trip 

will occur.  

6. Improved Gravity Model 

The gravity model is commonly used to model economic activities, trades, and human 

travel between a pair of places (Kepaptsoglou et al., 2010; Lewer & Van den Berg, 2008; 

Santana-Gallego et al., 2016). It can be written as Eq. 3: 

𝑁𝑖𝑗 = 𝐺 
𝑂𝑖

𝛽1𝐷𝑗
𝛽2

𝑑𝑖𝑗
𝛼  .     Eq. 3 

When used for evacuation, 𝑁𝑖𝑗 represents the evacuation population from the origin 𝑖 to the 

destination 𝑗. 𝑂𝑖 and 𝐷𝑗  are the total population sizes of the origin 𝑖 and the destination 𝑗 

respectively. The denominator part is a fringe function, interpreted as the cost from traveling 

between the origin 𝑖 and the destination 𝑗. In the traditional gravity model, the fringe function is 

based on physical distance (𝑑𝑖𝑗) between the origin 𝑖 and the destination 𝑗. As power-law 

distribution indicates, when the distance between two places increases, the probability of travel 

occurrence decreases. 𝐺 is the gravitational constant, functioning as a scaling parameter. 𝛽1, 𝛽2 

and 𝛼 are heuristic parameters for the origin population (𝑂𝑖), the destination population (𝐷𝑗), and 

the physical distance (𝑑𝑖𝑗).  

Previous studies have examined the fitness of the gravity model and the intervening 

opportunity model. The relationship between the gravity model and the intervening opportunity 



model, and their extended forms, are reviewed by Chen (2005). Existing evacuation models only 

consider the physical distance (𝑑𝑖𝑗
𝛼 ) as the difficulty of making the trip between each pair of 

origin and destination. As indicated in Eq. 3, an increase in the physical distance decreases the 

trip occurrence when other parameters are unchanged. We argued that social distance between a 

pair of places also functions in such gravity-based evacuation models. An increase in the social 

distance decreases trip occurrence when other parameters are unchanged. Section 6.2 provides a 

test of how social distance improves the accuracy of traditional gravity model. In this study, 

social distance was represented as the inverse of the familiarity measurement aggregated at 

county level, which was calculated as a social connection measurement. 

 

6.1 Social Connection Measurement 

 

Social connection measurements have been developed and used by multiple urban studies 

to measure the strength of connectivity between two places (Browning & Cagney, 2002; Zhong 

et al., 2014). Among the different variables used in the social connection model, human 

movements always play important roles, although different types of human movement data are 

deployed in different measurements.  

The social connection measurement developed in this study was based on travels 

retrieved from Twitter users’ records. It represented the likelihood of a trip occurring between 

the given two counties in the long term. It was based on the assumption that the more the travels 

between two counties, the stronger the social connection between two counties, the shorter the 

social distance, and therefore, the more likely an evacuation trip occurred. Specifically, the 

measurement was calculated as the percentage of Twitter users traveled between the given two 

counties based on geotagged tweets collected in a six-month period (July 2016 to December 

2016) following Eq. 4. 



 

𝑆𝑜𝑐𝑖𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑁𝑂𝐷

𝑁𝑂
 × 100%,                    Eq. 4 

where 𝑁𝑂𝐷 is the number of Twitter users found in both the origin county 𝑂 and the 

destination county 𝐷, and 𝑁𝑂 is the total number of Twitter users in the origin county 𝑂.  

The calculation process involved four main steps. First, we identified users who sent 

tweets from the 10 coastal counties in the six-month period. Second, for each individual user, we 

found all the counties he/she had tweeted as a user’s active counties. If a user was active in more 

than one county, this user built a connection between each pair of active counties. For example, 

if a user posted geotagged tweets from County A, County B, and County C, connections were 

strengthened between Counties A and B, between Counties B and C, and between Counties C 

and A. In the third step, we aggregated to the county level. Since our focus was the social 

connection between the 10 counties to other counties, connections between a pair of counties 

within the 10 counties or a pair of counties not in the 10 counties were not calculated. Finally, 

the results from the previous step were divided by the total Twitter user of the origin county to 

standardize this measurement. For example, between July 1st and December 31st, 2016, we found 

that 667 Twitter users had tweeted from both Brunswick County, NC, and Mecklenburg County, 

NC, and that the total number of Twitter users found in Brunswick County was 25,150. In this 

case, 𝑁𝑂𝐷 = 667 and 𝑁𝑂 = 25,150. The social connection between Brunswick County 

(Wilmington in Figure 4a) and Mecklenburg County (Charlotte in Figure 4a) was 2.65%, based 

on Eq. 4.  



 

Figure 4. The Social Connection of the Four Selected Counties 

 

Figure 4 shows the social connections of (a) Brunswick County, NC, (b) Chatham 

County, GA, (c) Charleston County, SC, and (d) Horry County, SC. For better visual illustration, 

connections to some counties that are too weak to be visible or counties that are too far to be 

included in this map scale level were eliminated in this figure. The width of the red line 

represents the strength of social connection between two counties. In Figure 4a, Brunswick 

County has the strongest connection with Mecklenburg County, stronger than connection with 

other counties having shorter physical distances. Chatham County (Figure 4b) has the strongest 

social connection with Fulton County, GA. Although some other counties have shorter physical 

distance from Chatham County, social connection is actually weaker than the connection 



between Fulton County and Chatham County. In Figure 4c, Charleston County has strong 

connections with counties near Columbia, SC. It also has a relatively strong connection with 

Fulton County, GA, and Orange County, FL. Both counties have larger physical distance than 

counties in South Carolina, but social connections with Charleston County are stronger. Figure 

4d shows the strongest connection Horry County, SC, has with Mecklenburg County, NC. Also, 

it has relatively strong connections with counties near Nashville, TN. Figure 4 shows that social 

connections are not proportional to physical driving distance. Therefore, when modeling 

evacuation destination choice, the social connection should also be considered for inclusion in 

the fringe function to better model human mobility.  

 

6.2 Social Distance Integrated Gravity Model 

Social connection was integrated into the fringe function of the gravity model as an 

additional measurement of distance (considered as social distance) besides physical driving 

distance (Eq. 5). 𝑓𝑖𝑗
𝛼2 represents the county-to-county social connection between the origin 𝑖 and 

destination 𝑗. 𝛼2 is the heuristic parameter and 𝑙 is the scaling factor. 

𝑁𝑖𝑗 = 𝐺 
𝑂𝑖

𝛽1𝐷𝑗
𝛽2

𝑑
𝑖𝑗
𝛼1+𝑙∙𝑓

𝑖𝑗
𝛼2.     Eq. 5 

Since the driving distance was used in this model as the physical distance, driving was 

the only transportation mode we considered in this study. Therefore, counties exceeding 1000 

miles away from the 10 origin counties were eliminated. Also, counties without observed 

traveling with any of the 10 counties were also eliminated. Specifically, if a county did not 

receive any evacuees during Hurricane Matthew and no common users were found with any of 

the 10 counties in the 6-month period, this county was also eliminated even if it was within 1000 

miles. This step eliminated 38 counties from the observed 326 destination counties and left 288 



counties for model calibration.  The social connection was calculated using the method described 

in Section 6.1. A nonlinear optimization function was used in R to optimize scaling parameters 

(𝐺 and 𝑙) and heuristic parameters (𝛽1, 𝛽2, 𝛼1, and 𝛼2). 

For comparison, we first optimized the traditional gravity model (Eq. 3). The 

optimization was run in R with nonlinear model optimization. The optimized traditional model is 

as follows: 

𝑁𝑖𝑗 = 8.477 × 10−5  
𝑂𝑖

0.61𝐷𝑗
0.74

𝑑𝑖𝑗
0.92     Eq. 6 

We conducted an exhaustive cross-validation of this model. This cross-validation process 

included two rounds of leave-one-out cross-validation (Molinaro et al., 2005). This process re-

sampled all the data into training and testing datasets to avoid overfitting problems. We 

organized the dataset into the following table (Figure 5), where each column is an evacuation 

origin and each row is an evacuation destination.  

 



 

 

Figure 5. Cross-validation Process 

 

The first round is leave-one-row-out cross-validation. This includes multiple runs. In 

each run, one row is left out as the test dataset. The remaining 287 rows are used to train the 

model (Eq. 3). After the model was finished training in each run, the one being left out was used 

to test model performance in this run. A root-mean-squared-error (RMSE) is calculated by 

comparing the difference between the observed value and the output from the trained model. 

Since we have 288 evacuation destinations, the first round of cross-validation includes 288 runs 

and generates 288 RMSE values. The second round of cross validation is leave-one-column-out. 

In this round, we leave one column out as the test dataset and use the remaining nine columns to 

train the model (Eq. 6). Like the previous cross-validation round, an RMSE value is calculated in 



each round. The second round includes 10 runs, as we have 10 evacuation origins. Therefore, 10 

RMSE values were generated in the second round of cross-validation. After two rounds of leave-

one-out cross-validation, a total of 298 RMSE values were generated. The overall average of 

RMSE for all the validation runs is 1.24, and the standard deviation is 1.68.  

With the social distance integrated into the model, the improved gravity model is shown 

in Eq. 5. Like the previous model optimization process, the nonlinear model optimization 

procedure was run in R for the improved gravity model. The result is shown in Eq. 7. 

 

𝑁𝑖𝑗 = 2.66 × 10−5  
𝑂𝑖

0.60𝐷𝑗
0.70

𝑑𝑖𝑗
0.90−0.950𝑓𝑖𝑗

−0.83   Eq. 7 

 

Like the traditional gravity model, two rounds of leave-one-out cross-validation were 

conducted to avoid the overfitting problem. After two rounds of cross validation, a total of 298 

RMSE values were generated. The overall average RMSE was 0.80 and the standard deviation 

was 1.88.  

Comparing these two models, the improved gravity model reduced the overall average 

RMSE from 1.24 to 0.80, which was a 35% error reduction. In other words, the social distance 

integrated gravity model shows an improvement of 35% accuracy in predicting evacuation 

destinations comparing to the gravity model that only considered physical distance. This 

demonstrates the utility of social distance in evacuation destination prediction models and can be 

applied to practical applications, such as evacuation transportation planning.  



7. Limitations and Future Research 

Although the proposed model significantly reduced RMSE, we realized some limitations 

to this research. The first is the Twitter representativeness issue (Jiang et al., 2019a; Malik et al., 

2015). Using Twitter data introduces population biases toward a certain group and may not 

represent all populations with various demographic and socioeconomic characteristics. Although 

the representativeness issue of social media data is recognized and recent studies have advanced 

understanding of the demographic and socioeconomic characteristics of social media users using 

a different method, no unanimous solution has been reached. One potential solution is to develop 

a better sampling method that integrates both survey and social media data. For example, Martin 

et al. (2020b) compared age, gender, and race between users collected from surveys and social 

media in evacuation studies. Integrating multiple data sources and developing a better sampling 

method are required for a better understanding of evacuation destination choices of different 

population groups. 

The second limitation is variable choices. To demonstrate the functionality of social 

distance, the models in this study were only modified regarding the distance (𝑑𝑖𝑗
𝛼 ) in the gravity 

model (Eq. 5). Undoubtably, distance draws the most attention in evacuation transportation 

planning, but it is not the only factor. Various other social factors identified in existing studies 

also play important roles in evacuation destination choices, such as family size, hotel/motel 

availability, financial budget, and more. These variables could be used to calibrate 𝑂𝑖
𝛽1 and 𝐷𝑗

𝛽2 

in Eq. 5. The proposed model can potentially be further improved by integrating more variables 

in the optimization function.  

The third limitation concerns the evacuation transportation mode. This study eliminated 

evacuees who traveled more than 1000 miles, a reasonable estimate of the maximum distance 



that households would travel by car. However, people with long distance travel during 

evacuation times were observed. Evacuees were observed to travel to the west coast, including 

Los Angeles and Seattle. How to integrate the multiple transportation modes into the evacuation 

model optimization process requires further investigation. 

8. Conclusion 

This study responded to the calls for interdisciplinary models for evacuation behavior 

studies by improving current evacuation destination choice models through integrating social 

distance with traditional gravity models. It offered a potential solution to the challenge of lacking 

long-term data for essential social factors for evacuation behavior studies using a traditional data 

collection method (e.g., survey). The main contributions of this study came from the following 

three perspectives. First, this study reinforced and extended the important roles of social factors 

in evacuation modeling by confirming that familiarity with a previously visited place was 

associated with evacuation destination choice decisions. Second, it developed an approach to 

quantitatively measure county-to-county social distance using geotagged tweets. Third, it 

demonstrated how long-term social factors improved the evacuation destination choice model by 

integrating social distance into the gravity model.  

Evacuation mobility patterns are complicated. Hardly could one generic mathematic 

model accurately represent such patterns. This study sheds light on how long-term traveling 

information retrieved from social media can quantitatively improve current transportation 

modeling for evacuation destination choice. With the increasing usage of social media during 

time-critical situations, methodological development in related research areas should be pushed 

further. Given the improvement observed in this study, we expected to see more studies using 

hazard-related social media data for evacuation model improvement.  
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