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Abstract—Increased capacity associated with 
renewable energy sources has created a need for 
improved methods for controlling power flows from 
inverter-based generation. This research provides a 
comparative study of finite-control-set model 
predictive current control (FCS-MPC-based) with 
respect to conventional proportional-integral-based 
(PI-based) synchronous current control for a three-
phase voltage source inverter (VSI). The inverter is 
accompanied by an inductive-capacitive-inductive 
(LCL) filter to attenuate pulse width modulation 
(PWM) switching harmonics. However, an LCL filter 
introduces a resonance near to the control stability 
boundary, giving rise to substantial complexity from a 
control perspective. In order to avoid potential 
instability caused by the resonance, active damping 
can be included in the PI-based current control. 
Though properly designed active damping can 
improve inverter stability, in practice the robustness 
of standard PI control is not attainable due to 
variability in the grid inductance at the point of 
common coupling (PCC). This is due to impedance 
variations causing large shifts in the LCL resonance 
frequency. Weak grid conditions (i.e., a low short-
circuit ratio) and a correspondingly high line 
impedance are particularly susceptible to LCL 
induced resonance instabilities. As an approach to 
operate with grid impedance variations and weak grid 
conditions, FCS-MPC has the potential to produce 
superior performance compared to PI-based current 
control methods. This comparative study indicates 
that FCS-MPC has improved resonance damping and 
fast dynamic capability in a system with renewable 
energy sources under weak grid conditions. Detailed 
results from MATLAB/SimPower are presented to 
validate the suggested FCS-MPC method where it is 
robust to uncertainty in the grid impedance 
variations. Overall results indicate an improvement 
over conventional PI-based current control methods. 
 

Index Terms—Model predictive control, resonance 
frequency, weak grids, three-phase voltage source inverter.  

I.   INTRODUCTION 
As use of renewal resources rises, the number of grid-

connected inverters increases in power grid. The inverter 

is accompanied by an inductive-capacitive-inductive 
(LCL) filter to attenuate the pulse width modulation 
(PWM) switching harmonics. The filter enables to reduce 
overall size and weight when compared with a 
conventional inductive (L) filter [1-5]. However, LCL 
filters introduce substantial complexity from a control 
perspective due to a resonance phenomenon caused by the 
filter elements which creates a pair of system poles 
located on the closed-loop stability boundary. Therefore, 
designing a control system for a grid-connected voltage 
source inverter (VSI) with an LCL filter is a very 
challenging task [6-8]. In particular, a weak grid implying 
a grid with a lower short circuit ratio (SCR) can lead to 
voltage fluctuations at the inverter terminals and 
consequently cause inverter instability [9-13]. The 
literature [8] demonstrates a decrease in the grid 
inductance does not necessarily improve the stability of 
grid-connected VSIs. It also claims that the system 
stability is a function of both the grid R/X ratio and grid 
inductance. Additionally, despite the grid-side inductor of 
the LCL filter is in series with the grid impedance, they 
have different effects on the stability of the system [14]. 

There are many types of model predictive control 
(MPC) under different names but they all have a 
similarity, which is to predict future events and take 
control actions based on objective function minimization 
[15‒17]. Since predictive control drew a growing 
attention almost three decades ago, research and 
development activities in finite control set MPC (FCS-
MPC) have become substantially active for the last 
decade [17], [18]. As the consequences of the intensive 
study, advanced analysis techniques and practical tests for 
FCS-MPC have been performed for a wide range of 
power conversion applications [16]. FCS-MPC has many 
advantages over classical linear controller, which are 
nonlinear nature, modulator-free structure and high-
performance operation [17], [19]. These merits suggest 
that FCS-MPC could be applied in a wide variety of 
systems in place of conventional control methods which 
are quite vulnerable to uncertainties in practice [17], [20-
22]. Non-linearity of systems limits the closed-loop 
performance because the conventional methods develop 
controllers based on a linearized model [17].  
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   For a grid-connected VSI, current control is commonly 
performed with a linear PI controller in the synchronous 
reference frame. A controller has been designed based on 
the fixed resonant frequency of an output LCL filter. 
However, the filter resonance is also affected by the 
equivalent grid impedance and is therefore subject to 
change depending on grid conditions. This further 
complicates designing a robust PI controller. As a solution 
of the issue, FCS-MPC with a cost function including a 
term which tracks the derivative of capacitor voltage 
reference is designed and applied to a weak grid-
connected VSI. Performances between PI-based current 
control and FCS-MPC are compared from active damping 
perspective [23]. 

 
 

II.   SYSTEM MODEL 
I. PI-PWM CONTROL STRATEGY 

Fig. 1 shows the general structure of a voltage source 
inverter (VSI) feeding current into a grid through an LCL 
output filter. The primary control goal for the system is to 
regulate the grid current i2 to control the injected power 
into the grid. Typically, it is claimed that a single-loop 
feedback control is not adequate for this role because 
LCL-filter resonance causes controller instability [1], [7]. 
Fig. 2(a) shows such a single-loop feedback controller 
which is modeled in the 𝓏𝓏-domain to account for digital 
sampling. It is shown in Fig. 2(b) that a typical dual-loop 
control system that describes the resonance stability issue 
by including the active damping feedback of the capacitor 
current ic(𝓏𝓏) via a damping gain K [8]. For both of these 
controllers, 𝑖𝑖2

∗(𝓏𝓏) is the commanded grid current, i2(𝓏𝓏) is 
the measured grid current, Gc(𝓏𝓏) is the controller transfer 
function, and the inverter is modeled as a linear VDC gain, 
with a sample delay 𝓏𝓏−1 to take into account PWM 
transport delay [8]. For analysis of the control systems of 
Fig. 2 the discrete time-transfer functions for the LCL 
filter of Gi2(𝓏𝓏), Gic(𝓏𝓏), and i2(𝓏𝓏)/ic(𝓏𝓏) are required. The 
first two of these transfer functions are well described in 
the literature [1], [2] in the s-domain as 

 

𝐺𝐺𝑖𝑖2(𝑠𝑠) =
𝑖𝑖2(𝑠𝑠)
𝑉𝑉𝑜𝑜(𝑠𝑠)

=
1

𝑠𝑠𝐿𝐿1

𝛶𝛶𝐿𝐿𝐿𝐿
2

(𝑠𝑠 + 𝜔𝜔res
2 )

 (1) 

𝐺𝐺𝑖𝑖𝑐𝑐(𝑠𝑠) =
𝑖𝑖𝑐𝑐(𝑠𝑠)
𝑉𝑉𝑜𝑜(𝑠𝑠)

=
1

𝑠𝑠𝐿𝐿1

𝑠𝑠2

(𝑠𝑠 + 𝜔𝜔res
2 )

 (2) 

where 𝜔𝜔res = �(𝐿𝐿1 + 𝐿𝐿2)/(𝐿𝐿1𝐿𝐿2𝐶𝐶𝑓𝑓) and 𝛾𝛾𝐿𝐿𝐿𝐿 = �1/(𝐿𝐿2𝐶𝐶𝑓𝑓). 
It is important to note that winding resistance and core 
loss of the inductors have been neglected in (1) and (2). 
With the associated resistance neglected, the system 
represents the worst undamped case, which highlights a 

resonance stability issue [8]. The third transfer function 
relating i2 to ic can be obtained by taking the ratio of (1) 
and (2), i.e., 

𝑖𝑖2(𝑠𝑠)
𝑖𝑖𝑐𝑐(𝑠𝑠)

=
𝐺𝐺𝑖𝑖2(𝑠𝑠)
𝐺𝐺𝑖𝑖𝑐𝑐(𝑠𝑠)

=
𝛾𝛾𝐿𝐿𝐿𝐿

2

𝑠𝑠2  . (3) 

Applying the zero-order-hold (ZOH) transform to (1) and 
(2) with a sampling period of T = 1/fsamp yields 𝓏𝓏-domain 
LCL filter transfer functions for i2 and ic.: 
 

𝐺𝐺𝑖𝑖2(𝓏𝓏) =
𝑖𝑖2(𝓏𝓏)
𝑉𝑉𝑜𝑜(𝓏𝓏)

=
𝑇𝑇

(𝐿𝐿1 + 𝐿𝐿2)(𝓏𝓏 − 1)
−

sin(𝜔𝜔res𝑇𝑇)
𝜔𝜔res(𝐿𝐿1 + 𝐿𝐿2)

×
𝓏𝓏 − 1

𝓏𝓏2 − 2𝓏𝓏cos(𝜔𝜔res𝑇𝑇) + 1
 

(4) 

𝐺𝐺𝑖𝑖𝑐𝑐(𝓏𝓏) =
𝑖𝑖𝑐𝑐(𝓏𝓏)
𝑉𝑉𝑜𝑜(𝓏𝓏) =

sin(𝜔𝜔res𝑇𝑇)
𝜔𝜔res𝐿𝐿1

×
𝓏𝓏 − 1

𝓏𝓏2 − 2𝓏𝓏cos(𝜔𝜔res𝑇𝑇) + 1
 . 

(5) 
To discretize (3), it should be recognized that the grid 
current in Fig. 2(b) results from the cascaded connection 
of Gic(𝓏𝓏) and i2(𝓏𝓏)/ic(𝓏𝓏). Since the grid and capacitor 
currents are practically sampled at the same time instant, 
the delay attributed to this process is accounted for by the 
ZOH transformation. Hence, i2(𝘴𝘴)/ic(𝘴𝘴) is discretized using 
an impulse-invariant transformation [8], so that no 
additional delay is introduced to the system model, 
yielding 

𝑖𝑖2(𝓏𝓏)
𝑖𝑖𝑐𝑐(𝓏𝓏)

=
𝛾𝛾𝐿𝐿𝐿𝐿

2 𝑇𝑇2𝓏𝓏
(𝓏𝓏 − 1)2 . (6) 
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Fig. 1. Block diagram of the proposed model predictive current 
control scheme with the optimal state estimator. 
 
TABLE. 1. System and control parameters. 
 

Symbols Parameters Values 
VDC DC supply voltage 800 V 

 Grid phase/line-to-line voltage 277 V/480V 
L1(R1) Inverter-side inductance 

(internal resistance) 
20 μH (3 mΩ) 

L2(R2) Grid-side inductance 
(internal resistance) 

20 μH (3 mΩ) 

Cf Filter capacitance 1440 μF 
Fres L1CL2 resonant frequency 1320 Hz 
Fs Control sampling frequency 4 kHz 
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It is common to use a proportional plus resonance (PR) 
controller, which is equivalent to synchronous dq-frame 
proportional plus integral [3], to eliminate steady-state 
tracking errors at the fundamental frequency ωo. The 
transfer function of the PR controller with the 
proportional gain Kp and resonant time constant Tr yields 
 

𝐺𝐺𝑐𝑐(𝑠𝑠) = 𝐾𝐾𝑝𝑝 �1 +
1
𝑇𝑇𝑟𝑟

𝑠𝑠
(𝑠𝑠2 + 𝜔𝜔0

2)
� . (7) 

 
The suitable discretization strategy for this controller is 
the Tustin transform with prewarping [8], which gives an 
equivalent discrete time controller transfer function of 
 

𝐺𝐺𝑐𝑐(𝓏𝓏) = 𝐾𝐾𝑝𝑝 �1 +
1
𝑇𝑇𝑟𝑟

sin(𝜔𝜔0𝑇𝑇)
2𝜔𝜔0

×
𝓏𝓏2 − 1

(𝓏𝓏2 − 2𝓏𝓏cos(𝜔𝜔0𝑇𝑇) + 1)
� . 

(8) 

 
These transfer functions can now be combined to yield 
open-loop forward-path expressions for the controllers of 
Fig. 2 so that control system analysis techniques, such as 
frequency response and root locus, can be utilized. For the 
single-loop controller shown in Fig. 2(a), the forward-
path transfer function is readily obtained as 
 

𝑖𝑖2(𝓏𝓏)
𝑖𝑖2

𝑒𝑒(𝓏𝓏)
= 𝓏𝓏−1𝑉𝑉DC𝐺𝐺𝑐𝑐(𝓏𝓏)𝐺𝐺𝑖𝑖2(𝓏𝓏) (9) 

 
where 𝑖𝑖2

𝑒𝑒(𝓏𝓏) = 𝑖𝑖2
∗(𝓏𝓏) − 𝑖𝑖2(𝓏𝓏) is the regulated current 

error. For the active damping controller shown in Fig. 
2(b), first the analysis is carried out by closing the inner 
capacitor current feedback active damping loop, i.e., 
 

𝑖𝑖𝑐𝑐(𝓏𝓏)
𝑚𝑚𝑜𝑜(𝓏𝓏)

=
𝑉𝑉DC𝐺𝐺𝑖𝑖𝑐𝑐(𝓏𝓏)

𝑧𝑧 + 𝐾𝐾𝑉𝑉DC𝐺𝐺𝑖𝑖𝑐𝑐(𝓏𝓏)
 . (10) 

 
The forward-path transfer function of the overall system 
shown in Fig. 2(b) is obtained by combining this result 
with transfer functions (6) and (8), yielding 
 
𝑖𝑖2(𝓏𝓏)
𝑖𝑖2

𝑒𝑒(𝓏𝓏) = 𝐺𝐺𝑐𝑐(𝓏𝓏) ×
𝑖𝑖𝑐𝑐(𝓏𝓏)

𝑚𝑚𝑜𝑜(𝓏𝓏) ×
𝑖𝑖2(𝓏𝓏)
𝑖𝑖𝑐𝑐(𝓏𝓏)  

= 𝐺𝐺𝑐𝑐(𝓏𝓏) ×
𝑉𝑉DC𝐺𝐺𝑖𝑖𝑐𝑐(𝓏𝓏)[𝑖𝑖2(𝓏𝓏)/𝑖𝑖𝑐𝑐(𝓏𝓏)]

𝓏𝓏 + 𝐾𝐾𝑉𝑉DC𝐺𝐺𝑖𝑖𝑐𝑐(𝓏𝓏)
.  

(11) 

 
   With the fact that the magnitude and phase contribution 
of the LCL filter resonance is insignificant at the 
crossover frequency, the system response is dominated by 
the series inductance. Hence the only low frequency 
component of the system model (4) is required, and the 
single loop forward-path transfer function reduces to 
 

∠
𝑖𝑖2(𝑧𝑧)
𝑖𝑖2

𝑒𝑒(𝑧𝑧)
= 𝑧𝑧−1𝑉𝑉𝐷𝐷𝐷𝐷𝐾𝐾𝑝𝑝

𝑇𝑇
(𝑧𝑧 − 1)(𝐿𝐿1 + 𝐿𝐿2)

. (12) 

 
The proportional gain is then set to have unity gain at the 
desired crossover frequency using 
 

𝐾𝐾𝑝𝑝 = �
(𝐿𝐿1 + 𝐿𝐿2)(𝑒𝑒𝑗𝑗𝜔𝜔𝑐𝑐𝑇𝑇 − 1)

𝑉𝑉𝐷𝐷𝐷𝐷𝑇𝑇
�. (13) 

 
With the approximation of �𝑒𝑒𝑗𝑗𝜔𝜔𝑐𝑐𝑇𝑇 − 1� ≈ 𝜔𝜔𝑐𝑐𝑇𝑇, this gives 
 

𝐾𝐾𝑝𝑝 ≈
𝜔𝜔𝑐𝑐(𝐿𝐿1 + 𝐿𝐿2)

𝑉𝑉𝐷𝐷𝐷𝐷
. (14) 

   A bounded range for damping gain K can be determined 
by using the critical resonant frequency𝜔𝜔 = 𝜋𝜋/(3𝑇𝑇), at 
which root loci stay on the unit circle, giving a maximum 
value for gain K. A minimum gain K can be found using 
Routh’s stability criterion [8]. The maximum value of 
gain K can be obtained from the denominator of the closed 
loop transfer function by setting its magnitude is equal to 
unity. Substituting Gic(z) from (5) and i2(𝓏𝓏)/ic(𝓏𝓏) from (6) 
gives 
 

�
𝑉𝑉𝐷𝐷𝐷𝐷sin(𝜔𝜔res𝑇𝑇)

𝜔𝜔res𝐿𝐿1
×

𝐾𝐾(𝑧𝑧0 − 1)2 + 𝐾𝐾𝑝𝑝𝛾𝛾𝐿𝐿𝐿𝐿
2 𝑇𝑇𝑧𝑧0

𝑧𝑧0(𝑧𝑧0 − 1)(𝑧𝑧0
2 − 2𝑧𝑧0cos(𝜔𝜔res𝑇𝑇) + 1)

� = 1 

(15) 
where z0 is a specific pole location on the root locus at 
which the magnitude becomes one as the damping gain 
increases. 𝑧𝑧0 = 0.5 + 𝑗𝑗√3/2 is selected from 𝑧𝑧 = 𝑒𝑒𝑗𝑗𝜔𝜔𝑐𝑐𝑇𝑇 
with 𝜔𝜔crit = 𝜋𝜋/3𝑇𝑇 and substitution into (15) with some 
mathematical manipulation gives Kmax: 

𝐾𝐾max =
𝜔𝜔res𝐿𝐿1

𝑉𝑉𝐷𝐷𝐷𝐷sin(𝜔𝜔res𝑇𝑇)
|1 − 2cos(𝜔𝜔res𝑇𝑇)| + 𝐾𝐾𝑝𝑝𝛾𝛾𝐿𝐿𝐿𝐿

2 𝑇𝑇2. 

(16)

 

Gc(𝓏𝓏)  𝓏𝓏-1VDC Gi2(𝓏𝓏) i2(𝓏𝓏)i2*(𝓏𝓏)
i2e(𝓏𝓏) m0(𝓏𝓏) V0(𝓏𝓏)

Gc(𝓏𝓏)  𝓏𝓏-1VDC Gic(𝓏𝓏) i2(𝓏𝓏)i2*(𝓏𝓏)
i2e(𝓏𝓏) m0(𝓏𝓏) V0(𝓏𝓏)

K

i2(𝓏𝓏 )/ic(𝓏𝓏 )
m0'(𝓏𝓏)

ic(𝓏𝓏)

(a)

(b)  
 
Fig. 2. Single-phase equivalent current controller architectures. 
(a) A single-loop feedback current controller. (b) Dual-loop 
controller with capacitor current active damping. 
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Kmin can be found using the limiting ratio of proportional 
gain Kp to damping gain K from the Routh’s stability 
criterion in [8], which is given as 
 

𝐾𝐾𝑝𝑝

𝐾𝐾
≤

𝐿𝐿1 + 𝐿𝐿2

𝐿𝐿1
⇒ 𝐾𝐾min =

𝐾𝐾𝑝𝑝𝐿𝐿1

𝐿𝐿1 + 𝐿𝐿2
. (17) 

 
Within these limits for the damping gain, a root locus 
pole placement strategy can be used to determine the 
value of K which achieves the most damping. 
 
II. FCS-MPC STRATEGY 
   The dc-link voltage vdc, the grid voltages vga, vgb, and vgc 
and the grid currents i2a, i2b, and i2c are measured for the 
feedback control of the FCS-MPC. The dynamics of the 
grid-connected inverter is represented in the state-space 
as follows: 
 

ẋ(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑡𝑡) + 𝐵𝐵𝑔𝑔𝑢𝑢𝑔𝑔(𝑡𝑡) 

(18) 

𝑦𝑦 = 𝐶𝐶𝐶𝐶(𝑡𝑡) 

A ≔

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑅𝑅𝑖𝑖
−𝐿𝐿𝑖𝑖

0 0 0 1
−𝐿𝐿𝑖𝑖

0
0 𝑅𝑅𝑖𝑖

−𝐿𝐿𝑖𝑖
0 0 0 1

−𝐿𝐿𝑖𝑖

0 0 𝑅𝑅𝑔𝑔
−𝐿𝐿𝑔𝑔

0 1
𝐿𝐿𝑔𝑔

0

0 0 0 𝑅𝑅𝑔𝑔
−𝐿𝐿𝑔𝑔

0 1
𝐿𝐿𝑔𝑔

1
𝐶𝐶 0 1

−𝐶𝐶 0 0 0
0 1

𝐶𝐶 0 1
−𝐶𝐶 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐵𝐵𝑖𝑖∶= �
1
𝐿𝐿𝑖𝑖

0 0 0 0 0

0 1
𝐿𝐿𝑖𝑖

0 0 0 0
�

T

𝐾𝐾𝛼𝛼𝛼𝛼 

𝐵𝐵𝑔𝑔∶= �
0 0 1

−𝐿𝐿𝑔𝑔
0 0 0

0 0 0 1
−𝐿𝐿𝑔𝑔

0 0
�

T

𝐾𝐾𝛼𝛼𝛼𝛼 

𝐶𝐶∶=

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

𝐾𝐾𝛼𝛼𝛼𝛼 =  23 �
1 −1

2 −1
2

0 √3
2

−√3
2

� 

 
where 𝑥𝑥 = [𝑖𝑖1𝛼𝛼 𝑖𝑖1𝛽𝛽 𝑖𝑖2𝛼𝛼 𝑖𝑖2𝛽𝛽 𝑣𝑣𝑐𝑐𝛼𝛼 𝑣𝑣𝑐𝑐𝛽𝛽]T, ui and ug 
are the inverter output voltage and grid voltage vectors 
respectively. FCS-MPC consists of three main parts, 
which are extrapolation of reference current, prediction of 
state variables in discrete-time model, and cost function 
minimization. The finite number of switching state 

combinations is evaluated in terms of error between 
predictive currents and extrapolated reference currents by 
using the absolute cost function. A switching state 
corresponding to a minimum cost function value is 
applied to the inverter switches. The cost function used 
for the implementation is 
 

𝑔𝑔(𝑘𝑘) = |î∗(𝑘𝑘 + 1) − i𝑝𝑝(𝑘𝑘 + 1)|. (19) 
 
The minimum cost function value is identified by 
comparison and the corresponding switching state 
combination is applied to the inverter. To improve steady-
state performance of the control, a term which tracks the 
derivative of the capacitor voltage reference is added to 
the cost function and expressed as [24], 
 
𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑 = �𝐶𝐶𝑓𝑓𝜔𝜔𝑛𝑛𝑣𝑣𝑓𝑓𝑓𝑓

∗ − 𝑖𝑖1𝛼𝛼 + 𝑖𝑖2𝛼𝛼� + �𝐶𝐶𝑓𝑓𝜔𝜔𝑛𝑛𝑣𝑣𝑓𝑓𝑓𝑓
∗ + 𝑖𝑖1𝛽𝛽 − 𝑖𝑖2𝛽𝛽� 

(20) 
where ωn is the nominal angular grid frequency and vf is 
the voltage of the capacitor. The term has an active 
damping effect and ensure robust performance in steady-
state and dynamic response. This also allows for easy 
compensation of nonlinear effects. 
 

III.   SIMULATION 
To assess the relationship between current controller 

stability and LCL filter resonant frequency, forward-path 
transfer functions for the single and dual-loop current 
controllers have been calculated using (9) and (11) for the 
system with the parameters given in Table I. The Bode 
plot of Fig. 3 shows frequency responses of the single- 
and dual-loop current controllers when the resonant 
frequency is lower than half the sampling frequency. 
Without active damping (i.e., single loop), the high-
frequency LCL filter resonance at 8.3 krad/s causes a 
sharp phase transition through −180° with a very high 
resonant frequency magnitude. This is an unconditionally 
unstable situation for any available controller gains. 
Therefore, the resonant frequency magnitude should be 
damped such that the magnitude remains below 0 dB for 
ensuring stability of the system. Incorporating active 
damping using the dual-loop controller attenuates the 
resonant peak magnitude below zero magnitude, so that 
the system can be stabilized with the selected controller 
gain. There exists a critical LCL filter resonant frequency 
above which a single-loop controller could achieve a 
stable response, but below which active damping is 
required to ensure stability. If the LCL filter resonance 
frequency is above the critical frequency 𝜔𝜔crit, a single 
loop is sufficient for a stable system. However, stability 
does not depend solely on the resonance frequency of the 
LCL filter because the region of operation tends to alter
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based on grid conditions. In particular a weak grid has a 
significant effect on the resonance frequency with high 
impedance. In addition, insufficient damping must be 
taken into consideration for ensuring stability of the 
system. Apparently, there is a maximum damping gain, 
beyond which the system loss its stability. For the system 
with a sampling frequency of 4 kHz, a bounded range for 
damping gain K is determined from equations (16) and 
(17), which gives Kmin ≤ K ≤ Kmax with Kmin = 0.02 A‒1 
and Kmax = 0.1625 A‒1. This means that the relatively 
limited range of damping gain allows for effective 
stability control. The best available value for the damping 
gain range is selected to place the two resonance poles as 
far from the unit circle as possible. 
   Simulation studies for the LCL-filtered VSI system with 
active damping applied are performed using 
Matlab/Simulink®. Power is raised at 0.2 s and then active 
damping is disabled at 0.4 s. The system in a stiff grid still 
demonstrates stable operation despite of resonance caused 
from the LCL filter. This is because that the filter resonant 
frequency is higher than the critical frequency.  

For comparison, the same system is connected to a 
weak grid with impedance being thrice as high as that of 
the stiff grid. As soon as the active damping feedback is 
disabled, large resonant current occurs, which deteriorates 
stability of the system shown in Fig. 4 (b). The grid-
connected VSI regulated by FCS-MPC is simulated for a 
comparison as shown in Fig 4 (c). Under a week grid 
condition, the FCS-MPC keeps the system from being 
affected by resonance. The term to track the derivative of 
capacitor voltage reference, which is added to the cost 
function, plays a role as active damping. Thereby it 
improves performances in steady-state and dynamic 
response. 
 

IV. CONCLUSION 

   Applied active damping to the grid-connected VSI 
satisfactorily dampens out the resonance effect caused by 
an LCL filter. However, grid variations in impedance 
bring difficulties in designing PI control with optimal 
active damping. Therefore, an advanced control strategy, 
especially MPC is expected as a potential approach to 
robust controller design against complexity and instability 
caused by resonant current in a weak grid-connected 
three-phase inverter. This is due to the fact that high 
dynamic performances of the system can be achieved with 
the flexibility of the cost function in MPC design. A grid-
connected VSI regulated by FCS-MPC demonstrates 

 

 
 

Fig 3. Bode plot of the forward-path transfer functions for the 
single- and dual-loop current controller. Root loci of dual-loop 
current controller with respect to active damping gain K. 
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(b) 

 

 
(c) 

 
Fig. 4. (a) (b) PI current control of a VSI with an LCL filter 
with a step change in active power at 0.2 s and subsequent 
active damping off at 0.4 s in a stiff grid (a) and in a weak 
grid (b). (c) FCS-MPC of a VSI with an LCL filter with a step 
change in active power at 0.2 s in a weak grid. 
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good performances in terms of active damping and 
dynamic response in a weak grid condition. Thus, MPC is 
particularly expected to allow for easy compensation for 
the complicated LCL filter resonant frequency issue 
attributed to variations in grid condition. 
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