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ABSTRACT

Viscoelastic fluids have been shown to undergo instabilities even at very low Reynolds numbers, and these instabilities can give rise to a
phenomenon called elastic turbulence. This phenomenon, observed experimentally in viscoelastic polymer solutions, is driven by the strong
coupling between the fluid velocity and the elasticity of the flow. To explore the emergence of these instabilities in a viscoelastic flow, we have
chosen to explore, by means of direct numerical simulations, a particular case called von Karman swirling flow. The simulations employ the
finitely extensible nonlinear Peterlin model to represent the dynamics of a dilute polymer solution. Notably, a log-conformation technique
is used to solve the governing equations. This method is useful in overcoming the high Weissenberg number problem. The results obtained
from the simulations were generally in good agreement with experiments. The torque on the top plate was decomposed into Newtonian and
polymeric components, and it was found that the polymeric component was dominant. In addition, flow visualizations revealed that a toroidal

vortex was strongly correlated with the distribution of the stresses on the rotating plate.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021469

I. INTRODUCTION

Experiments have revealed a new phenomenon that has been
referred to as elastic turbulence." This flow phenomenon was first
discovered in the swirling flow of a dilute polymer solution driven
by a rotating plate. The torque on the plate was found to be roughly
one order of magnitude greater than the corresponding torque in
the flow of a Newtonian fluid. It is the primary objective of this work
to perform direct numerical simulations (DNSs) of the exact same
flow with comparable fluid properties and geometry. DNS methods
such as those used in this work can reveal information that cannot
be easily obtained experimentally, such as the entire fluid velocity
field in space and time as well as the internal stress fields. Further-
more, the correlation between the velocity field and other quantities
such as stress can be investigated in detail. The methods described in
this work allow us to more deeply investigate this flow and offer an
opportunity to gain greater insight into the instabilities found in vis-
coelastic flows. To place the current work in context, we first review

the relevant literature concerning instabilities in flows of polymer
solutions, elastic turbulence, and swirling flows as well as the pri-
mary model used in this work, the finitely extensible non-linear
elastic Peterlin (FENE-P) model.

A. Instabilities in dilute polymer solutions

In this work, we focus on fluids with intrinsic elasticity, com-
monly referred to as viscoelastic fluids. Most viscoelastic fluids are
either composed of polymers (polymer melts) or contain polymers
(polymer solutions). Specifically, the work presented here involves
dilute-polymer solutions, which are a particular subclass of vis-
coelastic fluids. Before turning our attention to the instabilities
caused by fluid elasticity, it is useful to make a note of the phe-
nomenon of turbulent drag reduction that occurs at high Reynolds
numbers in viscoelastic fluids. In 1948, Toms’ reported that using a
solution consisting of a minute amount of a high molecular weight
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polymer dissolved in water can substantially reduce friction drag
compared with that of the pure solvent, in a high Reynolds num-
ber pipe flow. Since that time, a vast amount of research has been
performed to elucidate the mechanism of drag reduction by poly-
mer addition.” ” However, it has been found that polymer additives
can have significant effects also in low Reynolds number flows. For
example, instabilities solely due to the inherent elasticity of the fluid
have been discovered in a wide number of flows over roughly the
past three decades.” *’

Until recently, elastic instabilities have been found to occur
primarily in geometries with curved rather than rectilinear mean
streamlines. It has been found that a key component in characteriz-
ing the development of these elastic instabilities is the Weissenberg
number Wi = "TV, where V is a characteristic velocity scale, L is a
characteristic length scale, and A is the polymeric relaxation time.
When the Weissenberg number is greater than a critical value, insta-
bilities typically appear and involve a sharp growth in local elastic
stress as a result of the extensibility of the polymers. This occurs
as the relaxation time scale becomes on the order of the rate of
deformation. The sharp growth in elastic stress is accompanied by
the emergence of velocity fluctuations in the flow. In Fig. 1, dif-
ferent regimes characterized by varying Weissenberg and Reynolds
numbers are shown. Note that the term “inertial turbulence” is used
here to refer to turbulent flows in Newtonian fluids such as in pipe,
channel, and boundary layer flows at higher Reynolds numbers,”’
where the sources of nonlinearity are inertial forces, as distinguished
from elastic turbulence, where the dominant source of nonlinearity
is derived from elastic stresses.

B. Elastic turbulence

The phenomenon called elastic turbulence can be roughly
defined as a chaotic low Reynolds number flow that develops

Drag reduction

Re

Inertial turbulence

Laminar Elastic turbulence

Wi

FIG. 1. Flow regimes in the Weissenberg-Reynolds number (Wi-Re) space. At low
Weissenberg number (Wi =AV/L) and low Reynolds number (Re = VL/v),
the flow is laminar. At low Wi and high Re, the flow becomes classical inertial tur-
bulence. At high Wi and high Re, the flow exhibits the drag reduction phenomenon.
At high Wi and low Re, elastic turbulence is observed.

ARTICLE scitation.org/journal/phf

from elastic instabilities. The initial discovery of elastic turbu-
lence' was followed by a number of other experimental investiga-
tions in which it was found not only in swirling flow”””’ but also
in Taylor-Coutte flow”* and Dean flow.”" * We have previously
remarked that all the flows cited above were those with curved
streamlines. However, recent experiments“‘\"l” have revealed insta-
bilities in viscoelastic flows within micro-channels with rectilinear
streamlines. In all of these flows, a wide range of length scales are
excited, accompanied by a significant increase in momentum trans-
port, comparable to that found in turbulent flows of Newtonian
fluids.

In elastic turbulence, the energy spectrum of the velocity fluc-
tuations is found to behave as E(k) ~ k™", where E is the spec-
tral energy density of the velocity fluctuations, k is the wavenum-
ber, and n is typically found to be about 3.5. This steep drop-off
in the energy spectrum should be compared to the much smaller
n = 5/3 found in classical inertial turbulence. Despite some differ-
ences between elastic turbulence and standard high Reynolds num-
ber inertial turbulence, elastic turbulence gives rise to significant
increases in transport well above the laminar state, and for this rea-
son, it remains intriguing as a possible means of increasing the flux
of mass, momentum, and heat in flow devices that are not large
enough to develop ordinary inertial turbulence.

The numerical simulation of elastic turbulence is challenging
for numerous reasons. The biggest hurdle is dealing with numerical
convergence issues at high Wi. Specifically, numerical breakdown
occurs when solving the FENE-P model (or any another model that
involves hyperbolic PDEs). However, elastic instabilities and elastic
turbulence are reported to occur only at higher Wi. This numeri-
cal breakdown that occurs at moderately high Weissenberg num-
bers is called the High Weissenberg Number Problem (HWNP).
There are two primary reasons for this breakdown. The first is
the inability of polynomial-based approximations to represent the
steep spatial gradients of the conformation tensor.”’ Second, there
is frequently a loss of positive definiteness of the conformation ten-
sor.”’ Due to the so-called “HWNP,” most numerical simulations
in the literature have been restricted to rectilinear geometries and
limited parameter ranges.” "’ However, Liu and Khomami’* per-
formed a DNS of viscoelastic Taylor-Couette flow and reported
the exponential decay of the time scales, as reported in the
experiments.

C. Swirling flows

Swirling flows are ubiquitous both in nature and technology.
Large rotating flows are found both in the atmosphere and oceans,
whereas industrial applications of swirling flows are associated with
turbines and centrifugal pumps, among others. A special case of such
a flow is that between two coaxial rotating plates or disks.

The flow of an incompressible fluid driven by an infinite rotat-
ing disk in an unbounded fluid domain is a classical problem in
fluid mechanics. von Karman™ was the first to study this problem
for Newtonian fluids by using a transformation that reduced the
Navier-Stokes equations to a set of ordinary differential equations.
Mitschka™ showed that von Karméan’s similarity solution could be
extended to power-law fluids. Ariel’”” showed that a similarity solu-
tion does exist for a particular class of viscoelastic swirling flows in
unbounded domains.
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The first attempt to investigate the effects of viscoelasticity on
confined swirling flows of viscoelastic fluids was made by Stokes
et al.”” They observed some unsteady flow patterns by using a poly-
acrylamide Boger fluid”’ with relatively high viscosity, which mini-
mized the inertial effects in the flow. By picking a polymer solution
with a high viscosity, they inferred that the observed non-Newtonian
effects were purely elastic in nature. On the other hand, when the
fluid used is a low viscosity dilute polymer solution such that inertial
effects could not be ignored, they observed that the stress increase
on the rotating plate that is attributed to turbulent drag is delayed.
In some extreme cases, the stress increase is suppressed due to the
presence of the polymer. They reported that swirling flows became
unstable for both inertia dominated flows (high Re, low Wi) and
elasticity dominated flows (low Re, high Wi). Thus, they found an
extremely strong correlation between the ratio Wi/Re and the type
of instability that emerged in the flow. This ratio is referred to as
the elasticity number El Hence, in short, the flow is dominated by
elastic effects when El > 1, and if El < 1, the flow becomes inertia
dominated.

The flow between two rotating plates is of considerable impor-
tance and forms the basis for rheological measurements of viscosity
and normal stresses in both Newtonian and non-Newtonian liquids.
Some extrusion processes of polymers also employ such flow geome-
tries. The simplest case of this flow geometry consists of two coaxial
disks, separated by a small distance. In a typical rheological measure-
ment, fluid samples are contained in the narrow gap and are subject
to the rotation of the upper plate at a constant angular velocity, while
the bottom plate is kept fixed. This experimental setup is of particu-
lar importance since it was also used by Groisman and Steinberg' to
uncover the elastic turbulence phenomenon.

D. The FENE-P model and its applications

Maxwell"” is credited with developing viscoelastic models based
on appealing to ideas that stem from the kinetic theory of gases.
Warner'' appealing to spring-dashpot-dumbbell analogs developed
by Bird and Warner"” introduced a model that is referred to as the
finitely extensible non-linearly elastic model, often referred to as the
FENE model. The FENE-P model uses the work of Peterlin®’ to
provide closure to the FENE model and is used often in modeling
non-Newtonian fluids.

In this work, we have chosen to use the FENE-P model to rep-
resent the polymer dynamics.”*"” In the FENE-P model, the solvent
is viewed as being populated with large numbers of linear poly-
mer molecules, each of which is thought of as a dumbbell consist-
ing of two massless spheres, connected by a non-linear spring. The
solvent flow can affect the stretch and orientation of the dumb-
bells due to viscous forces. The dumbbells act back on the fluid,
thus coupling the polymeric effects directly to fluid motions. In
this approach, the dumbbells are prevented from stretching to infi-
nite lengths by introducing the nonlinear spring model through the
Peterlin function.

The FENE-P model has proven effective in recent years in
exploring complex phenomena such as the effect of polymer addi-
tives in fully turbulent flows, although some unrealistic aspects of
the model have been discussed in recent work."” High resolution
direct numerical simulations (DNSs)"" ' of such flows have con-
firmed the experimental observations of Toms” and others.”* These

scitation.org/journal/phf

simulations have shown that the drag reduction phenomenon can
be replicated by coupling the polymeric forces modeled as Peter-
lin dumbbells with the equations of fluid motion. In addition, for
use in simulating turbulent high Reynolds number polymeric flows,
the FENE-P model has recently been incorporated into Reynolds-
averaged Navier-Stokes models’’ ** and k-epsilon turbulence mod-
els” " and has been used to study the effects of polymers on heat
transfer.”” The model has also been used with success in exploring
the physics of low Reynolds number flows.”””*”* The FENE-P model
has also been used to show that coherent vorticity can be generated
in dilute polymer solutions.””

E. Outline of the paper

This paper is organized as follows: In Sec. II, we describe the
geometry, the boundary conditions, the viscoelastic constants, the
definitions of the relevant non-dimensional numbers, and the math-
ematical formulation of the problem. In Sec. I1, we describe the log-
conformation reformulation (LCR) technique, the implementation
of this method in ANSYS-FLUENT, the mesh, and the simulation
parameters. In Sec. [V, we present results from two different kinds of
simulations that we refer to as constant-Q and ramp-up. In Sec. V,
we give an overview of this work and offer suggestions for future
efforts.

II. PROBLEM FORMULATION
A. Mathematical formulation

The problem of interest is governed by the momentum equa-
tion and the continuity equation for an incompressible fluid given,
respectively, by

Du
- _ + .S 1
Ppy = VPV (1)
and
V-u=0, 2
where u is the fluid velocity, p is the pressure, § is the stress ten-

sor, and p is the density. For a dilute polymer solution, the stress is
decomposed into Newtonian and polymeric components via

S=2upD+0", (3)

where ¢’ is the polymeric component of the stress, o is the solution
viscosity, 3 is the ratio of the solvent viscosity to the solution viscos-
ity, and D is the symmetric part of the velocity gradient tensor. For
a FENE-P fluid, the polymeric stress is given by

o - 0P pryc) @

Here, A is the polymer relaxation time, C is the conformation tensor
defined as the average over all possible molecular configurations of
the product of the end-to-end vectors associated with the polymer,

R? = tr(C), I is the unit tensor, and f(R) = LL%‘Z)__}; is the Peterlin func-
tion, where L is the maximum allowable molecular extension. In the
equations above, and in all subsequent ones, C, Ly, and R are made
non-dimensional by the rest length, or square of the length as appro-
priate, of the polymer molecule. Finally, the conformation tensor C
is governed by
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B. Geometry, boundary conditions,
and coordinate systems

The geometry of the swirling flow that we are concerned with
in this work is given in Fig. 2. The flow system consists of a fixed
enclosed circular cylinder of radius R, and depth D with a lid whose
radius is R;. This lid is set to rotate with a constant angular velocity
Q. The bottom disk and the side wall are assumed to be at rest. A
no-slip boundary condition on the velocity and a no-flux boundary
condition on the components of C*’ have been imposed along all
boundary surfaces.

In this work, we will use two coordinate systems. The first is the
Cartesian system (x, y, z) and the second is the cylindrical coordinate
system (r, 6, x), which are described relative to the geometry in Fig. 2.
The unit vectors in these systems are %, y, Z and 7, 9, X, respectively.
In addition, the fluid velocity vector u has components uy, uy, u, and
Uy, Ug, Uy IN these systems.

C. Parameter values and non-dimensional numbers

In all simulations, R, = 43.6 mm, D = 10 mm, and R; = 38 mm.
The fluid properties used in the simulation are as follows: the den-
sity of the fluid is p = 4240 kg/m’, the viscosity of the solvent is s
= 0.324 Pa s, the viscosity of the solution is gy = 0.424 Pa s, and
the relaxation time is given by A = 3.4 s. In addition, 8 = pus/uo
= 0.764, and the maximum polymer length, Lo, was set to 100. All
values of the physical properties of the fluid cited above are identi-
cal to those used in the experiments by Groisman and Steinberg." In
describing the results of these simulations, it is useful to define sev-
eral non-dimensional parameters. The Weissenberg number, which
is defined as the ratio between the relaxation time scale to the shear
time scale, is given by Wi = AQR;/D, the Reynolds number is defined
as Re = (pQR;iD)/uo, and the shear rate is defined by y = QR;/D. The
elasticity number is defined as El = Wi/Re = Auo/pD*.

lll. NUMERICAL METHODS

The phrase “High Weissenberg Numerical Problem” (HWNP)
was coined to describe the common situation experienced by
researchers in which numerical simulations failed beyond some lim-
iting value of the Weissenberg number.””""** This limiting value
varies with the flow geometry and the fluid constitutive model used

X-axis
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in a given problem. As previously mentioned, it is generally recog-
nized that the HWNP stems from the loss of the symmetric positive
definiteness (SPD) of the conformation tensor, and also the inability
of a low-order polynomial fitting to capture the steepest gradients of
the components of the conformation tensor.

Much effort has been devoted toward resolving the HWNP.
Vaithianathan and Collins’' proposed a decomposition algorithm
for the conformation tensor to guarantee SPD and improve the
overall stability of the simulation. Fattal and Kupferman™"** pro-
posed formulating the equations in terms of the logarithm of the
conformation tensor, which is called the log-conformation reformu-
lation (LCR). This method preserves the SPD of the conformation
tensor. It also allows much more rapid convergence, which would
otherwise cause the simulation to fail. This formulation has been
successfully implemented for a flow around a cylinder,”” lid-driven
cavity,“ and Poiseuille flow,”" which indicates the advantage and
validity of using the log-conformation reformulation for solving the
HWNP.

A. The log-conformation reformulation

The LCR approach proposed by Fattal and Kupferman™ is
based on the idea that instead of solving the evolution equation
for the conformation tensor C [see Eq. (5)], an evolution equation
for the natural logarithm of the conformation tensor ¢ = log(C)
is solved. This approach reduces the magnitude of the gradients
of conformation tensor fields. Since C is an SPD matrix, it can be
diagonalized as follows:

C = RAR', (6)

where R is a matrix composed of the eigenvectors of C and A is a
matrix in which the diagonal elements are the eigenvalues of C as
follows:

o o=
oo
~

o o

A= (7)

3

where A;, A2, and A3 are the real eigenvalues of C. The field ¢ can be
calculated by taking the logarithm of each element in the diagonal
matrix’’ as follows:

(8)

For the purpose of reformulating Eq. (5), Fattal and Kupferman™’
show that for any incompressible fluid, the velocity gradient tensor

¢ =log(C) = Rlog(A)R".

FIG. 2. The schematic of the system
under investigation. The top view (on
the left) of the system shows the coor-
dinates, y and z, as well as r and 6.

The side view (on the right) shows the

R; - outer container whose radius and depth

are R, and D, respectively. Also shown
is the top plate that rotates at an angular

velocity Q and whose radius is R;.
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Vu can be decomposed as follows:

Vu=Q+B+NC, 9)
where Q, N, and B are defined as
0 w1 w{
Q=R|-0; 0 ws|RY, (10)
—Wy —wW3 0
miy 0 0 ]
B=R| 0 my 0 [R, (11)
0 0 ms33
0 m nz-
N=R|-m 0 n3|R" (12)
—Mny —Nn3 0
with W = Azmizi/hmﬂ LWy = Mm):zt/}:lmﬁ L w3 = Asm;:r/}\zmn JHp = ;V;ft;”l_zll ,
my3tms, M3 +imsy

my = TR0 ns = TR and the m;;’s are defined as the elements
3 1 3 2
of a matrix M defined by

r mi1 miz mi3
M =R VuR = |my my ma3]|. (13)
m31 M3z M33

Using the decomposition from Eq. (9), Eq. (5) can be rewritten as
DC

Dt

Referring to Eq. (8), the decomposed evolution equation (14)
can be rewritten as follows:
D¢

D =490+ 2B+ RH(A*1 —f(R)I)]RT. (15)

=QC—CQ+23C+%[I—f(R)C]. (14)

B. Implementation using ANSYS-FLUENT

The details of the algorithm are given in the flowchart shown in
Fig. 3. The algorithm is a modification of the SIMPLE (Semi-Implicit
Method for Pressure-Linked Equations) method. In this method, the
governing equations are discretized in a strong-conservation form
using a finite-volume approach. The non-linearities are computed in
the “outer loop,” which is performed several times per time step until
satisfactory convergence is reached. In each iteration of the “outer
loop,” the momentum [Eq. (1)], mass [Eq. (2)], and modified ver-
sion of the transport equation [Eq. (15)] are solved iteratively until a
specified convergence criterion is satisfied.

Using the LCR approach, Eq. (15) is solved using the user-
defined scalar transport functionality in ANSYS-FLUENT. This
capability allows the user to solve an advective-diffusion equation
for a scalar y of the following form:

0 0 0

%+8—m(puiw—ra—ri) =Sy, (16)
where p is the fluid density, u; are the components of the fluid veloc-
ity, T is the diffusion coefficient, and Sy is a source term. Using
this capability, the six unique components of ¢ can be determined
by allowing the source term Sy to represent the right-hand side of
Eq. (15). After solving for ¢, the conformation tensor can be updated
using Eqgs. (6)-(8) and (13).
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Initialize p*, u*, C*

[ STEP 0: Polymeric stress o©* = f(C*) }

STEP 1: Solve discretized momentum
equations with source term V - o

*

u

[ STEP 2: Solve pressure correction equation ]

/

p

[ STEP 3: Correct pressure and velocities ]

p, u, C*

STEP 4: Evaluate ¢* = log(C*) by
computing eigen values and vectors of C*

e

[ STEP 5: Solve evolution equations in ¢ }

P, u, ¢

Convergence?
no

yes

FIG. 3. Flowchart of the numerical algorithm. All the equations discussed in this
work were implemented in ANSYS-FLUENT using user-defined functions. The
implementation of the LCR algorithm requires a series of linear algebra operations
including the evaluation of the eigenvalues of the conformation tensor. In order
to achieve this, the Visual Studio C compiler has been configured such that it is
accessible from ANSYS-FLUENT. This allowed the LAPACK routines to be utilized.
The starred variables denote uncorrected variables within an iteration, whereas the
un-starred variables represent the corrected variables.

C. Mesh and simulation parameters

The mesh shown in Fig. 4, which has 22 344 tetrahedral cells,
was created using a computational fluid dynamics (CFD) meshing
software called ANSYS-ICEM. The domain has been divided into 14
sections parallel to the rotating disk with each section having 1596
elements. The total volume of the domain is 50 240 mm®. The min-
imum and maximum volume of the cells are 1.123267 mm’ and
3.955 476 mm’, respectively. The time step in every simulation was
chosen to be 1072 s.
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z — axis

R,

FIG. 4. The mesh used for the simulation has 22 344 tetrahedral cells and was
created using a CFD meshing software called ANSYS-ICEM. The domain has
been divided into 14 sections parallel to the rotating disk with each section having
1596 elements. The total volume of the domain is 50 240 mm?®. The minimum and
maximum volume of the cells are 1.123 267 mm? and 3.955 476 mm?, respectively.
The top view of the mesh is shown on the left, and the side view is shown on the
right.

IV. RESULTS

The primary goal of this work is to compare the results from
our simulations with those of experiments. An important parameter
of driven swirling flows is the torque Q that is required to drive the
flow. The only component of the stress tensor T that contributes to
the torque on the top plate is 7g«(r, 8). Therefore, the torque Q = Qx
can be computed as follows:

R; 2 2
Q- f rdF = f f oaerdOdr 17)
0 0

since dF, which is the differential component of the force acting on
the plate, is given by goxrd0dr. It is convenient to define the average
stress, Tay, on the top plate in terms of Q as follows:

3Q

== 18
27R? (18)

av
It is evident that Ty, represents the spatially uniform stress that
would be required to generate the torque Q. We note that o, Q,
and T, are implicitly functions of time, t.

Before discussing the results from our simulations in detail,
it is necessary to determine the highest Weissenberg number that
can be accommodated using the LCR technique. This is achieved
by carrying out a series of simulations (see the Appendix for a list-
ing of all simulations performed in this work) with varying Wi. It
was determined by performing these simulations that flows with a
Weissenberg number < 24 could be successfully simulated. We per-
formed two different types of simulations in this work, which we
refer to as (A) constant () simulations and (B) ramp-up simula-
tions. In the constant Q) simulations, the fluid was initially at rest
and the rotation rate of the top plate, ), was kept constant through-
out the simulations. In the ramp-up simulations, the fluid was also
initially at rest, but the rotation rate of the top plate was an increas-
ing function of time, ¢, given by Q = 0.058t. From all the constant Q
simulations, we have selected four cases (see Table I), which are most
representative of all of them and can be most easily compared to
experiments.

In order to discuss the simulations described above, it is nec-
essary to define the notation used to describe the stresses acting on
the top plate. For the purely Newtonian case, the case in which no
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TABLE I. For each run, we list the angular velocity of the plate, Q, the shear rate, j
(s—"), the Reynolds number, Re, and the Weissenberg number, Wi. In this table, we
list only the runs that are discussed in the body of the paper. For a complete list of all
runs, see the Appendix.

Run no. Qrads™ 1) y (s h Re Wi
1 0.71 2.7 2.7 9.18
2 1.05 4 4 13.6
3 1.55 5.9 5.9 20.06
4 1.76 6.7 6.7 22.78

polymer stresses exist, the average stress on the top plate as defined
in Eq. (17) is denoted by Tx. This stress is determined for flows
in which the parameter f = 1. When 8 < 1, the polymeric stresses
are important. In such cases, we denote the average stress on the
top plate to be Ty. It is clear from Egs. (3) and (4) that Ty can
be decomposed as Ty = 7p + 7n, where 7p and 7n are, respec-
tively, the average polymeric and Newtonian stresses on the top
plate. It is important to note that all conclusions reached in this
work are based on the comprehensive set of simulations given in the
Appendix.

A. Constant Q simulations

The constant Q simulations were those in which the rotation
rate, (), is kept constant throughout the entire time span of the sim-
ulations. In Figs. 5-7, we show, respectively, the time evolution of the
stresses Ty, Tp, and T'v. In each of these figures, results are shown for
values of the shear rate, j = 2.7 s, 405,595 and6.7s7 L It
is clear from these results that after an initial transient period that
lasts t ~ 20 s, the flow reaches a steady-state or an oscillatory steady-
state, depending on the value of j. For example, for j = 2.7 s™! and
y =40 sl a non-oscillatory steady-state is reached; however, for
7 =595 and § = 6.7 s, an oscillatory steady-state emerges. We
also observe from these results that the contribution to the torque
on the top plate from the polymeric component, 7p, is significantly
larger than the contribution due the Newtonian component, 7y. A
closer look at the oscillatory steady state for y = 6.7 s™* is shown in
Fig. 8.

15

10

5 r/
0 1 1 1 1
20 40 60 80
t(s)

FIG. 5. The temporal evolution of the Newtonian component of the total average
stress, 7, for shear rates = 2.7 s, 405", 595", and 6.7 s~". The units
for Ty are pascals. The curves for these shear rates are given, respectively, by the
colors purple, yellow, red, and blue.
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FIG. 6. The temporal evolution of the polymeric component of the total average

stress, 7p, for shear rates 7 =2.7s~", 4.0s™", 5.95',and 6.7 s~". The curves
for these shear rates are given, respectively, by the colors purple, yellow, red, and
40 60 80

blue.
80 T
60
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20 [\/
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FIG. 7. The temporal evolution of the total average stress, Ty, for shear rates §
=27s 1,405, 595" and 6.7 s~". The curves for these shear rates are
given, respectively, by the colors purple, yellow, red, and blue.

Pa)

T T
L

L L

In Fig. 9, the evolution of the total stress T'v normalized with
Newtonian stress T is shown. We reiterate that Ty is the stress
obtained from a purely Newtonian flow for which = 1. It is impor-
tant to note that T, which we have used for normalization, has
been obtained for exactly the same strain rate as in the correspond-
ing non-Newtonian case. For example, in Fig. 9, the plot for Ty for
# = 6.7 5" has been normalized with the stress Ty obtained from a
Newtonian simulation for which j = 6.7 s™". Tt is clear from Fig. 9
that in all cases, the total stress Ty is significantly larger than T.
Furthermore, for y = 6.7 s Ty s nearly an order of magnitude

40 50 60 70 8 90
t(s)

FIG. 8. The temporal evolution of the total average stress, Ty, for the shear rate
7 = 6.7 s~" during the time period for which the flow is in a quasi-periodic
steady-state.
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20 40 60 80
t(s)
FIG. 9. The temporal evolution of the normalized average stress, Ty/Ty, for shear

rates =2.7s',4.0s~",595~",and 6.7 s~ . The curves for these shear rates
are given, respectively, by the colors purple, yellow, red, and blue.

1.35
7n/Ty =0.03 4+ 1.1 o
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/G
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A(s7h)

FIG. 10. 7y /Ty for shear rates = 27 7', 40 s7', 59 s7', and 6.7 s~".
The equation of the line fit used is 7x/Ty = 0.029 + 1.1. The coefficient of
determination is R? = 0.9994.

greater than Tn. The dependence of the normalized time-averaged
stresses 7p, Tn, and Ty on j is shown in Figs. 10-12. These results
were obtained by time-averaging during the time period in which the
flows were in a steady-state, as defined above. It is evident and some-
what surprising that all these normalized stresses depend almost
exactly linearly on .

As mentioned earlier, it was observed that for y = 5.9 s ' and
y =67 s7!, the total stress Ty exhibited an oscillatory behavior for
t greater than ~30 s. To determine the frequency content of these

9
Tp /Ty = 0.59 4 + 4.4 _ -0

gl 7p/TN v+ - |
& -
I e ]
I _--

6 cg 1

5 . .

2 3 4 5 6 7

A(s7h)

FIG. 11. 7p/Ty for shear rates y = 2.7 s~1, 40 s~!, 59 57, and 6.7 s~
The equation of the line fit used is 7p/Ty = 0.59y + 4.4. The coefficient of
determination is R? = 0.9971.
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FIG. 12. Ty /Ty for shear rates y = 2.7 s=', 40 s™", 59 5™, and 6.7 s~". ' 2 3 4 5 6 7
The equation of the line fit used is Tv/Ty = 0.62j + 5.5. The coefficient of A(s™h)

determination is R? = 0.9982.
mation FIG. 14. The normalized total stress on the rotating plate, Ty/Ty, as a function of

shear rate y from the experiments of Groisman and Steinberg (red) and the current
simulation (blue) for a ramp-up scenario. Shown in the figure is a region of transi-
tion that appears at the lowest shear rates for both simulations and experiments.

oscillations, the Fourier spectral densities of the time series in these In the simulations, the shear rate j = 0.021¢ which corresponds to Q = 0.005 52t.

two cases were computed, and the results are shown in Fig. 13. These
results show that in the case of y = 6.7 57", the spectral density shows
a clear maximum at ~10~" Hz. There also appears to be a secondary
peak at ~2 x 10~" Hz, which we interpret as the harmonic of the
dominant frequency. For = 5.9 s, a maximum in the spectral
density is apparent at ~6 x 10™> Hz. It is important to note that in the
experiments of Groisman and Steinberg,’ the spectral density of the
velocity fluctuations also exhibited spectral density peaks for these
shear rates in good agreement with our results. Consistent with our
results, they also observed that the peak frequency increased as the
shear rate increased.

Groisman and Steinberg' also performed a ramp-up experi-
ment similar to our simulation. However, as far as we are aware, they
did not specify the rate of increase of the rotation rate. These exper-
iments also exhibit a transition period as well as a region in which
the stress varies linearly with . As shown in Fig. 14, we observe a
very close agreement between the slope of the linear region in our
simulation and those of the experiments. However, we observe some
differences, for example, the behavior of the experiments vs simula-
tion is different in the transition region, and the magnitude of the

B. Ramp-up simulation stress ratio is 30% higher in the experiments. In Fig. 15, the evo-

We have also performed a so-called ramp-up simulation. In this lution of stress components 7p and 7y is shown. It is evident from
simulation, the rotation rate of the top plate was allowed to vary lin- these results, as in the case of the constant Q simulations, that the
early in time as 2 = 0.005 52¢. In Fig. 14, the results of this simulation polymeric component is the dominant component of the total stress
are shown in a plot of the normalized total stress T vs the shear on the top plate.
rate j. It is evident from these results that there is a transition period
during which the stress rises rapidly. Subsequently, for y > 3 s C. Flow visualizations

a linear variation of the stress as a function of y was observed. Lo
Insight into the nature of the stresses on the top plate can be

gained by visualizing their spatial distribution as well as the rela-
tionship of these stresses to the velocity field. In order to do this,

102 " " we have chosen to examine the case in which j = 6.7 s7'. All the
w0
o 10 80
~
s
S sol
a 2 i
g 2 40t
=
201
10 : :
102 107" 10° 0 : : : : :
F(H2) 0 1 2 3 4 5 6 7
Y(s™h)
FIG. 13. The power spectral density (PSD) of Ty for shear rates = 5.9 s~", and _ . .
6.7 s~". The curves for these shear rates are given, respectively, by the colors red FIG. 15. The evolution of the polymeric stress component zp (blue) and Newtonian
and blue. stress component 7y (red) on the rotating plate in the ramp-up scenario.
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FIG. 16. Contour plot of the Newtonian stress, afj,, on the rotating plate for j

= 6.7 s~". These results were obtained from a random snapshot taken in the
steady-state from simulations performed using a constant Q.

representations of the flow and the stresses shown in this subsection
were obtained at the same time instant.

We note that the only component of the stress tensor that con-
tributes to the torque on the top plate is 0xp, the instantaneous stress
on the top plate in the 8 direction. In Figs. 16 and 17, we show the
distribution of the Newtonian and polymeric components of this
stress, oy and o%y. At the instant shown, the flow was in an oscil-
latory steady-state, as mentioned earlier. We note that ol exhibits
a maximum value at the very edge of the top plate. This contrasts
significantly with the distribution of the polymeric stress, a*p, which
exhibits, surprisingly, its maximum value at a radius smaller than
that of the top plate itself. It should be recalled that o%, is the major
contributor to the torque on the top plate. In Fig. 18, we show the
distribution of tr(C) on the top plate, which exhibits a maximum
at the edge of the top plate similar to the distribution shown for

0 05y(Pa)

FIG. 17. Contour plot of the polymeric stress, a¥,, on the rotating plate for

= 6.7 s7'. These results were obtained from a random snapshot taken in the
steady-state from simulations performed using a constant Q.
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FIG. 18. Contour plot of the tr(C) on the rotating plate for y = 6.7 s~". These
results were obtained from a random snapshot taken in the steady-state from
simulations performed using a constant Q.

oh. Since /tr(C) can be thought of as a measure of the polymeric
length, it is interesting to note that the torque on the top plate is pri-
marily due to stresses (e.g., o’y) that do not correspond to regions
where the polymers are maximally extended.

It is important to gain some insight into the relationship
between the stresses on the rotating plate and the underlying flow
kinematics. Before proceeding with this discussion, it is important
to keep in mind that the main flow in this system is due to the rota-
tion of the top plate that generates, due to the no-slip condition, a
velocity field ug whose time averaged value is ug(x,7). In Fig. 19,
a typical snapshot of the velocity field in a plane containing the x
axis, which will also be referred to as the side view of the flow, is
shown. We note that only the u, and 4, components of the veloc-
ity vectors are shown in this plane. There are three features of the
flow that are of particular importance. The first is the existence of
a secondary flow, which manifests itself as a toroidal vortex, a vor-
tex that extends circumferentially around the container. Although
this is an instantaneous snapshot of the flow, the toroidal vortex is

T — arts

10

Uy <0 — Toroidal vortex center

FIG. 19. Side view (x-y plane) of the velocity vector field for = 6.7 s~'. The
velocity field has been obtained at an arbitrary instant of time when the flow
attained a statistically steady-state. Here, we indicate the position of the toroidal
vortex and also a region associated with the vortex that gives rise to a negative
vertical velocity.
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5500 T — axris

=) Toroidal vortex center

* tr(C)

FIG. 20. Side view (x-y plane) of the contours of tr(C) overlaid on the velocity
vector field at = 6.7 s~'. The velocity field and tr(C) have been obtained at an
arbitrary instant of time when the flow attained a statistically steady-state.

along-lasting coherent structure, which appears in every simulation
we have performed in this work. Second, we point out in this figure
the regions near the top plate in which u, <0, denoting that fluid par-
ticles are descending from the top plate into the interior of the flow.
It is evident from the vector field that this region of descending fluid
is directly correlated with the flow field associated with the toroidal
vortex. Finally, it is clear that the flow field lacks symmetry in the
xy-plane.

In Fig. 20, we show the contours of tr(C) overlaid upon the
velocity field shown in the previous figure. It is clear from this
that the maximum value of tr(C) occurs at the edge of the rotat-
ing plate. Since the highest velocity gradients occur at the edge of
the plate, we would expect the highest rate of polymeric stretch-
ing to occur there. It is, therefore, reasonable to expect tr(C) to be
maximal in this region. In Fig. 21, we plot the stress o’y overlaid
upon the velocity vector field. It is evident that the maximum value

84 T — axis

76 —=0 Toroidal vortex center
68

61

53

45

11

19
27 Ufe(Pa)

FIG. 21. Side view (x-y plane) of the contours of 6%, overlaid on the velocity vector

field at = 6.7 s~". The velocity field and afe have been obtained at an arbitrary
instant of time when the flow attained a statistically steady-state.
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of a5 occurs near the rotating plate and that these regions of high
aby are highly correlated with regions of the flow where fluid parti-
cles are descending into the interior. From a heuristic point of view,
we can envision that in this region of downward flow, a polymer
molecule would be stretched in the 8-direction. This is directly due
to the existence of the mean velocity uy(x, r) since we can envision
that the end of the molecule closer to the top plate moves in the 8-
direction faster than the end of the molecule farther from the top
plate. This appears to explain the observation that ¢%, exhibits a max-
imum value at a radius smaller than R;, as previously indicated in
Fig. (17).

V. DISCUSSION

The experiments of Groisman and Steinberg' uncovered a
new phenomenon called elastic turbulence, which appeared in the
swirling flow of a dilute polymer solution driven by a rotating plate.
In these experiments, the gross properties of the flow could be char-
acterized by measuring the torque on the rotating plate. This torque
was found in the experiments to be approximately one order of
magnitude greater than the corresponding torque in the flow of a
Newtonian fluid. In the current work, we have employed a DNS of
the exact same flow with comparable fluid properties and geome-
try. The FENE-P model was used as a theoretical basis for describing
the polymer dynamics. The complete model was implemented using
the ANSYS-FLUENT platform, and the log-conformation model
was used to overcome the high Weissenberg number problem. DNS
methods such as the one used in this study can provide detailed
information that would be difficult to obtain experimentally. For
example, simulations can determine the entire velocity field in space
time, the internal stresses in the fluid, and the stresses on bounding
surfaces. The relationship between the velocity field and the stress
field can be also investigated. The opportunity to utilize the simula-
tion methods described herein to more deeply investigate this flow
provided the primary motivation for this work.

Two kinds of simulations were performed, namely, a series of
constant-Q) simulations and a ramp-up simulation. In the constant-
Q simulations, it was found that the major contributor to the torque
was the polymeric stress 7p that was typically about 5 times greater
than the Newtonian stress 7y. In addition, quasi-periodic oscilla-
tions of the torque dominated by one frequency were found for the
highest Q) values. The frequency content of these oscillations was in
reasonable agreement with the experiments of Groisman and Stein-
berg.' In the ramp-up simulation, we observed a transient period in
which the stress rose rapidly followed by a period where the normal-
ized total stress increased linearly with j. The rate at which the total
normalized stress increased was found to be in good agreement with
the experiments.

Flow visualizations were used to gain insight into the relation-
ship between the flow kinematics and the stress field. The stress
distribution on the rotating plate as well as the side view of the veloc-
ity field was obtained simultaneously. The side view of the velocity
field revealed the existence of a toroidal vortex, which exists in the
vicinity of the outer edge of the rotating plate. It was found that
tr(C) is maximal at the edge of the rotating plate, whereas the poly-
meric stress maximum was found closer to the center of the plate. It
was argued that the position of maximum polymeric stress could be
related directly to a downward flow caused by the toroidal vortex.
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While we discussed the similarities between our simulations
and experiments, it is important to point out several differences
between them. In particular, while the experiments achieved a
chaotic flow state both in space and time, it is unclear that our sim-
ulations have achieved a similar state. However, the simulated flow
did exhibit quasi-periodic behavior in time and also spatial asym-
metry, which are some of the characteristics of turbulence. On the
other hand, if the simulated flow was of a turbulent nature, it is
most likely not a strong turbulence. Instead, it seems to us that
the flow achieved a state that could be transitional between lami-
nar and turbulent states. We should also point out other differences.
In the simulations, the total stress on the top plate was found to
be somewhat smaller than that found in the experiments. In addi-
tion, the frequency distribution of the stress fluctuations was found
not to be as broad as reported in the experiments. The resolution
of many of these issues will certainly require a greater experimental
effort. More specifically, a detailed mapping of the internal velocity
field will be especially illuminating. For example, it will be impor-
tant to determine if the toroidal vortex found in our simulations,
which was largely responsible for the particular characteristics of
the stress distribution on the top plate, actually exists in the real
flow.

ACKNOWLEDGMENTS

R.A.H. received support from the National Science Founda-
tion under Grant No. 1904953. The authors also acknowledge useful
discussions with K. R. Rajagopal.

APPENDIX: LIST OF SIMULATION PARAMETERS

TABLE II. A complete list of all simulations performed in this work is shown below.
For each run, we list the angular velocity of the plate, €, the shear rate,  ( s, the
Reynolds number, Re, and the Weissenberg number, Wi.

Run no QG h y (s Re Wi

1 0.263 158 1 1 34

2 0.315789 1.2 1.2 4.08
3 0.368421 14 1.4 4.76
4 0.421053 1.6 1.6 5.44
5 0.473 684 1.8 1.8 6.12
6 0.526316 2 2 6.8

7 0.578 947 2.2 2.2 7.48
8 0.631579 2.4 2.4 8.16
9 0.684 211 2.6 2.6 8.84
10 0.736 842 2.8 2.8 9.52
11 0.789474 3 3 10.2

12 0.842 105 3.2 3.2 10.88
13 0.894 737 34 3.4 11.56
14 0.947 368 3.6 3.6 12.24
15 1 3.8 3.8 12.92
16 1.052632 4 4 13.6

17 1.473 684 5.6 5.6 19.04
18 1.763 158 6.7 6.7 22.78
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