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In this paper, we introduce an algorithm for computing p-adic integrals on bad
reduction hyperelliptic curves. For bad reduction curves, there are two notions of p-adic
integration: Berkovich—Coleman integrals, which can be performed locally, and abelian
integrals with desirable number-theoretic properties. By covering a bad reduction
hyperelliptic curve with basic wide-open sets, we reduce the computation of Berkovich-
Coleman integrals to the known algorithms on good reduction hyperelliptic curves.
These are due to Balakrishnan, Bradshaw, and Kedlaya and to Balakrishnan and Besser
for regular and meromorphic 1-forms, respectively. We then employ tropical geometric
techniques due to the 1st-named author with Rabinoff and Zureick-Brown to convert
the Berkovich—-Coleman integrals into abelian integrals. We provide examples of our

algorithm, verifying that certain abelian integrals between torsion points vanish.

1 Introduction

The theory of p-adic line integrals on analytic curves was introduced by Coleman [20,
21] to solve problems in number theory. In certain circumstances, it produces locally
analytic functions that vanish on rational and torsion points on an algebraic curve

X. These functions were originally defined by composing an Abel-Jacobi map ¢ on the
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2 E.Katz and E. Kaya
analytification of X with the p-adic logarithm on the Jacobian J of X:

l Log .
X(Cp) — J(Cp) —— Lie(J).

Because the Lie(J) is torsion-free, the torsion points of J(Cp) are necessarily taken to 0
on Lie(J). In the Chabauty-Coleman method [32], under conditions on the rank of J(Q),
the image of J(Q) lies in a proper linear subspace of Lie(J). In either case, one hopes to
find a linear function on Lie(J) whose pullback to the analytification X2 vanishes on
the points of interest. It was Coleman'’s key insight that, for good reduction curves, the
function can be computed locally on X2 as an integral f, = [ for v € Q' (X) = Lie(J)".
To define such an integral, one integrates w on each residue disc and uses the Dwork
principle, analytic continuation by Frobenius, to match the integrals between residue
discs. Specifically, on an open affinoid subset U C X2", one can find a lift of Frobenius
¢: U — U. Then, f,, is determined up to a global constant by its being a local primitive

of w, that is, df,, = w and by its obeying a change-of-variables formula with respect

to ¢:
R d[R)
/ *w =/ w.
S #(S)

The function f,, is independent of the choice of ¢. There are practical algorithms to

compute f,, when p is odd, and they can be summarized as follows:

e Algorithms on odd degree hyperelliptic curves were developed in Balakrish-
nan-Bradshaw-Kedlaya [3]. By drawing on Kedlaya's algorithm for comput-
ing the zeta function of hyperelliptic curves [26], one is able to choose an
explicit lift of Frobenius and write down its action on Monsky—Washnitzer
cohomology, a form of de Rham cohomology on affinoid spaces. One con-
siders HcliR(U)_, the odd subspace of HéR(U), that is, the (—1)-eigenspace of
the hyperelliptic involution. Given a basis w;,...,w; of HéR(U)*, one writes
¢*w; = df; + > ; Myjw; for constants M;; and meromorphic functions f;. From
knowledge of M;;, f;, and the action of ¢ on points R and S, one is able to
solve for ff w;. We also note that Best [11] has improved the complexity of
the integration algorithms introduced in [3].

e The paper [3] came with certain restrictions. One is only able to integrate
meromorphic 1-forms whose poles are in residue discs around Weierstrass
points. However, for some applications (e.g., computation of p-adic heights

on curves as in [18]), it is necessary to perform more general integrals. Such
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p-adic Integration on Bad Reduction Hyperelliptic Curves 3

an algorithm was provided in Balakrishnan-Besser [2] based on the theory of
local symbols [8].

e Another restriction in [3] is that the authors only deal with odd degree mod-
els; this restriction is inherited from [26] where it is used out of convenience.
Building on [25], in which Harrison adapted Kedlaya's algorithm to even
degree case, Balakrishnan [1] extended the integration algorithms in [3] to
even degree models of hyperelliptic curves.

e All the methods above only deal with hyperelliptic curves. Algorithms to
carry out integration on more general curves were developed in Balakrish-
nan-Tuitman [15] based on the work of Tuitman [36, 37] that generalizes
Kedlaya's algorithm to this setting. We note that these algorithms work only
for meromorphic 1-forms that are holomorphic away from the ramification

locus.

The theory of p-adic integration is also useful in the bad reduction case as was
demonstrated in the work of Stoll [34] and of the 1st-named author with Rabinoff and
Zureick-Brown [27]. Here, to bound the number of rational or torsion points independent
of the geometry of the curve, one is forced to work with primes of bad reduction.
In addition, there are some curves X/Q for which the upper bound on X(Q) coming
from Chabauty-Coleman method is achieved at primes of bad reduction (see, e.g.,
[29, Example 5.1]). Unfortunately, there are two different notions of p-adic integration:
the abelian integral arising from the p-adic logarithm and the Berkovich-Coleman
[7, 17] integral performed locally on the curve; see Section 3. It is the abelian integral
that is needed for applications, and it is the Berkovich-Coleman integral that can be
computed. Specifically, to compute the Berkovich-Coleman integral along a path, one
can cover the curve by basic wide opens, certain analytic open sets, each of which
can be embedded into a good reduction curve. The path is broken into segments, each
lying in a basic wide open. By picking a lift of Frobenius on each good reduction curve,
and performing the Berkovich-Coleman integral there, one can compute the integral
along each segment. This integral, however, may disagree with the abelian integral,
and indeed, it may be path dependent. These issues arise because the two notions of
integral differ on annuli. Indeed, the 1-form « develops poles when extended to the
good reduction curve and one is forced to integrate logarithmic differentials of the form
dt/t. To perform such an integral, one must pick a branch of p-adic logarithm. The
ambiguity of this choice leads to the two notions of p-adic integration: a consistent

choice of p-adic logarithm gives the Berkovich-Coleman integral; an integration method
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4 E.Katz and E. Kaya

to force path independence gives the abelian integral. Fortunately, given the Berkovich—
Coleman integral and some information about the reduction type of the curve, one can
determine the abelian integral. Here, to compare the two integration theories, we follow
[27] which makes use of the tropical Abel-Jacobi map. There are other approaches: Stoll
[34] made a local analysis of the Abel-Jacobi map; Besser and Zerbes [16] made use of
p-adic height pairings [9].

While p-adic integration on bad reduction curves has been used to prove
theoretical results, the only available algorithms and examples have been on the Tate
curve. Having algorithms to compute abelian integrals allows one to carry out the
method of Chabauty-Coleman [32] at primes of bad reduction. Moreover, additional
refinements of such algorithms allow one to compute p-adic height pairings on curves
[9] and p-adic regulators in K-theory [10], again at primes of bad reduction. The
purpose of this paper is to provide an algorithm for computing abelian integrals on
bad reduction hyperelliptic curves for p > 2.

Our algorithm works by first computing the Berkovich-Coleman integral 5[ w
and then correcting it to an abelian integral. We consider a hyperelliptic curve
interpreted as a map 7 : X — P! given by y? = f(x) for a polynomial f(x) defined over a
finite extension of Q, for p an odd prime. By examining the roots of f(x) and making use
of a Newton polygon argument, we are able to cover P13 by open subspaces {U;} such
that for each U; one can find a good reduction hyperelliptic curve X; into which 7~ (U;)
embeds as the complement of finitely many closed discs. In the process of finding the
covering {7 ~1(U;)}, we determine the dual graph I' of the special fiber of a semistable
model of X and therefore its tropicalization.

We expand w as a power series in certain meromorphic 1-forms on 5{1». We pick a
set of meromorphic 1-forms on 5{1- that descend to a basis of the odd part of the de Rham
cohomology of 7 ~1(U;). Then, by a pole-reduction argument similar to work of Tuitman
[36, 37], we rewrite the terms in the power series as the sum of an exact form and a
linear combination of 1-forms in our basis. Then, one is able to perform the integral
using the techniques of [1-3]. This allows us to integrate w between points of 71 (U)).

The Berkovich-Coleman integral is path dependent but invariant under fixed
endpoint homotopy. The homotopy class of a path in X?" can be specified by its
endpoints together with a path in I' between the tropicalizations of the endpoints.
From our knowledge of the intersections of the U;’s and thus of the dual graph, we are
able to perform the Berkovich-Coleman integral along any path in X?". In particular,
we can integrate 1-forms along closed paths to determine the Berkovich—-Coleman

periods. Using them, together with a description of the tropical Abel-Jacobi map, we
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p-adic Integration on Bad Reduction Hyperelliptic Curves 5

can correct the Berkovich—-Coleman integral along a path to the abelian integral between
its endpoints.

Our algorithm works in great generality; but implementing it in a computer
algebra system seems out of reach at present, even if we take the base field to be Op.

There are two main reasons for this:

e Sage includes implementations of the integration algorithms in [1-3] when
the base field is Q,. However, the hyperelliptic curves f(i above are generally
defined over non-trivial extensions of Q,.

e In our approach, it might be necessary to work with several extensions
of Op at time same time. In Sage, Eisenstein and unramified extensions
are implemented; however, neither conversion between these extensions
nor general extensions are available. Unfortunately, Magma has the same

limitation.

We finally note that, when these obstacles are overcome, it should be possible to
implement our algorithm in Sage.

The paper is organized as follows. In Section 2, we introduce some notation.
Section 3 recalls Berkovich-Coleman and abelian integration and gives a formula for
converting between them. Section 4 discusses coverings of P! and of hyperelliptic
curves. In Section 5, we describe how to integrate a particular basis of 1-forms on
hyperelliptic basic wide opens. Section 6 provides a pole reduction argument that allows
us to rewrite a 1-form with poles as the sum of an exact form and a linear combination
of our basis elements. The 1-forms on the hyperelliptic curve are expanded as a power
series on hyperelliptic basic wide opens in Section 7. We compute Berkovich-Coleman
integrals on paths and convert them into abelian integrals in Section 8. Section 9
provides a number of examples and verifies the vanishing of certain abelian integrals

between torsion points.

2 Preliminaries

Let p be an odd prime. Let C,, denote the completion of an algebraic closure of Q,. Let v,,
be the valuation on C,, normalized such that v, (p) = 1. It corresponds to the absolute
value | - [ where lall, = p~»@_ The field Fp, the algebraic closure of F_, is the residue
field of C,. Let K be a complete field of finite residue degree over Q, with residue field
K. Unless otherwise noted, K will be a finite extension of Qp. Write R for its valuation

ring.
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6 E.Katz and E. Kaya
2.1 p-adic analysis

In general, we will use the language of Coleman [22] but will freely invoke Berkovich
spaces when convenient. See [27] for more details.

We write

B(a,r) {ze P ||z —al, <1},

B(co,T)

{z e P | |1/z]|, < r}.

We write B(a, r) for those sets when we replace the strict inequality with the nonstrict
one.

Analytic spaces are built by gluing affinoids. Given an affinoid of good reduction
V, let red: V — Vy be its reduction map. The preimage of a closed point under red is
a residue disc. In the case of P22, the residue disc about a € AI(Cp) is B(a, 1) while
the residue disc about oo is B(co,1). A map ¢: V — V is called a lift of Frobenius if it

induces the Frobenius map on V.

Definition 2.2. A wide open U is a rigid analytic space isomorphic to the complement

in a connected smooth complete curve X of finitely many closed discs.

Definition 2.3. A basic wide open U is a rigid analytic space isomorphic to the
complement in a connected good reduction complete curve of finitely many closed discs

each contained in a distinct residue disc.

Two types of basic wide opens will be used in this paper: rational and
hyperelliptic. A basic wide open is called rational (resp. hyperelliptic) if it lies in the
rigid analytic space associated to P! (resp. a hyperelliptic curve).

We have the following elementary examples of (rational) basic wide opens. A
projective line with one closed disc removed is called an open disc, and such a space
is isomorphic to B(0, 1), the standard open disc. Similarly, a projective line with two
disjoint closed discs removed is called an open annulus; such a space is isomorphic to

a standard open annulus, that is, a space of the form
A(r,)={zeA"™ |r<|z|, <1}, r<1

Definition 2.4. An underlying affinoid of a basic wide open U is an affinoid
subdomain V C U such that the connected components of U \ V are annuli and are in

bijective correspondence with the ends of U. These annuli are called boundary annuli.
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p-adic Integration on Bad Reduction Hyperelliptic Curves 7

Note that underlying affinoids are necessarily of good reduction. We will need
to consider underlying affinoids within rational basic wide opens. Let U be an rational
basic wide open. For each closed disc D;, we may pick a slightly larger open disc D (still
contained in a residue disc) containing D;. Then V = U \ (U;D;) is an underlying affinoid
[22, Corollary 3.5a] and U \ V is a finite union of annuli.

We recall some notions of analytic curves and their skeletons [12]. Let X
be a smooth, proper, geometrically connected K-curve. Let X?" denote the Berkovich
analytification of X [6]. Attached to a split semistable R-model X of X is a metric graph
'y called its skeleton. There is a retraction r: X*" — I'y. The vertices of I'y correspond
bijectively to the irreducible components of the special fiber of X. Any curve admits
a split semistable model (and hence a skeleton) after making a finite extension of the
ground field K.

2.5 Differential forms

Let X/K be a curve of genus g.

Definition 2.6. A meromorphic 1-form on X over K is said to be of the 1st kind if it is
holomorphic, of the 2nd kind if it has residue 0 at every point, and of the 3rd kind if it

is regular, except possibly for simple poles with integer residues.

The exact differentials, that is, differentials of rational functions, are of the 2nd
kind. The K-vector space of differentials of the 2nd kind modulo exact differentials is

canonically isomorphic to H CliR(X /K), the 1st algebraic de Rham cohomology of X/K.

2.7 Hyperelliptic curves

We will consider hyperelliptic curves defined by y? = f(x), for a polynomial f(x) with
distinct roots. The curve has a compactification X with a degree 2 map n: X — P!, If
f(x) is of degree d, then X is of genus L%J.

The curve X has a hyperelliptic involution extending w(x, y) = (x, —y). The fixed
points of the involution are the Weierstrass points. If d is even, then there are two
distinct points lying over oo, and these points are non-Weierstrass; if d is odd, then
there is a single point lying over oo, and this point is Weierstrass.

On X, we say that a residue disc (with respect to x) is said to be Weierstrass

(resp. non-Weierstrass) if it corresponds to a Weierstrass (resp. non-Weierstrass)
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8 E.Katz and E. Kaya

point. In the odd degree case, we also distinguish between finite and infinite Weier-
strass residue discs, which, respectively, correspond to finite and infinite Weierstrass

points.

3 Berkovich-Coleman and Abelian Integration

We will define Berkovich-Coleman and abelian integration and give a formula for

passing between them.

3.1 p-adic integration theories

In this subsection, we review p-adic integration theories, referring the reader to [27] for
details.

Let X be a smooth C,-analytic space, and let P(X) be the set of paths
y:[0,1] — X with ends in X(Cp). Let Q! (X) be the space of holomorphic 1-forms on X.

Definition 3.2. An integration theory on X is a map [: P(X) x Q}(X) — C, satisfying
the following:
(1) If U C X is an open subdomain isomorphic to an open polydisc and w|; = df
with f analytic on U, then fy o= f(y(1)) —f(y©)) forall y:[0,1] - U.
(2) fy o only depends on the fixed endpoint homotopy class of y.
(3) If y’ € P(X) and y’'(0) = y(1), then

where y’ x v is the concatenation.

4) v~ fy w is linear in o for fixed y.

One such integration theory is Berkovich-Coleman integration Bcf which spec-
ifies a unique integral by fixing the integral on annuli and mandating a change-of-

variables formula. Here, one fixes a branch of p-adic logarithm, Log, and requires

(1) if X = G}’ = Spec(C,|t, t~11)2%, then

BCpx dt
/ — = Log(x);
1t

120 Iudy 62 UO Jasn DXV - AUSIAIUN 81BIS OIUO A L Ly¥6G/2.ZEB_BULUIWIEGOL 0 |/I0P/S[OIME-80UBAPE/UIWI/LOY"ANO"0ILISPEDE//:SARY WO.) PAPEOIUMOQ



p-adic Integration on Bad Reduction Hyperelliptic Curves 9

(2) if h: X — Y is a morphism, w € Q!(Y) and y € P(X), then

BC BC
/ h*ow = / .
14 h(y)

Unfortunately, the Berkovich-Coleman integral is generally path-dependent: Bcfy
depends on y not just on its endpoints. However, when X is simply-connected, Bny is
path-independent by the homotopy invariance; in this case, we simply write B¢[Y = Bny
for any path y from x to y.

For curves, uniqueness follows from covering the curve by basic wide opens
and annuli. A path can be rewritten as a concatenation of paths, each staying in an
element of the covering. The integral on basic wide opens is determined by the change-
of-variables formula using a lift of Frobenius. The integral on annuli is determined by
writing the restriction of the function as a two-sided power series and integrating term-

by-term (using Log(t) to antidifferentiate dt/t).

Remark 3.3. The Berkovich-Coleman integral is local in the sense that if U C X is an
analytic subdomain and y: [0, 1] — U is a path in U, the integral Bny o can be computed

from U, y, and o|y.

The Berkovich-Coleman integration has a useful characterization on basic wide
opens [17, Section 2]. On a basic wide open U, the Berkovich-Coleman integral is
univalent: given w € Q! (U), there is a locally analytic function f,, unique up to a global

constant such that
BC
/ o =f,(y()—f,(y0)).
y

We describe such f, . Fix a basic wide open U and w € Q!(U).

Let V be an underlying affinoid of U and let A denote the set of annuli which are
the connected components of U \ V. A Frobenius neighborhood of V in U is a pair
consisting of a basic wide open W with V ¢ W C U and a morphism ¢: W — U
restricting to a lift of Frobenius on V.

For an open subdomain U’ C U, let

Ao (U) = A(U){Log(f) | f € AWH™ N,
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10 E.Xatz and E. Kaya

where A(U’) is the set of analytic functions on U’. Write £(U) for locally analytic

functions on U. Note that

Apog(E) C L(E) for each E € A.

Let P(T) be a polynomial without roots-of-unity roots such that (after possibly shrinking
W to ensure P(¢*) is well-defined) P(¢*) annihilates (2! (U)|y,)/dA(W). Such a polyno-

mial exists by the Weil conjectures for curves.

Lemma 3.4. ([17, Proposition 2.4.1]) The locally analytic function f, € L(U) is

characterized up to addition of a global constant by the following properties:

(1) f,lg € Arog(E) for each E € A,
(2) df, =, and
(3) P(™)f,lw € AW).

Functions that satisfy the properties of the above lemma are said to be Coleman
analytic or to be a Coleman primitive of w.
The following result which interchanges limits and integration follows from

applying the characterization to limf, .

Proposition 3.5. For a basic wide open U and an underlying affinoid V in U, let A,
W and ¢ be as above. If {fwi} be a sequence of locally uniformly convergent Coleman

analytic functions on U such that

1. {fwi |z} converges uniformly in Apog(E) for each E € A.
2. {w;} converges uniformly in Ql(U), and

3. {P(¢*)f,,lw} converges uniformly on W.

Then the locally analytic limit limf,, is a Coleman primitive of limw; on U.

Another approach to defining a p-adic integration theory on a curve is via the
p-adic Lie theory of its Jacobian. This was done in great generality by Zarhin [38] and
Colmez [23].

Let A be an abelian variety over C,. Recall that every 1-form on A is translation-

invariant. In other words,

QL) = QL _(A).

mv
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p-adic Integration on Bad Reduction Hyperelliptic Curves 11

The abelian logarithm on A is the unique homomorphism of C,-Lie groups
logac,): A(C,) — Lie(4)
whose linearization
dlogA(Cp): Lie(A) — Lie(Lie(A)) = Lie(A)

is the identity map. See [38] for the existence and uniqueness of log,c,. For x € A(C
and w € Q!(4), we define

p)

Ab/OX w = <10gA(Cp) (%), w> '

where (-, ) is the pairing between Lie(4) and Q' (A). For x,y € A(Cp), we set
Abry Ab,y Ab,x
/ 0= / 0 / .
b'e 0 0
We call A% the abelian integral on A.

The abelian logarithm and the abelian integral are functorial under homomor-

phisms of abelian varieties: if h: A — B is a homomorphism, then

(1) dhologyc,) =10gpc,) ° h

(2) forwe Q'(B)andx,y e A(Cp),

Abry Ab,h(y)
h*w = / .
X h(x)

We may define an integration theory on a smooth, proper, connected curve X
over G, by pulling back the abelian integral from its Jacobian J by the Abel-Jacobi map
t: X — J with respect to a base-point x, € X(Cp). This integral depends only on the

endpoints of a path y, but it is not local.

Remark 3.6. Because Lie(J) is torsion free, if x, y are points in X(Cp) such that [y] — [x]

represents a torsion point of J(Cp), then

Abry
/ w =0 forall w € Q'(X).
X
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12 E.Xatz and E. Kaya
3.7 Integral comparison

Following [27], we can compare the Berkovich-Coleman and abelian integrals. Let A be
an abelian variety over C, and let 7: E?" — A" be the topological universal cover of

A?" We have the Raynaud uniformization cross,

Tan

M —- Ean T Aan

Ban

with exact row and column where M’ is canonically isomorphic to 7, (A%") = H, (A%"; Z),
T is a torus and B is an abelian variety with good reduction. Let M be the character
lattice of T, so T = Spec(Cp[M]).

Let N = Hom(M, Z). There is a surjective group homomorphism, the tropical-
ization map trop: E(C,) — No = Hom(M, Q). The restriction of trop to M’ C E(Cp)
is injective, and its image trop(M’) C N is a full-rank lattice in the real vector space
Ny = Hom(M, R). We can define the real torus ¥ = Ny /trop(M’) to be the skeleton of A.
The tropicalization map 7: A?™ — X is defined as the quotient of trop and fits into the

following commutative diagram:

0 M Ea — > A% > 0
:l/trop itrop i/f
0 —— trop(M') —— Ny % 0

The torus X is a deformation retract of A2".
To compare the two integrals, we first define logarithms Loggg, Logy:

E(Cp) — Lie(E). Using the isomorphisms,

Lie(E) = QL (B)*=Ql a)*=ql)*,

mv mv
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p-adic Integration on Bad Reduction Hyperelliptic Curves 13

we define
Loggc: E(C,) — Lie(E) Logay,: E(Cp) — Lie(E)
BCprx Abpm(x)
Xr—>[a)r—>/a)} X a)l—)/ .
0 0
Proposition 3.8. ([27, Proposition 3.16]) The difference between the two logarithms
Logpc — Logay: E(C,) — Lie(E)

factors as

E(C,) P Ny L > Lie(®)

p)
where L is a linear map.

Using the identification H,;(A®™%;Z) = M <= trop(M’) and the inclusion
trop(M’) C N, we have the following:

Lemma 3.9. The map L is characterized by the property that for any C € H, (4*"; Z),

BC
L(C) = |:a)r—> /a)],
y
where y is any loop in P(A?") whose homology class is equal to C.

Proof. Because the abelian logarithm is defined on A(Cp) (not just its universal cover
E(Cp)), we see that Log,;, (M') = 0. Consequently, L(C) = Loggq(7 (1)) where y is the lift
of y in E?" based at the identity element in Ean(Cp). ]

3.10 Tropical integration and the comparison formula

We will need to pull back the comparison between integrals to a curve X via its Abel-
Jacobi map ¢: X — J. To do so, we will make use of the tropical Abel-Jacobi map which
was described using tropical integration by Mikhalkin-Zharkov [33] (see also [13, Section
3]) together with some results of Baker—-Rabinoff [13]. The statement of the comparison

result is different from that given in [27].
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14 E.Xatz and E. Kaya

Let I" be a finite connected graph (usually taken to be a graph structure on the
skeleton of a curve X?"). We will parameterize each oriented edge e = vw by [0, 1] using
the coordinate t such that v corresponds to t = 0 and w corresponds to ¢t = 1. By flipping
the orientation of the edge, we change the parameterization by t' = 1 — t. We take each
edge of T" to be of length 1.

Definition 3.11. A tropical 1-form on I" is a function a: E’(I‘) — R from the set of

directed edges to the real numbers such that

(1) a(e) = —a(e) where e is e with the reversed orientation, and

(2) a satisfies the harmonicity condition: for each v € V(I'),

Z a(e) =0,

where the sum is over edges adjacent to v directed away from v.

Denote the space of tropical 1-forms on I' by Qtlmp(r).

To an oriented edge e = vw of T, let 5, be the function E‘(F) — R that is 0 away
from e and takes the value 1 on e with the given orientation (and —1 on €). For a cycle
C=>.a.ecH (;R), define

Ne = Z Aele-
e

It is easily seen that 7, is a tropical 1-form.
Given a path y specified as a sequence of directed edges y = e, e, ...¢e,, we define

the tropical integral of a tropical 1-form 5 on y by

t Ja
/ ni= ) ne).
4 i=1

Moreover, we may extend the tropical integral to paths between points on I'. To a path

between points p and g contained in an edge e, we define

trq
/ n:=n(e)q—p),
p

where we identify e with [0, 1] by use of the orientation on e. Then, we extend tropical

integration to arbitrary paths by additivity of integrals under concatenation of paths.
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p-adic Integration on Bad Reduction Hyperelliptic Curves 15
For a closed path y, this integral is seen to only depend on [y] € H;(T;R).
Therefore, tropical integration gives a map

i Hy(T;R) — Qpop (D)

o fom ]

Recall that the cycle pairing (-,-) on H,(I'; R) C C;(T";R) is the pairing induced
from the inner product on C, (I'; R) making the set of edges (oriented in some way) into
an orthonormal basis. In other words, this pairing takes cycles C and D to the length of
their oriented intersection.

The following is easily verified.

Proposition 3.12. Tropical integration is equal to the cycle pairing in the following

sense: for C,D € H,(T'; R),
t
c

This proposition implies that the map p is an isomorphism because the cycle

pairing is nondegenerate on H; (I'; R).

Corollary 3.13. Any cohomology class in H!(T'; R) can be represented by a tropical
1-form: for any ¢ € H'(T"; R), there is a tropical 1-form 5 such that

t
c(D) =/ n
D
for any D € H, (T'; R).

Corollary 3.14. There exists a basis C;,...,C, of H;(I';R) and a basis n,...,n;, of
Qtlmp(r) such that

t 1 ifi=j,
[m={ 207
Ci 0 ifi+#].
Now, let X be a smooth, proper, connected curve over Cp with skeleton I'. Note

that I is a deformation retract of X2". Let J be its Jacobian. We can identify the real

torus X from I'.
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16 E.Katz and E. Kaya

Proposition 3.15. There is an isomorphism of real tori
2 = Qop (D) /u(Hy (T3 2)).

Proof. Because the Abel-Jacobi map : induces an isomorphism ¢, : H;(X*";R) —
H,(J*"; R), we have a sequence of isomorphisms,

Ny = trop(M) @ R = H,(J*;R) = H;(X*;R) = H;(I';R) = Q%rop(f‘)*.

Under the composition, trop(M’) is mapped to u(H; (T'; Z)). |

Let Py be a base-point of I'. Now, if we let I denote the universal cover of I" with
a base-point P, over P,, tropical integration gives a map

B:T = Qipop(M)*

_ trQ t
Q+— 77'—>~773=/7’l:
Py Y

where y is the image in I' of the unique path in I" from }30 to Q. The map S descends to
quotients giving the tropical Abel-Jacobi map

B:T = Qop(D)*/u(H, (T; Z)) = X.
The tropical Abel-Jacobi map map is equal to the tropicalization of the Abel-Jacobi map
in the following sense. Let ¢: X — J be the Abel-Jacobi map with respect to x; € X(Cp).
Let t: X*® — T be the tropicalization map and set P, = 7(x;). By a result of Baker-

Rabinoff [13, Proposition 6.1], the following diagram commutes:

L
Xan Jan

Now, we can give a comparison theorem for Berkovich-Coleman and abelian

integrals.

Theorem 3.16. Let X" be a connected, smooth, compact analytic curve over Cp with

skeleton I' and retraction 7: X** — T". Let x, € X(Cp) be a base-point and set Py = t(x).
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p-adic Integration on Bad Reduction Hyperelliptic Curves 17

Let Cy,...,Cy and ny,...,n; be as in Corollary 3.14. Let y;, ..., v} be loops in X?" whose

homology classes are Cy, ..., Cy, respectively. The following formula holds: for x € X(C,),

pick a path y in X®® with y(0) = x, and y (1) = x, then

BC Ab,x BC t
/w_ wzz(/w)v ni)
Y X0 i Vi T(y)

for every holomorphic 1-form w.

Proof. Let Xa be the topological universal cover of X2®, We have a commutative

diagram

Loggc—Log .
BC Ab Lie(E)

Xa(C,) > JA(C,) = E(Cp)

Now, consider the image of the lift (1) of x under the maps in the top row, evaluated
on w. It suffices to show that Lo : I' — Lie(E) = Q! (X?™)* is given by

(o2 () ()]

4

Under the identification Q1

trop (I = H; (T R), we claim that for Q €T, we have

trQ
5(é)=2(/13 ni)Ci-

1

This is true after evaluating by 7; € Q%rop([‘) ZHI(T;R)ZH(ZR*=ZMQR:

o trQ trQ
n,(B(@) = /P = Z(/P ni) ni(Cy.

1

trop (') the claim follows.

Because the nj's form a basis for Q
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18 E. Katz and E. Kaya

Applying L, we see

trQ
LBQ) = P»»Zx~n0@wmwﬂ

(0T

by Lemma 3.9. |

Il
S
)
o o3

4 Coverings of Curves
4.1 Semistable coverings

Given a finite set of C,,-points S on P!, we will define a covering of P!'2® by rational basic
wide opens with respect to S. This will allow us to define a covering of the hyperelliptic
curve y? = f(x) by hyperelliptic basic wide opens when we set S to be the roots of f(x).

We follow [17, 19] in using the notion of semistable covering.

Definition 4.2. Let Y be a smooth, compact, connected analytic curve over Cp. A
covering C of Y is an admissible finite covering by distinct wide open subspaces of
Y. The dual graph I'(C) of the covering is a finite graph whose vertices correspond to
elements of C such that the edges between U and V correspond to components of UNV
while the self-edges at U correspond to ordinary double-points in the reduction of U.

The covering is said to be semistable if, in addition,

(1) IfU,V,W € C then U is disconnected from every component of VN W,

(2) fU eCthenU° =0\ UV;&U V is a non-empty affinoid subdomain in U whose
reduction Uy is absolutely irreducible, reduced, and has no singularities
except ordinary double-points, and

(3) The genus of Y obeys

9(¥) = D" g(Uy) + by ((C)),
UeC
where b, (I'(C)) is the 1st Betti number of I'(C).

We say that an element U € C is good with respect to a subset S C Y(C,) if there is

an embedding into a compact good reduction curve, :: U — Yy such that the points
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p-adic Integration on Bad Reduction Hyperelliptic Curves 19

of «(SN U(Cp)) lie in distinct residue discs. We say C is good with respect to S if each
element of S belongs to at most one element of C and each U € C is good with respect
to S. The dual graph I'(C,S) of the covering with respect to S is obtained from I'(C) by
attaching half-open edges corresponding to elements of S to the vertices corresponding

to the elements of C containing them.

4.3 Rational coverings

We discuss the existence of good semistable coverings of P13 with respect to a given
set of points S C P! (Cp). If S contains only one element, then this is clear. From now on,

let us assume that S has at least two elements.

Theorem 4.4. LetS C Pl(Cp) be a finite set. There is a good semistable covering C of

P30 with respect to S.

We will prove Theorem 4.4 by an inductive argument making use of Lemma 4.5.
We will produce a dual graph attached to the covering as we proceed. To do so, we
introduce semistable coverings of open discs by rational basic wide opens. They are

defined as above except condition (3) is replaced by the condition

g(¥) =D g(U) + by (I'C)),

UeC

where g(U) = 0 for a rational basic wide open U. This mandates that I'(C) is a tree. The

embeddings (: U — P!® will be linear fractional transformations.

Lemma 4.5. LetR € ||CI”;||p
subset S of Y(C,), there is a good semistable covering Cy of ¥ with respect to S. The dual

and 8 € Al(Cp). Set Y = B(B, R). For any non-empty finite
graph of the covering respect to S is a rooted tree Ty.

Proof. Write S = {«;,...,«,}. By translating by —«;, we may assume that «; = 0. If the
set S has at least two elements, by scaling, we may assume that max; . (llegll,) = 1.

We induct on n. If n < 2, then all the points of S are in distinct residue discs,
and we may let Cy, = {Y}. The tree attached to this covering is a single vertex with a
half-open edge for each element of S.

Let n > 2. Not all elements of S are in a single residue disc. Let I,...,I,, be
the partition of S according to which residue disc a point belongs. For each i such that
such that B(8;, R;)NS = I

*

II;| > 2 pick a point §; € I,. Let R, be the largest element of ICyll,
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20 E.Katz and E. Kaya

(so that B(B;, R;) contains some point of S\ I,). Set ¥; = B(8;, R;) and S; = I,. Because

II;| <n, Y; has a good semistable covering Cy, with respect to S;. Now, let

u=v\ || Bum,

i:|;|>2

where r; is the smallest element of ||C1’g such that E(,Bi, r;) NS = I. The covering Cy is

I
defined as

{wu J ¢y,

I]>2

Because there is at most one element of S in every residue disc of U, U is good with
respect to S. Moreover, since each element of S is either contained in U or in exactly one
element of the covering Cy, for some i, the covering Cy is good with respect to S.

Denote the rooted tree corresponding to the covering Cy, by Ty,. Consider the tree
whose root is U and where U is connected to the roots of Ty, for each i with |I;| > 2. To
obtain Ty from this tree, attach to U half-open edges corresponding to I; with |I;| = 1.

These half-open edges correspond to the points of S that are contained in U. |

Proof of Theorem 4.4. Write S = {«;,...,«,}. Let S’ be the elements of S contained in

Al(Cp), and let r be the maximum of their p-adic absolute values. Pick R € ||C;§||p with
R > r and set Y = B(0,R). Using Lemma 4.5, find a good semistable covering Cy of ¥
with respect to S’ and its rooted tree Ty. This covering together with U = P'% \ B(0,r)
is our desired covering C.

The dual graph I'(C,S) is obtained by adjoining the vertex corresponding to
U to the root of Ty and then attaching the half-open edge corresponding to oo to U

ifooeS. u

One can see from general considerations or by examining the above construction
that the intersection of two distinct elements of the semistable cover is either empty or
an annulus.

Notice that the dual graph I'(C,S) is also a tree. From now on, we will denote
this tree by T.

Remark 4.6. The covering and graph can be constructed intrinsically using Berkovich

spaces [12]. The tree T consists of the type IT and type III points of P12 corresponding
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to discs of the form B(«,r) for a € Pl(Cp) such that at least one point of S is contained
in each of B(«, r) and P12\ B(a, 1).

The covering can be obtained by taking a semistable vertex set as in [12].
It consists of the type II points of the form B(B;,r;) as constructed in the above

algorithm.
The following is straightforward:
Lemma 4.7. The dual graph T is a graph structure on the skeleton of P22\ S,

Remark 4.8. The above lemma can be proved in several ways. One can use the
semistable vertex set to identify the skeleton as in [12, Section 3]. Alternatively, one
can construct a semistable model from the semistable covering [19, Theorem 1.2] and
obtain the skeleton by [12, Section 4].

Let f(x) be a non-constant polynomial with coefficients in K. We define the roots
of f(x) to be the usual zeroes of f(x) together with oo if f(x) has odd degree and write
the set of roots as S;. Lemma 4.5 and Theorem 4.4 can be turned into an algorithm for
constructing a good covering of P® with respect to S¢. A priori, it looks as it would
be necessary to exactly solve for the roots of f(x). However, this can be avoided. First,
we can approximate a root and use a translation to put it in B(0, 1). Then, we can find
the valuation of the roots by using the theory of Newton polygons. We can rescale x
by an element of C, to make sure that the largest absolute value of the roots is 1.
Indeed, the polynomial f(x) has a root of valuation s if and only if its Newton polygon
has a segment of slope —s. This segment corresponds to roots of p-adic absolute value
equal to p~%. After these reduction steps, the methods in the proof of Lemma 4.5 are
still applicable.

Algorithm 1 produces a good semistable covering of P13® with respect to the

roots of f(x), by following the proof of Theorem 4.4.

4.9 Hyperelliptic coverings

Let 7 : X® — P13 be the analytification of the proper hyperelliptic curve defined
by y? = f(x). Using ideas similar to those of Stoll in [34], we will show that any good
semistable covering of P1'3" with respect to the roots of f(x) induces a good semistable

covering of X?" with respect to the Weierstrass points by taking inverse images. This
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Algorithm 1: Covering of B(0, R) with respect to the roots of a polynomial
Input:
e A polynomial f € K][z] of degree at least 2 whose finite roots are in K.
e Adisc B(0, R).
Output: A good semistable covering C of B(0, R) with respect to the roots of
f(z) contained in B(0, R) together with its rooted tree 7.

(1) Find « € B(0, R) sufficiently close to a root of f(x) such that the polynomial
f(xz — «) has roots of at least two different p-adic absolute values in
B(0, R). (This can be verified by checking that the Newton polygon of
f(z — «) has at least two segments of distinct slope less than or equal to
log,(R).) Replace f(z) by f(z — ).

(2) Compute the slopes of the Newton polygon of f(x) and set A to be the
maximum of the slopes less than or equal to log,(R).

(3) Pick ¢ € K satisfying v,(c) = —A. Replace f(z) by f(cx) and R by p—}i so that
the maximum of p-adic absolute value of roots in the disc is 1.

(4) Multiply f(x) by a power of a uniformizer of K to ensure that the minimum of
the valuation of the coefficients of f(x) is 0. Factor the polynomial f(z) mod p
to determine the partition {7;} of the set of roots of f(z) in B(0, R) according to
which residue disc the root belongs.

(5) For each i with |I;| > 2, pick a point 3; in the same residue disc as the points in
I;. Set f;(x) = f(x — f3;). Let \; be the largest negative slope of the Newton
polygon of f;, and let A; be the smallest positive slope of the Newton polygon of
fi. Set 7; = pi and R; = p™i. Apply this algorithm to f;(z) and the disc
B(0, R;) to find a good covering C; of B(f3;, R;) with respect to I; together with
its rooted tree 7.

(6) Set U = B(0, R) \ U, 1,52 B(B;,r;). Combine U with the coverings C; found in
the previous step to obtain the covering C of B(0, R).

(7) Let U be the root of the tree T'; for each 4, do the following: if | ;| > 2, attach
the root of T; to U by an edge; if |I;| = 1, attach a half-open edge corresponding
to the unique element of /.

(8) Return C and T'.

covering will have a nice combinatorial structure whose dual graph I is a double cover
of the dual graph T of the covering of P13",

For a polynomial f(x), write the roots as Sf = {ay,ay,...,a,}. Recall that, if f(x)
is of odd degree, we follow the convention of counting co as one of its roots. In any case,
f(x) has an even number of roots. If f(x) has distinct roots, the curve y?> = f(x) has a
compactification as a nonsingular curve X. If the roots of f(x) are distinct mod p, then
X has good reduction over some extension of Q.

We will need the following observation:
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Lemma 4.10. LetR e ||K*||p.

closed discs in B(0, R) the union of whose interior contains Sy, NB(0, R). Suppose that an

Let h(x) € KIx] be a polynomial. Let Dy, ..., D,, be disjoint

even number of roots of h(x) is contained in each D,. Then h(x) has an analytic square
root on B(0,R) \ (U; D;) -

Proof. We work with one disc of D;,...,D,, at a time, beginning with a disc D. Write
D =B(y,r). Let ay,...,dq, be the roots of h(x) contained in D. Then,

2¢ 1/2 20 1/2
¢ oa; -y
— o = — 1 - =27
(E(X al>) (x y)ill( X_y)

converges away from D. Now, if ;, ..., , € C, are the roots of h(x) in A2\ B(0, R), then

¢ 12 ¢ 2\ 1/2
(E(X— Ofi)) = H((—“i)l/z (1 - Ol_l) )

i=1

converges on B(0, R). By multiplying these functions, we get the desired square root of
h(x). [ ]

Proposition 4.11. Let U C P!®" be a rational basic wide open that is good with respect

to S, then 7 ~1(U) is the union of at most two basic wide opens.

Proof. We will find a new coordinate y and a polynomial g(x) whose roots lie in

distinct residue discs such that
7N U) 2 {(x,7) | x € U, 7% = g}

We view U as a subset of P!®® where we have made a fractional linear
transformation to ensure that the roots of f(x) contained in U are in distinct residue
discs. We can suppose that either U = P!2® or that U C B(0,R) for some R € 1K1l
with R > 1. If U = P13 then 7~ }(U) = X is a good reduction curve. Otherwise, write
D,,...,D,, for the closed discs contained in B(0, R) (each contained in a distinct residue
disc) in which f(x) has multiple roots in their interior.

We factor f(x) = g(x)h(x) where
(1) the polynomial g(x) only has roots in B(0, R),
(2) the polynomial g(x) has at most one root in each residue disc, and

(3) the polynomial h(x) has an even number of roots in each D;.
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Let £(x) be a square root of h(x) on U which exists by Lemma 4.10, and set y = -

Because £(x) is non-vanishing on U, the map

x,y) ~ (x,7)

is invertible for x in U hence gives the desired isomorphism.

We now consider the complete curve 7: X — P! given by compactifying % =
g(x). Because the roots of g(x) lie in distinct residue discs, X has a smooth model over
R, the valuation ring of some field K. Since X has good reduction, we need only show
that 7 ~1(U) is a basic wide open. If g(x) is of degree 0, X is the union of two copies of
P!l. In this case, 7 ~!(U) is isomorphic to two copies of U. If g(x) is of positive degree, we
must identify 7 ~1(U).

Write U = P1@%\ (U, D; UD,,) for closed discs Dy, ...,D,,, each contained in
a residue disc where D is a disc of the form P!@® \ B(0,R’) for some R’ > 1. We need
to identify 7 ~1(D;). As we discussed, the polynomial g(x) has at most one root in each
D,. Consider the case where g(x) has no roots in D;. Then g(x) has an analytic square
root on D;, and 7~ 1(D;) is the union of two disjoint closed discs, each isomorphic to
D;. Now, consider the case where g(x) has exactly one root in D;. By a fractional linear
transformation, we may suppose that g(x) = x. Then the closed disc D; is of the form

{x | Ixll, <7} for some r € G. Consequently,
7 ND) ={(x,7) | xeD,7* =x} = {7 | lyll, <r'/?*)

is a closed disc. This lies in a residue disc in the model over R. A similar argument

applies to D,. It follows that

» HU) =X\ (U 7 YDy u yr_l(Doo))

i=1

is a basic wide open. u

Observe that in the above, X has either one or two components according to
where g(x) is degree 0 or not. We immediately see that 7~ (U) is disconnected exactly
when f(x) has no roots in U and has an even number of roots in each deleted disc D;. In
this case, we say that U is even. Otherwise, we say that it is odd.

The double cover of an annulus (such as one arising as a component of the inter-

section of two elements of a semistable covering) given by y? = f(x) is the following.
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Lemma 4.12. Let A be an annulus in A% ¢ P10, Suppose that Sy is disjoint from A.
Then 771(A) = {(x,y) | x € A4,y% = f(x)} is
(1) the union of two disjoint annuli if Sy has an even number of elements in each
component of P13\ A,
(2) an annulus if Sy has an odd number of elements in each component of plany\
A.

Proof. By a fractional linear transformation, we may reduce to the case where
A ={x|1 < |x| < r}for some r > 1. As in the proof of Proposition 4.11, we can reduce
to the case where 77 1(4) = {(x,7) | 7* = g(x),x € A} where g(x) is of degree at most 1.
If g(x) is of degree 0, then we are in case (1). If g(x) is of degree 1, we can reduce to the
case where g(x) = x. Then, 7~!(A) is given by {j € A | 1 < |y| < r'/?}, and we are in
case (2). |

We refer to an annulus A as even or odd according to whether 7~ 1(4) is
disconnected or connected.

If C is a semistable covering of P!'®® that is good with respect to Sf, we
can produce a semistable covering D of X2" that is good with respect to the set of
Weierstrass points W. We let D be the set of components of 7~ (U) as U ranges over
elements of C. In the case that U € C is even, 7~} (U) will have two components which
will give two elements of the covering of X?". Let Y; and Y, be two distinct elements of
D; put U; = n(Y;) for i = 1,2. There are three possibilities for the intersection ¥; N Yy;
it is

(1) empty if U, = U, or U; N U, is empty,

(2) an annulus if U; N U, is an odd annulus,

(3) the union of two disjoint annuli if U; N U, is an even annulus.

Let I'(D, W) be the dual graph of the covering D with respect to W. We will give
a description of I'(D, W) in terms of T similar to [34, Section 6]. The dual graph will
have both closed edges and half-open edges. Unless noted otherwise, edges are taken to
be closed. We first designate half-open edges, edges and vertices of T as even or odd.
All half-open edges of T are odd. An edge of T is even exactly when the corresponding
annulus is even. A vertex of T is even exactly when all of its adjacent edges are even. For

a vertex v, its genus is the integer g(v) satisfying

2g(v) —2=—-4+n,(v),
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where n,(v) are the number of odd edges (including half-open edges) adjacent to v.
Observe that even vertices have genus equal to —1 (corresponding to a disjoint union
of two Pl’s). By the Riemann-Hurwitz formula, g(v) is the genus of the good reduction

curve in which 7 ~1(U) will be embedded.

Definition 4.13. To T, we may attach a graph I". Let " be the graph whose vertex set
consists of

(1) one vertex v for each odd vertex v of T; and

(2) two vertices v, V_ for each even vertex v of T
whose edge set is

(1) one edge e for each odd edge e of T;
(2) two edges e, ,e_ for each even edge e of T; and

(3) one half-open edge é for each half-open edge e of T.

For each adjacent pair (v, e) of T with v and e odd, we declare v and e adjacent.
If v is odd and e is even, we declare v and &, adjacent for ¢ = +, —. If v and e are even,
we declare v and e, adjacent for ¢ = +, —. Because a half-open edge e is only attached
to an odd vertex v of T, the corresponding half-open edge e is attached to the vertex v
of .

There is a natural map 7 : I' — T taking v or f/+, v_tovandeor é+, e_toe.

Example 4.14. As an illustration, consider the following tree T:

v
! € €3

N1 T

The edges e,,e; and the vertex vy are even; all the others are odd. Here is the

corresponding graph I':

V3, +

120 Iudy 62 UO Jasn DXV - AUSIAIUN 81BIS OIUO A L Ly¥6G/2.ZEB_BULUIWIEGOL 0 |/I0P/S[OIME-80UBAPE/UIWI/LOY"ANO"0ILISPEDE//:SARY WO.) PAPEOIUMOQ



p-adic Integration on Bad Reduction Hyperelliptic Curves 27

By unwinding the description of I', we have the following proposition (from
which one sees that I' is a graph structure on the skeleton of X?" \ W by reasoning
identical to that of Remark 4.8):

Proposition 4.15. The dual graph I'(D, W) is equal to I.

Let T, be the union of even edges of T and let V, be the odd vertices of T that
are adjacent to even edges. We will describe the 1st homology group of I' in terms of the

relative homology group H, (T,, V,; R) which is given as the kernel of the map

3: C,(T,; R) — Co(T,; R)/Cy(V,; R).

Define a map ¢: C;(T,;R) - C;(T;R) byer>e, —e_.
Proposition 4.16. The map ¢ induces an isomorphism :: H,(T,, V,; R) — H,(I'; R).

Proof. Define a map «: C;(T';R) — C;(T,;R) by

K@) =0, k(&) =e, k(&) =0.

We first show that « maps H;(T'; R) to H,(T,, V,;R). Let C € H,(I'; R). For an even vertex
v, m is an simplicial homeomorphism of the open star of v, onto its image. Because the
coefficient of v, in dC is zero, the coefficient of v in 9(k(C)) is also zero. Consequently,
we have «(C) € H{(T,, V,; R).

Now, we claim that « and ¢, considered as maps between H;(I';R) and
H,(T,, V,;R), are inverses of one another. Clearly « o ! is the identity. We claim ¢ o «
is the identity. If C = >, a.eis acyclein I, then x, (C) = 0 in H, (T; R). The only way that

this can occur is if a; = 0 for all edges e and a;, = —a;

¢ for all pairs (e, e_) above an

even edge e. From this we can conclude that C = ((x(C)). |

The following relation between the cycle pairing on (T,, V,) and that on I is

straightforward:

Proposition 4.17. Let C,D € H,(T,, V,; R). Then («(C), (D)) = 2(C, D).
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5 Integrals on Hyperelliptic Basic Wide Opens
5.1 1-forms on hyperelliptic basic wide opens

Let X be a hyperelliptic curve defined by y? = f(x). In Section 4.9, we explained how to
construct a semistable covering of X2" by hyperelliptic basic wide opens. In this section,
we summarize Berkovich-Coleman integration algorithms on these spaces. We note that
these are ordinary Coleman integrals; in particular, they are path-independent.

We fix a covering as above and consider an element Y of this covering. Let w be
an odd holomorphic 1-form on Y. Recall that odd means that the hyperelliptic involution
acts on w as multiplication by —1.

If the space Y is isomorphic to the standard open disc (resp. a standard open
annulus) with parameter ¢, then » pulls back as F(t)dt where F(t) is a power (resp.
Laurent) series. In this case one can compute the integral by antidifferentiating.

For other spaces, in order to make use of the existing explicit methods, we
need to pass to a good reduction curve. By the proof of Proposition 4.11, the space Y
is isomorphic to a basic wide open space Z inside the good reduction curve X2 given by
y? = g(x) for some polynomial g(x) of degree d. Note that if d is odd, then d = 2g + 1,
and if d is even, d = 2g+2 where g is the genus of X. We will suppose that g(x) € K[x] for
some finite extension K of Op. As we will discuss in Section 7, the form w pulls back to
Z as an odd 1-form that can be expressed as a series of odd 1-forms. By Proposition 3.5,
we can interchange the order of summation and integration. Thus we need to integrate
terms in this series. Let n denote such a term. Using the change-of-variables property
for Berkovich—Coleman integrals, it suffices to compute the integral of n on Z. On the
other hand, we will see that the form n extends to X as a meromorphic form with
poles outside of Z and by Remark 3.3 we can perform this integral on the complete
curve X.

If we write Z = X\ (J_, D)) for closed discs Dj,...,D, (which arise as
preimages of discs closed in P!%), then by [22, Propositions 4.3, 4.4] (see also the

discussion in [27, Theorem 2.24]) the sequence
@ Res A >
0 — Hjp(X) - Hjp(2) ~— (PC, = C, — 0

is exact where Res takes the residue around the D;’s and ¥ is summation. If we let the

superscript “—" denote the (—1)-eigenspace of the maps induced by the hyperelliptic
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involution, we have the short exact sequence
@GR . -
o — — es
0— HigX)™ - HR(2)™ —= (@ cp) — 0, (1)
i=1

which says that in order to obtain a spanning set for the odd part of the 1st de Rham
cohomology of Z, we only need to adjoin 1-forms with poles in the D;’s to a basis for the
de Rham cohomology of X. Here the hyperelliptic involution acting on the last factor
exchanges the residues around hyperelliptically conjugate discs and acts as the identity
on residues around discs containing a Weierstrass point.

We now consider the case where d = deg(g(x)) > 3 in which case the curve X is
hyperelliptic. Extend the field K so that it contains the roots of g(x).

By our construction, the D;’s arise as components of the preimages under

7: X* — PLan of some closed discs D,,...,D, in Ala each contained in a distinct

n
residue disc and possibly also of a disc D, around oco. Such a disc is called Weierstrass
if it contains a root of g(x). Suppose that we have ordered the discs such that D, ..., Dy
are the non-Weierstrass discs and Dy ,,...,D,, are the Weierstrass discs. Observe that
D, is Weierstrass if and only if g(x) is of odd degree.

Let B;,..., B, be elements of P!(K) contained in D,,...,D,. We choose g; to be a
root of g(x) if D; is a Weierstrass disc contained in A®. For D, choose 8., = co. Define

the forms

dx
NS gy
J j=1,...k

where the form v; has simple poles at the hyperelliptically conjugate points 7! (B

For an integer i, define the 1-form

idX
2y
In both the odd and even degree cases, {w,...,w4_5,V1,...,V;} Will form a spanning set

for H}; (Z)~. Consequently,

d-2 k
n=dF + Zciwi +Zdjvj
i=0 j=1
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holds for an analytic function F on Z and ¢;, d; € K. For points R, S € Z(C)), the equality

above gives

BC/R d-2 BC.R k BC/R
i=0

j=1
Below, we will explain how to compute the integrals on the right.

5.2 Summary of integration algorithms

We will first state the algorithms when g(x) is of odd degree where they are most fully
developed. There is partial work in the even degree case, and one can apply a fractional
linear transformation to P! to transform the even degree case to the odd degree case.
We start with the integrals Bcf;{ ;. The paper [3] describes a method for
computing Coleman integrals of those meromorphic forms whose poles all belong to
Weierstrass residue discs.
If the points R and S lie in the same residue disc, in which case we refer to the

integral as a tiny integral, we may use the following lemma.

Lemma 5.3. ([3, Algorithm 8]) For points R, S € )?(Cp) in the same residue disc, neither

equal to the point at infinity, we have

w; = 0 4,
s o 2y(t) dt

where (x(t), y(t)) is a linear interpolation from S to R in terms of a local coordinate t. We

can similarly integrate any form that is holomorphic in the residue disc containing the

endpoints.

If the points R and S lie in distinct non-Weierstrass residue discs, the method
of tiny integrals is not available. Coleman'’s idea was to extend the notion of integration
by analytic continuation along Frobenius. Let ¢ be the lift of Frobenius constructed
in [3, Algorithm 10]. This map is rigid analytic; moreover it maps a Q,-point into
its residue disc. By the change-of-variables formula with respect to ¢, we have the

following theorem.
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Theorem 5.4. Let M denote the matrix over K such that
2g9—-1

j=0

foralli = 0,1,...,2g — 1. Then, for points R,S € }?(Op) in distinct non-Weierstrass

residue discs, we have the equality

29-1 BC,R BC o (S) BC,R
Z(M—I)ij/ a)jzfl-(S)—fi(R)—/ a)i—/ w;.
i s s )

Moreover, the matrix M — I is invertible (see [26, Section 2]), and we can solve this linear

system to obtain the integrals Y[} o;.

Proof. The terms in equation (2) can be calculated using Kedlaya's algorithm [3,
Algorithm 10]. The result follows from Algorithm 11 and Remark 13 in [3]. ]

Thanks to this theorem, beyond evaluating primitives, computing tiny integrals
and solving a linear system, the matrix of Frobenius is the only data that is needed
to compute Coleman integrals between endpoints in distinct non-Weierstrass residue
discs.

Suppose now that R’ and S’ are points, at least one of which is Weierstrass, lying

in different residue discs. The following lemma will be useful.

Lemma 5.5. ([3, Lemma 16]) Let » be an odd meromorphic 1-form on X. For points

R',S € )?(Cp) which are not poles of w, such that S’ is a Weierstrass point, we have

BC,R 1 BC/R
/ o= / o,
' 2 W(R/)
In particular, if R’ is also a Weierstrass point, then BCf§ =0.

Proof. This follows from BC[E ¢ = BEIE)(_y) = EC Mb:(R,)w and additivity in

endpoints. |
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If S lies in a finite Weierstrass residue disc containing Weierstrass point S/,

Lemma 5.5 gives

BC/R s 1 BC/R
[l e
s 2 W(R)
If R does not belong to a Weierstrass residue disc, the 2nd integral can be calculated

using Theorem 5.4; if R also lies in a finite Weierstrass residue disc containing

Weierstrass point R/, then by Lemma 5.5 again, we have

BC/R BC,S' BC/R
/ w; = / w; + // ;.
s s
These tiny integrals can be computed using Lemma 5.3.

Now, we consider the integrals BCfS v;. As we discussed before, the form v; has
poles at the hyperelliptically conjugate points n‘l(ﬂj). The above approach does not
work for this case, however, the paper [2] provides a new method.

First, consider the case where R and S lie in the same residue disc. If the form v
is holomorphic in the disc, then we can compute its integral as in Lemma 5.3. Otherwise,
we make use of the following lemma in which we decompose our form in the disc into
the sum of a holomorphic form and a logarithmic differential (i.e., a differrential of the
form df /f for f € K(X)*).

Lemma 5.6. ([4,Lemma 4.2]) Let P be a non-Weierstrass point and set

__y® dx
Cx—x(P) y

For points R, S different from P but contained in the residue disc of P, we have

BC/R BC/R _ -
/ b= / 9gx(P)) — g(x) dx + Log (X(R) X(P)),
s s Yx—x@P)(yP) +y) x(S) — x(P)

where the integrand on the right side is holomorphic on the residue disc.

Now, we examine the case where R and S lie in distinct residue discs. As before,
using Lemma 5.5, we may reduce to the case that the residue discs are non-Weierstrass.
Before stating the theorem to deal with this case, we recall the following objects
from [18]:
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e The space H(llR(X /K) has a canonical non-degenerate alternating form given
by the algebraic cup product

U: Hix(X/K) x Hjp (X/K) — K.

This pairing may be described using a well-known formula of Serre:

[l Uyl = Z Resp (/’LZ//’LI)'

PeX(Cp)

e Let T(K) denote the subgroup of differentials of the 3rd kind. We denote
the subgroup consisting of the logarithmic differentials by T;(K). By

[18, Proposition 2.5], there is a canonical homomorphism
¥ : T(K)/Ty(K) > Hgp (X/K),

which is the identity on differentials of the 1st kind. The map ¢ can
be extended to a linear map from the K-vector space of all meromorphic
differentials on X/K to HéR(X /K) as follows. First, we express a given
meromorphic differential n as n = >_ a;v; + u, where v;’s are of the 3rd kind,
a; € K and p is of the 2nd kind; then we define ¥ (n) = > a; ¥ (v;) + [ul.

We have the following which we state for curves and points defined over Q,:

Theorem 5.7. Suppose the curve X is defined over Q, and the polynomial g(x) is monic.
Let P and v be as in Lemma 5.6. For points R,S € Z(Qp) in distinct non-Weierstrass

residue discs, not equal to P and w(P), we have
BC/R 1 BC,S BCro(R)
/ v:—(w(a)uw(ﬂ)—}- Z ResA(a/,B)— / v — / v),
s 1-p . &(S) R
AeX(Cp)
where o = ¢*v — pv, B is a form with Res(8) =R — S.

Proof. See Algorithm 4.8 and Remark 4.9 in [2]. |

Remark 5.8. The generalization of Theorem 5.7 to even degree case will be discussed

in [24]. Combining this with the techniques in [1], which extend the algorithms in [3] to
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even degree models, one should be able to do the computation above for even degree

case.

Now, we consider the case where g(x) is of degree at most 2. The curve X is
rational and therefore H (liR(f() is trivial. By the exact sequence (1), our form n will be
sum of an exact form dF and forms with simple poles. Moreover, using the equation
y? = g(x), one can easily express the non-exact part as a sum of logarithmic differentials

c,;dF;/F; for constants c;. This gives,

BC
/ n=F+ Zci Log(F)).
i

6 Decomposition of 1-forms with Specified Poles

We will now consider 1-forms with poles in a specified set. Let X be the good reduction
hyperelliptic curve defined by y? = g(x) where g(x) is of degree d. Moreover, we assume
that the polynomial g(x) is monic with integral coefficients in some finite extension of
Q,; this assumption guarantees that the p-adic absolute value of roots of g(x) are at
most 1. Let Y be a basic wide open in X contained in B(0, R) for some R € |K*|, with
R>1

I

Let T = {B;,..., B} be a subset of Al(K) for some finite extension K of Q,. We

will study 1-forms of the form

n=x"® ﬁ 1 dx
=1 (x— lgj)nj 2y

l, <1 for all i.
Below, we will make the following assumptions: for i = 1,...,k, we have [g(8)ll, = 1;
and fori =k +1,...,¢, we have g(8;) = 0 and [lg'(8)ll,, = 1.

We will soon need to consider a series of 1-forms whose terms are of the

for nonnegative integers n,,...,n,, n,,. We will further suppose that ||8;

above form. To integrate them, we will interchange integration and summation using
Proposition 3.5. We will provide an algorithm to express the 1-forms in terms of our

given basis: the 1-form » can be written as

d—2 k
n=dF+ > co;+ Y dy, (3)
i=0 j=1
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where F is an analytic function on Y. Furthermore, we will find bounds on ¢;, on dj, and

on the maximum value of the norm of F on Y in Proposition 6.9.

Remark 6.1. We will make use of two types of exact 1-forms.

(1)

(2)

For a positive integer m, consider

d ( y ) _x- B)g x) — 2mg(x) dx
x=pm @—pml 2y

Such a form has poles at the points above 8 and possibly also at the point(s)
at infinity. If 8 is a root of g(x), the pole is of order 2m at 7 ~!(8); in fact, if we
write Symb for the monomial involving the highest order power of (x — g)7!,

we have

Symb ((X - B)g x) — 2mg(x) d_X) _ Symb ((1 —2m)g'(B) @) _
(x — pymH! 2y x-=pm 2y

If B is not a root of g(x), there are poles of order m + 1 at each of the points

of 7~1(B); in fact, we have

(x — g (x) — 2mg(x) dx _ —2mg() dx
Symb ( x— pymHl E) = Symb ((x — pym+ E) '

The two cases differ because y is a uniformizer in one case, while x — 8 is a
uniformizer in the other.

For a nonnegative integer m, consider

dx

dx"y) = (x™g'(x) + 2mxm_1g(x))2—.
14

Such a form has poles at the point(s) at infinity. Notice that the leading

coefficient of g’ (x)+2mx™ 1g(x) is d+2m as the polynomial g(x) is monic.

6.2 Principal parts

We will write our 1-form as in (3) by subtracting off the exact 1-forms in Remark 6.1 to

cancel the non-simple poles. To do so, we use the language of principal parts.

Definition 6.3. Let « be a smooth point of a curve X and pick a uniformizer ¢t on X

for «. For a meromorphic function h, the principal part of h near « is the polynomial

in t~! given by the negative degree terms in the Laurent expansion of h in t. Let w be
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a meromorphic 1-form on X that is regular and non-vanishing at «. For a meromorphic
1-form 5 on X, % is a meromorphic function defined in a punctured neighborhood of
«. The principal part PP, ,(n) of n near o with respect to  is the principal part of %

near «.

For 8 € Al(K) and « € w~1(8), we have convenient choices for coordinates and
1-forms. The 1-form o, = dy is regular and non-vanishing away the point(s) at infinity.
Let ) be an odd 1-form; then -L is invariant under the hyperelliptic involution.

We first explain how to pick a uniformizer at Weierstrass points. Let 8 be a root
of g(x), then y is a uniformizer at o = nfl(ﬂ) However, we can pick a slightly more
convenient uniformizer. We know that does not vanish in a neighborhood of g and
so has an analytic square root h(x) there Then w = yh(x) is a uniformizer at «. Because
the meromorphic function -- 0 is invariant under the hyperelliptic involution, it can be

written near « as a Laurent series in W2

= x — . Therefore, the principal part of - is a
polynomial in z = (yh(x)) ™% = (x — g) L.

If B is not a root of g(x), then 7~ !(8) = {o,@,} and x — B is a uniformizer near
both «; and «,. Consequently, PP, , (1) = PP, , (). In this case, the principal part of

-~ is a polynomial in z = (x — §)~".

In any case, by using the Taylor expansion for g(x) at 8, we compute

y _ — —-m—k (m—k) k+1
oo 2)) - B 2 e

By a straightforward argument obtained by writing x* = (x — g + )¥ and using the
integrality of binomial coefficients, one sees that the p-adic absolute value of the

coefficients of the principal part are bounded above by max(1, ||,3||p) In particular, if

e (¢ (&27)
SANANCEYOLY )

Here, for a polynomial q(t), we define the value lq®ll, as the maximum of the p-adic

IBll, <1, we have

< 1. (4)

absolute value of its coefficients.
Recall that, for an integer i, w; is defined as X‘ dX . If n is an odd 1-form, aT is

a meromorphic function on P!, and we may speak of 1ts pole order at co € P!(K). In

analogy with the above, we choose )l{ as a uniformizer at co. Write PP, . () for the

principal part of a% considered as a meromorphic function on P!. Observe that for 5
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regular on the finite part of Y, if

Ui _
—=a0+a1X+"'+ad_2Xd2
@o

then

n 1 -1 1 -2 1 —(d-2)
PPw_l,c,o(n):w—_lzaO = +a, = +---4ag_y =

and
n = agwg + a,w, +---+ Agq_o2Wq_o.

We will abuse notation and refer to the degree of the polynomial wio as the pole order at
oo. If the pole order is at most d —2, the above formula lets us determine the cohomology

class of 7.

6.4 Pole reduction

Using ideas similar to those of Tuitman [36, 37], we will subtract off exact 1-forms to
lower the pole orders of n at the 8's. We begin by cancelling the poles of 1 of order
greater than 1 at non-Weierstrass points and the poles of  at Weierstrass points. Then,
we will cancel the simple poles at non-Weierstrass points by subtracting off multiples
of v;. The remainder ' can be expressed in terms of the w;'s by examining PP, . (1).

Define meromorphic 1-forms ug ,, by

_ y
“ﬁ""_d(oc—ﬂ)m)'

We omit the proof of the following lemma (which is a computation in coordinates).

Lemma 6.5. We have the following:

(1) the pole order of oo of Kpm/®_y isatmostd+1—m,
(2) the principal part of ug ,, at co obeys HPowlyoo(uﬁ'm)

‘ <1, and

(3) the principal part of d(x™y) at co obeys ||PPw71,OO(d(me))||p <1.
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38 E.Katz and E. Kaya

Below, we will make use of Legendre's formula for the p-adic valuation of
factorials for p # 2. We have the bounds

S Mgy (M) = vymD) =

From this, we can obtain the following bound on odd factorials:

vp((2Zm— DI < + [log,(m)] < +log,(m) + 1.

-1 p—1

Lemma 6.6. Let 8 € A(K) with IBll, < 1 and |g(B)ll, = 1. Take « € 7~ 1(B) and set

z= (x— B)"L. Let n be an odd meromorphic 1-form on X such that
m := deg, (PP, ,(n))—1>0.
Then there exists a unique polynomial g(t) € K[t] of degree m such that
n':=n—d@x— Ay
has at worst simple poles at points above g and
lg@®1l, <p™® VIPP,, (D],

Moreover, PP n—n') is a K-linear combination of PP,  (ug1),.-., PP, | (kg4 1)

w_1,00(

with coefficients with norm at most

p™® VPP, (DI,

Proof. Let V be the m-dimensional K-vector space spanned by the meromorphic

functions

{(x=B) 7y, x=B%y,....x— B "y}
and let W be the K-vector space spanned by {z?, 23, ..., 2™ "!}. Define

L.v - W

h — T(®P, ,(dh))

wo,o
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where T takes z! — 0 and z' — z' fori > 2. By Remark 6.1, its matrix M in these bases

is upper triangular. In fact, the diagonal entries of M are
M;; = (—21)g(B).
As g(B) # 0, the matrix M is invertible and we can find a polynomial g(t) such that
q((x — )~y € V satisfies L(q((x — §)~")y) = T(PP,, , (1)
To get control over the coefficients of g(t), we will use Cramer’'s rule. The

coefficients of q(t) are equal to det(Mj)/ det(M) where M; is the matrix formed by

replacing the jth column of M by the coefficients of T(PP,_ . (n)). By Legendre’s formula,

wo,A

we have
| det@)], = p~™ @=L,
By (4), the coefficients of M are bounded above in p-adic absolute value by 1, so
I detM)ll, < ITPP,, o (M)lp-
Consequently, the coefficients of q(t) are bounded above by
p™® VPP, (DI,

The bound on pole order at infinity and on the coefficients of the principal part at co

follow from Lemma 6.5. ]
Now, we consider a root 8 of g(x).

Lemma 6.7. Let 8 € Al(K) be a root of g(x) so that IBll, < 1. Suppose ||g/(ﬂ)||p = 1. Let

a =n"1(B) and set z = (x — ). Let n be an odd meromoprhic 1-form on X such that
m := deg,(PP, ,(n)) > 0.
Then there exists a unique polynomial g(t) € K[t] of degree m such that

ni=n—d(x—pNy)
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Algorithm 2: Pole reduction at finite non-Weierstrass points
Input:
e o € 7 (/) where 3 is a non-root of g(z).
e An odd meromorphic form 7 with pole at « of order m.

Output: A function F such that the form 1 — dF has at worst simple poles at
points above [3.

(1) Forj =1,...,m — 1, compute the expansions
. d
ps; = (w_j_1(x — B)7~" + higher order terms) Q—x
Y

(2) Until n has at worst a simple pole at a, do the following:
(a) Compute the expansion

: d
n = (u_;(z — B)~ + higher order terms) 271:
Y

(b) Define aj—1 = u,j/w,j and set nN=10—a;_-11g;;-1-
(3) Return
Am—1 Ay —2 ay

he ((-r—ﬁ)'”l Tt T _5)1,

is regular at « and

lg@®ll, < mp™*™®=DyPP, (D).

Moreover, PP, . (n—mn') is a K-linear combination of PP, . (ug1),---. PP, | (1gq-1)

with coefficients with norm at most
mp! T E=DIPR, ()],

Proof. Let V be the m-dimensional K-vector space spanned by the meromorphic

functions

(x—P) 7y, x— B 2y,...,x— )"y}

3

and let W be the K-vector space spanned by {z, z2,73,...,2z™). Define the map

L.V — W

h — PP __ (dh).

wo o
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By Remark 6.1, its matrix M (in these bases) is an upper triangular matrix with diagonal

entries
M; =1 — Zi)g/(ﬂ)-

Because ||g’(ﬂ)||p = 1, M is nonsingular and we can find q((x — 8)"!)y € V with

L(q(x = B)~Hy) = PP, (1),
Again, we will use Cramer’s rule to get control over the coefficients of h. The

determinant of M has p-adic absolute value
| _
| det@Dll, = [(2m — D], > —p~t=m/ @D

where the last inequality follows from Legendre’s formula for odd factorials. Let M; be
the matrix formed by replacing the jth column of M by the coefficients of PP, ,(1). By

(4), the coefficients of M are bounded above in p-adic absolute value by 1, so
| det@) 1, < 1P, o ()l

Consequently, the coefficients of p(t) are bounded above by
mp! @D PR ()l

The bound on pole order at infinity and on the coefficients of the principal part at co

again follow from Lemma 6.5. |

The main difference between Algorithms 2 and 3 is that, by subtracting off exact
forms, poles at Weierstrass points can be removed completely but only non-simple poles
can be removed at non-Weierstrass points.

We will also need to lower the power of x in the numerator of a 1-form. This is

the order reduction step in Kedlaya's algorithm.

Lemma 6.8. Let 1 be an odd meromorphic 1-form on X such that

m:.= degX(Powlyoo(n)) —(d-1)>0.
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Algorithm 3: Pole reduction at finite Weierstrass points
Input:
e o = 7 (/) where f3 is a root of g(x).
e An odd meromorphic form 1 with pole at a of order 2m.

Output: A function F' such that the form ) — dF' is regular at a.
(1) For j = 1,...,m, compute the expansions

, d
g = (w,j(gg — )77 + higher order terms) 2751:
Y

(2) Until 7 is regular at «, do the following:
(a) Compute the expansion

: d
n = (u_;(z — B)~ + higher order terms) Q—x
Y
5 (b) Define a; = u_;/w_; and set n =1 — a;pg, ;.
Return

_(__an ot
F‘<<x—ﬁ>m+<x—5>ml+ +w—6>y'

Let T be the truncation of a polynomial to degree d — 1 and U = Id —T. Then there exists
a unique polynomial g(t) € Kl[t] of degree m such that

n'i=n—d@qx)y)
has deg, (PP,  ,,(n) <d—1and
lg@®ll, < d(d+m)p*™ P~V u@p,_ ),

Moreover, T(PP n —n’)) has coefficients with norm at most

a)_l,oo(

d(d +mp*™ e Du@p,, o)l

Proof. Let V be the m-dimensional K-vector space spanned by the meromorphic

functions

Xm—l

{v.xy,..., v}
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and let W be the K-vector space spanned by {x%, x4t ... x4+tm~1} Define the map

L.V — W

h ~ UPP, . (dh).
By Remark 6.1, its matrix M in these bases is upper triangular with diagonal entries

Hence we can find q(x)y € V with L(g(x)y) = U(PP, | ~(m). By arguments analogous to
the above, considering the cases of d even and odd seperately, we have

I detD)], > p /b,

d(d +m)
Let M; be the matrix M with the jth column replaced by the coefficients of U(PP,, | ,,(1)).

The coefficients of M are integral and so
| detM)ll, < IUPP,_| M)l
Consequently, the coefficients of q(x) are bounded above by
d(d +m)p*™ e Du@p,, o)l

The bound on the coefficients of T'(PP n —n')) follows from Lemma 6.5. |

w,1,oo(

We can now apply the algorithms described above to find a primitive of n. We
first subtract exact forms from 5 to remove the non-simple poles over non-roots of g(x)
and to remove the poles over roots of g(x). Then, we reduce the pole order at co. Because

the exact forms only affect the principal parts of one finite point at a time, we have the

following:
Proposition 6.9. Let fwo, .. ,fwd_2 and fvl, ... ,ka be Coleman primitives of w;,...,w4_5
and vy,..., v, respectively. Let n be an odd 1-form on X such that a% has poles at points

{By,..., By 00} C PL(K) of ordern,...,n,, ny.Suppose f, ..., B; are not roots of g(x) and
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Algorithm 4: Pole reduction at infinity
Input: An odd meromorphic form 7 such that wi() has degree d — 2 + m for some
positive integer m.
Output: A function F' such that the % has degree at most d — 2.
(1) Forj =0,...,m — 1, compute the expansions

j ; d
d(z7y) = (w4—11;2" " + lower order terms) Z—I
Y
(2) Until wlo has degree at most d — 2, do the following:

(a) Compute the expansion

; dx
1= (ug—14;2" "+ + lower order terms) o
Y

(b) Define a; = ug_11;/wa—1+; and set n = n — a;d(27y).
(3) Return
F = (am12™ 4 o™ 2+ +ag)y.

Bxy1:-- - By are roots of g(x). Moreover, we will suppose I1Bill, <1 for all i, lgBll, =1
fori=1,...,kand ||g/(/3i)||p =1fori=k+1,...,¢ Leto; € 7~1(B;). Then n has a Coleman

primitive that is a linear combination of the following:

(1) = Yﬁ.)j wherel <j<n;—1fori=1,...,k with coefficient with norm at most
—Pi

p"/® VPR, (DI,

(2) (X—Y/S-)f wherel <j<n;fori=k+1,...,¢ with coefficient with norm at most

np' T/ PVIPP, (),

(3) ij where 0 < j < max(n,, — d + 2,2) with coefficient with norm at most the
maximum of the following:
(@) d(d+ n,)p*"=/P=VU®P, ),
(b) max,_; (p"i/(p”)||PPw0lai(n)||p),and

.....

(4) fw fori=1,...,k with coefficient equal to

Res,, (1)
Res,, (v;)’

120 Iudy 62 UO Jasn DXV - AUSIAIUN 81BIS OIUO A L Ly¥6G/2.ZEB_BULUIWIEGOL 0 |/I0P/S[OIME-80UBAPE/UIWI/LOY"ANO"0ILISPEDE//:SARY WO.) PAPEOIUMOQ



p-adic Integration on Bad Reduction Hyperelliptic Curves 45

Algorithm 5: Cohomology class for a meromorphic 1-form
Input: A meromorphic form

‘
1 dx
77 — xnoo .
]-1:[1 (@ — B 2y
for nonnegative integers nq, . .., Ny, Noo-

Output: A function F' and constants ¢;, d; such that
d—2 k

(1) Constants d;: For j = 1,...,k, pick a; € 7~'(j3;) and compute

- Resa,(m)
7 Rese, (1)
(2) Non-Weierstrass points: Using Algorithm 2, find a function F,,, such that the
form 1 — dF,,,, has at worst simple poles at points above /3, . . ., [y.

(3) Finite Weierstrass points: Using Algorithm 3, find a function F, such that the
form n — dF,,, — dF,, is regular at points above Sy 1, ..., Be.

(4) The point(s) at infinity: Using Algorithm 4, find a function F, such that
n=dFnw—dFy —dFos hag degree at most d — 2.

(®)] Constal;)?s ¢;: Compute
n_anw _de _dFOO - Zdjyj
Wo

d—2
=cCy+Ccx+ -+ cgox T

(6) Return
F:an+Fw+Foo7 {CZ}Z {d]}7

(5) fwi fori=0,...,d — 2 with coefficient with norm at most
p?rmax(u/(p=Dmeo/ =D max(d(d + 1), n;) max(|PP,, . (M, PP, o (Ml,)
where the maximum is taken over « € n_l({,Bl, B

Proof. Letnbeanodd 1-form on X such that wio has poles at points {8, ..., 8,} C A}(K)
of order n,,...,n,. Then we apply the Lemma 6.6 and Lemma 6.7 to reduce the pole
orders at the 8's. Because the exact forms that we subtract for one §; does not affect
the principal parts at other g;’s, the pole order reduction steps are independent, and we
have the above bounds on coefficients. These operations do affect the principal parts
above oo in degrees up to d — 2 according to the bounds in the lemmas. This leads to the

bounds for the coefficient of f,, . |
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7 Power Series Expansion

We will write a power series expansion of 1-forms Xig—;‘ on basic wide opens in a
semistable covering of a hyperelliptic curve 7: X2 — P12 defined by y? = f(x)
following the methods in Section 4.9. We will suppose that f(x) is a monic polynomial
with integral coefficients in some finite extension of Qp and, moreover, that the roots
of f(x) lie in a field K of ramification degree e over Q,. By our assumptions, these roots
have p-adic valuation at most 1. Let S¢ be the set of roots of f(x). Let U be an element of a
good semistable covering of P!2® with respect to S¢. We have an embedding :: U — plan
such that the points of LSpNUCY) lie in distinct residue discs. We will use x to denote
the coordinate on A! c P!. Without loss of generality, we may suppose that U is the
») CB(O, 1).

Let I, be the set of roots of f(x) lying outside of B(0, R). Because the roots of f(x) are
1/e

open disc B(0, R) (for some R > 1) minus some closed discs and that SpN U(C

K-points, the elements of I \ {oo} have norm at least p*/¢. We partition the roots of f(x)

in B(0, R) by residue disc: SgNB(O,R) = anile- Notice that some of Ij’s may have only one

element. We can relabel these sets such that

(1) forj=1,...,k, |Ij| > 2 and |IJ~| is even;
(2) forj=k+1,...,¢, |Ij|22and IL| is odd; and
(3) forj=£+1,...,m,|IJ-|=1.

Forj=1,...,¢ pick B; € Al(K) \ U(K) in the same residue disc as the points in I (we
may even take ,Bj to be an element of Ij); and forj=¢+41,...,m,let ,8]- denote the unique

element of I;. Notice that 18ill, <1 for all j. Define

\L;1/2 forj=1,...,k
(L1 —1)/2 forj=k+1,...,¢

and set

gx) = [] &-8)p,

J=k+1

4
hx) =[x —B)Y,
j=1

¢ x—p
k() = HH(X_ﬂ.

=1 Bel; J

) [ -5

Beloo\{oo}
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Observe that f(x) = g(x)h(x)?k(x). Since g(x) has at most one root in each residue
disc and forj =1,...,k, the element ,Bj is not in the same residue disc as a root of g(x),

we have

lgBpll, =1forj=1,....k,

lg'Bpll, =1forj=k+1,...,¢

Set
y=r—t—
h(x)k(x)1/2"
Note that Wl(x)lﬂ is an analytic function on U by construction; so y?> = g(x) for

x € U defines a union of at most two basic wide opens in X2®. Write X for the complete
curve defined % = g(x). We may write )}'g(x) for X when the polynomial g(x) needs to be
specified.

We have

dx _ % dx
2y  h@k)1/2 2y

C!)iZX

We will expand w; in a power series on 7 ~!(U). We may write

ko =[] (1

)for]_l A,

Bel; J
ko= ] pa-g"'x,
BElx\{o0}
so k(x) = (HJ kj(X))koo(X). Now,
1 B — 1/2
- 1— _
ki(x)1/2 g( X — ) Z X — ﬂj)”
1 o0
oz = 1L CATPa-pT0m =D Bt
o BEIxo\{o0) =
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for some Bj,’s and B,,,'s. Then,

x X B, o
— = _din B Xn+i)
h(x)k(x)1/2 (Jllnz_;) (x — ﬁj)n+Lj)(,ZZ_;) oon
= 3 (e g gm)
- N1, M, Noo — 7
ny>Ly,...ng>Ly ! ¢ j=1 (x ,8) J
Moo=l

for some B, 's. We may bound these coefficients as follow.

e Moo

Proposition 7.1. There is a constant C such that

(noo*i)JrZJlf:l (njij)
”Bnllm,n(,nm”p = Cp e

Proof. First observe that because p # 2, the coefficients of

> 1 (2n
_ —1/2_2:

are p-adic integers. Since || — Bill, < p~1/¢ for each B € I, by the ultrametric triangle

I

inequality, we have ||B ij_”/ ¢ for some constant C;. By an identical argument, we

have

I1Baonlly < Cob™™°

for some constant C,,. By multiplying together our inequalities, we get the desired

conclusion. [ |

Consequently, the expression

L
1 dx
_ Noo -
w; = Z (Bm,..‘,ne,noox H (x — ) E) )
ni=Ly,...ng=Le J=1 ]
Noo>i

makes sense.
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Proposition 7.2. Let &; = x'%% dX . Then,

4
H <1,
(x— @WW
J=1 p
4
dx
PP, <1
IIX @WZY -
- p

where o is a point over any ;.

Proof. If @ is a point over some B;, set t = x — ;. Then, we have the following bounds

on the coefficients of these power series, considered as Laurent series in ¢:

_r b

(x =B, '
Ix"l, = 1,

N

(x—B)" v

Here, the last inequality follows from the observation that ||8; — Bill, = 1 for i # j.

Because the Gauss norm || - Il is multiplicative, for Laurent series f and g,

IPPGDIL, < Ifgll, = I, llgl,

from which the conclusion follows. An analogous arguments holds for oo

using t = 1/x. -

%1. Pick Rwith1 < R < p" and let

Proposition 7.3. Supposee <p—1andsetr= é -5

4
Dzmam\UB@me

i=1
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Algorithm 6: Computing Berkovich—Coleman integrals
Input:
e A holomorphic 1-form w on X?".
e Points z € U,,y € U,,.
e Apathy =ejes...epfromvtowin I

Output: Berkovich—Coleman integral of w from z to y along 7.
(1) For each i, compute the integrals

BC /P, BC Py,
w, w
Pitey) Pe;

on the basic wide opens Uyj(,) and Uy,), respectively.
(2) Compute the sum

BC 4 BC (P, BC Py,
/ w= E / w + / w .
Fow i=1 Pitey) Pe;

i

BC, P, BCy
/ w’ / w
T w

on the basic wide opens U, and U, respectively.
(4) Return

(3) Compute the integrals

The 1-form

B X dx
i Wk 2 25

has a Coleman primitive on 7 ~!(D) given as the sum of terms of the following form:

)4 s .
(1) aijmforl_1,...,£and]_1,2,...,
(2) ijJyfor]:O,l,...,
(3) C,fwiforizo,...,d—Z,and
(4) djvifori=1,...,k,

where f,, and f, are as in Proposition 6.9.

Proof. The coefficients for the power series expansion of w in (5) decay at the rate of
—N/e
p

uniformly on D. On the other hand, by Proposition 6.9, the coefficients of the primitives

where N =n + Zle n;. By examining the summands, we see that they converge
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of the summands (expressed in terms of the form (1)-(4)) grow slower than Np"/®—1,
We call the series produced by integrating the power series expansion, the series of
primitives. For any given term of the type (1)-(4), its coefficient is convergent in the
series of primitives.

We have to verify the hypotheses of Proposition 3.5 to show that the sum of the
series of primitives is equal to the primitive of the sum of the series. By construction, the
series of primitives is locally uniformly convergent. Moreover, for any lift of Frobenius
¢ and annihilating polynomial P, P(¢*) applied to the series of primitives converges
uniformly on a Frobenius neighborhood within D. Moreover, the restriction of the series

of primitives to boundary annuli is uniformly convergent.
|

Remark 7.4. While we employ the algorithms from [2] to integrate the 1-forms v;
on hyperelliptic basic wide opens, we can formulate a different integration algorithm
similar to the work of Tuitman [36, 37] using our techniques. Specifically, we can pick a
lift of Frobenius ¢ on a hyperelliptic basic wide open. By replacing the lift of Frobenius
by some power, we can ensure that it preserves the residue discs containing g,,..., 8,.
Consequently, ¢*v; can be written as a power series as in this section. By using the
techniques of the previous section, ¢*v; can be rewritten as a linear combination of
1-forms {wg, ..., wq_5,v1,..., v} and an exact form dh;. Consequently, one obtains a
matrix representing the action of Frobenius on odd cohomology and uses it to write

down p-adic integrals. We will explore this in future work.

8 Integration on Curves
8.1 Berkovich-Coleman integration on paths

We explain how to perform Berkovich-Coleman integrals on a hyperelliptic curve X",
Such an integral is to be done along a path y in X?". We will break up the path into
smaller paths lying in hyperelliptic basic wide opens. Fix a holomorphic 1-form » on
xan,

Let C be a semistable covering of X2" with dual graph I". For a vertex v of I, let
U, be the corresponding element of the covering. For e = vw, let U, be the corresponding
component of the intersection U, N U, . Pick a point P, in each U, and a point P, in each
U,. These are called reference points. For each oriented edge e, write i(e) and t(e) for

the initial and terminal point of e, respectively.
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Toapathy =e;e,...e,inT from v to w, we can consider the Berkovich-Coleman
integral of w from the reference point P, to the reference point P, along the path y. In
fact, because I is identified with the skeleton of X?", there is a unique path y,,, in X"
from P, to P, (up to fixed endpoint homotopy) whose image under r: X** — T" is y. We

have

BC BC/ P, BC/Pie;
/ w = Z / w + / w).
J;VW i P, Pei

i=1 iej)

Here the integral from P to P, is to be performed on Uj, and the integral from P, to
Py, is to be performed on U,,. Indeed, we can see the path y,,, as the concatenation
(over i) of the path from P;,, to P, in Uy, followed by the path from P, to Py,
in Uy,

Now, given x € U, y € U,, and a path y from v to w in I', we may consider the
Berkovich-Coleman integral of o from x to y along y. Indeed, it is the integral along any

path y from x to y tropicalizing to y:

BC BC/ Py BC BC,y
Z RS Yvw Py,

where the 1st and last integrals on the right side are performed on U, and U,
respectively. This integral is independent of the choices of reference points.
Finally, for a closed path y in I' at a vertex v, we may consider the Berkovich-

Coleman period

BC BC
[o=] o
v Yov

Again, this is independent of the choice of reference points. Indeed, it depends only on
the homology class of y.
This gives the following algorithm for performing Berkovich-Coleman integra-

tion of w. In particular, we can compute the periods of w around closed loops.

8.2 Abelian integration

We have an algorithm for computing abelian integrals on a hyperelliptic curve X using

Theorem 3.16 given a semistable cover C and its dual graph I'.
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Algorithm 7: Computing abelian integrals
Input:
e A holomorphic 1-form w on X.
e Points z,y € X(K).

Output: Abelian integral of w from x to y.

(1) Pick a path y in I" from v to w for vertices v, w such that x € U, and y € U,,.
(2) Compute the Berkovich—Coleman integral

BC
[
5

as in Algorithm 6.
(3) Pick a basis Cy, ..., C), for Hy(T'; Z) and a basis 7y, . . ., 7, of Qf,, (T') dual to

Ci,...,CY (see Remark 8.3).
(4) For each 1, pick a loop ~; in X** whose homology class is C;.
(5) Compute the Berkovich—Coleman periods

BC
/w7 t=1,...,h
-

as in Algorithm 6.
(6) Compute the tropical integrals

t
/’I’]”Z:].,,h
5
Ab py BC BC t
/w: /w—Z(/w) (/771>
@ ki i Vi v

(2

(7) Return

Remark 8.3. A basis of H;(I';Z) and a dual tropical basis can be obtained from the
tree T as in Proposition 4.16. Let C}, ..., C; be a basis of H,(T,, V,;Z) and let D}, ..., D},
be a dual basis with respect to (,-). Let C; = «(C}) and D; = %L(D;.) where ¢ is given in
Proposition 4.16. Then, by Proposition 4.17, {C;} and {n; = p,} form a basis of H(T'; Z)

and a dual tropical basis of 1-forms on I', respectively.

9 Numerical Examples

Here, we illustrate our methods with numerical examples computed in Sage [35]. But

first, we make the following remarks:

e Sage restriction. Let X be a curve defined over Q,,. An abelian integral on X
between Q,-rational points is an element of Q,. In our approach, such an

integral is expressed as a sum of other integrals, each of which is an element
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of a possibly different finite extension of Q,,. More precisely, reference points
corresponding to edges might lie in highly ramified extensions and taking
square roots might force us to work with unramified extensions. In Sage,
one can define these extensions individually, however, conversion between
p-adic extensions has not been implemented yet. In order to deal with this
restriction, in each of our examples, all computations will take place in a
single extension.

e Weierstrass endpoints. Let X be an odd degree hyperelliptic curve with
the Abel-Jacobi map ¢: X — J with base-point co. For Weierstrass points

R,S € X(Cy), the class [S] — [R] represents a 2-torsion point of J(C,) since
div(x — a) = 2(«, 0) — 200

for any root @ of the polynomial defining X. This implies by Remark 3.6
that the abelian integrals with Weierstrass endpoints must vanish. We will
observe this vanishing numerically to test the correctness of our algorithm.
e Branch of logarithm. As we discussed before, the Berkovich-Coleman inte-
gration requires a branch of the p-adic logarithm. We pick the Iwasawa
branch, that is, the one characterized by Log(p) = 0. Abelian integration does

not depend on this choice.

In the examples below, as usual, w; will denote the holomorphic 1-form Xigl—;‘ on

the corresponding curve.
Example 9.1. (Genus 1) Consider the elliptic curve X/Q [30, 272.b2] given by
V2 =fx) = (x — 6)(x — 5)(x + 11).

Its Mordell-Weil group is isomorphic to Z x Z/2Z x Z/2Z and the point P = (—3,24) is a
generator of the free part.

Hereafter, we consider X over the field Q,,; clearly this curve has split multi-
plicative reduction. Set R = (23,102),S = (7,6). Using the formal logarithm implemen-

tation in Sage [35], one can easily check

Ab,R
/ wg=12-17+8-172+15-173 +9-17* +16-17° +8-17° + 0(17"). 6)
S

We will compute this integral using our techniques and compare the results.
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The set {U;,U,} is a good semistable covering of P!® with respect to Sp =
{6,5,—11, 0o} where

U, =P¥\ B(6,1/17), U, = B(6,1)

and we have the dual graphs I'" and T

€
Ul U2
(D) 5 00 6 —11

respectively. Note that R € 7 ~1(U,), S € 7~} (U)).

The cycle C = e; + e, and the tropical 1-form 5 = %770 are as in Corollary 3.14.
Now, we pick reference points. Let P, and P, be points whose x-coordinates are 1
and —28, respectively; hence P, € 7~ (U;). Let P, and P,, denote the two different
points whose x-coordinates are both a + 6 where a® = 17. Notice that these points lie in
the intersection 7 ! Upn a1 (U,). We assume that the point P, lies in the component
corresponding to the edge e;.

We have

7 MUY > {(x,7) | 7P =x—5,x € Uy}

= X3\ D,, D; = {(x,7) | 7> = x — 5,x € B(6,1/17)}

where
.Y )
7= 0 =e-o(1e )
Define
P! — 5(5((5(—1)
oot ifT=0,

T+ if T = oo,

o
(%(T +a7) + 3. 5(T— ﬁ)) otherwise.
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This is a parametrization and induces an isomorphism
P\ (B(0,1/17) UB(-2,1/17)) ~ X2\ D;.
This annulus is isomorphic to a standard annulus by
A(1/17%,1) = PY@\ (B(0,1/17) UB(-2,1/17))

-2t
t—17

t

and, under these isomorphisms, the 1-form wg -1y, is represented on A(1/17%,1) by

Similarly, we have
Uy ~ {(%,7) | 7* = X(X + 1),% € B(0,17)}
= X241, \ D2, Dy = {(X,7) | J* = (X + 1), X € B(oo, 1/17))
where

. X—-6 _ )4
X = Iy:

o o 1/2
17 175(}}),Z(x)_(l—i—l7x) .

Define

1
P = Xiz

oot ifT=0,
T = oo~ if T = oo,

(%(T + ﬁ) — % %(T — %)) otherwise.
This is a parametrization and induces an isomorphism

P\ (B(0,1/17) UB(00,1/17)) =~ ng}ﬂ) \ D,.
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The annulus on the left is isomorphic to a standard annulus by

A(1/17%,1) = PY¥\ (B(0,1/17) UB(o0,1/17))

t — t/17

and, under these isomorphisms, the 1-form WO 2-1(1) is represented on A(1/172, 1) by

(t—17/2)2\-1/2dt
1+ ——= .
( + 2t ) 2t

Let y be the concatenation of a path from S to P, in 7~Y(U;) and a path from P,

to R in 7~ !(U,). Then 7(y) = e; and we have

BC
/a)0=15-a4+11-a6+12-a8+a10+11-a12+0(a14),
Y

Consider the loop y. = y;¥,¥3¥4 in X" where y, is a path from P, to P, in
n~1(U)), v, is a path from P, to P,, in =1 (U,), y; is a path from P,, to P,, in 71 (U,)
and y, is a path from P,, to P, in 7 !(U)). The paths are shown in a figure modified

from one in [28].

X&H
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The homology class of y is C and the period integral is
BC
/ wy=10-a?+12-a*+9-a® +5.-a® +4.a'° +4.4'? + 0(a'h.
e
Finally,
AbrR BC BC ¢
foeo = fen- (L) ()
S 14 ve €1
= 12-a’2+8-a*+15-a°+9-a®+16-a'°+8-a'? + 0(a'?

which is the same result as in (6) since a? = 17.
We also note that, using the addition law on elliptic curves, for each

i €{0,...,100} our methods give

Abr(6,0)+iP Abr(—11,0)+iP
(5,0)+iP (5,0)+iP

demonstrating the vanishing of integrals between points whose difference is torsion.
Example 9.2. (Genus 2) Let X/Q, be the genus 2 curve defined by
Y2 =f(x) =x(x—1)(x—2)(x — 3)(x — 7).

Set R = (0,0),S = (1,0); we already know that the abelian integral of w from S to R
vanishes for every holomorphic form w on X. Using our techniques, we will verify this
up to a certain precision.

The set {U;,U,} is a good semistable covering of P!#" with respect to
Sr={0,1,2,3,7, 00} where

U, =P\ B(0,1/7), U, = B(0, 1)

and we have the dual graphs I" and T

€
Ul UZ
ey 12 300 0 7

respectively. Notice that R € #~1(U,), S € x~}(U;).
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The cycle C = e; + e, and the tropical 1-form n = %770 are as in Corollary 3.14.
Again, we pick reference points. Let P, and P, be points whose x-coordinates are
—1 and 14, respectively; hence P, € 7~ 1(U;). Let P, and P, denote the two different
points whose x-coordinates are both a where a? = 7. Notice that these points lie in
the intersection 7 ! Upn a1 (U,). We assume that the point P, lies in the component
corresponding to the edge e; .

The analytic open 7 1 (U;) will be embedded into a good reduction elliptic curve.

In fact, we have
7N U) 2 {(x,7) 1 72 = (x— D(x—2)(x—3),x € Uy}
where

y=-2 z( L) —x(l _ ;)1/2.

In the new coordinates, the 1-form w; -1, is given by
(1= 1) Pl
x 2y

For the other component, we have

7N U, ~ (%, ) | 7* =%(x — 1),% € B(0, 7)}

=X, ) \D, D={&xP) | §* =X(Xx —1),% € B(oo,1/7)}
where
=X 5s__Y _ 12
= Y= 0 X)) = ((7% — 1)(7% — 2)(7% — 3))
Define

. ~
PP - Xz

oot ifT =0,
if T = o0,

oo™
(l(T +a7) + 5. 5(T— i)) otherwise
2 aT) T 212 aT :

This is a parametrization and induces an isomorphism

P!\ (B(0,1/7) UB(c0,1/7)) =~ a& p\D-
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The annulus on the left is isomorphic to a standard annulus by

A(1/7%,1) = P\ (B(0,1/7) UB(c0,1/7))

t — t/7

and, under these isomorphisms, the 1-form w is can be expressed on A(1/7%,1)

i1 (U2)
as

O L (e [ ) I

As in the previous example, take a path y from S to R such that t(y) = e; and a

take loop y, whose homology class is C. Then our computations give

B

(@]

wy=4-a*+2-a%4+2.a'%+5.a'%+ 0@,

w, =6-a?+6-a%+4-a'°+6-a'%+ 0@,

o]
NY
Il

~8 38

Q

a®+5-a®4+4.a'%+3.a'2% 4+ 0@,

@o

Q

5.a°4+a*+5-a°+a®+a'%+6-a'?+ 0@,

7 1
n=r,.
el 2

o1

Combining these, we get

Ab,R BC BC t
=T (1) (L) =0 =00
S y Yc €1

from which our aim follows as every holomorphic 1-form is a linear combination of w

and w;.

Example 9.3. (Genus 3) Let X/Q,4 be the genus 3 curve given by

y2 =fx)=x(x—13)(x—169)(x — 1)(x — 14)(x — 27)(x — 4).

120 Iudy 62 UO Jasn DXV - AUSIAIUN 81BIS OIUO A L Ly¥6G/2.ZEB_BULUIWIEGOL 0 |/I0P/S[OIME-80UBAPE/UIWI/LOY"ANO"0ILISPEDE//:SARY WO.) PAPEOIUMOQ



p-adic Integration on Bad Reduction Hyperelliptic Curves 61
The set {U;,U,,U;, U} is a good semistable covering of Plan with respect to
Sr=1{0,13,169,1,14,27, 4, oo} where
U, = P12\ (B(1,1/13) UB(0,1/13)),
U, = B(1,1),

U; =A(1/169,1), U, = B(0,1/13),

and we have the dual graphs I" and T

€3
e, e U, u, U U,
V2 V1 V3 Va / ; / \ / \
€, 1 14 27 4 13 0 169

respectively.
The cycle C = e; +e, and the tropical 1-form n = 7, are as in Corollary 3.14. Let
Py, ,P,, P, P, Dbe points whose x-coordinates are 2,20/7, —13/12,169/14, respectively;

vi'T vyl vy’
hence P, € 7~ 1(Uy. For an a such that a* = 13, let P, and P,, denote points whose

x-coordinates are a? + 1 and a?, respectively; and let Pe3 and P, be the two different
points whose x-coordinates are both 13a2. Notice that
P, e YUy Na~t(Uy), P, e x ' (U) N7 (Uy)

and that

P, P, en '(U) N~ (Uy).

e’

We assume that the point P, lies in the component corresponding to the edge e;.

The preimage 7~ (U;) will be embedded into a good reduction elliptic curve:
(U = {(x, ) | 7 = x(x — D)(x —4),x € Uy}

where

g 0=x (- 20200 20 2)
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The 1-form w; 1(Uy) is represented by

(454

-1/2 _i-1 d
((1_§)(1_g)(1_xl—31>(1_xz—61)) ;{—12_;'

Similarly, 7 ~!(U,) is also embedded into an elliptic curve:

7N U, ~ (%, ) | 7* =x(x — 1)(X — 2),% € B(0, 13)}
where

(%) = ((13% + 1)(13% — 12)(13% — 168)(13% — 3)) /.

Nl
w|
“<z

13f 30%) "

The 1-form w; 1(Uy) becomes

45

1/2dX

L(13§+1) ((13% 4 1)(13% — 12)(13% — 168)(13% — 3))~ %

V13

Now, 7! (U3) will be embedded into a rational curve:
7 (Us) > {(x,7) | * =x — 13,x € Uy}

where

169

2
7= (’;) 0(x) —X(l — ?) Y ((x — D(x — 14)(x — 27)(x — 4)) /2.
Under this isomorphism, the 1-form Oj1-1(17y) 18 represented by
( 169 1/2 i1 dx
1— —) ((x— 1)(x — 14)(x — 27)(x — 4)) /2122
X 2y

The analytic open 7 ~!(U,) will also be embedded into a rational curve:
7N Uy = (&, §) | §* = X% — 1), X € B(0,13))

where

%= 25, 7= e, LX) = ((169% — 13)(169% — 1)(169% — 14)(169% — 27)(169% — 4)) /2.

169-0(%) '
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In the new coordinates, the 1-form O -1(1y) becomes
~ ~ ~ ~ ~ 71/2 ~ ldi
((169X —13)(169x — 1)(169x — 14)(169x — 27)(169x — 4)) (169x) E

We start with verifying (up to a certain precision) that the abelian integral of w
vanishes between the Weierstrass points R = (13,0),S = (1,0). Note that R ¢ nfl(US)
and that S € 7 ~1(U,). Consider the concatenation y = y,y,y; where y, is a path from S
to P, in 71 (U,), y, is a path from P, to P,, in 7! (U,) and y; is a path from P,, to R in

7n~1(Us); hence t(y) = e;e,. Since the tropical integral of n along e, e, is 0, we have the

AbrR BC BC/Pe, BC/Pe, BC, R
s y s Pe, P,

€2

equality

Our methods yield

BC P,
/ w0=2-a_1+8~a+6~a3+9~a5+8~a7+3~a9+5-a11+0(a13),
S

BC/Pe,
/ a)0=4~a_1+6'a+3-a3+10-a5+8-a7+9'a9+11'a“+0(a13),
Pe,

BC/R
/ wo=7-a'+12-a+3-a*+5-a°+9-a’ +12-a° +8-a'' + 0™,

Pe,

from which we get

Ab/R
/ wy = 0(a'®)
S

as required.
To demonstrate our methods, we compute the abelian integral of w = w; + w,

between the following two points lying in different basic wide opens:

R=(13%2-13%+2.13* +10-13% + 11-13% + 0(13")) e 771 (U)),

S=(7,4+7-13%4+12-13*+6-13° + 0(13")) e x~1(U)).

Set y = y;¥,¥3 where y, is a path from S to P, in 7~Y(U,), y, is a path from P,, to P,,
in n‘l(U3) and y, is a path from P, toR in n_l(U4); thus t(y) = e,e;. For this path, we
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have
BC
/w:11+4-a2+2-a4+10-a6+6-a8+7~a10+8-a12+9~a14
Y

+9.-a%+11.a%49.42°+6-a%?+4-a** +10-a%*® + 0(a?®),

7 1
n=-.
() 2

Consider the loop y; = y;¥,¥3¥, in X®® where y, is a path from P,, to P,, in 71 (Us), y, is
a path from P,, to P, in 7~ !(U,), y; is a path from P,, to P,, in 7! (U,) and y, is a path
from P,, to P,, in 7 ~!(U,). The homology class of this loop is C and the period integral

is

BC
/ a):8~a2+7~a5+2~a10+6-a14+10~a18+8-a26+O(a28).
ve

Consequently, we have

Lo == 0L(0,0)

11+2-a*+6-a®+8-a'2+9-a'°+9.a%° +4.4% + 0a?®

11+2-13+6-132+8-133+9.13*+9.13%+4.13% + 0(137).

Example 9.4. (Chabauty—Coleman method) Consider the even degree hyperelliptic
curve X/Q [30, 3200.£.819200.1] defined by the equation

Pr=f@®=x-2x-x-DE*+x-1).

According to the database, this curve has exactly six rational points. In this final
example, we will identify the annihilating differential to be used in the Chabauty-
Coleman method at a prime of bad reduction. See the survey [32] (especially Appendix
A) for a detailed account of the method with many references.

The curve X has bad reduction at the prime 5 and its minimal regular model 2
over Zg is given by the same equation as the above Weierstrass model. The Chabauty-

Coleman bound [31, Corollary 1.11] (see also [29, Theorem 1.4] for a refinement) gives

#X(Q) < #25™(Fs) +2 =8
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where %fsm denotes the smooth locus of the special fiber of :Z". A point count in Magma

[5] reveals the set of all rational points of naive height bounded by 10°:
{oo*, 007, (1, 1), (—1,£1)} € X(Q). (7)

Another computation in Magma [5] shows that the Mordell-Weil rank of the Jacobian
of X is equal to 1. Therefore, in order to check whether or not the curve X has more
rational points, one can use [32, Theorem A.5.(1)]. The crucial step is to construct the
unique, up to a scalar multiple, annihilating differential on X. The fact that the known
rational points are all in different residue discs makes it necessary to compute non-tiny
integrals; this can be achieved by using of our techniques.

The set {U,, U,, U} is a good semistable covering of P13 with respect to the set
S; = {£v2,5(1 £/5), 3(~1 £ /5)}, where

U, = P\ (B(1/2,1/v/5) UB(~1/2,1/v5)),
U, =B(1/2,1),

U; =B(-1/2,1),

with dual graph T

U, U, Us

SN N

ta+v5 ta-v5 Vi vz L1445 t1-v5

Consider the points R = (1,—1) and S = (1,1), both belong to the space 7~ !(Uj).

Therefore, for every holomorphic 1-form » on X, we have the equality
Ab/R BC R
/ 0= / o.
s S
The basic wide open 7! (U,) is embedded into a rational curve:

7N U = (%, P) | 7P =x* —2,x € Uy}
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where

1/2
P =g 10 = (- 2) (e %)((1 T -5/32)2)(1 B (xf/l%z)) '

Under this isomorphism, the 1-form w is represented by

il =1(U)

5/4 5/4 Uz dx
<(1 (- 1/2)2)(1 Cx+ 1/2)2)) x2—1/42§

Our methods yield

BC/R
a:= / wy=2-5+5%+3.5°4+2.5" +2.5% + 4.5% 1 0(5'9),
S
BCrR
b:= / w, = 0(5'9),
S

which give the annihilating differential as
w =bwy — aw,.

It can be shown that the inclusion in (7) is actually an equality using the annihilating

differential w. In particular, we have
X(@ = {oot, 007, (1, £1), (=1, £1)}.

Remark 9.5. We end this example with a remark about the importance of Chabauty-
Coleman method at a prime of bad reduction. An illustration [29, Example 5.1] was
provided by the 1st-named author with Zureick-Brown. In this example, for a certain
curve X/Q that has bad reduction at 5, it is shown that 5 is the only prime at which
the refined Chabauty-Coleman bound [29, Theorem 1.4] is sharp. Hence, one cannot
determine the set X(Q) by using the Chabauty-Coleman bound at primes of good
reduction alone; it is necessary to work with a prime of bad reduction or to make use of

other techniques such as the Mordell-Weil sieve [14].
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