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In this paper, we introduce an algorithm for computing p-adic integrals on bad

reduction hyperelliptic curves. For bad reduction curves, there are two notions of p-adic

integration: Berkovich–Coleman integrals, which can be performed locally, and abelian

integrals with desirable number-theoretic properties. By covering a bad reduction

hyperelliptic curve with basic wide-open sets, we reduce the computation of Berkovich–

Coleman integrals to the known algorithms on good reduction hyperelliptic curves.

These are due to Balakrishnan, Bradshaw, and Kedlaya and to Balakrishnan and Besser

for regular and meromorphic 1-forms, respectively. We then employ tropical geometric

techniques due to the 1st-named author with Rabinoff and Zureick-Brown to convert

the Berkovich–Coleman integrals into abelian integrals. We provide examples of our

algorithm, verifying that certain abelian integrals between torsion points vanish.

1 Introduction

The theory of p-adic line integrals on analytic curves was introduced by Coleman [20,

21] to solve problems in number theory. In certain circumstances, it produces locally

analytic functions that vanish on rational and torsion points on an algebraic curve

X. These functions were originally defined by composing an Abel–Jacobi map ι on the

Communicated by Prof. Barry Mazur
Received April 2, 2020; Revised August 3, 2020; Accepted September 15, 2020

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa272/5944147 by O

hio State U
niversity - O

AR
D

C
 user on 29 April 2021



2 E. Katz and E. Kaya

analytification of X with the p-adic logarithm on the Jacobian J of X:

Because the Lie(J) is torsion-free, the torsion points of J(Cp) are necessarily taken to 0

on Lie(J). In the Chabauty–Coleman method [32], under conditions on the rank of J(Q),

the image of J(Q) lies in a proper linear subspace of Lie(J). In either case, one hopes to

find a linear function on Lie(J) whose pullback to the analytification Xan vanishes on

the points of interest. It was Coleman’s key insight that, for good reduction curves, the

function can be computed locally on Xan as an integral fω = ∫
ω for ω ∈ �1(X) = Lie(J)∨.

To define such an integral, one integrates ω on each residue disc and uses the Dwork

principle, analytic continuation by Frobenius, to match the integrals between residue

discs. Specifically, on an open affinoid subset U ⊂ Xan, one can find a lift of Frobenius

φ : U → U. Then, fω is determined up to a global constant by its being a local primitive

of ω, that is, dfω = ω and by its obeying a change-of-variables formula with respect

to φ: ∫ R

S
φ∗ω =

∫ φ(R)

φ(S)

ω.

The function fω is independent of the choice of φ. There are practical algorithms to

compute fω when p is odd, and they can be summarized as follows:

• Algorithms on odd degree hyperelliptic curves were developed in Balakrish-

nan–Bradshaw–Kedlaya [3]. By drawing on Kedlaya’s algorithm for comput-

ing the zeta function of hyperelliptic curves [26], one is able to choose an

explicit lift of Frobenius and write down its action on Monsky–Washnitzer

cohomology, a form of de Rham cohomology on affinoid spaces. One con-

siders H1
dR(U)−, the odd subspace of H1

dR(U), that is, the (−1)-eigenspace of

the hyperelliptic involution. Given a basis ω1, . . . , ωk of H1
dR(U)−, one writes

φ∗ωi = dfi + ∑
j Mijωj for constants Mij and meromorphic functions fi. From

knowledge of Mij, fi, and the action of φ on points R and S, one is able to

solve for
∫ R

S ωi. We also note that Best [11] has improved the complexity of

the integration algorithms introduced in [3].

• The paper [3] came with certain restrictions. One is only able to integrate

meromorphic 1-forms whose poles are in residue discs around Weierstrass

points. However, for some applications (e.g., computation of p-adic heights

on curves as in [18]), it is necessary to perform more general integrals. Such
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p-adic Integration on Bad Reduction Hyperelliptic Curves 3

an algorithm was provided in Balakrishnan–Besser [2] based on the theory of

local symbols [8].

• Another restriction in [3] is that the authors only deal with odd degree mod-

els; this restriction is inherited from [26] where it is used out of convenience.

Building on [25], in which Harrison adapted Kedlaya’s algorithm to even

degree case, Balakrishnan [1] extended the integration algorithms in [3] to

even degree models of hyperelliptic curves.

• All the methods above only deal with hyperelliptic curves. Algorithms to

carry out integration on more general curves were developed in Balakrish-

nan–Tuitman [15] based on the work of Tuitman [36, 37] that generalizes

Kedlaya’s algorithm to this setting. We note that these algorithms work only

for meromorphic 1-forms that are holomorphic away from the ramification

locus.

The theory of p-adic integration is also useful in the bad reduction case as was

demonstrated in the work of Stoll [34] and of the 1st-named author with Rabinoff and

Zureick-Brown [27]. Here, to bound the number of rational or torsion points independent

of the geometry of the curve, one is forced to work with primes of bad reduction.

In addition, there are some curves X/Q for which the upper bound on X(Q) coming

from Chabauty–Coleman method is achieved at primes of bad reduction (see, e.g.,

[29, Example 5.1]). Unfortunately, there are two different notions of p-adic integration:

the abelian integral arising from the p-adic logarithm and the Berkovich–Coleman

[7, 17] integral performed locally on the curve; see Section 3. It is the abelian integral

that is needed for applications, and it is the Berkovich–Coleman integral that can be

computed. Specifically, to compute the Berkovich–Coleman integral along a path, one

can cover the curve by basic wide opens, certain analytic open sets, each of which

can be embedded into a good reduction curve. The path is broken into segments, each

lying in a basic wide open. By picking a lift of Frobenius on each good reduction curve,

and performing the Berkovich–Coleman integral there, one can compute the integral

along each segment. This integral, however, may disagree with the abelian integral,

and indeed, it may be path dependent. These issues arise because the two notions of

integral differ on annuli. Indeed, the 1-form ω develops poles when extended to the

good reduction curve and one is forced to integrate logarithmic differentials of the form

dt/t. To perform such an integral, one must pick a branch of p-adic logarithm. The

ambiguity of this choice leads to the two notions of p-adic integration: a consistent

choice of p-adic logarithm gives the Berkovich–Coleman integral; an integration method
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4 E. Katz and E. Kaya

to force path independence gives the abelian integral. Fortunately, given the Berkovich–

Coleman integral and some information about the reduction type of the curve, one can

determine the abelian integral. Here, to compare the two integration theories, we follow

[27] which makes use of the tropical Abel–Jacobi map. There are other approaches: Stoll

[34] made a local analysis of the Abel–Jacobi map; Besser and Zerbes [16] made use of

p-adic height pairings [9].

While p-adic integration on bad reduction curves has been used to prove

theoretical results, the only available algorithms and examples have been on the Tate

curve. Having algorithms to compute abelian integrals allows one to carry out the

method of Chabauty–Coleman [32] at primes of bad reduction. Moreover, additional

refinements of such algorithms allow one to compute p-adic height pairings on curves

[9] and p-adic regulators in K-theory [10], again at primes of bad reduction. The

purpose of this paper is to provide an algorithm for computing abelian integrals on

bad reduction hyperelliptic curves for p > 2.

Our algorithm works by first computing the Berkovich–Coleman integral BC
∫

ω

and then correcting it to an abelian integral. We consider a hyperelliptic curve

interpreted as a map π : X → P1 given by y2 = f (x) for a polynomial f (x) defined over a

finite extension of Qp for p an odd prime. By examining the roots of f (x) and making use

of a Newton polygon argument, we are able to cover P1,an by open subspaces {Ui} such

that for each Ui one can find a good reduction hyperelliptic curve X̃i into which π−1(Ui)

embeds as the complement of finitely many closed discs. In the process of finding the

covering {π−1(Ui)}, we determine the dual graph � of the special fiber of a semistable

model of X and therefore its tropicalization.

We expand ω as a power series in certain meromorphic 1-forms on X̃i. We pick a

set of meromorphic 1-forms on X̃i that descend to a basis of the odd part of the de Rham

cohomology of π−1(Ui). Then, by a pole-reduction argument similar to work of Tuitman

[36, 37], we rewrite the terms in the power series as the sum of an exact form and a

linear combination of 1-forms in our basis. Then, one is able to perform the integral

using the techniques of [1–3]. This allows us to integrate ω between points of π−1(Ui).

The Berkovich–Coleman integral is path dependent but invariant under fixed

endpoint homotopy. The homotopy class of a path in Xan can be specified by its

endpoints together with a path in � between the tropicalizations of the endpoints.

From our knowledge of the intersections of the Ui’s and thus of the dual graph, we are

able to perform the Berkovich–Coleman integral along any path in Xan. In particular,

we can integrate 1-forms along closed paths to determine the Berkovich–Coleman

periods. Using them, together with a description of the tropical Abel–Jacobi map, we
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p-adic Integration on Bad Reduction Hyperelliptic Curves 5

can correct the Berkovich–Coleman integral along a path to the abelian integral between

its endpoints.

Our algorithm works in great generality; but implementing it in a computer

algebra system seems out of reach at present, even if we take the base field to be Qp.

There are two main reasons for this:

• Sage includes implementations of the integration algorithms in [1–3] when

the base field is Qp. However, the hyperelliptic curves X̃i above are generally

defined over non-trivial extensions of Qp.

• In our approach, it might be necessary to work with several extensions

of Qp at time same time. In Sage, Eisenstein and unramified extensions

are implemented; however, neither conversion between these extensions

nor general extensions are available. Unfortunately, Magma has the same

limitation.

We finally note that, when these obstacles are overcome, it should be possible to

implement our algorithm in Sage.

The paper is organized as follows. In Section 2, we introduce some notation.

Section 3 recalls Berkovich–Coleman and abelian integration and gives a formula for

converting between them. Section 4 discusses coverings of P1 and of hyperelliptic

curves. In Section 5, we describe how to integrate a particular basis of 1-forms on

hyperelliptic basic wide opens. Section 6 provides a pole reduction argument that allows

us to rewrite a 1-form with poles as the sum of an exact form and a linear combination

of our basis elements. The 1-forms on the hyperelliptic curve are expanded as a power

series on hyperelliptic basic wide opens in Section 7. We compute Berkovich–Coleman

integrals on paths and convert them into abelian integrals in Section 8. Section 9

provides a number of examples and verifies the vanishing of certain abelian integrals

between torsion points.

2 Preliminaries

Let p be an odd prime. Let Cp denote the completion of an algebraic closure of Qp. Let vp

be the valuation on Cp, normalized such that vp(p) = 1. It corresponds to the absolute

value ‖ · ‖p where ‖a‖p = p−vp(a). The field F̄p, the algebraic closure of Fp, is the residue

field of Cp. Let K be a complete field of finite residue degree over Qp with residue field

K. Unless otherwise noted, K will be a finite extension of Qp. Write R for its valuation

ring.
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6 E. Katz and E. Kaya

2.1 p-adic analysis

In general, we will use the language of Coleman [22] but will freely invoke Berkovich

spaces when convenient. See [27] for more details.

We write

B(a, r) = {z ∈ P1,an | ‖z − a‖p < r},
B(∞, r) = {z ∈ P1,an | ‖1/z‖p < r}.

We write B(a, r) for those sets when we replace the strict inequality with the nonstrict

one.

Analytic spaces are built by gluing affinoids. Given an affinoid of good reduction

V, let red: V → Vk be its reduction map. The preimage of a closed point under red is

a residue disc. In the case of P1,an, the residue disc about a ∈ A1(Cp) is B(a, 1) while

the residue disc about ∞ is B(∞, 1). A map φ : V → V is called a lift of Frobenius if it

induces the Frobenius map on Vk.

Definition 2.2. A wide open U is a rigid analytic space isomorphic to the complement

in a connected smooth complete curve X of finitely many closed discs.

Definition 2.3. A basic wide open U is a rigid analytic space isomorphic to the

complement in a connected good reduction complete curve of finitely many closed discs

each contained in a distinct residue disc.

Two types of basic wide opens will be used in this paper: rational and

hyperelliptic. A basic wide open is called rational (resp. hyperelliptic) if it lies in the

rigid analytic space associated to P1 (resp. a hyperelliptic curve).

We have the following elementary examples of (rational) basic wide opens. A

projective line with one closed disc removed is called an open disc, and such a space

is isomorphic to B(0, 1), the standard open disc. Similarly, a projective line with two

disjoint closed discs removed is called an open annulus; such a space is isomorphic to

a standard open annulus, that is, a space of the form

A(r, 1) = {z ∈ A1,an | r < ‖z‖p < 1}, r < 1.

Definition 2.4. An underlying affinoid of a basic wide open U is an affinoid

subdomain V ⊂ U such that the connected components of U \ V are annuli and are in

bijective correspondence with the ends of U. These annuli are called boundary annuli.
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p-adic Integration on Bad Reduction Hyperelliptic Curves 7

Note that underlying affinoids are necessarily of good reduction. We will need

to consider underlying affinoids within rational basic wide opens. Let U be an rational

basic wide open. For each closed disc Di, we may pick a slightly larger open disc D′
i (still

contained in a residue disc) containing Di. Then V = U \ (∪iD
′
i) is an underlying affinoid

[22, Corollary 3.5a] and U \ V is a finite union of annuli.

We recall some notions of analytic curves and their skeletons [12]. Let X

be a smooth, proper, geometrically connected K-curve. Let Xan denote the Berkovich

analytification of X [6]. Attached to a split semistable R-model X of X is a metric graph

�X called its skeleton. There is a retraction τ : Xan → �X. The vertices of �X correspond

bijectively to the irreducible components of the special fiber of X. Any curve admits

a split semistable model (and hence a skeleton) after making a finite extension of the

ground field K.

2.5 Differential forms

Let X/K be a curve of genus g.

Definition 2.6. A meromorphic 1-form on X over K is said to be of the 1st kind if it is

holomorphic, of the 2nd kind if it has residue 0 at every point, and of the 3rd kind if it

is regular, except possibly for simple poles with integer residues.

The exact differentials, that is, differentials of rational functions, are of the 2nd

kind. The K-vector space of differentials of the 2nd kind modulo exact differentials is

canonically isomorphic to H1
dR(X/K), the 1st algebraic de Rham cohomology of X/K.

2.7 Hyperelliptic curves

We will consider hyperelliptic curves defined by y2 = f (x), for a polynomial f (x) with

distinct roots. The curve has a compactification X with a degree 2 map π : X → P1. If

f (x) is of degree d, then X is of genus �d−1
2 �.

The curve X has a hyperelliptic involution extending w(x, y) = (x, −y). The fixed

points of the involution are the Weierstrass points. If d is even, then there are two

distinct points lying over ∞, and these points are non-Weierstrass; if d is odd, then

there is a single point lying over ∞, and this point is Weierstrass.

On X, we say that a residue disc (with respect to x) is said to be Weierstrass

(resp. non-Weierstrass) if it corresponds to a Weierstrass (resp. non-Weierstrass)
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8 E. Katz and E. Kaya

point. In the odd degree case, we also distinguish between finite and infinite Weier-

strass residue discs, which, respectively, correspond to finite and infinite Weierstrass

points.

3 Berkovich–Coleman and Abelian Integration

We will define Berkovich–Coleman and abelian integration and give a formula for

passing between them.

3.1 p-adic integration theories

In this subsection, we review p-adic integration theories, referring the reader to [27] for

details.

Let X be a smooth Cp-analytic space, and let P(X) be the set of paths

γ : [0, 1] → X with ends in X(Cp). Let �1(X) be the space of holomorphic 1-forms on X.

Definition 3.2. An integration theory on X is a map
∫

: P(X) × �1(X) → Cp satisfying

the following:

(1) If U ⊂ X is an open subdomain isomorphic to an open polydisc and ω|U = df

with f analytic on U, then
∫
γ

ω = f (γ (1)) − f (γ (0)) for all γ : [0, 1] → U.

(2)
∫
γ

ω only depends on the fixed endpoint homotopy class of γ .

(3) If γ ′ ∈ P(X) and γ ′(0) = γ (1), then

∫
γ ′∗γ

ω =
∫

γ

ω +
∫

γ ′
ω,

where γ ′ ∗ γ is the concatenation.

(4) ω 
→ ∫
γ

ω is linear in ω for fixed γ .

One such integration theory is Berkovich–Coleman integration BC
∫

which spec-

ifies a unique integral by fixing the integral on annuli and mandating a change-of-

variables formula. Here, one fixes a branch of p-adic logarithm, Log, and requires

(1) if X = Gan
m = Spec(Cp[t, t−1])an, then

BC∫ x

1

dt

t
= Log(x);
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p-adic Integration on Bad Reduction Hyperelliptic Curves 9

(2) if h : X → Y is a morphism, ω ∈ �1(Y) and γ ∈ P(X), then

BC∫
γ

h∗ω =
BC∫

h(γ )

ω.

Unfortunately, the Berkovich–Coleman integral is generally path-dependent: BC
∫
γ

depends on γ not just on its endpoints. However, when X is simply-connected, BC
∫
γ

is

path-independent by the homotopy invariance; in this case, we simply write BC
∫ y

x = BC
∫
γ

for any path γ from x to y.

For curves, uniqueness follows from covering the curve by basic wide opens

and annuli. A path can be rewritten as a concatenation of paths, each staying in an

element of the covering. The integral on basic wide opens is determined by the change-

of-variables formula using a lift of Frobenius. The integral on annuli is determined by

writing the restriction of the function as a two-sided power series and integrating term-

by-term (using Log(t) to antidifferentiate dt/t).

Remark 3.3. The Berkovich–Coleman integral is local in the sense that if U ⊂ X is an

analytic subdomain and γ : [0, 1] → U is a path in U, the integral BC
∫
γ

ω can be computed

from U, γ , and ω|U .

The Berkovich–Coleman integration has a useful characterization on basic wide

opens [17, Section 2]. On a basic wide open U, the Berkovich–Coleman integral is

univalent: given ω ∈ �1(U), there is a locally analytic function fω unique up to a global

constant such that

BC∫
γ

ω = fω(γ (1)) − fω(γ (0)).

We describe such fω. Fix a basic wide open U and ω ∈ �1(U).

Let V be an underlying affinoid of U and let A denote the set of annuli which are

the connected components of U \ V. A Frobenius neighborhood of V in U is a pair

consisting of a basic wide open W with V ⊂ W ⊂ U and a morphism φ : W → U

restricting to a lift of Frobenius on V.

For an open subdomain U ′ ⊂ U, let

ALog(U ′) = A(U ′)[{Log(f ) | f ∈ A(U ′)×}],
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10 E. Katz and E. Kaya

where A(U ′) is the set of analytic functions on U ′. Write L(U) for locally analytic

functions on U. Note that

ALog(E) ⊂ L(E) for each E ∈ A.

Let P(T) be a polynomial without roots-of-unity roots such that (after possibly shrinking

W to ensure P(φ∗) is well-defined) P(φ∗) annihilates (�1(U)|W)/dA(W). Such a polyno-

mial exists by the Weil conjectures for curves.

Lemma 3.4. ([17, Proposition 2.4.1]) The locally analytic function fω ∈ L(U) is

characterized up to addition of a global constant by the following properties:

(1) fω|E ∈ ALog(E) for each E ∈ A,

(2) dfω = ω, and

(3) P(φ∗)fω|W ∈ A(W).

Functions that satisfy the properties of the above lemma are said to be Coleman

analytic or to be a Coleman primitive of ω.

The following result which interchanges limits and integration follows from

applying the characterization to lim fωi
.

Proposition 3.5. For a basic wide open U and an underlying affinoid V in U, let A,

W and φ be as above. If {fωi
} be a sequence of locally uniformly convergent Coleman

analytic functions on U such that

1. {fωi
|E} converges uniformly in ALog(E) for each E ∈ A.

2. {ωi} converges uniformly in �1(U), and

3. {P(φ∗)fωi
|W} converges uniformly on W.

Then the locally analytic limit lim fωi
is a Coleman primitive of lim ωi on U.

Another approach to defining a p-adic integration theory on a curve is via the

p-adic Lie theory of its Jacobian. This was done in great generality by Zarhin [38] and

Colmez [23].

Let A be an abelian variety over Cp. Recall that every 1-form on A is translation-

invariant. In other words,

�1(A) = �1
inv(A).
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p-adic Integration on Bad Reduction Hyperelliptic Curves 11

The abelian logarithm on A is the unique homomorphism of Cp-Lie groups

logA(Cp) : A(Cp) → Lie(A)

whose linearization

d logA(Cp) : Lie(A) −→ Lie(Lie(A)) = Lie(A)

is the identity map. See [38] for the existence and uniqueness of logA(Cp). For x ∈ A(Cp)

and ω ∈ �1(A), we define

Ab∫ x

0
ω =

〈
logA(Cp)(x), ω

〉
,

where 〈·, ·〉 is the pairing between Lie(A) and �1(A). For x, y ∈ A(Cp), we set

Ab∫ y

x
ω =

Ab∫ y

0
ω −

Ab∫ x

0
ω.

We call Ab
∫

the abelian integral on A.

The abelian logarithm and the abelian integral are functorial under homomor-

phisms of abelian varieties: if h : A → B is a homomorphism, then

(1) dh ◦ logA(Cp) = logB(Cp) ◦ h,

(2) for ω ∈ �1(B) and x, y ∈ A(Cp),

Ab∫ y

x
h∗ω =

Ab∫ h(y)

h(x)

ω.

We may define an integration theory on a smooth, proper, connected curve X

over Cp by pulling back the abelian integral from its Jacobian J by the Abel–Jacobi map

ι : X → J with respect to a base-point x0 ∈ X(Cp). This integral depends only on the

endpoints of a path γ , but it is not local.

Remark 3.6. Because Lie(J) is torsion free, if x, y are points in X(Cp) such that [y]− [x]

represents a torsion point of J(Cp), then

Ab∫ y

x
ω = 0 for all ω ∈ �1(X).
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12 E. Katz and E. Kaya

3.7 Integral comparison

Following [27], we can compare the Berkovich–Coleman and abelian integrals. Let A be

an abelian variety over Cp and let π : Ean → Aan be the topological universal cover of

Aan. We have the Raynaud uniformization cross,

with exact row and column where M ′ is canonically isomorphic to π1(Aan) = H1(Aan; Z),

T is a torus and B is an abelian variety with good reduction. Let M be the character

lattice of T, so T = Spec(Cp[M]).

Let N = Hom(M, Z). There is a surjective group homomorphism, the tropical-

ization map trop: E(Cp) → NQ = Hom(M, Q). The restriction of trop to M ′ ⊂ E(Cp)

is injective, and its image trop(M ′) ⊂ NQ is a full-rank lattice in the real vector space

NR = Hom(M, R). We can define the real torus 
 = NR/trop(M ′) to be the skeleton of A.

The tropicalization map τ̄ : Aan → 
 is defined as the quotient of trop and fits into the

following commutative diagram:

The torus 
 is a deformation retract of Aan.

To compare the two integrals, we first define logarithms LogBC, LogAb :

E(Cp) → Lie(E). Using the isomorphisms,

Lie(E) ∼= �1
inv(E)∗ ∼= �1

inv(A)∗ ∼= �1(A)∗,
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p-adic Integration on Bad Reduction Hyperelliptic Curves 13

we define

LogBC : E(Cp) → Lie(E) LogAb : E(Cp) → Lie(E)

x 
→
[
ω 
→

BC∫ x

0
ω

]
x 
→

[
ω 
→

Ab∫ π(x)

0
ω

]
.

Proposition 3.8. ([27, Proposition 3.16]) The difference between the two logarithms

LogBC − LogAb : E(Cp) → Lie(E)

factors as

where L is a linear map.

Using the identification H1(Aan; Z) ∼= M ′ ∼= trop(M ′) and the inclusion

trop(M ′) ⊂ NQ, we have the following:

Lemma 3.9. The map L is characterized by the property that for any C ∈ H1(Aan; Z),

L(C) =
[
ω 
→

BC∫
γ

ω

]
,

where γ is any loop in P(Aan) whose homology class is equal to C.

Proof. Because the abelian logarithm is defined on A(Cp) (not just its universal cover

E(Cp)), we see that LogAb(M ′) = 0. Consequently, L(C) = LogBC(γ̃ (1)) where γ̃ is the lift

of γ in Ean based at the identity element in Ean(Cp). �

3.10 Tropical integration and the comparison formula

We will need to pull back the comparison between integrals to a curve X via its Abel–

Jacobi map ι : X → J. To do so, we will make use of the tropical Abel–Jacobi map which

was described using tropical integration by Mikhalkin–Zharkov [33] (see also [13, Section

3]) together with some results of Baker–Rabinoff [13]. The statement of the comparison

result is different from that given in [27].
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14 E. Katz and E. Kaya

Let � be a finite connected graph (usually taken to be a graph structure on the

skeleton of a curve Xan). We will parameterize each oriented edge e = vw by [0, 1] using

the coordinate t such that v corresponds to t = 0 and w corresponds to t = 1. By flipping

the orientation of the edge, we change the parameterization by t′ = 1 − t. We take each

edge of � to be of length 1.

Definition 3.11. A tropical 1-form on � is a function a : �E(�) → R from the set of

directed edges to the real numbers such that

(1) a(e) = −a(e) where e is e with the reversed orientation, and

(2) a satisfies the harmonicity condition: for each v ∈ V(�),

∑
e

a(e) = 0,

where the sum is over edges adjacent to v directed away from v.

Denote the space of tropical 1-forms on � by �1
trop(�).

To an oriented edge e = vw of �, let ηe be the function �E(�) → R that is 0 away

from e and takes the value 1 on e with the given orientation (and −1 on e). For a cycle

C = ∑
e aee ∈ H1(�; R), define

ηC =
∑

e

aeηe.

It is easily seen that ηC is a tropical 1-form.

Given a path γ specified as a sequence of directed edges γ = e1e2 . . . e�, we define

the tropical integral of a tropical 1-form η on γ by

t∫
γ

η :=
�∑

i=1

η(ei).

Moreover, we may extend the tropical integral to paths between points on �. To a path

between points p and q contained in an edge e, we define

t∫ q

p
η := η(e)(q − p),

where we identify e with [0, 1] by use of the orientation on e. Then, we extend tropical

integration to arbitrary paths by additivity of integrals under concatenation of paths.
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p-adic Integration on Bad Reduction Hyperelliptic Curves 15

For a closed path γ , this integral is seen to only depend on [γ ] ∈ H1(�; R).

Therefore, tropical integration gives a map

μ : H1(�; R) → �1
trop(�)∗

C 
→
[
η 
→

t∫
C

η

]
.

Recall that the cycle pairing 〈·, ·〉 on H1(�; R) ⊂ C1(�; R) is the pairing induced

from the inner product on C1(�; R) making the set of edges (oriented in some way) into

an orthonormal basis. In other words, this pairing takes cycles C and D to the length of

their oriented intersection.

The following is easily verified.

Proposition 3.12. Tropical integration is equal to the cycle pairing in the following

sense: for C, D ∈ H1(�; R),

t∫
C

ηD = 〈C, D〉.

This proposition implies that the map μ is an isomorphism because the cycle

pairing is nondegenerate on H1(�; R).

Corollary 3.13. Any cohomology class in H1(�; R) can be represented by a tropical

1-form: for any c ∈ H1(�; R), there is a tropical 1-form η such that

c(D) =
t∫
D

η

for any D ∈ H1(�; R).

Corollary 3.14. There exists a basis C1, . . . , Ch of H1(�; R) and a basis η1, . . . , ηh of

�1
trop(�) such that

t∫
Ci

ηj =
⎧⎨⎩1 if i = j,

0 if i �= j.

Now, let X be a smooth, proper, connected curve over Cp with skeleton �. Note

that � is a deformation retract of Xan. Let J be its Jacobian. We can identify the real

torus 
 from �.
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16 E. Katz and E. Kaya

Proposition 3.15. There is an isomorphism of real tori


 ∼= �1
trop(�)∗/μ(H1(�; Z)).

Proof. Because the Abel–Jacobi map ι induces an isomorphism ι∗ : H1(Xan; R) →
H1(Jan; R), we have a sequence of isomorphisms,

NR
∼= trop(M ′) ⊗ R ∼= H1(Jan; R) ∼= H1(Xan; R) ∼= H1(�; R) ∼= �1

trop(�)∗.

Under the composition, trop(M ′) is mapped to μ(H1(�; Z)). �

Let P0 be a base-point of �. Now, if we let �̃ denote the universal cover of � with

a base-point P̃0 over P0, tropical integration gives a map

β̃ : �̃ → �1
trop(�)∗

Q̃ 
→
[
η 
→

t∫ Q̃

P̃0

η :=
t∫
γ

η

]
,

where γ is the image in � of the unique path in �̃ from P̃0 to Q̃. The map β̃ descends to

quotients giving the tropical Abel–Jacobi map

β : � → �1
trop(�)∗/μ(H1(�; Z)) ∼= 
.

The tropical Abel–Jacobi map map is equal to the tropicalization of the Abel–Jacobi map

in the following sense. Let ι : X → J be the Abel–Jacobi map with respect to x0 ∈ X(Cp).

Let τ : Xan → � be the tropicalization map and set P0 = τ(x0). By a result of Baker–

Rabinoff [13, Proposition 6.1], the following diagram commutes:

Now, we can give a comparison theorem for Berkovich–Coleman and abelian

integrals.

Theorem 3.16. Let Xan be a connected, smooth, compact analytic curve over Cp with

skeleton � and retraction τ : Xan → �. Let x0 ∈ X(Cp) be a base-point and set P0 = τ(x0).
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p-adic Integration on Bad Reduction Hyperelliptic Curves 17

Let C1, . . . , Ch and η1, . . . , ηh be as in Corollary 3.14. Let γ1, . . . , γh be loops in Xan whose

homology classes are C1, . . . , Ch, respectively. The following formula holds: for x ∈ X(Cp),

pick a path γ in Xan with γ (0) = x0 and γ (1) = x, then

BC∫
γ

ω −
Ab∫ x

x0

ω =
∑

i

(BC∫
γi

ω

)(t∫
τ(γ )

ηi

)

for every holomorphic 1-form ω.

Proof. Let X̃an be the topological universal cover of Xan. We have a commutative

diagram

Now, consider the image of the lift γ̃ (1) of x under the maps in the top row, evaluated

on ω. It suffices to show that L ◦ β̃ : �̃ → Lie(E) = �1(Xan)∗ is given by

Q̃ 
→
[
ω 
→

∑
i

(BC∫
γi

ω

)(
t∫ Q̃

P̃0

ηi

)]
.

Under the identification �1
trop(�)∗ ∼= H1(�; R), we claim that for Q̃ ∈ �̃, we have

β̃(Q̃) =
∑

i

(
t∫ Q̃

P̃0

ηi

)
Ci.

This is true after evaluating by ηj ∈ �1
trop(�) ∼= H1(�; R) ∼= H1(
; R)∗ ∼= M ⊗ R:

ηj(β̃(Q̃)) =
t∫ Q̃

P̃0

ηj =
∑

i

(
t∫ Q̃

P̃0

ηi

)
ηj(Ci).

Because the ηj’s form a basis for �1
trop(�), the claim follows.
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18 E. Katz and E. Kaya

Applying L, we see

L(β̃(Q̃)) =
[
ω 
→

∑
i

( t∫ Q̃

P̃
ηi

)(
L(Ci)(ω)

)]

=
[
ω 
→

∑
i

( t∫ Q̃

P̃
ηi

)( BC∫
γi

ω

)]

by Lemma 3.9. �

4 Coverings of Curves

4.1 Semistable coverings

Given a finite set of Cp-points S on P1, we will define a covering of P1,an by rational basic

wide opens with respect to S. This will allow us to define a covering of the hyperelliptic

curve y2 = f (x) by hyperelliptic basic wide opens when we set S to be the roots of f (x).

We follow [17, 19] in using the notion of semistable covering.

Definition 4.2. Let Y be a smooth, compact, connected analytic curve over Cp. A

covering C of Y is an admissible finite covering by distinct wide open subspaces of

Y. The dual graph �(C) of the covering is a finite graph whose vertices correspond to

elements of C such that the edges between U and V correspond to components of U ∩ V

while the self-edges at U correspond to ordinary double-points in the reduction of U.

The covering is said to be semistable if, in addition,

(1) If U, V, W ∈ C then U is disconnected from every component of V ∩ W,

(2) If U ∈ C then U◦ = U\⋃V �=U V is a non-empty affinoid subdomain in U whose

reduction U◦
k is absolutely irreducible, reduced, and has no singularities

except ordinary double-points, and

(3) The genus of Y obeys

g(Y) =
∑
U∈C

g(U◦
k) + b1(�(C)),

where b1(�(C)) is the 1st Betti number of �(C).

We say that an element U ∈ C is good with respect to a subset S ⊂ Y(Cp) if there is

an embedding into a compact good reduction curve, ι : U → YU such that the points
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p-adic Integration on Bad Reduction Hyperelliptic Curves 19

of ι(S ∩ U(Cp)) lie in distinct residue discs. We say C is good with respect to S if each

element of S belongs to at most one element of C and each U ∈ C is good with respect

to S. The dual graph �(C, S) of the covering with respect to S is obtained from �(C) by

attaching half-open edges corresponding to elements of S to the vertices corresponding

to the elements of C containing them.

4.3 Rational coverings

We discuss the existence of good semistable coverings of P1,an with respect to a given

set of points S ⊂ P1(Cp). If S contains only one element, then this is clear. From now on,

let us assume that S has at least two elements.

Theorem 4.4. Let S ⊂ P1(Cp) be a finite set. There is a good semistable covering C of

P1,an with respect to S.

We will prove Theorem 4.4 by an inductive argument making use of Lemma 4.5.

We will produce a dual graph attached to the covering as we proceed. To do so, we

introduce semistable coverings of open discs by rational basic wide opens. They are

defined as above except condition (3) is replaced by the condition

g(Y) =
∑
U∈C

g(U) + b1(�(C)),

where g(U) = 0 for a rational basic wide open U. This mandates that �(C) is a tree. The

embeddings ι : U → P1,an will be linear fractional transformations.

Lemma 4.5. Let R ∈ ‖C∗
p‖p and β ∈ A1(Cp). Set Y = B(β, R). For any non-empty finite

subset S of Y(Cp), there is a good semistable covering CY of Y with respect to S. The dual

graph of the covering respect to S is a rooted tree TY .

Proof. Write S = {α1, . . . , αn}. By translating by −α1, we may assume that α1 = 0. If the

set S has at least two elements, by scaling, we may assume that maxi�=1(‖αi‖p) = 1.

We induct on n. If n ≤ 2, then all the points of S are in distinct residue discs,

and we may let CY = {Y}. The tree attached to this covering is a single vertex with a

half-open edge for each element of S.

Let n > 2. Not all elements of S are in a single residue disc. Let I1, . . . , Im be

the partition of S according to which residue disc a point belongs. For each i such that

|Ii| ≥ 2 pick a point βi ∈ Ii. Let Ri be the largest element of ‖C∗
p‖p such that B(βi, Ri)∩S = Ii
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20 E. Katz and E. Kaya

(so that B(βi, Ri) contains some point of S \ Ii). Set Yi = B(βi, Ri) and Si = Ii. Because

|Ii| < n, Yi has a good semistable covering CYi
with respect to Si. Now, let

U = Y \
⊔

i:|Ii|≥2

B(βi, ri),

where ri is the smallest element of ‖C∗
p‖p such that B(βi, ri) ∩ S = Ii. The covering CY is

defined as

{U} ∪
⋃

i:|Ii|≥2

CYi
.

Because there is at most one element of S in every residue disc of U, U is good with

respect to S. Moreover, since each element of S is either contained in U or in exactly one

element of the covering CYi
for some i, the covering CY is good with respect to S.

Denote the rooted tree corresponding to the covering CYi
by TYi

. Consider the tree

whose root is U and where U is connected to the roots of TYi
for each i with |Ii| ≥ 2. To

obtain TY from this tree, attach to U half-open edges corresponding to Ii with |Ii| = 1.

These half-open edges correspond to the points of S that are contained in U. �

Proof of Theorem 4.4. Write S = {α1, . . . , αn}. Let S′ be the elements of S contained in

A1(Cp), and let r be the maximum of their p-adic absolute values. Pick R ∈ ‖C∗
p‖p with

R > r and set Y = B(0, R). Using Lemma 4.5, find a good semistable covering CY of Y

with respect to S′ and its rooted tree TY . This covering together with U = P1,an \ B(0, r)

is our desired covering C.

The dual graph �(C, S) is obtained by adjoining the vertex corresponding to

U to the root of TY and then attaching the half-open edge corresponding to ∞ to U

if ∞ ∈ S. �

One can see from general considerations or by examining the above construction

that the intersection of two distinct elements of the semistable cover is either empty or

an annulus.

Notice that the dual graph �(C, S) is also a tree. From now on, we will denote

this tree by T.

Remark 4.6. The covering and graph can be constructed intrinsically using Berkovich

spaces [12]. The tree T consists of the type II and type III points of P1,an corresponding
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p-adic Integration on Bad Reduction Hyperelliptic Curves 21

to discs of the form B(α, r) for α ∈ P1(Cp) such that at least one point of S is contained

in each of B(α, r) and P1,an \ B(α, r).

The covering can be obtained by taking a semistable vertex set as in [12].

It consists of the type II points of the form B(βi, ri) as constructed in the above

algorithm.

The following is straightforward:

Lemma 4.7. The dual graph T is a graph structure on the skeleton of P1,an \ S.

Remark 4.8. The above lemma can be proved in several ways. One can use the

semistable vertex set to identify the skeleton as in [12, Section 3]. Alternatively, one

can construct a semistable model from the semistable covering [19, Theorem 1.2] and

obtain the skeleton by [12, Section 4].

Let f (x) be a non-constant polynomial with coefficients in K. We define the roots

of f (x) to be the usual zeroes of f (x) together with ∞ if f (x) has odd degree and write

the set of roots as Sf . Lemma 4.5 and Theorem 4.4 can be turned into an algorithm for

constructing a good covering of P1,an with respect to Sf . A priori, it looks as it would

be necessary to exactly solve for the roots of f (x). However, this can be avoided. First,

we can approximate a root and use a translation to put it in B(0, 1). Then, we can find

the valuation of the roots by using the theory of Newton polygons. We can rescale x

by an element of Cp to make sure that the largest absolute value of the roots is 1.

Indeed, the polynomial f (x) has a root of valuation s if and only if its Newton polygon

has a segment of slope −s. This segment corresponds to roots of p-adic absolute value

equal to p−s. After these reduction steps, the methods in the proof of Lemma 4.5 are

still applicable.

Algorithm 1 produces a good semistable covering of P1,an with respect to the

roots of f (x), by following the proof of Theorem 4.4.

4.9 Hyperelliptic coverings

Let π : Xan → P1,an be the analytification of the proper hyperelliptic curve defined

by y2 = f (x). Using ideas similar to those of Stoll in [34], we will show that any good

semistable covering of P1,an with respect to the roots of f (x) induces a good semistable

covering of Xan with respect to the Weierstrass points by taking inverse images. This
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22 E. Katz and E. Kaya

covering will have a nice combinatorial structure whose dual graph � is a double cover

of the dual graph T of the covering of P1,an.

For a polynomial f (x), write the roots as Sf = {α1, α2, . . . , αn}. Recall that, if f (x)

is of odd degree, we follow the convention of counting ∞ as one of its roots. In any case,

f (x) has an even number of roots. If f (x) has distinct roots, the curve y2 = f (x) has a

compactification as a nonsingular curve X. If the roots of f (x) are distinct mod p, then

X has good reduction over some extension of Qp.

We will need the following observation:
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p-adic Integration on Bad Reduction Hyperelliptic Curves 23

Lemma 4.10. Let R ∈ ‖K∗‖p. Let h(x) ∈ K[x] be a polynomial. Let D1, . . . , Dm be disjoint

closed discs in B(0, R) the union of whose interior contains Sh ∩ B(0, R). Suppose that an

even number of roots of h(x) is contained in each Di. Then h(x) has an analytic square

root on B(0, R) \ (⋃i Di

)
.

Proof. We work with one disc of D1, . . . , Dm at a time, beginning with a disc D. Write

D = B(γ , r). Let α1, . . . , α2� be the roots of h(x) contained in D. Then,

( 2�∏
i=1

(x − αi)

)1/2

= (x − γ )�
2�∏

i=1

(
1 − αi − γ

x − γ

)1/2

converges away from D. Now, if α1, . . . , α� ∈ Cp are the roots of h(x) in A1,an \B(0, R), then

( �∏
i=1

(x − αi)

)1/2

=
�∏

i=1

(
(−αi)

1/2
(

1 − x

αi

)1/2
)

converges on B(0, R). By multiplying these functions, we get the desired square root of

h(x). �

Proposition 4.11. Let U ⊂ P1,an be a rational basic wide open that is good with respect

to Sf , then π−1(U) is the union of at most two basic wide opens.

Proof. We will find a new coordinate ỹ and a polynomial g(x) whose roots lie in

distinct residue discs such that

π−1(U) � {(x, ỹ) | x ∈ U, ỹ2 = g(x)}.

We view U as a subset of P1,an where we have made a fractional linear

transformation to ensure that the roots of f (x) contained in U are in distinct residue

discs. We can suppose that either U = P1,an or that U ⊂ B(0, R) for some R ∈ ‖K∗‖p

with R ≥ 1. If U = P1,an, then π−1(U) = X̃ is a good reduction curve. Otherwise, write

D1, . . . , Dm for the closed discs contained in B(0, R) (each contained in a distinct residue

disc) in which f (x) has multiple roots in their interior.

We factor f (x) = g(x)h(x) where

(1) the polynomial g(x) only has roots in B(0, R),

(2) the polynomial g(x) has at most one root in each residue disc, and

(3) the polynomial h(x) has an even number of roots in each Di.
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24 E. Katz and E. Kaya

Let �(x) be a square root of h(x) on U which exists by Lemma 4.10, and set ỹ = y
�(x)

.

Because �(x) is non-vanishing on U, the map

(x, y) 
→ (x, ỹ)

is invertible for x in U hence gives the desired isomorphism.

We now consider the complete curve π̃ : X̃ → P1 given by compactifying ỹ2 =
g(x). Because the roots of g(x) lie in distinct residue discs, X̃ has a smooth model over

R, the valuation ring of some field K. Since X̃ has good reduction, we need only show

that π−1(U) is a basic wide open. If g(x) is of degree 0, X̃ is the union of two copies of

P1. In this case, π−1(U) is isomorphic to two copies of U. If g(x) is of positive degree, we

must identify π−1(U).

Write U = P1,an \ (⋃m
i=1 Di ∪ D∞

)
for closed discs D1, . . . , Dm, each contained in

a residue disc where D∞ is a disc of the form P1,an \ B(0, R′) for some R′ > 1. We need

to identify π̃−1(Di). As we discussed, the polynomial g(x) has at most one root in each

Di. Consider the case where g(x) has no roots in Di. Then g(x) has an analytic square

root on Di, and π̃−1(Di) is the union of two disjoint closed discs, each isomorphic to

Di. Now, consider the case where g(x) has exactly one root in Di. By a fractional linear

transformation, we may suppose that g(x) = x. Then the closed disc Di is of the form

{x | ‖x‖p ≤ r} for some r ∈ G. Consequently,

π−1(Di) = {(x, ỹ) | x ∈ Di, ỹ2 = x} = {ỹ | ‖y‖p ≤ r1/2}

is a closed disc. This lies in a residue disc in the model over R. A similar argument

applies to D∞. It follows that

π−1(U) = X̃ \
(

m⋃
i=1

π̃−1(Di) ∪ π−1(D∞)

)

is a basic wide open. �

Observe that in the above, X̃ has either one or two components according to

where g(x) is degree 0 or not. We immediately see that π−1(U) is disconnected exactly

when f (x) has no roots in U and has an even number of roots in each deleted disc Di. In

this case, we say that U is even. Otherwise, we say that it is odd.

The double cover of an annulus (such as one arising as a component of the inter-

section of two elements of a semistable covering) given by y2 = f (x) is the following.
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p-adic Integration on Bad Reduction Hyperelliptic Curves 25

Lemma 4.12. Let A be an annulus in A1,an ⊂ P1,an. Suppose that Sf is disjoint from A.

Then π−1(A) = {(x, y) | x ∈ A, y2 = f (x)} is

(1) the union of two disjoint annuli if Sf has an even number of elements in each

component of P1,an \ A,

(2) an annulus if Sf has an odd number of elements in each component of P1,an \
A.

Proof. By a fractional linear transformation, we may reduce to the case where

A = {x | 1 < ‖x‖ < r} for some r > 1. As in the proof of Proposition 4.11, we can reduce

to the case where π−1(A) = {(x, ỹ) | ỹ2 = g(x), x ∈ A} where g(x) is of degree at most 1.

If g(x) is of degree 0, then we are in case (1). If g(x) is of degree 1, we can reduce to the

case where g(x) = x. Then, π−1(A) is given by {ỹ ∈ A1,an | 1 < ‖y‖ < r1/2}, and we are in

case (2). �

We refer to an annulus A as even or odd according to whether π−1(A) is

disconnected or connected.

If C is a semistable covering of P1,an that is good with respect to Sf , we

can produce a semistable covering D of Xan that is good with respect to the set of

Weierstrass points W. We let D be the set of components of π−1(U) as U ranges over

elements of C. In the case that U ∈ C is even, π−1(U) will have two components which

will give two elements of the covering of Xan. Let Y1 and Y2 be two distinct elements of

D; put Ui = π(Yi) for i = 1, 2. There are three possibilities for the intersection Y1 ∩ Y2;

it is

(1) empty if U1 = U2 or U1 ∩ U2 is empty,

(2) an annulus if U1 ∩ U2 is an odd annulus,

(3) the union of two disjoint annuli if U1 ∩ U2 is an even annulus.

Let �(D, W) be the dual graph of the covering D with respect to W. We will give

a description of �(D, W) in terms of T similar to [34, Section 6]. The dual graph will

have both closed edges and half-open edges. Unless noted otherwise, edges are taken to

be closed. We first designate half-open edges, edges and vertices of T as even or odd.

All half-open edges of T are odd. An edge of T is even exactly when the corresponding

annulus is even. A vertex of T is even exactly when all of its adjacent edges are even. For

a vertex v, its genus is the integer g(v) satisfying

2g(v) − 2 = −4 + no(v),
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26 E. Katz and E. Kaya

where no(v) are the number of odd edges (including half-open edges) adjacent to v.

Observe that even vertices have genus equal to −1 (corresponding to a disjoint union

of two P1’s). By the Riemann–Hurwitz formula, g(v) is the genus of the good reduction

curve in which π−1(U) will be embedded.

Definition 4.13. To T, we may attach a graph �. Let � be the graph whose vertex set

consists of

(1) one vertex ṽ for each odd vertex v of T; and

(2) two vertices ṽ+, ṽ− for each even vertex v of T

whose edge set is

(1) one edge ẽ for each odd edge e of T;

(2) two edges ẽ+, ẽ− for each even edge e of T; and

(3) one half-open edge ẽ for each half-open edge e of T.

For each adjacent pair (v, e) of T with v and e odd, we declare ṽ and ẽ adjacent.

If v is odd and e is even, we declare ṽ and ẽσ adjacent for σ = +, −. If v and e are even,

we declare ṽσ and ẽσ adjacent for σ = +, −. Because a half-open edge e is only attached

to an odd vertex v of T, the corresponding half-open edge ẽ is attached to the vertex ṽ

of �.

There is a natural map π : � → T taking ṽ or ṽ+, ṽ− to v and ẽ or ẽ+, ẽ− to e.

Example 4.14. As an illustration, consider the following tree T:

The edges e2, e3 and the vertex v3 are even; all the others are odd. Here is the

corresponding graph �:
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p-adic Integration on Bad Reduction Hyperelliptic Curves 27

By unwinding the description of �, we have the following proposition (from

which one sees that � is a graph structure on the skeleton of Xan \ W by reasoning

identical to that of Remark 4.8):

Proposition 4.15. The dual graph �(D, W) is equal to �.

Let Te be the union of even edges of T and let Vo be the odd vertices of T that

are adjacent to even edges. We will describe the 1st homology group of � in terms of the

relative homology group H1(Te, Vo; R) which is given as the kernel of the map

∂ : C1(Te; R) → C0(Te; R)/C0(Vo; R).

Define a map ι : C1(Te; R) → C1(�; R) by e 
→ ẽ+ − ẽ−.

Proposition 4.16. The map ι induces an isomorphism ι : H1(Te, Vo; R) → H1(�; R).

Proof. Define a map κ : C1(�; R) → C1(Te; R) by

κ(ẽ) = 0, κ(ẽ+) = e, κ(ẽ−) = 0.

We first show that κ maps H1(�; R) to H1(Te, Vo; R). Let C ∈ H1(�; R). For an even vertex

v, π is an simplicial homeomorphism of the open star of ṽ+ onto its image. Because the

coefficient of ṽ+ in ∂C is zero, the coefficient of v in ∂(κ(C)) is also zero. Consequently,

we have κ(C) ∈ H1(Te, Vo; R).

Now, we claim that κ and ι, considered as maps between H1(�; R) and

H1(Te, Vo; R), are inverses of one another. Clearly κ ◦ ι is the identity. We claim ι ◦ κ

is the identity. If C = ∑
e aee is a cycle in �, then π∗(C) = 0 in H1(T; R). The only way that

this can occur is if aẽ = 0 for all edges ẽ and aẽ+ = −aẽ− for all pairs (ẽ+, ẽ−) above an

even edge e. From this we can conclude that C = ι(κ(C)). �

The following relation between the cycle pairing on (Te, Vo) and that on � is

straightforward:

Proposition 4.17. Let C, D ∈ H1(Te, Vo; R). Then 〈ι(C), ι(D)〉 = 2〈C, D〉.
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28 E. Katz and E. Kaya

5 Integrals on Hyperelliptic Basic Wide Opens

5.1 1-forms on hyperelliptic basic wide opens

Let X be a hyperelliptic curve defined by y2 = f (x). In Section 4.9, we explained how to

construct a semistable covering of Xan by hyperelliptic basic wide opens. In this section,

we summarize Berkovich–Coleman integration algorithms on these spaces. We note that

these are ordinary Coleman integrals; in particular, they are path-independent.

We fix a covering as above and consider an element Y of this covering. Let ω be

an odd holomorphic 1-form on Y. Recall that odd means that the hyperelliptic involution

acts on ω as multiplication by −1.

If the space Y is isomorphic to the standard open disc (resp. a standard open

annulus) with parameter t, then ω pulls back as F(t)dt where F(t) is a power (resp.

Laurent) series. In this case one can compute the integral by antidifferentiating.

For other spaces, in order to make use of the existing explicit methods, we

need to pass to a good reduction curve. By the proof of Proposition 4.11, the space Y

is isomorphic to a basic wide open space Z inside the good reduction curve X̃an given by

y2 = g(x) for some polynomial g(x) of degree d. Note that if d is odd, then d = 2g + 1,

and if d is even, d = 2g+2 where g is the genus of X̃. We will suppose that g(x) ∈ K[x] for

some finite extension K of Qp. As we will discuss in Section 7, the form ω pulls back to

Z as an odd 1-form that can be expressed as a series of odd 1-forms. By Proposition 3.5,

we can interchange the order of summation and integration. Thus we need to integrate

terms in this series. Let η denote such a term. Using the change-of-variables property

for Berkovich–Coleman integrals, it suffices to compute the integral of η on Z. On the

other hand, we will see that the form η extends to X̃ as a meromorphic form with

poles outside of Z and by Remark 3.3 we can perform this integral on the complete

curve X̃.

If we write Z = X̃an \ (⋃r
i=1 D′

i

)
for closed discs D′

1, . . . , D′
r (which arise as

preimages of discs closed in P1,an), then by [22, Propositions 4.3, 4.4] (see also the

discussion in [27, Theorem 2.24]) the sequence

0 → H1
dR(X̃) → H1

dR(Z)

⊕
Res−−−−→

r⊕
i=1

Cp

∑
−→ Cp → 0

is exact where Res takes the residue around the D′
i’s and 
 is summation. If we let the

superscript “−” denote the (−1)-eigenspace of the maps induced by the hyperelliptic
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p-adic Integration on Bad Reduction Hyperelliptic Curves 29

involution, we have the short exact sequence

0 → H1
dR(X̃)− → H1

dR(Z)− ⊕Res−−−→
(

r⊕
i=1

Cp

)−
→ 0, (1)

which says that in order to obtain a spanning set for the odd part of the 1st de Rham

cohomology of Z, we only need to adjoin 1-forms with poles in the D′
i’s to a basis for the

de Rham cohomology of X̃. Here the hyperelliptic involution acting on the last factor

exchanges the residues around hyperelliptically conjugate discs and acts as the identity

on residues around discs containing a Weierstrass point.

We now consider the case where d = deg(g(x)) ≥ 3 in which case the curve X̃ is

hyperelliptic. Extend the field K so that it contains the roots of g(x).

By our construction, the D′
i’s arise as components of the preimages under

π : X̃an → P1,an of some closed discs D1, . . . , Dn in A1,an, each contained in a distinct

residue disc and possibly also of a disc D∞ around ∞. Such a disc is called Weierstrass

if it contains a root of g(x). Suppose that we have ordered the discs such that D1, . . . , Dk

are the non-Weierstrass discs and Dk+1, . . . , Dn are the Weierstrass discs. Observe that

D∞ is Weierstrass if and only if g(x) is of odd degree.

Let β1, . . . , βn be elements of P1(K) contained in D1, . . . , Dn. We choose βi to be a

root of g(x) if Di is a Weierstrass disc contained in A1,an. For D∞, choose β∞ = ∞. Define

the forms

{
νj = dx

(x − βj)2y

}
j=1,...,k

,

where the form νj has simple poles at the hyperelliptically conjugate points π−1(βj).

For an integer i, define the 1-form

ωi = xi dx

2y
.

In both the odd and even degree cases, {ω0, . . . , ωd−2, ν1, . . . , νk} will form a spanning set

for H1
dR(Z)−. Consequently,

η = dF +
d−2∑
i=0

ciωi +
k∑

j=1

djνj
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30 E. Katz and E. Kaya

holds for an analytic function F on Z and ci, dj ∈ K. For points R, S ∈ Z(Cp), the equality

above gives

BC∫ R

S
η = F(R) − F(S) +

d−2∑
i=0

ci

BC∫ R

S
ωi +

k∑
j=1

dj

BC∫ R

S
νj.

Below, we will explain how to compute the integrals on the right.

5.2 Summary of integration algorithms

We will first state the algorithms when g(x) is of odd degree where they are most fully

developed. There is partial work in the even degree case, and one can apply a fractional

linear transformation to P1 to transform the even degree case to the odd degree case.

We start with the integrals BC
∫ R

S ωi. The paper [3] describes a method for

computing Coleman integrals of those meromorphic forms whose poles all belong to

Weierstrass residue discs.

If the points R and S lie in the same residue disc, in which case we refer to the

integral as a tiny integral, we may use the following lemma.

Lemma 5.3. ([3, Algorithm 8]) For points R, S ∈ X̃(Cp) in the same residue disc, neither

equal to the point at infinity, we have

BC∫ R

S
ωi =

∫ 1

0

x(t)i

2y(t)

dx(t)

dt
dt,

where (x(t), y(t)) is a linear interpolation from S to R in terms of a local coordinate t. We

can similarly integrate any form that is holomorphic in the residue disc containing the

endpoints.

If the points R and S lie in distinct non-Weierstrass residue discs, the method

of tiny integrals is not available. Coleman’s idea was to extend the notion of integration

by analytic continuation along Frobenius. Let φ be the lift of Frobenius constructed

in [3, Algorithm 10]. This map is rigid analytic; moreover it maps a Qp-point into

its residue disc. By the change-of-variables formula with respect to φ, we have the

following theorem.
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p-adic Integration on Bad Reduction Hyperelliptic Curves 31

Theorem 5.4. Let M denote the matrix over K such that

φ∗ωi = dfi +
2g−1∑
j=0

Mijωj (2)

for all i = 0, 1, . . . , 2g − 1. Then, for points R, S ∈ X̃(Qp) in distinct non-Weierstrass

residue discs, we have the equality

2g−1∑
j=0

(M − I)ij

BC∫ R

S
ωj = fi(S) − fi(R) −

BC∫ φ(S)

S
ωi −

BC∫ R

φ(R)

ωi.

Moreover, the matrix M − I is invertible (see [26, Section 2]), and we can solve this linear

system to obtain the integrals BC
∫ R

S ωi.

Proof. The terms in equation (2) can be calculated using Kedlaya’s algorithm [3,

Algorithm 10]. The result follows from Algorithm 11 and Remark 13 in [3]. �

Thanks to this theorem, beyond evaluating primitives, computing tiny integrals

and solving a linear system, the matrix of Frobenius is the only data that is needed

to compute Coleman integrals between endpoints in distinct non-Weierstrass residue

discs.

Suppose now that R′ and S′ are points, at least one of which is Weierstrass, lying

in different residue discs. The following lemma will be useful.

Lemma 5.5. ([3, Lemma 16]) Let ω be an odd meromorphic 1-form on X̃. For points

R′, S′ ∈ X̃(Cp) which are not poles of ω, such that S′ is a Weierstrass point, we have

BC∫ R′

S′
ω = 1

2

BC∫ R′

w(R′)
ω.

In particular, if R′ is also a Weierstrass point, then BC
∫ R′

S′ = 0.

Proof. This follows from BC
∫ R′

S′ ω = BC
∫w(R′)

S′ (−ω) = BC
∫ S′

w(R′) ω and additivity in

endpoints. �
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32 E. Katz and E. Kaya

If S lies in a finite Weierstrass residue disc containing Weierstrass point S′,
Lemma 5.5 gives

BC∫ R

S
ωi =

BC∫ S′

S
ωi + 1

2

BC∫ R

w(R)

ωi.

If R does not belong to a Weierstrass residue disc, the 2nd integral can be calculated

using Theorem 5.4; if R also lies in a finite Weierstrass residue disc containing

Weierstrass point R′, then by Lemma 5.5 again, we have

BC∫ R

S
ωi =

BC∫ S′

S
ωi +

BC∫ R

R′
ωi.

These tiny integrals can be computed using Lemma 5.3.

Now, we consider the integrals BC
∫ R

S νj. As we discussed before, the form νj has

poles at the hyperelliptically conjugate points π−1(βj). The above approach does not

work for this case, however, the paper [2] provides a new method.

First, consider the case where R and S lie in the same residue disc. If the form νj

is holomorphic in the disc, then we can compute its integral as in Lemma 5.3. Otherwise,

we make use of the following lemma in which we decompose our form in the disc into

the sum of a holomorphic form and a logarithmic differential (i.e., a differrential of the

form df /f for f ∈ K(X)×).

Lemma 5.6. ([4,Lemma 4.2]) Let P be a non-Weierstrass point and set

ν = y(P)

x − x(P)

dx

y
.

For points R, S different from P but contained in the residue disc of P, we have

BC∫ R

S
ν =

BC∫ R

S

g(x(P)) − g(x)

y(x − x(P))(y(P) + y)
dx + Log

(
x(R) − x(P)

x(S) − x(P)

)
,

where the integrand on the right side is holomorphic on the residue disc.

Now, we examine the case where R and S lie in distinct residue discs. As before,

using Lemma 5.5, we may reduce to the case that the residue discs are non-Weierstrass.

Before stating the theorem to deal with this case, we recall the following objects

from [18]:
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p-adic Integration on Bad Reduction Hyperelliptic Curves 33

• The space H1
dR(X/K) has a canonical non-degenerate alternating form given

by the algebraic cup product

∪ : H1
dR(X/K) × H1

dR(X/K) → K.

This pairing may be described using a well-known formula of Serre:

[μ1] ∪ [μ2] =
∑

P∈X(Cp)

ResP

(
μ2

∫
μ1

)
.

• Let T(K) denote the subgroup of differentials of the 3rd kind. We denote

the subgroup consisting of the logarithmic differentials by Tl(K). By

[18, Proposition 2.5], there is a canonical homomorphism

ψ : T(K)/Tl(K) → H1
dR(X/K),

which is the identity on differentials of the 1st kind. The map ψ can

be extended to a linear map from the K-vector space of all meromorphic

differentials on X/K to H1
dR(X/K) as follows. First, we express a given

meromorphic differential η as η = ∑
aiνi + μ, where νi’s are of the 3rd kind,

ai ∈ K̄ and μ is of the 2nd kind; then we define ψ(η) = ∑
aiψ(νi) + [μ].

We have the following which we state for curves and points defined over Qp:

Theorem 5.7. Suppose the curve X̃ is defined over Qp and the polynomial g(x) is monic.

Let P and ν be as in Lemma 5.6. For points R, S ∈ Z(Qp) in distinct non-Weierstrass

residue discs, not equal to P and w(P), we have

BC∫ R

S
ν = 1

1 − p

(
ψ(α) ∪ ψ(β) +

∑
A∈X̃(Cp)

ResA

(
α

∫
β

)
−

BC∫ S

φ(S)

ν −
BC∫ φ(R)

R
ν

)
,

where α = φ∗ν − pν, β is a form with Res(β) = R − S.

Proof. See Algorithm 4.8 and Remark 4.9 in [2]. �

Remark 5.8. The generalization of Theorem 5.7 to even degree case will be discussed

in [24]. Combining this with the techniques in [1], which extend the algorithms in [3] to
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34 E. Katz and E. Kaya

even degree models, one should be able to do the computation above for even degree

case.

Now, we consider the case where g(x) is of degree at most 2. The curve X̃ is

rational and therefore H1
dR(X̃) is trivial. By the exact sequence (1), our form η will be

sum of an exact form dF and forms with simple poles. Moreover, using the equation

y2 = g(x), one can easily express the non-exact part as a sum of logarithmic differentials

cidFi/Fi for constants ci. This gives,

BC∫
η = F +

∑
i

ci Log(Fi).

6 Decomposition of 1-forms with Specified Poles

We will now consider 1-forms with poles in a specified set. Let X be the good reduction

hyperelliptic curve defined by y2 = g(x) where g(x) is of degree d. Moreover, we assume

that the polynomial g(x) is monic with integral coefficients in some finite extension of

Qp; this assumption guarantees that the p-adic absolute value of roots of g(x) are at

most 1. Let Y be a basic wide open in X contained in B(0, R) for some R ∈ ‖K∗‖p with

R > 1

Let T = {β1, . . . , β�} be a subset of A1(K) for some finite extension K of Qp. We

will study 1-forms of the form

η = xn∞
�∏

j=1

1

(x − βj)
nj

dx

2y

for nonnegative integers n1, . . . , n�, n∞. We will further suppose that ‖βi‖p ≤ 1 for all i.

Below, we will make the following assumptions: for i = 1, . . . , k, we have ‖g(βi)‖p = 1;

and for i = k + 1, . . . , �, we have g(βi) = 0 and ‖g′(βi)‖p = 1.

We will soon need to consider a series of 1-forms whose terms are of the

above form. To integrate them, we will interchange integration and summation using

Proposition 3.5. We will provide an algorithm to express the 1-forms in terms of our

given basis: the 1-form η can be written as

η = dF +
d−2∑
i=0

ciωi +
k∑

j=1

djνj, (3)
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p-adic Integration on Bad Reduction Hyperelliptic Curves 35

where F is an analytic function on Y. Furthermore, we will find bounds on ci, on dj, and

on the maximum value of the norm of F on Y in Proposition 6.9.

Remark 6.1. We will make use of two types of exact 1-forms.

(1) For a positive integer m, consider

d
(

y

(x − β)m

)
= (x − β)g′(x) − 2mg(x)

(x − β)m+1

dx

2y
.

Such a form has poles at the points above β and possibly also at the point(s)

at infinity. If β is a root of g(x), the pole is of order 2m at π−1(β); in fact, if we

write Symb for the monomial involving the highest order power of (x − β)−1,

we have

Symb
(

(x − β)g′(x) − 2mg(x)

(x − β)m+1

dx

2y

)
= Symb

(
(1 − 2m)g′(β)

(x − β)m

dx

2y

)
.

If β is not a root of g(x), there are poles of order m + 1 at each of the points

of π−1(β); in fact, we have

Symb
(

(x − β)g′(x) − 2mg(x)

(x − β)m+1

dx

2y

)
= Symb

( −2mg(β)

(x − β)m+1

dx

2y

)
.

The two cases differ because y is a uniformizer in one case, while x − β is a

uniformizer in the other.

(2) For a nonnegative integer m, consider

d(xmy) = (
xmg′(x) + 2mxm−1g(x)

)dx

2y
.

Such a form has poles at the point(s) at infinity. Notice that the leading

coefficient of xmg′(x)+2mxm−1g(x) is d+2m as the polynomial g(x) is monic.

6.2 Principal parts

We will write our 1-form as in (3) by subtracting off the exact 1-forms in Remark 6.1 to

cancel the non-simple poles. To do so, we use the language of principal parts.

Definition 6.3. Let α be a smooth point of a curve X and pick a uniformizer t on X

for α. For a meromorphic function h, the principal part of h near α is the polynomial

in t−1 given by the negative degree terms in the Laurent expansion of h in t. Let ω be
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36 E. Katz and E. Kaya

a meromorphic 1-form on X that is regular and non-vanishing at α. For a meromorphic

1-form η on X, η
ω

is a meromorphic function defined in a punctured neighborhood of

α. The principal part PPω,α(η) of η near α with respect to ω is the principal part of η
ω

near α.

For β ∈ A1(K) and α ∈ π−1(β), we have convenient choices for coordinates and

1-forms. The 1-form ω0 = dx
2y is regular and non-vanishing away the point(s) at infinity.

Let η be an odd 1-form; then η
ω0

is invariant under the hyperelliptic involution.

We first explain how to pick a uniformizer at Weierstrass points. Let β be a root

of g(x), then y is a uniformizer at α = π−1(β). However, we can pick a slightly more

convenient uniformizer. We know that x−β
g(x)

does not vanish in a neighborhood of β and

so has an analytic square root h(x) there. Then w = yh(x) is a uniformizer at α. Because

the meromorphic function η
ω0

is invariant under the hyperelliptic involution, it can be

written near α as a Laurent series in w2 = x − β. Therefore, the principal part of η
ω0

is a

polynomial in z = (yh(x))−2 = (x − β)−1.

If β is not a root of g(x), then π−1(β) = {α1, α2} and x − β is a uniformizer near

both α1 and α2. Consequently, PPω0,α1
(η) = PPω0,α2

(η). In this case, the principal part of
η
ω0

is a polynomial in z = (x − β)−1.

In any case, by using the Taylor expansion for g(x) at β, we compute

PPω0,α

(
d
(

y

(x − β)m

))
=

m∑
k=0

−m − k

(m − k)!
g(m−k)(β)zk+1.

By a straightforward argument obtained by writing xk = (x − β + β)k and using the

integrality of binomial coefficients, one sees that the p-adic absolute value of the

coefficients of the principal part are bounded above by max(1, ‖β‖d
p). In particular, if

‖β‖p ≤ 1, we have

∥∥∥∥PPω0,α

(
d
(

y

(x − β)m

))∥∥∥∥
p

≤ 1. (4)

Here, for a polynomial q(t), we define the value ‖q(t)‖p as the maximum of the p-adic

absolute value of its coefficients.

Recall that, for an integer i, ωi is defined as xi dx
2y . If η is an odd 1-form, η

ωi
is

a meromorphic function on P1, and we may speak of its pole order at ∞ ∈ P1(K). In

analogy with the above, we choose 1
x as a uniformizer at ∞. Write PPωi,∞(η) for the

principal part of η
ωi

considered as a meromorphic function on P1. Observe that for η
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p-adic Integration on Bad Reduction Hyperelliptic Curves 37

regular on the finite part of Y, if

η

ω0
= a0 + a1x + · · · + ad−2xd−2

then

PPω−1,∞(η) = η

ω−1
= a0

(
1

x

)−1

+ a1

(
1

x

)−2

+ · · · + ad−2

(
1

x

)−(d−2)

and

η = a0ω0 + a1ω1 + · · · + ad−2ωd−2.

We will abuse notation and refer to the degree of the polynomial η
ω0

as the pole order at

∞. If the pole order is at most d−2, the above formula lets us determine the cohomology

class of η.

6.4 Pole reduction

Using ideas similar to those of Tuitman [36, 37], we will subtract off exact 1-forms to

lower the pole orders of η at the β’s. We begin by cancelling the poles of η of order

greater than 1 at non-Weierstrass points and the poles of η at Weierstrass points. Then,

we will cancel the simple poles at non-Weierstrass points by subtracting off multiples

of νj. The remainder η′ can be expressed in terms of the ωi’s by examining PPω−1,∞(η′).
Define meromorphic 1-forms μβ,m by

μβ,m = d
(

y

(x − β)m

)
.

We omit the proof of the following lemma (which is a computation in coordinates).

Lemma 6.5. We have the following:

(1) the pole order of ∞ of μβ,m/ω−1 is at most d + 1 − m,

(2) the principal part of μβ,m at ∞ obeys
∥∥∥PPω−1,∞(μβ,m)

∥∥∥
p

≤ 1, and

(3) the principal part of d(xmy) at ∞ obeys ‖PPω−1,∞(d(xmy))‖p ≤ 1.
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38 E. Katz and E. Kaya

Below, we will make use of Legendre’s formula for the p-adic valuation of

factorials for p �= 2. We have the bounds

m

p − 1
− �logp(m)� ≤ vp(m! ) ≤ m

p − 1
.

From this, we can obtain the following bound on odd factorials:

vp((2m − 1)! ! ) ≤ m

p − 1
+ �logp(m)� ≤ m

p − 1
+ logp(m) + 1.

Lemma 6.6. Let β ∈ A1(K) with ‖β‖p ≤ 1 and ‖g(β)‖p = 1. Take α ∈ π−1(β) and set

z = (x − β)−1. Let η be an odd meromorphic 1-form on X such that

m := degz(PPω0,α(η)) − 1 > 0.

Then there exists a unique polynomial q(t) ∈ K[t] of degree m such that

η′ := η − d(q((x − β)−1)y)

has at worst simple poles at points above β and

‖q(t)‖p ≤ pm/(p−1)‖PPω0,α(η)‖p.

Moreover, PPω−1,∞(η − η′) is a K-linear combination of PPω−1,∞(μβ,1), . . . , PPω−1,∞(μβ,d−1)

with coefficients with norm at most

pm/(p−1)‖PPω0,α(η)‖p.

Proof. Let V be the m-dimensional K-vector space spanned by the meromorphic

functions

{(x − β)−1y, (x − β)−2y, . . . , (x − β)−my}

and let W be the K-vector space spanned by {z2, z3, . . . , zm+1}. Define

L : V → W

h 
→ T(PPω0,α(dh))
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p-adic Integration on Bad Reduction Hyperelliptic Curves 39

where T takes z1 
→ 0 and zi 
→ zi for i ≥ 2. By Remark 6.1, its matrix M in these bases

is upper triangular. In fact, the diagonal entries of M are

Mii = (−2i)g(β).

As g(β) �= 0, the matrix M is invertible and we can find a polynomial q(t) such that

q((x − β)−1)y ∈ V satisfies L(q((x − β)−1)y) = T(PPω0,α(η)).

To get control over the coefficients of q(t), we will use Cramer’s rule. The

coefficients of q(t) are equal to det(Mj)/ det(M) where Mj is the matrix formed by

replacing the jth column of M by the coefficients of T(PPω0,α(η)). By Legendre’s formula,

we have

‖ det(M)‖p ≥ p−m/(p−1).

By (4), the coefficients of M are bounded above in p-adic absolute value by 1, so

‖ det(Mj)‖p ≤ ‖T(PPω0,α(η))‖p.

Consequently, the coefficients of q(t) are bounded above by

pm/(p−1)‖PPω0,α(η)‖p.

The bound on pole order at infinity and on the coefficients of the principal part at ∞
follow from Lemma 6.5. �

Now, we consider a root β of g(x).

Lemma 6.7. Let β ∈ A1(K) be a root of g(x) so that ‖β‖p ≤ 1. Suppose ‖g′(β)‖p = 1. Let

α = π−1(β) and set z = (x − β)−1. Let η be an odd meromoprhic 1-form on X such that

m := degz(PPω0,α(η)) > 0.

Then there exists a unique polynomial q(t) ∈ K[t] of degree m such that

η′ := η − d(q((x − β)−1)y)
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40 E. Katz and E. Kaya

is regular at α and

‖q(t)‖p ≤ mp1+m/(p−1)‖PPω0,α(η)‖p.

Moreover, PPω−1,∞(η − η′) is a K-linear combination of PPω−1,∞(μβ,1), . . . , PPω−1,∞(μβ,d−1)

with coefficients with norm at most

mp1+m/(p−1)‖PPω0,α(η)‖p.

Proof. Let V be the m-dimensional K-vector space spanned by the meromorphic

functions

{(x − β)−1y, (x − β)−2y, . . . , (x − β)−my}

and let W be the K-vector space spanned by {z, z2, z3, . . . , zm}. Define the map

L : V → W

h 
→ PPω0,α(dh).
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p-adic Integration on Bad Reduction Hyperelliptic Curves 41

By Remark 6.1, its matrix M (in these bases) is an upper triangular matrix with diagonal

entries

Mii = (1 − 2i)g′(β).

Because ‖g′(β)‖p = 1, M is nonsingular and we can find q((x − β)−1)y ∈ V with

L(q((x − β)−1)y) = PPω0,α(η).

Again, we will use Cramer’s rule to get control over the coefficients of h. The

determinant of M has p-adic absolute value

‖ det(M)‖p = ‖(2m − 1)! ! ‖p ≥ 1

m
p−1−m/(p−1)

where the last inequality follows from Legendre’s formula for odd factorials. Let Mj be

the matrix formed by replacing the jth column of M by the coefficients of PPω0,α(η). By

(4), the coefficients of M are bounded above in p-adic absolute value by 1, so

‖ det(Mj)‖p ≤ ‖PPω0,α(η)‖p.

Consequently, the coefficients of p(t) are bounded above by

mp1+m/(p−1)‖PPω0,α(η)‖p.

The bound on pole order at infinity and on the coefficients of the principal part at ∞
again follow from Lemma 6.5. �

The main difference between Algorithms 2 and 3 is that, by subtracting off exact

forms, poles at Weierstrass points can be removed completely but only non-simple poles

can be removed at non-Weierstrass points.

We will also need to lower the power of x in the numerator of a 1-form. This is

the order reduction step in Kedlaya’s algorithm.

Lemma 6.8. Let η be an odd meromorphic 1-form on X such that

m := degx(PPω−1,∞(η)) − (d − 1) > 0.
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42 E. Katz and E. Kaya

Let T be the truncation of a polynomial to degree d − 1 and U = Id −T. Then there exists

a unique polynomial q(t) ∈ K[t] of degree m such that

η′ := η − d(q(x)y)

has degx(PPω−1,∞(η′)) ≤ d − 1 and

‖q(t)‖p ≤ d(d + m)p2+m/(p−1)‖U(PPω−1,∞(η))‖p.

Moreover, T(PPω−1,∞(η − η′)) has coefficients with norm at most

d(d + m)p2+m/(p−1)‖U(PPω−1,∞(η))‖p.

Proof. Let V be the m-dimensional K-vector space spanned by the meromorphic

functions

{y, xy, . . . , xm−1y}
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p-adic Integration on Bad Reduction Hyperelliptic Curves 43

and let W be the K-vector space spanned by {xd, xd+1, . . . , xd+m−1}. Define the map

L : V → W

h 
→ U(PPω−1,∞(dh)).

By Remark 6.1, its matrix M in these bases is upper triangular with diagonal entries

Mii = d + 2(i − 1).

Hence we can find q(x)y ∈ V with L(q(x)y) = U(PPω−1,∞(η)). By arguments analogous to

the above, considering the cases of d even and odd seperately, we have

‖ det(M)‖p ≥ 1

d(d + m)
p−2−m/(p−1).

Let Mj be the matrix M with the jth column replaced by the coefficients of U(PPω−1,∞(η)).

The coefficients of M are integral and so

‖ det(Mj)‖p ≤ ‖U(PPω−1,∞(η))‖p.

Consequently, the coefficients of q(x) are bounded above by

d(d + m)p2+m/(p−1)‖U(PPω−1,∞(η))‖p.

The bound on the coefficients of T(PPω−1,∞(η − η′)) follows from Lemma 6.5. �

We can now apply the algorithms described above to find a primitive of η. We

first subtract exact forms from η to remove the non-simple poles over non-roots of g(x)

and to remove the poles over roots of g(x). Then, we reduce the pole order at ∞. Because

the exact forms only affect the principal parts of one finite point at a time, we have the

following:

Proposition 6.9. Let fω0
, . . . , fωd−2

and fν1
, . . . , fνk

be Coleman primitives of ω1, . . . , ωd−2

and ν1, . . . , νk, respectively. Let η be an odd 1-form on X such that η
ω0

has poles at points

{β1, . . . , β�, ∞} ⊂ P1(K) of order n1, . . . , n�, n∞. Suppose β1, . . . , βk are not roots of g(x) and
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44 E. Katz and E. Kaya

βk+1, . . . , β� are roots of g(x). Moreover, we will suppose ‖βi‖p ≤ 1 for all i, ‖g(βi)‖p = 1

for i = 1, . . . , k and ‖g′(βi)‖p = 1 for i = k+1, . . . , �. Let αi ∈ π−1(βi). Then η has a Coleman

primitive that is a linear combination of the following:

(1) y
(x−βi)

j where 1 ≤ j ≤ ni − 1 for i = 1, . . . , k with coefficient with norm at most

pni/(p−1)‖PPω0,αi
(η)‖p,

(2) y
(x−βi)

j where 1 ≤ j ≤ ni for i = k + 1, . . . , � with coefficient with norm at most

nip
1+ni/(p−1)‖PPω0,αi

(η)‖p,

(3) xjy where 0 ≤ j ≤ max(n∞ − d + 2, 2) with coefficient with norm at most the

maximum of the following:

(a) d(d + n∞)p2+n∞/(p−1)‖U(PPω−1,∞(η))‖p,

(b) maxi=1,...,k

(
pni/(p−1)‖PPω0,αi

(η)‖p

)
, and

(c) maxi=k+1,...,�

(
nip

1+ni/(p−1)‖PPω0,αi
(η)‖p

)
.

(4) fνi
for i = 1, . . . , k with coefficient equal to

Resαi
(η)

Resαi
(νi)

,
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p-adic Integration on Bad Reduction Hyperelliptic Curves 45

(5) fωi
for i = 0, . . . , d − 2 with coefficient with norm at most

p2+max(ni/(p−1),n∞/(p−1)) max(d(d + n∞), ni) max(‖PPω0,αi
(η)‖p, ‖PPω−1,∞(η)‖p)

where the maximum is taken over α ∈ π−1({β1, . . . , β�}).

Proof. Let η be an odd 1-form on X such that η
ω0

has poles at points {β1, . . . , β�} ⊂ A1(K)

of order n1, . . . , n�. Then we apply the Lemma 6.6 and Lemma 6.7 to reduce the pole

orders at the β’s. Because the exact forms that we subtract for one βi does not affect

the principal parts at other βi’s, the pole order reduction steps are independent, and we

have the above bounds on coefficients. These operations do affect the principal parts

above ∞ in degrees up to d − 2 according to the bounds in the lemmas. This leads to the

bounds for the coefficient of fωi
. �
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46 E. Katz and E. Kaya

7 Power Series Expansion

We will write a power series expansion of 1-forms xi dx
2y on basic wide opens in a

semistable covering of a hyperelliptic curve π : Xan → P1,an defined by y2 = f (x)

following the methods in Section 4.9. We will suppose that f (x) is a monic polynomial

with integral coefficients in some finite extension of Qp and, moreover, that the roots

of f (x) lie in a field K of ramification degree e over Qp. By our assumptions, these roots

have p-adic valuation at most 1. Let Sf be the set of roots of f (x). Let U be an element of a

good semistable covering of P1,an with respect to Sf . We have an embedding ι : U → P1,an

such that the points of ι(Sf ∩ U(Cp)) lie in distinct residue discs. We will use x to denote

the coordinate on A1 ⊂ P1. Without loss of generality, we may suppose that U is the

open disc B(0, R) (for some R > 1) minus some closed discs and that Sf ∩ U(Cp) ⊂ B(0, 1).

Let I∞ be the set of roots of f (x) lying outside of B(0, R). Because the roots of f (x) are

K-points, the elements of I∞ \ {∞} have norm at least p1/e. We partition the roots of f (x)

in B(0, R) by residue disc: Sf ∩B(0, R) = ∪m
j=1Ij. Notice that some of Ij’s may have only one

element. We can relabel these sets such that

(1) for j = 1, . . . , k, |Ij| ≥ 2 and |Ij| is even;

(2) for j = k + 1, . . . , �, |Ij| ≥ 2 and |Ij| is odd; and

(3) for j = � + 1, . . . , m, |Ij| = 1.

For j = 1, . . . , �, pick βj ∈ A1(K) \ U(K) in the same residue disc as the points in Ij (we

may even take βj to be an element of Ij); and for j = � + 1, . . . , m, let βj denote the unique

element of Ij. Notice that ‖βj‖p ≤ 1 for all j. Define

Lj =
⎧⎨⎩ |Ij|/2 for j = 1, . . . , k;

(|Ij| − 1)/2 for j = k + 1, . . . , �

and set

g(x) =
m∏

j=k+1

(x − βj),

h(x) =
�∏

j=1

(x − βj)
Lj ,

k(x) =
⎛⎝ �∏

j=1

∏
β∈Ij

(
x − β

x − βj

)⎞⎠⎛⎝ ∏
β∈I∞\{∞}

(x − β)

⎞⎠ .
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p-adic Integration on Bad Reduction Hyperelliptic Curves 47

Observe that f (x) = g(x)h(x)2k(x). Since g(x) has at most one root in each residue

disc and for j = 1, . . . , k, the element βj is not in the same residue disc as a root of g(x),

we have

‖g(βj)‖p = 1 for j = 1, . . . , k,

‖g′(βj)‖p = 1 for j = k + 1, . . . , �.

Set

ỹ = y

h(x)k(x)1/2 .

Note that 1
h(x)k(x)1/2 is an analytic function on U by construction; so ỹ2 = g(x) for

x ∈ U defines a union of at most two basic wide opens in Xan. Write X̃ for the complete

curve defined ỹ2 = g(x). We may write X̃g(x) for X̃ when the polynomial g(x) needs to be

specified.

We have

ωi = xi dx

2y
= xi

h(x)k(x)1/2

dx

2ỹ
.

We will expand ωi in a power series on π−1(U). We may write

kj(x) =
∏
β∈Ij

(
1 − β − βj

x − βj

)
for j = 1, . . . , �,

k∞(x) =
∏

β∈I∞\{∞}
(−β)(1 − β−1x),

so k(x) = (∏
j kj(x)

)
k∞(x). Now,

1

kj(x)1/2 =
∏
β∈Ij

(
1 − β − βj

x − βj

)−1/2 =
∞∑

n=0

Bjn

(x − βj)
n

1

k∞(x)1/2 =
∏

β∈I∞\{∞}
(−β)−1/2(1 − β−1x)−1/2 =

∞∑
n=0

B∞nxn
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48 E. Katz and E. Kaya

for some Bjn’s and B∞n’s. Then,

xi

h(x)k(x)1/2 =
( �∏

j=1

∞∑
n=0

Bjn

(x − βj)
n+Lj

)( ∞∑
n=0

B∞nxn+i
)

=
∑

n1≥L1,...,n�≥L�
n∞≥i

(
Bn1,...,n�,n∞xn∞

�∏
j=1

1

(x − βj)
nj

)

for some Bn1,...,n�,n∞ ’s. We may bound these coefficients as follow.

Proposition 7.1. There is a constant C such that

‖Bn1,...,n�,n∞‖p ≤ Cp− (n∞−i)+∑�
j=1(nj−Lj)

e .

Proof. First observe that because p �= 2, the coefficients of

(1 − y)−1/2 =
∞∑

n=0

1

22n

(
2n

n

)
yn

are p-adic integers. Since ‖β − βj‖p ≤ p−1/e for each β ∈ Ij, by the ultrametric triangle

inequality, we have ‖Bjn‖p ≤ Cjp
−n/e for some constant Cj. By an identical argument, we

have

‖B∞n‖p ≤ C∞p−n/e

for some constant C∞. By multiplying together our inequalities, we get the desired

conclusion. �

Consequently, the expression

ωi =
∑

n1≥L1,...,n�≥L�
n∞≥i

(
Bn1,...,n�,n∞xn∞

�∏
j=1

1

(x − βj)
nj

dx

2ỹ

)
(5)

makes sense.
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Proposition 7.2. Let ω̃i = xi dx
2ỹ . Then,

∥∥∥∥∥∥PPω̃0,α

⎛⎝xn∞
�∏

j=1

1

(x − βj)
nj

dx

2ỹ

⎞⎠∥∥∥∥∥∥
p

≤ 1,

∥∥∥∥∥∥PPω̃−1,∞

⎛⎝xn∞
�∏

j=1

1

(x − βj)
nj

dx

2ỹ

⎞⎠∥∥∥∥∥∥
p

≤ 1

where α is a point over any βi.

Proof. If α is a point over some βi, set t = x − βi. Then, we have the following bounds

on the coefficients of these power series, considered as Laurent series in t:

∥∥∥∥ 1

(x − βi)
ni

∥∥∥∥
p

= 1,

‖xn∞‖p = 1,∥∥∥∥∥ 1

(x − βj)
nj

∥∥∥∥∥
p

≤ 1, j �= i.

Here, the last inequality follows from the observation that ‖βi − βj‖p ≥ 1 for i �= j.

Because the Gauss norm ‖ · ‖p is multiplicative, for Laurent series f and g,

‖PP(fg)‖p ≤ ‖fg‖p = ‖f ‖p‖g‖p

from which the conclusion follows. An analogous arguments holds for ∞
using t = 1/x. �

Proposition 7.3. Suppose e < p − 1 and set r = 1
e − 1

p−1 . Pick R with 1 < R < pr and let

D = B(0, R) \
�⋃

i=1

B(βi, 1/R).
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50 E. Katz and E. Kaya

The 1-form

ωi = xi

h(x)k(x)1/2

dx

2ỹ

has a Coleman primitive on π−1(D) given as the sum of terms of the following form:

(1) aij
y

(x−βi)
j for i = 1, . . . , � and j = 1, 2, . . . ,

(2) bjx
jy for j = 0, 1, . . . ,

(3) cifωi
for i = 0, . . . , d − 2, and

(4) difνi
for i = 1, . . . , k,

where fωi
and fνi

are as in Proposition 6.9.

Proof. The coefficients for the power series expansion of ω in (5) decay at the rate of

p−N/e where N = n∞ + ∑�
j=1 nj. By examining the summands, we see that they converge

uniformly on D. On the other hand, by Proposition 6.9, the coefficients of the primitives
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of the summands (expressed in terms of the form (1)-(4)) grow slower than NpN/(p−1).

We call the series produced by integrating the power series expansion, the series of

primitives. For any given term of the type (1)-(4), its coefficient is convergent in the

series of primitives.

We have to verify the hypotheses of Proposition 3.5 to show that the sum of the

series of primitives is equal to the primitive of the sum of the series. By construction, the

series of primitives is locally uniformly convergent. Moreover, for any lift of Frobenius

φ and annihilating polynomial P, P(φ∗) applied to the series of primitives converges

uniformly on a Frobenius neighborhood within D. Moreover, the restriction of the series

of primitives to boundary annuli is uniformly convergent.
�

Remark 7.4. While we employ the algorithms from [2] to integrate the 1-forms νj

on hyperelliptic basic wide opens, we can formulate a different integration algorithm

similar to the work of Tuitman [36, 37] using our techniques. Specifically, we can pick a

lift of Frobenius φ on a hyperelliptic basic wide open. By replacing the lift of Frobenius

by some power, we can ensure that it preserves the residue discs containing β1, . . . , β�.

Consequently, φ∗νj can be written as a power series as in this section. By using the

techniques of the previous section, φ∗νj can be rewritten as a linear combination of

1-forms {ω0, . . . , ωd−2, ν1, . . . , νk} and an exact form dhj. Consequently, one obtains a

matrix representing the action of Frobenius on odd cohomology and uses it to write

down p-adic integrals. We will explore this in future work.

8 Integration on Curves

8.1 Berkovich–Coleman integration on paths

We explain how to perform Berkovich–Coleman integrals on a hyperelliptic curve Xan.

Such an integral is to be done along a path γ in Xan. We will break up the path into

smaller paths lying in hyperelliptic basic wide opens. Fix a holomorphic 1-form ω on

Xan.

Let C be a semistable covering of Xan with dual graph �. For a vertex v of �, let

Uv be the corresponding element of the covering. For e = vw, let Ue be the corresponding

component of the intersection Uv ∩ Uw. Pick a point Pv in each Uv and a point Pe in each

Ue. These are called reference points. For each oriented edge e, write i(e) and t(e) for

the initial and terminal point of e, respectively.
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52 E. Katz and E. Kaya

To a path γ = e1e2 . . . e� in � from v to w, we can consider the Berkovich–Coleman

integral of ω from the reference point Pv to the reference point Pw along the path γ . In

fact, because � is identified with the skeleton of Xan, there is a unique path γ̃vw in Xan

from Pv to Pw (up to fixed endpoint homotopy) whose image under τ : Xan → � is γ . We

have

BC∫
γ̃vw

ω =
�∑

i=1

(
BC∫ Pei

Pi(ei)

ω +
BC∫ Pt(ei)

Pei

ω

)
.

Here the integral from Pi(ei)
to Pei

is to be performed on Ui(ei)
and the integral from Pei

to

Pt(ei)
is to be performed on Ut(ei)

. Indeed, we can see the path γ̃vw as the concatenation

(over i) of the path from Pi(ei)
to Pei

in Ui(ei)
followed by the path from Pei

to Pt(ei)

in Ut(ei)
.

Now, given x ∈ Uv, y ∈ Uw and a path γ from v to w in �, we may consider the

Berkovich–Coleman integral of ω from x to y along γ . Indeed, it is the integral along any

path γ̃ from x to y tropicalizing to γ :

BC∫
γ̃

ω =
BC∫ Pv

x
ω +

BC∫
γ̃vw

ω +
BC∫ y

Pw

ω

where the 1st and last integrals on the right side are performed on Uv and Uw,

respectively. This integral is independent of the choices of reference points.

Finally, for a closed path γ in � at a vertex v, we may consider the Berkovich–

Coleman period

BC∫
γ̃

ω =
BC∫

γ̃vv

ω.

Again, this is independent of the choice of reference points. Indeed, it depends only on

the homology class of γ .

This gives the following algorithm for performing Berkovich–Coleman integra-

tion of ω. In particular, we can compute the periods of ω around closed loops.

8.2 Abelian integration

We have an algorithm for computing abelian integrals on a hyperelliptic curve X using

Theorem 3.16 given a semistable cover C and its dual graph �.
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Remark 8.3. A basis of H1(�; Z) and a dual tropical basis can be obtained from the

tree T as in Proposition 4.16. Let C′
1, . . . , C′

h be a basis of H1(To, Ve; Z) and let D′
1, . . . , D′

h

be a dual basis with respect to 〈·, ·〉. Let Ci = ι(C′
i) and Di = 1

2 ι(D′
i) where ι is given in

Proposition 4.16. Then, by Proposition 4.17, {Ci} and {ηi = ηDi
} form a basis of H1(�; Z)

and a dual tropical basis of 1-forms on �, respectively.

9 Numerical Examples

Here, we illustrate our methods with numerical examples computed in Sage [35]. But

first, we make the following remarks:

• Sage restriction. Let X be a curve defined over Qp. An abelian integral on X

between Qp-rational points is an element of Qp. In our approach, such an

integral is expressed as a sum of other integrals, each of which is an element
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54 E. Katz and E. Kaya

of a possibly different finite extension of Qp. More precisely, reference points

corresponding to edges might lie in highly ramified extensions and taking

square roots might force us to work with unramified extensions. In Sage,

one can define these extensions individually, however, conversion between

p-adic extensions has not been implemented yet. In order to deal with this

restriction, in each of our examples, all computations will take place in a

single extension.

• Weierstrass endpoints. Let X be an odd degree hyperelliptic curve with

the Abel–Jacobi map ι : X → J with base-point ∞. For Weierstrass points

R, S ∈ X(Cp), the class [S] − [R] represents a 2-torsion point of J(Cp) since

div(x − α) = 2(α, 0) − 2∞

for any root α of the polynomial defining X. This implies by Remark 3.6

that the abelian integrals with Weierstrass endpoints must vanish. We will

observe this vanishing numerically to test the correctness of our algorithm.

• Branch of logarithm. As we discussed before, the Berkovich–Coleman inte-

gration requires a branch of the p-adic logarithm. We pick the Iwasawa

branch, that is, the one characterized by Log(p) = 0. Abelian integration does

not depend on this choice.

In the examples below, as usual, ωi will denote the holomorphic 1-form xi dx
2y on

the corresponding curve.

Example 9.1. (Genus 1) Consider the elliptic curve X/Q [30, 272.b2] given by

y2 = f (x) = (x − 6)(x − 5)(x + 11).

Its Mordell–Weil group is isomorphic to Z × Z/2Z × Z/2Z and the point P = (−3, 24) is a

generator of the free part.

Hereafter, we consider X over the field Q17; clearly this curve has split multi-

plicative reduction. Set R = (23, 102), S = (7, 6). Using the formal logarithm implemen-

tation in Sage [35], one can easily check

Ab∫ R

S
ω0 = 12 · 17 + 8 · 172 + 15 · 173 + 9 · 174 + 16 · 175 + 8 · 176 + O(177). (6)

We will compute this integral using our techniques and compare the results.
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The set {U1, U2} is a good semistable covering of P1,an with respect to Sf =
{6, 5, −11, ∞} where

U1 = P1,an \ B(6, 1/17), U2 = B(6, 1)

and we have the dual graphs � and T

respectively. Note that R ∈ π−1(U2), S ∈ π−1(U1).

The cycle C = e1 + e2 and the tropical 1-form η = 1
2ηC are as in Corollary 3.14.

Now, we pick reference points. Let Pv1
and Pv2

be points whose x-coordinates are 1

and −28, respectively; hence Pvi
∈ π−1(Ui). Let Pe1

and Pe2
denote the two different

points whose x-coordinates are both a + 6 where a2 = 17. Notice that these points lie in

the intersection π−1(U1) ∩ π−1(U2). We assume that the point Pe1
lies in the component

corresponding to the edge e1.

We have

π−1(U1) � {(x, ỹ) | ỹ2 = x − 5, x ∈ U1}
= X̃an

x−5 \ D1, D1 = {(x, ỹ) | ỹ2 = x − 5, x ∈ B(6, 1/17)}

where

ỹ = y

�(x)
, �(x) = (x − 6)

(
1 + 17

x − 6

)1/2
.

Define

P1 → X̃x̃(x̃−1)

T 
→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞+ if T = 0,

∞− if T = ∞,(
1
2

(
T + 1

4T

) + 1
2 , 1

2

(
T − 1

4T

))
otherwise.
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This is a parametrization and induces an isomorphism

P1,an \ (B(0, 1/17) ∪ B(−2, 1/17)
) � X̃an

x−5 \ D1.

This annulus is isomorphic to a standard annulus by

A(1/172, 1)
∼−→ P1,an \ (B(0, 1/17) ∪ B(−2, 1/17)

)
t 
→ −2t

t − 17

and, under these isomorphisms, the 1-form ω0|π−1(U1) is represented on A(1/172, 1) by

(
1 + (t − 17)2

4t

)−1/2 dt

2t
.

Similarly, we have

π−1(U2) � {(x̃, ỹ) | ỹ2 = x̃(x̃ + 1), x̃ ∈ B(0, 17)}
= X̃an

x̃(x̃+1)
\ D2, D2 = {(x̃, ỹ) | ỹ2 = x̃(x̃ + 1), x̃ ∈ B(∞, 1/17)}

where

x̃ = x − 6

17
, ỹ = y

17�(x̃)
, �(x̃) = (1 + 17x̃)1/2.

Define

P1 → X̃x̃(x̃+1)

T 
→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞+ if T = 0,

∞− if T = ∞,(
1
2

(
T + 1

4T

) − 1
2 , 1

2

(
T − 1

4T

))
otherwise.

This is a parametrization and induces an isomorphism

P1,an \ (B(0, 1/17) ∪ B(∞, 1/17)
) � X̃an

x̃(x̃+1)
\ D2.
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The annulus on the left is isomorphic to a standard annulus by

A(1/172, 1)
∼−→ P1,an \ (B(0, 1/17) ∪ B(∞, 1/17)

)
t 
→ t/17

and, under these isomorphisms, the 1-form ω0|π−1(U2) is represented on A(1/172, 1) by

(
1 + (t − 17/2)2

2t

)−1/2 dt

2t
.

Let γ be the concatenation of a path from S to Pe1
in π−1(U1) and a path from Pe1

to R in π−1(U2). Then τ(γ ) = e1 and we have

BC∫
γ

ω0 = 15 · a4 + 11 · a6 + 12 · a8 + a10 + 11 · a12 + O(a14),

t∫
e1

η = 1

2
.

Consider the loop γC = γ1γ2γ3γ4 in Xan where γ1 is a path from Pv1
to Pe1

in

π−1(U1), γ2 is a path from Pe1
to Pv2

in π−1(U2), γ3 is a path from Pv2
to Pe2

in π−1(U2)

and γ4 is a path from Pe2
to Pv1

in π−1(U1). The paths are shown in a figure modified

from one in [28].
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The homology class of γC is C and the period integral is

BC∫
γC

ω0 = 10 · a2 + 12 · a4 + 9 · a6 + 5 · a8 + 4 · a10 + 4 · a12 + O(a14).

Finally,

Ab∫ R

S
ω0 =

BC∫
γ

ω0 −
(BC∫

γC

ω0

)(t∫
e1

η

)
= 12 · a2 + 8 · a4 + 15 · a6 + 9 · a8 + 16 · a10 + 8 · a12 + O(a14)

which is the same result as in (6) since a2 = 17.

We also note that, using the addition law on elliptic curves, for each

i ∈ {0, . . . , 100} our methods give

Ab∫ (6,0)+iP

(5,0)+iP
ω0 =

Ab∫ (−11,0)+iP

(5,0)+iP
ω0 = O(a14)

demonstrating the vanishing of integrals between points whose difference is torsion.

Example 9.2. (Genus 2) Let X/Q7 be the genus 2 curve defined by

y2 = f (x) = x(x − 1)(x − 2)(x − 3)(x − 7).

Set R = (0, 0), S = (1, 0); we already know that the abelian integral of ω from S to R

vanishes for every holomorphic form ω on X. Using our techniques, we will verify this

up to a certain precision.

The set {U1, U2} is a good semistable covering of P1,an with respect to

Sf = {0, 1, 2, 3, 7, ∞} where

U1 = P1,an \ B(0, 1/7), U2 = B(0, 1)

and we have the dual graphs � and T

respectively. Notice that R ∈ π−1(U2), S ∈ π−1(U1).
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The cycle C = e1 + e2 and the tropical 1-form η = 1
2ηC are as in Corollary 3.14.

Again, we pick reference points. Let Pv1
and Pv2

be points whose x-coordinates are

−1 and 14, respectively; hence Pvi
∈ π−1(Ui). Let Pe1

and Pe2
denote the two different

points whose x-coordinates are both a where a2 = 7. Notice that these points lie in

the intersection π−1(U1) ∩ π−1(U2). We assume that the point Pe1
lies in the component

corresponding to the edge e1.

The analytic open π−1(U1) will be embedded into a good reduction elliptic curve.

In fact, we have

π−1(U1) � {(x, ỹ) | ỹ2 = (x − 1)(x − 2)(x − 3), x ∈ U1}
where

ỹ = y

�(x)
, �(x) = x

(
1 − 7

x

)1/2
.

In the new coordinates, the 1-form ωi|π−1(U1) is given by

(
1 − 7

x

)−1/2
xi−1 dx

2ỹ
.

For the other component, we have

π−1(U2) � {(x̃, ỹ) | ỹ2 = x̃(x̃ − 1), x̃ ∈ B(0, 7)}
= X̃an

x̃(x̃−1)
\ D, D = {(x̃, ỹ) | ỹ2 = x̃(x̃ − 1), x̃ ∈ B(∞, 1/7)}

where

x̃ = x

7
, ỹ = y

7�(x̃)
, �(x̃) = (

(7x̃ − 1)(7x̃ − 2)(7x̃ − 3)
)1/2.

Define

P1 → X̃x̃(x̃−1)

T 
→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞+ if T = 0,

∞− if T = ∞,(
1
2

(
T + 1

4T

) + 1
2 , 1

2

(
T − 1

4T

))
otherwise.

This is a parametrization and induces an isomorphism

P1,an \ (B(0, 1/7) ∪ B(∞, 1/7)
) � X̃an

x̃(x̃−1)
\ D.
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The annulus on the left is isomorphic to a standard annulus by

A(1/72, 1)
∼−→ P1,an \ (B(0, 1/7) ∪ B(∞, 1/7)

)
t 
→ t/7

and, under these isomorphisms, the 1-form ωi|π−1(U2) is can be expressed on A(1/72, 1)

as

( (t + 7/2)2

2t

)i
(( (t + 7/2)2

2t
− 1

)( (t + 7/2)2

2t
− 2

)( (t + 7/2)2

2t
− 3

))−1/2 dt

2t
.

As in the previous example, take a path γ from S to R such that τ(γ ) = e1 and a

take loop γC whose homology class is C. Then our computations give

BC∫
γ

ω0 = 4 · a6 + 2 · a8 + 2 · a10 + 5 · a12 + O(a14),

BC∫
γ

ω1 = 6 · a2 + 6 · a6 + 4 · a10 + 6 · a12 + O(a14),

BC∫
γC

ω0 = a6 + 5 · a8 + 4 · a10 + 3 · a12 + O(a14),

BC∫
γC

ω1 = 5 · a2 + a4 + 5 · a6 + a8 + a10 + 6 · a12 + O(a14),

t∫
e1

η = 1

2
.

Combining these, we get

Ab∫ R

S
ωi =

BC∫
γ

ωi −
(BC∫

γC

ωi

)(t∫
e1

η

)
= O(a14), i = 0, 1

from which our aim follows as every holomorphic 1-form is a linear combination of ω0

and ω1.

Example 9.3. (Genus 3) Let X/Q13 be the genus 3 curve given by

y2 = f (x) = x(x − 13)(x − 169)(x − 1)(x − 14)(x − 27)(x − 4).
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The set {U1, U2, U3, U4} is a good semistable covering of P1,an with respect to

Sf = {0, 13, 169, 1, 14, 27, 4, ∞} where

U1 = P1,an \ (B(1, 1/13) ∪ B(0, 1/13)
)
,

U2 = B(1, 1),

U3 = A(1/169, 1), U4 = B(0, 1/13),

and we have the dual graphs � and T

respectively.

The cycle C = e3 +e4 and the tropical 1-form η = 1
2ηC are as in Corollary 3.14. Let

Pv1
, Pv2

, Pv3
, Pv4

be points whose x-coordinates are 2, 20/7, −13/12, 169/14, respectively;

hence Pvi
∈ π−1(Ui). For an a such that a4 = 13, let Pe1

and Pe2
denote points whose

x-coordinates are a2 + 1 and a2, respectively; and let Pe3
and Pe4

be the two different

points whose x-coordinates are both 13a2. Notice that

Pe1
∈ π−1(U2) ∩ π−1(U1), Pe2

∈ π−1(U1) ∩ π−1(U3)

and that

Pe3
, Pe4

∈ π−1(U3) ∩ π−1(U4).

We assume that the point Pe3
lies in the component corresponding to the edge e3.

The preimage π−1(U1) will be embedded into a good reduction elliptic curve:

π−1(U1) � {(x, ỹ) | ỹ2 = x(x − 1)(x − 4), x ∈ U1}

where

ỹ = y

�(x)
, �(x) = x(x − 1)

((
1 − 13

x

)(
1 − 169

x

)(
1 − 13

x − 1

)(
1 − 26

x − 1

))1/2

.
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The 1-form ωi|π−1(U1) is represented by

((
1 − 13

x

)(
1 − 169

x

)(
1 − 13

x − 1

)(
1 − 26

x − 1

))−1/2 xi−1

x − 1

dx

2ỹ
.

Similarly, π−1(U2) is also embedded into an elliptic curve:

π−1(U2) � {(x̃, ỹ) | ỹ2 = x̃(x̃ − 1)(x̃ − 2), x̃ ∈ B(0, 13)}

where

x̃ = x−1
13 , ỹ = y

13
√

13·�(x̃)
, �(x̃) = (

(13x̃ + 1)(13x̃ − 12)(13x̃ − 168)(13x̃ − 3)
)1/2.

The 1-form ωi|π−1(U2) becomes

1√
13

(13x̃ + 1)i((13x̃ + 1)(13x̃ − 12)(13x̃ − 168)(13x̃ − 3)
)−1/2 dx̃

2ỹ
.

Now, π−1(U3) will be embedded into a rational curve:

π−1(U3) � {(x, ỹ) | ỹ2 = x − 13, x ∈ U3}

where

ỹ = y

�(x)
, �(x) = x

(
1 − 169

x

)1/2(
(x − 1)(x − 14)(x − 27)(x − 4)

)1/2.

Under this isomorphism, the 1-form ωi|π−1(U3) is represented by

(
1 − 169

x

)−1/2(
(x − 1)(x − 14)(x − 27)(x − 4)

)−1/2xi−1 dx

2ỹ
.

The analytic open π−1(U4) will also be embedded into a rational curve:

π−1(U4) � {(x̃, ỹ) | ỹ2 = x̃(x̃ − 1), x̃ ∈ B(0, 13)}

where

x̃ = x
169 , ỹ = y

169·�(x̃)
, �(x̃) = (

(169x̃ − 13)(169x̃ − 1)(169x̃ − 14)(169x̃ − 27)(169x̃ − 4)
)1/2.
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In the new coordinates, the 1-form ωi|π−1(U4) becomes

(
(169x̃ − 13)(169x̃ − 1)(169x̃ − 14)(169x̃ − 27)(169x̃ − 4)

)−1/2
(169x̃)i dx̃

2ỹ
.

We start with verifying (up to a certain precision) that the abelian integral of ω0

vanishes between the Weierstrass points R = (13, 0), S = (1, 0). Note that R ∈ π−1(U3)

and that S ∈ π−1(U2). Consider the concatenation γ = γ1γ2γ3 where γ1 is a path from S

to Pe1
in π−1(U2), γ2 is a path from Pe1

to Pe2
in π−1(U1) and γ3 is a path from Pe2

to R in

π−1(U3); hence τ(γ ) = e1e2. Since the tropical integral of η along e1e2 is 0, we have the

equality

Ab∫ R

S
ω0 =

BC∫
γ

ω0 =
BC∫ Pe1

S
ω0 +

BC∫ Pe2

Pe1

ω0 +
BC∫ R

Pe2

ω0.

Our methods yield

BC∫ Pe1

S
ω0 = 2 · a−1 + 8 · a + 6 · a3 + 9 · a5 + 8 · a7 + 3 · a9 + 5 · a11 + O(a13),

BC∫ Pe2

Pe1

ω0 = 4 · a−1 + 6 · a + 3 · a3 + 10 · a5 + 8 · a7 + 9 · a9 + 11 · a11 + O(a13),

BC∫ R

Pe2

ω0 = 7 · a−1 + 12 · a + 3 · a3 + 5 · a5 + 9 · a7 + 12 · a9 + 8 · a11 + O(a13),

from which we get

Ab∫ R

S
ω0 = O(a13)

as required.

To demonstrate our methods, we compute the abelian integral of ω = ω1 + ω2

between the following two points lying in different basic wide opens:

R = (133, 2 · 133 + 2 · 134 + 10 · 135 + 11 · 136 + O(137)) ∈ π−1(U4),

S = (7, 4 + 7 · 132 + 12 · 134 + 6 · 135 + O(137)) ∈ π−1(U1).

Set γ = γ1γ2γ3 where γ1 is a path from S to Pe2
in π−1(U1), γ2 is a path from Pe2

to Pe3

in π−1(U3) and γ3 is a path from Pe3
to R in π−1(U4); thus τ(γ ) = e2e3. For this path, we
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have

BC∫
γ

ω = 11 + 4 · a2 + 2 · a4 + 10 · a6 + 6 · a8 + 7 · a10 + 8 · a12 + 9 · a14

+ 9 · a16 + 11 · a18 + 9 · a20 + 6 · a22 + 4 · a24 + 10 · a26 + O(a28),

t∫
τ(γ )

η = 1

2
.

Consider the loop γC = γ1γ2γ3γ4 in Xan where γ1 is a path from Pv3
to Pe3

in π−1(U3), γ2 is

a path from Pe3
to Pv4

in π−1(U4), γ3 is a path from Pv4
to Pe4

in π−1(U4) and γ4 is a path

from Pe4
to Pv3

in π−1(U3). The homology class of this loop is C and the period integral

is

BC∫
γC

ω = 8 · a2 + 7 · a6 + 2 · a10 + 6 · a14 + 10 · a18 + 8 · a26 + O(a28).

Consequently, we have

Ab∫ R

S
ω =

BC∫
γ

ω −
(BC∫

γC

ω

)(t∫
τ(γ )

η

)
= 11 + 2 · a4 + 6 · a8 + 8 · a12 + 9 · a16 + 9 · a20 + 4 · a24 + O(a28)

= 11 + 2 · 13 + 6 · 132 + 8 · 133 + 9 · 134 + 9 · 135 + 4 · 136 + O(137).

Example 9.4. (Chabauty–Coleman method) Consider the even degree hyperelliptic

curve X/Q [30, 3200.f.819200.1] defined by the equation

y2 = f (x) = (x2 − 2)(x2 − x − 1)(x2 + x − 1).

According to the database, this curve has exactly six rational points. In this final

example, we will identify the annihilating differential to be used in the Chabauty–

Coleman method at a prime of bad reduction. See the survey [32] (especially Appendix

A) for a detailed account of the method with many references.

The curve X has bad reduction at the prime 5 and its minimal regular model X

over Z5 is given by the same equation as the above Weierstrass model. The Chabauty–

Coleman bound [31, Corollary 1.11] (see also [29, Theorem 1.4] for a refinement) gives

#X(Q) ≤ #X sm
F5

(F5) + 2 = 8
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where X sm
F5

denotes the smooth locus of the special fiber of X . A point count in Magma

[5] reveals the set of all rational points of naive height bounded by 105:

{∞+, ∞−, (1, ±1), (−1, ±1)} ⊆ X(Q). (7)

Another computation in Magma [5] shows that the Mordell-Weil rank of the Jacobian

of X is equal to 1. Therefore, in order to check whether or not the curve X has more

rational points, one can use [32, Theorem A.5.(1)]. The crucial step is to construct the

unique, up to a scalar multiple, annihilating differential on X. The fact that the known

rational points are all in different residue discs makes it necessary to compute non-tiny

integrals; this can be achieved by using of our techniques.

The set {U1, U2, U3} is a good semistable covering of P1,an with respect to the set

Sf = {±√
2, 1

2 (1 ± √
5), 1

2 (−1 ± √
5)}, where

U1 = P1,an \ (B(1/2, 1/
√

5) ∪ B(−1/2, 1/
√

5)
)
,

U2 = B(1/2, 1),

U3 = B(−1/2, 1),

with dual graph T

Consider the points R = (1, −1) and S = (1, 1), both belong to the space π−1(U1).

Therefore, for every holomorphic 1-form ω on X, we have the equality

Ab∫ R

S
ω =

BC∫ R

S
ω.

The basic wide open π−1(U1) is embedded into a rational curve:

π−1(U1) � {(x, ỹ) | ỹ2 = x2 − 2, x ∈ U1}
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where

ỹ = y

�(x)
, �(x) =

(
x − 1

2

)(
x + 1

2

)((
1 − 5/4

(x − 1/2)2

)(
1 − 5/4

(x + 1/2)2

))1/2

.

Under this isomorphism, the 1-form ωi|π−1(U1) is represented by

((
1 − 5/4

(x − 1/2)2

)(
1 − 5/4

(x + 1/2)2

))−1/2 xi

x2 − 1/4

dx

2ỹ
.

Our methods yield

a :=
BC∫ R

S
ω0 = 2 · 5 + 54 + 3 · 56 + 2 · 57 + 2 · 58 + 4 · 59 + O(510),

b :=
BC∫ R

S
ω1 = O(510),

which give the annihilating differential as

ω := bω0 − aω1.

It can be shown that the inclusion in (7) is actually an equality using the annihilating

differential ω. In particular, we have

X(Q) = {∞+, ∞−, (1, ±1), (−1, ±1)}.

Remark 9.5. We end this example with a remark about the importance of Chabauty–

Coleman method at a prime of bad reduction. An illustration [29, Example 5.1] was

provided by the 1st-named author with Zureick-Brown. In this example, for a certain

curve X/Q that has bad reduction at 5, it is shown that 5 is the only prime at which

the refined Chabauty–Coleman bound [29, Theorem 1.4] is sharp. Hence, one cannot

determine the set X(Q) by using the Chabauty–Coleman bound at primes of good

reduction alone; it is necessary to work with a prime of bad reduction or to make use of

other techniques such as the Mordell–Weil sieve [14].
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