
Advances in Applied Mathematics 128 (2021) 102190
Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

Combinatorial iterated integrals and the harmonic 

volume of graphs

Raymond Cheng a, Eric Katz b,∗

a Department of Mathematics, Columbia University, 2990 Broadway, New York, 
NY, 10027, USA
b Department of Mathematics, The Ohio State University, 231 West 18th Avenue, 
Columbus, OH, 43210, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 June 2018
Received in revised form 4 March 
2021
Accepted 4 March 2021
Available online 17 March 2021

MSC:
05C25

Keywords:
Graph theory
Fundamental group
Iterated integrals
Anabelian combinatorics
Combinatorial harmonic volume

Let Γ be a connected bridgeless metric graph, and fix a point 
v of Γ. We define combinatorial iterated integrals on Γ along 
closed paths at v, a unipotent generalization of the usual cycle 
pairing and the combinatorial analogue of Chen’s iterated 
integrals on Riemann surfaces. These descend to a bilinear 
pairing between the group algebra of the fundamental group 
of Γ at v and the tensor algebra on the first homology of Γ, ∫

: Zπ1(Γ, v) × TH1(Γ, R) → R. We show that this pairing 
on the two-step unipotent quotient of the group algebra 
allows one to recover the base-point v up to well-understood 
finite ambiguity. We encode the data of this structure as 
the combinatorial harmonic volume which is valued in the 
tropical intermediate Jacobian. We also give a potential-
theoretic characterization for hyperellipticity for graphs.

© 2021 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: rcheng@math.columbia.edu (R. Cheng), katz.60@osu.edu (E. Katz).
URLs: http://math.columbia.edu/~rcheng/ (R. Cheng), https://people.math.osu.edu/katz.60/

(E. Katz).
https://doi.org/10.1016/j.aam.2021.102190
0196-8858/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aam.2021.102190
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yaama
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aam.2021.102190&domain=pdf
mailto:rcheng@math.columbia.edu
mailto:katz.60@osu.edu
http://math.columbia.edu/~rcheng/
https://people.math.osu.edu/katz.60/
https://doi.org/10.1016/j.aam.2021.102190


2 R. Cheng, E. Katz / Advances in Applied Mathematics 128 (2021) 102190
1. Introduction

A metric graph Γ is equipped with a cycle pairing 〈 · , · 〉 on its homology H1(Γ, R) tak-
ing a pair of cycles to the signed length of their intersection. In tropical geometry, metric 
graphs are the analogues of curves. Under this analogy, the cycle pairing corresponds to 
the integrals of holomorphic 1-forms along closed paths. Many authors [14,29] have con-
sidered a setting in which the cycle pairing is packaged as a tropical Jacobian. Indeed, by 
the tropical Torelli theorem [16,1,15,14,33], the tropical Jacobian determines a bridgeless 
finite connected metric graph up to an equivalence relation called 2-isomorphism.

A natural generalization of period integrals is Chen’s theory of iterated integrals [12]
where one integrates a number of 1-forms along a path. This theory interpolates be-
tween homology and the fundamental group of an algebraic curve. In fact, it encodes 
information about the unipotent fundamental group which can be understood in terms 
of a particular quotient of the group algebra of the fundamental group. In this paper, 
we introduce combinatorial iterated integrals where we integrate a number of homology 
classes ω1, . . . , ω� ∈ H1(Γ, R) along a path γ in Γ to obtain 

∫
γ
ω1 . . . ω�. Combinatorial 

iterated integrals can naturally be interpreted as unipotent invariants of graphs. Let 
Zπ1(Γ, v) be the group algebra of the fundamental group of Γ at some base-point v. If 
J is the augmentation ideal of Zπ1(Γ, v), combinatorial iterated integration of length at 
most � descends to a bilinear pairing

∫
: Zπ1(Γ, v)/J�+1 × T�H1(Γ,R) → R

where T�H1(Γ, R) is the truncated tensor algebra T�H1(Γ, Z) ··=
⊕�

k=0 H1(Γ, Z)⊗k. Be-
cause H1(Γ, R) can be recovered from Zπ1(Γ, v)/J�+1, combinatorial iterated integrals 
can be viewed as a structure on Zπ1(Γ, v)/J�+1. We call this structure an integration 
algebra. As is the case in tropical geometry, this structure is a combinatorial shadow 
of its classical analogue. Indeed, the pair (Zπ1(Γ, v)/J3, 

∫
) can be interpreted as lowest 

weight component of the mixed Hodge structure on the unipotent fundamental group of 
a degenerating family of algebraic curves.

It is natural to ask if the graph can be recovered from (Zπ1(Γ, v)/J3, 
∫

). Indeed, 
its classical analogue is the mixed Hodge structure on truncations of the fundamental 
group algebra of complex algebraic varieties introduced by Hain [19–21], generalizing 
work of Morgan [28]. Hain [21] and Pulte [31], drawing on work by Carlson [9,10], use 
the mixed Hodge structure on Zπ1(X, x)/J3 to prove a Torelli Theorem for pointed 
complex algebraic curves (X, x). We believe (Zπ1(Γ, v)/J3, 

∫
) to be a complete invariant 

of connected bridgeless pointed metric graphs:

Conjecture 1.1 (Unipotent Torelli conjecture). Let (Γ, v) be a connected bridgeless pointed 
metric graph. Then the pair (Zπ1(Γ, v)/J3, 

∫
) completely determines (Γ, v).



R. Cheng, E. Katz / Advances in Applied Mathematics 128 (2021) 102190 3
Unfortunately, we have been unable to prove this conjecture. The difficulty comes from 
a limitation of the tropical Torelli theorem: it only recovers a graph up to an equivalence 
relation called 2-isomorphism which is generated by two moves, vertex-cleaving and 
Whitney twists. However, if the graph is known, one can recover the base-point of the 
graph from the integration algebra up to well-understood ambiguity:

Theorem 1.2. Let Γ be a bridgeless metric graph with g(Γ) ≥ 2. Let v be a point of the 
underlying topological space |Γ|. Then the isomorphism type of the integration algebra (
Zπ1(Γ, v)/J3, 

∫ )
determines v up to at most 

∣∣Autcyc
(
Zπ1(Γ, v)/J3,

∫ )∣∣ choices.

Here, Autcyc
(
Zπ1(Γ, v)/J3, 

∫ )
is a finite Abelian group of order 2λ where λ is at most 

the number of 2-connected components of Γ. In the case where the graph is 3-connected, 
there is no ambiguity coming from 2-isomorphism and we can recover the graph and 
base-point (up to two choices) from the integration algebra:

Corollary 1.3. Let (Γ, v) be a pointed metric graphs such that Γ is 3-connected. Then 
the integration algebra 

(
Zπ1(Γ, v)/J3, 

∫ )
determines Γ up to tropical equivalence and 

determines v up to two possibilities.

Here, tropical equivalence is the equivalence relation generated by subdividing edges 
and its inverse.

The hope of the unipotent Torelli conjecture is that pointed graphs are encoded by 
(a truncation of) their fundamental groups and, therefore, are anabelian combinatorial 
objects in analogy with Grothendieck’s anabelian program in algebraic geometry [18].

The pair (Zπ1(Γ, v)/J3, 
∫

) can be considered as a sort of extension of (H1(Γ, Z), 〈 · , · 〉). 
The extension data can be encoded as an element of a real torus, J2(Γ) analogous to an 
intermediate Jacobian in algebraic geometry. This tropical intermediate Jacobian is the 
recipient of an invariant νΓ analogous to the harmonic volume [22]. Given a connected 
bridgeless graph Γ, let W (Γ) be the set of rigged graphs 2-isomorphic to Γ, that is 
triples (Γ′, v′, φ′) where (Γ′, v′) is a pointed metric, bridgeless graph, and φ′ : H1(Γ, Z) →
H1(Γ′, Z) is an isometry. Then the harmonic volume is a map

νΓ : W (Γ) → J2(Γ).

Conjecturally, νΓ is an injection. However, we only have the weaker result:

Theorem 1.4. Let (Γ1, v1, φ1), (Γ2, v2, φ2) ∈ W (Γ). There is equality of harmonic vol-
umes, νΓ(Γ1, v1, φ1) = νΓ(Γ2, v2, φ2) if and only if φ2 ◦ φ−1

1 : H1(Γ1, Z) → H1(Γ2, Z) lifts 
to an isomorphism

φ :
(
Zπ1(Γ1, v1)/J3

1 ,
∫ )

→
(
Zπ1(Γ2, v2)/J3

2 ,
∫ )

.

Our approach to the unipotent Torelli conjecture is blocked by automorphisms of 
(Zπ1(Γ, v)/J3, 

∫
) that preserve the cycles in H1(Γ, Z). These automorphisms prevent 
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one from gluing isomorphisms in an inductive argument. We conjecture that the only 
automorphisms of the integration algebra come from legitimate automorphisms of a 
graph:

Conjecture 1.5. For a 2-connected graph, the group Autcyc
(
Zπ1(Γ, v)/J3, 

∫ )
is nontrivial 

if and only if Γ is a hyperelliptic graph and v is a fixed point of a hyperelliptic involution.

Because hyperelliptic graphs are so central to our story, we prove Theorem 7.6, a 
potential-theoretic criterion for hyperellipticity that was part of an unsuccessful attempt 
to prove Conjecture 1.5.

There are a number of questions that we would like to consider in the future. One 
should clarify the connection between our integration algebras and the tropical Ceresa 
classes of Corey, Ellenberg, and Li [11]. Also, the discrete geometric picture is lacking. 
The Torelli theorem for graphs was proved using Delaunay cells. Is there some unipotent 
analogue of Delaunay cells that would allow us to reconstruct a graph?

We expect our combinatorial iterated integrals to have applications in number theory 
and Hodge theory. Indeed, they have already been used by Betts and Dogra [2] in their 
study of the étale fundamental groupoid. In work [26] in preparation between the second 
named author and Daniel Litt, it is shown that combinatorial iterated integrals mediate 
between the Berkovich [3] and Vologodsky [34] notions of p-adic integration on curves. 
This is related to work of Besser and Zerbes [8], and has applications to the non-abelian 
Chabauty methods of Kim [23,24]. See [27, §6.5] for a related discussion. Also, combina-
torial iterated integrals arise in asymptotics of variations of Hodge structures associated 
with the truncated fundamental group algebra of a semistable family of curves, analo-
gous to the cohomological case as explained in [17, Proposition 13.3] and [32, Theorem 
6.6].

Outline. In §2, we review basic facts about group algebras.
In §3, we construct combinatorial iterated integrals and establish their basic proper-

ties. In particular, we formulate and prove Theorem 3.11, a duality result for combina-
torial iterated integrals.

In §4, we discuss cyclic automorphism groups of H1(Γ, Z) and of integration algebras. 
These are important for understanding the base-point ambiguity in the main theorems 
of the following sections.

In §5, we prove our weaker versions of the unipotent Torelli conjecture allowing one 
to recover base-points of a graph (up to ambiguity) from integration algebras.

In §6, we define the harmonic volume invariant.
In §7, we review hyperelliptic graphs and prove our potential-theoretic criterion.

Acknowledgments. The authors would like to thank Omid Amini, Matthew Baker, 
Dustin Cartwright, Jordan Ellenberg, Joshua Greene, Daniel Litt, Sam Payne, Joseph 
Rabinoff, and Farbod Shokrieh for comments.
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2. Group algebras

We review group algebras. Let G be a group and R be a commutative ring. For an 
R-module M , let TM ··=

⊕
k≥0 M

⊗k be the tensor algebra over R of M . For � ∈ Z, let 
T�M ··=

⊕�
k≥0 M

⊗k be its truncation. The group algebra RG of G with coefficients in R
is the associative unital R-algebra with underlying R-module

RG =
⊕

g∈G
Reg

and multiplication determined on basis elements by r1eg1 · r2eg2
··= r1r2eg1g2 for all 

r1, r2 ∈ R and g1, g2 ∈ G. The unit of RG is the element e1, where 1 ∈ G the identity of 
G. We write g for eg and 1 for the unit of RG, G, and the ring R.

The kernel J ··= ker(ε : RG → R) of the augmentation homomorphism is called the 
augmentation ideal. An element of J is of the form 

∑
g∈G agg with 

∑
g∈G ag = 0. So

∑
g∈G

agg =
∑

g∈G\{1}
ag(g − 1) +

∑
g∈G

ag =
∑

g∈G\{1}
ag(g − 1),

showing that J is a free R-module with basis { (g − 1) | g ∈ G \ {1} }. Since both R and 
J are free R-modules, the exact sequence 0 → J → RG ε−→ R → 0 is split and we have 
RG ∼= R⊕ J as R-modules. There is an isomorphism of R-modules

Gab ⊗Z R → J/J2 : g �→ (g − 1).

The algebra RG has a descending filtration RG = J0 ⊇ J1 ⊇ J2 ⊇ · · · by powers of 
the augmentation ideal. The associated graded algebra with respect to this filtration is

grJ(RG) ··=
⊕∞

i=0
J i/J i+1.

After identifying J/J2 with Gab ⊗Z R, there is a natural map

(Gab ⊗Z R)⊗i → J i/J i+1 : (g1 − 1) ⊗ · · · ⊗ (gi − 1) �→ (g1 − 1) · · · (gi − 1)

for each i ≥ 0 and where g1, . . . , gi ∈ Gab. If G is a free group on a set of generators E, 
this map is an isomorphism and we see that the associated graded algebra of RG

grJ(RG) ∼=
⊕∞

i=0
(Gab ⊗Z R)⊗i = T (Gab ⊗Z R)

is isomorphic to the tensor algebra of the free R-module on the set E.

3. Combinatorial iterated integrals

This section introduces combinatorial iterated integrals and discusses their properties.
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3.1. Background on graphs

Throughout this paper, a graph is a finite connected graph, possibly with loops and 
multiple edges. For topological constructions, we think of graphs as one-dimensional Δ-
complexes. Given a graph Γ, we write V (Γ) and E(Γ) for the set of vertices and oriented 
edges of Γ, respectively. Write |Γ| for its underlying topological space. For an oriented 
edge e, let e denote e with its orientation reversed. Given an oriented edge e, write e+

and e− for its head and tail in the given orientation. We will often assume our graphs to 
be bridgeless, that is, there does not exist an edge whose deletion disconnects the graph. 
For a positive integer k, a graph is k-connected or k-vertex connected if it cannot be 
disconnected by removing fewer than k vertices.

A metric graph (Γ, �) is a graph Γ together with a length function � : E(Γ) → R>0 such 
that �(e) = �(e). For each oriented edge e of Γ we fix a homeomorphism te : |e| → [0, �(e)]
such that te = �(e) − te. A polynomial 1-form ω on Γ is a choice of 1-form ωe = pe(t)dt
on each oriented edge e ∼= [0, �(e)] such that pe(t) is a real polynomial and

pe(t) = −pe(�(e) − t).

We interpret a polynomial 1-form as a 1-form on |Γ|. The degree of a polynomial 1-form 
is the maximum of the degrees of the polynomials pe(t). A polynomial 1-form is said to 
be a tropical 1-form if

(i) each pe(t) is constant; and
(ii) if v ∈ V (Γ) and e1, . . . , ek are the edges adjacent to v, directed away from v, ∑

i pei(t) = 0.

The second condition is also called harmonicity. See [29] for more details.
For a ring R, let C0(Γ, R) be the free R-module on V (Γ), and let C1(Γ, R) be the quo-

tient of the free R-module on E(Γ) by the relation e = −e. Let ∂ : C1(Γ, R) → C0(Γ, R)
be the simplicial boundary map defined by e �→ e+−e−. The homology groups of Γ with 
coefficients in R are H0(Γ, R) ··= C0(Γ, R)/∂C1(Γ, R) and H1(Γ, R) ··= ker(∂ : C1(Γ, R) →
C0(Γ, R)). The elements of H1(Γ, R) are referred to as cycles of Γ. A cycle C is simple if 
the coefficient of each edge in C is 1, 0, or −1. The set of edges for which the coefficient 
in C is nonzero is called the support of C. A simple cycle is primitive if its support is 
minimal among the cycles. To a cycle C ∈ H1(Γ, R), we may attach a tropical 1-form 
ωC as follows: write C =

∑
aee for ae ∈ R and set pe(t) = ae. The map C �→ ωC is an 

isomorphism from H1(Γ, R) to tropical 1-forms. Henceforth we shall identify elements of 
H1(Γ, R) with tropical 1-forms. For a closed path γ : [0, 1] → |Γ|, we write [γ] ∈ H1(Γ, Z)
for the underlying cycle.

We define an inner product on C1(Γ, R) by
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〈 · , · 〉 : C1(Γ,R) × C1(Γ,R) → R 〈x, y〉 ··=

⎧⎪⎪⎨
⎪⎪⎩
�(x) if x = y,

−�(x) if x = y

0 if x 
= y, y.

Since H1(Γ, R) ⊆ C1(Γ, R), the first homology group inherits a bilinear form, also de-
noted by 〈 · , · 〉. It takes a pair of cycles to the signed length of their intersection, counted 
with multiplicity. We call this the cycle pairing. Because it is the restriction of the stan-
dard Euclidean pairing, it is positive-definite and thus, nondegenerate.

3.2. Combinatorial iterated integrals

In this subsection, we introduce combinatorial iterated integrals on graphs, a non-
abelian extension of the cycle pairing.

Our constructions are inspired by Chen’s theory of iterated line integrals [12] and 
their application to the construction of a mixed Hodge structure on the fundamental 
group of an algebraic variety [21]. After completing this article, we became aware of [5]
in which related definitions were made.

To define iterated integrals on paths, we first define antiderivatives on the universal 
cover Γ̃. A continuous function F : |Γ̃| → R is said to be piecewise polynomial if it 
restricts to each edge as a polynomial by the parameterization te. For such a function 
F , we define dF to be the 1-form whose restriction to an edge e is the differential 
dF |e. Pick a base-point v of Γ̃. Let ω1, . . . , ωk be polynomial 1-forms on Γ which we will 
identify with their pulbacks on Γ̃. The primitive Fω1···ωk

is defined by induction on k. We 
define Fω1 : Γ̃ → R to be the continuous piecewise polynomial function with Fω1(v) = 0
and dFω1 = ω1. In general, we define Fω1···ωk

to be the piecewise polynomial function 
characterized by

(i) Fω1···ωk
(v) = 0, and

(ii) dFω1···ωk
= Fω1···ωk−1ωk.

For a path γ : [0, 1] → |Γ|, we define
∫
γ

ω1 · · ·ωk = Fω1···ωk
(γ̃(1))

where γ̃ : [0, 1] → Γ̃ is a lift of γ to Γ̃ and the primitive is taken at the base-point γ̃(0).
By extending linearly, we produce combinatorial iterated integrals as a bilinear map∫

: Zπ1(Γ, v) × TH1(Γ,Z) → R.

We follow the convention that the integral against the identity element 1 ∈ H1(Γ, Z)⊗0 ⊂
TH1(Γ, Z) is the augmentation map:
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∫
γ

1 = ε(γ).

The following lemma follows from unwinding definitions:

Lemma 3.3. Let γ : [0, 1] → |Γ| be a loop, and let ωC be the tropical 1-form attached to 
C ∈ H1(Γ, R). Then

∫
γ

ωC = 〈[γ], C〉.

3.4. Properties of combinatorial iterated integrals

Combinatorial iterated integrals can be expressed in terms of shuffles. For positive 
integers k and �, define the set Sh(k, �) of (k, �)-shuffles to be the following subset of the 
symmetric group Sk+� on k + � symbols:

Sh(k, �) ··=
{
σ ∈ Sk+�

∣∣ σ−1(1) ≤ · · · ≤ σ−1(k) and σ−1(k + 1) ≤ · · · ≤ σ−1(k + �)
}
.

Combinatorial iterated integrals have properties analogous to that of classical iterated 
integrals. The proofs are also analogous: one rewrites the iterated integral as the integral 
of a k-form on a time-ordered simplex and uses properties of integration.

Proposition 3.5. Let α be a path in Γ, and let ω1, . . . , ωk be polynomial 1-forms. Then 
we have the following formulas:

– (Product) For any ωk+1, . . . , ωk+� ∈ C1(Γ, Z),
∫
α

ω1 · · ·ωk

∫
α

ωk+1 · · ·ωk+� =
∑

σ∈Sh(k,�)

∫
α

ωσ(1) · · ·ωσ(k+�).

– (Concatenation) For any path β with β(0) = α(1),

∫
αβ

ω1 · · ·ωk =
k∑

i=0

∫
α

ω1 · · ·ωi

∫
β

ωi+1 · · ·ωk.

– (Antipode)
∫

α−1

ω1 · · ·ωk = (−1)k
∫
α

ωk · · ·ω1.

Proof. See, for example, [21, 2.9,2.11,2.12]. �
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For any positive integer n, write [n] ··= {1, . . . , n}. For k and r positive integers, let

Δ(k, r) ··= { f : [k] → [r] | f(1) ≤ · · · ≤ f(k) }

be the set of all weakly increasing functions from [k] to [r]. Equivalently, setting ni ··=
#f−1(i) for i = 1, . . . , r, an element f ∈ Δ(k, r) may be represented as the sequence 
(n1, . . . , nr). Note n1 + · · · + nr = k.

The next two formulas are obtained by iterating those proven above.

Theorem 3.6. We have the following formulas:

– (Symmetrization Formula) Let γ be a path in Γ, and let ω1, . . . , ωk be polynomial 
1-forms. Then

∑
σ∈Sk

∫
γ

ωσ(1)ωσ(2) · · ·ωσ(k) =
∫
γ

ω1

∫
γ

ω2 · · ·
∫
γ

ωk.

– (Iterated Concatenation Formula) Let γ1, . . . , γr be paths in Γ with γi+1(0) = γi(1), 
and let ω1, . . . , ωk be polynomial 1-forms. Then

∫
γ1···γr

ω1 · · ·ωk =
∑

g∈Δ(k,r)
g=(n1,...,nr)

(∫
γ1

ω1 · · ·ωn1

)(∫
γ2

ωn1+1 · · ·ωn1+n2

)
· · ·

(∫
γr

ωn1+···+nr−1+1 · · ·ωk

)
.

The concatenation formula together with the observation 
∫
ββ−1ω1ω2 = 0 immediately 

yields the following conjugation formula for iterated integrals of length 2.

Theorem 3.7. Let α be a closed path in Γ, β be a path with β(1) = α(0), and ω1, ω2 be 
polynomial 1-forms. Then

∫
βαβ−1

ω1ω2 =
∫
α

ω1ω2 +

⎛
⎜⎝∫

β

ω1

∫
α

ω2 −
∫
α

ω1

∫
β

ω2

⎞
⎟⎠ . (3.7.1)

For positive integers k and r, denote by

Δ+(k, r) ··= { f ∈ Δ(k, r) | f is surjective } .

By applying the iterated concatenation formula together with inclusion-exclusion, we see 
that combinatorial iterated integrals have the following useful nilpotence property:
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Theorem 3.8. Let γ1, . . . , γr be loops based at a point v, and let ω1, . . . , ωk be polynomial 
1-forms. Then

∫
(γ1−1)···(γr−1)

ω1 · · ·ωk =
∑

g∈Δ(k,r)+
g=(n1,...,nr)

(∫
γ1

ω1 · · ·ωn1

)(∫
γ2

ωn1+1 · · ·ωn1+n2

)
· · ·

(∫
γr

ωn1+···+nr−1+1 · · ·ωk

)
.

In particular, if ω1, . . . , ωk are tropical 1-forms, interpreted as elements of H1(Γ, R),

∫
(α1−1)···(αr−1)

ω1 · · ·ωk =
{

0 r > k,

〈ω1, α1〉 · · · 〈ωk, αk〉 r = k.
(3.8.1)

Corollary 3.9. Let J ··= ker(Zπ1(Γ, v) → Z) be the augmentation ideal. For any α ∈ J�+1, 
any k ≤ �, and any ω1, . . . , ωk ∈ H1(Γ, Z),

∫
α

ω1 · · ·ωk = 0.

Thus, combinatorial iterated integration descends to a map
∫

: Zπ1(Γ, v)/J�+1 × T�H1(Γ,Z) → R

where T�H1(Γ, Z) ··=
⊕�

k=0 H1(Γ, Z)⊗k is the �th truncation of the tensor algebra.

Proof. Any α ∈ J�+1 can be written in the form

α =
∑
r>�

∑
i1,...,ir

ci1...ir (γi1 − 1) · · · (γir − 1)

where all but finitely many of the ci1...ir ∈ Z are 0. It follows from (3.8.1) that 
∫
α

is 
identically zero on H1(Γ, Z)⊗k for all k ≤ �. �

The augmentation map ε : Zπ1(Γ, v) → Z has kernel J giving a descending filtration

Zπ1(Γ, v) ⊃ J ⊃ J2 ⊃ . . . .

Because J/J2 ∼= π1(Γ, v)ab ∼= H1(Γ), the associated graded algebra can be identified as

grJ(Zπ1(Γ, v)) ∼=
⊕∞

(H1(Γ))⊗i =·· T (H1(Γ)).

i=0
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Combinatorial iterated integrals can be interpreted as a bilinear map
∫

: Zπ1(Γ, v) × grJ(Zπ1(Γ, v)) → R.

3.10. Integration algebras

An integration algebra over a ring R is the data of 
(
A, 
∫ )

where A is an algebra over 
Z with nilradical J inducing a filtration A ⊃ J ⊃ J2 ⊃ . . . together with a bilinear map

∫
: A× grJ(A) ⊗ R → R.

Our natural example will be 
(
Zπ1(Γ, v)/J�+1, 

∫ )
where � is a positive integer and 

∫
is 

combinatorial iterated integration.
A morphism of integration algebras over R,

ϕ :
(
A,
∫ )

→
(
A′,
∫ ′)

is a Z-algebra morphism ϕ : A → A′ preserving integration in that
∫

ϕ(γ)

grJ ′(ϕ)(ω) =
∫
γ

ω

for all γ ∈ A and ω ∈ grJ(A) ⊗ R, where grJ(ϕ) : grJ(A) ⊗ R → grJ ′(A′) ⊗ R is the 
induced morphism on the associated graded algebras. Observe that because the filtration 
is induced by the nilradical, ϕ must preserve the filtration.

Combinatorial iterated integration is nondegenerate in the following sense:

Theorem 3.11 (Duality theorem). For any pointed graph (Γ, v) and each � ≥ 0, the maps

T�(H1(Γ))⊗ZR→HomZ(Zπ1(Γ, v)/J�+1,R), Rπ1(Γ, v)/J�+1→HomZ(T�(H1(Γ)),R),

ω1 · · ·ωk �→
∫

ω1 · · ·ωk, γ �→
∫
γ

,

(3.11.1)
are isomorphisms of vector spaces.

Proof. The vector space Rπ1(Γ, v)/J�+1 has a descending filtration

Rπ1(Γ, v)/J�+1 ⊃ J/J�+1 ⊃ · · · ⊃ J�/J�+1

while T�(H1(Γ)) ⊗Z R has an ascending filtration
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(T0(H1(Γ)) ⊗Z R) ⊂ (T1(H1(Γ)) ⊗Z R) ⊂ · · · ⊂ (T�(H1(Γ)) ⊗Z R).

Consider the restriction of the combinatorial iterated integration
∫

: Rπ1(Γ, v)/J�+1 × T�H1(Γ) ⊗Z R → R

to J�/J�+1 × ((H1(Γ)) ⊗Z R)⊗r. By the Nilpotence Property (3.8.1), the pairing is 0 if 
r < � and is nondegenerate if r = �. Indeed, if r = �, the pairing factors as

Jr/Jr+1 × (H1(Γ) ⊗ R)⊗r ∼= (H1(Γ) ⊗ R)⊗r × (H1(Γ) ⊗ R)⊗r

where it is the r-fold tensor product of the usual nondegenerate cycle pairing. From 
this upper-triangular structure of the combinatorial iterated integrals, nondegeneracy 
follows. �
4. Automorphism groups of integration algebras

In order to state our pointed Torelli theorem, we will need to study the automorphism 
groups of integration algebras. Let 〈 · , · 〉 be the cycle pairing on H1(Γ, Z).

Definition 4.1. The cyclic automorphism group Autcyc
(
H1(Γ, Z), 〈 · , · 〉

)
is the group of 

isometries

φ : (H1(Γ,Z), 〈 · , · 〉) → (H1(Γ,Z), 〈 · , · 〉))

that induce the identity on H1(Γ, F2). The cyclic automorphism group Autcyc
(
Zπ1(Γ, v)/

J3, 
∫ )

is the group of isomorphisms of integration algebras

φ :
(
Zπ1(Γ, v)/J3,

∫ )
→
(
Zπ1(Γ, v)/J3,

∫ )
that induce the identity on H1(Γ, F2).

The group Autcyc
(
H1(Γ, Z), 〈 · , · 〉

)
is always nontrivial because of the presence of 

multiplication by −1. We can give a complete description of Autcyc
(
H1(Γ, Z), 〈 · , · 〉

)
. A 

connected graph can be written as an iterated 1-point union of its 2-connected compo-
nents. That is, there are 2-connected subgraphs Γ1, . . . , Γm such that there is a sequence 
of graphs Δ1, . . . , Δm = Γ with Δ1 = Γ1 and Δi+1 = Δi∨ui+1,vi+1 Γi+1 where ∨ denotes 
a one-point union formed by identifying ui+1 ∈ |Δi| and vi+1 ∈ |Γi+1|. In this case, there 
is an orthogonal direct sum decomposition H1(Γ, Z) ∼= ⊕iH1(Γi, Z).

Before we describe the cyclic automorphism groups, we recall some facts from [14]
about isometries φ : H1(Γ, Z) → H1(Γ′, Z) where Γ and Γ′ are bridgeless graphs. A set of 
edges S ⊂ E(Γ) is said to be a C1-set of Γ if Γ(S), the contraction of edges away from 
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S, is a cycle and Γ \ S has no bridges. The set of all C1-sets is denoted by Set1(Γ). The 
C1-sets partition the edges of the graph, and every cyclic subgraph of Γ can be written 
as a union of C1-sets. By [14, Lemma 3.3.1], any C1-set arises as the intersection of two 
cyclic subgraphs in Γ. Any element of H1(Γ, Z) ⊂ C1(Γ, Z) can be decomposed as an 
integer sum of C1-sets. For each S ∈ Set1(Γ), there is a choice of orientation on the edges 
in S such that when we write the sum of these oriented edges eS =

∑
e∈S e ∈ C1(Γ, Z), 

for every cycle C ∈ H1(Γ, Z), we are able to write

C =
∑

S∈Set1(Γ)

rS(C)eS

for some rS(C) ∈ Z. It is proven in [14, Section 3.3] that an isometry φ : H1(Γ, Z) →
H1(Γ′, Z) induces a bijection β : Set1(Γ) → Set1(Γ′) such that for any C ∈ H1(Γ, Z)

rβ(S)(φ(C)) = ±rS(C).

Proposition 4.2. Let Γ be a connected loopless graph. Let Γ1, . . . , Γm be the 2-connected 
components of Γ. Then

Autcyc
(
H1,Γ,Z, 〈 · , · 〉

) ∼= (Z/2Z)m

where σ ∈ (Z/2Z)m acts on the summand H1(Γi, Z) as multiplication by (−1)σi .

Proof. Let φ : H1(Γ, Z) → H1(Γ, Z) be an cyclic automorphism. Produce the map 
β : Set1(Γ) → Set1(Γ) as above. Since φ induces the identity on H1(Γ, F2), for any 
cycle C, β permutes the C1-sets supporting C, and rβ(S)(φ(C)) = ±rS(C). By writing 
any C1-set S as the intersection of two cyclic subgraphs, we see that β is the identity 
map. Write

rS(φ(C)) = (−1)σS,CrS(C)

for σS,C ∈ Z/2Z. Now, given a primitive simple cycle C ∈ H1(Γ, Z), for φ(C) to be a 
cycle, we must have σS1,C = σS2,C for all C1-sets S1, S2 supporting C. Therefore, for 
every primitive simple cycle C, φ(C) = ±C.

Because Autcyc
(
H1(Γ, Z), 〈 · , · 〉

)
decomposes as a direct product over 2-connected 

components, we need only verify that if Γ is 2-connected, then Autcyc
(
H1(Γ, Z), 〈 · , · 〉

) ∼=
{±1}. Let φ be a cyclic automorphism of Γ. Because φ takes a primitive simple cycle C
to ±C, and H1(Γ, Z) has a basis of primitive simple cycles, we can decompose

H1(Γ,Z) ∼= H1(Γ,Z)+ ⊕ H1(Γ,Z)−

where φ acts on the summands by +1 and −1, respectively. By the arguments above, 
the support of the cycles in H1(Γ, Z)+ is disjoint from the support of the cycles in 
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H1(Γ, Z)−. The partition of E(Γ) into the edges supporting cycles in H1(Γ, Z)+ and 
H1(Γ, Z)− contradicts the connectedness of the matroid of Γ [30, Proposition 4.1.7]. �
Proposition 4.3. The natural map Autcyc

(
Zπ1(Γ, v)/J3, 

∫ )
→ Autcyc

(
H1(Γ, Z), 〈 · , · 〉

)
is injective.

Proof. Let φ ∈ Autcyc
(
Zπ1(Γ, v)/J3, 

∫ )
. Pick free group generators γ1, . . . , γg for 

π1(Γ, v) such that their underlying cycle classes [γi] ∈ H1(Γ, Z) are each contained in 
a 2-connected component of Γ. We claim that the automorphism φ is determined by 
φ([γ1]), . . . , φ([γg]). Write φ([γi]) = (−1)σi [γi]. We know

φ(γi) = (−1)σiγi +
∑
j,k

aijk(γj − 1)(γk − 1)

for integers aijk. Let ω1, . . . , ωg be a basis of H1(Γ, R) dual to [γ1], . . . , [γg]. Hence, 
φ(ωi) = (−1)σiωi. Then,

∫
γi

ωjωk =
∫

φ(γi)

φ(ωj)φ(ωk)

= (−1)σj+σk

⎛
⎝(−1)σi

∫
γi

ωjωk + aijk

⎞
⎠ .

Consequently,

aijk =
(
(−1)σj+σk − (−1)σi

) ∫
γi

ωjωk. �

The group Autcyc
(
Zπ1(Γ, v)/J3, 

∫ )
is somewhat mysterious. As we will see in Sec-

tion 7, if Γ is a 2-connected hyperelliptic graph and v is a fixed point of a hyperelliptic 
involution, then Autcyc

(
Zπ1(Γ, v)/J3, 

∫ )
is nontrivial and hence, by Proposition 4.3, 

isomorphic to Z/2Z. Conjecture 1.5 is the converse of this statement.
We expect that a positive resolution of this conjecture would imply Conjecture 1.1 and 

thus that 
(
Zπ1(Γ, v)/J3, 

∫ )
and the harmonic volume of Γ (defined below) are complete 

invariants of (Γ, v).

5. Integration algebras and base-points

The integration algebra determines the base-point of a bridgeless graph Γ with g(Γ) ≥
2 up to well-understood finite ambiguity. Let us first recall the Abel–Jacobi map of graphs 
following [29,6].

Let Γ be a metric graph with base-point v. The cycle pairing gives an injection 
H1(Γ, Z) → H1(Γ, R) ∼= H1(Γ, R)∨ by, for C ∈ H1(Γ, Z),
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C �→

⎡
⎣ω �→

∫
C

ω

⎤
⎦ .

The Jacobian of Γ is the cokernel of this map,

J1(Γ) ··= H1(Γ,R)/H1(Γ,Z).

Now, we recall the Abel–Jacobi map with respect to v ∈ |Γ|, ιv : |Γ| → J1(Γ). We define

ιv(p) ··=

⎡
⎣ω �→

∫
α

ω

⎤
⎦ ,

where α is any path from v to p. This function is independent of the choice of α.
The following is well-known [6,4]:

Theorem 5.1. The map ιv is injective if and only if Γ is bridgeless.

The Abel–Jacobi map is particularly straightforward when we work with dual bases. 
Let C1, . . . , Cg be a basis of H1(Γ, Z), and let ω1, . . . , ωg be the dual basis of H1(Γ, R)
under 〈 · , · 〉. Then, by using the inner product on H1(Γ, R), we may view the Abel–Jacobi 
map as

ιv : |Γ| → Rg/Zg

p �→

⎛
⎝∫

α

ω1, . . . ,

∫
α

ωg

⎞
⎠

Definition 5.2. A cycle-respecting isomorphism from 
(
Zπ1(Γ, v)/J3, 

∫ )
→
(
Zπ1(Γ, v′)/

J3, 
∫ )

is an isomorphism of integration algebras inducing the identity on H1(Γ, F2).

Theorem 5.3. Let Γ be a bridgeless metric graph with g(Γ) ≥ 2. Let v be a point of |Γ|. 
Then the cycle-respecting isomorphism type of the integration algebra 

(
Zπ1(Γ, v)/J3, 

∫ )
determines v up to at most 

∣∣Autcyc
(
Zπ1(Γ, v)/J3,

∫ )∣∣ choices.

Proof. Let v′ be a point of Γ such that there is a cycle-respecting isomorphism between (
Zπ1(Γ, v)/J3, 

∫ )
and 

(
Zπ1(Γ, v′)/J3, 

∫ )
. Then there are 

∣∣Autcyc
(
Zπ1(Γ, v)/J3, 

∫ )∣∣
such isomorphisms. We will show that the data of an isomorphism φ :

(
Zπ1(Γ, v)/J3, 

∫ )
→(

Zπ1(Γ, v′)/J3, 
∫ )

determines ιv′(v). It will also follow from our arguments that if 
Autcyc

(
Zπ1(Γ, v)/J3, 

∫ )
is trivial, then ιv′(v) = 0 and thus v = v′.

Let α be a path in Γ from v′ to v. Let C1, . . . , Cg ∈ H1(Γ, Z) be cycles, each supported 
in a 2-connected component of Γ, giving a basis. Let ω1, . . . , ωg ∈ H1(Γ, R) be the dual 
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basis under 〈 · , · 〉. Let γ1, . . . , γg be a free group basis for π1(Γ, v) such that [γi] = Ci. 
Write φ([Ci]) = (−1)σi [Ci] for σi ∈ Z/2Z.

Now

φ(γi) = (−1)σiαγiα
−1 +

∑
j,k

aijk(γj − 1)(γk − 1)

for integers aijk. Pick j 
= i. We have
∫
γi

ωjωi =
∫

φ(γi)

φ(ωj)φ(ωi)

= (−1)σj

∫
αγiα−1

ωjωi + (−1)σi+σjaiji

By (3.7.1),

∫
αγiα−1

ωjωi =
∫
γi

ωjωi +

⎛
⎝∫

α

ωj

∫
γi

ωi −
∫
γi

ωj

∫
α

ωi

⎞
⎠

=
∫
γi

ωjωi +
∫
α

ωj

Therefore,
∫
α

ωj = ((−1)σj − 1)
∫
γi

ωjωi − (−1)σiaiji.

Because aiji ∈ Z, the image of the Abel–Jacobi map is determined by the combinatorial 
iterated integrals.

In the case that σi = 0 for all i, we have that 
∫
α
ωj is always an integer. Hence, 

ιv′(v) = 0. �
More can be said if Γ is a 3-connected graph. The Torelli theorem for metric graphs 

due to Caporaso–Viviani [14, Theorem 4.1.9] shows that the isometry class of H1(Γ, Z)
determines Γ up to the relation called tropical equivalence. Here, if v is a 2-valent vertex 
adjacent to edges e1 and e2, smoothing v replaces e1, e2, and v by an edge e with 
�(e) = �(e1) + �(e2). The operation inverse to smoothing is refinement. Two bridgeless 
graphs Γ, Γ′ are tropically equivalent if they have isometric refinements.

Corollary 5.4. Let (Γ, v) be a pointed metric graphs such that Γ is 3-connected. Then 
the integration algebra 

(
Zπ1(Γ, v)/J3, 

∫ )
determines Γ up to tropical equivalence and 

determines v up to two possibilities.
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Proof. Suppose that (Γ, v) and (Γ′, v′) are pointed graphs such that there is an isomor-
phism φ :

(
Zπ1(Γ, v)/J3, 

∫ )
→
(
Zπ1(Γ′, v′)/J3, 

∫ )
. Then φ induces an isometry between 

H1(Γ, Z) and H1(Γ′, Z). Because Γ is 3-connected, Γ and Γ′ are tropically equivalent 
by the Torelli theorem for metric graphs. Moreover, the isometry φ is induced by this 
tropical equivalence, a fact that is implicit in [14]. One sees it by noting that the proof 
of the Torelli theorem produces a bijection between C1-sets Set1 Γ → Set1 Γ′. For 3-
connected graphs, there is a natural bijection E(Γ) ∼= Set1 Γ. Consequently, there is 
a unique cyclic bijection Φ: E(Γ) → E(Γ′). This cyclic bijection induces the tropical 
equivalence by the strong form of Whitney’s 2-isomorphism theorem for 3-connected 
graphs [30, Lemma 5.3.2]. Therefore, φ is a cycle-preserving isomorphism. Since Γ is 
2-connected, by Proposition 4.2 and Proposition 4.3, 

∣∣Autcyc
(
Zπ1(Γ, v)/J3,

∫ )∣∣ has at 
most two elements. �
6. The harmonic volume of pointed graphs

In this section, we introduce the harmonic volume, an invariant of pointed graphs 
within a 2-isomorphism class, analogous to Bruno Harris’s harmonic volume in algebraic 
geometry [22]. It encodes the data of the integration algebra 

(
Zπ1(Γ, v)/J3, 

∫ )
as an 

extension of H1(Γ, Z). It is valued in a real torus, J2(Γ) analogous to an intermediate 
Jacobian.

Let Γ be a connected, metric, bridgeless graph. Define

J2(Γ) ··=
HomZ

(
H1(Γ,Z),H1(Γ,R) ⊗ H1(Γ,R)

)
HomZ

(
H1(Γ,Z),H1(Γ,Z) ⊗ H1(Γ,Z)

) .
Here, the quotient comes from viewing H1(Γ, Z) ⊗ H1(Γ, Z) as a lattice in H1(Γ, R) ⊗
H1(Γ, R) via the inclusion H1(Γ, Z) ↪→ H1(Γ, R) ∼= H1(Γ, R)∨ induced by the cycle 
pairing 〈 · , · 〉.

A pointed rigged graph in the 2-isomorphism class of Γ is a triple (Γ′, v′, φ′) where 
(Γ′, v′) is a pointed metric, bridgeless graph, and φ′ : H1(Γ, Z) → H1(Γ′, Z) is an isometry. 
Let W (Γ) be the set of pointed rigged graphs 2-isomorphic to Γ.

We now produce the harmonic volume of (Γ′, v′). Consider the following exact se-
quence where J is the augmentation ideal of Zπ1(Γ′, v′)/J3:

0 J2/J3 J/J3 J/J2 0. (6.0.1)

By using the isomorphisms

J/J2 ∼= H1(Γ′,Z), J2/J3 ∼= H1(Γ′,Z) ⊗H1(Γ′,Z),

we can write the diagram as
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0 H1(Γ′,Z) ⊗H1(Γ′,Z) J/J3 H1(Γ′,Z) 0[·]
σ

where [·] maps γ−1 ∈ J/J3 to its underlying cycle [γ]. Given any section σ as above, we 
define the harmonic volume as the map μ : H1(Γ, Z) → (H1(Γ, R) ⊗H1(Γ, R))∨ given by

C �→

⎡
⎢⎣ω1 ⊗ ω2 �→

∫
σ(φ(C))

φ(ω1)φ(ω2)

⎤
⎥⎦ .

The class of μ in J2(Γ), which we denote by ν(Γ, v), is independent of the choice of lift 
σ. Indeed, any two sections σ1, σ2 differ by a map

σ1 − σ2 : H1(Γ′,Z) → H1(Γ′,Z) ⊗H1(Γ′,Z).

Theorem 6.1. Let (Γ1, v1, φ1), (Γ2, v2, φ2) ∈ W (Γ). There is equality of harmonic vol-
umes, νΓ(Γ1, v1, φ1) = νΓ(Γ2, v2, φ2) if and only if φ2 ◦ φ−1

1 : H1(Γ1, Z) → H1(Γ2, Z) lifts 
to an isomorphism

φ :
(
Zπ1(Γ1, v1)/J3

1 ,
∫ )

→
(
Zπ1(Γ2, v2)/J3

2 ,
∫ )

.

Proof. Pick lifts σi : H1(Γi, Z) → Ji/J
3
i to define the harmonic volumes. Because 

νΓ(Γ1, v1, φ1) = νΓ(Γ2, v2, φ2), we may modify σ2 such that for any C ∈ H1(Γ, Z) and 
ω1, ω2 ∈ H1(Γ, R),

∫
σ1(φ1(C))

φ1(C)φ1(C) =
∫

σ2(φ2(C))

φ2(C)φ2(C).

We use σi and φi to write isomorphisms

Zπ1(Γi, vi)/J3
1
∼= Z ⊕ H1(Γi,Z) ⊕ H1(Γi,Z) ⊗ H1(Γi,Z)
∼= Z ⊕ H1(Γ,Z) ⊕ H1(Γ,Z) ⊗ H1(Γ,Z).

Define φ to be the composition of this isomorphism for i = 1 and its inverse for i = 2.

Zπ1(Γ1, v1)/J3
1 → Z⊕ H1(Γ,Z) ⊕ H1(Γ,Z) ⊗ H1(Γ,Z) → Zπ1(Γ2, v2)/J3

2 .

In other words, this is the unique isomorphism that restricts to φ when taking the 
quotient by J2

i and which intertwines σ1 and σ2. It is straightforward to verify that this 
is an isomorphism of integration algebras. �
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Corollary 6.2. Let Γ be a 2-connected graph. Let (Γ′, v′, φ′) ∈ W (Γ). Then Autcyc
(
Zπ1(Γ′,

v′)/J3, 
∫ )

is non-trivial if and only if νΓ(Γ′, v′, φ′) is 2-torsion.

Proof. The non-triviality of Autcyc
(
Zπ1(Γ′, v′)/J3, 

∫ )
is equivalent to multiplication by 

−1 on H1(Γ′, Z) lifting to some non-trivial automorphism of 
(
Zπ1(Γ′, v′)/J3, 

∫ )
. This 

occurs if and only if νΓ(Γ′, v′, φ′) = νΓ(Γ′, v′, −φ′). Since νΓ(Γ′, v′, −φ′) = −νΓ(Γ′, v′, φ′), 
the conclusion follows. �

Conjecture 1.5 is equivalent to ν(Γ′, v′, φ) being 2-torsion if and only if (Γ′, v′) is 
hyperelliptic.

7. Hyperelliptic graphs

7.1. Background on hyperelliptic graphs

Hyperelliptic graphs were studied by Baker and Norine in [7]. For a 2-edge connected 
graph Γ, hyperellipticity is equivalent to the existence of a hyperelliptic involution ι : Γ →
Γ such that Γ/ι is a tree. If points u, w ∈ |Γ| are interchanged by ι, they are said 
to be hyperelliptically conjugate. If (Γ, v) is a pointed graph such that there exists a 
hyperelliptic involution fixing v, then we say the pair (Γ, v) is hyperelliptic.

Let (Γ, v) be a 2-connected hyperelliptic pointed graph. Then, Autcyc
(
Zπ1(Γ, v)/J3, 

∫ )
is non-trivial with non-trivial element induced by ι. Indeed, ι acts as the identity on 
H1(Γ, F2) as can be seen as follows. Let T be the tree Γ/ι, π : Γ → T be the quotient 
map, and ∂T be the image of the fixed points of ι. Cyclic subgraphs of Γ are the preim-
ages under π of simple paths between points in ∂T . These are fixed by ι. This can also 
be seen directly by an explicit description of H1(Γ, Z) as in [25, Section 4]. Moreover, ι
acts as multiplication by −1 on H1(Γ, Z).

7.2. Potential-theoretic criterion for hyperellipticity

We present Theorem 7.6, a criterion for hyperellipticity which was part of an unsuc-
cessful attempt to prove Conjecture 1.5 but which we think is of interest. It would be 
worthwhile to compare this criterion to Corey’s criterion for graphs of hyperelliptic type 
[13].

Definition 7.3. A piecewise linear function on Γ is a function ψ : |Γ| → R that is linear 
on every edge of some refinement of Γ. Attached to ψ is a degree 0 polynomial 1-form 
dψ whose value on an oriented edge e is pe(t)dt. Given a degree 0 polynomial 1-form ω, 
we may define d∗ω to be the formal real combination of points of |Γ| where

d∗ω =
∑ (∑

e

pe(t)
)
q

q∈|Γ|
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where the inner sum is over the edges e directed away from q. The Laplacian is defined 
by Δ(ψ) ··= d∗dψ.

It is easily seen that a degree 0 polynomial 1-form ω is equal to dψ for some piecewise 
linear ψ exactly when 

∫
γ
ω = 0 for all closed paths γ.

Definition 7.4. Let (Γ, v) be a pointed graph. Given a piecewise linear function ψ and 
C1, C2 ∈ H1(Γ, R), we define the pairing with respect to ψ by

〈C1, C2〉ψ =
∫
γ

ψωC2

where γ is a loop based at v with [γ] = C1. This is independent of the choice of γ.

The above pairing is symmetric. Of particular interest will be the case where ψ is a 
piecewise linear function with Δ(ψ) = u − w for points u, w ∈ |Γ|. In this case, ψ is 
defined up to a real constant and 〈 · , · 〉ψ is well-defined up to taking the sum with a real 
multiple of the usual cycle pairing 〈 · , · 〉. This pairing naturally occurs in performing 
certain iterated integrals.

The following is a consequence of integration by parts.

Lemma 7.5. Let ψ be a piecewise linear function on Γ. Then,

〈C1, C2〉ψ =
∫
γ

(dψ)ωC2 + (ψ(γ(0))〈C1, C2〉)

where γ : [0, 1] → |Γ| is any loop with γ(0) = v and [γ] = C1.

Before we begin the proof of the hyperellipticity criterion, recall that a banana graph 
is a graph with two vertices, no loops, and at least two edges between the vertices.

Theorem 7.6. Let Γ be a 2-connected metric graph. Let u, w ∈ |Γ|. Let ψ be a piecewise 
linear function on Γ such that Δ(ψ) = u − w. Then Γ is hyperelliptic making u and w
conjugate if and only if 〈 · , · 〉ψ is a scalar multiple of 〈 · , · 〉.

Proof. First suppose that there is an involution ι : Γ → Γ with ι(u) = w such that Γ/ι is a 
tree. By adding a constant to ψ, we may suppose ψ(v) = −ψ(u). Then ψ(u) < 0 < ψ(w). 
Because Δ(ι∗ψ) = w − u = Δ(−ψ) and ι∗ψ(u) = −ψ(u), ι∗ψ = −ψ. Since for any 
ω ∈ H1(Γ, R), ι∗ω = −ω,

〈ω1, ω2〉ψ = 〈ι∗ω1, ι
∗ω2〉ι∗ψ

= 〈−ω1,−ω2〉−ψ

= −〈ω1, ω2〉ψ,
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it follows that 〈ω1, ω2〉ψ = 0.
Now suppose that 〈 · , · 〉ψ is a scalar multiple of 〈 · , · 〉. By adding a constant to ψ, we 

may suppose 〈 · , · 〉ψ = 0. We will write Γ as the union of two trees. Let

Γ− ··= ψ−1((−∞, 0)), Γ+ ··= ψ−1((0,∞)), Γ0 = ψ−1(0).

We define the boundary of Γ± to be ∂Γ± = Γ± ∩ Γ0.
We first claim that Γ− is a tree. First observe that Γ− contains no cycles because if 

C were a simple cycle in Γ−, then 〈ωC , ωC〉ψ < 0. Now, suppose by way of contradiction 
that Γ− is not connected. Then it has a component K not containing u. If K◦ = K \Γ0
denotes the interior of K, Δ(ψ|K◦) = 0 and ψ cannot obtain its minimum on K◦. Since 
ψ|K obtains its maximum on ∂K, it must be a constant. Because K is a component of 
Γ−, ψ must be negative at some point of K, and thus K must be a component of Γ. This 
contradiction gives the claim. Similarly, Γ+ is a tree. Observe that Δ(ψ|Γ−) is strictly 
negative on ∂Γ− and Δ(ψ|Γ+) is strictly positive on ∂Γ+.

We claim that Γ0 is a finite set of points. Suppose to the contrary that K is a com-
ponent of Γ0 containing an edge. Now, K intersects each of Γ− and Γ+ in at most one 
point. Indeed, if |K∩Γ−| ≥ 2, Γ−∪K contains a simple cycle C for which 〈ωC , ωC〉ψ < 0
since one can form a cycle from paths γ1, γ2 from a point in Γ◦

− to points in K together 
with a path in K. Because Γ is 2-connected, K must intersect both Γ− and Γ+. Let 
w− = Γ− ∩K and w+ = Γ+ ∩K. If w− = w+, then w− would be a disconnecting vertex 
of Γ, hence w− 
= w+. Because ψ is constant on K, Δ(ψ|K)(w−) = 0. Then

Δ(ψ)(w−) = Δ(ψ|Γ−)(w−) +
∑
K

Δ(ψ|K)(w−) < 0

where the sum is over the components K of Γ0 containing w−. This contradiction shows 
that no such K exists.

Consequently Γ = Γ− ∪ Γ+. Moreover, each point of Γ = Γ− ∩ Γ+ is 2-valent in Γ. 
Otherwise, Γ− or Γ+ would fail to be a tree.

On a ψ-increasing path in Γ−, the slopes of ψ are non-increasing. Indeed, given any 
point z in Γ−, we can form a path from z by following edges along which ψ is non-
increasing. This path must terminate at the unique minimum u of ψ. Since Γ− is a tree, 
there is only one path from z to u. Consequently, at any z ∈ |Γ−|, there is at most one 
edge along which ψ is non-increasing. Therefore, because Δ(ψ)(z) = 0 for z 
= u, the sum 
of the positive slopes of ψ along edges incident to z is equal to the opposite of the unique 
negative slope of an edge incident to z. Consequently, the slope of ψ on a ψ-increasing 
edge from z is at most the opposite of the slope of ψ on the ψ-non-increasing edge from 
z. From this the claim about slopes follows. Similarly, on a ψ-increasing path in Γ+, the 
slopes of ψ are non-decreasing.

We claim that there is an involution ι of Γ interchanging (Γ−, u) and (Γ+, w) and 
fixing Γ0. We induct on the number of vertices of Γ. If Γ has two vertices u, w, Γ is a 
banana graph, and we’re done. For the inductive step, put a graph structure on Γ such 
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that ψ is linear on each edge. We may suppose that Γ has no 2-valent vertices except 
possibly u and w. Because Γ− and Γ+ are both trees, there are no vertices z for which 
ψ(z) = 0. Now, let z− be a vertex for which |ψ(z−)| is minimal. By replacing ψ with −ψ, 
we may suppose that ψ(z−) < 0. Let e1, . . . , ek be the edges adjacent to z− on which 
ψ increases from z−. Given any pair of edges ei, ej , we may follow them to get paths γi
and γj from z− that meet in Γ+ at a point zij . Observe that if zi and zj are the first 
vertices of γi and γj in Γ+, then ei = z−zi, ej = z−zj and

ψ(zi) ≥ −ψ(z−), ψ(zj) ≥ −ψ(z−).

Let C = [γi] −[γj ]. Observe that the slopes of ψ along γi (resp. γj) are non-decreasing, and 
they are constant from z− to zi (resp. zj) since there are no other vertices to encounter. 
Therefore,

∫
ei

ψωC ≥ 0,
∫
ej

ψωC ≥ 0.

The integral of ψωC over any other edge of C must be positive. Because 
∫
C
ψωC = 0, 

we must have C = ei − ej and thus zij = zi = zj Therefore, all the ψ-increasing edges 
from z− meet at the same point z+ = zij , yielding a banana subgraph. We replace that 
subgraph by a single edge e′ = z−z+ to obtain a graph Γ′. We define a piecewise linear 
function ψ′ on Γ′. It is defined to equal ψ away from e′ and to be linear on e′. The length 
of e′ is chosen such that the slope of ψ′ on e′ is equal to the sum of the slopes of ψ on 
e1, . . . , ek. Consequently, Δ(ψ′)(z−) = Δ(ψ′)(z+) = 0. By smoothing z− and z+, we see 
Γ′ has two fewer vertices than Γ. Moreover, 〈 · , · 〉ψ′ vanishes. Indeed, let C ′ be a cycle 
in Γ′. If it is supported away from e′, then 〈ωC′ , ωC′〉ψ′ = 〈ωC′ , ωC′〉ψ = 0. If it contains 
e′, we replace e′ by e1 to get a cycle C in Γ. Then 〈ωC′ , ωC′〉ψ′ = 〈ωC , ωC〉ψ = 0. By 
induction, there is an involution ι′ : Γ′ → Γ′ interchanging u and v whose quotient is a 
tree. By replacing the involution on e′ by the corresponding involution of the banana 
graph, we obtain the desired involution ι : Γ → Γ. �
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