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1. Introduction

A metric graph T is equipped with a cycle pairing (-, -) on its homology H;(I', R) tak-
ing a pair of cycles to the signed length of their intersection. In tropical geometry, metric
graphs are the analogues of curves. Under this analogy, the cycle pairing corresponds to
the integrals of holomorphic 1-forms along closed paths. Many authors [14,29] have con-
sidered a setting in which the cycle pairing is packaged as a tropical Jacobian. Indeed, by
the tropical Torelli theorem [16,1,15,14,33], the tropical Jacobian determines a bridgeless
finite connected metric graph up to an equivalence relation called 2-isomorphism.

A natural generalization of period integrals is Chen’s theory of iterated integrals [12]
where one integrates a number of 1-forms along a path. This theory interpolates be-
tween homology and the fundamental group of an algebraic curve. In fact, it encodes
information about the unipotent fundamental group which can be understood in terms
of a particular quotient of the group algebra of the fundamental group. In this paper,
we introduce combinatorial iterated integrals where we integrate a number of homology
classes w1, ...,wy € H1(I', R) along a path v in I' to obtain fv w1 ...wy. Combinatorial
iterated integrals can naturally be interpreted as unipotent invariants of graphs. Let
Z71(T,v) be the group algebra of the fundamental group of I' at some base-point v. If
J is the augmentation ideal of Zm(I", v), combinatorial iterated integration of length at
most ¢ descends to a bilinear pairing

/; Zm (T,v)/J" x T,H;(T,R) = R

where T;H; (T, R) is the truncated tensor algebra TyH;(T',Z) := @i:o Hy (T, Z)®". Be-
cause H;(I',R) can be recovered from Zm (T, v)/J*"!, combinatorial iterated integrals
can be viewed as a structure on Zm(I',v)/JT!. We call this structure an integration
algebra. As is the case in tropical geometry, this structure is a combinatorial shadow
of its classical analogue. Indeed, the pair (Zm(T,v)/J3, [) can be interpreted as lowest
weight component of the mixed Hodge structure on the unipotent fundamental group of
a degenerating family of algebraic curves.

It is natural to ask if the graph can be recovered from (Zm(T',v)/J3, [). Indeed,
its classical analogue is the mixed Hodge structure on truncations of the fundamental
group algebra of complex algebraic varieties introduced by Hain [19-21], generalizing
work of Morgan [28]. Hain [21] and Pulte [31], drawing on work by Carlson [9,10], use
the mixed Hodge structure on Zm (X, z)/J? to prove a Torelli Theorem for pointed
complex algebraic curves (X, z). We believe (Zmy(I',v)/J3, [) to be a complete invariant
of connected bridgeless pointed metric graphs:

Conjecture 1.1 (Unipotent Torelli conjecture). Let (T',v) be a connected bridgeless pointed
metric graph. Then the pair (Zm (L, v)/J3, [) completely determines (T, v).
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Unfortunately, we have been unable to prove this conjecture. The difficulty comes from
a limitation of the tropical Torelli theorem: it only recovers a graph up to an equivalence
relation called 2-isomorphism which is generated by two moves, vertex-cleaving and
Whitney twists. However, if the graph is known, one can recover the base-point of the
graph from the integration algebra up to well-understood ambiguity:

Theorem 1.2. Let T be a bridgeless metric graph with g(I') > 2. Let v be a point of the
underlying topological space |T'|. Then the isomorphism type of the integration algebra
(Zmy (D, 0)/J3, [) determines v up to at most |Auteyc (Zmi (L, v)/J3, [)| choices.

Here, Auteyc (Zm1 (T, v)/J3, [) is a finite Abelian group of order 2* where A is at most
the number of 2-connected components of I'. In the case where the graph is 3-connected,
there is no ambiguity coming from 2-isomorphism and we can recover the graph and
base-point (up to two choices) from the integration algebra:

Corollary 1.3. Let (I',v) be a pointed metric graphs such that T' is 3-connected. Then
the integration algebra (Z7r1(F7v)/J37f) determines I' up to tropical equivalence and
determines v up to two possibilities.

Here, tropical equivalence is the equivalence relation generated by subdividing edges
and its inverse.

The hope of the unipotent Torelli conjecture is that pointed graphs are encoded by
(a truncation of) their fundamental groups and, therefore, are anabelian combinatorial
objects in analogy with Grothendieck’s anabelian program in algebraic geometry [18].

The pair (Zm (I',v)/J3, [) can be considered as a sort of extension of (Hy (I, Z), (-, -)).
The extension data can be encoded as an element of a real torus, #»(I') analogous to an
intermediate Jacobian in algebraic geometry. This tropical intermediate Jacobian is the
recipient of an invariant v analogous to the harmonic volume [22]. Given a connected
bridgeless graph T', let W(I') be the set of rigged graphs 2-isomorphic to T', that is
triples (I, v’, ¢') where (I, v’) is a pointed metric, bridgeless graph, and ¢': Hy (T, Z) —
H,(I",Z) is an isometry. Then the harmonic volume is a map

vr: W(I) = #Za(T).
Conjecturally, vr is an injection. However, we only have the weaker result:

Theorem 1.4. Let (T'y,v1,¢1), (T2, v2,¢2) € W(T). There is equality of harmonic vol-
umes, vr(T1,v1,¢1) = vr (Do, vo, ¢2) if and only if ¢ 0 7 Hi(Ty, Z) — Hy(Ta, Z) lifts
to an isomorphism

¢: (Zm(T1,01) /7, [) = (Zmi (Do, 02) /75, [).

Our approach to the unipotent Torelli conjecture is blocked by automorphisms of
(Zmy(T,v)/J3, [) that preserve the cycles in H;(T,Z). These automorphisms prevent
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one from gluing isomorphisms in an inductive argument. We conjecture that the only
automorphisms of the integration algebra come from legitimate automorphisms of a
graph:

Conjecture 1.5. For a 2-connected graph, the group Autcy. (Zm(l", v)/J?3, f) is nontrivial
if and only if T is a hyperelliptic graph and v is a fized point of a hyperelliptic involution.

Because hyperelliptic graphs are so central to our story, we prove Theorem 7.6, a
potential-theoretic criterion for hyperellipticity that was part of an unsuccessful attempt
to prove Conjecture 1.5.

There are a number of questions that we would like to consider in the future. One
should clarify the connection between our integration algebras and the tropical Ceresa
classes of Corey, Ellenberg, and Li [11]. Also, the discrete geometric picture is lacking.
The Torelli theorem for graphs was proved using Delaunay cells. Is there some unipotent
analogue of Delaunay cells that would allow us to reconstruct a graph?

We expect our combinatorial iterated integrals to have applications in number theory
and Hodge theory. Indeed, they have already been used by Betts and Dogra [2] in their
study of the étale fundamental groupoid. In work [26] in preparation between the second
named author and Daniel Litt, it is shown that combinatorial iterated integrals mediate
between the Berkovich [3] and Vologodsky [34] notions of p-adic integration on curves.
This is related to work of Besser and Zerbes [8], and has applications to the non-abelian
Chabauty methods of Kim [23,24]. See [27, §6.5] for a related discussion. Also, combina-
torial iterated integrals arise in asymptotics of variations of Hodge structures associated
with the truncated fundamental group algebra of a semistable family of curves, analo-
gous to the cohomological case as explained in [17, Proposition 13.3] and [32, Theorem
6.6].

Outline. In §2, we review basic facts about group algebras.

In §3, we construct combinatorial iterated integrals and establish their basic proper-
ties. In particular, we formulate and prove Theorem 3.11, a duality result for combina-
torial iterated integrals.

In §4, we discuss cyclic automorphism groups of Hy (I, Z) and of integration algebras.
These are important for understanding the base-point ambiguity in the main theorems
of the following sections.

In §5, we prove our weaker versions of the unipotent Torelli conjecture allowing one
to recover base-points of a graph (up to ambiguity) from integration algebras.

In §6, we define the harmonic volume invariant.

In §7, we review hyperelliptic graphs and prove our potential-theoretic criterion.

Acknowledgments. The authors would like to thank Omid Amini, Matthew Baker,
Dustin Cartwright, Jordan Ellenberg, Joshua Greene, Daniel Litt, Sam Payne, Joseph
Rabinoff, and Farbod Shokrieh for comments.
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2. Group algebras

We review group algebras. Let G be a group and R be a commutative ring. For an
R-module M, let TM := @,-, M®* be the tensor algebra over R of M. For ¢ € Z, let
ToM := @i>o M®F be its truncation. The group algebra RG of G with coefficients in R
is the associative unital R-algebra with underlying R-module

RG =D _ . Reo

and multiplication determined on basis elements by rieq4, - r2eg4, = T172€4,4, for all
r1,72 € R and g1, g2 € G. The unit of RG is the element e;, where 1 € G the identity of
G. We write g for e; and 1 for the unit of RG, G, and the ring R.

The kernel J := ker(e: RG — R) of the augmentation homomorphism is called the

augmentation ideal. An element of J is of the form s aqg with }° 5 ay =0. So
Zagg: Z ag(g—l)—i—z:ag: Z ag(g —1),
g€G geG\{1} 9€G geG\{1}

showing that J is a free R-module with basis { (¢ — 1) | ¢ € G\ {1} }. Since both R and
J are free R-modules, the exact sequence 0 — J — RG < R — 0 is split and we have
RG = R® J as R-modules. There is an isomorphism of R-modules

G @z R— J/J?: g (g—1).

The algebra RG has a descending filtration RG = J° D J' D J? D --- by powers of
the augmentation ideal. The associated graded algebra with respect to this filtration is

er,(RG) =D

i qitl
ST
After identifying J/J? with G* ®z R, there is a natural map

(G @z R)® = T /T (=1 @@ (gi—1) = (1 — 1) (g — 1)

for each i > 0 and where g1,...,g; € G*P. If G is a free group on a set of generators F,
this map is an isomorphism and we see that the associated graded algebra of RG

o0

gr;(RG) = @

1=

O(Gab Rz R)@i _ T(Gab Rz R)
is isomorphic to the tensor algebra of the free R-module on the set E.
3. Combinatorial iterated integrals

This section introduces combinatorial iterated integrals and discusses their properties.
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3.1. Background on graphs

Throughout this paper, a graph is a finite connected graph, possibly with loops and
multiple edges. For topological constructions, we think of graphs as one-dimensional A-
complexes. Given a graph I', we write V(I') and E(T") for the set of vertices and oriented
edges of T, respectively. Write |T'| for its underlying topological space. For an oriented
edge e, let € denote e with its orientation reversed. Given an oriented edge e, write et
and e~ for its head and tail in the given orientation. We will often assume our graphs to
be bridgeless, that is, there does not exist an edge whose deletion disconnects the graph.
For a positive integer k, a graph is k-connected or k-vertex connected if it cannot be
disconnected by removing fewer than k vertices.

A metric graph (T, £) is a graph T together with a length function ¢: E(T") — Rx¢ such
that £(e) = £(e). For each oriented edge e of I we fix a homeomorphism ¢.: |e| — [0, £(e)]
such that tz = ¢(e) — t.. A polynomial 1-form w on T is a choice of 1-form w, = p(t)dt
on each oriented edge e = [0, £(e)] such that p.(t) is a real polynomial and

pe(t) = —pe(f(e) — ).

We interpret a polynomial 1-form as a 1-form on |I'|. The degree of a polynomial 1-form
is the maximum of the degrees of the polynomials p.(t). A polynomial 1-form is said to
be a tropical 1-form if

(i) each p.(t) is constant; and
(ii) if v € V(T
2 iDe;(t) =

) and eg,...,ex are the edges adjacent to v, directed away from v,
0.

The second condition is also called harmonicity. See [29] for more details.

For a ring R, let Co(T, R) be the free R-module on V(T"), and let Cy (T, R) be the quo-
tient of the free R-module on E(T) by the relation € = —e. Let 9: C1(I', R) — Co(T', R)
be the simplicial boundary map defined by e¢ — et —e¢~. The homology groups of I' with
coefficients in R are Hy(T', R) := Co(T", R)/90C1 (T, R) and Hy (T, R) :=ker(9: C1(I', R) —
Co(T", R)). The elements of Hy (T, R) are referred to as cycles of I'. A cycle C' is simple if
the coefficient of each edge in C'is 1, 0, or —1. The set of edges for which the coefficient
in C is nonzero is called the support of C. A simple cycle is primitive if its support is
minimal among the cycles. To a cycle C € H;(I', R), we may attach a tropical 1-form
we as follows: write C' = 3 aqe for a. € R and set p.(t) = a.. The map C' — w¢ is an
isomorphism from H;(I', R) to tropical 1-forms. Henceforth we shall identify elements of
H,(T",R) with tropical 1-forms. For a closed path v: [0, 1] — |T'|, we write [y] € H1(T", Z)
for the underlying cycle.

We define an inner product on C;(I',R) by
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Lz) ifz=y,
(-, Ci(ILR) x C1(T,R) = R (r,y) == —L(x) ifz=7y
0 if x £y,7.

Since Hy(T',R) C C;(T,R), the first homology group inherits a bilinear form, also de-
noted by (-, -). It takes a pair of cycles to the signed length of their intersection, counted
with multiplicity. We call this the cycle pairing. Because it is the restriction of the stan-
dard Euclidean pairing, it is positive-definite and thus, nondegenerate.

3.2. Combinatorial iterated integrals

In this subsection, we introduce combinatorial iterated integrals on graphs, a non-
abelian extension of the cycle pairing.

Our constructions are inspired by Chen’s theory of iterated line integrals [12] and
their application to the construction of a mixed Hodge structure on the fundamental
group of an algebraic variety [21]. After completing this article, we became aware of [5]
in which related definitions were made.

To define iterated integrals on paths, we first define antiderivatives on the universal
cover I'. A continuous function F: [I| — R is said to be piecewise polynomial if it
restricts to each edge as a polynomial by the parameterization ¢.. For such a function
F, we define dF to be the 1-form whose restriction to an edge e is the differential
dF|.. Pick a base-point v of I'. Let wr,...,wy, be polynomial 1-forms on I" which we will
identify with their pulbacks on I'. The primitive F,...w, is defined by induction on k. We
define F,, : I' — R to be the continuous piecewise polynomial function with F, (v)=0
and dF,,, = w;. In general, we define F,,, ..., to be the piecewise polynomial function
characterized by

0, and

(i) Fo,. ()

(ii) de F Wk—lwk'

For a path «: [0,1] — |T'|, we define

/wl cewg = Fyow, (F(1))
¥
where 7: [0,1] — I is a lift of 7 to T and the primitive is taken at the base-point 7(0).
By extending linearly, we produce combinatorial iterated integrals as a bilinear map

/; Zm (T, v) x TH, (T, Z) — R.

We follow the convention that the integral against the identity element 1 € Hy (T, Z)®° C
TH; (T, Z) is the augmentation map:
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/1 = €(7)-

The following lemma follows from unwinding definitions:

Lemma 3.3. Let v: [0,1] — |T'| be a loop, and let we be the tropical 1-form attached to
C e H{(T,R). Then

/wC — (h, 0.

~

3.4. Properties of combinatorial iterated integrals

Combinatorial iterated integrals can be expressed in terms of shuffles. For positive
integers k and ¢, define the set Sh(k,¢) of (k, £)-shuffles to be the following subset of the
symmetric group Siy¢ on k + £ symbols:

Sh(k,0) :={ o € Spye ‘ o' < <o Nk)and o N (k+1) < <o M (k+0) }.

Combinatorial iterated integrals have properties analogous to that of classical iterated
integrals. The proofs are also analogous: one rewrites the iterated integral as the integral
of a k-form on a time-ordered simplex and uses properties of integration.

Proposition 3.5. Let o be a path in T, and let wq,...,wr be polynomial 1-forms. Then
we have the following formulas:

— (Product) For any wiy1,...,wk+e € C1(T,7Z),

/Wl"'wk/wk+l"'wk+£ = Z /wa(l)"'wo(k‘Jrl)-

a « o€Sh(k,l) o,

— (Concatenation) For any path § with B(0) = a(1),

k
/wl...wk: E /wl'.'wi/wi‘i‘l...wk'
i=0 7, 3

ap

— (Antipode)

Proof. See, for example, [21, 2.9,2.11,2.12]. O
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For any positive integer n, write [n] := {1,...,n}. For k and r positive integers, let

Ak, r)s={f: [k = [ [ f) <--- < (k) }
be the set of all weakly increasing functions from [k] to [r]. Equivalently, setting n; :=
#f71(i) for i = 1,...,7, an element f € A(k,r) may be represented as the sequence
(n1,...,n.). Note ny +---+n, = k.

The next two formulas are obtained by iterating those proven above.

Theorem 3.6. We have the following formulas:

— (Symmetrization Formula) Let v be a path in T', and let ws,...,ws be polynomial

1-forms. Then
Z /(JJU(l)wa(Q)'..wa(k) = /wl/WQ"'/Wk.
2l Y v

o€Sk v

— (Iterated Concatenation Formula) Let 41, ...,7, be paths in T’ with ~;41(0) = 7,;(1),

and let wq,...,wg be polynomial 1-forms. Then
/ Wi Wi = Z (/wl"'wnl)(/merl"‘wn1+n2)"'
Y1 Y gGA(k,T’) Y1 Y2
g=(n1,..., ny)
(/Wn1+'~~+n,‘,1+1 e 'wk)-
Yr

The concatenation formula together with the observation f gp-1WIW2 = 0 immediately
yields the following conjugation formula for iterated integrals of length 2.

Theorem 3.7. Let « be a closed path in T, 8 be a path with (1) = a(0), and wy,ws be
polynomial 1-forms. Then

/ w1w2 =/W1w2+ /OJ1/LU2 —/wl/wg . (3.7.1)
B a

Bap—t o
For positive integers k and r, denote by
At (k,r) :={ f € A(k,r) | f is surjective } .

By applying the iterated concatenation formula together with inclusion-exclusion, we see
that combinatorial iterated integrals have the following useful nilpotence property:
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Theorem 3.8. Let ~v1,...,7 be loops based at a point v, and let wy, . ..,wi be polynomial
1-forms. Then

Wy W = Z (/wl"'wnl)(/wn1+1"'wn1+n2>"'
71

(y1—1)-(yr—1) geA(k,r)t 2
g=(n1,...,ny

(/wn1+"'+nr—1+1 o 'wk)'

Fr
In particular, if w,...,wy are tropical 1-forms, interpreted as elements of H1 (I, R),
0 r >k,
Wy Wy = (3.8.1)
(wi,a1) (W, ag) r=k.

(o —1)-+(cp—1)

Corollary 3.9. Let J := ker(Zm(T',v) — Z) be the augmentation ideal. For any o € J*+1,
any k < £, and any w1, ...,w; € H1(T',Z),

/wl-uwk:O.

[e3%

Thus, combinatorial iterated integration descends to a map
/: Zrmy (T, v)/J7 x TyH(T,Z) - R

where TyH\ (T, Z) == @)% _, Hi (T, Z)®* is the (™ truncation of the tensor algebra.

Proof. Any o € J“*! can be written in the form
@ = Z Z Civoin (Vi — 1) o (2, — 1)

where all but finitely many of the ¢;,. ;, € Z are 0. It follows from (3.8.1) that fa is
identically zero on HY(I', Z)®* for all k < ¢. O

The augmentation map e: Zm(T',v) — Z has kernel J giving a descending filtration
Zm(T,v) DJDJ* D ...,

Because J/J? = (T, v)*” = H,(I'), the associated graded algebra can be identified as

o0

gr,(Zm(D,0) = P~ (Hy(I)® = T(H,(T)).

=0
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Combinatorial iterated integrals can be interpreted as a bilinear map
/: Zm (T, v) x gr,;(Zm (T, v)) — R.

3.10. Integration algebras

An integration algebra over a ring R is the data of (A7 i ) where A is an algebra over
Z with nilradical .J inducing a filtration A D .J D J? D ... together with a bilinear map

/:Axng(A)®R—>R.

Our natural example will be (Z7r1(1",v)/Jé"’17 f) where ¢ is a positive integer and [ is
combinatorial iterated integration.
A morphism of integration algebras over R,

I
pi (A f) = (A% ))
is a Z-algebra morphism ¢: A — A’ preserving integration in that

[ st = [w

e (7) Y

for all v € A and w € gr;(A) ® R, where gr;(¢): gr;(4) ® R — gr(A") ® R is the
induced morphism on the associated graded algebras. Observe that because the filtration
is induced by the nilradical, ¢ must preserve the filtration.

Combinatorial iterated integration is nondegenerate in the following sense:

Theorem 3.11 (Duality theorem). For any pointed graph (I',v) and each £ > 0, the maps

T,(H,(I"))®zR —Homg (Zm (I',v)/J L R), Ry (T,v)/J = Homgz (T, (H,(T)),R),
wl"'wk’_)/wl"'wka 7*_)/7
Y

are isomorphisms of vector spaces.

(3.11.1)

Proof. The vector space R (T, v)/J**! has a descending filtration
Ry (T, v)/J o g/ g4t oo ghy gitt

while T;(H;(I")) ®z R has an ascending filtration



12 R. Cheng, E. Katz / Advances in Applied Mathematics 128 (2021) 102190

(To(H (")) ®z R) C (T1(H1(I")) ®z R) C --- C (T,(H1(T")) ®z R).

Consider the restriction of the combinatorial iterated integration
/ R (T, 0)/J x ToHy(T) 92 R — R

to J¢/J! x ((Hy(T')) ®z R)®". By the Nilpotence Property (3.8.1), the pairing is 0 if
r < £ and is nondegenerate if r = £. Indeed, if » = £, the pairing factors as

T x (Hy(T) @ R)®" = (Hi(T) @ R)®" x (Hy(I) @ R)®"

where it is the r-fold tensor product of the usual nondegenerate cycle pairing. From
this upper-triangular structure of the combinatorial iterated integrals, nondegeneracy
follows. O

4. Automorphism groups of integration algebras

In order to state our pointed Torelli theorem, we will need to study the automorphism
groups of integration algebras. Let (-, -) be the cycle pairing on Hy (T, Z).

Definition 4.1. The cyclic automorphism group Auteyc (H1(T',Z), (-, -)) is the group of
isometries

¢: (HI(F’ Z)’ (- >) - (HI(F>Z)><" >))

that induce the identity on Hy (I', F2). The cyclic automorphism group Autcy. (Zm (T,v)/
J3, f ) is the group of isomorphisms of integration algebras

¢: (Zmi(T,0)/J%, [) = (Zm (T, 0)/J%, )
that induce the identity on Hy (T, Fy).

The group Auteye (Hi(I',Z), (-, -)) is always nontrivial because of the presence of
multiplication by —1. We can give a complete description of Autey. (Hl(f‘7 Z), (-, >) A
connected graph can be written as an iterated 1-point union of its 2-connected compo-
nents. That is, there are 2-connected subgraphs I'y, ..., I, such that there is a sequence
of graphs Ay,..., A, = with Ay =T and A1 = AV, 0,4, Lit1 Where V denotes
[i4+1|. In this case, there

a one-point union formed by identifying u;4+1 € |A;| and v;11 €
is an orthogonal direct sum decomposition H; (T', Z) = ®;H; (T';, Z).

Before we describe the cyclic automorphism groups, we recall some facts from [14]
about isometries ¢: Hy ([, Z) — H; (I, Z) where I and I are bridgeless graphs. A set of
edges S C E(T) is said to be a Cl-set of T" if I'(.S), the contraction of edges away from
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S, is a cycle and T'\ S has no bridges. The set of all C'l-sets is denoted by Set'(I"). The
C1-sets partition the edges of the graph, and every cyclic subgraph of I" can be written
as a union of C'l-sets. By [14, Lemma 3.3.1], any C'l-set arises as the intersection of two
cyclic subgraphs in I'. Any element of Hy(I',Z) C Cy(I',Z) can be decomposed as an
integer sum of C'l-sets. For each S € Set!(T'), there is a choice of orientation on the edges
in S such that when we write the sum of these oriented edges es = > .ge € Ci(I', Z),
for every cycle C € Hy(T', Z), we are able to write

C = Z rs(C)es

SeSet! ()

for some rg(C) € Z. It is proven in [14, Section 3.3] that an isometry ¢: Hy(I',Z) —
H,(I”,Z) induces a bijection 3: Set'(I') — Set'(I") such that for any C' € Hy(T', Z)

ra(5)(8(C)) = £rs(C).

Proposition 4.2. Let " be a connected loopless graph. Let 'y, ..., Ty, be the 2-connected
components of I'. Then

AUtcyc (Hh r, Zv <'7 >) = (Z/Zz)m
where o € (Z/2Z)™ acts on the summand Hy(T;, Z) as multiplication by (—1)7:.

Proof. Let ¢: Hi(I',Z) — Hy(T',Z) be an cyclic automorphism. Produce the map
B: Set'(I') — Set'(I") as above. Since ¢ induces the identity on Hy(T',Fy), for any
cycle C, 8 permutes the Cl-sets supporting C, and r35)(¢(C)) = £rs(C). By writing
any C'l-set S as the intersection of two cyclic subgraphs, we see that 3 is the identity
map. Write

rs(6(C)) = (=1)7<rs(C)

for og,c € Z/2Z. Now, given a primitive simple cycle C' € Hy(T', Z), for ¢(C) to be a
cycle, we must have og, ¢ = 0g,,¢c for all Cl-sets S;, .S, supporting C. Therefore, for
every primitive simple cycle C, ¢(C) = +C.

Because Auteyc (Hi(I',Z), (-, -)) decomposes as a direct product over 2-connected
components, we need only verify that if I" is 2-connected, then Auty. (Hl(l", Z),{-, >) =
{£1}. Let ¢ be a cyclic automorphism of T'. Because ¢ takes a primitive simple cycle C

to £C, and H; (T, Z) has a basis of primitive simple cycles, we can decompose
H,y (F7 Z) = Hl(Fa Z)+ ® Hl(F7 Z>_

where ¢ acts on the summands by +1 and —1, respectively. By the arguments above,
the support of the cycles in Hy(T',Z)" is disjoint from the support of the cycles in
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Hy(T,Z)~. The partition of E(T') into the edges supporting cycles in Hy([',Z)* and
H,(T',Z)~ contradicts the connectedness of the matroid of I" [30, Proposition 4.1.7]. O

Proposition 4.3. The natural map Auteyc (Zm1(T,v)/J3, [) = Auteye (Hi(T,Z), (-, -))
s injective.

Proof. Let ¢ € Auteye (Zmi(I,v)/J3, [). Pick free group generators 7i,...,7, for
m1(T,v) such that their underlying cycle classes [y;] € H(T',Z) are each contained in
a 2-connected component of I'. We claim that the automorphism ¢ is determined by

¢([nl); - -5 d([vg])- Write ¢([7i]) = (=1)7*[7:]. We know

¢(v) = (=17 + Y _ air(y; — Dw — 1)
Gk

for integers aj;i. Let wi,...,wy be a basis of Hi(I',R) dual to [y1],...,[y,]. Hence,
6(w;) = (~1)%w;. Then,

/ijk = [ ow;)o(wr)

Vi & (i)

= (—1)Uj+ak (—1)‘” /ijk + aijk

Vi

Consequently,

aijr, = ((=1)77F7% — (=1)%) /“’jwk- O

Vi

The group Auteyc (Zmi (T, v)/J3, [) is somewhat mysterious. As we will see in Sec-
tion 7, if I' is a 2-connected hyperelliptic graph and v is a fixed point of a hyperelliptic
involution, then Autey. (Z7r1 (F,v)/J?’,f) is nontrivial and hence, by Proposition 4.3,
isomorphic to Z/2Z. Conjecture 1.5 is the converse of this statement.

We expect that a positive resolution of this conjecture would imply Conjecture 1.1 and
thus that (Zmi(T',v)/J?3, [) and the harmonic volume of I' (defined below) are complete
invariants of (T, v).

5. Integration algebras and base-points

The integration algebra determines the base-point of a bridgeless graph I" with g(I") >
2 up to well-understood finite ambiguity. Let us first recall the Abel-Jacobi map of graphs
following [29,6].

Let I' be a metric graph with base-point v. The cycle pairing gives an injection
H,(T,Z) — HY(T',R) = H,(T,R)" by, for C € H(T,Z),
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C— w»—)/w

C

The Jacobian of T" is the cokernel of this map,
A (T) == HYI,R)/H(T,Z).

Now, we recall the Abel-Jacobi map with respect to v € |I'|, t,: |T'| = _#1(T"). We define

wp) = [ [w].

[e3

where « is any path from v to p. This function is independent of the choice of «.
The following is well-known [6,4]:

Theorem 5.1. The map v, is injective if and only if I' is bridgeless.

The Abel-Jacobi map is particularly straightforward when we work with dual bases.
Let C1,...,C4 be a basis of Hy(I', Z), and let wy,...,wy be the dual basis of Hy(I',R)
under (-, -). Then, by using the inner product on Hy (I, R), we may view the Abel-Jacobi
map as

ty: || = RI/ZY

p= /wl,...,/wg

« «

Definition 5.2. A cycle-respecting isomorphism from (Zm(T,v)/J3, [) — (Zm (T, v")/
J3, [) is an isomorphism of integration algebras inducing the identity on Hy (T, F).

Theorem 5.3. Let I" be a bridgeless metric graph with g(I') > 2. Let v be a point of |T'|.
Then the cycle-respecting isomorphism type of the integration algebra (Z7r1 (T,v)/J3, f)
determines v up to at most |Auteye (Zmi (I, v)/J3, [)| choices.

Proof. Let v’ be a point of T" such that there is a cycle-respecting isomorphism between
(Zmy(T,v)/J3, [) and (Zmy(T,v")/J®, [). Then there are |Auteyc (Zmi(T,v)/J3, [)]
such isomorphisms. We will show that the data of an isomorphism ¢: (Zm (I',v)/J?, [) —
(Zmy(T,0")/J3, [) determines ¢,/ (v). It will also follow from our arguments that if
Auteye (Zmy (T, v)/J3, [) is trivial, then ¢y (v) = 0 and thus v = v'.

Let a be a path in I' from v’ to v. Let C1,...,Cy € H1(I',Z) be cycles, each supported
in a 2-connected component of I', giving a basis. Let w1, ...,wy € H1(I',R) be the dual
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basis under (-, -). Let y1,...,74 be a free group basis for m;(I',v) such that [;] = C;.
Write ¢([Cy]) = (—=1)7[C;] for 0; € Z/2Z.
Now

¢(Vz) = ( 1 fany;a + Zaz]k ’Yk - 1)

for integers a;jx. Pick j # i. We have

o | ot

¢(%
=(=1)% / wjw; + (1) ag;
ayia~!
By (3.7.1),
[ o fos (/w [ [o [
ay;a” Vi Vi Vi o
/ijlJr/w]
Yi
Therefore,

/Wj = (=% - 1)/%‘%‘ — (=1)%"aji-

@ Vi

Because a;;; € Z, the image of the Abel-Jacobi map is determined by the combinatorial
iterated integrals.

In the case that o; = 0 for all i, we have that fa w; is always an integer. Hence,
(V) =0. O

More can be said if I" is a 3-connected graph. The Torelli theorem for metric graphs
due to Caporaso—Viviani [14, Theorem 4.1.9] shows that the isometry class of H;(T', Z)
determines I' up to the relation called tropical equivalence. Here, if v is a 2-valent vertex
adjacent to edges e; and eq, smoothing v replaces e;, ez, and v by an edge e with
¢(e) = £(e1) + £(e2). The operation inverse to smoothing is refinement. Two bridgeless
graphs I', IV are tropically equivalent if they have isometric refinements.

Corollary 5.4. Let (TI',v) be a pointed metric graphs such that T' is 3-connected. Then
the integration algebra (Zﬁl(F,v)/J?’,f) determines I up to tropical equivalence and
determines v up to two possibilities.
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Proof. Suppose that (I',v) and (I”,v’) are pointed graphs such that there is an isomor-
phism ¢: (Zm (T, v)/J3, [) = (Zm (I”,v")/J3, [). Then ¢ induces an isometry between
Hy(T',Z) and Hy(I",Z). Because T" is 3-connected, I' and T” are tropically equivalent
by the Torelli theorem for metric graphs. Moreover, the isometry ¢ is induced by this
tropical equivalence, a fact that is implicit in [14]. One sees it by noting that the proof
of the Torelli theorem produces a bijection between Cl-sets Set' I' — Set! I'. For 3-
connected graphs, there is a natural bijection E(I') = Set! I". Consequently, there is
a unique cyclic bijection ®: E(T') — E(I"). This cyclic bijection induces the tropical
equivalence by the strong form of Whitney’s 2-isomorphism theorem for 3-connected
graphs [30, Lemma 5.3.2]. Therefore, ¢ is a cycle-preserving isomorphism. Since T is
2-connected, by Proposition 4.2 and Proposition 4.3, ’AutCyC (Zm (T,v)/J3, f)| has at
most two elements. O

6. The harmonic volume of pointed graphs

In this section, we introduce the harmonic volume, an invariant of pointed graphs
within a 2-isomorphism class, analogous to Bruno Harris’s harmonic volume in algebraic
geometry [22]. It encodes the data of the integration algebra (Zmi(I',v)/J3, [) as an
extension of Hy(T',Z). It is valued in a real torus, #>(I') analogous to an intermediate
Jacobian.

Let I be a connected, metric, bridgeless graph. Define

I e Homgz (H1(1“7 Z),H'(T',R) ®H1(F,R))
A1) = Homgz (Hy(I',Z),H1(T',Z) @ Hy(T', Z)) -

Here, the quotient comes from viewing Hy (', Z) ® H; (T, Z) as a lattice in HY(I', R) ®
HY(T',R) via the inclusion H;(T,Z) — HYT,R) = H;(I',R)" induced by the cycle
pairing (-, -).

A pointed rigged graph in the 2-isomorphism class of T' is a triple (I, v’, ¢') where
(I", ) is a pointed metric, bridgeless graph, and ¢': H;(T', Z) — H; (I, Z) is an isometry.
Let W(T') be the set of pointed rigged graphs 2-isomorphic to T'.

We now produce the harmonic volume of (I, v"). Consider the following exact se-
quence where J is the augmentation ideal of Zmy (I, v")/J3:

0 —— J?/J2 —— J)J3 J/J? 0. (6.0.1)

By using the isomorphisms
J/‘]ngl(F,aZ)a J2/J32H1(F/7Z)®H1(F/7Z)7

we can write the diagram as
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lea

K[']\
0 —— Hi(I",Z)® H\(I",Z) —— J/J3 —2 H(I",Z) —— 0

where [-] maps v—1 € J/J3 to its underlying cycle [y]. Given any section o as above, we
define the harmonic volume as the map p: Hy(T', Z) — (H; (T, R) @ H;(T', R))" given by

Cr |w ®@ws > / P(w1)d(wa)
a(¢(C))

The class of pin _#5(I'), which we denote by v(I',v), is independent of the choice of lift
0. Indeed, any two sections o1, 09 differ by a map

o1 —09: Hl(F’, Z) — Hl(F’, Z) X Hl(F’, Z)
Theorem 6.1. Let (I'1,v1, ¢1), (Do, va,¢2) € W(T). There is equality of harmonic vol-

umes, vr(T1,v1,¢1) = vr(D2,v2, ¢2) if and only if ¢a 0 ¢f1: Hy(T1,Z) —» Hy1 (T2, Z) lifts
to an isomorphism

¢: (Zm (L1, 01)/ 7, [) = (Zmi(Ta,02)/ 3, [).

Proof. Pick lifts o;: H1(I';,Z) — Ji/Jf’ to define the harmonic volumes. Because
vr(T1,v1,01) = vr(Ta, v2, ¢2), we may modify o9 such that for any C € Hy (I, Z) and
w1, w2 GHl(F, ),

$1(C)$1(C) = / $2(C)2(C).

a1(41(C)) o2(¢2(C))

We use o; and ¢; to write isomorphisms

Zmy(Ti,v) /TP 2 Z o H(Ty,Z) © Hy (T4, Z) @ Hy (T4, Z)
=ZeH(I,Z2)eH(T,Z) @ Hi(T', Z).

Define ¢ to be the composition of this isomorphism for ¢ = 1 and its inverse for i = 2.
Zm(T1,n)/J; = ZeH (D, Z) @ Hy (T, Z) @ Hy ([, Z) — Zm (T2, v2)/ J5.
In other words, this is the unique isomorphism that restricts to ¢ when taking the

quotient by J2 and which intertwines oy and o3. It is straightforward to verify that this
is an isomorphism of integration algebras. O
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Corollary 6.2. Let I be a 2-connected graph. Let (I',v',¢') € W(T'). Then Auteye (Zm (I,
v')/J3, [) is non-trivial if and only if vr(I',v', ¢') is 2-torsion.

Proof. The non-triviality of Autcy. (Zm (I, v")/J3, [) is equivalent to multiplication by
—1 on Hy(I",Z) lifting to some non-trivial automorphism of (Zm(I",v')/J, [). This
occurs if and only if v (T, v, ¢') = vp(IV, v, —¢'). Since vp (T, v', —¢') = —vp(IV,0', @),
the conclusion follows. O

Conjecture 1.5 is equivalent to v(IV,v’,¢) being 2-torsion if and only if (I,v') is
hyperelliptic.

7. Hyperelliptic graphs
7.1. Background on hyperelliptic graphs

Hyperelliptic graphs were studied by Baker and Norine in [7]. For a 2-edge connected
graph I', hyperellipticity is equivalent to the existence of a hyperelliptic involution t: T' —
T such that IT'/¢ is a tree. If points u,w € |I'| are interchanged by ¢, they are said
to be hyperelliptically conjugate. If (I',v) is a pointed graph such that there exists a
hyperelliptic involution fixing v, then we say the pair (T',v) is hyperelliptic.

Let (T, v) be a 2-connected hyperelliptic pointed graph. Then, Autcy (Zm (T,v)/J3, [ )
is non-trivial with non-trivial element induced by ¢. Indeed, ¢ acts as the identity on
H;(T',F5) as can be seen as follows. Let T be the tree I'/, m: T' — T be the quotient
map, and 0T be the image of the fixed points of . Cyclic subgraphs of I" are the preim-
ages under 7 of simple paths between points in 97T". These are fixed by ¢. This can also
be seen directly by an explicit description of Hy (T, Z) as in [25, Section 4]. Moreover, ¢
acts as multiplication by —1 on Hy(T', Z).

7.2. Potential-theoretic criterion for hyperellipticity

We present Theorem 7.6, a criterion for hyperellipticity which was part of an unsuc-
cessful attempt to prove Conjecture 1.5 but which we think is of interest. It would be
worthwhile to compare this criterion to Corey’s criterion for graphs of hyperelliptic type
[13].

Definition 7.3. A piecewise linear function on I is a function ¢: |[I'| — R that is linear
on every edge of some refinement of I'. Attached to % is a degree 0 polynomial 1-form
dv) whose value on an oriented edge e is pe(t)dt. Given a degree 0 polynomial 1-form w,
we may define d*w to be the formal real combination of points of |I'| where

Fo- Y (zpem) .

g€l \ e
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where the inner sum is over the edges e directed away from q. The Laplacian is defined

by A(¥) = d*di.

It is easily seen that a degree 0 polynomial 1-form w is equal to di for some piecewise
linear v exactly when f,y w = 0 for all closed paths ~.

Definition 7.4. Let (T',v) be a pointed graph. Given a piecewise linear function v and
Cy,Cy € H1 (T, R), we define the pairing with respect to ¢ by

(C1,C2)y :/lffwc2
Y

where 7 is a loop based at v with [y] = C;. This is independent of the choice of ~.

The above pairing is symmetric. Of particular interest will be the case where v is a
piecewise linear function with A(y)) = u — w for points u,w € |[|. In this case, v is
defined up to a real constant and (-, - ), is well-defined up to taking the sum with a real
multiple of the usual cycle pairing (-, -). This pairing naturally occurs in performing
certain iterated integrals.

The following is a consequence of integration by parts.

Lemma 7.5. Let ¢ be a piecewise linear function on I'. Then,

(C, Ca)y = / (d)we, + ((1(0)){Cr, Ca))

~

where v: [0,1] = |T| is any loop with v(0) = v and [y] = Cy.

Before we begin the proof of the hyperellipticity criterion, recall that a banana graph
is a graph with two vertices, no loops, and at least two edges between the vertices.

Theorem 7.6. Let T' be a 2-connected metric graph. Let u,w € |T|. Let v be a piecewise
linear function on T’ such that A(y) = uw —w. Then T is hyperelliptic making u and w
conjugate if and only if (-, )y is a scalar multiple of (-, -).

Proof. First suppose that there is an involution ¢: ' — T" with ¢(u) = w such that I'/cis a
tree. By adding a constant to ¢, we may suppose (v) = —t(u). Then ¢(u) < 0 < (w).
Because A(t*¢) = w —u = A(—v¢) and *(u) = —p(u), t*p = —1. Since for any
weH(ILR), t*w = —w,
(W1, wa)y = (Fwi, w2 )iry
= <_w1’ _w2>*¢

= _<w1>w2>w7
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it follows that (wq,ws)y = 0.
Now suppose that (-, - ) is a scalar multiple of (-, -). By adding a constant to 1, we
may suppose (-, - )y = 0. We will write I" as the union of two trees. Let

I =9 1((—00,0)), T4 :=371((0,00)), To=1"10).

We define the boundary of I'y to be 9T'yx =T'y N T.

We first claim that I'_ is a tree. First observe that I'_ contains no cycles because if
C were a simple cycle in I'_, then (we,we)y < 0. Now, suppose by way of contradiction
that I'_ is not connected. Then it has a component K not containing u. If K° = K'\T'y
denotes the interior of K, A(t)|ke) = 0 and ¢ cannot obtain its minimum on K°. Since
1|k obtains its maximum on 9K, it must be a constant. Because K is a component of
T'_, ¥ must be negative at some point of K, and thus K must be a component of I'. This
contradiction gives the claim. Similarly, I'; is a tree. Observe that A(|r_) is strictly
negative on OI'_ and A(w|r, ) is strictly positive on OT' 4.

We claim that I'y is a finite set of points. Suppose to the contrary that K is a com-
ponent of I'g containing an edge. Now, K intersects each of I'_ and I'y in at most one
point. Indeed, if [KNT'_| > 2, T_ UK contains a simple cycle C for which (we,we)y <0
since one can form a cycle from paths 71,72 from a point in I'® to points in K together
with a path in K. Because I' is 2-connected, K must intersect both I'_ and I';. Let
w_=I'_NK and wy =Ty NK. If w_ = w4, then w_ would be a disconnecting vertex
of ', hence w_ # w4. Because v is constant on K, A(¢)|x)(w—-) = 0. Then

A (w-) = AWl )(w-) + Y A(¥lx)(w-) <0
K

where the sum is over the components K of I'g containing w_. This contradiction shows
that no such K exists.

Consequently I' = I'_ UT'y. Moreover, each point of I' = I'_ N Ty is 2-valent in T'.
Otherwise, I'_ or I'y would fail to be a tree.

On a 1-increasing path in I'_, the slopes of ¢ are non-increasing. Indeed, given any
point z in I'_, we can form a path from z by following edges along which v is non-
increasing. This path must terminate at the unique minimum w of . Since I'_ is a tree,
there is only one path from z to u. Consequently, at any z € |T'_|, there is at most one
edge along which ¢ is non-increasing. Therefore, because A(t)(z) = 0 for z # u, the sum
of the positive slopes of 1 along edges incident to z is equal to the opposite of the unique
negative slope of an edge incident to z. Consequently, the slope of ¥ on a -increasing
edge from 2z is at most the opposite of the slope of 1 on the ¥-non-increasing edge from
z. From this the claim about slopes follows. Similarly, on a 1-increasing path in I';, the
slopes of i are non-decreasing.

We claim that there is an involution ¢ of T' interchanging (I'_,u) and (T';,w) and
fixing I'y. We induct on the number of vertices of I'. If I' has two vertices u,w, I" is a
banana graph, and we’re done. For the inductive step, put a graph structure on I' such



22 R. Cheng, E. Katz / Advances in Applied Mathematics 128 (2021) 102190

that ¢ is linear on each edge. We may suppose that I' has no 2-valent vertices except
possibly u and w. Because I'_ and I'; are both trees, there are no vertices z for which
¥(z) = 0. Now, let z_ be a vertex for which |¢)(z_)| is minimal. By replacing 1 with —,
we may suppose that ¥(z_) < 0. Let ey,...,e; be the edges adjacent to z_ on which
1 increases from z_. Given any pair of edges e;, e;, we may follow them to get paths ~;
and v, from z_ that meet in I'; at a point z;;. Observe that if z; and z; are the first
vertices of v; and 7; in I'y, then e; = 2_z;, e; = 2_z; and

P(zi) 2 —¥(2-), Y(z) 2 —¥(z-).

Let C' = [;]—[v;]. Observe that the slopes of ¢ along ~; (resp. ;) are non-decreasing, and
they are constant from z_ to z; (resp. z;) since there are no other vertices to encounter.

/waZO, /¢w020-
€5 €j

The integral of Ywc over any other edge of C' must be positive. Because | o Ywe =0,

Therefore,

we must have C' = e; — e; and thus z;; = z; = z; Therefore, all the 1-increasing edges
from z_ meet at the same point z; = z;;, yielding a banana subgraph. We replace that
subgraph by a single edge ¢’ = z_z, to obtain a graph I'. We define a piecewise linear
function ¢’ on I". It is defined to equal ¥ away from €’ and to be linear on ¢’. The length
of €’ is chosen such that the slope of ¥’ on €’ is equal to the sum of the slopes of ¥ on
e1,...,ex. Consequently, A(¢')(z—) = A(¢)')(z+) = 0. By smoothing z_ and z,, we see
I has two fewer vertices than I'. Moreover, (-, ), vanishes. Indeed, let C’ be a cycle
in I'". If it is supported away from €/, then (wer, wer )y = (wer, wer)y = 0. If it contains
e/, we replace e’ by e; to get a cycle C in I'. Then (wer,wer )y = (We,we)y = 0. By
induction, there is an involution ¢/: IV — I" interchanging v and v whose quotient is a
tree. By replacing the involution on €’ by the corresponding involution of the banana
graph, we obtain the desired involution ¢: I' = T". 0O
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