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Abstract

The problem of testing for the equality of autocovariances of two independent high-

dimensional time series is studied. Tests based on the suprema or sums of suitable averages

across the dimensions are adapted from the available literature. Another test based on principal

component analysis (PCA) is introduced and studied in theory. An extension is also considered

to the setting of testing for the equality of autocovariances of two populations, having multiple

individual high-dimensional series form the two populations. The proposed methodologies are

assessed on simulated data, with the performance of the introduced PCA testing being superior

overall. An application using fMRI data from individuals experiencing two different emotional

states is provided.

1 Introduction

Multivariate time series dataXt = (X1,t, . . . , Xd,t)
′, t = 1, . . . , T , with a large number d of univariate

component series Xj,t, referred to as high-dimensional time series (HDTS) data, have been collected

and studied in a number of modern applications. For example, HDTS are prevalent in fMRI studies

where a component series represents a BOLD signal at a particular brain location of an individual

(e.g. Ombao et al. (2016)). HDTS have been drawing ever greater attention in Economics and

Finance, where individual series could represent stocks or other assets, a range of macroeconomic

indicators, and so on (e.g. Bai and Ng (2008), Barigozzi and Hallin (2017)). Other application

areas include Environmental Sciences (e.g. Schweinberger et al. (2017), Baek et al. (2018), Baek

et al. (2017)), Business (e.g. Wilms et al. (2018)), Genetics (e.g. Fujita et al. (2007), Shojaie and

Michailidis (2010)), etc. Analysis of HDTS does not preclude the situation where the observations

Xt are independent across time, and thus should build upon and extend the approaches available

in the independent setting.

∗AMS subject classification. Primary: 62M10, 62H15. Secondary: 62G09.
†Keywords and phrases: high-dimensional time series, autocovariances, block multiplier bootstrap, dynamic factor

models, principal components, hypothesis tests.
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Assuming that two independent HDTS Xt and Yt, t = 1, . . . , T , are available and that they are

stationary, we are interested here in whether their dependence structures are the same, as measured

through the matrix autocovariance functions (ACVFs). This problem is not completely new – as

referenced throughout this work, a number of researchers have developed relevant tools or have

touched upon related issues. But our goals are to provide a comprehensive study that gathers and

compares a number of approaches in one place, to provide an instructive simulation study on a

number of canonical models, and to include an application. We also consider the setting of testing

across two populations, having multiple individual HDTS from the two populations. The following

discussion expands on these points, and also describes our contributions in greater detail.

A number of approaches to testing the equality of ACVFs of X and Y are considered in this

work. On one hand, note that ACVF at a lag is just a suitable mean of the product of the demeaned

series and its demeaned, lag-shifted copy. The problem of testing for the equality of ACVFs at that

lag is then a special case of testing for the equality of high-dimensional means, placed in the context

of time series data. The latter problem has been studied by a number of authors, including Ayyala

et al. (2017), Cao et al. (2016), Zhang and Cheng (2014) and Zhang and Wu (2017). Some of the

considered approaches will adapt these available methods to the case of ACVFs. We shall also stress

several points specific to ACVFs (e.g. the number of lags to consider), suggest natural extensions of

the available tests (e.g. using bootstrap in the sum-based tests), and – having practitioners in mind

– provide a critical comparison of the methods. On the other hand, we shall also introduce another

approach that does not exactly fall in the traditional literature on high-dimensional mean testing.

It will be based on carrying out tests in lower dimension by working with principal component

series. This approach generally performs best in our simulation study.

We shall examine and discuss the suggested methods in the context of several canonical models

of HDTS, to which we shall refer as sparse, factor and combined. Sparse models have ACVFs with

a large number of zero entries. The opposite is the case for factor models, which can thus also be

thought of as dense models. Combined models possess features of both sparse and factor models.

A similar distinction among the models of HDTS models is made in related literature. It is also

expected that some of the proposed methods will work better for one type of model or another (e.g.

the considered sup-tests seem more appropriate for sparse models), and is indeed the case in our

context, as will be documented through simulations below.

We apply the proposed methods to an fMRI data set. The data set concerns individuals in

induced emotional states (anxiety, anger), as well as the rest state. The basic question is whether

there are differences in ACVFs (or ACFs) across these states for a particular individual and across

the populations of individuals. We also note that in ACVF testing, the dimension of the series

involved is of the order d2, where d is the dimension of the original HDTS, since even just considering

the covariance (the ACVF at lag 0), there are d(d + 1)/2 cross product series. In the application

study, in particular, we work with d = 10, for which d2 = 100 is fairly large.

Testing for the equality of ACVFs is one of the more fundamental problems in time series

analysis. For univariate series, this can be done by using the well-known asymptotics of the sample

ACVF that is included in most introductory and intermediate time series textbooks (e.g. Brockwell

and Davis (2006)). For lower-dimensional vector time series, this problem has been studied in Lund
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et al. (2009), whose several approaches we shall use here as well. But to the best of our knowledge,

this problem has not been looked at more thoroughly in the high-dimensional setting, and the

main goal of the paper is to fill this fundamental gap in the literature. Another related body of

work concerns estimation of covariance, correlation, long-run variance and their precision matrices

for HDTS (Bhattacharjee and Bose (2014), Chen et al. (2013), Fiecas et al. (2018), Shu and Nan

(2019), Sun et al. (2018)). The focus here is on (global) testing rather than estimation.

The rest of the paper is structured as follows. In Section 2, we start by describing the models

of interest. In Section 3, we gather, discuss and compare the various approaches to testing the

equality of ACVFs of two independent HDTS. Testing across two popuations is also considered in

that section. Section 4 contains a simulation study and Section 5 includes an application. Section

6 concludes. More technical proofs and discussion are moved to Appendices A–C.

2 Models of interest

We shall discuss here in broad terms several classes of HDTS models that will be referred to in the

subsequent sections, in both methodological and numerical considerations. The specific forms of

these models as considered in our simulations are given in Appendix A. The general HDTS model

we focus on is given by

Xt = Λft + et, (2.1)

where Λ is a d× r matrix, ft is a r × 1 low-dimensional time series and et is another HDTS series

independent of ft. In fact, we are more interested in the following three special cases of (2.1).

• Sparse models: This is the model (2.1) with r = 0 (that is, without the term Λft) and Xt = et

having a sparse ACVF matrix at each time lag. The specific examples of sparse vector moving

average (VMA) series Xt are described in Appendix A.

• Factor models: This is the model (2.1) with r ≥ 1, in which case ft refers to r factor series

and Λ to a loading matrix. In our simulation study, we shall assume that ft follows a stationary

vector autoregressive (VAR) model of order p,

ft = Φ1ft−1 + . . .+ Φpft−p + εt, (2.2)

where εt are i.i.d. N (0,Σε). Two cases of idiosyncratic errors et will be considered. Under

the term “factor models,” we shall assume in our study that et are i.i.d. N (0,Σe), where Σe is

diagonal. The case where et are possibly temporally dependent as in sparse models above will

be treated under the term “combined models.”

• Combined models: These are the models (2.1) with both r ≥ 1 as in factor models above and

the errors et following sparse models as above. Combined models are also factor models, and we

use this terminology just to distinguish between the two considered cases for the errors et.

Several comments are in order regarding factor models. They are without a doubt among

the most popular models for HDTS, employed across a wide range of applications in Economics,
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Finance, Neuroscience and other fields (e.g. Bai and Ng (2008), Carvalho et al. (2008), Miwakeichi

et al. (2004), Stock and Watson (2011)). But we should also stress that in high dimension, a number

of different “regimes” are distinguished when dealing with factor models. When high-dimensional

data are independent across time, the factor model is also known as a spiked covariance model, for

which a nice discussion and a summary of the latest results can be found in Wang and Fan (2017).

The setting of Bai and Ng (2008), in particular, which is also used here, corresponds to that of

strong (or pervasive) factors.

Furthermore, for better interpretability of factor models, we shall use sparse loading matrices.

Under sparse loading matrices (and proper permutation, if necessary), the component series can

often be thought to be divided into “communities.” This is another popular view on dynamic factor

models (e.g. Gates et al. (2016) in Neuroscience), especially when the series can instead be thought

as representing the dynamics of a network consisting of discrete communities. It is also related to

spectral clustering (e.g. Rohe et al. (2011)). See Appendix A for a precise formulation of examples

of such models.

An important question related to factor models but not the focus of this study concerns esti-

mating the number of factors (with r = 0 being a possibility as well). A number of ad hoc and

justified methods have been proposed including those based on “information criteria” (e.g. Bai and

Ng (2007)), and random matrix theory (e.g. Onatski (2010)). For factor models that can be inter-

preted in the sense of communities as discussed above, many methods for clustering variables into

communities are also available (see Fortunato (2010); Porter et al. (2009) for extensive reviews). Of

these approaches, Walktrap of Pons and Latapy (2006) is one of the few that can reliably recover the

data-generating community structure in both small and large matrices and when the communities

have relatively poorly defined community structures (Orman and Labatut (2009)). Most relevant to

the present application, Walktrap outperformed popular approaches when detecting communities

from factor correlation matrices (Gates et al. (2016)).

Finally, we consider combined models separately in order to emphasize and to represent another

emerging trend in modeling HDTS, where a sparse model would be fitted, and analyzed on the

“residuals” et from a fitted factor model. See, for example, Basu et al. (2017).

3 Methods

We consider here several tests for the equality of autocovariances of two HDTS. These tests will also

be considered below across two populations but the main focus is on the testing problem for two

HDTS. Denote the two time series as {Xt} = {(X1,t, . . . , Xd,t)
′}t∈Z and {Yt} = {(Y1,t, . . . , Yd,t)

′}t∈Z,

which are assumed to be independent and stationary. We suppose that these are observed at times

t = 1, . . . , T . Let γG(h) = E(Gt+h − EGt+h)(Gt − EGt)′ be the (matrix) autocovariance function

(ACVF) at lag h for time series {Gt}t∈Z. We are interested in testing for:

H0 : γX(h) = γY (h), h = 0, . . . ,±K, (3.1)

for fixed K = 0, 1, . . ., and assume that EXt = 0 and EYt = 0 for simplicity. Note that (3.1) is

equivalent to

H0 : EZt = 0, (3.2)
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where

Zt :=


Z1,t

...

Zd∗,t

 =


vech(XtX

′
t − YtY ′t )

vec(Xt+1X
′
t − Yt+1Y

′
t )

...

vec(Xt+KX
′
t − Yt+KY ′t )

 (3.3)

is a stationary series of dimension d∗ = d(d− 1)/2 + d2K with d(d− 1)/2 resulting from the vech

operation and d2K from the K vec operations. Here, vec is a vectorization operator stacking the

columns of a matrix into a vector, and the vech operator similarly stacks the elements on and below

the main diagonal of a symmetric matrix. For example, when A = (aij)i,j=1,2 is a 2 × 2 matrix,

then vec(A) = (a11 a21 a12 a22)′ and vech(A) = (a11 a21 a22)′. Somewhat abusing the notation, we

suppose that Zt is also observed for t = 1, . . . , T , where T can be comparable or even smaller than

d∗. The following sections present three major ways to test for the hypothesis (3.2).

3.1 Sup-tests

Following Zhang and Wu (2017), Zhang and Cheng (2014), we first consider several tests based on

taking the maximum over the d∗ dimensions and also bootstrap. See also Chang et al. (2017), Cao

et al. (2016). The basic formulation is the block multiplier bootstrap (BMB) method proposed by

Zhang and Cheng (2014). Let Z = T−1
∑T

t=1 Zt =: (Zj)j=1,...,d∗ be the overall mean vector of Zt’s.

The test statistic here is defined as

ξ̂bmb =
√
T max
j=1,...,d∗

|Zj |. (3.4)

A critical value for ξ̂bmb is determined from a bootstrap distribution. Suppose that T = bT `T ,

where bT refers to the size of a bootstrap block. For j = 1, . . . , d∗, let Âj,i =
∑ibT

t=(i−1)bT +1 Zj,t,

i = 1, . . . , `T , be the sums of the series over non-overlapping blocks of size bT , and consider the

bootstrap statistic

η
Â

=
1√
T

max
j=1,...,d∗

∣∣∣ `T∑
i=1

Âj,iεi

∣∣∣, (3.5)

where {εi} are i.i.d. zero mean, unit variance random variables independent of {Zt}. A common

choice is to take εi as i.i.d. N (0, 1) random variables though in Section 4 with simulations, we

shall also comment on other possibilities. In the former case, note that the vectors Zj,t in Zj of

(3.4) are effectively replaced by Gaussian vectors Âj,iεi that aim to preserve the temporal and

cross-sectional covariance structure. The bootstrap critical value is defined as c(α) = inf{u ∈ R :

P(η
Â
≤ u|Z1, . . . , ZT ) ≥ 1− α}. The validity of the BMB procedure under suitable assumptions is

established in Zhang and Cheng (2014), though much of the foundational work was carried out in

the setting of i.i.d. observations Zt by Chernozhukov et al. (2013), and others.

A slight modification of BMB is suggested by Zhang and Wu (2017) by incorporating the long-

run variance estimators of the time series {Zj,t}t∈Z. The corresponding test statistic is defined

as

ξ̂lvb =
√
T max
j=1,...,d∗

|σ̂−1/2
jj Zj |, (3.6)
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where σ̂jj is a suitable estimator of the long-run variance of the series {Zj,t}t∈Z, that is, the diagonal

jth element of the long-run variance matrix Σ =
∑∞

h=−∞ γZ(h) of the series {Zt} with ACVF γZ(h).

The bootstrap sample is obtained as in (3.5) but with the normalization σ̂
−1/2
jj . The critical value

is defined accordingly.

Since Var(Zj) behaves asymptotically as σjjT for large T , the role of σ
−1/2
jj in (3.6) is to

standardize the asymptotic means Zj so that they contribute equally to the maximum. Zhang and

Wu (2017) use the batch-mean long-run variance estimator

Σ̂b =
1

T

`T∑
i=1

( ibT∑
t=(i−1)bT +1

Zt

)( ibT∑
t=(i−1)bT +1

Zt

)′
, (3.7)

so that the jth diagonal element is given by

σ̂jj,b =
bT
`T

`T∑
i=1

(
1

bT

ibT∑
t=(i−1)bT +1

Zj,t

)2

, (3.8)

where as above, we assume that T = bT `T for simplicity. This estimator uses non-overlapping

blocks. Following Zhou (2013), we also consider the lagged-window long-run variance estimator

σ̂jj,w =
bT

T − bT + 1

T−bT +1∑
i=1

(
1

bT

i+bT−1∑
t=i

Zj,t

)2

, (3.9)

where the sliding blocks are used so that (bT − 1) observations overlap for two consecutive blocks.

Though the idea of using the long-run variance for normalization is appealing, we should caution

the reader that this quantity is notoriously difficult to estimate well. This is certainly also the

message that we shall reinforce with our simulations (Section 4). In practice, we suggest just to

normalize the component series Zj,t by their sample standard deviations.

An appealing feature of the sup-tests is that if the null hypothesis is rejected, the test statistics

also suggest which of the d∗ dimensions underlies the difference in ACVFs (as the dimension of the

maximum). As we discuss further in Section 4, the sup-tests seem to work particularly well with

sparse models in the sense of Section 2.

Remark 3.1 Instead of using bootstrap, another possibility is to derive the actual limiting be-

havior of (standardized) sup-test statistics, in the framework of extreme value theory. For i.i.d.

assumptions (and covariance or correlation matrices), such limit results with the limiting Gumbel

distributions appear in Cai et al. (2014).

3.2 Sum-tests

Instead of working with the maxima as in Section 3.1, another possibility is to consider the sum

of the sample means squared. The resulting sum-based tests originated with Bai and Saranadasa

(1996) who adapted Hotelling’s T 2-statistic to the high-dimensional and i.i.d. setting through the

test statistic

TBS =
TZ
′
Z − tr{S}√

2T (T−1)
(T−2)(T+1) (tr{S2} − (T − 1)−1tr2{S})

, (3.10)
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where Z = (Zj)j=1,...,d∗ and S = 1
T−1

∑T
t=1 ZtZ

′
t is the sample covariance matrix. The test statistic

TBS is asymptotically normal under suitable assumptions on i.i.d. Zt when d∗/T → c ≥ 0. See also

Chen and Qin (2010) and Chen et al. (2010) for more recent work in this direction. The sum-based

approach was extended to time series by Ayyala et al. (2017). We shall describe their test statistic

next as it will be adapted to our setting.

Ayyala et al. (2017) work with M -dependent time series which satisfy, in particular, γZ(h) = 0

for |h| > M . For time (and M -) dependent series, the population centering tr{γZ(0)} in the test

statistic (3.10) needs to be replaced by tr{ΩT}, where ΩT =
∑
|h|≤M (1−|h|/T )γZ(h) can be thought

as the long-run variance Σ = ΣM
h=−MγZ(h) for large T . Ayyala et al. (2017) proceed by estimating

tr{ΩT} as

t̂r{ΩT } = β′T γ̂T , (3.11)

where γ̂T = vec(tr{γ̂Z(0)}, . . . , tr{γ̂Z(M)}), γ̂Z(h) are sample autocovariances and βT are suitable

deterministic weights that ensure unbiasedness, i.e. Et̂r{ΩT } = β′TEγ̂T = β′TγT = tr{ΩT}. The

focus then is on the quantity

MT = Z
′
Z − T−1t̂r{ΩT } = Z

′
Z − T−1β′T γ̂T =

T∑
t,s=1

πT (t, s)Z ′tZs, (3.12)

where πT (t, s) are suitable deterministic weights expressed through βT . Ayyala et al. (2017) show

that under suitable assumptions on d∗, T and the underlying process Z, including its Gaussianity,

one has1

MT√
Var(MT )

d→ N (0, 1). (3.13)

Furthermore, the authors also construct a consistent estimator for Var(MT ), again by leveraging

the assumption of Gaussianity of Zt.

Note, however, that the test of Ayyala et al. (2017) does not apply directly to our context

since our Zt’s in (3.3) are not Gaussian. The test could likely be modified accordingly if one

assumes that the underlying series Xt and Yt are Gaussian. But an issue with using (3.13) in our

setting is dealing with the variance term Var(MT ). As noted above, Ayyala et al. (2017) leveraged

Gaussianity to obtain a manageable expression and a consistent estimator for Var(MT ). Under

the Gaussianity of {Xt} and {Yt}, an expression for Var(MT ) is still available in our setting as

discussed in Appendix B. But it consists of a large number of terms and is hardly practical. We

did examine the test statistic MT /
√

Var(MT ) with the true variance computed as in Appendix

B and the test resulting from (3.13) in simulations but found it to be comparable or inferior to its

bootstrap version considered below. Unless new evidence emerges, we suggest to use the latter in

applications.

To overcome some of the issues discussed above, we suggest to consider the test statistics

ξ̂bsum =
1

d∗
Z
′
Z =

1

d∗

d∗∑
j=1

Z
2
j , (3.14)

1The proof of Theorem 1 of Ayyala et al. (2017) behind the stated convergence (3.13) is, in fact, incorrect. A

correction appears in Cho et al. (2019).
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ξ̂csum =
1

d∗
Z
′
Z − 1

d∗T
β′T γ̂T =

1

d∗

T∑
t,s=1

πT (t, s)Z ′tZs, (3.15)

where the weights πT (t, s) appear in (3.12) above. We then obtain the corresponding critical values

for the two statistics by using the block multiplier bootstrap as in Section 3.2, that is, by replacing

Zt by Z∗t = εiZt for blocks i = 1, . . . , `T in bootstrap samples. This suggestion is akin to the

bootstrap methods discussed in Section 3.2 with the difference that the maximum is effectively

replaced by the sum of Z
2
j over j = 1, . . . , d∗.

For i.i.d. observations Zt and the test statistic ξ̂bsum, the suggested bootstrap procedure is

justified in Pouzo (2015). Though its block version is naturally expected to be valid in the time

series context under suitable assumptions, it has not been justified yet in theory, to the best of our

knowledge. In this work, we shall examine the performance of the suggested bootstrap procedure on

simulated and real data. Finally, despite sum-tests’ obvious similarities to the sup-tests in Section

3.2, there is also an important difference. While the sup-tests are expected to work for ultra high

dimensions (where log d∗ and T are comparable), this is not expected for the sum-tests where d∗

and T should be comparable. See Pouzo (2015), Chernozhukov et al. (2017) and references therein.

3.3 PCA-tests

Instead of working with the high-dimensional time series, another possibility is to perform a test for

autocovariance equality based on low-dimensional time series obtained through principal component

analysis (PCA). Tests for the equality of autocovariances in the univariate or low-dimensional

multivariate case were studied by Lund et al. (2009). We shall use below their time-domain test

that was found to perform best in their numerical simulations. We also must caution the reader

in that our PCA-tests are tailored and justified for factor models of Section 2 and that their use

in other models might be questioned, as explained below. Even so, these tests work surprisingly

well (and generally outperform the sup- and sum-tests) on simulated data, even when they are not

completely justified.

The rest of the discussion depends on the modeling assumptions. Suppose that both X and Y

follow a dynamic factor model (2.2) with the respective numbers of factors rX ≥ 1 and rY ≥ 1.

(The case when there are no factors is discussed below.) We similarly denote the other components

of the respective factor models by ΛX , fX,t, eX,t, etc. and ΛY , fY,t, eY,t, etc. That is,

Xt = ΛXfX,t + eX,t, Yt = ΛY fY,t + eY,t, t = 1, . . . , T,

for rX × 1 factor series fX,t and rY × 1 factor series fY,t. Estimation of the number of factors was

discussed in Section 2, and is not our focus. We assume, in particular, that rX and rY are estimated

correctly. If rX 6= rY , then the two models for X and Y are different, and so are their ACVFs.

In the ensuing presentation, we thus focus on the case when rX = rY =: r ≥ 1, and consider the

r-dimensional principal component series fX and fY .

We have studied several versions of PCA-tests, and will focus on the version that worked best

in simulations and that can also be justified in theory. Some other versions are discussed at the end

of the section. We shall need a “pooled” series P that combines both series X and Y , that is, we
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set Pt = Xt, t = 1, . . . , T , and Pt = Yt−T , t = T + 1, . . . , 2T . We define the r principal components

f̂X and f̂Y of the series X and Y as follows:

1. Let Σ̂P = γ̂P (0) = 1
2T

∑2T
t=1 PtP

′
t be the sample covariance matrix, where the sample mean is

assumed to be 0 and hence not subtracted in Σ̂P .

2. Diagonalize Σ̂P as Σ̂P = Û ÊÛ ′, where Ê = diag(ê1, . . . , êd) is diagonal with the eigenvalues

ê1 ≥ . . . ≥ êd of Σ̂P and an orthogonal matrix Û = (û1 . . . ûd) consists of the corresponding

eigenvectors.

3. For 1 ≤ r ≤ d, let Ûr = (û1, . . . , ûr) and Êr = diag(ê1, . . . , êr). Set f̃X,t = 1√
d
Û ′rXt and

f̃Y,t = 1√
d
Û ′rYt for t = 1, . . . , T . Define f̂X,t =

√
dÊ
−1/2
r f̃X,t and f̂Y,t =

√
dÊ
−1/2
r f̃Y,t.

A test for the equality of ACVFs related to the principal component series f̂X and f̂Y can now

be developed. As noted above, the idea is to view f̂X and f̂Y as low-dimensional “stationary” time

series, and apply the test for the equality of ACVFs in Lund et al. (2009). The following discussion

provides some explanation and intuition; the formal result is stated as Proposition 3.1 below and

its assumptions and proof are moved to Appendix C. The null hypothesis in (3.1) is now thought

as

H0 : ΛX = ΛY , γfX (h) = γfY (h), h = 1, . . . ,±K, (3.16)

where γfX (h) and γfY (h) be the ACVFs of factors fX and fY , respectively. To understand (3.16),

recall from e.g. Bai and Ng (2008) that the loadings and factors in a factor model are identified

only up to a suitable non-singular transformation H ′0. The null hypothesis (3.16) should then be

viewed as ΛXH
′−1
0 = ΛYH

′−1
0 , γH′0fX (h) = γH′0fY (h) and γH′0fX (0) = γH′0fY (0) = Ir. As γX(h) and

γY (h), h = 0, . . . ,±K, are thought to be driven by ΛXγfX (h)Λ′X and ΛY γfY (h)Λ′Y for large factor

models, the null hypothesis (3.16) can be thought as that approximating (3.1). In particular, it

can be thought as equivalent to (3.1) if the idiosyncratic error terms eX and eY have the same

second-order moment structure.

The proposed test for (3.16) is rooted in the work of Han and Inoue (2015), who focused on the

case K = 0 (i.e. without γfX (h) and γfY (h)) in the context of detecting changes in loading matrices

only. As in that work and to simplify the discussion, consider the case K = 0 only. In testing for

ΛX = ΛY , it is natural to consider γ̂
f̂X

(0) − γ̂
f̂Y

(0), where γ̂(0)’s refer to the sample covariance

matrices of respective processes. By following Han and Inoue (2015), we argue in Appendix C that∥∥∥√T (γ̂f̂X (0)− γ̂
f̂Y

(0)
)
−
√
T
(
γ̂H′0fX (0)− γ̂H′0fY (0)

)∥∥∥
F

= op(1), (3.17)

where ‖A‖F = (tr(A′A))1/2 is the Frobenius norm of a matrix. (Since matrices in (3.17) have fixed

dimension r × r, the matrix norm can in fact be arbitrary.) In other words, as far as the sample

covariances go, one may as well replace f̂X,t and f̂Y,t by stationary low-dimensional series H ′0fX,t

and H ′0fY,t, respectively. On the other hand, with this replacement, one naturally expects that√
T
(
γ̂H′0fX (0)− γ̂H′0fY (0)

)
is asymptotically normal.
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Motivated by the discussion above, consider a vector

∆̂γ =


vech(γ̂

f̂X
(0)− γ̂

f̂Y
(0))

vec(γ̂
f̂X

(1)− γ̂
f̂Y

(1))
...

vec(γ̂
f̂X

(K)− γ̂
f̂Y

(K))

 , (3.18)

which is of dimension r(r + 1)/2 + rK. The following result is proved in Appendix C.

Proposition 3.1 With the above notation, supposing (3.16) and under the Assumptions 1-15 found

in Appendix C, we have √
T ∆̂γ

d→ N (0, 2W ), (3.19)

with the limiting covariance matrix W discussed in Appendix C as well.

The result (3.19) suggests to consider the test statistic

ξ̂cpc =
T

2
∆̂γ
′
Ŵ−1∆̂γ (3.20)

and to use the χ2 distribution with r(r + 1)/2 + rK degrees of freedom to set a critical value.

Here, Ŵ is a consistent estimator of W appearing in (3.19). The test statistic (3.20) also appears

for testing the equality of ACVFs in low dimension in Lund et al. (2009). We estimate W as in

that work through its Eq. (15) giving an expression of W in the multivariate and Gaussian case.

For example, the matrix W corresponding to i, j element of γ̂
f̂X

(p) − γ̂
f̂Y

(p) and k, l element of

γ̂
f̂X

(q)− γ̂
f̂Y

(q) is given by

∞∑
r=−∞

γ̂i,k(r)γ̂j,l(r − p+ q) + γ̂i,l(r + q)γ̂j,k(r − p), (3.21)

where γ̂i,j(h) is the i, j entry of γ̂(h) := (γ̂
f̂X

(h) + γ̂
f̂Y

(h))/2. The expression (3.21) involves an

infinite sum which is truncated to ±T 1/3 following Lund et al. (2009).

Finally, we provide a number of comments related to the test introduced above. A natural

alternative way to define principal components of X and Y is to use individual sample covariance

matrices γ̂X(0) and γ̂Y (0), respectively, in Step 1 of the algorithm above. With this choice of

covariance matrices, note that, for example,

γ̂
f̃X

(0) =
1

T

T∑
t=1

f̃X,t(f̃X,t)
′ =

1

d
Û ′r

(
1

T

T∑
t=1

XtX
′
t

)
Ûr =

1

d
Û ′rγ̂X(0)Ûr =

1

d
Êr =

1

d
diag(ê1, . . . , êr),

(3.22)

where Ûr and Êr are defined as in Steps 2 and 3 but for γ̂X(0), and hence also

γ̂
f̂X

(0) = Ir. (3.23)

Because of (3.23), including γ̂
f̂X

(0) and γ̂
f̂Y

(0) in (3.18) is not meaningful. But if these are excluded

from (3.18), a result analogous to Proposition 3.1 could be obtained and a test statistic similar to

10



(3.20) could be considered. Our unreported simulations, however, suggest that the test is inferior

to that above which uses the pooled covariance matrix.

Yet another possibility is to work with the diagonal matrices γ̂
f̃X

(0) in (3.22) and similarly

γ̂
f̃Y

(0), which consist of the sample eigenvalues of the covariance matrices. But there are presently

very few results on their asymptotic normality, which furthermore seems to require the so-called

ultra high dimension d; see Wang and Fan (2017) for the case of a spiked covariance model.

Finally, we assumed above that r ≥ 1, that is, the underlying model has a factor structure

which is identified correctly, as far as the number of factors go. When the underlying model has no

factor structure but r ≥ 1 is considered anyways, the discussion above no longer applies. But the

proposed test still seems to work well in simulations and even to outperform the tests presented in

Sections 3.1 and 3.2. This phenomenon remains to be understood better but may have to do with

the fact that low-rank matrices are generally good approximations to big matrices (e.g. Udell and

Townsend (2019)).

3.4 Comparing autocovariances of two populations

The methods of the preceding sections test for the equality of autocovariances of two individual

HDTS. Here, we extend them to the setting where multiple individual HDTS are available from two

populations and the goal is to test for the equality of autocovariances across the two populations.

More specifically, we now have N independent subjects and two HDTS are observed for each

subject, denoted by {Xn
t } and {Y n

t }, t = 1, . . . , T and n = 1, . . . , N . The HDTS Xn, n = 1, . . . , N ,

are thought to come from one population, and Y n, n = 1, . . . , N , from the other population.

We are interested in whether there is a significant difference in autocovariances between the two

populations. The main idea is to aggregate subjects’ test statistics for population comparison.

For example, the two population sup-test is based on the sum of subjects’ test statistics,

ξ̂bmb.p =

N∑
n=1

ξ̂nbmb, (3.24)

where ξ̂nbmb is the sup-test statistic for the n-th subject based on Znt , t = 1, . . . , T . The critical

value is also calculated by applying BMB for each subject and calculating the sum over N subjects

to calculate empirical distribution. The long-run variance can be incorporated in the test statistic

as well. The two population sum-tests are also similarly obtained by aggregating over N subjects,

for instance,

ξ̂bsum.p =

N∑
n=1

ξ̂nbsum, (3.25)

where ξ̂nbsum is the BSUM test statistic for the n-th subject. The critical value is obtained from the

empirical distribution by applying BMB for each subject and aggregating across them.

For the PCA-based test, one may be tempted to simply replace the autocovariances in (3.18) by

the average over N subjects, namely, N−1
∑N

n=1 ∆̂γ
n

and use the same asymptotics as in Propo-

sition 3.1. However, this does not work because factors are only identified up to transformation

11



which may be different across subjects. Instead, we aggregate the test statistics across subjects as

ξ̂cpc.p =

N∑
n=1

ξ̂ncpc, (3.26)

where ξ̂ncpc is the PCA-based test statistic for the n-th subject. Then, independence across subjects

implies that ξ̂cpc.p follows a χ2 distribution with N(r(r + 1)/2 + rK) degrees of freedom.

4 Simulation study

In this section, we report on the numerical performance of the various tests proposed in Section 3.

We consider the following data generating processes (DGPs):

• (DGP1) Sparse models

• (DGP2) Factor models

• (DGP3) Combined models

The exact description of the models can be found in Appendix A. In particular, in the tables with

the results, we refer to model parameters of these DGPs found in Appendix A. We focus on tests

for two individual HDTS, and discuss those for two populations at the end of the section.

Some comments on the simulation setting are in place. We considered two distributions of

multipliers εi while applying block multiplier bootstrap for the test statistics in (3.4) (BMB), (3.6)

with (3.9) (LVBW), and elsewhere. They are the standard normal distribution and the Rademacher

distribution given by εi = ±1 with probability 1/2. There were generally minor differences between

the two multipliers except for LVBW, where the Rademacher distribution performed far better

than the normal distribution. Hence, for the Rademacher distribution multipliers, we shall report

the results for LVBWR only. The test statistic (3.6) with (3.8) performed worse than that with

(3.9) (that is, LVBW), so the results are reported for the latter only. For the selection of block size

in BMB-based methods, we modify the selection of Andrews (1991) by taking the closest integer

to the twice average block size of each dimension, defined as

b̂T =

 2

d∗

d∗∑
j=1

mj

 , (4.1)

where [x] is the nearest integer less than or equal to x, and mj = [1.147
(
4T ρ̂2

j/(1− ρ̂2
j )
)1/3

] with ρ̂

being the OLS estimator of Zj,t regressed on Zj,t−1, t = 2, . . . , T . We use the same selection method

for the tuning parameter M in the BMB sum-tests. For PCA-test, we take r = 2, which is the

number of factors for DGP2 and DGP3. In addition, for reference, we also include testing results

by taking the block of size 1, which can be viewed as assuming that observations are independent.

We report empirical sizes and powers of the tests. All results are based on 500 replications and

the bootstrap sample size is 1000. The series sample size is T = 50 and the dimension is d = 20.

Unless specified otherwise, we take the lag K = 1. Hence, the transformed data Zt in (3.3) is of

12



Test Description

BMB Block multiplier bootstrap method in (3.4)

LVBW LVB method in (3.6) with lagged-window estimator (3.9)

LVBWR LVBW method with Rademacher multipliers

BSUM BMB sum-test in (3.14)

CSUM BMB centered sum-test in (3.15)

PCA PCA-test in (3.20)

MB Multipler bootstrap sup-test based on (3.4) with block size 1

MSUM Multipler bootstrap sum-test based on (3.14) with block size 1

Table 1: List of tests considered in Section 4.

Size BMB LVBW LVBWR BSUM CSUM PCA MB MSUM

θ1 = .5, s = .1 0.060 0.232 0.094 0.034 0.216 0.050 0.324 0.310

θ1 = .7, θ2 = −.2, s = .1 0.034 0.356 0.076 0.000 0.136 0.036 0.376 0.410

θ1 = .7, θ2 = .4, θ3 = .2, s = .1 0.032 0.362 0.098 0.020 0.420 0.040 0.956 0.996

Power BMB LVBW LVBWR BSUM CSUM PCA MB MSUM

θ1 = .7, θ2 = −.2, s = .1

vs θ1 = −.5 s = .1 0.940 0.970 0.900 0.930 1.000 1.000 1.000 1.000

θ1 = .7, θ2 = −.2, s = .1

vs θ1 = −.5 s = .7 0.890 0.966 0.950 0.860 1.000 0.996 1.000 0.992

θ1 = .7, θ2 = −.2, s = .1

vs θ1 = −.3 s = .1 0.760 0.914 0.760 0.630 1.000 0.990 1.000 0.980

θ1 = .7, θ2 = −.2, s = .1

vs θ1 = −.3 s = .7 0.700 0.930 0.720 0.610 1.000 0.990 1.000 0.972

Table 2: Empirical sizes/powers for DGP1.

dimension 590, which is far greater than the sample size. Table 1 lists the tests considered in this

section for reader’s convenience.

Table 2 presents the results for DGP1. First, note that the multiplier bootstrap methods

assuming independence, MB and MSUM in the last two columns, have serious size distortions

due to temporal dependence. Block multiplier bootstrap corrects sizes. In particular, BMB and

BSUM achieve nominal sizes and reasonable powers. BMB shows slightly better performance with

higher power than BSUM while keeping the 5% nominal size. This is consistent with previous

studies reporting that sup-tests perform better than sum-tests when the model is sparse. Note also

that the studentized (centered) versions of the sup- and sum- tests, namely LVBW, LVBWR and

CSUM, perform worse than their non-studentized versions. This seems counter-intuitive but the

much higher dimension (than the sample size) might explain this and, furthermore, Chang et al.

(2017) report similar findings. In particular, the sizes are better when the true long-run variances

are used (as we checked but do not report here). Note also that the Rademacher distribution tends

to correct the size of LVBW test though it is still slightly oversized. More surprising perhaps, the

PCA-test shows excellent sizes and powers in all cases considered.

The results for DGP2 are given in Table 3. BMB corrects sizes compared to independent
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Size BMB LVBW LVBWR BSUM CSUM PCA MB MSUM

ρ = .1, φ = 0 0.068 0.168 0.078 0.000 0.132 0.030 0.110 0.002

ρ = .1, φ = .5 0.090 0.176 0.068 0.040 0.172 0.046 0.176 0.170

ρ = .1, φ = .9 0.460 0.466 0.236 0.368 0.552 0.064 0.578 0.626

ρ = .7, φ = 0 0.060 0.152 0.046 0.018 0.086 0.048 0.102 0.038

ρ = .7, φ = .5 0.070 0.208 0.058 0.038 0.156 0.050 0.156 0.094

ρ = .7, φ = .9 0.280 0.378 0.176 0.238 0.426 0.042 0.434 0.398

Power (same loadings) BMB LVBW LVBWR BSUM CSUM PCA MB MSUM

ρ = .1, φ = 0 vs

ρ = .7, φ = 0 0.192 0.358 0.188 0.244 0.418 0.646 0.292 0.108

ρ = .1, φ = 0 vs

ρ = .7, φ = .5 0.222 0.362 0.170 0.324 0.454 0.860 0.340 0.312

ρ = .1, φ = 0 vs

ρ = .7, φ = .9 0.416 0.516 0.354 0.508 0.632 1.000 0.574 0.580

Table 3: Empirical sizes/powers for DGP2.

multiplier bootstrap while size balloons as φ increases. Non-studentized versions of tests, BMB

and BSUM, perform better than studentized counterparts. Our PCA-test performs best in the

sense that it achieves the correct size even when the correlation parameter φ is as high as .9. For

moderate values of φ, BMB and BSUM work reasonably well though BSUM shows better size and

power. This adds to the evidence that the sum-tests perform better for factor (dense) models.

Table 4 shows the results for combined models. Similar observations as for DGP1 and DGP2

apply here. PCA-test achieves the correct sizes while other methods such as BMB and BSUM

suffer from size distortions for higher φ. Also for moderate values of φ, PCA shows better power

than BMB and BSUM.

Our findings can be summarized as follows. First, PCA-test performs best in our simulations,

in particular achieving correct sizes in all cases considered. Second, sup-test performs better for

sparse models while sum-test performs better for factor models. Third, studentized versions of the

tests are inferior to non-studentized tests. This may be because more samples are needed to reduce

bias in long-run variance estimation, though Rademacher multipliers work better than the normal

multipliers. Fourth, broadly speaking, the power is best in the sparse setting, and worst in the

combined setting.

We also briefly mention the performance of the PCA-based method when the number of factors

r is misspecified. Our limited simulations with DPG1 and DGP2, not reported here for brevity,

show that the PCA-based method seems to be robust to the choice of r in terms of sizes. However,

powers are decreasing when misspeficied, in particular smaller factors showed less power than larger

number of factors are used.

Finally, we turn to testing for two populations. Table 5 shows empirical sizes and powers for two-

population tests based on DGP3. We used DPG3 for 15 subjects in each population and applied the

methods described in Section 3.4. We only report on BMB, BSUM and PCA methods for shortness

sake. Under the alternative hypothesis, we considered two scenarios: the case when all 15 subjects

14



Size BMB LVBW LVBWR BSUM CSUM PCA MB MSUM

ρ = .1, φ = 0, θ1 = .5 0.018 0.212 0.086 0.002 0.090 0.040 0.160 0.028

ρ = .1, φ = .5, θ1 = .5 0.026 0.260 0.090 0.040 0.126 0.032 0.412 0.312

ρ = .1, φ = .9, θ1 = .5 0.096 0.408 0.170 0.198 0.386 0.036 0.792 0.818

ρ = .7, φ = 0, θ1 = .7, θ2 = −.2 0.016 0.190 0.090 0.012 0.056 0.034 0.168 0.040

ρ = .7, φ = .5, θ1 = .7, θ2 = −.2 0.024 0.180 0.096 0.076 0.114 0.040 0.380 0.252

ρ = .7, φ = .9, θ1 = .7, θ2 = −.2 0.128 0.348 0.134 0.170 0.270 0.050 0.746 0.718

Power BMB LVBW LVBWR BSUM CSUM PCA MB MSUM

φ = 0, θ1 = .5 and

ρ = .1 vs ρ = .7 0.086 0.428 0.200 0.098 0.362 0.696 0.372 0.246

φ = .5, θ1 = .5 and

ρ = .1 vs ρ = .7 0.068 0.440 0.222 0.222 0.350 0.574 0.628 0.622

φ = .9, θ1 = .5 and

ρ = .1 vs ρ = .7 0.086 0.500 0.206 0.302 0.454 0.210 0.878 0.878

φ = 0, θ1 = .7, θ2 = −.2 and

ρ = .1 vs ρ = .7 0.244 0.486 0.262 0.102 0.434 0.688 0.404 0.254

φ = .5, θ1 = .7, θ2 = −.2 and

ρ = .1 vs ρ = .7 0.166 0.416 0.210 0.226 0.374 0.554 0.592 0.586

φ = .9, θ1 = .7, θ2 = −.2 and

ρ = .1 vs ρ = .7 0.182 0.480 0.210 0.316 0.464 0.176 0.818 0.840

Table 4: Empirical sizes/powers for DGP3.

differ from each other, and the case when only 5 subjects differ while the remaining 10 subjects have

the same model parameters. First, observe that BMB and BSUM tests are quite conservative, but

PCA-test is close to nominal 5% significant level while slightly oversized for φ = .9. The empirical

powers for BMB and BSUM, in fact, improve compared to Table 4 where only single subject is

considered. However, if only 5 subjects are different amongst 15 subjects, then the empirical powers

for BMB and BSUM tests are very small. This may be because aggregation over subjects behaves

as if the sample size is increased only if all subjects experience identical change. The PCA method,

on the other hand, shows the highest power amongst all methods even in the case when only 5

subjects are different.

5 Application to fMRI data

In this section, we apply our proposed tests for the equivalence of autocovariances to see whether

changes in brain processing can be identified. We examine brain functional connectivity, typically

quantified using cross-correlations of the brain regions’ time series, for individuals experiencing

two experimentally manipulated states: anxiety and anger. For both conditions, participants

listened to unpleasant and evocative music while instructed to self-generate the specific emotion.

Data were collected on 24 participants for five minutes at a sampling rate of one image every two

seconds. Full details on data collection and processing procedures can be found in Lindquist et al.

(2019). A Butterworth filter was applied to the data following standard fMRI preprocessing steps.

For the present application, we select a subset of seven brain regions that previously have been
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Size BMB BSUM PCA

ρ = .1, φ = 0, θ1 = .5 0.000 0.000 0.042

ρ = .1, φ = .5, θ1 = .5 0.000 0.000 0.046

ρ = .1, φ = .9, θ1 = .5 0.008 0.030 0.070

ρ = .7, φ = 0, θ1 = .7, θ2 = −.2 0.000 0.000 0.048

ρ = .7, φ = .5, θ1 = .7, θ2 = −.2 0.000 0.000 0.060

ρ = .7, φ = .9, θ1 = .7, θ2 = −.2 0.002 0.000 0.080

Power (same loadings)
BMB BSUM PCA BMB BSUM PCA

All different only 5 different

φ = 0, θ1 = .5 and

ρ = .1 vs ρ = .7 0.460 0.274 1.000 0.006 0.000 0.972

φ = .5, θ1 = .5 and

ρ = .1 vs ρ = .7 0.254 0.092 1.000 0.000 0.000 0.924

φ = .9, θ1 = .5 and

ρ = .1 vs ρ = .7 0.180 0.042 0.910 0.028 0.010 0.422

φ = 0, θ1 = .7, θ2 = −.2 and

ρ = .1 vs ρ = .7 0.404 0.294 1.000 0.000 0.002 0.980

φ = .5, θ1 = .7, θ2 = −.2 and

ρ = .1 vs ρ = .7 0.236 0.118 1.000 0.002 0.000 0.886

φ = .9, θ1 = .7, θ2 = −.2 and

ρ = .1 vs ρ = .7 0.182 0.044 0.930 0.022 0.006 0.368

Table 5: Empirical sizes/powers for two-population tests based on DGP3.
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Figure 1: Autocovariance (autocorrelation) differences for anger and anxiety for each subject across

different pairs of regions of interest.

found by Lindquist and colleagues to relate to emotion processing: the left middle occipital gyrus,

bilateral retrosplenial cortex, bilateral insula, and bilateral posterior insula (with each bilateral

region counting as two). These brain regions span the ventral default mode, anterior salience, and

posterior salience brain networks (Shirer et al. (2012)).

Figure 1 shows the difference of autocovariance matrix functions at lag 0 and 1 for 24 subjects

over two different emotions, namely anxiety and anger. A point for each individual is the difference

in autocovariances for a pair of different brain regions. (The series are standardized so that auto-
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Subject BMB LVBW LVBWR BSUM CSUM PCA(r = 2) PCA(r = 3)

1 1.000 1.000 0.997 1.000 0.054 0.621 0.648

2 0.933 0.963 0.926 0.973 0.174 0.359 0.001

3 0.689 0.796 0.739 0.783 0.171 0.084 0.001

4 0.137 0.207 0.271 0.405 0.271 0.021 0.004

5 0.077 0.003 0.003 0.080 0.047 0.099 0.011

6 0.468 0.622 0.639 0.880 0.258 0.743 0.425

7 0.709 0.836 0.809 0.813 0.140 0.037 0.001

8 0.906 0.943 0.943 0.900 0.167 0.674 0.010

9 0.418 0.351 0.321 0.666 0.161 0.168 0.257

10 0.896 0.946 0.957 0.880 0.181 0.477 0.310

11 0.077 0.074 0.137 0.161 0.258 0.082 0.069

12 0.234 0.000 0.007 0.445 0.214 0.219 0.793

13 0.261 0.147 0.147 0.468 0.381 0.731 0.058

14 0.826 0.910 0.913 0.950 0.164 0.049 0.006

15 0.803 0.575 0.615 0.799 0.291 0.472 0.630

16 0.007 0.003 0.017 0.090 0.074 0.010 0.024

17 0.318 0.381 0.462 0.565 0.288 0.071 1.000

18 0.682 0.793 0.766 0.890 0.365 0.570 0.004

19 0.435 0.542 0.545 0.746 0.157 0.777 0.810

20 0.438 0.381 0.378 0.829 0.344 0.230 0.004

21 0.224 0.251 0.324 0.602 0.107 0.028 0.000

22 0.896 0.923 0.903 0.910 0.137 0.001 0.013

23 0.639 0.629 0.706 0.866 0.204 0.197 0.003

24 0.130 0.171 0.214 0.448 0.395 0.549 0.725

Table 6: Testing results for anxiety and anger.

covariances are also autocorrelations.) Since 7 brain regions are considered, there are 7 · 6/2 = 21

different brain region pairs (or points for each individual). It can be seen that some subjects show

more variability than others suggesting that brain connectivity might differ by emotions. Table 6

shows the results of the testing procedures introduced in this paper. We used K = 1 for sup-tests

and sum-tests and take r = 2, 3 for PCA-test. Subjects 5 and 16, especially the latter, seem to be

generally consistent in that they have different autocovariances between the two emotions. PCA-

tests also indicate significance at the 5% level for subjects 4, 7, 14, 21, and 22 while other tests are

not so significant at that level.

Only PCA-test of the two-population tests of Section 3.4 found significant difference between

the two emotional states (populations) with a p-value less than .0001. We have also compared

the time series for the emotional states with those for the rest state. For this comparison, only

PCA-tests suggested different ACVFs for some individuals.

These results offer evidence for two prominent views on brain functioning in humans. The first

is that individuals are heterogeneous in their brain processes (Finn et al. (2015); Gates and Mole-

naar (2012)). We can see visually in the ranges of the autocovariance differences and statistically

in the inconsistency with which statistical differences between emotional categories were found.

The second paradigm supported by the present results is that emotional processing may be more
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generalized and not specific to emotion categories (Lindquist et al. (2012)). This constructionist

view of emotion posits that specific emotions are not housed in one location of the brain, but rather

emotion processing requires the distributed connectivity of brain regions.

6 Conclusions

In this work, we studied several methods for testing the equality of ACVFs of stationary high-

dimensional time series. The methods were based on either suprema, sums over the dimensions,

or PCA. The PCA test was found to perform best in simulations despite its use not being fully

justified for some models.

As possible future directions, it would be interesting to justify the block bootstrap procedure

for (3.14) and (3.15), to understand why the PCA test works well for non-factor models, or to

explore extensions to change points (for example, going beyond the single change point and the

covariance matrix of Han and Inoue (2015)).

A Description of models

In this section, we specify the exact forms of the models (sparse and factor) that are used in the

simulations in Section 4. In all cases, we assume for simplicity that the series has zero mean.

Sparse models: A HDTS model with a sparse ACVF can be introduced in a number of ways.

We work with the following model. Suppose a d × 1 series Xt follows a vector moving average

(VMA) model of order q as in

Xt = Zt + Θ1Zt−1 + . . .+ ΘqZt−q, (A.1)

where Zt are i.i.d. N (0,ΣZ) and Θi are d × d matrices (and should not be confused with Zt in

(3.3)). To have both a sparse ACVF and temporal dependence, we shall take

Θi = θiId, i = 1, . . . , q, (A.2)

for real-valued θi’s (and such that the corresponding univariate MA model is invertible) and a

sparse covariance matrix ΣZ . For the latter, we construct Zi = (Z1,i, . . . , Zd,i)
′ as

Zk,i =

 εk,i, or
εk,i+ωkεk′,i√

1+ω2
k

,
(A.3)

where εi = (ε1,i, . . . , εd,i)
′ is N (0, Id), ωk ∈ R and the second choice is made in (A.3) for sd(d−1)/2

different pairs (k, k′), k 6= k′, with s viewed as a sparsity parameter.

Note that, for (A.3),

ΣZ = Id + C, (A.4)

with a matrix C = (ckk′) having zero entries, except sd(d− 1)/2 pairs (k, k′) for which the second

choice of (A.3) was made, in which case ckk′ = ωk/
√

1 + ω2
k. Both matrices C and ΣZ are sparse.
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Furthermore, the weights ωk are generated as

ωk
i.i.d.∼ U(a0, b0), a0 < b0. (A.5)

A suitable choice of a0 and b0 can give larger or smaller correlations. In our simulations, we take

a0 = .5, b0 = 1.

The ACVF of the VMA model (A.1) with (A.2)–(A.3) is given by

γX(h) =

{ (∑q−h
m=0 θmθm+h

)
ΣZ , if h = 0, . . . , q,

0, if h > q
(A.6)

with θ0 = 0.

Factor models: Here, we work with a d× 1 series Xt defined as

Xt = Λft + et, (A.7)

where Λ is a d × r matrix of loadings, et are i.i.d. N (0,Σe) vectors that are independent of {ft},
and ft follows a vector autoregressive (VAR) model of order p,

ft = Φ1ft−1 + . . .+ Φpft−p + εt, (A.8)

where εt are i.i.d. N (0,Σε). Further choices for Λ, Σε, Φi and Σe will be made below.

For the model (A.7)–(A.8), its ACVF γX(h) = EXt+hX
′
t is given by

γX(h) = Λγf (h)Λ′ + γe(h), (A.9)

where γf (·) is the ACVF of the factor process. When h = 0, the relation (A.9) connects the

covariance matrices of X and f as

γX(0) = Λγf (0)Λ′ + Σe. (A.10)

For example, a special case of the model (A.7)–(A.8) that was considered in our simulations

takes an even d, r = 2, p = 1,

Λ =

(
λ1 0d/2×1

0d/2×1 λ2

)
, (A.11)

where λj = (λj,1, . . . , λj,d/2)′, j = 1, 2,

Φ1 = φId, Σε = (1− φ2)

(
1 ρ

ρ 1

)
, (A.12)

where |φ| < 1 and |ρ| < 1. Furthermore, λj,k is taken as

λj,k
iid∼ U(a, b), 0 < a < b < 1. (A.13)

In the simulations in Section 4, we take a = .5, b = .95. By (A.12), note that

γf (0) =

(
1 ρ

ρ 1

)
. (A.14)
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Then, by (A.10), (A.11), (A.14), the covariance matrix of X can be written as

γX(0) =

(
λ1λ

′
1 ρλ1λ

′
2

ρλ2λ
′
1 λ2λ

′
2

)
+ Σe. (A.15)

The matrix Σe will be selected as a diagonal matrix to make γX(0) a correlation matrix, that is,

in view of the preceding relation, as

Σe = diag(Iq/2 − λ1λ
′
1, Iq/2 − λ2λ

′
2). (A.16)

A few words on the interpretation of the model with (A.11)–(A.14). Because of the loading

structure (A.11), one thinks of the subsets of component seriesX1,t, . . . , Xd/2,t andXd/2+1,t, . . . , Xd,t

as two “communities,” since they load through Λ the factor series f1,t and f2,t, respectively. By

choosing properly a and b in (A.13), the loadings can be made stronger or weaker. The choice of

(A.12) is made to ensure that the model has temporal dependence (stronger as |φ| increases) and has

its covariance given in (A.14). The parameter ρ can be thought as that of overlap in the following

sense. When ρ = 0, the matrix (A.15) with (A.16) is block-diagonal, with the covariance matrices

of the two blocks corresponding to the two communities. But when ρ 6= 0, there is some “overlap”

in dependence between the communities through the off-diagonal blocks. Note also that (A.15)

explains the term “dense” model, since both λ1λ
′
1 and λ2λ

′
2 are not sparse in our construction.

B Variance calculation for sum-test

In Section 3.2, we mentioned that calculating and then working with the variance of MT may not

be practical. Here we provide some details behind this calculation. To simplify the derivation,

suppose we would like to compute the variance of

MT =

T∑
t,s=1

πT (t, s)Z ′tZs (B.1)

as in (3.12), where

Zt = vech(XtX
′
t − EXtX

′
t) (B.2)

with a Gaussian series Xt. That is, we suppose that K = 0 in (3.3) and furthermore, there is no

series Yt in (3.3). (We centered XtX
′
t in (B.2) since the same centering can be added and subtracted

in (3.3) under the null.) Then,

MT =
∑

1≤i≤j≤d

T∑
t,s=1

πT (t, s)(Xi,tXj,t − EXi,tXj,t)(Xi,sXj,s − EXi,sXj,s) (B.3)

and

Var(MT ) =
∑

1≤i1≤j1≤d

∑
1≤i2≤j2≤d

T∑
t1,s1,t2,s2=1

πT (t1, s1)πT (t2, s2)

×Cov
(

(Xi1,t1Xj1,t1 − EXi1,t1Xj1,t1)(Xi1,s1Xj1,s1 − EXi1,s1Xj1,s1),
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(Xi2,t2Xj2,t2 − EXi2,t2Xj2,t2)(Xi2,s2Xj2,s2 − EXi2,s2Xj2,s2)
)
. (B.4)

The covariance in (B.4) for any fixed indices i1, j1, i2, j2, t1, s1, t2, s2 involves a Gaussian vector

(Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8) denoting (Xi1,t1 , Xj1,t1 , Xi1,s1 , Xj1,s1 , Xi2,t2 , Xj2,t2 , Xi2,s2 , Xj2,s2). It

can be expressed after direct multiplication of the terms of its two variables as

E(Z1Z2Z3Z4Z5Z6Z7Z8)− E(Z1Z2Z3Z4Z5Z6)E(Z7Z8)− E(Z1Z2Z3Z4Z7Z8)E(Z5Z6)

−E(Z1Z2Z5Z6Z7Z8)E(Z3Z4)− E(Z3Z4Z5Z6Z7Z8)E(Z1Z2)− E(Z1Z2Z3Z4)E(Z5Z6Z7Z8)

+E(Z3Z4Z5Z6)E(Z1Z2Z7Z8) + E(Z3Z4Z7Z8)E(Z1Z2Z5Z6) + 2E(Z1Z2Z3Z4)E(Z5Z6)E(Z7Z8)

+E(Z1Z2Z5Z6)E(Z3Z4)E(Z7Z8) + E(Z1Z2Z7Z8)E(Z3Z4)E(Z5Z6)

+2E(Z5Z6Z7Z8)E(Z1Z2)E(Z3Z4)− 4E(Z1Z2)E(Z3Z4)E(Z5Z6)E(Z7Z8). (B.5)

Each of the expectations in (B.5), when involving more than 2 variables, can be calculated

through the so-called diagram formula in terms of the covariances of the variables (e.g. Pipiras

and Taqqu (2017), Section 4.3.22; Peccati and Taqqu (2011)). For example, E(Z1Z2Z3Z4) is

E(Z1Z2)E(Z3Z4) + E(Z1Z4)E(Z2Z3) + E(Z1Z3)E(Z2Z4), and E(Z1Z2Z3Z4)E(Z5Z6Z7Z8) is then

the sum of products of covariances of Z ′s indexed by the pairs from the following list conistsing

of 9 elements: {(1,2), (3,4), (5,6), (7,8)}, {(1,2), (3,4), (5,8), (6,7)}, {(1,2), (3,4), (5,7), (6,8)},
{(1,4), (2,3), (5,6), (7,8)}, {(1,4), (2,3), (5,8), (6,7)}, {(1,4), (2,3), (5,7), (6,8)}, {(1,3), (2,4),

(5,6), (7,8)}, {(1,3), (2,4), (5,8), (6,7)}, {(1,3), (2,4), (5,7), (6,8)}. Such a list of pairs can be ob-

tained in a Mathematica notebook accompanying Peccati and Taqqu (2011) through the function

MZeroSetsEqualTwo. The list for the very first expectation in (B.5), in fact, is the largest and

consists of 109 elements. Furtheremore, it contains lists associated with all other expectation terms

in (B.5), in particular, the 9-element list given above for E(Z1Z2Z3Z4)E(Z5Z6Z7Z8).

We checked that after summing all the expectation terms in (B.5), 60 out of 109 elements in

the largest list are still active, in the sense that the corresponding covariance products are not

canceled out in the sum. These are the types of formulas that we used to calculate Var(MT ) for

some models to check how the test statisticMT /
√

Var(MT ) fares in comparison to those in (3.14)

and (3.15).

C Proof of Proposition 3.1

The proof of Proposition 3.1 relies heavily on the work of Han and Inoue (2015) and Doz et al.

(2011). Han and Inoue (2015) consider the situation of a single unknown break in the factor

structure of the series; its connection to our setting is that the midpoint of a pooled series can be

thought as a potential fixed change point. The techniques of Doz et al. (2011) will be used to argue

that under the null, the two pooled series can be thought as a realization of one series, so that the

results of Han and Inoue (2015) can be applied directly.

Let ‖A‖F = (tr(A′A))1/2 be the Frobenius norm of a matrix A, ‖A‖ be the spectral norm

defined as (λmax(A′A))1/2, and λmax(A) and λmin(A) be the largest and smallest eigenvalue of a

matrix A, respectively. Furthermore, we assume that independent processes Xt and Yt follow the
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same factor model whose components satisfy Assumptions 1–15 in the below. Assumptions 1–8

follow Han and Inoue (2015) to have Lemma C.1.

Assumption 1. E‖ft‖4F <∞, E(ftf
′
t) = ΣF and T−1

∑T
t=1 ftf

′
t
p→ ΣF as T →∞ for some positive

matrix ΣF .

Assumption 2. The i-th row of loading matrix Λ denoted by λi satisfies ‖λi‖F ≤ λ̄ < ∞,

‖Λ′Λ/d− ΣΛ‖F → 0 for some r × r positive definite matrix ΣΛ, and ‖Λ′Λ/d− ΣΛ‖F = O(1/
√
d).

Assumption 3. There exists a positive constant M <∞ such that for all d and T ,

(a) E(eit) = 0, E|eit|8 ≤M for all i and t.

(b) E(e′set/d) = E(d−1
∑d

i=1 eiseit) = γd(s, t), |γd(s, s)| ≤ M for all s and

T−1
∑T

s=1

∑T
t=1 |γd(s, t)| ≤M .

(c) E(eitejt) = τij,t with |τij,t| ≤ |τij | for some τij and for all t. In addition, d−1
∑d

i=1

∑d
j=1 |τij | ≤

M .

(d) E(eitejs) = τij,ts and (dT )−1
∑d

i=1

∑N
j=1

∑T
s=1

∑T
t=1 |τij,ts| ≤M .

(e) For every t, s, E|d−1/2
∑d

i=1(eiseit − E(eiseit))|4 ≤M .

Assumption 4. E(d−1
∑d

i=1 ‖T−1/2
∑T

t=1 fteit‖2F ) ≤M for m = 1, 2.

Assumption 5. There exists M <∞ such that for all d and T , and for every t ≤ T and i ≤ d,

(a)
∑T

s=1 |γd(s, t)| ≤M .

(b)
∑d

k=1 |τki| ≤M .

Assumption 6. There exists M <∞ such that for all d and T ,

(a) For each t and m = 1, 2, E‖(dt)−1/2
∑T

s=1

∑d
k=1 fs(eksekt − E(eksekt))‖2F ≤M .

(b) E‖(dt)−1/2
∑T

t=1

∑d
k=1 ftλ

′
`,kekt‖2F ≤M for m = 1, 2 and ` = 0, 1, 2.

(c) For each t and ` = 0, 1, 2, E‖d−1/2
∑d

i=1 λ`,ieit‖4F ≤M .

Assumption 7. The eigenvalues of r × r matrix (ΣΛΣF ) are distinct.

Then, Theorem 1 of Han and Inoue (2015) implies the following lemma under the suitable

convergence order on d and T below.

Assumption 8. As d, T →∞, √
T

d
→ 0. (C.1)
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Lemma C.1 Under Assumptions 1-8, as d, T →∞,∥∥∥√T (γ̂f̂X (0)− γ̂ĝX (0)
)
−
√
T
(
γ̂H′0fX (0)− γ̂H′0gX (0)

)∥∥∥
F

p→ 0, (C.2)

where for a series Zt,

γ̂Z(0) =
1

T

T∑
t=1

ZtZ
′
t, (C.3)

ĝX,t = f̂X,T+t, t = 1, . . . , T .

We now explain how the results of Han and Inoue (2015) yield the desired convergence (3.19)

for K = 0, and then discuss the case of general K. We need the following additional assumptions.

Assumptions 10–14 are from Doz et al. (2011).

Assumption 9. Factors satisfy

1√
T


vech

(∑T
t=1(H ′0ftf

′
tH0 − EH ′0ftf ′tH0)

)
vec
(∑T−1

t=1 (H ′0ftf
′
t+1H0 − EH ′0ftf ′t+1H0)

)
...

vec
(∑T−K

t=1 (H ′0ftf
′
t+1H0 − EH ′0ftf ′t+KH0)

)


d→ N (0,W )

for some positive definite matrix W . The r × r matrix H0 is given in Han and Inoue (2015), p.

1125.

Assumption 10. For any dimension d, {Xt} and {et} are stationary processes with zero mean

and finite second-order moments.

Assumption 11. The Xi,t’s have uniformly bounded variance.

Assumption 12. The factors {ft} and {et} are independent process. The factors {ft} and {et} for

any dimension d admit a Wold representation. That is, ft =
∑∞

k=0Ckεt−k such that
∑∞

k=0 ‖Ck‖ <
∞ and εt is stationary of order four. For any d, et =

∑∞
k=0Dkvt−k, where

∑∞
k=0 ‖Dk‖ <∞ and vt

is a strong white noise such that Ev4
i,t ≤M for any d, i and t.

Assumption 13. The matrix Λ′Λ has distinct eigenvalues with lim infd→∞ d
−1λmin(Λ′Λ) > 0 and

lim supd→∞ d
−1λmax(Λ′Λ) <∞.

Assumption 14. The autocovariances of {et} denoted by γe(h) are such that

lim supd→∞
∑

h∈Z ‖γe(h)‖ is finite with infd γe(0) > 0.

Assumption 15. A Wold decomposition of factors {ft} and idiosyncratic errors {et} satisfies

1

T

T∑
t=1

∞∑
`=0

tr
{
C ′t+`Ct+`

}
= o

(
1√
T

)
, (C.4)

1

T

T∑
t=1

∞∑
`=0

‖Dt+`‖2 = o

(
1√
T

)
. (C.5)
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Proof for K = 0: First, we argue that ĝX in (C.2) can be replaced by f̂Y , which then yields the

desired convergence (3.19) since the second term with
√
T is expected to be asymptotically normal.

One can also replace gX by fY in (C.2) and thus get the relation (3.17) but this does not affect the

limit. To make such a replacement, we shall naturally use the fact that gX,t = fX,T+t will become

independent of fX asymptotically for large t. Factors are assumed to have a Wold representation

by Assumption 12, hence we can write

fX,t =

∞∑
k=0

Ckεt−k (C.6)

with i.i.d. zero mean vectors εt and
∑∞

k=0 ‖Ck‖ <∞, and similarly for fY,t but with an independent

copy ε̃ of the series ε. Similarly, let

eX,t =
∞∑
k=0

Dkvt−k (C.7)

be the Wold representation of the idiosyncratic terms, and same for eY,t with an independent copy

ṽ replacing v in (C.7).

Consider now the term γ̂ĝX (0) in (C.2), which is

γ̂ĝX (0) =
1

T

T∑
t=1

f̂T+tf̂
′
T+t = Ê−1/2

r Û ′r

( 1

T

T∑
t=1

XT+tX
′
T+t

)
ÛrÊ

−1/2
r . (C.8)

We shall argue thatXT+t can be replaced here by Yt, or equivalently by YT+t, for (C.2) to continue to

hold. For this, note first that one can replace XT+t = ΛfX,T+t+eX,T+t by X̃T+t = Λf̃X,T+t+ẽX,T+t,

where

f̃X,T+t =
t−1∑
k=0

Ckε̃T+t−k +
∞∑
k=t

CkεT+t−k, (C.9)

ẽX,T+t =
t−1∑
k=0

DkṽT+t−k +
∞∑
k=t

DkvT+t−k, (C.10)

that is, this just states that the independent errors εs and vs may as well by denoted and taken as

ε̃s and ṽs for s > T . In contrast, note that YT+t is defined similarly to X̃T+t but where ε’s and v’s

in the last terms of (C.9) and (C.10) are replaced by ε̃’s and ṽ’s.

Next, write

γ̂ĝX (0)− γ̂
f̂Y

(0) = ŴrS1Ŵr + Ŵ ′rS2Ŵr + Ŵ ′rS
′
2Ŵr, (C.11)

where

Ŵr = Ûr

(
Êr
d

)−1/2

, ∆t = X̃T+t − YT+t, (C.12)

S1 =
1

dT

T∑
t=1

∆t∆
′
t, S2 =

1

dT

T∑
t=1

YT+t∆
′
t. (C.13)

Note that ‖Ûr‖ = 1 and, by Lemma 2 in Doz et al. (2011), ‖(Êr/d)−1/2‖ = Op(1). (Strictly

speaking, the referenced result of Doz et al. (2011) is derived when the covariance matrix in Step 1
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of the PCA algorithm in our Section 3.3 is for one series Xt; but a closer examination of their proofs

shows that the covariance matrix may as well be defined from a pooled series of two independent

series Xt and Yt.) Then, ‖Ŵr‖ = Op(1) and we only need to study the asymptotics of ‖S1‖ and

‖S2‖.
For S1, write

∆t = X̃T+t−YT+t = Λ
∞∑
k=t

Ck(εT+t−k− ε̃T+t−k) +
∞∑
k=t

Dk(vT+t−k− ṽT+t−k) =: ∆1,t + ∆2,t. (C.14)

Since ∆1,t and ∆2,t are independent, the arguments below show that it is enough to consider ‖S1,1‖
and ‖S1,2‖ where S1,j = 1/(dT )

∑T
t=1 ∆j,t∆

′
j,t, j = 1, 2. For S1,1, set ηt−k = εT+t−k − ε̃T+t−k and

note that ‖Λ‖2/d is bounded by Assumption 13. Then,

E‖S1,1‖ ≤
‖Λ‖2

d
E

∥∥∥∥∥∥ 1

T

T∑
t=1

∞∑
k1,k2=t

Ck1ηt−k1η
′
t−k2C

′
k2

∥∥∥∥∥∥
≤ cE

∥∥∥∥∥∥ 1

T

T∑
t=1

∞∑
`1,`2=0

Ct+`1η−`1η
′
−`2C

′
t+`2

∥∥∥∥∥∥ ≤ cEtr

 1

T

T∑
t=1

∞∑
`1,`2=0

η−`1η
′
−`2C

′
t+`2Ct+`1


= c

1

T

T∑
t=1

∞∑
`=0

tr
{
C ′t+`Ct+`

}
= o

(
1√
T

)
(C.15)

by Assumption 15. For S1,2, set similarly ξt−k = vT+t−k − ṽT+t−k. Then, we have similarly as in

(C.15),

E‖S1,2‖ ≤
1

dT

T∑
t=1

∞∑
`=0

tr
{
D′t+`Dt+`

}
≤ 1

T

T∑
t=1

∞∑
`=0

‖D′t+`Dt+`‖ = o

(
1√
T

)
(C.16)

again by Assumption 15. Thus, as stated above, γ̂ĝX (0) in (C.2) can be replaced by γ̂
f̂Y

(0). We

thus obtain that ∥∥∥√T (γ̂
f̂X

(0)− γ̂
f̂Y

(0))−
√
T (γ̂H′0fX (0)− γ̂H′0gX (0))

∥∥∥
F

= op(1). (C.17)

The convergence of the term
√
T (γ̂H′0fX (0)− γ̂H′0gX (0)) to a normal limit is ensured by Assumption

8. Note that the limiting covariance matrix in the corresponding normal limit is the usual long-run

variance calculated from the stationary series vech(H ′0fX,tf
′
X,tH0), t = 1, . . . , T .

Proof for K ≥ 1: The argument given above concerns the convergence of (3.18) when K = 0.

When K ≥ 1, one can still proceed as above but needs a relation analogous to (C.2) for other lags

than 0, that is, for k = 1, . . . ,K:∥∥∥√T (γ̂
f̂X

(k)− γ̂ĝX (k))−
√
T (γ̂H′0fX (k)− γ̂H′0gX (k))

∥∥∥
F

= op(1). (C.18)

The approach taken in Han and Inoue (2015) easily extends to yield (C.18). For example, for k = 1,

one can follow the proof of Theorem 1 of Han and Inoue (2015), as long as an analogue of their
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Lemma 3 is available where f ′t in the two relations of the lemma is replaced by f ′t−1 or f ′t+1. Such

a result once again follows by adapting the proof of Lemma 3 in their extended preprint of the

paper (Han and Inoue (2013)). Indeed, the essence of that proof is a replacement of f̂t−H ′ft by an

equivalent expression, and the subsequent use of f ′t±1 instead of f ′t effectively amounts to shifting

of indices over t. �
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