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Abstract—For 35 years, ab initio molecular dynamics (AIMD)
has been the method of choice for modeling complex atom-
istic phenomena from first principles. However, most AIMD
applications are limited by computational cost to systems with
thousands of atoms at most. We report that a machine learning-
based simulation protocol (Deep Potential Molecular Dynamics),
while retaining ab initio accuracy, can simulate more than 1
nanosecond-long trajectory of over 100 million atoms per day,
using a highly optimized code (GPU DeePMD-kit) on the Summit
supercomputer. Our code can efficiently scale up to the entire
Summit supercomputer, attaining 91 PFLOPS in double precision
(45.5% of the peak) and 162/275 PFLOPS in mixed-single/half
precision. The great accomplishment of this work is that it opens
the door to simulating unprecedented size and time scales with ab
initio accuracy. It also poses new challenges to the next-generation
supercomputer for a better integration of machine learning and
physical modeling.

Index Terms—Deep potential molecular dynamics, ab initio
molecular dynamics, machine learning, GPU, heterogeneous ar-
chitecture, Summit

I. JUSTIFICATION FOR PRIZE

Record molecular dynamics simulation of >100 million
atoms with ab initio accuracy. Double/mixed-single/mixed-
half precision performance of 91/162/275 PFLOPS on 4,560
nodes of Summit (27,360 GPUs). For a 127-million-atom cop-
per system, time-to-solution of 8.1/4.6/2.7×10−10 s/step/atom,
or equivalently 0.8/1.5/2.5 nanosecond/day, >1000× im-
provement w.r.t state-of-the-art.

II. PERFORMANCE ATTRIBUTES

Performance attribute Our submission

Category of achievement Time-to-solution, scalability
Type of method used Deep potential molecular dynamics
Results reported on basis of Whole application including I/O
Precision reported Double precision, mixed precision
System scale Measured on full system
Measurements Timers, FLOP count

§Corresponding author

III. OVERVIEW OF THE PROBLEM

A. ab initio molecular dynamics

Molecular dynamics (MD) [1], [2] is an in silico simulation
tool for describing atomic processes that occur in materials
and molecules. The accuracy of MD lies in the description
of atomic interactions, for which the ab initio molecular
dynamics (AIMD) scheme [3], [4] stands out by evolving
atomic systems with the interatomic forces generated on-the-
fly using first-principles electronic structure methods such as
the density functional theory (DFT) [5], [6]. AIMD permits
chemical bond cleavage and formation events to occur and
accounts for electronic polarization effects. Due to the faithful
description of atomic interactions by DFT, AIMD has been the
major avenue for the microscopic understanding of a broad
spectrum of issues, such as drug discovery [7], [8], complex
chemical processes [9], [10], nanotechnology [11], etc.

The computational cost of AIMD generally scales cubically
with respect to the number of electronic degrees of freedom.
On a desktop workstation, the typical spatial and temporal
scales achievable by AIMD are ∼100 atoms and ∼10 picosec-
onds. From 2006 to 2019, the peak performance of the world’s
fastest supercomputer has increased about 550-folds, (from
360 TFLOPS of BlueGene/L to 200 PFLOPS of Summit), but
the accessible system size has only increased 8 times (from 1K
Molybdenum atoms with 12K valence electrons [12] to 11K
Magnesium atoms with 105K valence electrons [13]), which
obeys almost perfectly the cubic-scaling law. Linear-scaling
DFT methods [14]–[17] have been under active developments,
yet the pre-factor in the complexity is still large, and the time
scales attainable in MD simulations remain rather short.

For problems in complex chemical reactions [18], [19],
electrochemical cells [20], nanocrystalline materials [21], [22],
radiation damage [23], dynamic fracture, and crack propaga-
tion [24], [25], etc., the required system size typically ranges
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from thousands to hundreds of millions of atoms. Some of
these problems demand time scales extending up to the mi-
crosecond and beyond, which is far out of the scope of AIMD.
Although special simulation techniques that introduce a bias to
enhance the sampling of the slow processes have been devised
to deal with such situations [26], [27], they still require MD
simulations of relatively long time scales on the order of tens
or hundreds of nanoseconds. Some problems demand an even
higher accuracy, e.g., the so-called chemical accuracy (∼1
kcal/mol), than DFT could provide, requiring more expensive
methods like CCSD(T) [28], whose computational complexity
scales with the seventh power of the system size. Although
there have been a host of empirical force fields (EFF)-based
MD schemes (see, e.g., Refs. [29]–[33]), which can easily
scale up to millions, or even trillions, of atoms, their accuracy
is often in question. In particular, it has been challenging to
develop EFFs for cases involving multiple elements or bond
formation and cleavage, and for many practical problems there
are no suitable EFFs available. Recently, reactive force fields
capable of modeling chemical reactions, such as the REAXFF
method introduced by Goddard and collaborators [29], [33],
have attracted considerable attention. These methods, however,
lack the generality and predictive power of DFT. Above
all, there is an urgent demand in the MD community for
fundamentally boosting the efficiency of AIMD while keeping
its accuracy.

B. Deep Potential Molecular Dynamics

Recently, machine learning based MD (MLMD)
schemes [34]–[41] offer a new paradigm for boosting
AIMD by means of ML-based models trained with ab initio
data. One such model, Deep Potential (DP), has demonstrated
the ability to achieve an accuracy comparable to AIMD, and
an efficiency close to EFF-based MD [40], [41]. The accuracy
of the DP model stems from the distinctive ability of deep
neural networks (DNN) to approximate high-dimensional
functions [42], [43], the proper treatment of physical
requirements like symmetry constraints, and the concurrent
learning scheme that generates a compact training dataset
with a guarantee of uniform accuracy within the relevant
configuration space [44].

As shown in Fig. 1, to construct a DP model, first, the
coordinates of atom i and of its neighboring atoms are
converted to the descriptors D, which encode the local atomic
environment through a set of symmetry preserving features
and trainable parameters. Next, the descriptors are passed
to the fitting net, a fully connected DNN denoted by N ,
which outputs the atomic energy contribution Ei. Finally, the
potential energy is constructed as the summation of Ei. In
detail, the descriptor D is the product of terms involving the
environment matrix R̃, which faithfully records the relative
positions of the neighbors, and the embedding matrix G, which
encodes the information of the distances between atoms by a
DNN named embedding net. The dependence of DP on the
atomic coordinates is continuous to at least the 2nd order
in the atomic displacements. The training of the DP model

Fig. 1: Schematic plot of the DP method. (a) A sub-region,
including the local sub-region (green) and the ghost region
(blue), handled by an MPI task. (b) Mapping of the local
environment of a single atom onto atomic energy contribution.
(c) Structure of the embedding net. (d) Structure of the fitting
net. (e) Dense layer used in the embedding net. (f) Skip
connected dense layer used in the embedding net. (g) Skip
connected dense layer used in the fitting net.

has been implemented in the DeePMD-kit package [45]. The
typical training time spans from several hours to one week on
a single GPU card, depending on the complexity of the data.

Deep Potential Molecular Dynamics (DeePMD) has greatly
boosted the time and size scales accessible by AIMD without
loss of ab initio accuracy. To date, DeePMD has been used
to model various phenomena in physical chemistry [49]–[53]
and materials sciences [54]–[59]. For example, in a recent
work [49], DeePMD was used to simulate the TiO2-water
interface, providing a microscopic answer to an unsolved
question in surface chemistry: do water molecules dissociate
or remain intact at the interface between the liquid and
TiO2? In another recent work [58], DeePMD was used in
combination with experiments to show the mechanism behind
the nucleation of strengthening precipitates in high-strength
lightweight aluminium alloys. These examples are challenging
for AIMD due to the spatial and temporal limits of this
approach. They are also difficult, if not impossible, for EFF-
based MD schemes, due to the limited capability of the
relatively simple form of the potential energy function they
adopt.

IV. CURRENT STATE OF THE ART

An important goal of molecular simulation is to model with
ab initio accuracy realistic processes that involve hundreds of
millions of atoms. To achieve this goal, major efforts have been
made to boost AIMD without loss of accuracy. Some examples
are QBox [12], LD3DF [14], RSDFT [46], DFT-FE [13],
and CONQUEST [17]. Their performances are summarized in
Table I, where the system size, the peak performance, the time-
to-solution, etc., are provided. We observe that it is challenging



TABLE I: Performance of molecular dynamics simulators with ab initio accuracy. The abbreviations Pot., TtS, LS, BP, and
DP stand for potential, time-to-solution, linear scaling, Behler-Parrinello scheme, and Deep Potential, respectively. In AIMD,
we assume 5 electronic steps for each MD (ionic) step. The time-step of water system is 0.5 fs, and that of other systems is
1 fs. *The parallel efficiency does not significantly decay at the largest machine scale tested in the work, so it is highly likely
that they can scale to larger machines. †Vienna Scientific Cluster (VSC), an HPC system with Intel Xeon Gold 6138 CPUs.
‡An unknown cluster with Intel Xeon E5-2650v2 CPUs at the KISTI supercomputing center. **The baseline DeePMD-kit
implementation.

Work Year Pot. System #atoms #CPU cores #GPUs Machine Peak[FLOPS] TtS [s/step/atom]

Qbox [12] 2006 DFT Mo 1K 262K – BlueGene/L 207T 2.8 × 10−1

LS3DF [14] 2008 LS-DFT ZnTeO 16K 131K – BlueGene/P 108T 1.8 × 10−2

RSDFT [46] 2011 DFT Si 107K 442K – K-computer 3.1P 2.6 × 100

DFT-FE [13] 2019 DFT Mg 11K 159K 22.8K Summit 46P 6.5 × 10−2

CONQUEST [17] 2020 LS-DFT Si 1M 200K – K-computer ? 4.0 × 10−3

Simple-NN [47]* 2019 BP SiO2 14K 80 – Unknown‡ ? 3.6 × 10−5

Singraber el.al. [48]* 2019 BP H2O 9K 512 – VSC† ? 1.3 × 10−6

Baseline [45]** 2018 DP H2O 25K 1 1 Summit – 5.6 × 10−5

This work (double) 2020 DP H2O 679M 27.3K 27.3K Summit 80P 3.0 × 10−10

This work (mixed-half) 2020 DP H2O 679M 27.3K 27.3K Summit 212P 1.1 × 10−10

This work (double) 2020 DP Cu 127M 27.3K 27.3K Summit 91P 8.1 × 10−10

This work (mixed-half) 2020 DP Cu 127M 27.3K 27.3K Summit 275P 2.7 × 10−10

for conventional DFT-based AIMD schemes to overcome the
cost limits even with the fastest available HPCs. As a rough
estimate, assuming that future HPC performance will continue
to improve at the same pace as in the past fourteen years, it
would take several decades to be able to model the target
size and time scales of interest with conventional AIMD
techniques.

The MLMD schemes mentioned in the last section offer
a chance to bypass the conventional AIMD methods with-
out losing their accuracy. Representative examples are the
Behler-Parrinello scheme [34], the Gaussian approximation
potential [35], [60], SchNet [37], and the Deep Potential
method [39], [40]. Up to now, most attentions of the com-
munity have been devoted to improving the representability
and transferability of the machine learning schemes, and to
solving scientific problems that do not really require very
large-scale MD simulations. Efforts on implementation and
optimization with an HPC perspective have remained at an
early stage. Some open-source packages for the MLMD
schemes have been released: the QUantum mechanics and
Interatomic Potentials (QUIP) [61], Amp [62], DeePMD-
kit [45], TensorMol [63], SIMPLE-NN [47], PES-Learn [64],
and a library-based LAMMPS implementation of neural net-
work potential [48]. The performance reported in these works,
if any, is summarized in Table I. It is observed that existing
implementations of MLMD are basically for desktop GPU
workstations or CPU-only clusters. None of them can fully
utilize the computational power offered by the accelerators on
modern heterogeneous supercomputers.

Of particular relevance to our work is the DeePMD scheme,
which has been implemented in an open-source package
called DeePMD-kit [45]. DeePMD-kit is built on the MD
platform LAMMPS [65] and the deep learning platform Ten-
sorFlow [66]. By interfacing the DP model with LAMMPS,
which maintains the atomic information and integrates the

equations of motion, the key function of DeePMD-kit is to im-
plement the calculation of atomic energies and forces predicted
by the DP model. With TensorFlow, a versatile tool box for
deep learning, the embedding matrix, the descriptors, and the
atomic energy are implemented by standard operators built in
TensorFlow. Moreover, TensorFlow provides GPU support for
its standard operators, thus the corresponding calculations in
DeePMD-kit are easily accelerated with GPU by linking to the
GPU TensorFlow library. Unfortunately, the implementation of
DeePMD-kit cannot fully utilize the computational power of
modern heterogeneous supercomputers like Summit, due to
the following restrictions: (1) The code is designed on single
node with only single GPU serial or multi-CPU OpenMP
parallelism [45]. (2) The customized TensorFlow operators
introduced for the environment matrix, force, and virial are
implemented only on CPUs. (3) The size of the DNN used
by DP models is typically smaller than the sizes adopted
in normal deep learning applications like pattern detection
and language processing, which implies that each individual
step of a computationally intensive operation is also smaller
in DP applications. In this context, the memory bandwidth
and latency become obstacles to improving the computational
efficiency of the DeePMD-kit package. To summarize, large-
scale DeePMD simulations with ab initio accuracy have been
only conceptually proved to be possible, but have never been
made practically accessible by a code optimized for modern
heterogeneous HPCs, from both algorithmic and implementa-
tion perspectives.

Above all, to the best knowledge of the authors, efficient
MD simulation of 100 million atoms with ab initio accuracy
has never been demonstrated with AIMD or MLMD schemes.
We believe that to make this goal a routine procedure, we
need to pursue integration of physics-based modeling, machine
learning, and efficient implementation on the next-generation
computational platforms. In the following sections, we shall



adopt the serial DeePMD-kit [45] as the baseline DeePMD
implementation and demonstrate how its performance can be
greatly boosted on Summit.

V. INNOVATIONS

A. Summary of contributions

Our major contribution is a highly efficient and highly
scalable method for performing MD simulation with ab ini-
tio accuracy. This is achieved by combining the unprece-
dented representation capability of the DP model (Figs. 2 (a)-
(b)), and a highly scalable and fine-tuned implementation
on heterogeneous GPU architectures (Figs. 2 (c)-(g)). The
resulting optimized DeePMD-kit scales almost perfectly up
to 4,560 computing nodes on Summit for a copper system of
127,401,984 atoms, reaching 91 PFLOPS in double precision,
and 162 and 275 PFLOPS in mixed single and mixed half
precision, respectively. The corresponding time-to-solution is
34 milliseconds per MD step with mixed half precision,
outperforming existing work by more than three orders of
magnitude and enabling nanosecond simulation within 10
hours.

B. Algorithmic innovation

To effectively harness the computing power offered by
the heterogeneous system architecture of Summit, our goal
is to migrate to GPUs almost all computational tasks and
a significant amount of communication tasks. Due to the
relatively limited size of the computational granularity in the
DP model, a straightforward GPU implementation encounters
many bottlenecks and is thus not efficient. As such, our main
algorithmic innovations are the following:

• We increase the computational granularity of DeePMD by
introducing a new data layout for the neighbor list that
avoids branching in the computation of the embedding
matrix.

• The elements in the new data structure of the neighbor
list are compressed into 64-bit integers for more efficient
GPU optimization of the customized TensorFlow opera-
tors.

• We develop mixed-precision computation for the DP
model. Computationally intensive tasks are performed
with single or half precision without reducing the accu-
racy of the physical observables.

1) Increasing computational granularity: The novelty of
the DP model lies in its ability to automatically generate a set
of symmetry-preserving descriptors D through the embedding
net (Figs. 1 (b) and (c)) from the local environment of each
atom described by the environment matrix Ri. By using
roughly the same set of hyper-parameters, DP can fit the data
for almost all tested systems. Compared to other methods with
fixed feature sets, DP is more versatile when facing complex
data, e.g., multi-component systems, chemical reactions, etc.
Since important symmetries are strictly preserved in D (see
Fig. 2 (b)), a fitting network of three layers (see Fig. 1 (d)) is
enough to produce results with high fidelity.

The most computationally intensive part of the DP model
is the embedding matrix. The pattern of the computation is
defined by the order of neighbors recorded in the neighbor
list. We notice that since the descriptors are permutationally
invariant (Fig. 2 (b)), neighbor lists with different orders are
equivalent in terms of accuracy. By taking advantage of this
observation, we redesign the data layout of the neighbor list
by sorting the neighbors according to their type, and, within
each type, we sort the neighbors by their relative distance. The
neighbors of the same type are padded to the cut-off number
of neighbors corresponding to that type (Fig. 2 (d)). The first
sorting (according to neighbor types) and the padding align the
neighbors with the same type, so the conditional branching
according to the type of the neighbors in the embedding
matrix computation is avoided (see Fig. 2 (e)). This greatly
increases the computational granularity, a critical component
for taking advantage of the computational power offered by
GPUs. The second sorting always selects the neighbors in the
list according to their distance from the central atom. In this
way, if the number of neighbors occasionally fluctuates beyond
Nmax, the cut-off number of neighbors defined in the padding
step, only information on the nearest neighbors up to Nmax is
retained, avoiding the unphysical phenomena that would occur
if close neighbors were neglected.

2) Optimization of Customized TensorFlow Operators:
In this part, we present the optimization of the customized
TensorFlow operators, which take more than 84% of the total
computational cost in the baseline DeePMD-kit. We start from
formatting the neighbor list, whose data layout is crucial and
discussed in Sec. V-B1. Each element of the neighbor list
is a structure with 3 data items: the atomic type α(j), the
atomic distance |rij |, and the atomic index j (Fig. 2 (c)). In
the formatting process, the neighbor list is sorted first based
on the atomic type, then based on the atomic distance |rij |.

The AoS (Array of structures) data layout of the neigh-
bor list makes it impossible for efficient memory access on
GPU because of memory coalescing problems. One common
practice in GPU optimization is to switch from AoS to SoA
(Structure of arrays). However, in DeePMD-kit, we propose
an even more efficient way of storing the neighbor list by
compressing each element of the neighbor list into a 64-bit
unsigned integer (Fig. 2 (c)) with the following equation:
α(j)× 1016 + b|rij | × 108c × 106 + j. The 20 decimal digits
of the 64-bit unsigned integer are divided into 3 parts to store
the one element of neighbor list: 4 digits for the atomic type,
10 digits for the atomic distance, and 6 digits for the atomic
index. The range of all the three parts are carefully chosen
and are rarely exceeded in typical DeePMD simulations. Both
the compression before sorting and the decompression after
sorting are accelerated via CUDA customized kernels, so that
the corresponding computational time is negligible. Sorting the
compressed neighbor list reduces the number of comparisons
by half with no impact on the accuracy of the algorithm, and
is carried out by calling the NVIDIA CUB library, which
provides the state-of-the-art and reusable software components
for each layer of the CUDA programming model, including



Fig. 2: Key steps in the optimized DeePMD-kit, taking water as an example.

block-wide sorting.
According to Amdahl’s law, an ideal overall speedup can

only be achieved by accelerating all calculations. In our imple-
mentation, all customized TensorFlow operators, Environment,
ProdForce, and ProdViral, which compute the environment
matrix, force, and the virial, respectively, are migrated and
optimized on the GPU. In particular, a fine-grained parallelism
is utilized to exploit the computing power of the GPU.

Now that all computationally intensive tasks are carried out
by the GPU, we further reduce the time for GPU memory
allocation by allocating a trunk of GPU memory at the
initialization stage, and re-using the GPU memory throughout
the MD simulation. The CPU-GPU memory copy operations
are also optimized to eliminate non-essential data transfer
processes.

3) Mixed-precision computation: The approximation prop-
erty of the DNN-based DP model provides us with an oppor-
tunity for mixed-precision calculations. In the optimized code,
different levels of mixed precision are tested, and we find
that two prescriptions of mixed precision are of satisfactory
stability and accuracy. Both of them use double precision for
atomic positions and the environment matrix construction. In
the MIX-32 scheme, all parameters of the embedding net and
fitting net are stored in single precision (32-bit). The envi-
ronment matrix is converted from double precision to single
precision, then all the arithmetic operations of the embedding
net and the fitting net are performed in single precision. In the
MIX-16 scheme, the parameters of the embedding net and the
first two fitting net layers are stored in half precision (16-bit).
The environment matrix is cast to half precision and then fed to
the embedding net. In each embedding net layer and the first
two fitting net layers, the GEMM operations are performed

using Tensor Cores on V100 GPU with accumulations in
single precision, except for those in the first embedding net
layer that do not meet the size requirements for using Tensor
Cores. All other floating point operations, such as TANH
and TANHGrad, are conducted in single precision due to
accuracy considerations. The data are cast to half precision
before writing the global memory. Note that in the last layer
of the fitting net, both data storage and arithmetic operations
are kept in single precision, which is critical to the accuracy
of the MIX-16 scheme. Finally, the outputs of the fitting net of
MIX-32 and MIX-16 are converted back to double precision,
and the total energy of the system is reduced from the atomic
contributions. The model parameters W and b are trained in
double precision, and cast to single and half precision in the
MIX-32 and MIX-16 schemes, respectively.

We compare the mixed-precision schemes with the double
precision by using a typical configuration of a water system
composed of 512 molecules. With MIX-32 we observe a
deviation of 5.2 × 10−6 eV (normalized by the number of
molecules) in the energy prediction and a root mean square
deviation of 2.5 × 10−6 eV/Å in the force prediction, which
indicates an excellent agreement with the double precision
scheme. With MIX-16 we observe a deviation of 3.6×10−3 eV
(normalized by number of molecules) in the energy prediction
and a root mean square deviation of 5.7× 10−3 eV/Å in the
force prediction. The deviation in the force prediction is signif-
icantly smaller than the training error (∼4×10−2 eV/Å). The
deviation in energy prediction is comparable to the training
error, but is already much smaller than the chemical accuracy
(∼4×10−2 eV/molecule). The accuracy of the mixed-precision
schemes in predicting physical observables is further validated
in Sec. VII-A3.



C. Neural Network Innovation
After optimizing customized TensorFlow operators

(Sec. V-B2), the remaining computational cost is dominated by
standard TensorFlow operators. The floating point operations
are dominated by operators like MATMUL (matrix-matrix
multiplication) and TANH (activation function). Other
operators such as CONCAT (matrices concatenation) and
SUM (matrix addition) are bandwidth intensive and cost few
floating point operations. We find that many operations in
DeePMD-kit involve matrix-matrix multiplication of tall and
skinny matrices. This leads to particularly large overheads in
the operations like SUM, so standard TensorFlow operators
are not optimized to treat such matrices efficiently. Through
detailed performance profiling, we redesign several operations
in the execution graph of TensorFlow. Although these are
tailored operations designed to improve the efficiency of
DeePMD-kit, similar strategies should be useful in other
machine learning applications, particularly those integrated
with physical modeling.

1) Replace MATMUL and SUM Operators with GEMM:
In the standard TensorFlow execution graph, the operation
x ·W + b (see Fig. 1 (e-g)) is implemented with two separate
operators: MATMUL and SUM. For example, for the oxygen-
hydrogen pairs in a water system with 4,096 molecules,
MATMUL in the last layer of the embedding net multiplies
x of size 786,432 × 64 with W of size 64 × 128. Then the
SUM operator adds the bias b to each row of x ·W . In many
data-driven applications the sizes of matrices x and W are
large enough so that the overhead of the SUM is negligible
compared to that of the MATMUL operator. However, in the
case of DeePMD, the second dimension of x and the size of W
are relatively small, so the cost of SUM becomes important. In
the optimized computational graph, we replace the MATMUL
and SUM operators with a single CUBLAS GEMM call. Note
that the vector b is converted to a matrix before SUM by right
multiplying with the transpose of vector one (Fig. 2 (g1)).

2) Replace CONCAT and SUM Operators with GEMM: In
the standard TensorFlow computational graph, the operation
(x, x) + ... (see Fig. 1 (f)) is implemented by a CONCAT
operator that concatenates two xs to form (x, x) and a SUM
operator that adds (x, x) to the output of the TANH operator.
We optimize this operation by replacing CONCAT with a
matrix-matrix multiplication (x, x)→ x× (I, I), and merging
this multiplication with SUM to form a CUBLAS GEMM
call (Fig. 2 (g2)). We observe that the multiplication is only
marginally faster than CONCAT, and the benefit comes from
the merging of the SUM.

3) CUDA kernel fusion for the TANH and TANHGrad:
TANH is the activation function (see Fig. 1 (e-g)), while TAN-
HGrad (not explicitly shown in Fig. 1) is the derivative of the
output of TANH w.r.t the input for backward propagation. We
need both TANH and TANHGrad in each MD step to evaluate
the forces. We observe that the derivative of tanh(x) is also
a function of tanh(x), i.e. ∇tanh(x) = 1 − tanh2(x). Thus,
in the optimized DeePMD-kit, both TANH and TANHGrad
operators are implemented in one CUDA customized kernel to

save computational time (Fig. 2 (g3)). Since the GPU memory
of the TANHGrad is allocated in the forward propagation, this
optimization is essentially trading space for time.

D. Reducing MPI communication bottlenecks

Despite the multi-body nature of DP, due to its force decom-
position scheme, we can adopt for DP the same parallelization
scheme of the EFFs implemented in LAMMPS (Fig. 1 (a)).
The computation of EFFs in LAMMPS is replaced by the
computation of DP, and LAMMPS is also used to maintain the
spacial partitioning of the system and all the communications
between sub-regions.

There are mainly two types of MPI communications in
each DeePMD step: the communication of the ghost region
between adjacent MPI tasks and the global reduction for the
physical properties. In our implementation, we optimize the
communication of the ghost region using the CUDA-aware
IBM Spectrum MPI, since it resides on the GPU in the calcula-
tion. When the output information is required, MPI Allreduce
operations across all MPI tasks are performed to collect phys-
ical properties, such as total energy, pressure, etc.. Although
each of these physical properties is only one double precision
number and the corresponding MPI Allreduce operation is
latency dominated, the scaling of the optimized DeePMD-kit is
hindered by the implicit MPI Barrier in extremely large-scale
calculations. To alleviate this problem, we reduce the output
frequency to every 20 steps, a common practice in the MD
community. In addition, we replace the MPI Allreduce with
MPI Iallreduce to further avoid the implicit MPI Barrier.

VI. PERFORMANCE MEASUREMENT

A. Physical Systems

Among various complex physical systems that have been
described by DP, we choose two typical and well-benchmarked
systems, one insulating (water) and one metallic (copper), to
measure the performance of the optimized DeePMD-kit. Water
is a notoriously difficult system even for AIMD, due to the
delicate balance between weak non-covalent intermolecular
interactions,thermal (entropic) effects, as well as nuclear quan-
tum effects [53], [67], [68]. We have shown in Refs. [40], [53]
that DeePMD can accurately capture such effects in water. In
combination with extensions of the DP formulation to vectors
and tensors, the infra-red [52] and Raman [69] spectra of
water have been properly described. Copper is a representative
simple metal, yet a lot of its properties, such as the surface
formation energy and stacking fault energies, can be hardly
produced well by EFFs. In Ref. [70], using a concurrent
learning scheme [44], we have generated an optimal set of
ab initio training data and realized a DP model for copper
with a uniform accuracy over a large thermodynamic region.

For water and copper, the cut-off radii are 6 Å and 8 Å and
the cut-off numbers of neighbors are 144 and 512, respectively.
The fitting nets of the models are of size (240, 240, 240),
and the embedding nets are of size (32, 64, 128). To test the
performance, the MD equations are numerically integrated
by the velocity-Verlet scheme for 500 steps (the energy and



forces are evaluated for 501 times) at time-steps of 0.5 fs
(water) and 1.0 fs (copper). The velocities of the atoms are
randomly initialized subjected to the Boltzmann distribution at
330 K. The neighbor list with a 2 Å buffer region is updated
every 50 steps. The thermodynamic data, including kinetic
energy, potential energy, temperature, pressure, are collected
and recorded every 20 time-steps.

For the water system, the strong scaling tests are performed
on a system with 4,259,840 molecules (12,779,520 atoms).
The total number of floating point operations for 500 MD steps
of this system is 151.1 PFLOPs. Weak scaling tests ranging
from 42,467,328 to 679,477,248 atoms are performed on up to
4,560 computing nodes on Summit. We notice that compared
with the water system, the copper system, with the same
number of atoms, has 3.5 times more floating point operations.
The strong scaling tests of the copper system are carried
out with a system of 15,925,248 atoms. The total number of
floating point operations for 500 MD steps of this system is
588.7 PFLOPs. The weak scaling tests are performed on up to
4,560 computing nodes of Summit for systems ranging from
7,962,624 to 127,401,984 atoms.

Since the baseline DeePMD-kit is restricted by its sequential
implementation and can run none of these systems, a fraction
of the water system (12,288 atoms/4096 water molecules) is
used for comparison with the optimized code on a single GPU
in Sec. VII-A.

B. HPC Platforms and Software Environment

All the numerical tests are performed on the Summit su-
percomputer, which consists of 4,608 computing nodes and
ranks No. 2 on the TOP500 list for a peak performance of 200
PFLOPS [71]. Each computing node has two identical groups,
each group has one POWER 9 CPU socket and 3 NVIDIA
V100 GPUs and they are interconnected via NVLink. The total
computing power for a single node is 43 TFLOPS in double
precision (each V100 GPU 7 TFLOPS and each POWER 9
socket 515 GFLOPS, thus 7×6+2×0.5=43 TFLOPS in total),
86 TFLOPS in single precision, and 720 TFLOPS in half
precision with Tensor Cores (120 TFLOPS per GPU). Each
computing node has 512 GB host memory and 96GB (16GB
per GPU) GPU memory. The CPU bandwidth is 135 GB/s
(per socket) and GPU bandwidth is 900 GB/s (per GPU).
The two groups of hardware are connected via X-Bus with a
64 GB/s bandwidth. The computing nodes are interconnected
with a non-blocking fat-tree using a dual-rail Mellanox EDR
InfiniBand interconnect with a total bandwidth of 25 GB/s.

TABLE II: Software environment

Name Module used

MPI IBM Spectrum MPI 10.3.1.2-20200121
Host compiler GCC 4.8.5
GPU compiler CUDA 10.1.168
TensorFlow IBM-WML-CE 1.6.2-2 (TensorFlow 1.15 included)

The software environment is listed in Table II. In all
tests, a single OpenMP thread is used. We use 6 MPI tasks

TABLE III: Performance of optimized customized Tensor-
Flow operators. Baseline customized operators are imple-
mented on CPU.

Operators Baseline[ms] Optimized[ms] Speedup

Environment 302.54 2.32 130
ProdViral 51.06 1.34 38
ProdForce 41.29 2.41 17

per computing node (3 MPI tasks per socket to fully take
advantage of both CPU-GPU affinity and network adapter),
and each MPI task is bound to an individual GPU.

C. Measurements

The total number of floating point operations (FLOPs) of
the systems is collected via the NVIDIA CUDA NVPROF
tool. We remark that NVPROF only gathers the FLOPs on the
GPU. However, in DeePMD-kit, all computationally intensive
calculations are performed on the GPU, thus the total FLOPs is
reasonable. Both double-precision and mixed-precision results
are reported in Sec. VII. The following three criteria are used
to measure the performance of the DeePMD-kit.

• Time-to-solution, defined as MD loop time
number of MD steps , the aver-

age wall clock time used for calculating a single MD step
. The “MD loop time” includes all the time used in the
MD loop (IO included). Setup time, such as the setup of
the system and MPI initialization and finalization, is not
included.

• Peak performance, defined as total FLOPs
MD loop time .

• Sustained performance, defined as total FLOPs
total wall clock time . The

“total wall clock time” includes the whole application
running time (including IO).

VII. PERFORMANCE RESULTS

A. Single GPU

In the following, taking the double-precision implementa-
tion as an example, we discuss our optimizations on the cus-
tomized and standard TensorFlow operators in Secs. VII-A1
and VII-A2, respectively. Then we discuss the implementation
of mixed precision and the overall performance in Sec. VII-A3.

1) Customized TensorFlow operators: We optimize the cus-
tomized TensorFlow operators with CUDA customized kernels
according to Sec. V-B2. In the baseline implementation, the
customized TensorFlow operators take about 85% of the total
MD loop time for a water system of 12,288 atoms. The
performance of the customized operators of the baseline and
optimized implementations are compared in Table III. For all
the customized TensorFlow operators, an overall speedup of
64.6 times is achieved. Moreover, a total speedup factor of 6.2
is reached for the “MD loop time”.

2) Standard TensorFlow operators: Some of the standard
TensorFlow operators are re-implemented and optimized ac-
cording to Sec. V-C. For the water system of 12,288 atoms,
MATMUL+SUM, CONCAT+SUM, and TANH+TANHGrad
in the baseline implementation are accelerated by 1.3, 1.7,



TABLE IV: Test errors for the water system from models with
different precision.

Precision Error in energy [eV/molecule] Error in force [eV/Å]

Double 1.2× 10−3 3.7× 10−2

MIX-32 1.2× 10−3 3.7× 10−2

MIX-16 3.6× 10−3 3.8× 10−2

and 1.6 times with GEMM, GEMM, and merged TANH
, respectively. The baseline implementation calls standard
TensorFlow operators, which are already highly efficient on
GPUs, yet an extra 1.21 times of speedup is achieved for the
“MD loop time” compared with Sec. VII-A1.

3) Mixed precision: The accuracy of the mixed precision
models is investigated by comparing the energy and forces
computed from DeePMD-kit with those from AIMD predic-
tions. We take water as an example and the test data set
is composed of 100 water configurations of 64 molecules.
As shown in Table IV, the MIX-32 scheme is as accurate
as the double precision. The accuracy of MIX-16 is slightly
worse than that of the double precision model, but is usually
enough for an accurate prediction of physical observables. To
further check the accuracy, we calculate the radial distribu-
tion function (RDF), the normalized probability of finding
a neighboring atom at the spherically averaged distance r.
The oxygen-oxygen (gOO(r)), oxygen-hydrogen (gOH(r)),
and hydrogen-hydrogen (gHH(r)) RDFs are typically utilized
to characterize the structures of water [40]. As shown in Fig. 3,
the RDFs computed from the mixed-precision implementations
(MIX-32 and MIX-16) agree perfectly with those from the
double-precision implementation and those from the AIMD
calculation. Therefore, we conclude that the mix-precision
methods do not lead to loss of accuracy for predicting physical
observables.

For the water system, compared with the double-precision
version, the MIX-32 code is about 1.7 times faster and saves
half of the GPU memory cost, and the MIX-16 code is
2.6 times faster and saves 75% of the GPU memory cost.
Together with the speedups from Secs. VII-A2 and VII-A1,
it is concluded that the optimized DeePMD-kit with double
precision is around 7.5 times faster than the baseline code,
and the speedup factor increases to 12.7 and 19.5 when the
MIX-32 and MIX-16 codes are used.

Finally, Fig. 4 shows the percentage of time spent by
different TensorFlow operators in the total GPU execution
time. We notice that the contribution from the GEMM operator
is more important in the copper system (double: 71%, MIX-
32: 65% MIX-16: 54%) than that in the water system (double:
67%, MIX-32: 62%, MIX-16: 50%). This is mainly attributed
to the fact that the FLOPs of the copper system is 3.5 times
bigger than that of the water due to the larger number of
neighbors per atom, as discussed in Sec. VI-A. We remark
that the GEMM operator in DeePMD-kit is still memory-
bound due to the the small network size (the dimensions of the
three embedding network layers are 32, 64, and 128). Profiling

Fig. 3: Radial distribution functions gOO(r), gOH(r), and
gHH(r) of liquid water at ambient conditions, calculated
by AIMD and four DeePMD-kit implementations: baseline,
optimized double, MIX-32, and MIX-16.
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on the water system shows that the average computational
efficiency of the GEMM operations is 66.4%, 62.3 and 19.3%
for double, MIX-32, and MIX-16 versions, respectively. The
corresponding bandwidth utilization is 88.9%, 88% and 87.6%
of the hardware limit, respectively. As the network size grows,
the bandwidth limitation will be alleviated. A detailed discus-
sion will be presented in Sec. VII-D.

B. Scaling

We discuss the scaling behaviors of the optimized DeePMD-
kit on the Summit supercomputer for large-scale simulations.
The system sizes, ranging from 8 to 679 million of atoms, are
inaccessible with the baseline implementation, and are more
than two orders of magnitude larger than other state-of-the-art
MD schemes with ab initio accuracy.



1) Strong Scaling: In Fig. 5, we measure the scalability of
the optimized DeePMD-kit with the “MD loop time” of 500
MD steps ranging from 80 to 4,560 computing nodes. The
testing systems include a copper system of 15,925,248 atoms
and a water system of 12,779,520 atoms.

For the copper system, the optimized DeePMD-kit scales
well to the entire Summit supercomputer. By setting the per-
formance with 570 computing nodes as baseline, the parallel
efficiency is 87.3%, 71.9%, and 61.9% when scaling to 4,560
computing nodes on Summit, reaching peak performance of
78.3, 112.3, and 171.8 PFLOPS for the double, MIX-32,
and MIX-16 versions of the code, respectively. The time-to-
solution of a single MD step for this particular system is 7 mil-
liseconds using the MIX-16 version of optimized DeePMD-kit,
making it possible to finish nanosecond simulation within 2
hours (time-step 1.0 fs) with ab initio accuracy.

For the water system, the optimized DeePMD-kit scales
almost perfectly up to 640 computing nodes, and continues to
scale up to the entire Summit supercomputer. Compare to the
baseline of 80 computing nodes, the parallel efficiency of the
optimized DeePMD-kit is 81.7%(double), 81%(MIX-32) and
77%(MIX-16) when scaling to 640 computing nodes, and de-
creases to 38.3%(double), 24.9%(MIX-32) and 18.7%(MIX-
16) when using 4,560 computing nodes. The decrease of the
parallel efficiency is mainly due to the scaling of the data
size per GPU. As shown in Table V, the percentage of peak
performance goes down dramatically when the number of
atoms per GPU is less than 3,000, especially for the MIX-16
code. However, we remark that all double and mixed-precision
versions of DeePMD-kit scale up to 4,560 computing nodes
with 459 atoms per GPUs despite the small data size. The
time-to-solution of a single MD step for this system with
double-precision is 9 milliseconds, making it possible to
finish nanosecond simulation in 5 hours (time-step is 0.5
fs).

TABLE V: Average number of atoms (per GPU), average
ghost region size (per GPU), and double precision FLOPS for
the 12,779,520 atoms water system.

#Nodes 80 160 320 640 1280 2560 4560
#GPUs 480 960 1920 3840 7680 15360 27360

#atoms 26624 13312 6656 3328 1664 832 467
#ghosts 25275 17014 11408 7839 5553 3930 3037

MD time 100.4 53.2 28.1 15.4 8.8 5.6 4.6
Efficiency 1.00 0.94 0.89 0.82 0.71 0.56 0.38
PFLOPS 1.51 2.84 5.37 9.84 17.09 26.98 32.90
%of Peak 42.90 40.45 38.26 35.07 30.44 24.03 16.45

2) Weak scaling: The weak scaling of the optimized
DeePMD-kit is measured in terms of the FLOPS of 500 MD
steps for both water and copper (Fig. 6). Both systems show
perfect scaling with respect to the number of nodes (GPUs)
used. The MIX-32 and MIX-16 versions are about 1.7/1.8 and
2.6/3.0 times faster compared to the double-precision code for
the water/copper system, respectively. For water and copper,
the largest system sizes simulated in these tests are 679 and
127 million atoms, respectively, which are more than three
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Fig. 5: Strong scaling: (a) the water system of 12,779,520
atoms. (b) the copper system of 15,925,248 atoms. The FLOPs
of the copper system is 3.9 times compared to that of the
water system. The MD loop time is measured using the wall
clock time of 500 MD steps (energy and forces are computed
501 times). The corresponding peak performance in PFLOPS
and the time-to-solution (TtS) in millisecond per MD step are
presented.

orders of magnitude larger compared to the state-of-the-art
MD with ab initio accuracy. For the copper system, the peak
performance achieved is 91 PFLOPS (45.5% of the peak)
in double precision, and 162/275 PFLOPS in MIX-32/MIX-
16 precision. The time-to-solution is 8.1/4.6/2.7 × 10−10

second/step/atom in double/MIX-32/MIX-16 precision, which
means that one nanosecond MD simulation of the 127M-atom
system with ab initio accuracy can be finished in 29/16/9.5
hours. For the water system, the peak performance is 79.9
PFLOPS (40% of the peak) in double precision, and
138.8/211.5 PFLOPS in MIX-32/MIX-16 precision. The op-
timized code reaches a time-to-solution of 3.0/1.7/1.1×10−10

second/step/atom in double/MIX-32/MIX-16 precision, so that
one nanosecond MD simulation of the 679M-atom water
system with ab initio accuracy can be finished in 112/64/42
hours. We remark that the computationally feasible system
sizes for MIX-32 and MIX-16 codes on the 4,560 computing
nodes of Summit can keep increasing to 1.35 and 2.7 billion
atoms, respectively, and will be ultimately limited by the
capacity of the GPU memory. Moreover, the perfect weak
scaling of both systems implies that the optimized DeePMD-
kit is able to calculate even bigger physical systems on future
exascale supercomputers with no intrinsic obstacles.



 4

 8

 16

 32

 64

 128

 256

 285  570  1140  2280  4560

42M 85M 170M 340M 679M

Water weak scaling

(a)
F

L
O

P
S

 [
P

]

Number of nodes

Number of atoms

Ideal

5.1P

10.0P

20.3P

40.2P

79.9P

Double

8.8P

17.6P

35.1P

70.3P

138.8PMIX-32

13.5P

26.6P

53.7P

107.9P

211.5P

MIX-16

 4

 8

 16

 32

 64

 128

 256

 512

 285  570  1140  2280  4560

8.0M 15.9M 31.8M 63.7M 127.4M

Copper weak scaling

(b)

F
L

O
P

S
 [

P
]

Number of nodes

Number of atoms

5.7P

11.2P

22.4P

45.2P

91.0P

10.2P

19.5P

39.3P

79.8P

162.1P

17.3P

34.6P

69.1P

138.1P

275.4P

Fig. 6: Weak scaling: (a) the water system. Number of atom
ranges from 42,467,328 to 679,477,248. (b) the copper system.
Number of atoms ranges from 7,962,624 to 127,401,984.

C. Sustained performance

The MD loop time of the optimized DeePMD-kit has been
measured and discussed in detail in Secs. VII-A and VII-B.
By subtracting the MD loop time from the total wall clock
time, we define the “setup time”, which mainly includes the
initialization of the atomic structure and the loading of the
DP model data. In the baseline implementation, the atomic
structure is constructed on a single MPI task and then dis-
tributed via MPI communication, and the model data is read
in from the hard-drive by all the MPI tasks. The corresponding
setup time can be a few minutes, though they are performed
only once. For example, the setup time for the copper system
of 127, 401, 984 atoms is more than 263 seconds on 4,560
computing nodes on Summit.

To reduce these overheads, we build the atomic structure
with all the MPI tasks without communication, and the model
data is also staged by first reading in with a single MPI
rank, and then broadcasting across all MPI tasks. By these
optimizations, the setup time is reduced to less than 5 seconds
for all tests. The sustained performance of the DeePMD-
kit reaches 90.3 PFLOPS (45% of the peak) in double
precision when running the 127,401,984 atoms copper
system for 5,000 MD steps (5 ps).

D. Network size

The performance of the DeePMD-kit with respect to the
matrix size of the last layer of the embedding net is shown
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system on 4,560 nodes. The size of the embedding net is
characterized by the size of the network parameter matrix W
of the largest hidden layer. The embedding net investigated in
this work is 64×128.

in Fig. 7. While the FLOPS curves of both double and MIX-
32 versions flatten after the matrix size reaching 256 × 512,
that of the MIX-16 version keeps increasing and reaches 1.17
EFLOPS when the matrix is of size 1024 × 2048. This is
mainly because half precision arithmetic is only efficient when
the matrix size is bigger than 2048 × 2048 [72]. Although
larger FLOPS comes with bigger networks, we notice that
it is enough to achieve the ab initio accuracy with matrix
size 64× 128, and the accuracy improvement by using larger
embedding nets is negligible. Therefore, in this paper, we
report the performance of the DeePMD-kit based on the matrix
size 64 × 128. In this regime, the performance is mainly
dominated by the GPU memory bandwidth, as discussed in
section VII-A. As the size of the embedding net grows to
1024× 2048, the GEMM operations takes more than 85% of
the GPU computational time in all versions of DeePMD-kit.
The computational efficiencies of both double precision and
MIX-32 achieve about 90%, though that of the half precision
only reaches 42%, which indicates that the performance of
the double and MIX-32 are compute-bound, and the MIX-
16 version is still memory-bound. Such performance behavior
can be understood by the FLOP/Byte ratio of the V100 GPU,
and will be discussed in section VIII-B. We remark that larger
network size may be needed to achieve better accuracy in more
complicated physical systems than pure water and copper. In
those cases, the MIX-16 scheme is even more favorable in
terms of efficiency.

VIII. IMPLICATIONS

This work provides a vivid demonstration of what can be
achieved by integrating physics-based modeling and simula-
tion, machine learning, and efficient implementation on the
next-generation computational platform. It opens up a host of
new exciting possibilities in applications to material science,
chemistry, and biology, as introduced in Sec. VIII-A. It also
poses new challenges to the next-generation supercomputer for



Fig. 8: (a) A 10,401,218-atom nanocrystalline copper consist-
ing of 64 randomly oriented crystals with 15-nm averaged
grain diameter. (b) The nanocrystalline copper after 10%
tensile deformation along the z axis. Purple, yellow, and cyan
denote the atoms in the grains, atoms in the grain boundaries,
and atoms in the stacking faults.

a better integration of machine learning and physical modeling,
as detailed in Sec. VIII-B. We believe that this work may
represent a turning point in the history of high-performance
computing, and it will have profound implications not only in
the field of molecular simulation, but also in other areas of
scientific computing.

A. Applications of Optimized DeePMD-kit

The strength and hardness of metals can be enhanced by
refining their grains, and MD can be of great help to provide
microscopic insights into the underlying mechanism [21], [22].
Typically, a nanocrystalline structure of metal consists of
tens to hundreds of millions of atoms [21], [22], which is
far beyond the capability of ab initio methods. Therefore,
previous simulation of nanocrystalline metals can only be
driven by EFFs with limited accuracy. Taking copper as an
example, EFFs are able to yield the strain-stress curves of
nanocrystalline, from which the movements of dislocations
and grain boundaries can be analyzed to elucidate the origins
of strength in nanocrystalline. However, the biggest problem
of EFFs is the lack of accuracy for certain properties, e.g.,
surface formation energies and stacking fault energies. The
accuracy problem is largely resolved by the DP model used
in this work. We refer to Ref. [70] for extensive benchmark.

We show in Fig. 8 the tensile deformation of a 10,401,218-
atom nanocrystalline copper by MD simulations. The initial
cell size is set to 50 × 50 × 50 nm3. We run 50,000 steps
with a time-step of 0.5 fs. The first 10,000 steps are used for
annealing at 300 K while the remaining 40,000 steps follow a
strain rate of 5×108 s−1. In total, the nanocrystalline copper
is deformed by 10%. We adopt the common neighbor analysis
scheme [73], [74] to analyze the structure of nanocrystalline
copper. As shown in Fig. 8, the atoms in the grains have a face-
centerd cubic (fcc) local structure, which is the ground-state
structure of copper. After the deformation, stacking faults of
copper are identified by monitoring the formation of hexagonal

close-packed (hcp) structures. This example demonstrates the
dynamical tensile deformation process of a nanocrystalline
copper system. We leave detailed analyses to a future paper
that is dedicated to the physics of this process.

Applications enabled by the multi-GPU implementation of
the DeePMD-kit code can go far beyond copper and water
systems reported here, and can span a wide spectrum of
complex materials and molecules. This first stems from the
wide applicability of the DP method to problems in different
fields. Being a general model based on both machine learning
and physics, DP inherits the accuracy from first-principles
methods and puts on an equal footing the description of atomic
interaction in the cases of bio-molecules, insulators, metals,
and semi-metals, etc. This ability of DP is further boosted by
this work, which takes advantage of the state-of-the-art super-
computers, and makes simulation of hundreds of millions of
atoms with ab initio accuracy a routine procedure. In the short
term, this will directly benefit the study of many problems of
practical interests, such as complex chemical reactions [18],
[19], electrochemical cells [20], nanocrystalline materials [21],
[22], [75], irradiation damages [23], and dynamic fracture
and crack propagation [24], [25], etc., for which a very high
accuracy and a system size of thousands to hundreds of
millions of atoms, or even larger, is often required. In a longer
term, this could be used to problems of significant practical
interest, such as drug design and materials design.

B. Outlook in the era of Exascale computing

The past decade has witnessed the rapid growth of the many-
core architecture due to its superior performance in FLOPS
per watt and memory bandwidth. This essentially requires a
revisit of the scientific applications and a rethinking of the
optimal data layout and MPI communication at an algorithmic
level, rather than simply offloading computational intensive
tasks. In this paper, the critical data layout in DeePMD is
redesigned to increase the task granularity, then the entire
DeePMD-kit code is parallelized and optimized to improve its
scalability and efficiency on the GPU supercomputer Summit.
The optimization strategy presented in this paper can also be
applied to other many-core architectures. For example, it can
be easily converted to the Heterogeneous-compute Interface
for Portability (HIP) programming model to run on the next
exascale supercomputer Frontier, which will be based on AMD
GPUs.

In the pursuit of greater computational power, the compu-
tational power v.s. memory bandwidth ratio (or FLOP/Byte
ratio in short) rises rapidly, especially when specialized half-
precision hardware is involved. For example, the double-
precision FLOP/Byte ratio on V100 GPU is 7.8, while the half-
precision FLOP/Byte ratio is 133.3 (120TFLOPS/900GB/s=
133.3 FLOP/B), which means the 120 TFLOPS half-precision
computing power can only be achieved when 133 operations
are executed after a single byte is loaded from global memory
into the GPU. Such a high ratio makes it difficult to utilize the
full computing power of the Tensor Cores with small matrix
size, which is exactly in the case of optimized DeePMD-kit



— the MIX-16 version is mainly bounded by the GPU mem-
ory bandwidth. This implies that future improvement of the
FLOP/Byte ratio for the many-core architecture, especially for
the half-precision specialized hardware, can benefit HPC+AI
applications such as DeePMD-kit. We notice that on the newly
announced Fugaku supercomputer, the Fujitsu A64FX CPU
has a FLOP/Byte ratio of 13.2 (13.51TFLOPS/1024GB/s=
13.2FLOP/Byte) in the boost mode. Therefore, in theory, the
optimized DeePMD-kit should achieve better performance on
the Fugaku supercomputer. In addition, the computationally
feasible system size of the optimized DeePMD-kit can be
increased on future many-core architecture if the capacity of
the high bandwidth memory is expanded.

Based on the scaling shown in Fig. 6, we see no intrinsic
obstacles to scaling our code to run on the exascale super-
computer for systems with billions of atoms. Compared to
the traditional numerical methods such as density functional
theory, one advantage of Deep Potential lies in its resilience to
numerical noise, which could significantly reduce the amount
of work needed for fault-tolerant treatments. Therefore, meth-
ods like DeePMD can be ideal candidates in the upcoming
era of exascale computing. On the other hand, improvements
on the hardware, especially reducing the latency of GPU and
network, are required to achieve better strong scaling for the
DeePMD-kit on the next generation supercomputers.
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