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Abstract

We present the GPU version of DeePMD-kit, which, upon training a deep
neural network model using ab initio data, can drive extremely large-scale
molecular dynamics (MD) simulation with ab initio accuracy. Our tests
show that for a water system of 12, 582, 912 atoms, the GPU version can be
7 times faster than the CPU version under the same power consumption.
The code can scale up to the entire Summit supercomputer. For a copper
system of 113, 246, 208 atoms, the code can perform one nanosecond MD
simulation per day, reaching a peak performance of 86 PFLOPS (43% of
the peak). Such unprecedented ability to perform MD simulation with ab
initio accuracy opens up the possibility of studying many important issues
in materials and molecules, such as heterogeneous catalysis, electrochemical
cells, irradiation damage, crack propagation, and biochemical reactions.
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NEW VERSION PROGRAM SUMMARY

Program Title: DeePMD-kit
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: https://doi.org/10.5281/zenodo.3961106
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: LGPL
Programming language: C++/Python/CUDA
Supplementary material:
Journal reference of previous version:* http://dx.doi.org/10.17632/hvfh9yvncf.1
Does the new version supersede the previous version?:* Yes.
Reasons for the new version:* Parallelize and optimize the DeePMD-kit for mod-
ern high performance computers.
Summary of revisions:* The optimized DeePMD-kit is capable of computing 100
million atoms molecular dynamics with ab initio accuracy, achieving 86 PFLOPS
in double precision.
Nature of problem(approx. 50-250 words): Modeling the many-body atomic inter-
actions by deep neural network models. Running molecular dynamics simulations
with the models.
Solution method(approx. 50-250 words): The Deep Potential for Molecular Dy-
namics (DeePMD) method is implemented based on the deep learning framework
TensorFlow. Standard and customized TensorFlow operators are optimized for
GPU. Massively parallel molecular dynamics simulations with DeePMD models
on high performance computers are supported in the new version.
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”DeePMD-kit: A deep learning package for many-body potential energy rep-
resentation and molecular dynamics.” Computer Physics Communications 228
(2018): 178-184.

* Items marked with an asterisk are only required for new versions of programs

previously published in the CPC Program Library.
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1. Introduction

In recent years, there has been a surge of interest in using ab initio simu-
lation tools for a microscopic understanding of various macroscopic phenom-
ena in many different disciplines, such as chemistry, biology, and materials
science. One of the most powerful tools has been the ab initio molecular
dynamics (AIMD) scheme [1]: By generating on-the-fly the potential energy
surface (PES) and the interatomic forces from first-principles density func-
tional theory (DFT) [2, 3] during molecular dynamics (MD) simulations, it
is possible to obtain an accurate description of the dynamic behavior of the
system under study at the atomic level. However, due to the complexity as-
sociated with DFT, the spatial and temporal scales accessible by AIMD have
been limited. Most routine AIMD calculations can only deal with systems
with hundreds of atoms on the time scale of picoseconds. Although many
linear-scaling DFT methods have been developed [4, 5] and some of them have
been implemented on high performance computing (HPC) architectures for
large-scale atomic simulation with tens of thousands of atoms [6, 7], they are
mostly limited to insulating systems with relatively large band gaps.

For many problems of practical interests, such as heterogeneous catalysis,
electrochemical cells, irradiation damage, crack propagation in brittle mate-
rials, and biochemical reactions, etc., a system size of thousands to millions
of atoms, or even larger, is often required. In these cases, one usually has
to resort to empirical force fields (EFFs), currently the main driving force of
large-scale MD. In the past two decades, tremendous efforts have been made
to develop parallel algorithms and softwares for EFF-based MD (EFFMD)
on general purpose HPC machines [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24]. Representative examples include the optimization
of the long-range electrostatic interaction [25, 26, 27, 28] and adapted MD
algorithms for accelerators like GPU [29, 30, 26, 31] and FPGA [32, 33].
Besides general-purpose HPCs, there have also been constant attempts to
build special-purpose hardware to boost the performance of MD simula-
tion [34, 35, 36, 37, 38]. These attempts have made it possible to perform
EFFMD for systems up to a spatial scale of sub-millimeters (twenty trillion
atoms) [22] or a temporal scale of up to milliseconds [38]. Unfortunately,
the practical significance of these efforts is hindered by the limitation of the
accuracy and transferability of the EFFs. For example, it has been hard,
if not impossible, to develop accurate and general-purpose EFF models for
multi-element alloys.
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Recent development of machine learning (ML) methods has brought new
hope to addressing this problem and there have been a flurry of activities
on ML-based models of the PES [39, 40, 41, 42, 43, 44, 45, 46, 47]. Despite
the growing importance of the ML-based MD (MLMD), publicly available
softwares are still rare in comparison to the EFFMD. The few existing ones
are mainly designed for MLMD running on desktop GPU workstations or on
CPU-only clusters [48, 49, 50, 51, 52, 53, 54]. For example, Lee et. al. re-
ported an implementation of the Behler-Parrinello neural network potential
interfaced with LAMMPS package. In a SiO2 system with 13,500 atoms, it
scaled up to 80 CPU cores on a cluster with Intel Xeon E5-2650v2 CPUs [52].
Singraber et. al. implemented the Behler-Parrinello neural network potential
as a library and interfaced it with LAMMPS for molecular dynamics simu-
lation. By using a water system with 2,880 molecules (8,640 atoms) as the
test case, it was demonstrated that the implementation scaled to 512 CPU
cores on a cluster with Intel Xeon Gold 6138 CPUs [53]. To the best of our
knowledge, no attempt has been made to implement and optimize MLMD to
fully utilize the computational resources of modern heterogeneous supercom-
puters like Summit. As a consequence, although in principle MLMD makes
it possible to achieve AIMD accuracy with EFFMD efficiency, this has not
been realized in practice.

Among the various ML models proposed in the past few years, the Deep
Potential (DP) scheme [45, 46, 47] stands out as an end-to-end way of con-
structing accurate and robust PES models for a wide variety of systems.
This was made possible due to the smooth symmetry-preserving embed-
ding sub-net in DP (in addition to the fitting net), as well as the adap-
tive data generating scheme (in the framework of concurrent learning [55])
Deep Potential Generator (DP-GEN) [56]. DP-based molecular dynamics
(DeePMD) can reach the accuracy of AIMD while reducing its cost by sev-
eral orders of magnitude. Generalizations of the DP scheme have also made
it possible to represent the free energy of coarse-grained particles [57] and
various electronic properties [58, 59, 60]. In addition, an open-source imple-
mentation of DeePMD, named DeePMD-kit [50], has attracted researchers
from various disciplines. DP models have been used to study problems like
first-order phase transitions [61], infrared spectroscopy and Raman spec-
troscopy [58, 59], nuclear quantum effects [62], and various phenomena in
chemistry [63, 64, 65] and materials sciences [66, 67, 68, 69].

Nevertheless, the performances of DeePMD-kit and other DeePMD-based
codes are limited by their sub-optimal implementation. Although the train-
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ing of DP models is rather efficient (typically less than one day on a single
GPU card for most systems), extensive optimizations are required for model
inference, namely to predict the energy and forces on-the-fly during an MD
run, and to truly boost AIMD to large system size and long time scale.

To perform large-scale MD simulations, DeePMD-kit interfaces with LAMMPS
and TensorFlow [70]. LAMMPS provides the basic infrastructure for MD,
while TensorFlow provides a flexible toolbox for the deep learning part of
DeePMD. In each MD step, DeePMD-kit retrieves atomic coordinates from
LAMMPS that maintains the atomic information and the spatial partitioning
of the system. Then environment matrices that describe the relative posi-
tions of atoms are computed from the coordinates. In this step, the memory
is accessed in a random order, which cannot be efficiently implemented by
standard TensorFlow operators, so it is implemented by DeePMD-kit as a
customized TensorFlow operator. Next, the environment matrices are con-
verted to descriptors that describe the neighboring environment of atoms,
and the descriptors are passed to a standard deep neural network (DNN) to
produce atomic energies. This step is implemented by standard TensorFlow
operators. Finally, the atomic energies and forces (obtained by back prop-
agation) are returned to LAMMPS to update the atomic coordinates and
momenta by numerical schemes.

The Summit supercomputer, which has a peak performance of 200 PFLOPS
(Peta floating point operations per second), provides us with an unprece-
dented opportunity to speedup DeePMD. However, the original DeePMD-kit
is not suitable for the heterogeneous architecture of Summit for the following
reasons: (1) The environment matrix is only implemented on CPUs, this
becomes the computational bottleneck when the descriptors and atomic en-
ergies are computed on GPUs. (2) Although standard TensorFlow operators
support GPU computation, the original DeePMD-kit can not assign multiple
GPUs to multiple MPI processes in a massively parallel environment, thus
only single GPU serial computation or multiple CPUs parallel computation
are feasible. (3) The sizes of the DNNs in DP are relatively small, and the
efficiency of the standard TensorFlow computational graph is relatively low.

To fully harness the power of Summit and future supercomputers, we
need to address the following questions: (1) What is the best parallelization
scheme for DeePMD-kit on a heterogeneous supercomputer like Summit? (2)
How can we improve the efficiency of DeePMD-kit on a GPU supercomputer
for both customized and standard TensorFlow operators? (3) What is the
scaling bottleneck of DeePMD-kit and how can we further improve its effi-
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ciency on architectures of future supercomputers? Furthermore, we would
also like to understand: (1) What is the limit of DeePMD-kit on Summit
both in terms of system size and computational speed (time-to-solution)?
(2) What is the maximal achievable speedup factor of the GPU version of
DeePMD-kit versus the CPU version by using the same number of nodes or
the same power consumption?

The main contributions of this paper are:

• We find that DeePMD can use the same data distribution scheme of
EFFMD, and parallelization is highly scalable on heterogeneous super-
computers.

• By carefully optimizing the CUDA customized TensorFlow operators
and re-constructing the architecture of the standard TensorFlow oper-
ators, DeePMD-kit can reach 43% peak performance (86 PFLOPS) on
Summit.

• By carefully analysing the scaling of DeePMD-kit, we identify the la-
tency of both the GPU and network as the bottleneck of the current
heterogeneous platform, which requires future improvements to push
the limit of scales and applications that DeePMD-kit can handle.

• Weak scaling shows that the GPU version of DeePMD-kit can scale up
to the entire Summit supercomputer, on a copper system with 113 mil-
lion atoms. The strong scaling of a water system shows that DeePMD-
kit can reach 110 MD steps per second for a 4 million molecular water
system with ab initio accuracy.

• Our test results show that the GPU DeePMD-kit can be 39 times faster
compared to the CPU version when using the same number of nodes,
and 7 times faster under the same power consumption on Summit.

The rest of this paper is organized as follows: The Deep Potential al-
gorithm is introduced in Section 2, with implementation details provided in
Section 3. The physical system and testing platform are presented in Sec-
tions 4 and 5, respectively. Results are discussed in Section 6, followed by a
performance analysis in Section 7. Conclusions are drawn in Section 8.
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2. The Deep Potential model

The central quantity of an MD simulation is the PES E, a function of the
atomic coordinates (r1, . . . rN) ∈ R3N . The DP model expresses E as a sum
of atomic contributions, i.e., E =

∑
iEi. The contribution Ei from the atom

i depends only onRi, the local environment of i: Ri = {rij : j ∈ L(i)}, where
rij = rj − ri. Here the neighbor index set L(i) is defined by {j : |rij| ≤ rc},
and rc is a predefined cutoff radius. In the DP model, Ri is first mapped via
an embedding net onto a symmetry-preserving descriptor D, and then D is
mapped via a fitting network N to give Ei, i.e.,

Ei = N (D(Ri)). (1)

Here the fitting net N is chosen to be a fully connected DNN with l hidden
layers:

N (x) = Lfl ◦ · · · ◦ Lf1(x), (2)

where ◦ denotes the function composition. Within each hidden layer, a skip
connection between the input and the output is used,

Lfk(x) = x+ tanh(x ·W f
k + bfk), (3)

with the weight W f
k being a square matrix and the bias bfk being a vector

with the same size as the input x. The activation function tanh is applied
component-wise.

The descriptor D, which is required to preserve the translational, rota-
tional and permutational symmetries, has the form

D(Ri) = (G<i )T R̃i(R̃i)
TGi, (4)

where R̃i ∈ RNm×4 is the environment matrix, and Nm is the largest number
of neighbors for all the atoms. Each row of the environment matrix is a four
dimensional vector:

s(rij)×
(

1, xij/|rij|, yij/|rij|, zij/|rij|
)
, (5)

where s(rij) = w(|rij|)/|rij| and w(|rij|) is a gating function that decays
smoothly from 1 to 0 at |rij| = rc. The gating function ensures the smooth-
ness of the environment matrix. (xij, yij, zij) are the Cartesian coordinates of
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rij. If the number of neighbors of atom i is less than Nm, the empty entries
of R̃i will be filled by zeros. Gi ∈ RNm×M is called the embedding matrix,
with each row being an M dimensional vector

(
G1(s(rij)), . . . , GM(s(rij))

)
. (6)

Here for each neighbor j, the input scalar s(rij) is mapped to the output M
dimensional vector G = (G1, . . . , GM) via the so-called embedding net G, a
DNN with the form

G(x) = Lem ◦ · · · ◦ Le1 ◦ Le0(x). (7)

The first hidden layer is a standard feed forward network taking a scalar as
input and outputting a vector of size s1:

Le0(x) = tanh(x ·W e
0 + be0), (8)

where W e
0 ∈ Rs1 and be0 ∈ R denote the weight and bias, respectively. The

rest of the hidden layers are expressed as

Lek(x) = (x, x) + tanh(x ·W e
k + bek). (9)

Here the output size is twice of the input size, i.e., sk = 2sk−1. The weight
is a matrix of size sk−1 × sk and the bias is a vector of size sk. (x, x) ∈ Rsk

denotes the concatenation of two x ∈ Rsk−1 . The only restriction imposed
on the sizes of hidden layers is that the output size of the final layer should
be identical to M , i.e., sm = M . In Eq. (4), the matrix G<i ∈ RNm×M<

with
M< < M is a sub-matrix of Gi formed by taking the first M< columns of Gi.

Remark 1. The DP formulation (1) can be easily generalized to multi-
component (with atoms of multiple chemical species) systems. In this case,
a fitting net N is built for each chemical species in the system, i.e., Ei =
Nαi

(D(Ri)), where αi denotes the chemical species of the atom indexed with
i. The chemical species of the neighbors of the atom i are encoded in the
descriptor (4) by separate embedding nets built for all possible combinations
of the chemical species of two neighboring atoms, i.e., Gαi,αj(s(rij)). For
example, for a system with 3 chemical species, 3 fitting nets and 9 embedding
nets will be constructed.

Remark 2. The force on atom i is defined as the negative gradient of the
total energy with respect to ri:

Fi = −∇riE = −
∑

j

∇riEj, (10)
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Figure 1: Data distribution and workflow of the DeePMD-kit. (a) Spatial subdivision
of a system and the associated allocation of computational resources. Each sub-region
is represented by a square. (b) The ghost region (red) for one sub-region (green). The
open particles in the big circle with radius rc are the neighbors of the solid particle.
The width of the ghost region should be equal to or larger than rc. (c) The single-
atom DP workflow. The green step, i.e., the environment matrix R̃i, is implemented
by a customized TensorFlow operator, while the red steps are implemented by standard
TensorFlow operators (see the text for details).

where the force components ∇riEj are calculated by the back propagation.
Remark 3. For one evaluation of the DP model, the fitting net is evaluated

for each atom, so the computational cost is of O(N). The embedding net is
evaluated for each pair of neighbors, so the computational cost is of O(N ×
Nm). The value of Nm depends on the density of the system and rc. Usually
Nm is of the order 100 ∼ 1000. Therefore, the evaluation of the embedding
net is roughly two to three orders of magnitude more expensive than the
fitting net.

3. Implementation

3.1. Parallelization

The DeePMD-kit takes advantage of the LAMMPS software package [13]
by replacing the short-range EFF with the energy and forces derived from
DP. Therefore, the data structure and parallelization strategy of LAMMPS
are inherited by the DeePMD-kit code. More specifically, we provide a new
pair style named deepmd by implementing DP as a new derived class of
the base class Pair. It is worth noting that although DP is invoked by a
”pair style”, it is a multi-body interaction, which can be easily seen from
the construction of DP in Sec. 2.

A two dimensional illustration of the data distribution in DeePMD-kit is
shown in Fig. 1 (a). The physical system is divided into sub-regions, and
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then distributed among different computing units. For each sub-region, an
extra ghost region of size larger than or equal to rc is needed to search neigh-
bors of atoms, as shown in Fig. 1 (b). In each MD step, the single-atom
DP workflow (Fig. 1 (c)) is conducted for each atom: First, the neighbor
list is updated from the sub-region on the current computing unit, then the
environment matrix R̃i is computed from the neighbor list via a customized
TensorFlow operator; Next, the atomic energy and force increments are eval-
uated through the DP model to update the atoms in the sub-region; Finally,
the force increments in the ghost region are communicated among adjacent
MPI processes, and global properties, such as energy, are communicated
globally by MPI Allreduce operations. All of the positions and velocities of
atoms are updated using the resulting forces according to a certain numerical
scheme.

Remark 4. The GPU version of LAMMPS takes advantage of the identity
∇riEj = −∇rjEi, which holds for most of the EFFs, so that the force of
atom i is given by Fi =

∑
j∇rjEi according to Eq. (10). Therefore, all

components of Fi are computed on the computing unit that holds atom i,
and the communications of force components are avoided. By contrast, the
relation ∇riEj = −∇rjEi dose not hold for DP as i 6= j, so we have to
fallback to the CPU version of LAMMPS that is able to transfer back the
component ∇riEj computed on a non-native computing unit holding atom j
if it is in the ghost region.

3.2. GPU Implementation and optimization

3.2.1. Naive GPU implementation

The implementation of the DP model in DeePMD-kit is based on Ten-
sorFlow, a popular open-source software library for machine learning appli-
cations with GPU support [70]. One common practice is to link the GPU
supported TensorFlow to build the executable, so all DP operations imple-
mented by standard TensorFlow operators (red boxes in Fig. 1(c)) are accel-
erated by GPU without additional effort. The testing results indicate that
an overall 26.53 times of speedup can be achieved using a single NVIDIA
V100 GPU compared to a single Intel Xeon Gold 6132 CPU core for a typ-
ical water system consisted of 12,288 atoms (4,096 molecules). We remark
that throughout this section, the naive GPU implementation serves as the
baseline of optimization. The same water system is used for benchmarking
purposes, and one MPI process using one thread is bound to a single GPU.
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Figure 2: Schematic plot of the computation of the environment matrix R̃i. (a) The first
step: forming and formatting the neighbor list. The yellow squares stand for the neighbors
of type 0, and the purple squares stand for the neighbors of type 1. The neighbors are first
sorted according to their types (as shown in the figure), and then sorted according to their
distance and their original atomic indices (not shown in the figure). The blank squares
represent the padded positions in the neighbor list. (b) The second step: computing the
environment matrix by using the formatted neighbor list, using the example of computing
R̃0.

3.2.2. Customized TensorFlow operators

The customized TensorFlow operator for the environment matrix R̃i is
denoted by ”Environment” and dominates the computational cost after link-
ing the GPU TensorFlow library, because unlike the standard TensorFlow
operators that support GPU, it only supports CPU in the original version of
DeePMD-kit. The operator Environment includes two steps, formatting the
neighbor list and computing the environment matrix by using the formatted
neighbor list.

The algorithm for formatting the neighbor list is shown in Alg. 1. The
arbitrary ordered neighbor list of atom i shown in Fig. 2 (a) is sorted first
based on the type of neighboring atoms, and then on the atomic distances
rij. In the case where two neighbors are of the same type and distance,
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Algorithm 1 Formatting the neighbor list

Input: Atomic position {ri}, the corresponding neighbor list L(i, j)
Output: Formatted neighbor list L̃(i, j)
1: for each i ∈ [0, Nl) do
2: for each k ∈ [0, L(i).size) do
3: j = L(i, k)
4: rij = rj − ri, |rij| = √rij · rij
5: S(i, k, 0) = α(j), S(i, k, 1) = |rij|, S(i, k, 2) = j
6: end for
7: Sort the second dim with the third dim as key S → S∗

8: Pad the second dim S∗ → S∗∗

9: L̃(i, :) = S∗∗(i, :, 2)
10: end for

the neighbor with a smaller atomic index is placed before the neighbor with
a larger atomic index. The neighbors with different types in the neighbor
list are then padded, so that they are aligned to the maximal number of
neighbors of that type, as shown in Fig. 2 (a). The reason for this operation
is the following: in the computation of the embedding matrix, the neighbors
of atoms i are scanned over, and each row of the embedding matrix Gi is
computed by passing s(rij) (the first element of the corresponding row of
R̃i) to the embedding net Gαi,αj , which introduces a conditional branching
according to the type of atom j. Sorting and padding of the neighbor list
avoids this unfavorable branching. In our GPU code, the construction of
the neighbor list is still on CPU due to the problem of GPU LAMMPS for
DP, as explained by Remark 4 of Sec. 3.1. In practice, the neighbor list is
usually updated every 10 to 50 steps in an MD simulation, so our current
implementation results in a satisfactory performance.

In order to efficiently format the neighbor list on the GPU, we perform
the following optimization steps:

1. Naive CUDA customized kernels. The first step of optimization is
to write a single CUDA customized kernel to accelerate the computation
of Alg. 1. In this step, the first for loop (line 1) is unrolled with CUDA
blocks and threads. Each CUDA thread is then responsible for calculating
and sorting the neighbor list of a particular atom i.

2. Converting array of structures (AoS) to structure of arrays (SoA). A
single element of the intermediate neighbor list S is expressed by a structure
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(see Alg. 1). For example the kth neighbor of the ith atom S(i, k) is a
structure of three elements (α(j), |rij|, j), where α(j) and j are integers and
|rij| is a floating point number. Thus the corresponding GPU memory is
not coalesced during the sorting procedure. One way of improving the GPU
performance is to store the neighbor list as SoA instead of AoS. The SoA can
improve the memory coalescing significantly, thus improving the performance
of the CUDA kernel.

3. Unrolling of two for loops. Two CUDA customized kernels are used
to implement Alg. 1 in this step. The first kernel is used to construct the
intermediate neighbor list S (line 1-6). In this implementation, the first and
the second for loops are unrolled with CUDA blocks and threads respectively
to further exploit the computing power of V100 GPU. Then the intermediate
neighbor list is sorted and padded using a second kernel.

4. Compressing elements of the neighbor list to a 64 bit integer. The
NVIDIA CUB library provides state-of-the-art and reusable software compo-
nents for every layer of the CUDA programming model, including block-wide
sorting. To efficiently use the CUB library, we compress S(i, k) into an un-
signed long long number with the following equation:

S̃(i, k) = α(j)× 1015 + b|rij| × 108c × 105 + j (11)

The 19 decimals of an unsigned long long integer is divided into 3 parts to
store the neighbor list information: 4 decimal are used to store the atomic
type of the neighbor atom (α(j)), 10 decimals are used to store the distance
of atom i and its neighbor atom (|rij|), 5 decimals are used to store the
atomic index of the neighbor atom (j). The range of all the three parts are
carefully chosen to fulfill the restrictions that the total number of atom types
is smaller than 1843, the cut-off radius is smaller than 100 Å, and the number
of neighbors is smaller than 100,000. These restrictions are rarely violated in
typical MD simulations. The data compression is carried out before sorting,
and a decompression procedure is needed afterwards. Both the compression
and decompression are accelerated via CUDA customized kernels, and the
corresponding computational time is negligible. We find that the compression
reduces the total number of comparisons by half during the sorting procedure
without deteriorating the accuracy of the result.

Fig. 3 (a) shows the reduction of wall clock time associated with each
stage of optimization. The baseline version is implemented on CPU, and
tested with both single CPU core and single Xeon Gold 6132 socket with 14
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cores by setting OpenMP threads to 14. We find that after all optimizations,
the neighbor list formatting is accelerated by 141 times comparing to single
CPU core and 12.25 times comparing to 14 CPU cores. We remark that
when using both sockets with OpenMP threads set to 28, the performance
is only slightly better than single socket due to the memory affinity.

Algorithm 2 Computing the environment matrix R̃
Input: Atomic position {ri}, formatted neighbor list L̃(i)
Output: Environment matrix R̃i

1: for each i ∈ [0, Nl] do
2: for each k ∈ [0, L̃(i).size) do
3: j = L̃(i, k)
4: if j is not a padded neighbor then
5: rij = rj − ri, |rij| = √rij · rij
6: R̃(i, k) = s(rij)

(
1, xij/|rij|, yij/|rij|, zij/|rij|

)

7: else
8: R̃(i, k) = (0, 0, 0, 0)
9: end if

10: end for
11: end for

The algorithm of the second step of the operator Environment, comput-
ing the environment matrix, is shown in Alg. 2 and graphically illustrated by
Fig. 2 (b). The formatted neighbor list is taken as input, and the correspond-
ing environment matrix is built based on line 6 in Alg. 2. It is noted that
the padded neighbors are skipped in the computation, and the corresponding
places of the environment matrix are filled with zeros.

The optimization for the computation of the environment matrix follows
the optimization steps 3 of formatting the neighbor list. The for loops in
Alg. 2 (line 1 and 2) are unrolled with CUDA blocks and threads. Each
thread only works on a specific i, j, k to fully exploit the computing power
of V100 GPU. Two extra TensorFlow customized operators, ProdVirial and
ProdForce, are also accelerated with the same fashion. These operators are
used to calculate the force and virial outputs after the executions of embed-
ding net and fitting net.

Fig. 3 (b) shows the wall clock time of the customized TensorFlow opera-
tors. The testing results show that our GPU implementation achieves 120, 35
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Figure 3: (a) Wall clock time versus different levels of GPU optimization for formatting
the neighbor list, and (b) Performance of customized TensorFlow operators for a water
system of 12,288 atoms. The customized TensorFlow operators of the baseline code is
implemented on the CPU. The wall clock time of the baseline is measured using both
single CPU core and single Xeon Gold 6132 socket (14 cores with OpenMP threads set to
14). The GPU time is measured on single NVIDIA V100 GPU.

and 16 times of speedup for the Environment, ProdVirial, ProdForce opera-
tors, respectively. We remark that operators ProdVirial and ProdForce are
not fully optimized in the OpenMP implementation in DeePMD-kit because
of the atomic addition, thus only sequential results of these two operators are
shown in Fig. 3 (b). It is noted that the time for GPU memory allocations
and the CPU-GPU memory copy operations are not included in the tests.
For the water system consisting of 12,288 atoms, the total execution time
of all three customized operators reduced from 363 to ∼6 ms, achieving a
speedup of 60 times. Since the customized operators take 76% of the total
time, the GPU version of DeePMD-kit gains a speedup of 4.0 compared to
the baseline implementation.

3.2.3. Optimization of the embedding net

The environment matrix is used to compute the embedding matrix and
assemble the descriptor, and finally the atomic energy contribution is com-
puted by the fitting net, which takes the descriptor as input. All these steps
are implemented by the standard TensorFlow execution graph. As discussed
in Remark 2 in Section 2, the computational cost of the fitting net is of
order O(Nm), while the cost of the embedding net is of order O(Nm × Nl),
where Nl being the number of atoms in the computing unit and Nm being the
maximal number of neighbors of an atom. After optimizing the customized
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Figure 4: Schematic plot of the execution graph of Eq. 9. (a) Implementation with the
standard TensorFlow operators. (b) Implementation with our optimized TensorFlow op-
erators.

TensorFlow operators, about 85% of the total execution time is spent on the
embedding net, while only 6% of the execution time is used in the fitting net
in our benchmark system. Therefore, in this section, we benchmark and op-
timize the performance of the embedding net. The embedding net (Eq. (7))
is composed of several hidden layers. Except for the very first layer (8), the
successive layers (9) output a vector that is twice as large as the input vector.
Most of the computational cost is spend on the successive layers (Eq. (9))
rather than the first layer (Eq. (8)). Therefore, we focus our attention on
the successive layers.

The execution graph of Eq. (9) with standard TensorFlow operators is
presented in Fig. 4 (a). The TensorFlow operators such as the MATMUL,
component-wise SUM, TANH and CONCAT are executed to perform the
operations of matrix-matrix multiplication, summation, activation function,
and concatenation, respectively. MATMUL and TANH are two of the most
computationally intensive operators, and they can reach 72% and 16% of the
peak on the GPU, respectively. Other operators such as CONCAT and SUM
are bandwidth intensive with little floating point operations. Although link-
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ing to the GPU supported TensorFlow library provides considerable speedup
compared to the CPU code, as shown in Section 3.2.1, our profiling results
show that the total computational time is still dominated by those band-
width intensive operators. For example, the computational time of CON-
CAT and SUM operators contributes 43% of the total. Thus we identify
these bandwidth-intensive operators as the ones that we make the greatest
effort to optimize.

First, we notice that the summation and matrix-matrix multiplication are
treated as two separated operators for evaluating x ·W +b in the TensorFlow
execution graph, as shown in Fig. 4 (a). The MATMUL operator is invoked
to calculate x ·W , where x is a matrix of size 376, 832×50 (oxygen-hydrogen
embedding) and w is the weight matrix of size 50 × 100 in the benchmark
system. Next, the SUM operator is called to add the bias b to the resulting
matrix x ·W . As shown in Fig. 4 (b), the MATMUL and SUM operators can
be replaced by a single CUBLAS GEMM call (C = αA × B + βC), which
has both matrix-matrix multiplication and summation, thereby avoiding the
corresponding SUM operator in the optimized implementation. It is noted
that b is a vector, and it is converted to a matrix format by multiplying
with a transpose of the vector one. The wall clock for performing the SUM
and MATMUL operators is reduced by 28% after merging them into a single
CUBLAS GEMM call.

Next, we move on to the optimization of the CONCAT operator shown
in Fig. 4 (a). The CONCAT operator is performed to concatenate two xs
to form (x, x) in Eq. (9). The concatenation result, together with the result
matrix of TANH operator, are summed up to produce the output of the
embedding net. In the standard TensorFlow execution graph, the CONCAT
operator is implemented via the EIGEN library, which is a C++ template
library for linear algebra. In our optimized version, we replace the CONCAT
operator with a matrix-matrix multiplication, so that the following SUM
operator (with the result of TANH) can be merged into one GEMM operator:

(x, x) + tanh(· · · )→ x× (I, I) + tanh(· · · )︸ ︷︷ ︸
GEMM

. (12)

It is noted that, in terms of performance, the matrix-matrix multiplication
is marginally better than the implementation of CONCAT by EIGEN, and
the main benefit comes from the removal of the SUM operator. The wall
clock time of the CONCAT and SUM operators is reduced by 55% after the
optimization.
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Last but not the least, we optimize the TANHGrad operator, which per-
forms the derivation of tanh(x) in the backward propagation of the embed-
ding net. It is noted that Fig. 4 only shows the forward propagation of the
embedding net, and the TANHGrad operator is not included. However, in
each MD step, both forward and backward propagation of the embedding
net are executed. Noticing that the derivative of tanh(x) is also a func-
tion of tanh(x), i.e., d

dx
tanh(x) = 1 − tanh2(x), we merge the TANH and

TANHGrad operators by implementing both functions in the same CUDA
customized kernel. Our testing results show that 37% of the execution time
is saved for the TANH and TANHGrad operators after optimization.

With all the optimizations above, an overall speedup factor of 1.18 is
achieved compared to the results in Section 3.2.2, and the cost of the matrix-
matrix multiplication changes from 30% to 61% of the total execution time
in the benchmark system.

3.2.4. GPU memory accommodation

The memory footprint of the GPU version of DeePMD-kit sets the limit
of the system size, since each NVIDIA V100 GPU on the Summit supercom-
puter only has 16 GB memory. In the GPU code, the most memory demand-
ing part is the embedding matrix G. The number of floating point numbers
to store one embedding matrix is approximately Nl ×Nm ×M . Here Nl is
the number of atoms residing on the GPU, Nm is the maximal number of
neighbors, and M is the width of the output layer of the embedding net.
Therefore, the GPU memory requirement is not only restricted by the size
of the network (M), but also related to the number of neighbors included in
the neighbor list. In the execution, three layers of embedding net are used,
and the output matrix size is twice of the input matrix. In the last layer,
the sizes of both the output matrix and its derivative are Nl ×Nm ×M . An
extra matrix of size Nl ×Nm ×M is used to perform the concatenation op-
eration. Therefore, a total of 4.5 copies of the embedding matrix are needed
in the DeePMD-kit calculations as the equation shown below:

4.5×Nl ×Nm ×M × sizeof(data type) (13)

For a typical system, such as the water and copper systems that will be
discussed later, the memory requirement grows linearly with the number of
atoms. Note that Nm is usually of the order of a hundred, and M is usually
100 in practice. For example, if we take Nl = 25, 000, Nm = 138, M = 100
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Figure 5: Schematic illustration of two systems, water and copper, tested in this study.
Shown in the figure are the system sizes accessible on different machines using different
methods. (a) Sizes accessible by a typical AIMD simulation on HPC; (b) Sizes accessible
by a typical DeePMD simulation with a single GPU; (c) Sizes accessible by the current
study, the simulations using 27,360 GPUs on summit.

and data type = double, the memory usage of G reaches 12.42 GB. This
estimate can be verified by the numerical results in Section 6.

4. The physical system

As shown in Fig. 5, we use two representative examples, water and copper,
to investigate the performance of the GPU DeePMD-kit software package.
Water, despite its simple molecular structure, has an unmatched complexity
in the condensed (liquid) phase, as a result of the delicate balance between
weak non-covalent intermolecular interactions, e.g. the hydrogen bond net-
work and van der Waals dispersion, thermal (entropic) effects, and nuclear
quantum effects. Copper represents an important and yet relatively simple
metallic system, well suited as a benchmark. The training data of the wa-
ter and copper systems are describe in Refs. [46, 47], and [55], respectively.
The DP models for both systems share almost the same architecture: sizes
of the embedding and fitting nets are 25 × 50 × 100 and 240 × 240 × 240,
respectively. The cut-off radii of water and copper systems are 6 Å and 8 Å,

19

Jo
ur

na
l P

re
-p

ro
of



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof
respectively, and the maximal numbers of neighbors are 138 and 500, respec-
tively. Extensive benchmarks and theoretical studies have been conducted
using DeePMD-kit, thus the accuracy of the model is reasonably assured. As
a result, we can focus on the computational performance of the MD simula-
tions.

The strong scaling of GPU DeePMD-kit is tested using the water system
composed of 12,582,912 atoms (4,194,304 water molecules), while the weak
scaling is investigated using the copper system with 4,139 atoms per GPU
card. The configuration of the water system is made by replicating a well
equilibrated liquid water system of 192 atoms for 64 × 32 × 32 times. The
configurations of the copper system are generated as perfect face-centered-
cubic (FCC) lattice with the lattice constant of 3.634 Å. The FCC unit cell
is replicated by 384× 384× 192 times to generate the largest copper system
(113,246,208 atoms) tested in this work. The MD equations are numerically
integrated by the Velocity-Verlet scheme for 500 steps (the energy and forces
are evaluated for 501 times) at time-steps of 0.5 fs and 1.0 fs, respectively.
The velocities of the atoms are randomly initialized subjected to the Boltz-
mann distribution at 330 K. The neighbor list with a 2 Å buffer region is
updated every 50 time steps. The thermodynamic data including the kinetic
energy, potential energy, temperature, pressure are collected and recorded in
every 20 time steps.

5. Machine configuration

All numerical tests are performed on the Summit supercomputer. Fig. 6
shows the architecture of one of the 4608 Summit computing nodes. Each
computing node consists of two identical groups, and each group has one IBM
POWER 9 socket and 3 NVIDIA Volta V100 GPUs connected via NVLink
with a bandwidth of 50 GB/s. Each POWER socket has 22 physical CPU
cores and share 256 GB DDR4 CPU main memory, and each V100 GPU
has its own 16 GB high bandwidth memory. The CPU bandwidth is 135
GB/s and GPU bandwidth is 900 GB/s. Each GPU has a theoretical peak
performance of 7 TFLOPS double precision operations. The two groups of
hardware are connected via X-Bus with a 64 GB/s bandwidth. The comput-
ing nodes are interconnected with a non-blocking fat-tree using a dual-rail
Mellanox EDR InfiniBand interconnect with a total bandwidth of 25 GB/s.

In this paper, we utilize the MPI+CUDA programming model. In all the
GPU tests, we use 6 MPI tasks per computing node (3 MPI tasks per socket
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Figure 6: The architecture of a computational node on Summit.

to fully take advantage of both CPU-GPU affinity and network adapter), and
each MPI task is bound to an individual GPU.

6. Numerical results

We compare the efficiency of the GPU version of DeePMD-kit to its CPU
version for the water system with 12,582,912 atoms. In the CPU calculations,
we utilize 42 MPIs per node to take full advantage of the Power 9 CPU
sockets. In Fig. 7, we measure the wall clock time per MD step by averaging
over 500 MD steps using both the CPU and GPU versions of DeePMD-kit.
All numerical experiments in this paper are performed using double precision
due to the high accuracy nature of the DeePMD-kit code.

First, we compare the performance of the GPU version of DeePMD-kit
to its CPU version with the same number of nodes. Note that the CPU
version can accommodate bigger physical systems because the size of the
CPU memory per node (512 GB) is 5 times bigger than that of the GPU (96
GB) as shown in Fig. 6. However, in terms of computational speed, testing
results indicate that the GPU version can be 39 times faster on 80 Summit
nodes (480 V100 NVIDIA GPUs against 3,360 POWER 9 CPU cores). The
speedup factor decreases to 16 when 4, 560 nodes are used (27,360 GPUs
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Figure 7: Average wall clock time (log-scaled) of single MD step for a water system with
12,582,912 atoms using both CPU and GPU versions of the DeePMD-kit.

against 191,520 CPU cores). The decrease of the speedup factor is due to
the fact that, as shown in Fig. 8, the CPU code has a better strong scaling
compared to the GPU code. It is also worth noting that the GPU version is
already much faster than the CPU version in the baseline implementation:
as shown in Fig. 7, the GPU baseline is 39 times faster than that of the CPU
code when using 3,360 CPU cores, and even faster than that of the CPU
code on 4,560 nodes. A detailed discussion of the scaling will be presented
in Section 7.

Next, we compare the GPU version to the CPU version under the same
power consumption, which is particularly important for the upcoming exas-
cale computing era. The power consumption of a single POWER 9 socket
is 190 watts, and 300 watts for a single NVIDIA V100 GPU. Hence, the
power consumption of a single CPU node with 2 POWER 9 CPU sockets is
380 watts, while the power consumption of each GPU node with 6 NIVIDA
V100 GPUs and 2 POWER 9 CPU sockets is 2,180 watts. 80 GPU nodes on
Summit has a power consumption of 174,400 watts, and that is equivalent to
the power consumption of 459 CPU nodes. In our tests, the GPU version of
the DeePMD-kit can be 7 times faster compared to the CPU version under
the same power consumption.

Fig. 8 demonstrates the strong scaling of a 12,582,912-atom water system
with respect to the number of nodes. For this system, we find our GPU
implementation can perfectly scale up to 640 nodes (3,840 GPUs) with 3,276
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Figure 8: Strong scaling results of simulating a 12,582,912-atom water system with both
CPU and GPU versions of the DeePMD-kit. The speedup is computed by setting the wall
clock time for 80 nodes as the baseline. It is noted that the GPU baseline is 39 times
faster compared to the CPU baseline as shown in Fig. 7.

atoms per GPU, and continue to scale up to the entire Summit supercom-
puter (4,560 nodes with 27,360 GPUs) with 455 atoms per GPU. We remark
that the strong scaling defines the speed of the MD simulation, i.e., the GPU
code can finish 110 MD steps per second for the water system of 12,582,912
atoms (4,194,304 molecules) when scaled to 4,560 Summit nodes. This deliv-
ers a capability of simulating the water system for 4.8 ns (with a time steps
of 0.5 fs) in one day.

Fig. 9 shows the weak scaling of the GPU version of the DeePMD-kit
for the copper systems. In the test, each MPI holds 4, 139 copper atoms
on average. The number of GPUs scales from 1, 710 to 15, 360, and the
corresponding number of atoms varies from 7, 077, 888 to 113, 246, 208, re-
spectively. Our tests show that the GPU version of DeePMD-kit can achieve
perfect scaling up to 4, 560 nodes. For the 113, 246, 208 systems with copper
atoms, we achieve 86.2 PFLOPS with 4, 560 Summit nodes, reaching 43% of
the peak performance of Summit. Each MD step only takes 83 milliseconds,
therefore enabling one nanosecond simulation in one day. A detailed discus-
sion on the floating point operations per second (FLOPS) will be presented
in the next section.
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Figure 9: Weak scaling of the copper system. Each GPU holds 4,139 atoms, and the
corresponding number of nodes scales from 285 to 4,560 throughout the tests.

References [46, 55] incorporate the ”baseline implementation” of DeePMD-
kit for MD simulations of water and copper systems, respectively, and have
demonstrated that the accuracy of DeePMD is comparable to that of the
AIMD simulation. In this work, the optimized GPU DeePMD-kit uses the
same floating point precision as the baseline implementation. The energy,
force and virial predictions are found to be consistent with the baseline im-
plementation up to 15, 10 and 13 digits, respectively. Therefore, the ab initio
accuracy of the GPU DeePMD-kit is warranted.

7. Performance Analysis

In this section, we provide a detailed analysis for the GPU version of
DeePMD-kit. The total number of floating point operations (FLOP) for the
12, 582, 912 atoms water system is 1.2483 × 1017. This is collected from the
CUDA profiling tool NVPROF. Although NVPROF only collects the FLOP
number on the GPU, in our implementation, the CPU is only in charge
of constructing and communicating the neighbor list and the corresponding
FLOP number only accounts for less than 1% of the total FLOP. The FLOPS
is calculated by (total FLOP)/(total time) and the corresponding efficiency is
calculated via FLOPS

(number of nodes)×43 TFLOPS
(each V100 GPU has 7.0 TFLOPS, and

each IBM Power 9 socket 515 GFLOPS, thus 7×6+0.515×2 = 43 TFLOPS
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Table 1: Wall clock time of the computationally intensive components for calculating 500
MD steps of 12,582,912 atoms of water system. All the testing results are in seconds.

#GPUs 480 960 1,920 3,840 7,680 15,360 27,360
Pair 88.4 45.03 24.08 13.13 7.66 5.46 4.25
Comm 1.18 0.59 0.31 0.13 0.11 0.16 0.16
Neighbour 2.39 1.18 0.57 0.28 0.13 0.06 0.03
Others 0.32 0.30 0.12 0.09 0.08 0.08 0.09
Total time 92.3 47.1 25.1 13.6 8.0 5.8 4.5
#CPU cores 3,360 6,720 13,440 26,880 53,760 107,520 191,520
Total Time 3632.8 1824.5 914.3 468.3 237.0 120.8 74.5

in total.). The efficiency of GPU version of DeePMD-kit is 38% when using
480 GPUs, and decreases to 13% when using 27, 360 GPUs for the water
system with 12, 582, 912 atoms, as shown in Fig. 10. On the other hand, the
weak scaling of the copper system shows the GPU version of DeePMD-kit
achieves a peak performance of 86 PFLOPS in double precision with 4, 560
nodes on Summit (43% of the peak) when calculating 113, 246, 208 copper
atoms.

We notice that the GPU version of DeePMD-kit shows better performance
(43% of the peak) on the copper system than the water system (36.8% of
the peak). This is mainly due to two reasons: first, the average numbers
of neighbors for each atom are 500 and 138 for the copper and water sys-
tems, respectively. Thus, the corresponding GEMM operation takes a larger
proportion in the copper system compared to that of the water system. Sec-
ondly, since copper is a mono-species atomic system, no extra sorting and
slicing in the computation of the embedding matrix is needed as discussed in
Section 3. Fig. 11 shows the proportion of different operations for both water
and copper systems on the GPU. We find that the GEMM operator takes
92% and 64% of the GPU time for the copper and water system, respectively.

The total computational time of the MD simulation can be divided into
four parts: Pair, MPI Communication, Neighbor, and Others. The wall
clock time for 500 steps of MD for each part is listed in Table 1 and shown in
Fig. 10. The corresponding strong scaling of the GPU DeePMD-kit is shown
in Fig. 8. The total wall clock time is dominated by the evaluation of the
atomic energies and forces, and denoted as “Pair”. Therefore, the scaling
of the Pair part is nearly the same as that of the total time in Fig. 8. The
“Comm” part denotes the time used in updating the ghost region between
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Figure 10: Wall clock time of 500 MD steps for a water system of 12,582,912 atoms.
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Figure 11: Percentage of computational time by different TensorFlow operators for copper
and water systems using the GPU version of DeePMD-kit.
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adjacent MPI tasks. It scales with the number of GPUs when using less
than 640 computing nodes, then becomes nearly a constant afterwards. This
is because the communication time is gradually dominated by the network
latency as the ghost region scales. The wall clock time for constructing the
neighbor-list is labeled as ”Neighbor”. We notice that this operation shows
superlinear scaling, which is attributed to both the reduction of the data size
and better Cache hit ratio when more CPUs are used. The ”Others” part
includes all other calculations such as the IO and the computations invoked
by fixes, and it only contributes to less than 1% of the total time, thus is
negligible.

We focus on analyzing the Pair part, which takes more than 93% of the
total time throughout the strong scaling tests for the 12, 582, 912 atom water
system. This part includes the CPU-GPU memory copy operations and
computation of the atomic energies and forces as discussed in Section 3.2.
The efficiency of the Pair part is measured by the percentage of the peak
performance as shown in Table 2. We find that the performance of this
part highly depends on the data size. Note that when scaled up to 4,560
computing nodes, each GPU only holds 459 atoms on average, the total
GPU memory usage is around 227 MB (from Eq. 13). The resulting data size
cannot fully exploit the 7 TFLOPS computing power of the V100 GPU, which
downgrades the efficiency. However, the GPUs are efficiently utilized when
each GPU holds more than 3, 200 atoms. The efficiency drops dramatically
with less than 1,000 atoms per GPU. We also notice that the CPU-GPU
memory copy slows down from 23.2 GB/s with 480 GPUs to 4.7 GB/s with
27,360 GPUs. Another reason for the drop of efficiency is the load imbalance
when a large number of GPUs are used. For example, when scaled to 27,360
GPUs (4,560 nodes), the minimum number of atoms per GPU is 407 while
the maximum is 505. The load imbalance leads to waits in the execution,
and reduces the efficiency of the GPU. The load balancing problem can be
alleviated by dynamically redistributing the atoms onto the MPI tasks in the
MD calculation [71, 72, 73, 74].

The communication of the ghost region is performed with the adjacent
MPI tasks, and the data size is listed in Table 2. The received size of a ghost
region for each GPU from its neighboring MPI tasks is 25,566 (613 KB)
when using 480 GPUs, and decreases to 3,039 (73 KB) when using 27,360
GPUs. Table 1 shows that the communication time decreases as the data size
becomes smaller from 480 to 7,680 GPUs. Eventually, the communication
time of the ghost region is dominated by the latency of the network, thus it
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Table 2: Average number of atoms (per GPU), ghost atom number (per GPU) and
FLOPS for a 12,582,912 atom water system.

#GPUs 480 960 1920 3840 7680 15360 27360
#atoms 26214 13107 6553 3276 1638 819 459
#ghosts 25566 16728 11548 7962 5467 3995 3039
PFLOPS 1.35 2.65 4.98 9.16 15.63 21.66 27.51
% of Peak 38.54 37.76 35.46 32.64 27.85 19.30 13.75

stops scaling when using 15, 360 and 27, 360 GPUs in Table 2.
Collective MPI communication is also needed in obtaining the global

properties for data IO during the simulation. Properties such as total en-
ergy, the stress, and the temperature, etc. are collected via MPI Allreduce.
Since each of those properties is merely one double precision number, the
MPI Allreduce operations are dominated by network latency. However, these
latency can be a bottleneck in the extreme scale run if the physical proper-
ties are collected at every time step. By setting the output of the above
mentioned properties to every 20 time steps, we find that the latency only
accounts for less than 1% of the total time. Since the latency is mainly
caused by the implicit MPI Barrier, it can be further avoided by using the
asynchronous MPI Iallreduce operation.

8. Conclusion

In this work, we propose the GPU adapted algorithms and re-implement
the DeePMD-kit package on the heterogeneous supercomputer Summit.

The weak scaling tests show that DeePMD-kit can scale up to 99% of
the Summit supercomputer, reaching a peak performance of 86.2 PFLOPS
(43% of the peak). For this particular system, each MD step only takes
83 milliseconds, thereby enabling nanoseconds time scale simulation with ab
initio accuracy for the first time. For a typical water system consisting of
12, 582, 912 atoms, our GPU code can scale up to 27,360 GPUs and run MD
for 110 steps in one second. Compared to the CPU version, the GPU code
is 16 − 39 times faster when using the same number of nodes, and 7 times
faster under the same power consumption.

To study problems like heterogeneous catalysis, electrochemical cells, ir-
radiation damage, crack propagation in brittle materials and biochemical
reactions, the required system size for molecular simulation ranges from thou-
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sands to hundreds of millions of atoms. Traditionally these systems would
be investigated with EFFMDs, from which scientific conclusions could not
be solidly derived due to the limited accuracy of EFFs. The unprecedented
accuracy and efficiency of GPU DeePMD-kit, as realized in this work by
integrating physical-based modeling, deep learning and optimized implemen-
tation on the world’s largest supercomputer, open a new era of large scale
molecular simulation, and will lead to groundbreaking scientific discoveries
and innovations.

The success of our GPU code relies on: (1) adapting the data distribution
of the classical MD software, (2) carefully optimizing the customized Tensor-
Flow operators on GPU (3) optimizing the standard TensorFlow operators
on GPU. We remark that all these optimization techniques can be employed
by other DP MD packages. We also analyze the scaling, and identify that
the latency of both GPU and the network is the key for future improvement
of exascale supercomputers to further accelerate the DP MD codes.

Although we only demonstrate the optimization on the GPU Summit
supercomputer, such strategies can also be applied to other heterogeneous
architectures. For example, it can be easily converted to the Heterogeneous-
compute Interface for Portability (HIP) programming model to run on the
next exascale supercomputer Frontier, which will be based on AMD GPUs.
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[19] Markus Höhnerbach, Ahmed E Ismail, and Paolo Bientinesi. The vec-
torization of the tersoff multi-body potential: an exercise in performance
portability. In SC’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
69–81. IEEE, 2016.

[20] Kuang Liu, Subodh Tiwari, Chunyang Sheng, Aravind Krishnamoor-
thy, Sungwook Hong, Pankaj Rajak, Rajiv K Kalia, Aiichiro Nakano,
Ken-ichi Nomura, Priya Vashishta, et al. Shift-collapse acceleration
of generalized polarizable reactive molecular dynamics for machine
learning-assisted computational synthesis of layered materials. In 2018
IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems (scalA), pages 41–48. IEEE, 2018.

[21] Ada Sedova, John D Eblen, Reuben Budiardja, Arnold Tharrington,
and Jeremy C Smith. High-performance molecular dynamics simulation
for biological and materials sciences: challenges of performance porta-
bility. In 2018 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), pages 1–13. IEEE, 2018.

[22] Nikola Tchipev, Steffen Seckler, Matthias Heinen, Jadran Vrabec, Fabio
Gratl, Martin Horsch, Martin Bernreuther, Colin W Glass, Christoph
Niethammer, Nicolay Hammer, et al. Twetris: Twenty trillion-atom
simulation. The International Journal of High Performance Computing
Applications, 33(5):838–854, 2019.

[23] Tingjian Zhang, Yuxuan Li, Ping Gao, Qi Shao, Mingshan Shao,
Meng Zhang, Jinxiao Zhang, Xiaohui Duan, Zhao Liu, Lin Gan, et al.
Sw gromacs: accelerate gromacs on sunway taihulight. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–14, 2019.

[24] Kun Li, Honghui Shang, Yunquan Zhang, Shigang Li, Baodong Wu,
Dong Wang, Libo Zhang, Fang Li, Dexun Chen, and Zhiqiang Wei.
Openkmc: a kmc design for hundred-billion-atom simulation using mil-
lions of cores on sunway taihulight. In Proceedings of the International

32

Jo
ur

na
l P

re
-p

ro
of



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–16, 2019.

[25] David F Richards, James N Glosli, Bor Chan, MR Dorr, Erik W
Draeger, J-L Fattebert, William D Krauss, T Spelce, Frederick H Streitz,
MP Surh, et al. Beyond homogeneous decomposition: scaling long-range
forces on massively parallel systems. In Proceedings of the International
Conference on High Performance Computing Networking, Storage and
Analysis,, pages 1–12. IEEE, 2009.

[26] Romelia Salomon-Ferrer, Andreas Walter Goetz, Duncan Poole, Scott
Le Grand, and Ross C Walker. Routine microsecond molecular dynamics
simulations with amber on gpus. 2. explicit solvent particle mesh ewald.
Journal of Chemical Theory and Computation, 9(9):3878–3888, 2013.

[27] Yoshimichi Andoh, Noriyuki Yoshii, Kazushi Fujimoto, Keisuke Mizu-
tani, Hidekazu Kojima, Atsushi Yamada, Susumu Okazaki, Kazutomo
Kawaguchi, Hidemi Nagao, Kensuke Iwahashi, et al. Modylas: A highly
parallelized general-purpose molecular dynamics simulation program for
large-scale systems with long-range forces calculated by fast multipole
method (fmm) and highly scalable fine-grained new parallel processing
algorithms. Journal of Chemical Theory and Computation, 2013.
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Revised version of NEW VERSION PROGRAM SUM-
MARY

Program Title: DeePMD-kit
CPC Library link to program files: https://dx.doi.org/10.17632/phyn4kgsfx.1

Developer’s repository link: https://doi.org/10.5281/zenodo.3961106

Licensing provisions: LGPL
Programming language: C++/Python/CUDA
Journal reference of previous version: Comput. Phys. Commun. 228 (2018), 178–184.
Does the new version supersede the previous version?: Yes.
Reasons for the new version: Parallelize and optimize the DeePMD-kit for modern
high performance computers.
Summary of revisions: The optimized DeePMD-kit is capable of computing 100 million
atoms molecular dynamics with ab initio accuracy, achieving 86 PFLOPS in double
precision.
Nature of problem: Modeling the many-body atomic interactions by deep neural net-
work models. Running molecular dynamics simulations with the models.
Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is
implemented based on the deep learning framework TensorFlow. Standard and cus-
tomized TensorFlow operators are optimized for GPU. Massively parallel molecular
dynamics simulations with DeePMD models on high performance computers are sup-
ported in the new version.
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