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ABSTRACT

Globular clusters (GCs) are often used to estimate the dark matter content of galaxies, especially dwarf galaxies, where other
kinematic tracers are lacking. These estimates typically assume spherical symmetry and dynamical equilibrium, assumptions
that may not hold for the sparse GC population of dwarfs in galaxy clusters. We use a catalogue of GCs tagged on to the Illustris
simulation to study the accuracy of GC-based mass estimates. We focus on galaxies in the stellar mass range 103-10'"% M,
identified in nine simulated Virgo-like clusters. Our results indicate that mass estimates are, on average, accurate in systems
with GC numbers Ngc > 10 and where the uncertainty of individual GC line-of-sight velocities is smaller than the inferred
velocity dispersion, o gc. In cases where Ngc < 10, however, biases may result, depending on how o g¢ is computed. We provide
calibrations that may help alleviate these biases in methods widely used in the literature. As an application, we find a number
of dwarfs with M, ~ 1033 Mg — comparable with the ultra-diffuse galaxy NGC 1052-DF2 (DF2), notable for the low o ¢ of
its 10 GCs — that have ogc ~ 7-15kms~!. These DF2 analogues correspond to relatively massive systems at their infall time
(M ~ 1-3 x 10'"" M), which have retained only 3—17 GCs and have been stripped of more than 95 per cent of their dark
matter. Our results suggest that extreme tidal mass loss in otherwise normal dwarf galaxies may be a possible formation channel

for ultra-diffuse objects such as DF2.
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1 INTRODUCTION

Pioneering models of galaxy formation established that dwarf galax-
ies must have been inefficient at forming stars in order to reconcile
the observed abundance of faint galaxies with the number of dark
matter (DM) haloes predicted in hierarchical formation models such
as the cold dark matter (CDM) scenario (White & Rees 1978; White
& Frenk 1991). These ideas were confirmed by studies of rotation
curves in late-type dwarf irregulars (Carignan & Freeman 1988;
Broeils 1992; Coté, Carignan & Freeman 2000; Swaters et al. 2009),
and of the stellar kinematics of stars in dwarf spheroidals of the Milky
Way (MW) and Local Group (Walker et al. 2007; Simon & Geha
2007; Strigari et al. 2008; Kirby et al. 2014), which demonstrated
that dwarf galaxies are indeed heavily dominated by DM.

The precise distribution of DM compared with the luminous mass
in these systems is less well known. Although dark-matter-only
simulations suggest a universal mass profile (Navarro, Frenk & White
1996b), observations reveal instead a rich diversity of mass profiles
in the inner few kiloparsecs of gas-rich dwarfs (Oman et al. 2015).
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This diversity problem has elicited a number of proposals, which
can be grouped into three main categories: (i) baryonic and feedback
processes that may alter the dark mass profile (Navarro, Eke & Frenk
1996a; Pontzen & Governato 2012; Read, Agertz & Collins 2016a);
(ii) uncertainties in the interpretation of rotation curves due to non-
circular motions and/or triaxiality (Hayashi & Navarro 2006; Read
et al. 2016b; Pineda et al. 2017; Oman et al. 2019); (iii) more radical
changes to the nature of DM, such as light axions (Marsh & Pop
2015), or the inclusion of a non-negligible self-interaction cross-
section (Firmani et al. 2000; Spergel & Steinhardt 2000; Creasey
et al. 2017; Santos-Santos et al. 2020). Additionally, some baryon-
only dwarfs could be the result of more exotic processes, such as
energetic active galactic nucleus (AGN) outflows generating gas
shells that fragment into individual dwarf-like mass objects (e.g.
Natarajan, Sigurdsson & Silk 1998).

Early-type (i.e. spheroidal) dwarfs may provide important and
independent constraints on these ideas. Common in high-density
environments, such as groups and clusters, or simply as satellites
of MW-like hosts, early-type dwarfs are gas-poor, dispersion-
dominated systems whose DM content may shed light on our
understanding of DM and its interplay with baryons during galaxy
assembly.

120Z 1udy 62 UO J8sn s|elag - S82IAI9S [BoIuyda] Aq G/ 10€19/1991/2/20S/e10nie/seiull/woo dnooiwapese//:sdiy woll papeojumod


http://orcid.org/0000-0001-5354-4229
http://orcid.org/0000-0002-3790-720X
http://orcid.org/0000-0003-3862-5076
http://orcid.org/0000-0003-3055-6678
http://orcid.org/0000-0002-2073-2781
http://orcid.org/0000-0001-6443-5570
mailto:jdopp001@ucr.edu

1662  J. E. Doppel et al.

The lack of gas means that studies of early-type dwarfs require a
different dynamical tracer. The relative brightness and extended spa-
tial distributions of globular clusters (GCs) make them competitive
kinematic tracers of galaxy mass. Indeed, in elliptical galaxies, GC
studies have enabled constraints on enclosed mass and DM fractions
with accuracy comparable to studies of HI rotation curves in spirals
(Alabi et al. 2016, 2017; Longobardi et al. 2018).

Extending these studies to dwarf galaxies is challenging because
the number of bright GCs in dwarfs is substantially smaller than in
massive systems. For example, several hundred GCs have been used
to map the mass distribution around bright galaxies such as M87
in Virgo (Zhu et al. 2014; Li et al. 2020) and several dozens for
luminous ellipticals in the SAGES Legacy Unifying Globulars and
GalaxieS (SLUGGS) survey (Forbes et al. 2017). For comparison, in
dwarfs with < 10° M, this quickly reduces to fewer than ~20 GCs
per galaxy.

Despite this, GC studies have already yielded important
constraints on the DM content of dwarf ellipticals (dEs) in the Virgo
cluster (Toloba et al. 2016) and, more recently, on ‘ultra-diffuse’
galaxies (UDGs; van Dokkum et al. 2016), where kinematic
measurements of the unresolved stellar population are hindered by
their low surface brightness (Beasley et al. 2016; Toloba et al. 2018;
van Dokkum et al. 2018b)

As in late-type dwarfs, GC studies of early-type dwarfs also
suggest a wide range of DM content, with important consequences
for the formation paths of UDGs and, potentially, for the nature
of DM. Of particular interest is the discovery of at least one UDG
dwarf, NGC 1052-DF2 (hereafter ‘DF2’, for short), where the
extremely low values of the velocity dispersion of the GC (van
Dokkum et al. 2018b; Wasserman et al. 2018) and stellar (Danieli
et al. 2019) populations hint at little to no DM content for this dwarf
with estimated stellar mass M, ~ 3 x 108 M. Although the exact
value of the velocity dispersion of GCs (as well as the distance
to the galaxy; Trujillo et al. 2019) is still being debated (o gc ~
5-10 kms~!) and may depend on model assumptions (Martin et al.
2018; van Dokkum et al. 2018a; Laporte, Agnello & Navarro 2019),
it is at least a factor of ~3 smaller than that measured for the similar
UDG system DF44, which has comparable stellar mass (ogc ~
35 kms~!; van Dokkum et al. 2019b). This is broadly consistent
with GC velocity dispersions of other dEs of similar stellar mass in
the Virgo cluster (Toloba et al. 2016).

Another puzzling dwarf also associated with NGC 1052 is DF4,
a UDG where the measured GC velocity dispersion o, ~ 4.2 kms™!
leaves little room for DM (van Dokkum et al. 2019a), though the
distance to this system, as with that of DF2, is still under discussion
(Monelli & Trujillo 2019). The existence of dwarfs with similar
stellar mass but such a wide range of morphology and DM content
presents a clear challenge to current galaxy formation models.

Several scenarios have been proposed to form UDGs, including:
(i) feedback effects combined with environmental gas removal (Di
Cintio et al. 2017; Chan et al. 2018; Jiang et al. 2019; Tremmel et al.
2020); (ii) unusually large DM haloes or failed MW-like galaxies (van
Dokkum et al. 2015); (iii) dwarf haloes with large spin (Amorisco &
Loeb 2016; Mancera Pifia et al. 2020); (iv) puffed-up stellar systems
due to the removal of gas to ram-pressure stripping (Safarzadeh &
Scannapieco 2017); (v) tidal stripping of cored DM haloes (Carleton
et al. 2019); (vi) a mixed population made of both born low-surface
brightness dwarfs and tidal remnants of cuspy haloes from more
massive tidally stripped galaxies (Sales et al. 2020).

Encouragingly, the observational evidence seems to support a
variety of formation paths for UDGs. For instance, the number of
associated GCs varies widely, from ~30 in DF17 (Peng & Lim 2016)
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to some UDGs in Coma with no associated GCs at all (Beasley &
Trujillo 2016; Lim et al. 2018). A systematic study of UDGs and
their GCs in the Virgo cluster also confirms the trends found in Coma
(Lim et al. 2020). More detailed, kinematical studies of three UDGs
in Virgo have also revealed wide variations in enclosed DM mass,
including one object, VLSB-D, with clear signatures of ongoing
tidal disruption (Toloba et al. 2018). Intriguingly, of the three UDGs
studied, VLSB-D has the largest stellar mass (M, ~ 7.9 x 10® M)
but also the lowest GC velocity dispersion, o = 161’2 kms~!.

It is tempting then to consider the following hypothesis. Could
the low-velocity dispersion measured for some UDGs (DF2, DF4,
VLSB-D) be explained as a result of tidal effects in cluster or group
environments? Or, in other words, can simulations reproduce a
GC velocity dispersion as low as ogc ~ 10 km s~! (or lower) in a
galaxy with stellar mass as high as M, ~ 3 x 108 My ? Analytical
arguments, combined with the cosmological hydrodynamical
simulations presented in Sales et al. (2020), seem to suggest that
this is indeed possible, but more detailed work is needed to fully
validate this possibility.

We study these issues here using a catalogue of GCs tagged on
to the Illustris simulation (Ramos-Almendares et al. 2020). The
simulation follows the dynamical evolution of dwarfs in clusters,
providing an ideal tool to quantify the effects of tidal disruption,
departures from equilibrium, and scarcity of tracers. We further use
the simulations to look into the tidal disruption formation scenario
for objects such as DF2. Our paper is organized as follows. The GC
model and galaxy selection criteria are described in Sections 2 and 3.
We evaluate the accuracy of mass estimators in Section 4, with special
emphasis on different methods to measure velocity dispersion, the
number of targets, and the effects of tidal disruption. In Section 5,
we use our simulated galaxies and GCs to look for DF2 analogues.
We conclude and summarize our main results in Section 6.

2 METHODS

We use the highest-resolution run of the Illustris cosmological, hy-
drodynamical simulation (Illustris-1; Genel et al. 2014; Vogelsberger
et al. 2014a,b; Sijacki et al. 2015). The simulation has a box size of
106.5 Mpc on a side and assumes cosmological parameters consistent
with the Wilkinson Microwave Anisotropy Probe nine-year results
(Hinshaw et al. 2013). At the resolution used here, the mass per
particle is 1.3 x 10° Mg and 6.26 x 10° M, for the baryonic
and DM components, respectively, with a maximum gravitational
softening length of 710 pc.

The galaxy formation model used by Illustris includes stellar
evolution and supernova feedback, black hole growth and mergers,
AGN feedback, as well primordial and metal line cooling, among
others. The simulation matches a number of observables well,
including the Tully—Fisher relation (Torrey et al. 2014; Vogelsberger
et al. 2014a), the cosmic star formation density (Genel et al. 2014),
the galaxy mass and luminosity functions (Vogelsberger et al. 2014a),
and the wide range of colours and morphologies of the present-day
galaxy population (Sales et al. 2015; Snyder et al. 2015; Rodriguez-
Gomez et al. 2017).

2.1 Galaxy sample

Our galaxy sample consists of members of the nine most massive
clusters, with masses comparable to the Virgo cluster (May >
8 x 10" My,), in Illustris-1. Throughout this paper, we define virial
quantities as measured at the radius containing 200 times the critical
density of the Universe. Haloes and subhaloes are identified using
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a combination of a friends-of-friends algorithm (FoF; Davis et al.
1985) and SUBFIND (Springel et al. 2001; Dolag et al. 2009). We
use the SUBLINK merger trees (Rodriguez-Gomez et al. 2015) to
trace the assembly of these clusters back in time. We follow the
infall and posterior evolution of satellite galaxies identified in these
nine host clusters at z = 0, focusing on those in the stellar mass
range 108 < M, < 6 x 10" My. The minimum stellar mass cut
implies a minimum of ~60 stellar particles in our objects, which
we consider to be sufficiently resolved for the purpose of this
analysis. Additionally, we require a minimum stellar mass at infall
M, > 5 x 10% Mg, which guarantees on average more than 16 000
particles including DM, gas and stars at infall. Our simulated galaxy
catalogue contains a total of 3777 satellite galaxies, and it records
the infall time of each galaxy as the last time, before accretion, that
it was the central galaxy of its own FoF halo.

2.2 Adding GCs to Illustris

INlustris follows the global star formation properties of galaxies but
does not have the resolution to form or follow GCs. In our study, GCs
are added to the simulation in post- processing by tagging selected
DM particles in galaxy haloes to match, on average, the known
properties of the GC population and its dependence on halo mass.
The method was introduced in Ramos-Almendares et al. (2020),
where details may be found. We include a brief description here for
completeness.

The tagging process takes place, for each galaxy, at its cluster
infall time. At that time, the procedure first identifies DM particles
satisfying a prescribed density distribution; in particular, a Hernquist
(1990) profile with scale radius, auq = o rnew, Where rypw is the
scale radius of the halo’s best-fitting NFW profile (Navarro et al.
1996b), and « is a parameter that controls the spatial extent of the GC
population. We use here two values of « = 0.5 and 3 in order to select
candidate tracers of the red and blue GC populations, respectively.
(Our analysis below, however, does not distinguish between these
two populations.) Note that this method by construction selects all
particles that are consistent with the energy distribution of GCs,
which, in general, is a larger set of particles than the typical number
of GCs associated with a galaxy. Therefore, we must subsample the
set of candidate GCs to obtain a realistic population of GCs. This
subsampling is done randomly and assumes that the mass of each
GC is 10° M.

For these GC candidates, we assume that the total stellar mass of
the GC population, Mgc, scales with halo virial mass in a manner
consistent with the results of Harris, Harris & Hudson (2015). Note
that this relation holds at z = 0 while our procedure is applied at infall;
thus, some adjustments are necessary, as some GCs may be lost to
the cluster due to tidal effects. As shown by Ramos-Almendares et al.
(2020), a simple relation at infall of the form

Mgc =aMfoo, 1

with a = 2.0 x 1077 and 3.5 x 10~* and b = 1.15 and 0.9 for red
and blue GCs, respectively, matches the Harris et al. (2015) relation
well at z = 0. These tagged particles are then used to trace the GC
population of cluster galaxies after infall, as well as intracluster GC
populations, which is made of all GCs stripped from galaxies after
infall. At z = 0, the remaining candidates are subsampled assuming
a fixed mass of mge = 10°Mg per GC to determine a realistic
number of GCs.

A specific caveat of this procedure is that we tag and follow only
the population of surviving GCs and we do not account — by design
— for the internal evolution of stellar clusters. Instead, our catalogue
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can be used to study the dynamical process that GCs are subjected
to within galaxy clusters after each galaxy, with their corresponding
GC system, has been accreted into the cluster host.

The GC catalogue created following this procedure has been
shown to reproduce, without further adjustment, some key observa-
tional properties, including the large scatter in the specific frequency
Sy for dwarf galaxies and the formation of an extended and diffuse
population of ‘intracluster’ GCs (Ramos-Almendares et al. 2020).
In this paper, we focus on the GC population around each surviving
galaxy in the cluster at z = 0 in order to check to the accuracy of
GC-based estimates of the total dynamical masses of cluster galaxies.

3 GLOBULAR CLUSTERS OF SIMULATED
CLUSTER GALAXIES

We show in Fig. 1 two examples of our simulated galaxies and their
GC system. The top and bottom rows correspond to, respectively, a
dwarf (M, = 1.5 x 10° M) and a luminous galaxy (M, ~ 10'! M,).
The left column shows a stellar map projection on which, to illustrate
the tagging procedure, we superimpose the full population of tagged
‘candidate GCs’ (pink points) as well as, in green, the actual particles
selected as GCs in this case. The middle column shows the cumulative
mass distribution with the radius of the stellar component (cyan),
DM (black) and GC candidates (pink). The GC spatial distribution is
similar to that of the stars in the dwarf galaxy, but is significantly more
extended than the stellar component of the more massive galaxy,
in good agreement with well-established observational trends (e.g.
Georgiev et al. 2010; Forbes 2017; Hudson & Robison 2018; Prole
et al. 2019). The line-of-sight velocity distributions of these three
components are shown in the right column and show that the GC
velocity dispersion is comparable with that measured for the stars
and the DM within three times the half-mass radius of the stars (r ~
3rn.). Best-fitting Gaussian distributions to each component are also
included for comparison.

In order to minimize the number of potential interlopers (i.e.
intracluster GCs, or GCs belonging to nearby galaxies), we associate
GCs with each individual galaxy using a (three-dimensional) distance
cut (i.e. r < 3ry,.), and a velocity cut, which applies a 30 clipping
criterion for membership in the line-of-sight velocities (projected
in a random direction). This last step is effective at removing most
(although not all) contamination from intracluster GCs and other
chance alignments. We have explicitly checked that none of the
results presented in this paper changes qualitatively if the radial
cut-off is varied in the range 2—5r, .. GCs satisfying the criteria of
distance and velocity are then considered associated with each galaxy
and used for dynamical mass estimation.

Fig. 2 shows that our tagging procedure yields realistic numbers
of GCs as a function of their stellar mass. Although by construction
the model reproduces the main trend with M, reported by Harris
et al. (2015, dashed cyan line) after assuming the M,—My relation
in Hudson et al. (2015), it is interesting to see the substantial scatter
at fixed M,, which results despite the fact that the relation adopted
between GC mass and halo mass (equation 1) is assumed to be scatter-
free. Moreover, the scatter in the number of GCs, Ngc, increases
towards low-mass galaxies, in good agreement with observations
(Peng et al. 2008; Forbes et al. 2018; Prole et al. 2019). For instance,
aM, ~ 10° Mg cluster dwarf may show 5-20 GCs, or even none
(symbols artificially shifted to Ngc = 0.5). Within the simulation,
this scatter results almost exclusively by the effects of tidal stripping
in the cluster environment. Indeed, symbols in Fig. 2 are colour-coded
by the DM bound fraction, the ratio of DM mass that the SUBFIND
catalogue records for a galaxy at z = 0 to that at its infall time. As
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Figure 1. Left: XY projections of the stellar component (colour scale in the background), GC candidates (pinkish points), and realistic GCs (green points),
for a dwarf galaxy (top) and a MW-mass galaxy (bottom) belonging to the largest simulated galaxy cluster in Illustris. Pink and cyan circles indicate the
three-dimensional half-mass radius of GC candidates and stars, respectively. Middle: normalized cumulative mass profiles for the DM (black curve), stars (blue
curve) and GC candidates (pink curve) associated with these galaxies. The mass profile of the GC candidates has been multiplied by a factor of x 1000, and the
stellar profile has been normalized by a factor of x 10. Masses as quoted in the legend. Half-mass radii of stars and GCs are highlighted with vertical dashed
lines. Right: line-of-sight velocity distributions for the GC candidates of these two galaxies (pink shade) along with the best-fitting Gaussian in the same colour.
For comparison, we overplot the best-fitting Gaussians for the velocity distribution of the stars (cyan) and the DM in black. Note the similarities of their shapes

and dispersion, with values quoted for the latter for each galaxy.

discussed in Ramos-Almendares et al. (2020), tidal stripping effects
seem to be critical to explain the origin of the scatter in this relation
and of its dependence on mass.

Note that we only tag at infall galaxies with M.(t = ti) >
5 x 10® Mg, meaning that all simulated systems in our sample with a
present-day stellar mass M, <5 x 108 M, result from tidal stripping
that has affected its stellar component. This can be seen in the low
remaining DM bound fraction of most galaxies in that mass range in
Fig. 2. In other words, for the range M, = 1-5 x 10® M, at present
day, our sample only includes the tidally stripped objects (i.e. those
that satisfied at infall the tagging critera with M, > 5 x 10% My).
Simulated dwarfs in this mass range at z = 0 that have never been
above the mass threshold for GC tagging are not included in our
sample, a topic we return to in Section 5.

4 DYNAMICAL MASS ESTIMATORS

Under the hypothesis of spherical symmetry and dynamical equi-
librium, the mass enclosed by a collisionless population of tracers
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within their half-mass radius can be written as
M(< rip) = 3G o1, )

where o0, 1S the line-of-sight velocity dispersion of the tracers,
ri2 1s the three-dimensional (de-projected) half-mass radius of the
tracers and M(< ry;) is the total enclosed mass within ry, (G
is Newton’s gravitational constant). This mass estimator has been
shown to be relatively insensitive to the anisotropy parameter of the
orbits (commonly referred to as ) and to projection effects (see Wolf
et al. 2010). Similar formulae have been presented by other groups,
but the main variation is in the value of the proportionality constant
or in the definition of the radius to which the derived enclosed mass
applies. For simplicity, in the remainder of this paper we focus on
the Wolf et al. (2010) estimator, but we have explicitly checked that
similar conclusions apply when using different models, such as those
presented by Walker & Pefiarrubia (2011) or Errani, Pefiarrubia &
Walker (2018). It should be noted that mass estimates derived from
the Jeans equation are sensitive to the assumed underlying mass
distribution (Hayashi & Inoue 2018).
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Figure 2. Realistic number of GCs, Ngc, versus the stellar mass of the host
galaxy, M., coloured by the DM bound fraction (see Section 3). Our GC model
is calibrated to reproduce on average the Mgc—Mp,lo relation from Harris
et al. (2015) (cyan dashed line). Note that tidal stripping partially introduces
a significant scatter from galaxy to galaxy, especially on the low-mass end.
The number of GCs for the lowest-mass dwarfs is roughly consistent with
observations in Prole et al. (2019) and Forbes et al. (2018) that were not part
of the model calibration.

We can use our tagged catalogue of GCs to assess how well
equation (2) recovers the dynamical mass of simulated cluster
galaxies in Illustris. One challenge in this case is estimating o,
which is well defined when several dozen GCs are present, but is
less robust for the small number of tracers available in the regime
of dwarf galaxies (see Fig. 2). In what follows, we drop the ‘line of
sight’ from the subscript, but we still refer to the one-dimensional
velocity dispersion projected along a random direction, as measured
in observations.

4.1 Velocity dispersion estimates

Several methods are widely used to compute o. Here, we consider
the following three: (i) the rms of tracer velocities, o ,s (see Prada
et al. 2003); (ii) the biweight velocity dispersion (o piwcighi: Beers,
Flynn & Gebhardt 1990; Girardi et al. 2008; Veljanoski et al. 2014;
van Dokkum et al. 2018b); and (iii) a velocity dispersion, o mcmc, €S-
timated using a Markov chain Monte Carlo (MCMC) method applied
to the individual velocities (Widrow, Pym & Dubinski 2008; Hogg,
Bovy & Lang 2010; Martin et al. 2018; van Dokkum et al. 2018a). De-
tails on each method, as implemented here, are given in Appendix A.

Each of these methods has their own advantages and disadvan-
tages. The rms velocity dispersion has the advantage of simplicity
but it may give biased results for non-Gaussian velocity distributions.
The biweight method, however, is ideal when high levels of contam-
ination are expected as it places more weight towards velocities
closer to the median of the distribution, although it cannot be used
for systems with fewer than 5 tracers (Beers et al. 1990).

The MCMC approach enables a proper treatment of observational
uncertainties, but it suffers from sensitivity to the shape of the
priors assumed. In this study, we compare results using a flat prior
distribution or Jeffreys prior, where the latter is usually considered
more robust for low number of tracers (e.g. Martin et al. 2018). We
indicate the choice of prior with subscripts ‘f” and ‘j°, respectively,
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Figure 3. An illustration of the impact of using different definitions for
the line-of-sight velocity dispersion o1os of GCs in two simulated dwarfs
(the left panel corresponds to the dwarf in the top panel of Fig. 1). Each
panel shows the PDF of 10° random realizations of oo estimates using
subsamplings of 10 GCs out of ~400 (left) and ~270 (right) GC candidate
particles for the example dwarfs. We adopt two commonly used definitions:
simple rms (filled magenta) and biweight (open orange). These methods can
predict slightly differently shaped PDFs, as well as different median values of
line-of-sight velocity dispersion as quoted (uncertainties correspond to 25—
75 per cent quartiles of the o distributions). The rms and biweight velocity
dispersion of the underlying parent sample of ~400 and ~270 candidate GCs
are shown with squared symbols (90 per cent confidence intervals are also
shown as error bars). Although most of the o estimates for each 10 GC draws
would reasonably agree between rms and biweight, for some realizations
biweight estimates may underestimate the velocity dispersion compared to
its rms definition.

when needed. See Appendix A for more details on the prior
calculation.

For a given set of tracers, the o probability distribution functions
(PDFs) obtained with each of these methods may have slightly
different shapes. We show this for the rms and biweight distributions
in Fig. 3 using two dwarfs as examples: the galaxy introduced in
the top row of Fig. 1, which is characterized by an intrinsically
nearly Gaussian line-of-sight velocity distribution (left panel), and
a different dwarf selected to have a non-Gaussian line-of-sight
distribution of GC candidates with kurtosis and skewness 0.39 and
1.04, respectively (right panel). The PDFs shown in Fig. 3 correspond
to velocity dispersion estimates obtained from 10° independent
random selections of 10 GCs from among the ~400 (left) and
~270 (right) candidate GC particles that remain associated with
these galaxies at z = 0.

While the rms (filled magenta) and the biweight (open orange)
methods show similar distributions, the biweight shows a systematic
(albeit small) trend towards lower o values, especially for non-
Gaussian parent samples, as illustrated for the dwarf in the right
panel. This can be understood in light of the weight assignment for
the biweight method, which tends to down-weight values further
away from the median of the sample.

Reassuringly, the PDF distribution for resampling these 10 GCs
shows, in both methods, a well-defined peak that agrees well with
the velocity dispersion of the underlying parent distribution of ~400
and ~270 candidate GC particles (square symbols). However, this
exercise highlights one of the main problems with the discreteness
of the dynamical tracers: depending on the particular realization of
10 GCs, one might obtain estimates far from the true underlying
velocity dispersion.

Itis interesting to explore further the ability of different methods to
estimate the true o under the condition of a limited number of tracers.
We do this by selecting one particular realization of 10 GCs from
each of our examples in Fig. 3. For each of these two realizations,
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Figure 4. Velocity dispersion and confidence intervals calculated using different methods: rms (magenta), biweight (orange), MCMC with flat prior (purple) and
MCMC with Jeffreys prior (teal). We show in each panel one particular realization of 10 GCs for the dwarfs in Fig. 3. For most possible drawings, the estimates
of o with different methods agree well and identify the true underlying (rms) velocity dispersion of the whole ~400 (left) and ~270 (right) GC candidate sample
(aﬁ'ﬂds square symbol). In some cases, as highlighted on the right, biweight may result in a slightly underestimated velocity dispersion compared with the other

methods.

we estimate the confidence intervals assuming a Gaussian parent
distribution in Fig. 4 for the rms (magenta) and biweight (orange)
methods.

We see that, in both cases, estimates show a large degree of overlap
between rms and biweight, which would be the case for most of the
possible 10-GC resamplings. However, due to the low-velocity bias
seen in biweight in Fig. 3, the estimated velocity dispersion with
this method may substantially underestimate the true value for some
specific samplings (right panel), a possibility that should be kept in
mind when working with biweight estimates.

Fig. 4 also shows the corresponding PDF for the MCMC method
using both flat (purple) and Jeffreys (teal) priors. For each 10-
GC subsampling, the PDF is calculated by a random walk through
(0, {v)) parameter space over 10 iterations using a Gaussian jumping
distribution with a dispersion of 5 km s~!. For both realizations
in Fig. 4, the MCMC method is able to recover the true o, with
uncertainties that agree well with the simpler rms method.

Faint dwarf galaxies can have even fewer than 10 GCs and the
systematic effects explored here for each method may therefore
become stronger. In what follows, we use our GC catalogue to
extend this study to a statistical sample of galaxies in Illustris to
explore how the dynamical mass estimates are affected by the finite
number of GCs tracers and underlying assumptions of Gaussianity
in the distribution.

4.2 Mass estimates

For each of the 3777 simulated cluster galaxies, we can use the
‘realistic’ number of GCs drawn from the list of candidates to
compute the GC half-number radius, ry,, and velocity dispersion
using different estimators, o s, O biweight and o memc. We then apply
equation (2) to estimate their dynamical mass M, and compare the
results obtained with each estimator with the true mass enclosed
within 7y, as measured directly from the particle information in
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the simulation, M. Fig. 5 shows the results, with the solid black
line indicating a one-to-one relation and points colour-coded by the
logarithm of the number of associated GCs used in the calculation.
Green symbols show the median in bins of M, and the shading
indicates the 25-75 per cent quartiles.

We find, on average, a remarkably good agreement between the
estimated dynamical mass Mj, and the true mass, supporting the
use of simple estimators such as that presented in Wolf et al.
(2010) to determine the dynamical mass of galaxies using GCs as
tracers; similar conclusions hold for estimators proposed in Walker
& Penarrubia (2011) or Errani et al. (2018).

This result is not trivial, as many of the assumptions, such as
sphericity and/or dynamical equilibrium, on which the estimator is
based do not apply to our systems. Our results agree with Laporte,
Walker & Penarrubia (2013a), who reported a similar conclusion
although applied to stellar (not GC) tracers in dwarf spheroidal
galaxies of the MW. They generalized the method of Bullock &
Johnston (2005) to cosmological triaxial systems (Laporte et al.
2013b) and found that the deviations from sphericity are compensated
by a trade-off between the changes on the line-of-sight velocity
dispersion and those in the half-mass radius that are measured in
different projections, cancelling out in combination any systematic
effect in spherical mass estimators such as equation (2).

A closer inspection of Fig. 5 reveals that systems with a low
number of GCs (dark symbols) tend to have larger scatter around
the one-to-one line. This coincides with the low-mass regime, where
dwarf galaxies often have only a few, or up to a dozen, GCs. Mass
estimators tend to perform poorly with a low number of tracers,
especially due to the errors in estimating velocity dispersion and
half-mass/number radius using only a handful of tracers.

We explore this in more detail in Fig. 6, where we show for
our simulated galaxies the ratio of the estimated and the true mass
as a function of the number of tracers used to calculate M;,, from
equation (2). Every galaxy in our catalogue is used at each point along
the x-axis, using in each case a new random realization of Ngc =
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Figure 5. Comparison between the true (x-axis) and estimated (y-axis)
dynamical mass measured for simulated galaxies at half-number radius
of GCs using Wolf et al. (2010). Symbols are coloured by the log of
the number of GCs, Ngc, associated with the host galaxy (colour bar).
The one-to-one line is shown in black, and the running median of the
estimated dynamical mass M), at fixed My is shown in green symbols
with 25-75 per cent quartiles indicated by the green shading. From top
to bottom, panels correspond to our three oy, definitions: rms, biweight
and MCMC (flat and Jeffreys priors). On average, all methods to quantify
velocity dispersion perform very well to estimate mass on a sufficiently
large sample of galaxies. However, the scatter increases for galaxies with
a low number of GCs (darker symbols), which might result in significant
deviation for individual objects. These deviations from the one-to-one
line are systematic depending on the definition of oo, as explored in
Fig. 6.
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Figure 6. Median of the ratio of the estimated mass to the true mass,
M i/2/Mirye, as a function of the number of GCs used in the estimate of
005 following: the rms (magenta) and biweight (orange) in the top panel and
MCMC methods with flat (purple) and Jeffreys (teal) priors in the bottom
panel. Filled symbols show the median, and the shaded area the quartiles.
We find no significant trend with stellar mass of the galaxies once Ngc is
fixed (see open symbols). However, we find a strong trend with the number
of tracers: 0'yms and o piweight tend to underpredict the dynamical mass while
omcmc overpredicts the mass for a low number of GCs. These systematic
trends can be corrected using a simple calibration (see dashed lines) shown
in equations (3) and (4) with coefficients listed in Table 1. Note that mass
estimates are accurate for galaxies with a sufficiently large number of tracers,
for example M, is within 10-15 per cent from the true mass for galaxies
with Ngc > 30.

2,3, ..., N GCs, with N being the maximum number of candidate
GCs that were tagged for a given galaxy. Note that this is different
from the procedure in Fig. 5, where each galaxy is included only
once using their realistic number of GCs. This is done to explicitly
check how the number of available tracers affects/improves the mass
estimates, keeping everything else fixed in the sample.

The upper panel in Fig. 6 corresponds to velocity dispersion
estimates using rms (magenta) and biweight (orange), where for
each galaxy we calculate o as the median of the PDF corresponding
to 10° subsamplings of GCs with a given number of N tracers (similar
to Fig. 3). The bottom panel of Fig. 6 shows a similar exercise but
using MCMC with flat (purple) and Jefferson (teal) priors. Due to
computational demands, MCMC estimation corresponds, for each
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Table 1. Values for the parameters in equations (3) and (4) for each of the
Olos €Stimates.

Estimate a b ¢ Equation
O rms —1.535 1.057 9.963 4
O biweight —1.956 1.110 1.004 4
O MCMC.f 0.097 1.908 —0.024 3)

galaxy, to a single realization of N tracers using 10 iterations across
the (o, (v)) parameter space as done in Fig. 4, where (v) is the
assumed average one-dimensional velocity.

We find some interesting trends. First, the accuracy of the mass
estimator depends strongly on the number of tracers but not on the
galaxy mass. Different shaped symbols in Fig. 6 indicate five stellar
mass ranges of our galaxies, as quoted in the legend, but symbols
tend to overlap, suggesting little to no dependence on mass. Second,
the rms estimates recover the mass within 10 per cent for ~5-10
GCs while biweight requires 15-20 GCs to recover the mass with
the same accuracy. The MCMC method with a flat prior converges
more slowly, needing 30-40 GCs to recover the mass within 10 per
cent while the Jeffreys prior brings the requirements down to 10-15
GC:s for a 10 per cent accuracy.

Another interesting point to highlight from Fig. 6 is the systematic
deviations on the mass estimates for the different ¢ measurements.
Whereas opmemcs Will tend to overestimate the mass when using
fewer than ~30 GCs (see purple symbols), o ms and o piweight Will
underestimate the mass in the case of a low number of tracers
(magenta and orange symbols). It is worth noting that using Jeffreys
priors for the MCMC method can help mitigate the overestimation
bias when the number of tracers is small Ngc < 5 (green symbols),
with significantly improved accuracy compared with assuming a flat
prior. For a larger number of tracers, the assumptions on the prior do
not have a significant impact.

Our results in Fig. 6 can be used as calibrations to improve the
accuracy of mass estimation in observations of galaxies with a low
number of GCs. We model the ratio M/2/Mire for o pmeme and o piweight
as

M1/2 a
log = -, @)
Mtrue [log(NGC) + C]

where a, b and ¢ are the best fits to the medians for each method
in Fig. 6, and the results are shown with dashed purple and orange
lines for MCMC (flat prior) and biweight, respectively. Following
a similar procedure, we use the following function to describe the
accuracy of mass estimation when using rms velocity dispersions:
M 12 a

=— +ec 4
Mirye N(b;c

Our best-fitting values a, b and ¢ for the three velocity dispersion
estimates are summarized in Table 1. We hasten to add that the
corrections for the MCMC case will depend on the shape of the
prior. For example, in the case of the Jeffreys prior, the correction
to the median is roughly well described by a constant upwards shift
factor of ~1.5, albeit with a significant object-to-object scatter.

4.3 Impact of tidal stripping

As an important application of our GC catalogue, we can use
the cosmological simulations of galaxies within realistic cluster
environments to quantify how much tidal stripping might affect
the accuracy of mass recovery techniques similar to equation (2)
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Figure 7. Ratio between the estimated mass using GCs to the true mass in
simulated galaxies as a function of the amount of tidal stripping experienced.
‘We show results for o pmemc but similar results apply to the other definitions.
The fraction of DM bound mass (x-axis) is calculated as the z = 0 DM
mass compared with the infall value. In general, the median of Mj//Mye
of the sample (solid lines) shows little dependence on the remaining DM
bound mass fraction, providing confidence in mass estimation methods even
within the tidal environment of clusters. We find no significant trend with the
galaxies’ stellar mass (see different colours).

using GCs as tracers. As Jeans modelling assumes the system to be
in equilibrium, tidal stripping could potentially bias the results or
cause the mass estimators to perform less accurately for significantly
stripped and disturbed systems, as suggested by Smith et al. (2013)
in the context of galaxy harassment.

We find that, contrary to these expectations, equation (2) performs,
on average, extremely well even in cases with significant mass loss.
Fig. 7 shows the ratio of recovered mass using GCs, M,,, to the real
mass from the simulation, My, compared with the fraction of DM
mass that is still bound (DM bound fraction), which we define to be
the ratio of the present-day DM mass of a galaxy to that at its time of
infall. Different colours correspond to different stellar mass ranges
for our galaxies and we find no significant trend with mass. This test
uses o memc (With flat priors) to estimate the velocity dispersion of
each galaxy using their realistic number of GCs in our catalogue, but
we have explicitly checked that the conclusions do not change if we
US€ O MCMC,j> O rms O O biweight-

A more detailed look at tidally stripped systems might reveal,
however, important trends affecting the shape of the velocity distri-
bution of tagged GC candidates. Fig. 8 quantifies the kurtosis (top)
and skewness (bottom) of the line-of-sight velocity distribution of
GC:s for each of our galaxies as a function of their retained DM mass
fraction. A perfectly Gaussian function corresponds to both kurtosis
and skewness being consistent with zero. The cyan line and shaded
regions correspond to the median and lo scatter of the sample at
fixed bound mass fraction.

Although GCs might be reasonably well described by Gaussians,
our sample of candidate GC systems shows a systematic trend to
negative kurtosis (median ~—0.3 for objects with no significant
stripping) and overall significant scatter in both kurtosis and skew-
ness. Histograms in the right panels of Fig. 8 show examples of the
shape of the velocity distribution of GCs for galaxies with either high
or low skewness or kurtosis.
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Figure 8. Left: kurtosis (upper panel) and skewness (lower panel) as a
function of the fraction of DM mass retained at z = 0 compared with that
at infall. The median and 25-75 percentile range are shown by the cyan
dotted lines and shading, respectively. While the scatter of the skewness with
respect to the DM bound fraction remains relatively constant, the scatter of
the kurtosis increases as the DM bound fraction decreases. We also see an
increase in the median of both the kurtosis and skewness with a decrease in
the DM bound fraction, suggesting that tidal stripping might induce a bias
towards higher values. Right: examples of non-Gaussian velocity distributions
for extreme values of kurtosis (upper panel) and extreme values of skewness
(lower panel). The colour of the histograms corresponds to the same coloured
circled points on the right panels.

These deviations from Gaussianity might be more common for
galaxies under severe tidal stripping (DM bound fraction lower than
afew per cent), which exhibit a bias towards higher values of kurtosis
and skewness and increased scatter, especially in kurtosis. These
results are important in light of the common-practice assumption of
Gaussianity to estimate the uncertainties in the velocity dispersion of
GCs in observational studies. How can skewness and kurtosis affect
the calculated confidence intervals?

Confidence intervals are formally defined as the probability that the
true variance of a given sample (in this case, all GC candidates) lies
within the confidence interval of the variance of a random subsample
(e.g. the realistic GC number) drawn from such a parent distribution.
If the underlying population is non-Gaussian, that probability would
be expected to change and therefore confidence intervals can be
overestimated or underestimated. We show this in Fig. 9 using the
rms method (circles). For each galaxy, we generate 1000 resamplings
of 10 GCs and compare the recalculated confidence intervals to that
of a Gaussian distribution. See Appendix C for more details.

We find that variations in kurtosis result in well-defined trends for
the non-Gaussian confidence intervals (top-left panel of Fig. 9). In
GC systems with intrinsic negative kurtosis, the confidence intervals
are overestimated, meaning that the probability of finding the true
variance within the computed confidence interval is actually larger
than the case of a Gaussian distribution. For such systems, the
observed value is actually more accurate than expected in a Gaussian
case. The opposite is true for systems with positive kurtosis, where
confidence intervals are underestimated. The scale of the effect varies
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Figure 9. Correction to the Gaussian confidence intervals as a function of
kurtosis (left) and skewness (right) of the distribution of candidate GCs asso-
ciated with our galaxy sample. Estimates are based on 1000 resamplings of 10
GCs (see text for details). The top and bottom rows correspond to rms and bi-
weight estimates, respectively. Overlaid on the top row, we show with starred
symbols the same calculation but using both MCMC methods for the four
systems highlighted in Fig. 7 plus our fiducial dwarf in the top panel of Fig. 1.
Different colours correspond to 68 per cent and 95 per cent confidence inter-
vals, as labelled. Thin dashed lines highlight the median correction at fixed
kurtosis or skewness. Non-Gaussianities may have a significant (and system-
atic) impact on accuracy estimates, in particular for high/low kurtosis values.

with the confidence level being considered, varying from 10 to
20 per cent for the 68 per cent percentile (magenta) to ~5 per cent
for the 95 per cent confidence level (salmon).

Given the overall bias of our GC population in Fig. 8 towards
negative kurtosis, the current uncertainties calculated in observations
might actually be on the conservative side and the constraints
actually tighter than currently estimated. However, this changes for
systems under severe tidal disruption, expected to show more often
positive kurtosis values that could result in confidence intervals being
currently underestimated in the literature.

A similar exercise of sorting our galaxies by their skewness
(top-right panel of Fig. 9) shows no significant dependence of the
correction to confidence intervals with this parameter. Note that
although these results were derived for rms estimates, examples
calculated using the MCMC method are consistent with these results
(starred symbols). For completeness, we also show the correction
levels for biweight velocity dispersion (see bottom panels of Fig. 9),
which agree well with those calculated for rms.

We conclude that although the overall velocity dispersion and
dynamical mass estimates perform remarkably well, on average, even
under severe tidal disruption, in individual objects, kurtosis might be
an important factor to consider when reporting confidence intervals
in observations. This seems roughly independent of the particular
method used to calculate the velocity dispersion, at least among
the three explored here: rms, biweight and MCMC. Unfortunately,
estimating kurtosis or skewness in a sample with only a handful
of GCs is challenging. Our theoretical results should be interpreted
mostly as a warning that large deviations from Gaussianity may
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Figure 10. Predicted line-of-sight velocity dispersion of simulated GCs, o mcMmc,f, as a function of host galaxy stellar mass in our simulations, colour-coded
by the DM bound fraction, Mpm,,—0 /Mpwm,inf Of each galaxy. The median trend (cyan) is in good agreement with observational constraints from SLUGGS
on the high-mass end (open circles) and also dE galaxies in Virgo (Toloba et al. 2016) using both their RF (rotation fit) and RDSF (rotation and dispersion
simultaneous fit) methods. The colour gradient in the simulated points shows that, at fixed M., galaxies that have experienced more tidal disruption have the
lowest GC velocity dispersion (darker symbols). We highlight this by selecting all simulated galaxies below and within 1o scatter of the mean relation (see points
with higher opacity and those within the cyan error bars) and plotting their distribution of retained DM mass in the small inset. These low omcomc s galaxies
have retained only 17 per cent (median) of their initial DM mass compared with about 36 per cent of that for galaxies within 1o of the median. Interestingly,
UDGs with similar stellar masses show a wide range of velocity dispersion. Data for only four UDGs are available in this mass range: VLSB-D (Toloba et al.
2018); DF44:x (van Dokkum et al. 2019b); DF4 (van Dokkum et al. 2019a); and several estimates for DF2, vD19 (lavender; van Dokkum et al. 2019b), M 18
(green; Martin et al. 2018), L19 (orange; Laporte et al. 2019) and E19xx (red; Emsellem et al. 2019). (Double asterisks indicate velocity dispersion of the
stellar component and not from GCs.) Examples such as DF2 and DF4 sit at the lowest bounds of velocity dispersion with ¢ < 10 kms~!. These results hint
at tidal disruption as a possible formation path for objects such as DF2 and DF4. In particular, some of our simulated galaxies overlap with the constraints
for DF2.

occur and would have a sizeable impact on the estimated confidence
intervals. This may have important consequences when dealing with
systems where tidal disruption may be suspected to be important, as
is the case of some UDGs.

5 DARK MATTER CONTENT IN DWARFS
ESTIMATED FROM THE KINEMATICS OF
GLOBULAR CLUSTERS

Dwarf galaxies place constraints and challenges on the cosmological
ACDM scenario and, with it, an opportunity to test theoretical
predictions and validate (or falsify) the cosmological model. One
of the basic predictions of galaxy formation models in the ACDM
framework is that dwarf galaxies inhabit relatively massive haloes. A
number of observational efforts have therefore focused on measuring
the DM content in dwarfs. In the case of cluster dwarfs, which are in
the majority gas-poor and of low surface brightness, GCs are often
the best dynamical tracers given their luminosity and extended spatial
distribution.
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Studies of the kinematics of GCs in several dE galaxies in Virgo
have revealed a wide range of velocity dispersions for GCs in
M, ~ 10° M, dwarfs (Toloba et al. 2016). However, other studies
targeting ultra-diffuse dwarfs have revealed a much wider GC
velocity dispersion range, including the detection of some UDGs
where o gc is so low that, at face value, it suggests systems that are
‘DM free’ (van Dokkum et al. 2018a,b, 2019a; Toloba et al. 2018).
This result offers vital clues to our understanding of the formation
paths of UDGs in clusters.

We use our tagged GC catalogue in Illustris to study the population
and kinematics of GCs predicted for dwarfs in clusters such as Virgo.
Fig. 10 shows the omemce s of GCs as a function of the stellar mass in
our simulated cluster galaxies. We choose o nemcys to facilitate the
comparison with observational data. The median of the simulated
relation is indicated in cyan, with vertical error bars corresponding
to the rms scatter.

In the dwarf regime (i.e. M, < 10° My), our estimates of ogc
agree well with those of dEs in Virgo (data from Toloba et al. 2016,
shown by grey triangles in Fig. 10). This is encouraging, as the
GC tagging method relies on observations and calibrations done
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at higher masses, and the power-law relation between halo mass
and GC mass is an extrapolation over this mass range. Moreover,
the tagging is done at the moment of infall into the cluster and
not at present day, making this comparison mostly a prediction of
the model. Furthermore, it is reassuring that the velocity dispersion
predicted for more massive ellipticals agrees well with constraints
from the SLUGGS survey (see open grey circles; Forbes et al. 2017).

Our calculations have so far not included the effect of individual
errors in the measured velocity of each GC. In the dwarf galaxy
regime, observations typically have individual errors of the order
of 3-10 km s~! per GC (Toloba et al. 2016, 2018; van Dokkum
et al. 2018b). We have checked that adding random Gaussian errors
with 10 km s~' to our GC velocities only increases oycmcs On
average by ~20 per cent on our lowest velocity dispersion objects,
with increasingly smaller effect towards more massive systems. For
instance, in galaxies with o pmemcs ~ 25 km s~ ! the MCMC velocity
dispersion calculated assuming 10 km s~! errors exceeds that without
errors by ~5 per cent (median; see Fig. B1). The overestimation is
even smaller if we assume random errors with amplitude 5 km s~!
instead (see Appendix B for more details).

Simulated galaxies in Fig. 10 are coloured by their retained
(bound) DM fraction, calculated, defined, as before, as the ratio
of present-day DM mass given by SUBFIND compared with that at
the moment of infall. We find a clear gradient of o ycymc at fixed
M., where galaxies with high GC velocity dispersion tend to retain
most of their DM mass while low o vemce values are dominated by
galaxies that have lost more than 80 per cent of their DM mass.
To highlight this, we show in the inset panel the distribution of
bound DM mass fraction for all galaxies that deviate by more
than 1o below the median relation (included points are highlighted
with a higher symbol opacity). Galaxies this far down in velocity
dispersion have retained typically only 17 per cent of their initial DM
halo.

Can tidal stripping explain the low GC velocity dispersion found in
some UDGs such as DF2? We show in Fig. 10 several measurements
for the velocity dispersion of this dwarf as determined by different
teams using slightly different assumptions (Martin et al. 2018; van
Dokkum et al. 2018b; Laporte et al. 2019). Interestingly, we find a
few simulated dwarfs with oycmce consistent with the upper end
of the range measured in the literature for DF2. These objects
in our simulations seem significantly tidally stripped (dark colour
points), in agreement with the arguments discussed in the previous
paragraph.

These results are intriguing, as tidal disruption has been proposed
as one of the mechanisms that may transform normal galaxies into
UDGs in clusters (Carleton et al. 2019; Leigh & Fragione 2020;
Maccio et al. 2020; Sales et al. 2020), and some observational evi-
dence for the case of stripping has recently been presented (Montes
et al. 2020). Although the simulations do not have the resolution
to follow the morphological changes of these galaxies, our results
suggest that the same tidal transformation might lead to velocity dis-
persions as low (ogc ~ 10 kms™!) as that observed for GCs around
DF2.

We note that the stellar mass for DF2 is estimated to be about
M, ~ 2 x 108 Mg, (van Dokkum et al. 2018b), which is below our
cut-off M, > 5 x 108 Mg, to tag GCs on to infalling haloes. This
means that our sample at these small masses includes only dwarfs
that were more massive in the past (and therefore fulfilled our cut-off
of 5 x 108 My, for the initial tagging). From this perspective, it is
not surprising to see the tidal origin of our identified DF2-analogues.
However, it is interesting to find objects with GC velocity dispersions
as low as DF2 in our simulated clusters.

GCs as mass tracers 1671

30
van Dokkum + 2018

Laporte + 2019 o
Martin + 2018 e
1021 Emsellem + 2019
°
20
J
s .0 -
E ‘ ‘ ‘ ® 15 ZO
9 0!0” \[
80 ‘e
10! 10

1610 1611
inf
MZOO

Figure 11. GC velocity dispersion oncmc,s for simulated dwarfs in the
stellar mass range comparable with DF2, M, = 1-3 x 10% M, as a function
of their infall virial mass M%‘Z{). The vertical error bars correspond to the
68 per cent confidence interval for the MCMC velocity dispersion estimate
(flat priors are shown in full symbols, and open green circles show Jeffreys
priors). Several of our simulated objects show GC velocity dispersions that
are compatible with the upper end of observational estimates for DF2 (see
shaded areas). These kinematic analogues of DF2 have 3—17 GCs still bound
at z = 0 (colour bar) in good agreement with the ~10 GCs currently known
for DF2. Our simulations suggest that DF2-like objects may infall as dwarf
haloes with M%f) = 0.3-3 x 10! Mg, losing more than 90 per cent of their
DM mass at present day.

To better assess the DM haloes inhabited by DF2 candidates, we
select all our simulated dwarfs in the stellar mass range M, = [1-3] x
108 Mg, and we show their present-day o ycmc s of GCs as a function
of their infall virial mass in Fig. 11. Here, each simulated dwarf
is colour-coded by the number of GCs retained. We find that these
‘DF2-analogues’ have between 3 and 30 GCs, in good agreement
with the 9-11 observed GCs around DF2. We also show that the
assumptions of flat (full symbols) or Jeffreys (green open circles)
priors do not qualitatively change our results (in agreement with
the conclusions of Martin et al. 2018). For comparison, the shaded
horizontal regions in Fig. 11 indicate the observational estimates of
the velocity dispersion of DF2 GCs according to various authors.

Although the majority of our simulated dwarfs have higher
owMcmcs, there are a handful of objects that overlap with the uncer-
tainty range from Martin et al. (2018) and Laporte et al. (2019). These
objects had infall virial masses consistent with dwarf haloes in the
range Ml ~ [0.3-3] x 10'' Mg, comparable with that estimated,
for example, for the Large Magellanic Cloud (LMC) in the MW. For
these objects, the number of GCs predicted by our tagging method
(3-17) agrees well with the ~10 GCs found associated with DF2.

We note that there are still significant uncertainties in the
measurement of the GC velocity dispersion in DF2. If lower values
are proven to be more accurate, this would place DF2 close to the
even more ‘dark-matter-free’ UDG DF4 (as least as suspected from
its stellar velocity dispersion). Additional formation mechanisms
might be needed to explain the very low DM density in this extreme
class of objects, such as a ‘tidal-dwarf” origin (see Zwicky 1956;
Schweizer 1978; Mirabel, Dottori & Lutz 1992). The presence of
DM cores driven by DM self-interactions or by baryonic feedback
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could represent a possible solution to this problem. Furthermore,
higher-resolution simulations would be needed to resolve such low
DM contents.

Considering non-Gaussianities and the corrections to confidence
intervals explored in Section 4.3, if the GC population of DF2
had positive kurtosis, then the uncertainty ranges estimated should
be revised upwards, which would help alleviate the tension. In
particular, the estimate from van Dokkum et al. (2018b) is based
0N O piweight> for which we find a systematic underestimation of the
confidence intervals compared with a Gaussian in the case of positive
kurtosis (see Fig. 9). Assuming a correction level of 15 per cent
(corresponding to an intrinsic kurtosis ~0.75), DF2 could increase
the upper limit of the 90 per cent confidence interval from 10.5 to
12.1 kms™~!, bringing it closer to other estimates. !

We conclude that it is indeed possible that DF2 may have formed
as a result of a normal dwarf halo that has been stripped of more
than 90 per cent of its mass. Low surface brightness stellar tails,
elongated morphology or evidence of rotation for its GC system
(such as that found by Lewis, Brewer & Wan 2020) could help
confirm its tidal nature but their absence will not conclusively
rule out this formation path. This highlights the urgent need for
more observational campaigns targeting the kinematics of GCs
around UDGs in order to more robustly constrain their global DM
content.

6 SUMMARY

We use a catalogue of GCs tagged on to the cosmological hydrody-
namical simulation Illustris to study the accuracy of dynamical mass
estimates based on the radial extension and line-of-sight velocities
of GC systems. In particular, we analyse the GC system of satellite
galaxies in nine simulated galaxy clusters with virial mass Mgy ~
10" Mg. Our sample consists of 3777 galaxies in the mass range
M, =10%-6 x 10! M.

We find that mass estimators of the form Mo o %r do a remarkably
good job at estimating mass when using GCs as tracers, especially
when having 10 or more GCs. For galaxies that have a smaller
number of GCs with measured kinematics, the particular definition
of velocity dispersion used may systematically bias the results.
The use of rms and biweight velocity dispersion (Girardi et al.
2008; Veljanoski et al. 2014; van Dokkum et al. 2018b) tends to
underestimate the dynamical mass, whereas other methods used
in the literature, such as oyvcme (Widrow et al. 2008; Hogg et al.
2010; Toloba et al. 2016; Martin et al. 2018), tend to overestimate
masses for low Ngc. In the case of MCMC, the shape of the prior
may play an important role, with Jeffreys prior resulting in a lower
bias compared with a flat prior. We provide fitting formulas in
equations (4) and (3) that might help correct for these effects in
observational samples with fewer than 10 GC tracers.

Surprisingly, the accuracy of the recovered mass estimation
depends little on the level of tidal disruption suffered by the galaxy,
indicating that satellite galaxies in clusters are, in the majority, in
a state of quasi-equilibrium as soon as they move away from their
pericentres (see Pefiarrubia et al. 2009). Our results provide strong
support for the use of GC kinematics to estimate dynamical masses
even in high-density environments such as clusters. A word of caution

'We note that the procedure in van Dokkum et al. (2018b) (and reproduced
by Martin et al. 2018) is slightly different from that derived in Section 4.3, as
they jointly estimate confidence intervals and intrinsic velocity dispersion in
a single step.
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is necessary in the case of systems with significant tidal stripping,
where significant deviations in kurtosis may arise as a consequence
of tidal disruption effects and may affect the estimated confidence
intervals.

We use our results to compare the DM content of cluster dwarfs
predicted in our simulations with available observational constraints
in nearby clusters and groups. We find good agreement with the
median and scatter measured for dwarf ellipticals in Virgo. Moreover,
we find that tidal disruption creates scatter in the measured M,—o ¢
such that at a fixed M,, smaller velocity dispersions correlate with
larger mass losses to tidal disruption. On average, galaxies that lie
below the median relation by 1o have lost ~83 per cent of their infall
DM mass.

In observations, there is large scatter in the velocity dispersion of
GCs for dwarfs with M, < 10° Mg, with the most extreme outliers
being the UDGs DF2 and DF4. These UDGs have estimated GC
velocity dispersions in the range 7—10 kms~! (DF2) and o ~
4.2 kms~' (DF4), suggesting that they are extremely DM-deficient.
Interestingly, we identify a set of DM-poor DF2-analogues in our
simulation that have similar stellar masses, 3—17 bound GCs, and
a velocity dispersion of those GCs opmcmc ~ 10 kms™!, consistent
with the upper envelope of measured values for DF2. The progenitors
of these DF2-analogues fell into the cluster as dwarf haloes with
M = [0.3-3] x 10" Mgbut have lost more than 90 per cent of
their mass to tidal disruption. Interestingly, tidal disruption has also
been proposed as a possible mechanism to form UDGs in clusters
(Carleton et al. 2019; Leigh & Fragione 2020; Maccio et al. 2020;
Montes et al. 2020; Sales et al. 2020). Our results suggest that the
same mechanism may be able to explain simultaneously the ultra-
diffuse nature and low GC velocity dispersion in objects such as DF2
within the ACDM model.

Although we do not find systems with velocity dispersions as low
as that inferred for DF4, we are limited by the numerical resolution
in our Illustris sample. The small number of UDGs with available
kinematical data does not allow for a proper evaluation of how
common or rare DM-poor dwarfs such as DF2 and DF4 might be, or
their dependence on the environment or host mass. While systematic
photometric studies of UDGs and their GCs in nearby groups and
clusters are starting to become available (e.g. in the Virgo cluster; Lim
et al. 2020), adding spectroscopic data to constrain their stellar and
GC kinematics would represent the most promising avenue towards
a better understanding of how UDGs form.

Explaining the large scatter in the DM content of dwarf galaxies
is one of the outstanding challenges in the ACDM model. While the
rotation curves of gas-rich dwarfs have revealed a wide variety of DM
distribution in field dwarfs, GCs are starting to reveal a similarly rich
complexity for gas-poor dwarfs in groups and clusters. As we look
forward to larger data sets with available GC kinematical constraints
for early-type dwarfs, our results validate the use of GCs as efficient
dynamical mass estimators even in the case of a modest number of
GCs with measured kinematics.
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APPENDIX A: VELOCITY DISPERSION
MEASUREMENTS

Here, we give a more detailed discussion of the calculations of each
of the methods used to calculate velocity dispersion in this work.

(i) The rms dispersion, o ,ys.This method assumes that the
underlying velocity distribution is Gaussian, and it is calculated
using

N =2
— Z@% (A1)

where N is the number of GC tracers, v; are the individual velocities
of the GCs, and V is the centre-of-mass velocity of the galaxy the
GCs are associated with.

We first use this calculation to perform 3o clipping of the GC
candidate particles from which we later draw our realistic sample
of GCs. This removes most of the GC particles within the cut-off
radius that belong to the intracluster population and thus would
contaminate our sample.

(ii) The biweight velocity dispersion o piweight. This method does
not assume an underlying Gaussian velocity distribution and instead
assigns different set of weights to each velocity measurement, where
larger weight values are given to velocities closer to the median of the
distribution. This method is advantageous for highly contaminated
samples of tracers, where the biweight estimation downweights
possible outliers or contaminants making them less influential in
the final o estimate compared with the simpler rms calculation.

As introduced in Beers et al. (1990), to calculate the biweight
estimation of scale, we first need to calculate the mean absolute
deviation (MAD),

MAD = median(|v; — M]), (A2)

where v; are the individual velocities and M is the median of those
velocities. Next, we calculate u;, the weight associated with each
velocity, following
Vi — M

~ ¢MAD’
where c is the ‘tuning’ parameter, which is to be set to 9 according to
Beers et al. (1990). The biweight estimation of scale is then given by

Nl/Z[E‘u[Kl (vi - M)(l - ui)4]1/2
|2 <1 (D= u)(d = 5u?)|
where N is the number of tracers. A minimum of five tracers is

required for this method to work (see Beers et al. 1990 for a brief
discussion).

(A3)

u;

, (A4)

Obiweight =
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Figure Al. An illustration of the MCMC method for a randomly selected
galaxy with GCs in Illustris. This PDF estimates both the velocity dispersion
o and the expectation value (v) using stochastic sampling of parameter space
using 10 GCs. This method assumes an intrinsic error on the order of 5 km s ™!
in the velocity measurements.

(iii) MCMC velocity dispersion, o ycnvc-This method takes the
line-of-sight velocity distribution and stochastically finds the best o
and v to fit a Gaussian to the distribution. The likelihood used in this
estimation is given by

L—ﬁLex —05(""_<”>>2 (AS)
= i T P . . ,

where v; are the line-of-sight velocities of the tracers and ¥ and o
are allowed to vary. MCMC methods tend to be computationally
expensive and the results can depend on the shape of the prior
assumed; see Martin et al. (2018) for a specific example using DF2.
Here we explore two different assumptions for the priors: a uniform
distribution (flat prior) and Jeffreys prior, which in the case of a
Gaussian function like that assumed here, corresponds to a prior
distribution ocl/o.

In practice, the Jeffreys prior amounts to multiplying equation (A5)
by (1/0) and has the net effect of shortening the long tails in the
posterior PDF for the velocity dispersion in figures such as Fig. Al
(see right panel in Fig. 4). The Jeffreys prior is, however, improper,
which means the distribution of posterior probabilities might not
necessarily integrate to 1 unless a lower limit in o is specified.
We have used 0 = 0.5 km s™' in our calculations, but we have
explicitly checked that changing this to 0.5 or 1 km s~! does not
qualitatively change our results. We have confirmed that the use of
the Jeffreys prior is particularly powerful for systems with small
Ngc, where the differences with a flat prior are most significant
(see Fig. 6).

We employ the Metropolis—Hastings technique to find the posterior
PDF of 0, the result of which is illustrated in Fig. Al. In summary,
this technique involves the following steps.
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(i) Set initial estimates for the parameters in question.

(i) Randomly select one of those variables, and calculate the
likelihood.

(iii) Select a random point from a Gaussian jumping distribution
centred on the current value of the parameter with a dispersion set
in the case of this study to 5 km s~!. This becomes the new value of
the selected parameter.

(iv) Calculate the likelihood with this new parameter value. Then,

(a) if the likelihood at the new value is greater than the
likelihood of the old value, we keep the new value of the
parameter;

(b) if the likelihood at the new value is less than the likelihood
at the new value, then if the ratio of the new likelihood to the
old likelihood is greater than some random number between 0
and 1, we keep the new value of the parameter, otherwise we
keep the old value.

(v) Repeat until the parameter space of all variables has been
sufficiently explored.

We have illustrated this process in Fig. Al. The corner panel shows
the two-dimensional PDF of the line-of-sight velocity dispersion
omcmce and the expectation value of the line-of-sight velocity
distribution (v). The top panel shows the resulting posterior for
omcmc and the bottom-right panel the posterior for (v).

APPENDIX B: ERRORS IN INDIVIDUAL
VELOCITY MEASUREMENTS

We explore in Fig. B1 the effect of adding measurement errors to the
individual velocity of GCs in each galaxy. We compare the MCMC

40

5 km/s Error
10 km/s Error

35 A

Omcwmc, f (with errors) [km/s]

lOl.O 12I.5 15'.0 17I.5 2010 22I.5 25:.0 27'I.5 30.0
Omcwmc, £ (no error) [km/s]

Figure B1. Impact of adding errors to the velocity measures of individual
GCs on the recovered velocity dispersion of the system using the MCMC
method with a flat prior. The horizontal axis shows omcMmc ¢ (assuming no
errors) and the y-axis shows for the same GC systems the o mcmc,f calculated
assigning to each GC velocity an error drawn from a Gaussian distribution
with dispersion 5 (red) and 10 (blue) km s~'. Solid lines with the same colour
indicate the median at fixed o mcmc f-
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(flat prior) velocity dispersion calculated with and without errors,
where errors have been modelled assuming a Gaussian distribution
of 5 and 10 km s~! dispersion (red and blue, respectively). These
values have been chosen to coincide with typical velocity errors in
recent observations of dwarf galaxies (Toloba et al. 2016, 2018; van
Dokkum et al. 2018a).

We can expect that these added uncertainties will only be relevant
in objects where the intrinsic velocity dispersion of the GC system
is of the order of the added errors to each individual GC velocity.
Therefore, we show in Fig. B1 a subsample of our galaxies with
intrinsic omemer < 30 km s™!. As expected, we find that the
addition of errors will tend (on the median) to increase the velocity
dispersion estimates, with an impact that naturally depends on the
level of errors included.

The maximum effect is found for our lowest velocity dispersion ob-
jects, where the overestimation on the median can reach 20 per cent
in the case of 10 km s~! errors. Note that this quickly decreases
to 5 per cent if the errors are instead 5 km s~!. The solid red and
blue lines indicating the median MCMC determination including
errors show that the systematic overestimation decreases as the
intrinsic velocity dispersion increases, being negligible for objects
with omemer ~ 25 km s~! and above. This study indicates that
the inclusion of observational errors in our calculations does not
qualitatively change the results and conclusions presented in our

paper.

APPENDIX C: IMPACT OF NON-GAUSSIAN
DISTRIBUTIONS ON CONFIDENCE INTERVALS

Confidence intervals represent the probability (or fraction of times)
that the true variance s> of a sample with Ny, events falls within the
variance d” plus/minus the confidence interval of a given subsample
with N objects (where N < N,). This confidence interval has a
well-known functional form in the case of an underlying Gaussian
distribution, an assumption commonly made to estimate the accuracy
of velocity measurements in observations. In this appendix, we
test how well the Gaussian confidence intervals perform for five
individual objects in our sample when using each of the three methods
to measure velocity dispersion explored in this paper: rms, biweight
and MCMC.

We start by using the galaxy introduced in the upper row of Fig. 1,
which shows a nearly Gaussian line-of-sight velocity distribution (see
upper-right panel in the same figure). The kurtosis and skewness for
the GC candidates in this object are —0.09 and 0.34, respectively.
We sample 1000 times N = 5, 10, 20, 50, 75 and 100 GCs out of
the ~400 GC candidates that remain bound to this galaxy at z = 0.
For each set of samplings, we count the fraction of times than the
true variance of all candidate GCs is contained within the variance of
each random sampling with N tracer GCs plus the confidence interval
computed assuming a Gaussian distribution.

The upper panel in Fig. C1 shows the result of such an exercise
as a function of the number of tracers N selected. We show
with circles the results for confidence interval levels: 38.3 per cent
(black), 68 per cent (purple), 95 per cent (magenta) and 99.7 per cent
(orange). Dashed horizontal lines highlight the position of each level
in the plot. For a perfectly Gaussian distribution and a reliable method
to estimate velocity dispersion, one would expect the symbols to
follow these horizontal lines.

We find that this is the case of the rms velocity dispersion estimate
in this galaxy, which is roughly independent of the number of tracers
(upper panel in Fig. C1). Similarly, computing the velocity dispersion
using MCMC (either with flat or Jeffreys priors; bottom two panels
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Kurtosis = -0.09, Skewness = 0.34
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Figure C1. For 1000 realizations of 5, 10, 20, 50, 75 and 100 GCs, this
figure shows the fraction of times that oy of the underlying distribution of
GC candidates falls within the specified confidence interval, 38.3 per cent
(black), 68 per cent (purple), 95 per cent (magenta) and 99.7 per cent
(orange), of the specified o estimate for the realization. Trials from top
to bottom are for o ms, O biweight> OMCMC,f and oMcMC,j- This particular
subhalo, from the top panel of Fig. 1, has a relatively Gaussian distribution
of GC candidates. The Gaussian confidence seems to hold well across all
Ngc with the exception of o piweight, for which the confidence intervals are
underestimated.
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in Fig. C1) yields a similar result. In this case, the confidence interval
is not computed from the Gaussian form, but extracted directly from
the PDFs of the MCMC method.

In the case of o piycigh: (top second panel in Fig. C1), assuming
Gaussian confidence intervals seems to slightly overestimate the
accuracy (dashed lines are above the calculated symbols), especially
for a number of tracers 10 and below. However, the effect is only
mild.

We repeat this calculation using four galaxies that deviate more
substantially in either kurtosis or skewness from a Gaussian distri-
bution (those highlighted in Fig. 7). We show this in Fig. C2. We
find that all methods show, in general, similar trends: high positive
kurtosis results on underestimated confidence intervals (symbols
below the dashed lines) while high negative kurtosis means that
measurements are more accurate than expected from a perfectly
Gaussian distribution (symbols above corresponding dashed lines).
Similar trends might be found for deviations in skewness (rightmost
two panels in Fig. C2), although the effect seems smaller than in
the case of kurtosis. The dependence with the number of tracers
is weak.

Such an exercise (and the ratio between the symbols and the
horizontal levels) can now be applied to the whole sample to
derive, for each galaxy, a correction to the confidence intervals
calculated assuming a Gaussian distribution. This is shown in
Fig. 9.
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Figure C2. For 1000 realizations of Niacers = 5, 10, 20, 50, 75 and 100 GCs, this figure shows the fraction of times that oo of the underlying distribution of
GC candidates falls within the corresponding confidence interval, 38.3 per cent (black), 68 per cent (purple), 95 per cent (magenta) and 99.7 per cent (orange),
for the different o estimates. Trials from top to bottom in each panel are for o ims, 0 biweight» 0 McMc,f and o' mcMmc,j- From left to right, each panel shows the effect
of large positive kurtosis, large negative kurtosis, large positive skewness and large negative skewness on the correctness of Gaussian confidence intervals. All
methods seem to suggest that confidence intervals are underestimated in the case of negative kurtosis (points above horizontal lines) while the opposite is true
for positive kurtosis. The trend with number of tracers is weak.
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