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1. Introduction

Disorder as a ubiquitous feature of materials can cause profound effects on a variety of their
properties [1,2]. Consequently, a careful control on the concentration of defects in materials can
be used to rationally change and design new functionalities of modern quantum systems. One of
the most pronounced effects of disorder is the electron localization (Anderson localization) and
the associated metal-insulator transition [3]. The theory of Anderson localization, where multiple
scattering off impurities leads to the spatial confinement of electrons, is well developed. It has been
demonstrated that in one and two dimensions, an arbitrarily small amount of disorder localizes
electrons, whereas in three dimensions states may be localized or extended depending on the
amount of disorder [4].

Numerical methods have played an important role in understanding the mechanism of Ander-
son localization. Several standard computational tools have been employed for finite-size lattice
calculations, including exact diagonalization, the transfer matrix method, the kernel-polynomial
method, as well as the multifractal approach [1,5,6]. While numerically robust, the application
of these methods to real materials often faces the challenge of having to treat large localization
lengths when being restricted to finite system sizes. Moreover, often the techniques developed
for detecting Anderson localized states, in non-interacting systems, are not directly applicable to
interacting electron systems, as they are built on the knowledge of single and not many-particle
eigenstates.

Effective medium embedding methods have been developed over the past several decades;
presently, these approaches constitute an alternative and complementary way for treating disorder
in materials. The most commonly used approach for disordered systems is the coherent potential
approximation (CPA) [7,8]. The CPA shares a similar conceptual construction with the dynamical
mean-field theory (DMFT), which has proven to be a very successful theory for strongly correlated
electron systems [9,10]. Both CPA and DMFT are Green’s function-based methods and can be
easily combined to study the interplay of disorder and electron localization. Conceptually, in these
methods, the original lattice is mapped to a single impurity embedded in a dynamical effective
medium determined self-consistently. The dynamics of the medium allows for effectively capturing
the disorder or interaction-induced correlations effects at the impurity level. By construction, the
CPA is a local approximation, and to capture the multi-impurity scattering effects, various cluster
extensions have been developed. This includes the momentum-space based Dynamical Cluster
Approximation (DCA) and the real-space-cluster molecular CPA [11-13].

Although these commonly used effective medium embedding methods allow studying disorder
effects, they, however, fail to capture the Anderson localization. The main challenge here is that
the linearly averaged (arithmetic average) density of states (DOS), obtained from the corresponding
disorder averaged impurity (cluster) Green'’s function calculated within the CPA (DCA), is not critical
at the Anderson transition. Hence, it cannot be used as an order parameter to characterize the
localized states due to disorder.

It is therefore of interest to explore the effective medium methods that employ a proper order
parameter capable of describing the Anderson localization. There have been several proposals
according to which the Anderson transition might be detected by studying the statistical properties
of the local density of states (LDOS) and its distribution [3,14-20]. Dobrosavljevic et al. [21]
incorporated such ideas in the context of the effective medium approach. They developed the
typical medium theory (TMT) and showed that the geometrically averaged LDOS is indeed an
order parameter for the Anderson transition. In the typical medium analysis, instead of using the
arithmetically averaged disorder Green’s function (as it is implemented in the CPA and the DCA),
the geometrical averaging is used in the self-consistency loop. Such typical medium analysis has
also been extended to interacting disordered systems [22-33]. However, by construction, the TMT
is a local single-site approximation and, hence, it neglects the non-local spatial correlations. As
a result, the TMT underestimates the critical disorder strength for the Anderson transition in a
three dimensional (3D) model, and does not capture properly the mobility edge trajectories for
the uniform box distribution.

To overcome such limitations, recently, we have developed the typical medium dynamical
cluster approach (TMDCA) [34-40], which is a cluster extension of the single-site typical medium
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method [21]. As we demonstrated in Refs. [35,41], such typical medium analysis can properly
capture the non-self-averaging behavior of the Anderson localization phenomena. In particular, it
captures the dramatic changes in the distribution of the local density of states (LDOS) through the
transition. At small disorder strength, the LDOS follows a Gaussian distribution, while it is a skewed
log-normal distribution at large disorder. The calculated typical-medium DOS (TDOS) obtained
from the geometrically averaged cluster Green’s function can capture such behavior. As shown
in [35,41], the TDOS vanishes for the localized states, while it is finite for the extended states. The
cluster TMDCA method when applied to the three dimensional Anderson model not only captures
accurately the critical strength of the disorder, but also the reentrance behavior of the mobility
edge. We have also extended the application of the TMDCA method beyond the simple Anderson
model, including systems with electronic interactions [23,40,42], off-diagonal disorder [36,43],
multi-band [38], and phonon systems [44-46]. Recently, such developments have been successfully
applied in the context of ab-initio calculations of Anderson localization in superconductors [38],
dilute magnetic semiconductors [39], photovoltaics [47], and binary alloy systems [17].

The goal of the present work is to further benchmark the TMDCA method for the Anderson
model in three dimensions. We perform a careful systematic cluster size analysis of the electron
localization for both box and binary disorder distributions. Our results indicate that non-local cluster
corrections are significant in capturing electron localization, hence, the finite cluster TMDCA analysis
is necessary for the proper description of disorder effects in the Anderson model.

The paper is organized as follows. In Section 2, we provide a short overview of the model and
the TMDCA method. In Section 3, we present the results of the application of the TMDCA method
for the 3D Anderson model with box and binary alloy disorder distributions. We conclude, with a
discussion of the prospects of the method, in the last section.

2. Model and method

We study the Anderson model of non-interacting electrons subjected to a disordered random
potential

H:—tZ(C,TCj+H~C~)+ZVini’ M
(i) i

here the operators Cl-T and ; are the creation and annihilation operators, respectively, for an electron
on site i, n; = ciT ¢; is the number operator, and t is the hopping energy between nearest neighbors i
and j. The first term is the kinetic energy operator due to the hopping of electrons on a lattice, and
the second term is the local on-site disorder potential. The disorder potential is a random quantity
distributed according to some specified probability distributions P(V;). We set 4t = 1 to serve as
the energy scale.

We perform our analysis for two types of disorder distribution: the (uniform) box disorder,
which is given by the distribution function P(V;) = %@UW/Z — Vi) (the disorder strength is
characterized by W), and the binary alloy disorder distribution with P(V;) = c;86(Vi—Va)4c,d(V;—Vp).

Here Vg = —Vj, ¢, is the concentration of the host A ions, and ¢, = 1 — ¢, stands for the
concentration of the impurity B ions. We introduce a shorthand notation for disorder averaged
quantities: (---) = [dV;P(V;)...).

The TMDCA is a typical medium extension of the conventional DCA scheme [11,12]. Just as in the
DCA approach [12], we map the original lattice into a cluster of size N, (constructed in momentum
space) embedded in the effective medium. The effective medium is determined self-consistently.
The TMDCA utilizes the geometric averaging over disorder for the cluster Green’s function, while
the DCA uses the arithmetic (linear) averaging. To construct a N, cluster, the first Brillouin zone is
divided into N, = L? (L; is the linear cluster size, D is the dimension) coarse-grained cells with the
cluster centers K surrounded by points k within the cell such that the lattice momentum k = K +k.
Both DCA and TMDCA systematically incorporate the non-local spatial fluctuations as the cluster size
N, increases, and becomes exact in the limit N, — oo. The non-local short-range spatial correlations
are treated explicitly within the range of the cluster N, while the long length scale correlations
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are treated within the typical medium. As in the DCA scheme, the TMDCA self-consistency loop is
constructed for the momentum K dependent quantities, while to solve the cluster problem, one
employs the Fourier transform to the real space of N, sites with (I, J) the site indices [11].

In the TMDCA scheme, the main quantity of interest is the cluster typical Green’s function
Gf,,(K, w) which is obtained from the Hilbert transform of the corresponding cluster typical density
of states ,ofyp(K ,w). Here pfyp(K ,w) is obtained using the geometrical averaging ansatz of the
form [35,41]:

local-TDOS
non-local
N
1 O P (K, w, V)
Pyp(K, w) =exp | — » (In(of(w,V))) ><<— . (2)
o Ne ; ! 1/Ne 32, pf(w, V)
Here pf(w,V) = —%ImG,C,(w, V) is the local density of states at site I obtained from the cluster
Green'’s function G,“](w, V), p°(K, w, V) = —%GC(K, w, V) is a non-local density of states determined

from the Fourier transform of the cluster Green’s function G,‘]. In the ansatz of Eq. (2), to avoid self-
averaging at strong disorder, we separate the “local-TDOS”, which utilizes the geometric averaging
over disorder, from the “non-local” K-dependent contributions [35,37,34]. Later we will show that
such ansatz indeed can capture effectively the electron localization in the Anderson model. To
understand better the contribution to the TDOS coming from the local and non-local parts in the
above ansatz, we will also perform our calculations using the “local” ansatz only, with

1 &
pﬁ;;al—TDOS(K’ lU) = exp (N Z(ln(,of(w, V)))) (3)

€ I=1

Also notice that pfyp(K, w) in Eq. (2) possesses the following properties [35,37,34]: for the N, = 1
case, it reduces to the local TMT with ,ofyp(K, w) = exp((In p¢(w, V))). And, at weak disorder str-
ength, the TMDCA reduces to the DCA with pg,,(K, w) — (p(K, w, V)).

In the following we outline the TMDCA self-consistent iterative procedure that we use in our
calculations:

1. Starting from a guess for the effective medium hybridization function A(K, w), we first
construct the cluster-excluded Green’s function

1
w— AK, w) — &K)’

where €(K) is the coarse-grained bare dispersion. For the 3D cubic lattice, the bare lattice dispersion
is given as e(k) = —2t(cos(ky) + cos(k,) + cos(k;)).

2. Since the cluster problem is solved numerically in real space [11,12], we then Fourier transform
G(K, w) to real space with G;; = Y G(K)e* =R,

3. Now we are ready to solve the cluster problem using, e.g., a random sampling. For this, we
stochastically generate a random configuration of disorder potentials, V;, and construct the cluster
Green'’s function G, by inverting the matrix

G(V)=(' =)L (5)

Then we calculate the disorder-averaged cluster typical density of states ,ofyp(K , w) using the ansatz
of Eq. (2), and the Hilbert transform to obtain the cluster typical (geometrically averaged over
disorder) Green’s function

G(K,w)= (4)

PpK, w')
Gy w) = / T (6)
w—w
4. With the cluster problem solved, we close the self-consistency loop by calculating the lattice
coarse-grained Green'’s function

G(K, w) = / ( N3 (K, €)de .

Gop(K, w)) T+ AK, w) — € + &(K)
4




H. Terletska, A. Moilanen, K.-M. Tam et al. Annals of Physics xXx (XxXx) Xxx

W=1O =
04 0.4 Ww=1.2
| — ADOS |
— TDOS
8 0.3 — - local TDOS
a
H
% 0.2
2
2 0.1
0 0
®
0.4 W=1.6
3 0.3} 03F
E | i
02 0.2
8 |
2 01p 0.1
0 2 0 1 2 0 2t 0 1 2
® ®

Fig. 1. ADOS (solid line) and TDOS (shaded area) as function of frequency w at different values of box disorder strength
W =1.0,1.2, 1.6, 2.1 calculated using the DCA and TMDCA methods, respectively. Cluster size is N. = 64. The local TDOS
(dashed line) is obtained using Eq. (3). Vertical arrows indicate the approximate position of the mobility edge boundaries.

which is then used to obtain a new estimate for the cluster-excluded Green'’s function G(K, w). Such
an iterative procedure is repeated, until the self-consistency is reached, i.e., when the cluster typical
Green’s function G, (K, w) and the coarse-grained lattice Green’s function G(K, w) become equal.

3. Results and discussion
3.1. Box disorder distribution

While the localization properties of the Anderson model with box disorder distribution are well
known from the literature [1], we consider it here to demonstrate the validity of our numerical
method. First, we start the discussion of the results by comparing the disorder evolution of the
ADOS(w) (obtained using the conventional DCA scheme with the arithmetic averaging over disorder
in the self-consistency loop) and the typical TDOS(w) (obtained from our TMDCA procedure with
the geometric averaging over disorder). Our results for a cubic cluster with N, = 64 are shown in
Fig. 1. For the TMDCA method, we also show the results obtained with the local ansatz of Eq. (3).
As expected, the disorder dependence of the ADOS(w) and the TDOS(w) is very different: while the
ADOS remains finite with increasing disorder strength, the TDOS continuously gets narrower and
eventually gets fully suppressed. At weaker disorder strength W, the localization of electrons starts
at the band tails, and is detected by vanishing TDOS(w) at higher frequencies w. The mobility edge
(shown by vertical arrows) separates the extended states with finite TDOS from the localized states
with zero TDOS. As disorder strength W increases, the TDOS gets suppressed at all frequencies,
indicating the localization of all electrons in the band. Such suppression of the TDOS with disorder
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Fig. 2. Left (a) panel: The TDOS(w = 0) (obtained using the ansatz in Eq. (2)) vs disorder strength W for different cluster
sizes N, = 1, 8, 27, 64. For the N, = 64 cluster, we also show the data for local-TDOS(w = 0) calculated using the local
ansatz of Eq. (3) (orange crosses). Right (b) panel: The critical disorder strength of the Anderson transition, W,, as function
of N¢. The critical disorder strength W, is determined from the TDOS(w = 0) = 0 data of the left panel.

strength W indicates that the TDOS indeed can serve as an order parameter for the Anderson
localization.

To better understand the role of the non-local contribution (with the full momentum K depen-
dence) in the ansatz for the geometrically averaged cluster Green'’s function (second term in Eq. (2)),
in Fig. 1, we also show the results for the local-TDOS(w) obtained using the local ansatz (Eq. (3)).
Our data indicate that the more significant contribution to the TDOS(w) is actually coming from the
geometrically averaged local DOS i.e., it is well-captured by Eq. (3). The critical behavior at the Fermi
level is the same for both the local and non-local ansatze. However, the non-local K-dependent
contribution of Eq. (2) seems to be important for capturing properly the mobility edge behavior
(marked by vertical arrows). Here, at the edges, we observe the biggest difference between the
local-TDOS(w) and the TDOS(w) obtained with full cluster momentum dependence. This indicates
that while the critical behavior at the band center is captured properly in the local ansatz, the
mobility edge trajectories will, however, converge slower with cluster size N..

Next, we consider the evolution of the critical disorder strength W, of the Anderson localization
transition as a function of the cluster size N.. The critical disorder strength W, is obtained by
calculating the TDOS at the band center TDOS(w = 0) as a function of disorder strength W. The
critical disorder W, is then defined by the vanishing TDOS(w = 0) = 0. We have done such analysis for
several cluster sizes N. = 1, 8, 27, 64 on a cubic 3D Anderson lattice model. Our results are shown
in Fig. 2 (panel a), where we plot the TDOS(w = 0) at the band center as a function of disorder
strength W. The TDOS(w = 0) decreases with increasing disorder strength W, and approaches zero
at W,. Performing a careful analysis for different cluster sizes, N;, we demonstrate that the critical
disorder strength W, converges quickly with the cluster size N, (panel b of Fig. 2). These data also
highlight the importance of going beyond the single-site approximation when describing the critical
behavior of the Anderson transition. For N. = 1 (which corresponds to the local TMT approximation)
the W, &~ 1.675, and it increases gradually to the converged value of W, ~ 2.25 as cluster size N,
gets larger. These results are in a good agreement with the W, reported in the literature. While
TMDCA slightly overestimates the W, as compared to exact results, the advantage of our method is
that it can be easily generalized to interacting and realistic material models. Finally, for N, = 64, we
also show the results obtained with the local ansatz (Eq. (3)) for the TDOS (the corresponding data
are displayed by the orange crosses in Fig. 2). The local TDOS data fall on top of the TDOS(w = 0)
obtained using the full cluster momentum dependence. This indicates that the critical disorder
strength W, of the Anderson localization can be very well captured by the simplified ansatz of
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Fig. 3. Top panel: N, = 1 CPA and TMT results for the ADOS(w) and TDOS(w) at different disorder strength values
V4 = 0.2,0.5,0.65, 0.8. Bottom panel: N, = 64 DCA and TMDCA results for the ADOS(w) and TDOS(w) as function of
increasing disorder V4 = 0.2, 0.5, 0.675, 0.835. The N_64 TMDCA data for the TDOS(w) (red shaded region) are obtained
using the ansatz of Eq. (2), the local TDOS(w) curves (dashed lines) are obtained using the simplified local ansatz of
Eq. (3). Other parameters: ¢, = 0.5.

Eq. (3), which should be an important simplification when applying the TMDCA to more realistic
models.

3.2, Binary alloy disorder distribution

To further explore the application of our TMDCA approach, we now consider its implementation
for the binary alloy system. First, in Fig. 3, we show the results for the ADOS(w) and TDOS(w) at
different values of the disorder strength, V4. To highlight the significance of the non-local spatial
effects, we present the data for the local N. = 1 TMT approach, and the non-local TMDCA method
with N, = 64. For binary alloy systems, when increasing the disorder strength V,, the system
undergoes two phase transitions, i.e., the Anderson transition which is detected by vanishing
TDOS(w = 0) at the band center, and the band-gap opening metal-insulator transition detected
by vanishing ADOS(w = 0) at the Fermi level. For small disorder strength (V4 = 0, 2), both the
ADOS and the TDOS are practically the same. As disorder strength increases, the band gap opens at
the Fermi level in both the ADOS and the TDOS.

For the local N. = 1 case, the Anderson localization of the states at the Fermi level and the
band splitting transition occur at almost the same disorder strength, i.e., the TDOS(w = 0) = 0
at VP ~ 0.6275, and ADOS(w = 0) = 0 at Vive & 0.635. As disorder strength V, increases, the
TDOS becomes significantly smaller and narrower than the ADOS. Regions where ADOS(w) remains
finite but TDOS(w) is zero, indicate the Anderson localized states, separated by the mobility edges
(marked by vertical arrows).

Comparing the N = 1 and finite cluster N, = 64 results, we find that the non-local spatial
correlations, which are included in the TMDCA scheme, introduce a noticeable difference in the
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Fig. 4. Right (a) panel. Top: ADOS(w = 0) as function of disorder strength V, for different cluster sizes N, = 1,8,
27,64, 125. Bottom: TDOS(w = 0) as function of disorder strength V, for the same cluster sizes. Left (b) panel: The
critical disorder strength of the Anderson transition, ch’, and of the band-splitting transition, V"¢, as function of the
cluster size N.. V. are determined from the corresponding TDOS(w = 0) = 0 and ADOS(w = 0) = 0 data at the left panel.
Other parameters: ¢, = 0.5.

localization behavior. In particular, the non-local effects are responsible for the finer features in
the ADOS(w), which are completely smoothed out in the local N. = 1 case. Moreover, we find
that the Anderson transition at the Fermi energy with TDOS(w = 0)=0 occurs much faster than
the gap opening in the ADOS(w). N, = 64 results also indicate that the mobility edge trajectories
are wider than in the N, = 1 case, i.e., the local TMT scheme underestimates the extended states
region [41,35]. For N, = 64, we also show the results (black dashed lines) of the local-TDOS(w)
obtained using the simplified ansatz of Eq. (3). As in the box distribution case, we see that the
major contribution to the TDOS(w) is coming from the geometrically averaged local-TDOS factor.
The full K-dependence in the ansatz of Eq. (2) seems to be mostly relevant for capturing the higher
frequency mobility edge behavior.

To explore the cluster size dependence of the critical disorder strength for both transitions, in
Fig. 4 we plot the ADOS(w = 0) (a panel, top graph) and the TDOS(w = 0) (a panel, bottom graph)
as a function of increasing disorder strength V, at different cluster sizes N, = 1, 8, 27, 64, 125.
The critical value for the Anderson localization transition, VZ?, is then extracted from the vanishing
TDOS(w = 0). Correspondingly, ADOS(w = 0) = 0 determines the critical disorder strength, V"¢, for
the band-gap opening transition. For the N. = 1 cluster, the Anderson localization and the band-
splitting transition occur almost simultaneously. However, at N, > 1, the Anderson localization
clearly proceeds the band-gap opening, and occurs at smaller values of V.. The difference with
cluster size N. convergence is better observed in Fig. 4 (b panel), where we plot the critical disorder
strengths, V?? and Vave, (extracted from the corresponding data on the left panels) as function of
the cluster size N.. We observe that V®? converges rather quickly with increasing cluster size N,
while there is significant N. dependence of the V*¢ for the band-splitting transition. This highlights
the importance of the strong non-local spatial correlations induced by disorder.
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4. Conclusion

We use the finite cluster typical medium TMDCA approach to study the Anderson localization
in three dimensions for the box and binary alloy disorder distributions. By performing a careful
systematic cluster size analysis, we demonstrate that TMDCA presents a successful and numerically
manageable effective medium approach for the Anderson localization. We show that non-local
correlations are significant for the proper analysis of the Anderson transition, and hence the
importance of employing approximations beyond the local single site ones. Using the typical density
of states as the order parameter for the Anderson transition, we obtained cluster size converged
critical disorder strengths of W, ~ 2.25 for the box distribution, and V. ~ 0.675 for the binary
alloy case. Both values are in good agreement with known results in the literature. They are also
a clear improvement over the local single-site TMT results of W, =~ 1.68, and V, ~ 0.6275 for the
box and binary distributions, respectively.

We have also demonstrated the importance of non-local correlations in capturing the spectral
properties of disordered systems. The application of the TMDCA to more realistic and complex
models is often faced with the challenge of constructing a proper ansatz for the calculation of the
geometrically averaging Green'’s function in the self-consistent numerical loop. Our results show
that the geometrically averaged local density of state factor (ansatz of Eq. (2)) is important for
capturing properly the localization at the band center and the critical disorder strength. While the
non-local momentum K-dependent part in the ansatz facilitates a faster cluster size convergence of
the localized states at the edges. In brief, the performed analysis presented in this work provides a
better understanding of the role of non-local spatial correlations in disordered systems, and it will
allow for more effective applications of the TMDCA method to complex disorder models.
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