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We use the recently developed finite cluster typical medium
approach to study the Anderson localization transition in three
dimensions. Applying our method to the box and binary alloy
disorder distributions, we find a fast convergence with the clus-
ter size. We demonstrate the importance of the typical medium
environment and the non-local spatial correlations for the proper
characterization of the localization transition. As the cluster
size increases, our typical medium cluster method recovers the
correct critical disorder strength for the transition. Our findings
highlight the importance of the non-local cluster corrections
for capturing the localization behavior of the mobility edge
trajectories. Our results demonstrate that the typical medium
cluster approach developed here provides a consistent and sys-
tematic description of the Anderson localization transition in the
framework of the effective medium embedding schemes.
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. Introduction

Disorder as a ubiquitous feature of materials can cause profound effects on a variety of their
roperties [1,2]. Consequently, a careful control on the concentration of defects in materials can
e used to rationally change and design new functionalities of modern quantum systems. One of
he most pronounced effects of disorder is the electron localization (Anderson localization) and
he associated metal–insulator transition [3]. The theory of Anderson localization, where multiple
cattering off impurities leads to the spatial confinement of electrons, is well developed. It has been
emonstrated that in one and two dimensions, an arbitrarily small amount of disorder localizes
lectrons, whereas in three dimensions states may be localized or extended depending on the
mount of disorder [4].
Numerical methods have played an important role in understanding the mechanism of Ander-

on localization. Several standard computational tools have been employed for finite-size lattice
alculations, including exact diagonalization, the transfer matrix method, the kernel-polynomial
ethod, as well as the multifractal approach [1,5,6]. While numerically robust, the application
f these methods to real materials often faces the challenge of having to treat large localization
engths when being restricted to finite system sizes. Moreover, often the techniques developed
or detecting Anderson localized states, in non-interacting systems, are not directly applicable to
nteracting electron systems, as they are built on the knowledge of single and not many-particle
igenstates.
Effective medium embedding methods have been developed over the past several decades;

resently, these approaches constitute an alternative and complementary way for treating disorder
n materials. The most commonly used approach for disordered systems is the coherent potential
pproximation (CPA) [7,8]. The CPA shares a similar conceptual construction with the dynamical
ean-field theory (DMFT), which has proven to be a very successful theory for strongly correlated
lectron systems [9,10]. Both CPA and DMFT are Green’s function-based methods and can be
asily combined to study the interplay of disorder and electron localization. Conceptually, in these
ethods, the original lattice is mapped to a single impurity embedded in a dynamical effective
edium determined self-consistently. The dynamics of the medium allows for effectively capturing

he disorder or interaction-induced correlations effects at the impurity level. By construction, the
PA is a local approximation, and to capture the multi-impurity scattering effects, various cluster
xtensions have been developed. This includes the momentum-space based Dynamical Cluster
pproximation (DCA) and the real-space-cluster molecular CPA [11–13].
Although these commonly used effective medium embedding methods allow studying disorder

ffects, they, however, fail to capture the Anderson localization. The main challenge here is that
he linearly averaged (arithmetic average) density of states (DOS), obtained from the corresponding
isorder averaged impurity (cluster) Green’s function calculated within the CPA (DCA), is not critical
t the Anderson transition. Hence, it cannot be used as an order parameter to characterize the
ocalized states due to disorder.

It is therefore of interest to explore the effective medium methods that employ a proper order
arameter capable of describing the Anderson localization. There have been several proposals
ccording to which the Anderson transition might be detected by studying the statistical properties
f the local density of states (LDOS) and its distribution [3,14–20]. Dobrosavljevic et al. [21]
ncorporated such ideas in the context of the effective medium approach. They developed the
ypical medium theory (TMT) and showed that the geometrically averaged LDOS is indeed an
rder parameter for the Anderson transition. In the typical medium analysis, instead of using the
rithmetically averaged disorder Green’s function (as it is implemented in the CPA and the DCA),
he geometrical averaging is used in the self-consistency loop. Such typical medium analysis has
lso been extended to interacting disordered systems [22–33]. However, by construction, the TMT
s a local single-site approximation and, hence, it neglects the non-local spatial correlations. As
result, the TMT underestimates the critical disorder strength for the Anderson transition in a

hree dimensional (3D) model, and does not capture properly the mobility edge trajectories for
he uniform box distribution.

To overcome such limitations, recently, we have developed the typical medium dynamical
luster approach (TMDCA) [34–40], which is a cluster extension of the single-site typical medium
2
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ethod [21]. As we demonstrated in Refs. [35,41], such typical medium analysis can properly
apture the non-self-averaging behavior of the Anderson localization phenomena. In particular, it
aptures the dramatic changes in the distribution of the local density of states (LDOS) through the
ransition. At small disorder strength, the LDOS follows a Gaussian distribution, while it is a skewed
og-normal distribution at large disorder. The calculated typical-medium DOS (TDOS) obtained
rom the geometrically averaged cluster Green’s function can capture such behavior. As shown
n [35,41], the TDOS vanishes for the localized states, while it is finite for the extended states. The
luster TMDCA method when applied to the three dimensional Anderson model not only captures
ccurately the critical strength of the disorder, but also the reentrance behavior of the mobility
dge. We have also extended the application of the TMDCA method beyond the simple Anderson
odel, including systems with electronic interactions [23,40,42], off-diagonal disorder [36,43],
ulti-band [38], and phonon systems [44–46]. Recently, such developments have been successfully
pplied in the context of ab-initio calculations of Anderson localization in superconductors [38],
ilute magnetic semiconductors [39], photovoltaics [47], and binary alloy systems [17].
The goal of the present work is to further benchmark the TMDCA method for the Anderson

odel in three dimensions. We perform a careful systematic cluster size analysis of the electron
ocalization for both box and binary disorder distributions. Our results indicate that non-local cluster
orrections are significant in capturing electron localization, hence, the finite cluster TMDCA analysis
s necessary for the proper description of disorder effects in the Anderson model.

The paper is organized as follows. In Section 2, we provide a short overview of the model and
he TMDCA method. In Section 3, we present the results of the application of the TMDCA method
or the 3D Anderson model with box and binary alloy disorder distributions. We conclude, with a
iscussion of the prospects of the method, in the last section.

. Model and method

We study the Anderson model of non-interacting electrons subjected to a disordered random
otential

H = −t
∑
⟨i,j⟩

(c†
i cj + H.c.) +

∑
i

Vini, (1)

ere the operators c†
i and ci are the creation and annihilation operators, respectively, for an electron

n site i, ni = c†
i ci is the number operator, and t is the hopping energy between nearest neighbors i

nd j. The first term is the kinetic energy operator due to the hopping of electrons on a lattice, and
he second term is the local on-site disorder potential. The disorder potential is a random quantity
istributed according to some specified probability distributions P(Vi). We set 4t = 1 to serve as
he energy scale.

We perform our analysis for two types of disorder distribution: the (uniform) box disorder,
hich is given by the distribution function P(Vi) =

1
W Θ(|W/2 − Vi|) (the disorder strength is

haracterized byW ), and the binary alloy disorder distribution with P(Vi) = caδ(Vi−VA)+cbδ(Vi−VB).
Here VB = −VA, ca is the concentration of the host A ions, and cb = 1 − ca stands for the
concentration of the impurity B ions. We introduce a shorthand notation for disorder averaged
quantities: ⟨· · ·⟩ =

∫
dViP(Vi)(. . .).

The TMDCA is a typical medium extension of the conventional DCA scheme [11,12]. Just as in the
DCA approach [12], we map the original lattice into a cluster of size Nc (constructed in momentum
space) embedded in the effective medium. The effective medium is determined self-consistently.
The TMDCA utilizes the geometric averaging over disorder for the cluster Green’s function, while
the DCA uses the arithmetic (linear) averaging. To construct a Nc cluster, the first Brillouin zone is
divided into Nc = LDc (Lc is the linear cluster size, D is the dimension) coarse-grained cells with the
cluster centers K surrounded by points k̃ within the cell such that the lattice momentum k = K + k̃.
Both DCA and TMDCA systematically incorporate the non-local spatial fluctuations as the cluster size
Nc increases, and becomes exact in the limit Nc → ∞. The non-local short-range spatial correlations
are treated explicitly within the range of the cluster N , while the long length scale correlations
c

3
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re treated within the typical medium. As in the DCA scheme, the TMDCA self-consistency loop is
onstructed for the momentum K dependent quantities, while to solve the cluster problem, one
employs the Fourier transform to the real space of Nc sites with (I, J) the site indices [11].

In the TMDCA scheme, the main quantity of interest is the cluster typical Green’s function
Gc
typ(K , w) which is obtained from the Hilbert transform of the corresponding cluster typical density

of states ρc
typ(K , w). Here ρc

typ(K , w) is obtained using the geometrical averaging ansatz of the
form [35,41]:

ρc
typ(K , w) =

local-TDOS  
exp

(
1
Nc

Nc∑
I=1

⟨ln(ρc
I (w, V ))⟩

) non-local

×

  ⟨
ρc(K , w, V )

1/Nc
∑

I ρ
c
I (w, V )

⟩
. (2)

ere ρc
I (w, V ) = −

1
π
ImGc

II (w, V ) is the local density of states at site I obtained from the cluster
reen’s function Gc

IJ (w, V ); ρc(K , w, V ) = −
1
π
Gc(K , w, V ) is a non-local density of states determined

from the Fourier transform of the cluster Green’s function Gc
IJ . In the ansatz of Eq. (2), to avoid self-

averaging at strong disorder, we separate the ‘‘local-TDOS’’, which utilizes the geometric averaging
over disorder, from the ‘‘non-local’’ K -dependent contributions [35,37,34]. Later we will show that
such ansatz indeed can capture effectively the electron localization in the Anderson model. To
understand better the contribution to the TDOS coming from the local and non-local parts in the
above ansatz, we will also perform our calculations using the ‘‘local’’ ansatz only, with

ρ local−TDOS
typ (K , w) = exp

(
1
Nc

Nc∑
I=1

⟨ln(ρc
I (w, V ))⟩.

)
(3)

Also notice that ρc
typ(K , w) in Eq. (2) possesses the following properties [35,37,34]: for the Nc = 1

ase, it reduces to the local TMT with ρc
typ(K , w) = exp(⟨ln ρc(w, V )⟩). And, at weak disorder str-

ngth, the TMDCA reduces to the DCA with ρc
typ(K , w) → ⟨ρc(K , w, V )⟩.

In the following we outline the TMDCA self-consistent iterative procedure that we use in our
alculations:
1. Starting from a guess for the effective medium hybridization function ∆(K , w), we first

onstruct the cluster-excluded Green’s function

G(K , w) =
1

w − ∆(K , w) − ϵ̄(K )
, (4)

here ϵ̄(K ) is the coarse-grained bare dispersion. For the 3D cubic lattice, the bare lattice dispersion
s given as ε(k) = −2t(cos(kx) + cos(ky) + cos(kz)).

2. Since the cluster problem is solved numerically in real space [11,12], we then Fourier transform
(K , w) to real space with GI,J =

∑
K G(K )eiK (RI−RJ ).

3. Now we are ready to solve the cluster problem using, e.g., a random sampling. For this, we
tochastically generate a random configuration of disorder potentials, Vi, and construct the cluster
reen’s function Gc by inverting the matrix

Ĝc(V ) = (Ĝ−1
− V̂ )−1. (5)

hen we calculate the disorder-averaged cluster typical density of states ρc
typ(K , w) using the ansatz

f Eq. (2), and the Hilbert transform to obtain the cluster typical (geometrically averaged over
isorder) Green’s function

Gc
typ(K , w) =

∫
dw′

ρc
typ(K , w′)

w − w′
(6)

4. With the cluster problem solved, we close the self-consistency loop by calculating the lattice
oarse-grained Green’s function

Ḡ(K , w) =

∫
Nc

o (K , ϵ)dϵ
c −1 (7)
(Gtyp(K , w)) + ∆(K , w) − ϵ + ϵ̄(K )
4
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Fig. 1. ADOS (solid line) and TDOS (shaded area) as function of frequency ω at different values of box disorder strength
= 1.0, 1.2, 1.6, 2.1 calculated using the DCA and TMDCA methods, respectively. Cluster size is Nc = 64. The local TDOS

dashed line) is obtained using Eq. (3). Vertical arrows indicate the approximate position of the mobility edge boundaries.

hich is then used to obtain a new estimate for the cluster-excluded Green’s function G(K , w). Such
an iterative procedure is repeated, until the self-consistency is reached, i.e., when the cluster typical
Green’s function Gc

typ(K , w) and the coarse-grained lattice Green’s function Ḡ(K , w) become equal.

3. Results and discussion

3.1. Box disorder distribution

While the localization properties of the Anderson model with box disorder distribution are well
known from the literature [1], we consider it here to demonstrate the validity of our numerical
method. First, we start the discussion of the results by comparing the disorder evolution of the
ADOS(w) (obtained using the conventional DCA scheme with the arithmetic averaging over disorder
in the self-consistency loop) and the typical TDOS(w) (obtained from our TMDCA procedure with
the geometric averaging over disorder). Our results for a cubic cluster with Nc = 64 are shown in
Fig. 1. For the TMDCA method, we also show the results obtained with the local ansatz of Eq. (3).
As expected, the disorder dependence of the ADOS(w) and the TDOS(w) is very different: while the
ADOS remains finite with increasing disorder strength, the TDOS continuously gets narrower and
eventually gets fully suppressed. At weaker disorder strength W , the localization of electrons starts
at the band tails, and is detected by vanishing TDOS(w) at higher frequencies w. The mobility edge
(shown by vertical arrows) separates the extended states with finite TDOS from the localized states
with zero TDOS. As disorder strength W increases, the TDOS gets suppressed at all frequencies,
indicating the localization of all electrons in the band. Such suppression of the TDOS with disorder
5
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Fig. 2. Left (a) panel: The TDOS(ω = 0) (obtained using the ansatz in Eq. (2)) vs disorder strength W for different cluster
izes Nc = 1, 8, 27, 64. For the Nc = 64 cluster, we also show the data for local-TDOS(w = 0) calculated using the local
nsatz of Eq. (3) (orange crosses). Right (b) panel: The critical disorder strength of the Anderson transition, Wc , as function
f Nc . The critical disorder strength Wc is determined from the TDOS(w = 0) = 0 data of the left panel.

trength W indicates that the TDOS indeed can serve as an order parameter for the Anderson
ocalization.

To better understand the role of the non-local contribution (with the full momentum K depen-
ence) in the ansatz for the geometrically averaged cluster Green’s function (second term in Eq. (2)),
n Fig. 1, we also show the results for the local-TDOS(w) obtained using the local ansatz (Eq. (3)).
Our data indicate that the more significant contribution to the TDOS(w) is actually coming from the
geometrically averaged local DOS i.e., it is well-captured by Eq. (3). The critical behavior at the Fermi
level is the same for both the local and non-local ansatze. However, the non-local K -dependent
ontribution of Eq. (2) seems to be important for capturing properly the mobility edge behavior
(marked by vertical arrows). Here, at the edges, we observe the biggest difference between the
local-TDOS(w) and the TDOS(w) obtained with full cluster momentum dependence. This indicates
that while the critical behavior at the band center is captured properly in the local ansatz, the
mobility edge trajectories will, however, converge slower with cluster size Nc .

Next, we consider the evolution of the critical disorder strength Wc of the Anderson localization
transition as a function of the cluster size Nc . The critical disorder strength Wc is obtained by
calculating the TDOS at the band center TDOS(w = 0) as a function of disorder strength W . The
critical disorderWc is then defined by the vanishing TDOS(w = 0) = 0. We have done such analysis for
several cluster sizes Nc = 1, 8, 27, 64 on a cubic 3D Anderson lattice model. Our results are shown
in Fig. 2 (panel a), where we plot the TDOS(w = 0) at the band center as a function of disorder
strength W . The TDOS(w = 0) decreases with increasing disorder strength W , and approaches zero
at Wc . Performing a careful analysis for different cluster sizes, Nc , we demonstrate that the critical
disorder strength Wc converges quickly with the cluster size Nc (panel b of Fig. 2). These data also
highlight the importance of going beyond the single-site approximation when describing the critical
behavior of the Anderson transition. For Nc = 1 (which corresponds to the local TMT approximation)
the Wc ≈ 1.675, and it increases gradually to the converged value of Wc ≈ 2.25 as cluster size Nc
gets larger. These results are in a good agreement with the Wc reported in the literature. While
TMDCA slightly overestimates the Wc as compared to exact results, the advantage of our method is
that it can be easily generalized to interacting and realistic material models. Finally, for Nc = 64, we
also show the results obtained with the local ansatz (Eq. (3)) for the TDOS (the corresponding data
are displayed by the orange crosses in Fig. 2). The local TDOS data fall on top of the TDOS(w = 0)
obtained using the full cluster momentum dependence. This indicates that the critical disorder

strength Wc of the Anderson localization can be very well captured by the simplified ansatz of

6



H. Terletska, A. Moilanen, K.-M. Tam et al. Annals of Physics xxx (xxxx) xxx

V
i
u
E

E
m

3

f
d
e
w
u
T
b

Fig. 3. Top panel: Nc = 1 CPA and TMT results for the ADOS(w) and TDOS(w) at different disorder strength values
A = 0.2, 0.5, 0.65, 0.8. Bottom panel: Nc = 64 DCA and TMDCA results for the ADOS(w) and TDOS(w) as function of
ncreasing disorder VA = 0.2, 0.5, 0.675, 0.835. The N=64 TMDCA data for the TDOS(w) (red shaded region) are obtained
sing the ansatz of Eq. (2), the local TDOS(w) curves (dashed lines) are obtained using the simplified local ansatz of
q. (3). Other parameters: ca = 0.5.

q. (3), which should be an important simplification when applying the TMDCA to more realistic
odels.

.2. Binary alloy disorder distribution

To further explore the application of our TMDCA approach, we now consider its implementation
or the binary alloy system. First, in Fig. 3, we show the results for the ADOS(ω) and TDOS(ω) at
ifferent values of the disorder strength, VA. To highlight the significance of the non-local spatial
ffects, we present the data for the local Nc = 1 TMT approach, and the non-local TMDCA method
ith Nc = 64. For binary alloy systems, when increasing the disorder strength VA, the system
ndergoes two phase transitions, i.e., the Anderson transition which is detected by vanishing
DOS(w = 0) at the band center, and the band-gap opening metal–insulator transition detected
y vanishing ADOS(w = 0) at the Fermi level. For small disorder strength (VA = 0, 2), both the

ADOS and the TDOS are practically the same. As disorder strength increases, the band gap opens at
the Fermi level in both the ADOS and the TDOS.

For the local Nc = 1 case, the Anderson localization of the states at the Fermi level and the
band splitting transition occur at almost the same disorder strength, i.e., the TDOS(w = 0) = 0
at V typ

c ≈ 0.6275, and ADOS(w = 0) = 0 at V ave
c ≈ 0.635. As disorder strength VA increases, the

TDOS becomes significantly smaller and narrower than the ADOS. Regions where ADOS(w) remains
finite but TDOS(w) is zero, indicate the Anderson localized states, separated by the mobility edges
(marked by vertical arrows).

Comparing the Nc = 1 and finite cluster Nc = 64 results, we find that the non-local spatial
correlations, which are included in the TMDCA scheme, introduce a noticeable difference in the
7
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Fig. 4. Right (a) panel. Top: ADOS(w = 0) as function of disorder strength VA for different cluster sizes Nc = 1, 8,
27, 64, 125. Bottom: TDOS(w = 0) as function of disorder strength VA for the same cluster sizes. Left (b) panel: The
critical disorder strength of the Anderson transition, V typ

c , and of the band-splitting transition, V ave
c , as function of the

cluster size Nc . Vc are determined from the corresponding TDOS(ω = 0) = 0 and ADOS(w = 0) = 0 data at the left panel.
ther parameters: ca = 0.5.

ocalization behavior. In particular, the non-local effects are responsible for the finer features in
he ADOS(w), which are completely smoothed out in the local Nc = 1 case. Moreover, we find
hat the Anderson transition at the Fermi energy with TDOS(w = 0)=0 occurs much faster than
he gap opening in the ADOS(w). Nc = 64 results also indicate that the mobility edge trajectories
re wider than in the Nc = 1 case, i.e., the local TMT scheme underestimates the extended states
egion [41,35]. For Nc = 64, we also show the results (black dashed lines) of the local-TDOS(w)
btained using the simplified ansatz of Eq. (3). As in the box distribution case, we see that the
ajor contribution to the TDOS(w) is coming from the geometrically averaged local-TDOS factor.
he full K -dependence in the ansatz of Eq. (2) seems to be mostly relevant for capturing the higher
requency mobility edge behavior.

To explore the cluster size dependence of the critical disorder strength for both transitions, in
ig. 4 we plot the ADOS(w = 0) (a panel, top graph) and the TDOS(w = 0) (a panel, bottom graph)
s a function of increasing disorder strength VA at different cluster sizes Nc = 1, 8, 27, 64, 125.
he critical value for the Anderson localization transition, V typ

c , is then extracted from the vanishing
DOS(w = 0). Correspondingly, ADOS(w = 0) = 0 determines the critical disorder strength, V ave

c , for
he band-gap opening transition. For the Nc = 1 cluster, the Anderson localization and the band-
plitting transition occur almost simultaneously. However, at Nc > 1, the Anderson localization
learly proceeds the band-gap opening, and occurs at smaller values of Vc . The difference with
luster size Nc convergence is better observed in Fig. 4 (b panel), where we plot the critical disorder
trengths, V typ

c and V ave
c , (extracted from the corresponding data on the left panels) as function of

he cluster size Nc . We observe that V typ
c converges rather quickly with increasing cluster size Nc ,

hile there is significant Nc dependence of the V ave
c for the band-splitting transition. This highlights

he importance of the strong non-local spatial correlations induced by disorder.
8
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. Conclusion

We use the finite cluster typical medium TMDCA approach to study the Anderson localization
n three dimensions for the box and binary alloy disorder distributions. By performing a careful
ystematic cluster size analysis, we demonstrate that TMDCA presents a successful and numerically
anageable effective medium approach for the Anderson localization. We show that non-local
orrelations are significant for the proper analysis of the Anderson transition, and hence the
mportance of employing approximations beyond the local single site ones. Using the typical density
f states as the order parameter for the Anderson transition, we obtained cluster size converged
ritical disorder strengths of Wc ≈ 2.25 for the box distribution, and Vc ≈ 0.675 for the binary
lloy case. Both values are in good agreement with known results in the literature. They are also
clear improvement over the local single-site TMT results of Wc ≈ 1.68, and Vc ≈ 0.6275 for the
ox and binary distributions, respectively.
We have also demonstrated the importance of non-local correlations in capturing the spectral

roperties of disordered systems. The application of the TMDCA to more realistic and complex
odels is often faced with the challenge of constructing a proper ansatz for the calculation of the
eometrically averaging Green’s function in the self-consistent numerical loop. Our results show
hat the geometrically averaged local density of state factor (ansatz of Eq. (2)) is important for
apturing properly the localization at the band center and the critical disorder strength. While the
on-local momentum K -dependent part in the ansatz facilitates a faster cluster size convergence of
he localized states at the edges. In brief, the performed analysis presented in this work provides a
etter understanding of the role of non-local spatial correlations in disordered systems, and it will
llow for more effective applications of the TMDCA method to complex disorder models.
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