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Abstract
Comparative segregation analysis holds the potential to provide rich insights into 
urban socio-spatial dynamics. However, comparisons of the levels of segregation 
between two, or more, cities at the same point in time can be complicated by dif-
ferent spatial contexts as well as ethnic, racial, and class distributions. The extent 
to which differences in segregation between two cities is due to differences in spa-
tial structure or to differences in composition remains an open question. This paper 
develops a framework to disentangle the contributions of spatial structure and com-
position in carrying out comparative segregation analysis. The approach uses spa-
tially explicit counterfactuals embedded in a Shapley decomposition. We illustrate 
this framework in a case study of the 50 largest metropolitan statistical areas in the 
U.S.

All of the segregation indexes have in common the assumption that segrega-
tion can be measured without regard to the spatial patterns of white and non-
white residence in a city (Duncan and Duncan 1955).

1  Introduction

Comparison of the levels of segregation across U.S. cities is a popular pursuit in 
both academia1 and in the popular press.2 Most often, these comparisons follow a 
similar strategy involving the calculation of an index of segregation for a collec-
tion of cities at one point in time, followed by a ranking of the values for the index. 
The resulting rankings invariably garner widespread attention. Yet, from a methodo-
logical point of view, they also raise a number of questions. The ordinal nature of 
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these summaries is often emphasized. For example, finding that in 2000 Chicago 
ranked 6th1 while Newark ranked 7th conveys a different impression than knowing 
the former had a dissimilarity index of 83.6 relative to the latter’s index of 83.4. The 
question of whether these differences are significant often goes unasked, and there-
fore, unanswered. This is curiously distinct from much quantitative social science 
research where questions of inference are central to the investigation. One of the 
main reasons for the descriptive orientation of much of the segregation literature is 
the limited amount of work developing comparative approaches.

Dozens of segregation indices have been proposed and applied in the literature, 
and regardless of which is applied, an index reflects a variety of underlying urban 
attributes. These might include the overall demographic mix in the city, the density 
of its urban development (particularly if a spatial segregation index is employed), 
the size and configuration of administrative aggregation units, or the total size (in 
either population or geographic terms) of the city. As such, when examining how 
racial segregation in Newark compares to that in Chicago, indices computed for each 
city are difficult to understand relative to one another because it is unclear how the 
underlying urban attributes combine into a single measure and whether (and which) 
attributes are stronger or weaker drivers of the observed difference. More simply, 
based on the numbers alone, we can see that Newark may be less segregated than 
Chicago, but we cannot discern whether this is because Chicago is simply more cos-
mopolitan, with more people of different backgrounds sharing less space, or whether 
it is because Chicago’s urban structure isolates minority residents into high-density, 
low-cost apartments which are located exclusively in one part of the city.

The ambiguity concerning the underlying drivers of measured segregation levels 
is a major impediment for urban policymakers seeking to use housing and trans-
portation investments in service of greater social justice. If, in the example above, 
it were clear that segregation in Chicago is driven by single-use zoning and poorly-
served transit, then increasing service frequency and implementing an inclusionary 
zoning policy would be natural responses. If it were simply the case that the city 
had a small minority population that prefers to settle in a close-knit community, the 
policy implications are far less clear.

Furthermore, federal housing policies have long sought to incentivize housing 
voucher holders to relocate into integrated neighborhoods (Joseph et al. 2007; Pen-
dall and Carruthers 2003; Kline 2007; DeLuca et al. 2013; Ellen et al. 2016), but 
these objectives can sometimes conflict with other goals, such as ensuring that car-
less voucher holders remain near transit (Blumenberg and Pierce 2014; Pendall et al. 
2015). This case would indicate a tension between land use (transit) and demog-
raphy (race or income) with competing objectives and no clear winner for social 
justice. As such, providing quantitative evidence of this situation would provide 
justification for the housing authority to adjust its location incentives to best serve 
its constituents–but such a condition requires the unpacking of a given segregation 
index to understand the underlying drivers.

Segregation indices are known to be sensitive to the number, sizes, shapes, and 
arrangement of the enumeration units used as well as the spatial extent of the com-
munity under examination (Massey 1978; Jakubs 1981; Wong 2003; Lee et al. 2008; 
Clark and Östh 2018). Moreover, commonly used segregation measures, such as the 
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dissimilarity index, can be sensitive to the city-wide composition of the minority 
group, as all other things equal, a small minority population is more likely to be une-
venly distributed within a city than a larger minority population (Allen et al. 2015). 
Further complicating matters is the interaction effect where small enumeration units 
can exacerbate the impact of minority composition on segregation indices.

If a pair of cities were identical in their enumeration units and city-wide minority 
composition, then any difference in the segregation measures between the two cities 
could be attributed to differences in the spatial distribution of the minority groups 
within each of the cities. Unfortunately, matters are not so simple in applied com-
parative segregation research as cities differ in the structure of their enumeration 
units, minority composition, and their spatial distribution of the minority popula-
tion over their enumeration units. As such, researchers are currently unable to ascer-
tain how much of the difference in the two segregation indices is due to variations 
in spatial structure3 or to differences in city-wide population composition between 
the two cities. By spatial structure, we mean the structure of the city’s enumeration 
units and the spatial distribution of the minority population across those units. For 
these reasons, we argue that by decomposing segregation indices into their underly-
ing components, namely those driven by population structure and spatial structure, 
scholars and policymakers would be armed with a new and highly informative set of 
urban analytics that can lead to better policymaking and reduced inequality. That is 
what we propose here.

In this paper we consider comparative segregation analysis from a spatially 
explicit perspective to make several contributions. We propose a framework for dis-
entangling the roles of varying spatial structure and composition when carrying out 
comparative segregation analysis. Our framework is based on a decomposition of 
differences in segregation between two cities, or the same city at two points over 
time, due to spatial and attribute differences between the two cities. The approach 
relies on novel counterfactual distributions for the comparison cities together with 
a Shapley value decomposition defined on these counterfactuals. We also provide 
empirical insights on the magnitude of these differences across 50 metropolitan 
areas in the US over the period 2000-2010.

The remainder of the paper is organized as follows. We first revisit the literature 
on comparative segregation and examine the complications that spatial structure and 
effects pose for such analyses. In Sect. 3, we present our framework for comparative 
segregation analysis that is designed to address some of these issues. We then pro-
vide an empirical illustration of our framework in Sect. 4. The paper concludes with 
a summary of key points and suggestions for future areas of research.

3  A referee pointed out that a more general term might be “aggregation unit” rather than spatial struc-
ture. We agree that our framework can be generalized, but we see the concept of the aggregation unit as 
only one component of a city’s spatial structure.
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2 � Comparing Measures of Segregation

Much of the segregation literature focuses on developing improvements to sta-
tistical measurement techniques (Massey 1978; Wong 1993; Massey et al. 1996; 
Wong 1999; Reardon and Firebaugh 2002; Wong 2003, 2004; Dawkins 2004; 
Reardon and O’Sullivan 2004; Wong 2005; Reardon et al. 2008; Chodrow 2017), 
while a parallel body applies these metrics to the study of gender, ethnic, racial, 
occupational, educational, income, and other forms of segregation (Mare and 
Bruch 2011). For decades, these two strands have fed off one another, with empir-
ical studies revealing undesirable properties of common segregation indices, and 
statistical work proposing alternative techniques or corrections to account for the 
identified shortcomings. Despite a constant stream of incremental improvements, 
and dozens of segregation indices proposed and applied throughout the literature, 
there remains considerable room for improvement in methods designed for seg-
regation analysis, particularly from the perspective of comparative frameworks. 
Put differently, while there has been vast improvement in the theoretical and com-
putational measurement of segregation, the past century has seen limited innova-
tion that is able to overcome the “problems of inter-urban comparative work that 
arise because of the nature of available census data sets” (Johnston 1981, p.246). 
Herein we review these problems and the ways in which various scholarship has 
tried to address them.

2.1 � Comparisons Over Space

In the canon of comparative segregation studies, the most common methodologi-
cal technique is for researchers to choose and defend the use of a particular seg-
regation index, calculate index values for a set of cities or regions, and rank and 
compare the resulting values describing the ordinal structure across cities. Thereaf-
ter, researchers sometimes examine how these ordinal rankings differ for alternative 
indices. For decades, scholars have deployed these descriptive methods successfully 
to compare residential segregation in a wide range of contexts, cultures, and time 
periods. Both canonical and recent work has examined segregation by race and class 
in American cities thoroughly (Clark 1986; Ihlanfeldt and Scafidi 2002, 2004; Brin-
egar and Leonard 2008; Hwang 2015; Wang et al. 2018). But scholarship is by no 
means limited to American cities or social constructs. Elsewhere, researchers have 
compared segregation measurements between global cities (Harsman and Quigley 
1992; Marcińczak et  al. 2015; Musterd et  al. 2017), between countries (Goering 
1993; Johnston et al. 2007), and within cities in countries across the globe (Morgan 
1975; Owusu and Agyei-Mensah 2011; Wang and Li 2016). Neither are place-based 
comparisons limited necessarily to analysis of residential segregation. A large body 
of work in sociology and labor studies examines occupational segregation by race 
and gender, and how those patterns compare across countries and/or labor markets 
(Blackburn et al. 1993), and while these works are conceptually distinct, their for-
mula for comparative analysis is identical.
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Comparative studies of this variety are useful because they permit observa-
tions such as “in general there is less segregation in Australia and New Zealand 
than in Canada, the United Kingdom and the United States” (Johnston et  al. 
2007, p.713), and these patterns can be further analyzed by the differing social 
contexts of each country, or used to develop a policy agenda. But the simplicity 
of this analytical technique and the resulting rankings masks a crucial uncertainty 
because inter-urban comparisons are never truly “apples-to-apples”. It is impos-
sible to compare segregation in City A versus City B while accounting appropri-
ately for the idiosyncratic differences between them in composition, size, scale, 
and configuration.

Critiques in comparative segregation research often arise over concerns about 
data quality and measurement approaches. Chief among the criticisms is that seg-
regation measurements are sensitive to (at least) two critical features of urban areas 
beyond control of the analyst. First, since indices operate on population ratios, they 
are notably sensitive to the relative size of different population groups in each city. 
Small shares of minority populations can inflate widely used measures like the 
index of dissimilarity (Cortese et al. 1976; Clark 1986; Massey 1978; Reardon and 
O’Sullivan 2004). Second, while residential segregation is a multiscalar phenom-
enon4 whose smallest scale manifests at the housing-unit level, the census data used 
to calculate segregation measurements necessarily relies on aggregations to larger 
polygons to protect confidentiality. As a result, “all measures of spatial and aspa-
tial segregation that rely on population counts aggregated within subareas are sen-
sitive to the definitions of the boundaries of these spatial subareas” (Reardon and 
O’Sullivan 2004)[p.124]. That is, segregation indices are significantly affected by 
the size and shape of the census tracts (or other spatial units) that serve as the basis 
of such measures (Jakubs 1981; Massey 1978). To overcome issues related to census 
enumeration units,  Reardon and O’Sullivan (2004) interpolate census blocks to a 
regular grid so that spatial units approximate a continuous surface, and several oth-
ers have adopted this technique (Lee et al. 2008; Reardon et al. 2006) in the litera-
ture. While this method skirts issues of census boundary configuration, kernel-based 
interpolation of this variety relies on what may be restrictive assumptions about 
population density, and explicitly ignores important physical features like impass-
able terrain or uneven development. As a result, the population surfaces are often 
inaccurate, raising questions about the validity of segregation measures generated by 
these techniques.

Apart from technical issues inherent in the properties of particular indices and 
the applicability of available data, methods for comparative analysis still leave much 
to be desired since, as  Clark (1986) points out, the conceptual distinction between 
indices can lead to significantly different interpretations in applied settings. The 

4  Multiscalar in this context refers to the fact that groups of people can be separated by residential hous-
ing patterns. Micro-level segregation may manifest when small pockets of self-similar neighborhoods 
are interspersed with one another, whereas macro-level segregation may manifest when residents of two 
different groups inhabit opposite sides of a large region. For further discussion the reader is directed 
toward Reardon et al. (2008).
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difference in segregation between City A and City B may look trivial when meas-
ured with the index of isolation, but appear significantly larger when measured with 
the Gini index. Current techniques leave no recourse for this problem other than 
argumentation regarding which index is the superior, trustworthy measure.

In their classic study, Massey et al. (1996) describe five conceptual dimensions of 
segregation they term evenness, exposure, concentration, centralization, and cluster-
ing, and while there is debate over whether these represent the “true” dimensions of 
residential segregation, there is nonetheless agreement that multiple dimensions are 
worthy of consideration. Thus, dozens of segregation indices persist in the litera-
ture, thanks in part to their desirable sensitivity to various different dimensions. In 
applied comparative research, however, differential sensitivity can by definition lead 
to ambiguous results. In problematic cases, segregation indices disagree by wide 
margins, as discussed by  Clark (1986, p. 97) who shows that “Baltimore (Table 1) 
was almost twice as segregated as San Jose on the dissimilarity index in 1970, but 
the exposure index suggested that while Baltimore was substantially segregated, San 
Jose was not”. Explaining the gap between these measures for the two cities presents 
an interesting avenue for further study, but also an impasse for statistical compara-
tive work. To our knowledge, no existing quantitative techniques are capable of ana-
lyzing whether the segregation measures for each city are significantly different in 
either semantic or statistical terms.

2.2 � Comparisons Over Time

A natural extension of comparative segregation analysis is the inclusion of time as 
an important dimension. Incorporating temporality into the study of urban segrega-
tion typically assumes one of three flavors; A large body of work examines the expe-
rience of individual households, and whether minority members are able to escape 
segregated neighborhoods in successive generations (Bischoff and Reardon 2013). 
This work grows from the life course tradition in sociology to address questions 
pertaining to the long-term experience of neighborhood and community realized by 
members of minority groups (McAvay 2018). While this literature sheds consider-
able light onto the prevalence and persistence of intergenerational segregation, it 
typically takes segregation measures as given, and focuses the analysis on migra-
tion patterns that expose families to higher or lower levels of urban segregation. The 
emphasis here is less on the measurement of segregation and more on the residential 

Table 1   Generic structure of a 
data set of a given city. na,t
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mobility patterns that bring individuals into contact with segregation, and thus is 
less useful for comparative work.

Temporal comparative analysis provides a unique window into the dynamic 
structure of segregation and the ways in which urban areas are evolving. Compar-
isons over time help us understand the paths that cities follow, and whether they 
trend toward integration or separation, though these analyses too suffer a variety of 
drawbacks. Among the chief criticisms of temporal comparisons is that they neces-
sarily rely on decennial census data, which captures “just one part of the picture, 
applying only to the population present and captured at both time points” (Bailey 
2012, p.709). Decennial data are severely limited for segregation analysis because 
they fail to capture the volatility in metropolitan housing markets that occurs over a 
10 year period. Apart from issues of data concurrency, temporal comparisons suffer 
other shortcomings as well. As with place-based comparisons discussed above, tem-
poral comparisons rely on census data, which are retabulated each year according 
to changes in population density. This means that in theory, the segregation levels 
measured in a particular city could change over time even if population ratios and 
spatial allocation remained constant, but tabulation blocks were redrawn between 
the two decades (Jakubs 1981; Massey 1978; Reardon and O’Sullivan 2004; Logan 
et al. 2014).

2.3 � Comparisons Over Space‑Time

A final mode of comparison in the field of segregation analytics is that between 
places over time. As the most data intensive (since it requires multiple observa-
tions for both space and time), this is naturally the smallest of the three reviewed 
fields. Extending temporal comparisons, researchers making space-time compari-
sons between segregation measures tend to plot the linear trends for each city, com-
pare cross sectional measures between cities, and compare the trend lines between 
cities to facilitate statements such as “From 2000 to 2010... economic segregation 
increased in 72 CZs [and] larger metro areas tend to be more segregated than less 
populous metros” (Acs et al. 2017).

Much like its cousins, space-time comparisons in segregation research also span the 
globe (van Ham and Tammaru 2016) and in a variety of spatial and aspatial social sci-
ence contexts (Clark 1986; Blackburn et al. 1993; Johnston et al. 2004; Lichter et al. 
2007; Fowler 2016). But as a methodological amalgamation of spatial and temporal 
comparisons, space-time comparisons indeed suffer the combined flaws of each. This 
literature, too, makes clear that segregation measurement strategies are fraught with 
difficulty since, “at a minimum we would expect satisfactory measures to provide con-
sistent comparisons across place and over time” (Blackburn et al. 1993, p.340) but this 
is not the case. Even with modern, spatially explicit segregation indices, space-time 
comparisons are particularly problematic because each urban system has multiple vari-
ables changing in concert. Each city experiences changes in its population structure 
and urban development patterns (and thus, census enumeration units) and there are no 
methods that permit researchers to decompose the measured differences to understand 
which variable is a larger contributor to the results. Nor are there guidelines that help 



	 S. J. Rey et al.

1 3

researchers analyze whether the magnitude in either segregation slopes or point-esti-
mates are meaningful.

2.4 � Beyond Ordinal Rankings

While it dominates much of the literature, ordinal comparisons are not the only strat-
egy employed by researchers to investigate patterns of urban segregation. Another 
common strategy is to calculate segregation indices to serve as dependent variables in 
regression models. For example researchers have examined whether density (Pendall 
and Carruthers 2003), land use regulation (Lens and Monkkonen 2016), or population 
diversity (Johnston et al. 2004) explain differing levels of segregation in American cit-
ies. Recently,  Garcia-López and Moreno-Monroy (2018) find that spatial structure, in 
the form of mono/polycentricity affects measured income segregation in Brazilian cit-
ies. These last two studies are especially poignant because they begin to highlight the 
importance of both demographic structure and spatial structure and their effects on the 
resulting measurements of segregation in an urban area. The literature makes clear that 
the geometric size and configuration of the tabulation units on which segregation meas-
ures rely affect the resulting indices significantly (Massey 1978; Jakubs 1981; Wong 
2004; Krupka 2007; Lee et al. 2008; Clark and Östh 2018)

Regression approaches that hold constant certain aspects of spatial structure, like 
development intensity or polycentricity attempt to rectify this situation, but since such 
approaches also fail to account for other aspects of spatial structure like the total size 
of a city or the shape and configuration of its infrastructure networks, housing unit 
makeup, or neighborhood configuration, it is impossible to disentangle the effects of 
spatial structure from aggregate segregation measures. Thus, rather than control for the 
effects of spatial structure, we instead leverage it to assess how much of the difference 
between two measures of segregation is attributable to physical layout as opposed to 
demography.

Our review of the existing work on comparative segregation analytics elucidates 
two clear gaps in the research. First, when comparing two places, researchers lack a 
framework for understanding the means through which the difference arises. Existing 
methods fail to provide information about whether the difference between two segre-
gation measures arises from differences in the physical layout of a city, or what we 
call its spatial structure reflected in the sizes, shapes, and arrangement of enumeration 
units, and how the minority population is distributed over these units, or because of the 
demographic makeup of its population (its composition). In the sections to follow, we 
address this question in detail by developing a novel method for decomposing differ-
ences in segregation indices into their spatial and social components.

3 � A Framework for Comparative Segregation Analysis

Our analytical framework uses the following structure. Consider Table  1 which 
reports data for a particular city at one point in time. The rows correspond to the 
enumeration units (census blocks or tracts), while the second and third columns are 
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associated with each ethnic/racial group. We assume that na,t
i,j

 is the population of 
unit i ∈ {1, ..., I} of group j ∈ {x, y} in city a and period t. We, usually, consider 
group x as being the group of interest (also called the minority group). In addition, 
the marginal and total sums are given by 
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which are, respectively, the total population of unit i, total city population of group j 
and total city population. We also define s̃a,t
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n
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i,.

 as the share of tract i ’s population 

belonging to group j (also called unit composition) and ŝa,t
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=
n
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n
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.,j

 as the share of the 

city’s population in group j that resides in tract i.
We adopt the perspective of Allen et al. (2015) and view segregation as an assign-

ment process that distributes values to the internal cells of Table 1 subject to the row 
and column constraints. In comparing different cities across space, or the same city 
over time, it is important to note that not only does the distribution of the values 
over the internal cells of the table matter but also the marginal row and column dis-
tributions. Small overall proportions of minority groups can result in the minority 
group being unevenly distributed by chance, relative to groups with larger shares of 
the city’s population.

3.1 � Decomposition

We formulate a general structure that supports the comparative analysis of segre-
gation across different contexts. Depending on the nature of the context, (spatial, 
temporal, or spatio-temporal) different formulations arise; the same general struc-
ture, however, can be used to identify the key dimensions of each comparison. Two 
dimensions are relevant for comparative segregation analysis: the composition of the 
population and the spatial distribution of that population.

3.1.1 � Cross‑Sectional Segregation Decomposition

Table 2 provides an illustration of these dimensions for a cross-sectional compari-
son case involving two cities at one point in time. Here interest centers on compari-
son of the segregation indices measured for City 1 versus City 2, corresponding to 

Table 2   Cross-sectional 
Decomposition of Segregation 
Differences.

G
A
 and G

D
 are the observed segregation indies for cities 1 and 2, 

respectively. G
B
 is the segregation index obtained for the counter-

factual where the population composition of city 1 is imposed on 
the spatial structure of city 2. G

C
 is the segregation index obtained 

for the counterfactual where the population composition of city 2 is 
imposed on the spatial structure of city 1

Spatial Structure

City 1 City 2

Attribute City 1 GA GB

Distribution City 2 GC GD
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the two segregation indices associated with cases A and D in the table. To illus-
trate our approach, we first develop a generalized spatial Gini index. Following the 
logic of Reardon and O’Sullivan (2004), “we can derive spatial generalizations of 
all  Reardon and Firebaugh (2002)’s aspatial multigroup segregation measures (D, 
G, H, C, P, R)”. Following the notation of  Reardon and O’Sullivan (2004), we cal-
culate local environments (otherwise known as “egohoods”) of our study area using 
the following equation

which describes the proportion of population group m at location p, with �p and �pm 
as the total population count and population count of group m, respectively. Here, 
p is the local environment, measured from the centroid of each census tract, and 
�(p, q) is a triangular function of Euclidean distance between p and q up to a horizon 
of 2000m (or roughly a 20 minute walk). Using these new inputs to the classic Gini 
formulation, we achieve a generalized spatial Gini index5

Thus, the observed difference ΔGA,D = GA − GD may be due to differences in the 
way the respective populations are distributed in space (i.e. the configuration of enu-
meration units and the spatial allocation of population across those units) as well 
as differences in the population composition between the two cities. To parse the 
observed differences across these dimensions, we adopt a Shapley decomposition 
approach (Shorrocks 2013). In formal terms, we define a function:

and then define the Shapley contributions of the spatial S and attribute A compo-
nents, given respectively as CS and CA , as:

with:

and:

Focusing on the spatial component, CS , in (3), two estimates are obtained. The first 
holds the attribute distribution constant, and set to that of City 1, while the spatial 

𝜋̃pm =

∫
q∈R

𝜏qm𝜙(p, q)dq

∫
q∈R

𝜏q𝜙(p, q)dq

(1)ΔG = G(S1,A1) − G(S2,A2)

(2)F(S,A) = CS + CA = ΔG

(3)CS =
1

2

[
G(S1,A1) − G(S2,A1) + G(S1,A2) − G(S2,A2)

]

(4)CA =
1

2

[
G(S1,A1) − G(S1,A2) + G(S2,A1) − G(S2,A2)

]
.

5  We note that all code data, figures, and tables necessary to recreate the full analysis are open-source 
and available upon request. The empirical analysis in this paper uses the segregation package (Cortes 
et al. 2019) from the Python Spatial Analysis Library PySAL.
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structure varies between the two cities. In the second estimate, spatial structure var-
ies but the attribute distribution is constant and taken from City 2. The final spa-
tial component is taken as the average of these two estimates. Note that in each of 
these estimates, a counterfactual is produced and used against the observed spa-
tial Gini index for a particular City. In the first sub-estimate the counterfactual is 
G(S2,A1) which calculates the spatial Gini for a realization where the population 
composition for City 1 is imposed on the spatial structure of City 2. The difference 
between the spatial Gini from this counterfactual and that from the observed spatial 
Gini G(S1,A1) is attributed to changing the spatial distribution since it is the only 
component that varies between the two cases. In the second estimate, we obtain the 
counterfactual from imposing the attribute distribution (i.e. the relative share of each 
population group) of City 2 on the spatial distribution of City 1.

In other words, each city is compared against a hypothetical “counterfactual 
region” in which the total population of each metro region is unchanged, but we 
switch the relative shares of minority and majority populations using the composi-
tion distribution from the opposing city. This provides a counterfactual dataset that 
describes how each city would look if the spatial population distribution in each 
city remains constant, but the relative shares of minority and majority residents are 
taken from the opposing region. Below we discuss how these counterfactuals are 
constructed. Here we focus on the interpretation of the decomposition. To estimate 
the Shapley contribution of the attribute distribution, a similar approach is taken in 
(4), save that we now obtain two estimates by holding spatial structure fixed to that 
in one of the cities, while allowing the attribute distribution to vary.

3.1.2 � Temporal Segregation Decomposition

A comparative analysis of the same city at two points in time can be viewed in a 
similar fashion, as shown in in Table 3. Here the difference in segregation indices for 
this city over time is ΔGA,D = GA − GD , and now the question is how much of the 
change in the city’s segregation is due to changes in spatial structure versus changes 
in its population composition over the two periods. For example, if a region’s seg-
regation index increased between two decennial censuses, the decomposition tech-
nique we present allows an investigation into whether this increase is due to a recon-
figuration of census tracts (due to densification in certain parts of the region) or due 
to a change in migration and relative population shares.

We use equations (3) and (4) to estimate the Shapley contributions of changes 
in spatial structure and changes in the city’s attribute distribution, only here the 

Table 3   Temporal 
Decomposition of Segregation 
Differences

Spatial Structure

Period 1 Period 2

Attribute Period 1 GA GB

Distribution Period 2 GC GD
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interpretation changes as the subscript for the arguments to the Gini functions refer 
to either time period 1 or time period 2.

3.2 � Counterfactual Distributions

To generate the counterfactual distributions that are used in the Shapley decomposi-
tion, we first estimate the tract-level composition of a particular group in each city. 
Using the notation from Table 1 we use the fact that s̃1,t

i,j
 is the unit composition of 

group j in tract i of City 1 in the period t.
Next, we form the cumulative distribution functions (CDF) for these values taken 

over all the tracts in City 1: F(1)(s̃
1,t

i,j
) , and City 2: F(2)(s̃

2,t

i,j
) . To create a counterfactual 

distribution that imposes the tract-level composition distribution of City 2 on the 
spatial structure of City 1 we take p

1,t

i,j
= F(1)(s̃

1,t

i,j
) and then generate 

n
1,t

i,j
|attr=2 = F(2)−1(p

1,t

i,j
)n

1,t

i,.
 , where attr = 2 means that this population is calculated 

given the composition distribution of City 2. This process is done for all tracts of a 
given group in City 1 and its complementary group population is given by the differ-
ence n1,t

i,.
− n

1,t

i,j
|attr=2 . The populations for City 2 are generated analogously.

The intuition behind the counterfactuals is as follows. In Table 2, the counterfac-
tual for case B involves imposition of the unit composition CDF from City 1 on the 
spatial structure of City 2. This respects the spatial distribution of unit composition 
rankings in City 2, only the level of the unit composition is taken from the value cor-
responding to the same percentile but from City 1. In other words, the location of 
tracts with high minority composition follows the distribution from City 2, but the 
value of the minority share is obtained from City 1. For the second counterfactual, 
the situation is reversed; here the values of the minority shares are obtained from 
the quantile function for City 2 using the observed values of the CDF for each unit’s 
share in City 1.

Each counterfactual can then be compared against a different observed case. 
When comparing the spatial Gini from case B to case A, we are asking how segrega-
tion would differ if the composition of City 1 was to be imposed on the spatial struc-
ture of City 2 rather than its own geography. Comparing case D to case B asks the 
question how segregation in City 2 would differ if its unit composition distribution 
was replaced with that of City 1.

4 � Illustration

4.1 � Los Angeles Versus New York: Cross‑Sectional Comparison in 2010

To Illustrate our cross-sectional comparison approach, we first use 2010 census data 
from Logan et al. (2014) for the metropolitan statistical areas (MSAs) of Los Ange-
les and New York, and focus on segregation measures for the non-Hispanic Black 
population using tract level data. Figure 1 illustrates how the non-Hispanic Black 
population is distributed differently between these two MSAs. The maps in (a) and 
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(d) show the observed spatial distribution of this group in their respective metropoli-
tan areas in 2010.

In Los Angeles, shown on the left hand side of the figure, there is a clear pat-
tern of spatial concentration and unevenness in the racial makeup, in that the non-
Hispanic Black population appears heavily concentrated into a single area of the 
city. New York, by contrast, shown on the right side of the figure, reveals a pat-
tern markedly distinct from Los Angeles, with multiple locations having large 
shares of non-Hispanic Black population, mostly concentrated in Kings County, 
a portion of Queens and, with less intensity, in the Bronx. In the parlance of 
regional science, we would argue the structure of segregation for non-Hispanic 

Fig. 1   Los Angeles and New York original and counterfactual non-Hispanic Black population distribu-
tion
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Blacks in Los Angeles appears essentially monocentric whereas the structure in 
NYC is clearly polycentric, a curious reversal of their economic forms. Accord-
ing to their spatial Gini indices, the segregation estimate in Los Angeles was 
0.671 and for New York was 0.733.

Given all of these differences, both in terms of spatial context and population 
compositions, comparing segregation between the two cities poses a considerable 
challenge. The difference between spatial Gini values for the two cities (-0.062) 
could be caused by a variety of these factors, and we employ the Shapley decompo-
sition approach described earlier to disentangle them. The first thing to consider for 
the Shapley decomposition is the CDF for the tract-level population composition of 
each city shown in Fig. 2. The higher minority share in New York City (16.8% non-
Hispanic Black) relative to Los Angeles (7.3%) is reflected in the these unit com-
position distributions, as New York’s curve has a lower prevalence of low minority 
tracts.

To build the counterfactual distributions underlying the Shapely decompo-
sition of Table 2, we utilize the two unit composition cumulative distributions 
functions in Fig. 2 to generate the two maps for each MSA in Fig. 1. For each 
tract in the “counterfactual maps” in Fig. 1, we obtain the observed tract com-
position value from the opposite city’s cumulative distribution function. Fig-
ure 2 illustrates an example for a specific case of a tract in New York that was 
60% Black. This represents the 85th percentile for New York’s unit composition 
distribution. We then look up the corresponding 85th percentile from the unit 
composition distribution for Los Angeles (15% Black) and replace the original 
observed share in the New York tract with this percentile. The counterfactual 

Fig. 2   Cumulative Distribution Functions of non-Hispanic Black population unit-composition: New 
York and Los Angeles 2010. The dashed lines trace out the 85th percentiles for LA and NY
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Black population in the New York tract is then generated by applying this per-
centile against the total population of the tract. We repeat this process for all 
tracts in New York to generate the counterfactual distribution.

The counterfactual distribution for Los Angeles is generated by going in the 
reverse direction. Continuing with Fig. 2, a specific tract with a unit composi-
tion of 15% Black represents the observed 85th percentile for Los Angeles. This 
is then replaced with the 85th percentile from the New York unit composition 
distribution (60%) to generate a synthetic composition for the Los Angeles tract. 
Again, we repeat this process for all tracts in Los Angeles.

For each of the two counterfactual maps we then calculate the spatial Gini 
coefficient and add these with the observed spatial Gini coefficients in Table 4. 
The first thing to notice in this decomposition, is that differences within rows 
are considerably smaller than differences within columns. From Eqs.  3 and  4 
we estimate that the attribute component CA plays a much more important role 
in the difference between spatial Gini indices in the two cities, since CS = 0.027 
and CA = −0.089 . In general terms, this result implies that the difference in seg-
regation between Los Angeles and NYC (as measured by the spatial Gini Index) 
is attributable primarily to the fact that the cities have different shares of resi-
dents that identify as Black, white, and other races. If instead column differences 
were greater than row differences, it would imply that the way Black, white, and 
mixed-race neighborhoods are distributed through space is the greater contribu-
tor to measured differences between the cities.

In addition to the relative magnitudes of these components, it is also interest-
ing to explore their directional effects. When holding the attribute distribution 
constant, a shift to the spatial structure of New York in place of Los Angeles 
results in a lowering of the segregation index. Focusing on the attribute distribu-
tion component, swapping in New York’s population composition for that of Los 
Angeles results in an increase in the segregation index, regardless of the spatial 
structure.

Table 4   Cross-Sectional 
Decomposition of Segregation 
Differences: Gini Coefficients, 
Los Angeles and NY 2010

Spatial Structure

Los Angeles New York

Attribute Los Angeles 0.671 0.642
Distribution New York 0.757 0.733

Table 5   Temporal 
Decomposition of Segregation 
Differences in Los Angeles: LA 
in 2010 and LA in 2000

Spatial Structure

2010 2000

Attribute 2010 0.671 0.673
Distribution 2000 0.682 0.685
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4.2 � Los Angeles versus Los Angeles: Temporal comparison between 2010 
and 2000

For temporal comparative segregation analysis, we examine the evolution of Los 
Angeles between 2000 and 2010 for the same non-Hispanic Black population. 
Table 5 reveals that the difference in Gini was -0.014 where, once again, the attrib-
ute component played an important role as CS = −0.003 and CA = −0.012.

This is to be expected, as the amount of change in the spatial structure of a city 
over a 10-year period is likely to be dwarfed by demographic change. That being 
said, the difference in spatial structure between 2000 and 2010, while small, worked 
to reduce segregation (i.e., case B vs. A, or case D vs. C).

4.3 � Multiple Metropolitan Regions Across US: Cross‑Sectional Comparison 
in 2010

Given this decomposition illustration using the context of LA and NY, one might be 
interested in how this behaves for the rest of the country. We extend our method to 
the 50 most populated MSAs in the United States and decompose the spatial Gini 
index for each of the 1225 pairwise comparisons. The values of the spatial Gini 
indices for each of the 50 MSAs are shown in Table 6. In this table, Detroit is the 
most segregated MSA with a Gini of 0.873 whereas San Jose has the lowest value of 
0.286.

Figure 3 displays the distribution of each of the Shapley components along with 
the point difference in segregation. In this figure, the attribute component is clearly 
more influential than the spatial component overall as it “dominates” the variability 
of the point difference. The spatial components typically have values close to zero, 
whereas the attribute values have considerable variance.

We can look in more detail, however, at each of the comparisons by analyzing 
the values themselves for the pairwise comparisons between MSAs.6 We note that 
by analyzing each component in isolation, each metric’s sign is meaningless, as it 
depends exclusively on the order in which the comparison is being decomposed. 
For this reason, we calculate pairwise results for all 50 metropolitan areas which are 
available online and upon request.

To examine these instances, we select from our set comparisons where ||CS
|| > ||CA

|| 
and sort the data according to the difference given by ||CS

|| − ||CA
|| to check whether 

the comparison produced a spatial component more relevant than the attribute com-
ponent. We identify 67 cases where ||CS

|| > ||CA
|| . As such, our results reveal that in 

the vast majority of cases, the attribute difference accounts for a larger share of the 
difference in segregation. That is, typically, the Shapley attribute component “domi-
nates” the spatial one since in most cases the attribute component is larger that the 
spatial component in absolute value.

6  Since we have 1225 point estimates, supplementary materials with all comparisons is available upon 
request.
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Fig. 3   Shapley Components Raincloud Plots. The density plot, the boxplot and all the values in a scatter 
plot for each segregation component

Fig. 4   Non-Hispanic Black population census tract composition in 2010 for the highest spatial compo-
nent share in absolute values ( C

S
= −0.039 and C

A
= −0.004 ) in all pairwise comparisons: Boston ver-

sus Miami

The highest value of ||CS
|| − ||CA

|| is between Boston-Cambridge-Newton, MA-NH, 
and Miami-Fort Lauderdale-West Palm Beach, FL, as illustrated in Fig. 4. A cursory 
view of the maps reveals that the metros have remarkably different segregation pat-
terns, with much of the Boston region’s Black population concentrated into a single 
area, whereas the Miami metro region concentrates in at least three distinct loci, as 
well as spread through other areas. In this case, therefore, it is the spatial component 
which is responsible for contributing a greater difference in the measured spatial 
Gini index between the two cities because it is the configuration of their high minor-
ity census tracts that differs more than their population makeup.7 Figure 5 shows the 

7  Results for all 50 pairwise comparisons are available upon request.
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pair of cities with the largest attribute component. Here we see that San Jose has a 
much smaller minority component relative to that found in Detroit.

4.4 � Decomposition Under Different Dimensions of Segregation

The Gini index used in the previous section is a measure that assesses the degree of 
evenness of a considered group in a given society. However, different dimensions 
of segregation can be assessed through different indexes and, according to  Massey 
and Denton (1988), segregation can be considered to have five dimensions: even-
ness, isolation, clustering, concentration and centralization. Therefore, to check if 

Fig. 5   Non-Hispanic Black population census tract composition in 2010 for the highest attribute com-
ponent share in absolute values ( C

S
= 0.02 and C

A
= 0.57 ) in all pairwise comparisons: San Jose versu 

Detroit

Fig. 6   Isolation Index: Shapely Components for all 1225 pairwise components
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the interpretation of the results holds for the application, it is of interest to inspect 
how some indexes behave for each of these dimensions in the Shapley decomposi-
tion introduced in Sect. 3.

We chose to use the Isolation index (xPx), the Relative Clustering index (RCL), 
the Relative Concentration index (RCO) and the Relative Centralization index 
(RCE) from (Massey and Denton 1988). The results, given by the distributions of 
each component for every MSAs pairwise comparison in the illustration, are present 
in Figs. 6, 7, 8 and 9.

From Figure 3 versus Figs. 6, 7, 8 and 9, the differences between the dimensions 
are clear. The variance in the differences of segregation under the evenness and 
isolation dimensions is largely driven by the variance in the attribute component, 
whereas for clustering, concentration and centralization the distributions are more 

Fig. 7   Clustering Index: Shapely Components for all 1225 pairwise components

Fig. 8   Concentration Index: Shapely Components for all 1225 pairwise components
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mixed, but indicate that the spatial component is more important to these dimen-
sions. The direct reason for this results is that the clustering, concentration and 
centralization dimensions are, by definition, spatial. That is, the spatial context is 
always taken into consideration in the construction of the chosen index, while for 
evenness and isolation this is not necessarily true. In this case, the generalized spa-
tial Gini index that we formulated earlier does account for spatial structure, but the 
Isolation index does not take absolute or relative location into account in its calcula-
tion and, therefore, space naturally may not play an important role in the Shapley 
decomposition.

These results reinforce the inherent difficulty facing researchers working to 
develop a comparative segregation framework. Because differences in segregation 
indices measured in different cities can arise from different sources of variation, 
there remains a clear challenge for analysts seeking to probe further. Our framework 
provides researchers with insights as to the relative contribution of these sources of 
variation when carrying out comparative analyses.

5 � Conclusion and Discussion

This research advances comparative segregation analysis with a novel approach that 
combines counterfactual distributions and Shapley decompositions. After reviewing 
the literature on comparative segregation techniques and highlighting the challenges 
and opportunities in the field, we formalize our mathematical framework and pre-
sent an extensive comparative study for the 50 largest Metropolitan Statistical Areas 
in the U.S. using census tract data.

Our approach is general and can be used to perform comparative segregation 
analysis for either spatial, temporal, or space-time contexts. For our illustration 
using the spatial Gini index to compare two different MSAs, the population’s racial 
composition in each region proved to be more relevant than the spatial population 

Fig. 9   Centralization Index: Shapely Components for all 1225 pairwise components
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8  We note that higher-resolution images are available upon request and can be generated from the open-
source code comprising this analysis.

distribution thereof in the majority of cases. This characteristic persisted in most 
of our scenarios when either comparing Los Angeles versus New York, performing 
temporal evolution comparison of Los Angeles, or when comparing multiple cit-
ies in a pairwise fashion. One of the possible reasons behind this is the nature of 
Gini index. Since this index measures the degree of unevenness, it can be affected 
by the structure of attribute composition and, therefore, more affected by different 
shapes of the compositional CDFs. Given that, one of our key findings is that the 
decomposition results can vary depending on the index used, and that this can reflect 
different dimensions of segregation such as isolation, clustering, concentration, or 
centralization.

Our empirical examples show that in major American cities, the difference 
between measured levels of the spatial Gini index in any two metro regions arises 
typically due to differences in population composition rather than physical layout. 
Results from pairwise comparisons among the 50 largest MSAs the U.S. showed 
that differences between cities measured by segregation indices that capture the 
dimensions of evenness and isolation are due typically to variance in the city’s pop-
ulation structure. For the dimensions of clustering, concentration and centralization, 
however, the city’s spatial configuration usually explains the difference. In future 
work, we plan to explore how these patterns vary for a broad collection of spatially-
explicit segregation indices with differing definitions of space, including multiscalar 
segregation profiles (Reardon et al. 2006; Fowler 2016). We also plan to examine 
how our results may differ when extending our Shapley decomposition approach to 
measures of multigroup segregation.

Our illustration also highlights some particularly interesting comparisons, espe-
cially the difference revealed in Boston vs. Miami. Here, the large difference given 
by the spatial component is noteworthy given the stark contrast between the demo-
graphic makeups of the two cities. Whereas metropolitan Boston’s population was 
approximately six percent Black in 2010, metropolitan Miami’s population in 2010 
was more than three times that share, at roughly nineteen percent. Despite the wide 
gulf in demographics between the two cities, it is the way each city’s population 
is distributed across the landscape that drives the difference in their spatial Gini 
indices.

The comparison between San Jose and Detroit (the largest difference in attrib-
ute absolute share) is also interesting because while the maps of each metropoli-
tan region do not look similar, they nonetheless share similar features that include 
small, densely populated tracts in the center of the region surrounded by large 
sparsely populated tracts on the periphery. At the regional scale, these maps can 
induce visual distortion because the large tracts dominate the visualization and 
mask important variation at smaller scales8, but the underlying similarity in these 
regions nonetheless appears as a result of the spatial Gini decomposition. This 
discussion also raises an important issue with respect to the spatial scale of seg-
regation. In this analysis, we have formulated a generalized spatial Gini index, 
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using a threshold distance of two kilometers (or about a 20-minute walk) to 
define the egohoods underlying the spatial Gini calculation, but it is unclear how 
consistent our results will remain if the distance threshold parameter is varied.

Much still has to be done for comparative segregation. An important extension 
to this work is the development of an inferential component to our decomposi-
tional framework. As we mentioned earlier, we see the question of segregation 
measurement as reflecting a reallocation mechanism, and adopting the bootstrap 
approach of   Allen et  al. (2015) but applied to our counterfactual distributions 
seems like a promising direction in this regard. Additionally, other computation-
ally based approaches to inference such as random labeling (Sastre  Gutierrez 
and Rey 2013), and random spatial permutations (Anselin 1995) can be explored 
to perform comparative inference given a proper specification of a testable null 
hypothesis mentioned earlier.

Finally, our measure of the spatial structure component is an aggregate one 
that reflects the combined effects of differences in spatial extent, number, shape, 
and size of enumeration units between two cities. Expanding the decomposition 
framework to consider these specific elements of spatial structure is a promising 
direction. This extension may draw upon analytics from exploratory spatial data 
analysis (Rey et  al. 2015) and spatial ecology (Dale and Fortin 2014) with the 
goal of unmasking deeper insights about the role of spatial structure in segrega-
tion dynamics.
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