bioRxiv preprint doi: https://doi.org/10.1101/2021.02.22.432371; this version posted February 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Clinically-driven design of synthetic gene regulatory programs
in human cells

Divya V. Israni'*, Hui-Shan Li'*, Keith A. Gagnon!, Jeffry D. Sander®3#, Kole T. Roybal®>678,
J. Keith Joung?3, Wilson W. Wong!, Ahmad S. Khalil'* T

"Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA

2Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology,
Massachusetts General Hospital, Boston, MA, USA

*Department of Pathology, Harvard Medical School, Boston, MA, USA
“Department of Molecular Engineering, Corteva Agriscience™, Johnston 1A, 50131, USA

5Cell Design Institute and Department of Microbiology and Immunology, University of California, San Francisco,
San Francisco, CA, USA

®Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA

"Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA,
USA

8Chan Zuckerberg Biohub, San Francisco, CA, USA
"Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA

fCorresponding author. Email: khalil@bu.edu (A.S.K.)

*These authors contributed equally to this work.

Abstract

Synthetic biology seeks to enable the rational design of regulatory molecules and circuits to
reprogram cellular behavior. The application of this approach to human cells could lead to
powerful gene and cell-based therapies that provide transformative ways to combat complex
diseases. To date, however, synthetic genetic circuits are challenging to implement in clinically-
relevant cell types and their components often present translational incompatibilities, greatly
limiting the feasibility, efficacy and safety of this approach. Here, using a clinically-driven
design process, we developed a toolkit of programmable synthetic transcription regulators that
feature a compact human protein-based design, enable precise genome-orthogonal regulation,
and can be modulated by FDA-approved small molecules. We demonstrate the toolkit by
engineering therapeutic human immune cells with genetic programs that enable titratable
production of immunotherapeutics, drug-regulated control of tumor killing in vivo and in 3D
spheroid models, and the first multi-channel synthetic switch for independent control of
immunotherapeutic genes. Our work establishes a powerful platform for engineering custom
gene expression programs in mammalian cells with the potential to accelerate clinical translation
of synthetic systems.
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Main

The recent emergence of gene and cell-based therapies is being driven by their potential
to enact precise and sophisticated responses to disease (/, 2). One powerful example is chimeric
antigen receptor (CAR) T cell immunotherapy, in which T cells are redirected to attack tumors
by genetically engineering them to express artificial antigen-targeting receptors. This therapeutic
paradigm is beginning to show clinical promise in treating certain cancers, leading to several
approved cancer therapies (3). Yet while gene and cell-based therapies in general have
tremendous potential to combat complex diseases, their impact has been limited by our inability
to safely, effectively, and predictably control therapeutic cellular functions with engineered
genetic systems. For example, engineered T cells also display adverse, sometimes fatal side
effects due to issues related to off-target toxicity and over-activation (3-5), and have limited
clinical efficacy for most solid tumors (6). Such limitations have motivated recent efforts in
mammalian synthetic biology to design synthetic genetic programs that confer human cells with
new capabilities and enable precise, context-specific control over therapeutic functions (7-117).
While such examples represent significant advances, they also highlight fundamental challenges
to realizing the compelling vision of implementing clinically-viable, therapeutic circuits in
mammalian cells and eventually in humans (2, 12): even simple synthetic circuits are difficult to
implement in primary human cells and, critically, most are currently designed with regulatory
components that present fundamental clinical incompatibilities. Overall, we lack versatile and
clinically-suitable synthetic toolkits with which to reliably engineer relevant human cell types
and fully unlock their therapeutic potential.

Perhaps the most established and effective method for implementing synthetic circuits to
control mammalian cell behavior is using transcription regulation. Decades of research have
illuminated design principles of transcription regulation (/3), and established ways to engineer
new conditions under which genes are expressed. These efforts have led to the development of a
small, specialized, and widely-used set of artificial regulators based on microbial-derived
transcription factors (TetR, Gal4) and viral activators (VP16, VP64), which exhibit robust
functionality across many cell types and, in the case of TetR/tTa, can be induced by a small
molecule antibiotic (/4, 15). However, the limited number of these regulators drastically restricts
circuit linkages and the number of therapeutic genes that can be controlled, and they are
challenging to reprogram for new regulatory specificities. Critically, their non-mammalian
origins present clinical hurdles for therapies that depend on persistent expression: expression of
TetR/tTa, for example, triggers immune responses in nonhuman primates (16, /7). As such,
though widely-used for decades, there are no clinically-approved genetic switches based on
TetR/tTa. The emergence of programmable DNA-targeting elements, in particular the bacterial
CRISPR/Cas9 system, has provided new methods for gene expression modulation and synthetic
circuit design (/8-24). However, the large genetic size of Cas9 poses a constraint on what can be
designed and delivered to primary human cells, and its high immunogenic potential is well-
documented (25-28). Thus, it would be powerful to establish a synthetic toolkit from first-
principles that enables the development and translation of custom gene expression programs for
clinically-relevant engineering contexts.

We outlined four basic principles for clinically-driven design of synthetic regulatory
programs (Fig. 1A): (1) Human-based — prioritizing human-derived proteins when possible to
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minimize immunogenic potential. While some specialized human-based tools have been
developed (29), they lack the scalability and programmability required of a foundational
transcriptional toolkit for cell engineering. (2) Orthogonal — components with programmable,
unique specificities that minimize cross-talk with native regulation. (3) Regulatable — systems
that can be controlled with safe, clinically-suitable small molecules (and intrinsic biotic signals).
(4) Compact — minimized genetic footprints for efficient delivery into primary human cells and
tissues. Guided by these principles, we sought to develop — from primary sequence — a toolkit of
compact, human-based synthetic transcription regulators that could readily enable engineering of
custom gene expression circuits and programs in clinically-relevant human cells. As a building
block for human-based regulators, we focused on Cys2His2 zinc fingers (ZFs), which provide
the best balance of clinical favorability and programmability among known DNA-targeting
elements. ZFs are small (~30 amino acid) domains that bind to ~3 bps of DNA (30, 31). They are
the most prevalent DNA-binding domain (DBD) found in human transcription factors (TFs) (32),
suggesting they represent a highly flexible solution to DNA recognition with low
immunogenicity potential. Indeed, a first-generation artificial ZF-based regulatory system
showed multi-year functionality in non-human primates with no apparent immunogenicity (33).
Moreover, individual ZF domains can be reprogrammed to recognize new motifs, and
concatenated to generate proteins capable of specifically targeting longer DNA sequences (34-
37). While these domains have been applied to generate tools for targeted endogenous
modification and manipulation (38-45), ZFs have yet to be fashioned into a set of orthogonal and
composable synthetic regulators with specificities optimized for the human genome. We sought
to develop a protein engineering workflow that could fill this important gap and generate a
versatile synthetic toolkit that satisfies the above criteria (Fig. S1A).

To design genome-orthogonal regulators, we leveraged an archive of engineered two-
finger (2F) units, based on the canonical human Egrl scaffold. These units were pre-generated
using selection-based methods and explicitly account for context-dependent effects between
adjacent fingers (35, 37). By linking 2F units (each recognizing 6-bp subsites) using flexible
‘disrupted’ linkers (46), it is possible to construct functional six-finger (6F) arrays capable of
recognizing 18 bps, a length for which a random sequence has a high probability of being unique
in the human genome (Fig. 1B, S1B). We prioritized 6-bp subsites that are underrepresented in
the human genome and selected arrays to minimize identity with the human genome; this yielded
11 targetable synthetic DNA-binding motifs (DBMs) (Fig. 1C, S1C-D, Methods). We next
sought to engineer compact, human-based, synthetic Zinc Finger Transcription Regulators
(synZiFTRs) capable of strong and specific regulation at these synthetic cis-elements. We fused
ZFs predicted to bind each DBM to the human p65 activation domain and screened for the most
active synZiFTR candidate for each DBM in HEK293FT reporter lines (Fig. S2A-C). Our
selected synZiFTRs strongly activate corresponding, but not non-cognate, reporters (Fig. 1D-E).
Finally, to evaluate the impact of our synthetic regulators on native regulation, we performed
RNA-sequencing analysis on cell lines expressing three representative synZiFTRs (ZF1, ZF3,
ZF10) and benchmarked these against a TetR-based activator. SynZiFTR regulation profiles are
highly specific, minimally affecting native transcript profiles and importantly compare favorably
with that of TetR (Fig. 1F, S3). These results establish a collection of compact, human-based,
and genome-orthogonal synZiFTRs optimized for artificial gene expression control in human
cells.
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Fig. 1. Clinically-driven design of compact, human, synthetic transcription regulators (synZiFTRs)

(A) A goal of mammalian synthetic biology is to implement synthetic regulatory circuits that enable diverse
forms of control over therapeutic functions in human cells (left). Principles of clinically-driven synthetic design
(right). (B) Design of synZiFTRs. SynZiFTRs have a modular design based on compact, human-derived protein
domains. An engineered ZF array mediates interactions with a unique, human genome-orthogonal DNA-binding
motif (DBM), and human-derived effector domains (EDs) are used to locally control transcription functions.
(C) Prevalence of synZiFTR recognition elements in the human genome. Occurrences of exact and increasingly
mismatched sequences for each synZiFTR DBM and response elements from common artificial regulators (Gal4
UAS, TetO, ZFHD1). (D) SynZiFTRs strongly activate gene expression at corresponding response promoters.
Response element vectors were stably-integrated into HEK293FT cells to generate reporter lines for each
synZiFTR (ZF-p65 fusion). SynZiFTR (or control) expression vectors were transfected into corresponding
reporter lines, and mCherry was measured by flow cytometry after 2 days. Bars represent mean values for three
measurements + SD. Statistics represent one-way ANOVA with Dunnett’s Multiple Comparisons; ns: not
significant; ****: p < 0.0001. pUb, Ubiquitin C promoter; pMinCMV, minimal CMV promoter; p65, aa361-
551. (E) SynZiFTRs have mutually orthogonal regulatory specificities. Each synZiFTR expression vector was
transfected into every reporter line, and mCherry was measured by flow cytometry after 2 days. Fold activation
levels represent mean values for three biological replicates. (F) SynZiFTRs have highly specific regulatory
profiles in human cells. Correlation of transcriptomes from RNA-sequencing measurements of HEK293FT cells
stably expressing synZiFTR or TetR-p65 versus a GFP-p65 control. Points represent individual transcript levels
normalized to TPM, transcripts per kilobase million, averaged between two technical replicates. Pearson
correlation coefficient was calculated for native (grey) transcripts. See fig. S3 for extended analyses.
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Regulatory systems that offer precise control over the timing, level, and context over
which therapeutic genes are expressed could enable safer and more effective gene and cell-based
therapies (2). One promising approach is exogenous gene expression control using small
molecules, which could be administered systemically or locally to switch ON and allow titratable
control over therapeutic gene products. To date, there are no clinically-approved small molecule-
regulated genetic switches, in part because systems that have been developed utilize toxic or
pharmacodynamically-unfavorable small molecules. We focused on developing small molecule-
inducible synZiFTRs around compounds that are clinically-approved or otherwise known to have
favorable safety profiles (Fig. 2A). We selected three classes of small molecules, which regulate
protein activity through distinct mechanisms, offering the potential for up to three orthogonal
channels of gene expression control (Fig. 2B, S4A): 1) Grazoprevir (GZV), an FDA-approved
antiviral drug from a family of protease-inhibiting compounds, which has an exceptional safety
profile and is commonly taken at a high dose (100 mg/day) for up to 12 weeks (47). Addition of
GZV stabilizes synZiFTRs incorporating the NS3 self-cleaving protease domain (from hepatitis
C virus (HCV)), driving gene transcription (48, 49). 2) 4-Hydroxytamoxifen (4OHT), a
metabolite of the widely prescribed breast cancer drug tamoxifen that selectively modulates the
nuclear availability of molecules fused to estrogen receptor variants, such as ERT2 (50, 517). 3)
Abscisic acid (ABA), a plant hormone naturally present in many plant-based foods and classified
as non-toxic to humans, which mediates conditional binding of the domains ABI and PYL to
reconstitute an active synZiFTR (52).

To evaluate the ability of these small molecules to control synZiFTR activity, we
constructed GZV-, 4OHT- and ABA-inducible switches based on distinct ZFs (ZF1, ZF3, ZF10),
and encoded these and associated reporters on lentiviral vectors (Fig. S2B, S4A). We then
performed a series of characterization studies by co-transducing Jurkat T cell lines with
synZiFTR and reporter constructs (Fig. S4B). All three systems exhibited titratable control of
reporter output, minimal leakage relative to reporter-only cells, strong dynamic ranges, and
returned to basal (OFF) levels upon removal of inducer (Fig. S4C); furthermore, the small
molecules only activated respective synZiFTRs (Fig. S4D). Since the small molecules function
through distinct and orthogonal regulatory mechanisms, we realized that they could be
multiplexed within the same synZiFTR molecule to enable more complex forms of temporal
gene expression control, including ON/OFF switching. For example, we built an ON/OFF switch
by incorporating the SMASh domain, a variant of NS3 that functions as a degron in the presence
of GZV (53), onto an ERT2-synZiFTR (Fig. SSA,B). The switch is turned ON in the presence of
40HT, and addition of GZV turns gene expression OFF, returning the system to basal levels
rapidly (Fig. S5C,D). We also demonstrated a second type of ON/OFF switch, using 4OHT and
GZV to respectively activate and degrade a synZiFTR repressor containing either human-derived
KRAB or HP1a domains (Fig. SSE,G). Taken together, these results demonstrate that synZiFTR
activity can be regulated by three, orthogonal, and clinically-favorable small molecules, which
can be multiplexed to yield versatile genetic switch designs.
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Fig. 2. SynZiFTR switches controlled by clinically-favorable compounds enable inducible and titratable
control of gene expression in human immune cells

(A) Exogenous control of therapeutic genetic programs can be enabled by synZiFTRs that respond to clinically-
favorable pharmaceutical compounds. (B) Design of three classes of synZiFTR switches controlled by
orthogonal small molecules: grazoprevir (GZV), 4-hydroxytamoxifen (4OHT), abscisic acid (ABA). NS3,
hepatitis C virus NS3 protease domain; ERT2, human estrogen receptor T2 mutant domain; ABI, ABA-
insensitive 1 domain (aa 126-423); PYL, PYRI1-like 1 domain (aa 33-209); 2A, 2A self-cleaving peptide. (C)
Optimized synZiFTR switches enable inducible gene expression control in Jurkat T cells with strong activation
profiles. Jurkat T cells were co-transduced with reporter and synZiFTR expression lentiviral vectors in an equal
ratio. mCherry was measured by flow cytometry 4 days following induction by small molecules at indicated
concentrations. Bars represent mean values for three measurements + SD. Statistics represent two-tailed
Student’s t test; ***: p < 0.001 ; ****: p < (0.0001. Histograms show absolute levels and mean fold activation
for one representative measurement (insets). pSFFV, Spleen Focus-Forming Virus promoter; pybTATA,
synthetic YB_TATA promoter. (D) Optimized synZiFTR switches enable design of compact, single lentiviral
vectors for strong and inducible gene expression control in Jurkat T cells. (E) Development of a compact, GZV-
regulated synZiFTR program for tight, titratable control of IL-12 cytokine production in primary human immune
cells. Human primary peripheral blood mononuclear cells (PBMCs) were activated and transduced with a single
lentiviral vector encoding single-chain IL-12 payload and synZiFTR expression cassettes (see Methods). IL-12
production was measured by ELISA at specified time points following induction (with or without 1 uM GZV).
Points represent mean values for three measurements + SD.
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Before translating our synZiFTR systems to clinically-relevant cell types, we optimized
response elements by screening arrangements of DBM arrays and minimal promoters to identify
combinations that reduced basal expression and improved dynamic range (Fig. S6). Collectively,
these studies led to an optimized design of GZV-, 4OHT-, and ABA-inducible synZiFTR
systems that can be compactly encoded on either dual or single lentiviral vectors to enable
strong, tight induction of gene expression (Fig. 2C,D). We then sought to determine whether
synZiFTRs could be used to control expression of therapeutically-relevant payloads. For these
studies, we chose to focus on engineering primary human immune cells, which have immense
therapeutic potential but for which precise gene expression control remains highly challenging;
thus, establishing our systems in these cells will provide a blueprint for translation into other
challenging, clinically-relevant cell types. As an initial proof-of-principle, we selected the
immunomodulatory factor, IL-12. IL-12 has potent anti-tumor activity, but overexpression of IL-
12 can cause severe and fatal side effects because of dose-limiting toxicity, making it a
promising candidate for synZiFTR-regulated expression control in engineered immune cells (54,
55). We constructed a single-lentiviral vector encoding a GZV-regulated IL-12, which we used
to transduce primary human immune cells (Methods). Significantly, our synZiFTR system
enabled titratable control over IL-12 production in a GZV dose- and time-dependent manner
(Fig. 2E). These results provide a promising basis for compact synZiFTR-based switches and
programs capable of controlling therapeutically-relevant payloads.

Do synZiFTR programs drive clinically-relevant outputs? To answer this, we turned to
the CAR T cell therapy paradigm, initially choosing to develop a synZiFTR-controlled anti-Her2
CAR (Fig. 3A). Her2 is a tyrosine kinase receptor that is overexpressed in many tumors,
including a small subset of leukemia (56-59). We have previously successfully used this anti-
Her2 CAR in a xenograft liquid tumor model, thus providing a convenient platform to evaluate
the efficacy of our synZiFTR circuits (60). We generated a GZV-inducible anti-Her2 CAR
system, which enabled inducer-dependent CAR expression in primary human T cells, notably to
levels comparable to a standard constitutively-expressed CAR and with minimal output in the
absence of inducer (Fig. 3B). When co-cultured with a Her2-overexpressing (HER2+) NALM6
leukemia cell line (Fig. S7C), we found that synZiFTR-controlled CAR cells were capable of
GZV-dependent activation and efficient tumor cell killing in vitro (Fig. 3C, S8A). Importantly,
these synZiFTR programs are easily reconfigurable. By swapping the anti-Her2 CAR with an
anti-CD19 CAR, we could reproduce these in vitro activity results for a second payload,
confirming the generalizability of our system (Fig. S7).
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Fig. 3. SynZiFTR programs enable inducible, clinically-relevant gene expression control over CAR T cell
activity in vivo

(A) Conceptualization (left) and implementation (right) of a synZiFTR-controlled anti-Her2 CAR gene
expression program. Human PBMCs were activated and co-transduced with equal ratios of lentiviral vectors
encoding anti-Her2 CAR payload and synZiFTR expression cassettes (see Methods). (B) SynZiFTR program
enables GZV-dependent CAR expression in primary human immune cells. Expression of anti-Her2 CAR-
mCherry was measured by flow cytometry two days following induction (with or without 1 uM GZV). Const.
CAR, constitutively expressed (pSFFV-CAR). Bars represent mean values for three measurements + SD.
Statistics represent two-tailed Student’s t test; ***: p < 0.001 ; ****: p <0.0001. (C) SynZiFTR-CAR program
enables GZV-dependent immune cell activation and tumor cell killing in vitro. SynZiFTR-controlled CAR cells
(pre-induced with or without 1 uM GZV for 2 days) were co-cultured with HER2+ NALM6 target leukemia
cells in a 1:1 ratio (left). IFNy secretion from activated immune cells was measured by ELISA (center) and
tumor cell killing by flow cytometry (right), one day following co-culturing. (D) Testing in vivo efficacy of
synZiFTR-controlled CAR T cells using a xenograft tumor mouse model. Timeline of in vivo experiments, in
which NSG mice were injected i.v. with luciferized HER2+ NALM6 cells to establish tumor xenografts,
followed by treatment with PBMCs. GZV was formulated alone or in combination with LPV/RTV and
administered i.p. daily over 14 days. Mice were imaged weekly on days 4, 11, 18, 25 to monitor tumor growth
via luciferase activity. GZV, 25 mg/kg. LPV/RTV, 10 mg/kg. (E) Tumor burden over time, quantified as the
total flux (photons/sec) from the luciferase activity of each mouse using IVIS imaging. Points represent mean
values = SEM (n=4 mice per condition). Statistics represent two-tailed, ratio paired Student’s t test; ns: not
significant; **: p < 0.01. (F) IVIS imaging of mouse groups treated with (1) untransduced PBMCs, (2)
synZiFTR-controlled CAR cells, (3) synZiFTR-controlled CAR cells with GZV, (4) synZiFTR-controlled CAR
cells with GZV+LPV/RTYV, (4) constitutive CAR cells. (n=4 mice per condition).
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Finally, we tested the in vivo efficacy of synZiFTR-controlled CAR cells using a simple
xenograft blood tumor model (60) (Fig. 3D, Methods). For mice receiving synZiFTR-controlled
anti-Her2 CAR T cells, GZV was dosed every day at 25 mg/kg for 14 days, either alone or in
combination with lopinavir/ritonavir (LPV/RTV, 10 mg/kg), an antiretroviral drug cocktail
known to increase GZV bioavailability (67). Importantly, GZV inducer combinations have no
effect on cells on their own (Fig. S8A), and measurements of mouse body weight over the course
of the experiment confirmed that daily inducer injections were not toxic (Fig. S7B). Tumor
growth was monitored via IVIS imaging of luciferase-expressing HER2+ NALMBS6 cells over the
course of 25 days (Fig. 3E). Mice receiving synZiFTR-controlled CAR cells and treated with
GZV or GZV+LPV/RTV were able to clear the tumor, while those not treated with inducer
resulted in high tumor burdens (Fig. 3E-F). Interestingly, while both inducer conditions
ultimately led to tumor eradication, clearance rates were faster with the cocktail, on par with the
constitutive CAR positive control and consistent with the ability of LPV/RTV to increase GZV
bioavailability (Fig. 3E, S8C). This suggests that leveraging pharmacokinetic considerations
could provide yet another way to tune synZiFTR circuit output in vivo. Overall, these results
establish genetic switches for inducible CAR expression, and demonstrate that synZiFTRs can be
used to program drug-dependent control over T cell therapeutic activity in vivo.

There is an increasing recognition that “co-engineering” strategies will be crucial to
enhancing the efficacy of gene and cell therapies. For example, co-engineering tumor-targeting
immune cells with immunomodulatory factors that can combat immune suppression, promote
tumor homing, and/or enhance immune responses will be key to improving the efficacy of CAR
T cells against solid tumors, as well as to realizing the next-generation of CAR T cell therapies
for other diseases, such as autoimmunity and heart disease (62-64). Pleiotropic factors, such as
IL-12, have been explored for immunotherapy due to their anti-tumor properties. Other
interesting candidates include IL-4, which may facilitate tissue repair and suppress inflammation
(65). Importantly, these cytokines have diverse, contextual, and dose-dependent functions within
the human body, once again motivating the critical need for precise spatiotemporal control of
gene expression. Our synZiFTR platform provides a promising basis for next-generation co-
engineering strategies by enabling custom, “multi-channel” synthetic programs, in which
therapeutic genes are independently regulated by orthogonal small molecules (Fig. 4A). As a
proof-of-principle, we constructed a two-channel synthetic system in which one channel is
dedicated to controlling a tumor-targeting factor (e.g. CAR) and a second channel to controlling
a desired immunomodulatory payload (e.g. cytokines). Specifically, our design was composed of
a GZV-inducible synZiFTR (ZF10) switch controlling anti-Her2 CAR and a 4OHT-inducible
synZiFTR (ZF3) switch controlling either IL-12 or IL-4. Following transduction of primary
human immune cells with our synthetic two-channel systems, we found that addition of GZV
and 40HT led to the production of CAR and cytokines, respectively, with minimal apparent
output in the no drug condition (Fig. 4B, S9A).
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Fig. 4. Development of a two-channel synthetic switch for independent, drug-regulated control of
immunotherapeutic products

(A) Conceptualization (left) and implementation (right) of the two-channel synthetic system. Orthogonal small
molecule-regulated synZiFTR switches (GZV-synZiFTR10 and 4OHT-synZiFTR3) are used to control
expression of a CAR and an immunomodulatory payload, respectively. (B) Independent, drug-inducible control
of anti-Her2 CAR and IL-12 in primary human immune cells. PBMCs were transduced with lentiviral vectors
comprising the two-channel system, and induced with combinations of GZV and 40OHT. Anti-Her2-CAR-
mCherry was measured by flow cytometry and cytokine secretion by ELISA. Points (left) and bars (right)
represent mean values for three measurements + SD. (C) Testing efficacy of two-channel synZiFTR switches
using a 3D tumor spheroid model based on HER2+ MCF10A cells. Timeline of spheroid formation and
experiments (bottom). +GZV, 1 uM; +40HT, 1 uM. (D) 4OHT-inducible control over IL-12 secretion in 3D
tumor spheroid co-culture. IL-12 was quantified by ELISA analysis of supernatant. Bars represent mean values
+ SD (n=8 spheroids per condition). Statistics represent two-tailed Student’s t test; ****: p <0.0001. (E) GZV-
inducible control over spheroid destruction by engineered two-channel cells. Representative phase contrast and
CAR-mCherry fluorescent images of spheroid morphology when co-cultured with two-channel inducible or
control PBMC:s. Clear disruption of the compact, rounded morphology is seen in conditions in which PBMC
express the anti-HER2 CAR.

CAR mCherry
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To demonstrate the efficacy of the two-channel switch in driving functional changes in
cell behavior, we designed and developed a spheroid tumor target for the engineered immune
cells. While spheroids are an imperfect model of in vivo solid tumors, they share notable
morphological and behavioral similarities, including the development of oxygen and nutrient
gradients, formation of a necrotic/apoptotic central core, and recapitulation of 3D cell-cell and
cell-matrix interactions (66). As such, spheroids are thought to provide a more physiologic in
vitro response to therapeutics than simple 2D monolayers, and are widely used to evaluate the
efficacies of small molecule and cellular therapeutics in high-throughput (67). Here we designed
and employed a 3D spheroid, based on HER2+ MCF10A breast mammary epithelial cells, to
simultaneously probe CAR-mediated spheroid killing and immunomodulatory cytokine secretion
(Fig. 4C, S9, Methods). We observed clear morphological differences between spheroids co-
cultured with CAR-expressing (+GZV or constitutive CAR) and non-expressing (-GZV and WT)
cells. Specifically, while spheroids cultured with uninduced cells (-GZV) retained their compact
rounded morphology, spheroids cultured with cells induced to express anti-HER2 CAR (+GZV)
showed significant morphological disruption, including loss of their hallmark rounded shape and
amorphous cell scattering throughout the well, both signs of spheroid fragmentation and
disassembly that are indicative of CAR-mediated cell killing (Fig. 4E). These stark morphologic
differences were observed over multiple biological replicates (Fig. S9E) and are consistent with
our previous in vitro and in vivo tumor cell killing data (Fig. 3C,E). Supernatant analysis from
the spheroid co-cultures showed significant IL-12 production only in 4OHT treated conditions,
demonstrating 4OHT-mediated control over local production of the cytokine (Fig. 4D).
Collectively, these results demonstrate spheroid killing and cytokine expression behaviors in the
presence of GZV and 40OHT, respectively, illustrating the multi-channel control enabled by the
synthetic switch. Importantly, inducers alone exhibited no morphological disruption indicative of
spheroid killing (Fig. S9D). More broadly, these results demonstrate that synZiFTRs can be used
to implement complex therapeutic gene expression programs in clinically-relevant cell types, and
establish the first two-channel, synthetic switch for independent control of immunotherapeutic
genes in primary human immune cells.

In this work, we outlined a set of minimal principles for clinically-driven design of
synthetic regulatory programs in human cells. These principles were reflected in the choice of
molecular building blocks and features that we prioritized in developing a versatile human
synZiFTR toolkit. We based our synZiFTRs on engineered ZFs for their intrinsic flexibility in
DNA targeting, compact size, human origins, and reported history of not eliciting unintended
immune responses. Though not as easily programmable as CRISPR/Cas9 systems, ZFs have
been shown to function in virtually every cell type in which they have been tested, their
specificity can be reprogrammed, and they can be effectively used as building blocks for
engineering highly specific and active regulators when workflows are developed that incorporate
context-dependencies and other ZF design criteria. Here, we demonstrated the development of,
to our knowledge, the first collection of human genome-orthogonal, ZF-based synthetic
regulators. Other efforts focused on minimizing the large size and immunogenic potential of
Cas9 and other proteins may, in the future, provide complementary tools for the broader
mammalian synthetic biology toolkit (26, 68-70). Yet, a particularly advantageous feature of ZF-
based systems is the ability to quantitatively tune biochemical properties, such as DNA-binding
affinity, with simple and general strategies informed by a wealth of biophysical and structural
data (71, 72). Indeed, these strategies have been shown to be valuable in designing synthetic
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regulatory circuits with tunable input/output behaviors (71, 73, 74), and formed the foundation of
our recent efforts to engineer multivalent cooperative transcription factor assemblies in yeast,
which we demonstrated to be a compact and flexible mechanism for programming signal
processing behaviors in cells (73).

Evaluating the true immunogenic potential of any synthetic system will ultimately require
empirical measurements in patients. However, a preliminary informatic analysis of our ZFs using
an established immunogenicity prediction tool confirms that ZF peptides show comparatively
lower immunogenicity scores than those of TetR, Gal4, and sp dCas9 (Methods, Fig. S10),
providing additional evidence that ZFs are overall less likely to elicit immune responses. Indeed,
the protein backbone sequences of our engineered ZFs are based entirely on human Egrl;
variability is only introduced in residues of the recognition helix of each ZF domain and by
altering two residues in the canonical ZF linker to create ‘disrupted’ linkers that connect each 2F
unit. Furthermore, our synZiFTRs utilize human effector domains such as p65 to drive strong
gene expression outputs in both common laboratory and clinically-relevant human cell types.
Recent developments in high-throughput methods to discover and characterize transcriptional
effectors should provide additional human-derived effector candidates for artificial
transcriptional regulation using our synZiFTR platform (75). We recognize that clinical trade-
offs were introduced in our inducible synZiFTR switch designs, as the decision to prioritize
clinically-favorable, non-native small molecules required the use of plant-derived ABI-PYL and
viral-derived NS3 domains. Future efforts to ‘de-immunize’ these domains will be useful for
ultimate clinical translation. Concurrently, efforts to identify additional human ligand binding
domains with orthogonal, biocompatible inducers will also be valuable.

We expect that our synZiFTR toolkit will translate widely to other clinically-relevant cell
types and contexts, enabling new forms of precise gene expression control. In this study, we
focused on establishing small molecule-mediated, remote control of therapeutic activity. Such
orthogonal, regulatable gene expression control is urgently needed to improve the safety and
efficacy of gene and cell therapies, allowing more potent therapies to be safely administered and
controlled post-delivery. Indeed, uncontrolled overexpression of therapeutic genes can lead to
toxicity or diminished functionality. For example, poorly controlled IL-12 expression in CAR T
cells led to life-threatening side-effects in a recent clinical trial (76), and constitutive CAR
expression is well-known to cause T cell exhaustion that can limit therapeutic efficacy (77). Our
work in human cells using xenograft mouse models will pave the way for more in-depth
evaluation of toxicity management in immunocompetent mouse models with murine immune
cells, which have proven to be more challenging to genetically engineer (78). Moreover, gene
and cell therapies that perform multiple, concerted therapeutic actions will be critical for
addressing complex diseases, including solid cancers, autoimmunity, and heart disease (62, 63).
To our knowledge, our study included the first demonstration of a two-channel synthetic switch,
based on clinically-approved small molecules, for independent control of therapeutically-relevant
genes in primary human immune cells. These results may provide new possibilities to design co-
engineered cell therapies, which couple the control of factors that direct target specificity with
immunomodulatory or immunotherapeutic products to combat different facets of pathology or
promote tissue regeneration.
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As our synZiFTRs are modular and have mutually-orthogonal specificities, they present a
convenient platform for building new gene switches and composing other types of synthetic
circuits. On the former, incorporation of de novo-designed bioactive protein domains should
provide additional modes for regulating the activity of synZiFTRs (79-817). On the latter,
synZiFTR-based circuits that integrate cell-autonomous decision-making will make it possible to
activate multi-gene therapeutic programs in response to endogenous and disease-related
signaling. To this end, the emergence of flexible synthetic receptors, such as the synthetic Notch
receptor, have enabled researchers to endow mammalian cells with novel sense-and-response
capabilities to detect a broader set of disease or tissue-related cues and translate them into
custom transcriptional outputs (8, 9). In a separate study, we report that synZiFTRs can robustly
function within a new class of synthetic transcriptional receptors that undergo regulated
intramembrane proteolysis (82). This advance allows for activation of custom synZiFTR
programs in response to a broad spectrum of ligands via a highly compact, fully humanized
receptor system with dramatically expanded input/output capabilities. An exciting future
prospect is engineering multi-input synZiFTR circuits that can flexibly integrate information
from both exogenously-administered inputs (e.g. small molecules) and cell-autonomous signals
(e.g. antigen sensing).

Our synZiFTR toolkit provides a powerful and clinically-promising platform with which
to engineer custom transcriptional programs that endow mammalian cells with new capabilities.
While much development remains and many other clinical considerations to address, we hope
these tools will begin to transform the rapid advances we are witnessing in mammalian synthetic
biology into new solutions for safer, effective and powerful next-generation therapies.
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