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ABSTRACT

The accuracy of three data-constrained barotropic ocean tide models is as-

sessed by comparison with data from geodetic mission altimetry and ocean

surface drifters, data sources chosen for their independence from the obser-

vational data used to develop the tide models. Because these data sources

do not provide conventional time series at single locations suitable for har-

monic analysis, model performance is evaluated using variance reduction

statistics. The results distinguish between shallow and deep water evaluations

of the GOT410, TPXO9A, and FES2014 models; however, a hallmark of the

comparisons is strong geographic variability which is not well-summarized

by global performance statistics. The models exhibit significant regionally-

coherent differences in performance which should be considered when choos-

ing a model for a particular application. Quantitatively, the differences in ex-

plained SSH variance between the models in shallow water are only 1-2%

of the root-mean-square (RMS) tidal signal of about 50 cm, but the differ-

ences are larger at high latitudes, more than 10% of 30 cm RMS. Differences

with respect to tidal currents variance are strongly influenced by small-scales

in shallow water and are not well represented by global averages; therefore,

maps of model differences are provided. In deep water, the performance of

the models is practically indistinguishable from one another using the present

data. The foregoing statements apply to the 8 dominant astronomical tides

M2, S2, N2, K2, K1, O1, P1, and Q1. Variance reduction statistics for smaller

tides are generally not accurate enough to differentiate the models’ perfor-

mance.
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1. Introduction33

Progress in the knowledge of tides, particularly in the deep ocean, may be largely attributed34

to measurements acquired by satellite altimeters beginning with the TOPEX/Poseidon mission in35

1993 (LeProvost 2001; Ray and Egbert 2017). Global models of the barotropic ocean tides may36

be used to predict tidal sea levels with an accuracy of 1 cm or better in many parts of the world37

ocean (Ray and Byrne 2010; Stammer et al. 2014). This accuracy has been achieved, in large38

measure, by meticulous analysis of data from multiple altimeter missions, coastal tide gauges,39

and bottom pressure recorders. Because of the importance of accurate tidal predictions, nearly40

all available data are incorporated into the development of the models. While this approach has41

benefits, the relative lack of independent data makes it challenging to evaluate the latest models,42

to measure improvement, and to identify where and how they might be further refined.43

The goal of this paper is to assess the most recent versions of independently-developed44

barotropic tide models available from different groups, and to update the assessment provided45

by Stammer et al. (2014) with more recent validation data. Emphasis is placed on using novel46

data, namely, (1) sea surface height (SSH) measurements collected by altimeter missions in long-47

repeat orbits not commonly used for tidal analysis, and (2) measurements of ocean surface ve-48

locity inferred from drifting buoys. Unfavorable aliasing of tidal frequencies (for altimetry) and49

Lagrangian sampling (for drifters) makes it problematic to compute accurate tidal harmonic con-50

stants from these data, which would provide the best information for comparing with tide models.51

Instead, a variance reduction statistic, the explained variance, is used to compare the models; how-52

ever, interpreting this statistic requires attention to the influence of signals that are correlated with53

the tides of interest.54
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Stammer et al. (2014) compared three different types of tide models: (1) purely hydrodynamic55

models, which predict the tides by numerically integrating the equations of motion forced by56

the astronomical tidal potential with corrections for ocean self-attraction and solid earth loading,57

(2) purely empirical models, which predict tides using harmonic constants inferred from satellite58

altimeter data, and (3) data assimilative models, which systematically combine information used59

in the previous approaches. Herein we consider updated versions of three models, namely, the60

TPXO Atlas, version 9.2 (TPXO9A), the Finite Element Solution, version 2014 (FES2014), and61

the Goddard/Grenoble Ocean Tide model, version 4.10c (GOT410), developed using methods62

described in detail in Egbert and Erofeeva (2002), Lyard (1999), and Ray (1999), respectively.63

TPXO9A and FES2014 are models of the data assimilative type, (3) above, while GOT410 is an64

empirical model, (2) above. All three models are widely used to compute tidal predictions for65

a variety of applications in oceanography and geophysics. Among the other models considered66

in Stammer et al. (2014), note that the DTU model has been updated to DTU16, but since this67

used the older FES2012 model as a prior, it is not considered here. With the exception of the68

purely hydrodynamic models, the other models considered in Stammer et al. (2014) have not been69

updated and are not considered. The hydrodynamic model examined in Stammer et al. (2014),70

global HYCOM, has been subject to ongoing improvement and assessment elsewhere (Ngodock71

et al. 2016; Savage et al. 2017; Nelson et al. 2019).72

The software used for computing tidal predictions from these models differs slightly in each case73

to accommodate the harmonic constants provided and the choice of minor constituents computed74

by inference. Because of these differences, comparisons of the tidal predictions are ambiguous75

to interpret, since differences may be due to errors in the tidal harmonic constants, differences in76

how atmospheric tides are treated, or differences in the inference methodology. Thus, previous77

assessments have generally emphasized comparisons of the models with observed harmonic con-78
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stants, rather than tidal predictions, per se. While this approach usefully isolates the comparisons79

to individual tidal constituents, it limits the comparison data to those for which long time series80

are available for computing accurate harmonic constants.81

As an alternative to comparisons of harmonic constants, the approach taken here uses variance82

reduction statistics to evaluate model performance. Thus, a partial tide prediction is computed for83

a single constituent, say, M2, and this prediction is subtracted from the observations. The variance84

of the residual, and the difference in variance compared to the original, may then be compared85

among the models. An advantage of this approach is that it permits the use of more types of data86

for model intercomparison than could be used for comparisons of harmonic constants. This is87

particularly important because the largest differences among the models generally occur near the88

coastline, at spatial scales which cannot be resolved by tide gauges or reference mission altimetry89

data.90

But variance reduction statistics are only meaningful to the extent that the sampling is sufficient91

to decorrelate signals at the tidal frequencies of interest from each other and from non-tidal sig-92

nals. For example, when data from altimeters flying in non-repeating or long-repeat orbits are93

considered, satisfying this constraint requires a degree of spatial averaging which largely obviates94

the advantages of using these data. To overcome this difficulty, surface drifter data are investigated95

for comparisons of tidal velocity. One novelty of this approach is that the velocity is, in essense,96

a measure of the tidal SSH slope and friction in the models, so the comparisons may provide97

more validation of the model dynamics than the SSH alone. A large quantity of drifter data with98

one-hour sampling is available, which reduces the concern with long-period tidal aliases, and their99

correlations; however, the nature of the Lagrangian drifter measurements requires consideration100

of effects absent in Eulerian data.101
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Our path through this material is as follows. First, the main attributes of the tide models and102

their evolutions with respect to previous versions are reviewed. Following a brief overview of103

sampling issues relevant to explained variance statistics, the models are compared to altimeter104

data, emphasizing comparisons in shallow water, deep water, and high latitudes. After this, a large105

dataset of drifter-derived velocities is used to evaluate tidal current predictions, and, once again,106

sampling issues are reviewed. The paper finishes with a discussion of implications, and a summary107

of the main findings.108

2. Overview of Tide Models109

a. Goddard/Grenoble Ocean Tide Model, version 4.10c (GOT410)110

The GOT410 model is the latest in the series of barotropic tide models developed at the Goddard111

Space Flight Center using the approach described in Schrama and Ray (1994). It was developed112

by analyzing satellite altimeter data to identify harmonic constants for the ten tidal frequencies113

listed in Table 1 (Ray 2013); although P1 was determined by inference, mainly from K1, because114

it was found to be more accurate than the direct estimate (Ray 2017 – Table 4). Version “c,” used115

here, differs slightly from previous versions by accounting for tidal oscillations of the geocenter,116

which results in small changes to the attribution of the ocean and land components of the tides,117

mostly affecting K1 and O1 (Desai and Ray 2014).118

The tide predictions obtained from GOT410 are computed from the harmonic constants available119

on its native grid at (1/2)◦ resolution. While this resolution is generally adequate for resolving the120

barotropic tides in the deep ocean, it is not intended to capture variability on continental shelves121

or near the coastlines.122
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b. TPXO Model, version 9.2-Atlas (TPXO9A)123

TPXO9A is the most recent version of the global tide models in the TPXO series (Egbert et al.124

1994; Egbert and Erofeeva 2002). It is constructed by assimilating altimeter data from multiple125

exact-repeat missions into a hydrodynamic model based on the Laplace Tidal Equations, modified126

to account for tidal dissipation, ocean self-attraction, and solid-earth loading. It is referred to as127

an “atlas” because it is obtained by combining a (1/6)◦-resolution global solution, TPXO9.1, with128

thirty separate (1/30)◦-resolution regional solutions for coastal areas, including the Arctic and129

Antarctic. All of the TPXO9A patches were obtained using consistent bathymetry and boundary130

conditions from the TPXO9.1 base solution, and they assimilate nearly all available exact-repeat131

mission altimetry and most available coastal tide gauge data. The resolution of the combined132

TPXO9A atlas is a uniform (1/30)◦.133

The TPXO9A tidal estimates include several tides which are not part of the GOT410 model,134

namely, 2N2, MN4, and MS4 (Table 1). These tides are part of the FES2014 model, below, to135

which they may be compared. Although these tides are generally small, they do contribute to sea136

level predictions at the millimeter-, and sometimes larger-, scale, especially near the coast. Note137

that the TPXO9A model does not include the S1 tide.138

c. FES2014 Model139

The FES2014 model is the latest version of the Finite Element Solution (FES) tide model (Lyard140

et al. 2006). Like the models in the TPXO series, the FES models assimilate essentially all avail-141

able exact repeat mission altimeter data into a hydrodynamic model based on the Laplace Tidal142

Equations, and FES2014 also assimilates most available coastal and deep ocean data from tide143

gauges and bottom pressure recorders. Compared to FES2012, the hydrodynamic component of144

FES2014 includes refinements to the finite-element grid and it incorporates regional bathymetric145
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data, both aimed at improving coastal tides. The native resolution of the FES2014 finite-elements146

ranges from roughly 5 km to 80 km; however, outputs are distributed on a uniform (1/16)◦ grid147

which is used here.148

FES2014 contains estimates for more tidal frequencies than either the GOT410 or TPXO9A149

models, including several long-period tides, minor diurnal and semidiurnal tides, and nonlinear150

overtides (Table 1). The inclusion of these tides in the tide prediction software, and tides inferred151

from a smooth admittance function, leads to superior performance of FES2014 predictions when152

all the tides are summed. It is challenging to incorporate all of these tides in an assessment evalua-153

tion, though, since most sources of validation data are not capable of resolving all the components.154

For this reason, the present efforts are restricted to evaluating the solutions at the 8 primary, plus155

one overtide, frequencies, M2, S2, N2, K2, K1, O1, P1, Q1, and M4.156

3. Comparisons with Altimeter-derived Sea Level Data157

The three models present very similar estimates of SSH harmonic constants. The co-tidal maps158

of the individual constituents conform closely to each other and to previous estimates (not shown).159

In order to evaluate the evolution of the models with respect to previous versions, the tide models160

are compared to independent data from satellite altimeters which were not used in the tide model161

development.162

These missions, listed in Table 2, occupy orbits with long ground track repeat periods which163

were not optimized for tidal analysis. Rather than directly comparing harmonic constants, we164

instead look at the variance reduction as a measure of goodness-of-fit. Maps of residual variance165

reduction, shown later, are computed from all available orbit cycles. For convenience, data from166

the Jason-1/c, Jason-2/c, and Jason-2/d geodetic missions shall be referred to as Jason/GM data.167
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a. Preliminaries: variance reduction for assessment of tide models168

The ability to identify harmonic constants from a time series depends on its length, which sets169

the minimum resolvable frequency separation, the Rayleigh bandwidth (Foreman 1977; Foreman170

et al. 2009). Although the amplitude and phase of a sinusoid are two independent parameters, if171

the length of a record is too short, any measurement error, non-tidal signal, or un-modeled tidal172

signal will project onto the resolved frequencies and lead to very poor estimates (Cherniawsky173

et al. 2001).174

A simple example illustrates that the same considerations apply for the interpretation of residual175

variance. Suppose the sea level observations are represented by a linear combination of two tidal176

components and noise,177

h(t) = a1 cos(ω1t −φ1)+a2 cos(ω2t −φ2)+ ε(t), (1)

where (a1,a2), (φ1,φ2), and (ω1,ω2), are the amplitudes, phases, and frequencies of the tides, and178

ε is the noise. The tide prediction to be validated, ĥ, is given in terms of the amplitude, â1, and179

phase, φ̂1, of the first component,180

ĥ(t) = â1 cos(ω1t − φ̂1). (2)

The variance reduction associated with this tidal prediction is,181

r = 〈h2〉−〈(h− ĥ)2〉, (3)

where 〈x〉 is the average of x(t) at the measurement times. If the model is exactly correct, â1 = a1182

and φ̂1 = φ1, then the variance reduction is,183

r =
1

2
a2

1 +a1a2〈cos((ω1 −ω2)t +φ1 −φ2)〉, (4)

where it has been assumed that the noise has zero mean and is uncorrelated with the tidal signals,184

and the time series is long enough to approximate 〈cos2(ωit−φi)〉=
1
2

and 〈cos[(ω1+ω2)t−(φ1+185
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φ2)]〉= 0. The variance reduction associated with the partial tide, 1
2
a2

1, is positive; however, if the186

sampling is not sufficient to decorrelate the tides, the second term can be of either sign and even187

dominate the first depending on the size of a2. The conditions to minimize the second term are188

analogous to the Rayleigh criterion, T > |ω1 −ω2|
−1, for separating closely-spaced frequencies.189

Variance reduction statistics for a given tidal frequency are subject to interference from nearby190

tidal frequencies, similar to harmonic analysis.191

Applying the above analysis to long-repeat orbit and drifting orbit altimeter missions is com-192

plicated because useful variance reduction statistics must be computed from a combination of193

temporal averages (over a range of dates or set of orbit cycles) and spatial averages (over a range194

of latitudes and longitudes or set of orbit passes). Zaron (2018) considered this issue for harmonic195

analysis of CryoSat-2 data, and the topic is reconsidered here from the perspective of variance196

reduction.197

Figure 1 illustrates the sampling in time and longitude of the CryoSat-2 mission, which occu-198

pies a 368-day long-repeat orbit. Within one degree of longitude of a given observation (x-axis)199

subsequent observations occur at intervals of 2-days, 13.5-days, 15.5-days, 26.9-days, etc. (open200

circles). The measurements sample the tides at various phases and enable the separation of tidal201

frequencies by harmonic analysis or, equivalently, the sampling decorrelates the sinusoids and en-202

able the determination of variance reduction statistics. The figure indicates the synodic periods of203

the M2/S2 frequency pair, indicating the length of record needed to separate the two frequencies (in204

red, indicated graphically with the dashed lines terminated in a filled circle). In this case, the sam-205

ple approximately 2 days after the initial pass, about 0.9◦ to the east, decorrelates the M2/S2 pair206

after only 15 days. Unfortunately, the usefulness of the 15 day synodic period for data within207

±1◦ longitude bins is less than might be expected, since the high inclination CryoSat-2 orbit plane208

precesses slowly around the earth, it takes nearly a year to sample enough phases of S2 to reliably209
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decorrelate it from M2 (cf., 324 day and 332 day synodic periods associated with the 15.5-day and210

42.4-day subcycles, respectively). In other words, the subsequent samples with 2-day offsets at211

nearby longitudes do not efficiently sample the phases of S2.212

The impact of combining spatial averaging with the temporal sampling is illustrated in Figure 2213

using data from the La Jolla, CA, tide gauge. First, the longest gap-free record from the sta-214

tion, 21-years from 1976 to 1997, is harmonically analyzed to determine harmonic constants. The215

M2 tide is predicted using the known harmonic constant, and the variance reduction is computed216

for different length of record (LOR), denoted τ , according to the sampling of the CryoSat-2 mis-217

sion (Figure 2a) within longitude bins of ±(1/4)◦ (black), ±(1/2)◦ (green), and ±1◦ (red). The218

theoretical maximum variance reduction is known from the given harmonic constant, (A2
M2/2), but219

explained variance oscillates, depending on the size of the longitude bins defining the subsampling.220

Even for ±1◦ bins, the variance reduction statistic is not accurate for τ < 10yr.221

The same comparison has been made using the Jason-1/c sampling pattern, which has a 407-222

day orbit repeat period (Figure 2b). The orbit is a small perturbation to the TOPEX/Poseidon223

reference mission orbit, and it has more favorable tidal sampling properties. In this case, the224

variance reduction statistic is stable for τ > 3yr, for longitude bins of ±0.5◦ and larger.225

The conclusion from these examples is that variance reduction statistics computed with long-226

repeat orbit altimeter data do not have any special value for diagnosing tide model differences227

near the coastlines, above that afforded by the exact-repeat reference missions. While variance228

reduction provides a direct metric of model performance, a criterion analogous to the Rayleigh229

criterion dictates that a substantial degree of spatial averaging is necessary to reduce the sampling230

errors. In spite of this, the data from the long-repeat missions are independent of the data assim-231

ilated into the tide models, so they provide a useful metric of performance, but not at the spatial232

resolution suggested by their close ground track spacing.233
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b. Results of altimeter comparisons234

Table 3 lists the root-mean-square of the residual SSH after removing tide predictions provided235

by the GOT410, TXPO9A, and FES2014 tide models. The results are presented separately for236

observations in water shallower and deeper than 1000 m, as well as separately for the Arctic and237

Antarctic regions (poleward of ±66◦) with CryoSat-2. To avoid the influence of differences in238

prediction software and the treatment of minor constituents, the prediction is computed as the sum239

of the eight major tidal constituents (M2, S2, N2, K2, K1, O1, P1, and Q1). The comparisons240

utilize the predictions for the geocentric tide, which involves a model for the load tide, i.e., the241

vertical tidal movement of the sea floor, and the same GOT4.10c load tide model is used in all242

cases. To insure the results are as comparable as possible with Stammer et al. (2014), corrections243

for equilibrium long-period tides (Cartwright and Taylor 1971; Cartwright and Edden 1973) are244

also applied to the altimetry prior to comparison with the tide models.245

The results are consistent with an overall convergence of the results at the level of precision246

that can be obtained with residual variance comparisons, and an incremental improvement over247

similar results tabulated in Stammer et al. (2014). One noteworthy aspect of the new models is248

the now-identical level of performance in shallow and deep water with respect to the Jason/GM249

dataset, even though the overall SSH signal is much larger in shallow water. The standard error,250

σsub, has been estimated by computing the residual errors over independent subsamples of the251

full data records, using 100-day subrecords for Jason/GM and 1-year subrecords for CryoSat-2, as252

described in more detail in the Appendix. The standard error thus accounts for reduced degrees of253

freedom associated with the temporal and spatial correlations of SSH at periods shorter than about254

100 days, caused by processes such as storm surges, variable boundary currents, and mesoscale255

eddies.256
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Although the differences between the residual variance among the models are smaller than the257

standard errors in Table 3, it would be incorrect to conclude that the model performances are258

identical or that the data are insufficient for distinguishing their relative performance. Because259

the same SSH data are used to evaluate each model, sample errors for the residual variances are260

correlated between the models, and σsub is not an appropriate measure of the sample error of261

residual variance differences between models.262

Table 4 reports the statistics concerning the pairwise differences in residual variance. The stan-263

dard error estimate for the variance difference, σ2
r , is computed using the same sub-records as264

described above, but it is significantly smaller than σ2
sub because the correlated component of the265

sample variability is now absent. A second estimate for sample error, σ2
d , attributed to the un-266

known and unresolved minor tidal constituents (analogous to the role of S2 for the example shown267

in Figure 2), is found to be negligible compared to σ2
r . The reader is referred to the Appendix for268

details about the computation of error estimates.269

Considering the performance in shallow water, for example, Table 4 indicates that the residual270

variance of GOT410 is 1.4 cm2 larger than that of TPXO9A, which suggests that TPXO9A per-271

forms better when measured with respect to Jason/GM data. And a larger difference of 9 cm2 is272

evident when compared with CryoSat-2 data. Based on the results in the Table, the FES2014 model273

has the lowest residual variance when averaged over the domains indicated. The performance of274

the tide models in deep water, where all the differences are 0.25 cm2 or less, corresponding to275

0.5 cm root-mean-square, are likely to be equivalent for all practical purposes; however, the dif-276

ferences are unambiguously larger than the standard errors in all cases. In shallow water and polar277

regions the differences between the models may be of practical significance, but the performance278

varies greatly within these regions and one model or the other might be better depending on the279

region of application.280

13



Maps of the differences in SLA residual variance with respect to the Jason/GM and CryoSat-281

2 data are shown in Figures 3 and 4, where the data have been binned at 2-degree resolution282

(corresponding to the ±1◦ averaging indicated in Figure 1). FES2014 is used as the reference to283

which GOT410 and TPXO9A are compared, so negative values in the maps indicate that FES2014284

performs better than the model with which it is compared. As demonstrated above, the variance285

reduction statistics invariably contain spatially-correlated sampling errors, dependent on the errors286

in the resolved tides (M2, S2, N2, K2, K1, O1, P1, and Q1) as well as the unresolved tides. Table 4287

indicates very small differences in model performance in the deep ocean, and this is evident in the288

maps.289

In the deep ocean, the differences between the FES2014 and GOT410 do not appear to be signif-290

icant, as regions with the largest differences, e.g., near Antarctica, depend on whether Jason/GM291

or CryoSat-2 data are used for comparison (Figure 3 versus 4). Less ambiguous differences among292

the models are evident near the coastlines, consistent with the slight advantage of FES2014 noted293

in Table 4. The data are generally in agreement that FES2014 reduces sea level variance more than294

GOT410, as would be expected from the coarse grid of the latter. In a few locations, e.g., near295

New Caledonia (20◦S,160◦E), GOT410 and TPXO9A appear to have an advantage.296

In conclusion, Jason/GM and CryoSat-2 data enable an assessment of tide model skill at more297

locations than could be obtained from comparison with other non-assimilated sea level data, e.g.,298

without the gaps between tracks as would occur with reference-mission altimetry. The results299

provide a useful description of model performance and show that, on average, FES2014 provides300

better predictions of the 8 major tides in shallow water and at high-latitudes; although, there are301

important regional differences where either of the other models are more accurate. The utility of302

the altimetry is nonetheless limited by the spatial averaging required to reduce interference with303

correlated signals at nearby (aliased) tidal frequencies. The extent of spatial averaging needed to304
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obtain stable results (2◦ bins here) is so large that it diminishes the ability to identify small spatial-305

scale errors near the coastline, and this, in part, motivates the use of drifter-derived current data306

for evaluating the models, below.307

4. Comparisons with Surface Drifters308

The Global Drifter Program (GDP) is an array of satellite-tracked drifting surface buoys from309

which are derived estimates of 15-m velocity along the buoys’ trajectories (Lumpkin and Pazos310

2007; Lumpkin et al. 2017). The complete historical GDP dataset is available as a drifter position311

and velocity product at 6-hour intervals (Lumpkin and Centurioni 2019). For this study a subset312

at hourly resolution is used (Elipot et al. 2016), version 1.02, which comprises 144 million tuples313

of location and velocity estimates from 15,329 individual drifter trajectories, totalling 80,765 con-314

tiguous segments. The hourly dataset contains drogued and undrogued drifters tracked by both the315

Argos positioning system and the Global Positioning System (GPS). Compared to the 6-hourly316

product, the hourly product is a dramatic improvement in the time resolution of the data, reducing317

data gaps and providing considerably better resolution of oceanic variability than was previously318

possible (e.g. Elipot and Lumpkin 2008; Elipot et al. 2010; Lumpkin and Elipot 2010; Elipot et al.319

2016).320

Previous studies have used GDP-derived velocities to map tidal currents. For example, Poulain321

and Centurioni (2015) used GDP data, interpolated to hourly time steps by kriging, to estimate322

tidal surface currents over the world oceans, using both drogued and undrogued drifter data. Their323

approach involved the estimation of tidal harmonic constants from 15-day segments of drifter324

trajectories, using least-squares harmonic analysis to identify the 4 largest tides, M2, S2, K1, and325

O1, coupled with inference of 4 smaller tides, P1, Q1, N2, and K2 (inference relations provided326

by the TPXO tide model). They mapped the harmonic constants at 2◦ resolution to resolve the327
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barotropic tide and some coastal tides. Among the findings of Poulain and Centurioni (2015), it is328

noteworthy that M2 tidal currents exceed 5 cms−1 in nearly all shallow seas and coastal areas, and329

currents in excess of 40 cms−1 are present in numerous areas near the continental shelves. Other330

studies with GDP data include Kodaira et al. (2016) and Zaron and Ray (2017), in which GDP-331

derived velocities were compared with models for the baroclinic tide using harmonic constants332

and variance reduction statistics, respectively.333

a. Preliminaries: Lagrangian vs. Eulerian Estimates of Tidal Currents334

Similar to the SSH data considered above, the GDP data may be used to either directly provide335

the harmonic constants of interest, or variance reduction statistics may be used. Unlike the altime-336

try, the temporal sampling of which aliases the tides to long periods, the GDP temporal sampling337

is hourly, so the usual Rayleigh criterion provides a guide to choosing which harmonic constants338

are identifiable from a given length of record. The issue which complicates the use of drifter data339

is related to the Lagrangian character of the observations. A typical drifter trajectory traverses a340

path along which both the tidal and non-tidal currents can vary strongly, even within a relatively341

small geographic region (Crawford et al. 1998).342

Simulations of Lagrangian sampling through a field of tidal currents have been examined to343

illustrate these features of drifter data. Two GDP drifter trajectories are shown in Figure 5a, each344

consisting of approximately 72 days of hourly observations of drifter location and velocity. One345

drifter trajectory is confined to deep water (white line, depth > 3000 m) while the other is on the346

continental shelf and slope (red line, depth < 3000 m). The M2, S2, K1, and O1 components of347

the TPXO9A model have been used to predict tidal currents along each trajectory, and the power348

spectra of these predictions sampled along the drifter paths are shown in Figures 5b and 5c (thin349
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red lines). The spectra are computed using Welch’s method by averaging periodograms estimated350

from 15-day subrecords, so the frequency resolution for the deep and shallow drifters is identical.351

Several distinct processes contribute to the character of the tidal spectra. For reference, the352

idealized line spectra of Eulerian currents evaluated from the harmonic constants at the mid-point353

of each trajectory are shown (heavy black lines). These idealized spectra would be broadened354

by the effects of finite record length, windowing, and averaging of Welch’s method (red shading355

shown for M2 only); but, the tidal peaks would be unambiguous for Eulerian data. The broadened356

spectrum of the M2 currents along the trajectory (gray filled region) shows the extent to which the357

nearby S2 line would be obscured because of the Lagrangian sampling. The spectrum from the358

deep water trajectory (Figure 5b) is essentially the same as would be obtained from Eulerian data359

because the barotropic tidal currents are nearly homogenous in the deep water. In contrast, the360

spectrum from the shallow water trajectory (Figure 5c) is considerably broadened, with variance361

from the peaks overlapping.362

The broadening of the Lagrangian spectra can be interpreted as a consequence of the convolution363

theorem. Using a Taylor series expansion, the current along the trajectory, u(X(t), t), can be related364

to the Eulerian current at a point along the trajectory, Xo, via365

u(X(t), t) = u(Xo, t)+∇u(Xo, t) · (X(t)−Xo). (5)

Therefore, the Fourier transforms of the Lagrangian, u(X(t), t), and Eulerian, u(Xo, t), currents366

differ by a term which is the convolution of the transform of the spatial gradient of the Eulerian367

current, ∇u(Xo, t), and the transform of the position vector, X(t)−Xo, the integral of the velocity.368

Another, equally descriptive, explanation for the spectral broadening is the spatial non-stationarity369

of the tidal current. Tidal currents on the continental shelf vary strongly along the Lagrangian370

trajectories, particularly near the shelf break and near islands.371
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This example illustrates the tradeoff between frequency resolution (record length) and spatial372

resolution when Lagrangian currents are used for identification of tidal currents. It suggests that373

it is better to analyze the GDP data within spatial bins near the continental shelves, treating it like374

Eulerian rather than Lagrangian data. The harmonic constants, or variance reduction statistics,375

can then be determined from time series formed from spatially-binned data. The unknown spatial376

variability within the bins would then contribute to sampling error.377

To examine this possibility, Figure 6 illustrates characteristics of the M2 tidal current ellipses on378

the continental shelf and in the deep ocean, within the same region shown in Figure 5. The GDP379

currents within each region have been subjected to conventional least-squares harmonic analysis380

by binning the data and treating them as unevenly-sampled time series (N = 2662 observations381

in the shallow region and N = 1661 in the deep region). The quantity of data are sufficient to382

stably identify the ellipse parameters of the M2, S2, K1, and O1 tides with a formal error of about383

0.2 cms−1 for the major axis (Cherniawsky et al. 2001). Note that the magnitude of the currents384

is very different on the shelf and in the deep water, 20 cms−1 and 4 cms−1.385

Tidal velocity ellipses from the barotropic FES2014 and TPXO9A models are shown, as well as386

the baroclinic High Resolution Empirical Tide (HRET) model (Zaron 2019), where each ellipse387

corresponds to a single point along the GDP trajectories in either the shallow (panels b-d) or deep388

(panels e-g) water. In the shallow region, the FES2014 ellipses are more similar to the observed389

ellipse than TPXO9A ellipses; however, in the deep water, the barotropic current ellipses are much390

too small. Comparison of the observed current ellipse with HRET in deep water indicates that the391

observations are likely dominated by the baroclinic — rather than barotropic — currents. The392

spread in the model ellipses (in gray) is a consequence of the spatial variability within the regions,393

and it is much larger than the formal error estimate of the measured ellipse parameters (com-394

puted, but not shown). The validity of the formal error estimate depends on assumptions about395
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the probability distribution and power spectrum of the residual currents, both of which are diffi-396

cult to characterize from the unevenly sampled time series. The difficulty this creates is obvious:397

without adequate error estimates for the observed harmonic constants, it is impossible to assess398

the significance of model deviations from the observations.399

From the above discussion, we conjecture that variance reduction statistics should be useful for400

assessing the quality of the barotropic tidal current predictions on the continental shelves, where401

barotropic currents may be expected to be larger than the baroclinic currents. In contrast, in the402

deep ocean, where baroclinic tidal currents can be much larger than the barotropic currents, the403

variance reduction statistics will be less useful, because the barotropic predictions (and their errors)404

are correlated with the larger baroclinic currents. To discern differences in variance reduction405

associated with the barotropic tide in the deep ocean, it would be necessary to average the statistics406

over an area larger than the wavelength of the baroclinic tide.407

b. Results of Comparisons with Surface Drifters408

The above conjecture about the interference of baroclinic tidal currents is confirmed by maps of409

variance reduction statistics for the M2 and K1 tidal currents from the FES2014 model (Figure 7).410

Overall the variance reduction is positive-valued (red), particularly in areas with strong barotropic411

tidal currents, such as in the Bering Sea, off the U.S. East coast, in the Yellow Sea, and many other412

areas, which means that the FES2014 model does predict some of the velocity variance captured413

by the drifters. However, near sites of strong internal tide generation there are oscillations in414

the variance reduction of ±10 (cms−1)2. For M2 these occur between the Aleutian Islands and415

the Hawaiian Ridge, near the Mariana Arc, and in the Tasman Sea; for K1 the most prominent416

oscillations are near Luzon Strait. In this and subsequent figures, bins in which the density of417

observations is less than 20 per (50 km)2 are indicated with light gray.418
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In addition to the oscillations caused by the baroclinic tide, there are also spatial modulations419

in the noise level of the variance reduction. This is presumably related to the strength of the tidal420

currents and the number of GDP observations within each spatial bin. Figure 8 shows a map of the421

spatial density of GDP observations, expressed as the number of observations per (50 km)2 bin.422

Elevated noise in the variance reduction statistics along the equator (Figure 7) is associated with423

the lower density of GDP observations.424

The spatial density of GDP data is sufficiently large that it is useful for evaluating the tide models425

throughout much of the global oceans (Figure 8). Because the number of observations increases426

with the size of the region considered, there is a relationship between the spatial scale and the427

frequency resolution of the tides. In other words, to distinguish the model performance at two428

frequencies, say, M2 and S2, it is necessary to evaluate the residual variance from a sufficiently429

large number of hourly observations to decorrelate the tides at these frequencies. The Rayleigh430

criterion suggests that 350 hourly measurements (15 days) are sufficient to resolve (O1, K1, M2,431

S2), and 4382 hourly measurements (183 days) are sufficient to separate (Q1, O1, P1, K1, N2, M2,432

S2, K2). When the number density of Figure 8 is integrated over regions of different sizes (not433

shown), the 8 main constituents can be distinguished in mid-gyre within patches of (200 km)2 or434

larger, but, near the coast, larger patches must be used.435

When the variance reduction is averaged over 2◦ bins, the baroclinic tides are averaged out, and436

the sample fluctations of the variance reduction statistics are improved within the bins (Figure 9).437

The small variance reduction associated with the barotropic M2 tide over the Mid-Atlantic Ridge is438

stably estimated (note the much narrower colorscale used in Figure 9 as compared with Figure 7).439

There is an unusual strip of elevated variance reduction at the inertial latitude of the K1 tide,440

particularly noticeable near 30◦S in the Indian Ocean. Overall, though, the largest variance reduc-441

20



tions exceeding 10’s of (cms−1)2 are associated with the continental shelves and regions of strong442

barotropic tides, consistent with observations of Poulain and Centurioni (2015).443

A global comparison of the GOT410, TPXO9A, and FES2014 models using GDP currents is444

summarized in Tables 5 and 6, using predictions for the sum of the 8 major tides. Two statistical445

measures of the models are shown: the root-mean-square (RMS) and the median absolute residual446

after removing the predicted tidal currents (u- and v-component residuals are combined to form447

a residual speed for both RMS and median statistics). Note that only three of the single-model448

residuals differ by more than the estimated standard error from the Signal in Table 5, all in shallow449

water (depth less than 1000 m). FES2014 exhibits a slight reduction of both RMS and median450

statistics; while GOT410 exhibits a RMS residual larger than the Signal, indicating that it is not451

useful for predicting tidal currents in shallow water. The latter result is expected, though, since the452

coarse-resolution GOT410 model was not intended for use in shallow water or near the coastlines453

(personal communication, Richard D. Ray 2020).454

As explained in the Appendix, the sample errors are dominated by non-tidal variability, so the455

differences in residual variance between the models can be estimated more precisely than the456

residual variance of any single model. The differences in model performance, summarized in457

Table 6, are much larger than the sampling errors, but the large difference in the mean-square458

versus median-square statistics highlights the limited utility of these summary statistics. Although459

the models can be ranked in performance from GOT410, to TPXO9A, to FES2014 based on the460

global statistics in Table 6, the largest differences between the models occur at small scales and461

the best model for any specific application depends on location. Furthermore, the GDP sampling462

is poor in the Arctic Ocean, in the Hudson Bay and around much of Antarctica, and so the GDP463

provide no insight into the model differences in these regions where the altimeter data indicated464

performance differences.465
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Maps of differences in residual variance are provided for the comparison of FES2014 and466

TPXO9A in Figure 10. Large-amplitude differences between the models are resolved at small467

spatial scales where differences in excess of 25 (cms−2)2 are evident along the northeast coast of468

South America, in the western East China Sea, and in other areas (Figure 10a). Consistent with469

Table 6, overall FES2014 has a smaller residual variance than TPXO9A in the coastal areas (blue470

shading), but numerous sites are present where the opposite is true (red shading). Smaller differ-471

ences in residual variance can be resolved when the data are compared in larger bins (Figure 10b)472

and show that TPXO9A has smaller residual variance over much of the Mid-Atlantic Ridge, at a473

number of spots in the Western Pacific, e.g., near 10◦N–160◦E, and other regions, even though the474

summary statistics indicate smaller average residual for FES2014.475

To illustrate the differences between the models at smaller scales, the map in Figure 11 shows an476

enlargement of Figure 10a, where a logarithmic colorscale is used. Blue-green indicates negative477

values, which correspond to smaller FES2014 residuals; while pink-red indicates positive values,478

which correspond to smaller TPXO9A residuals. As noted previously, the FES2014 residual is479

smaller over much of the East and South China Seas, the Gulf of Thailand, and the shelf adjoining480

the Andaman Sea and Malacca Strait. Figure 11 also illustrates geographical patterns related to481

the internal tide, barely visible around Luzon Strait (20◦N–122◦E), as well as large-amplitude482

anomalies near the coast. The range of current variance shown, ±104 (cms−1)2, corresponds to a483

root-mean-square speed difference of 1 ms−1.484

The red pixels at 22◦S–150◦E, on the northeast coast of Queensland, Australia, exhibit an ap-485

parent degradation of FES2014 relative to TPXO9A. The site is nearby McEwin Islet, where the486

tidal range exceeds 8 m (Australian Bureau of Meteorology 2020), near a funnel shaped estuary.487

This site is shoreward of a portion of the Great Barrier Reef, where the FES2014 model perfor-488

mance is unambiguously superior to the TPXO9A (blue pixels at 21◦S–150◦E, Figure 11), and489
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it exemplifies the large-amplitude, but rare, differences between the models that differentiates the490

mean-square and median statistics in Table 6.491

The individual drifter trajectories (Figure 12a) are sparse, partly because the swift coastal cur-492

rents move the drifters quickly through the region. Examination of the residual currents, after493

de-tiding with FES2014 or TPXO9A, reveals that the performance differences in this area are494

caused by just a few trajectories in their closest approach to the coast, where the tidal ellipses pre-495

dicted by the two models differ greatly (Figures 12b and c). The highlighted trajectory passes close496

to Leicester Island (22.25◦S–150.5◦E) where FES2014 predicts M2 currents of nearly 200 cms−1
497

(Figure 12b), but the tidal currents inferred by harmonic analysis of the trajectory shown are only498

about 50 cms−1, which are comparable to the TPXO9A currents (Figure 12c). In this case the499

FES2014-predicted currents, while plausible, are much larger than either the observed or TPXO9A500

currents.501

The comparison of the tide models along individual trajectories highlights the incredible level of502

detail afforded by the drifter data, but it also exposes the limitation of global statistical summaries503

to usefully describe differences in the models’ performance. We had originally conjectured that the504

data from this buoy were spurious, but, upon examination, it does not appear to have malfunctioned505

or become grounded. Thus, large differences between the predicted and observed currents exist506

very close to the coastline, and one may wish to consider comparisons along individual trajectories507

when evaluating the tide models for use at particular sites. In any case, the large differences508

provide guidance as to where further model refinement may be warranted.509

5. Discussion510

Previous comparisons of barotropic ocean tide models using long-repeat/geodetic mission al-511

timetry found small differences in performance in shallow areas (Stammer et al. 2014) which are512
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also found here, with better precision, using the longer records now available. In deep water the513

differences between the models are so small that they are hardly of importance to most applica-514

tions, but they may point to the need to consider the different groups’ load tide models in the515

future, instead of uniformly employing the GOT4.10 load tide as was done here. The high-latitude516

data from CryoSat-2 indicate that TPXO9A performs significantly worse than either GOT410 or517

FES2014 poleward of 66◦, but it would be useful to revisit the high-latitude comparisons of Stam-518

mer et al. (2014) using the most recent GRACE, GRACE-FO, and IceSat-2 data.519

The comparisons of GDP data with tidal currents from the models leads to results similar to520

the altimeter-based comparisons. The GDP comparisons highlight the importance of strong, but521

small-scale, tidal currents, which are represented differently in summary statistics based on either522

mean versus median statistics.523

To contextualize the differences between the models, it is useful to compare the variance dif-524

ferences to the overall tidal signals. For example, the SSH variance differences in shallow water525

range from about 1 to 16 cm2 (Table 4), while the tidal signal variance is about 2.7× 103 cm2
526

(computed from the difference of the Signal squared minus the residual squared in Table 3). Thus,527

the differences in SSH residuals in shallow water amount to less than 0.5% even at their largest.528

The high-latitude differences are larger, e.g., about 15 cm2 out of 1035 cm2, or about 1.5%. When529

these ratios are interpreted as RMS ratios, the latter is somewhat greater than 3 cm out of 30 cm,530

a relatively large percentage compared to the accuracy in deep water at lower latitudes. The com-531

parison of tidal currents is less clear-cut because the median statistics are so much smaller than532

the RMS statistics (Table 5). Comparing the total signal, 30.2 cms−1, with the best-case resid-533

ual, 28.4 cms−1, suggests that a smaller fraction of shallow current variance can be attributed534

to barotropic tides, ((30.2)2 − (28.4)2)/(30.2)2, about 10%. Thus, even the small differences in535

residual variance represent large fractions of the tidal variance.536
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The comparisons of the tide models has focussed on the 8 main tides (Q1, O1, P1, K1, N2, M2,537

S2, K2) because these tides are common to all models considered in this study, but the GDP data538

can also be used to evaluate predictions for other tides included in the individual models. For539

example, the variance reduction for M4 derived from the FES2014 model is shown in Figure 13.540

In this case, many coastal areas exhibit negative values of the variance reduction (blue-green hues),541

indicating that tidal current predictions for this overtide are not yet usefully accurate. Comparisons542

with M4 predicted by TPXO9A are similarly ambiguous (not shown). While the models differ in543

detail, neither is capable of making reliable current predictions for M4 or the other minor tides.544

Readers interested in graphical comparisons of each of the tides predicted by both FES2014 and545

TPXO9A are referred to the Supplementary Data which accompanies this manuscript.546

It is interesting to consider the dynamical significance of tidal current predictions. For the data547

assimilative tide models, the validation of currents is a stronger test of the models than the valida-548

tion of sea surface height predictions. The latter are strongly constrained by the altimetry which549

they assimilate; however, the currents depend on the gradient of the surface height (pressure) as550

well as other terms in the force-balance, such as the bottom frictional stress, the baroclinic pres-551

sure gradient, and the Lagrangian acceleration. The influence of the baroclinic pressure gradients552

is manifest in deep water near known sources of the internal tide (Figure 7). The predominant553

balance is nonetheless between the Eulerian acceleration and the horizontal pressure gradient, so554

improvements in the prediction of tidal currents ought to correspond to improvements in the pres-555

sure gradient, or the sea surface slope. The variance in these quantities is approximately related556

by, s2 = (ω/g)2
∆u2, where s2 is the variance of the surface slope, ω is the tidal frequency, g is557

the acceleration of gravity, and ∆u2 is the current variance. For the M2 tide, the 102(cms−1)2
558

variance reduction typical of the continental shelf (Figure 11) corresponds to 1 micro-radian in559

the RMS tidal slope. The tidal predictions provided by FES2014 in the blue areas, and provided560
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by TPXO9A in the red areas, ought to enable better coastal tide corrections of sea surface slope,561

which is used to map short-wavelength undulations of the geoid (Sandwell et al. 2014).562

6. Summary563

This paper has sought to compare the latest versions of data-constrained models of the barotropic564

ocean tides, namely, FES2014, TPXO9A, and GOT410, which are widely used in tidal predictions565

of sea surface height, boundary conditions of regional ocean forecast models, and other applica-566

tions. The quality of the models, as measured either by their agreement with harmonic constants567

inferred from in situ data or the skill of their tide predictions, has converged to a level in the deep568

ocean that makes it difficult to distinguish them. However, in the coastal regions and on continen-569

tal shelves, there are unambiguous differences in model skill. It is a challenge to quantify these570

differences, though, because the models utilize nearly all available precise sea level measurements571

in their development.572

Comparisons between the models are consistent whether altimeter or drifter data are used.573

The finer grid of FES2014 and, presumably, the high-resolution bathymetry of this model (some574

of which is based on non-public data) lead to better variance reduction statistics compared to575

TPXO9A and GOT410 near the coasts and in shallow water. At high latitudes the TPXO9A model576

does not explain as much variance as either GOT410 or FES2014, but this conclusion is based577

solely on CryoSat-2 altimetry. The GDP data can provide ground truth for tidal currents very578

close to shore, but the dynamic range and variability of tidal currents is so large that median statis-579

tics may be more useful than conventional averaging. Alternately, the analysis of individual drifter580

records may be necessary to interpret the large differences between the models close to shore.581

In the deep ocean, the accuracy of the three models is essentially indistinguishable for the 8582

largest tides (M2, S2, N2, K2, K1, O1, P1, and Q1). For the smaller astronomical tides, and nonlin-583
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ear overtides, the variance reduction statistics are not broadly useful for distinguishing the model584

performances. The sampling error and frequency resolution are insufficient to identify the differ-585

ences in variance reduction associated with these small-amplitude tides.586
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APPENDIX607

Error Estimates for Sample Variance608

Estimates of residual and explained variance are used throughout the text to compare tide mod-609

els. This appendix reviews some basic statistics which are useful for describing the sources of610

error in the variance estimates. To establish the notation, represent a scalar time series, h (either611

SSH or a velocity component), as the sum of a signal, x, attributed to the resolved tides of interest;612

a signal, y, attributed to unresolved tides; and broadband noise, ε , consisting of measurement noise613

plus non-tidal signals, h = x+ y+ ε . For the sake of convenience, assume that each component of614

h has zero mean. Let xi denote the predicted tide provided by the i-th tide model, then the residual615

variance is defined as 〈(h− xi)
2〉, and the explained variance is simply 〈h2〉− 〈(h− xi)

2〉, where616

the angle brackets denote the mean over the sample of interest, which may involve both temporal617

and spatial averaging.618

Because the true tide, x, is unknown, it is not possible to compute the tide model error, 〈(x−619

xi)
2〉, and this is the reason why comparisons of the residual variance, 〈(h− xi)

2〉, are used to620

assess the relative performance of the models. Because the tide models are very similar, the xi621

estimates are correlated with each other, and the sample errors of 〈(h− xi)
2〉 are not independent.622

Consequently, the sample errors of variance differences, ∆i j = 〈(h− xi)
2〉− 〈(h− x j)

2〉, may be623

much less than the sample errors of either model, 〈(h−xn)
2〉 for n = i or n = j. Sample error here624

refers to errors which arise from non-tidal signals and random errors, ε , as well as errors which625

arise from unresolved tides, y. In principle both of these errors will tend to zero as the sample626

size is increased, but the temporal and spatial structure of the errors must be accounted for when627

estimating the sampling error.628

28



The variance of h is 〈h2〉= 〈x2〉+ 〈y2〉+ 〈ε2〉+2(〈xy〉+ 〈xε〉+ 〈yε〉). The residual variance is629

〈(h− xi)
2〉= 〈(x− xi)

2〉+ 〈y2〉+ 〈ε2〉+2(〈(x− xi)y〉+ 〈(x− xi)ε〉+ 〈yε〉). (A1)

For very accurate tide models, the sample error associated with 〈y2〉 and 〈ε2〉 may be comparable630

to the quantity of interest, 〈(x− xi)
2〉, which motivates the use of the explained variance (or, the631

variance reduction associated with the tide prediction),632

〈h2〉−〈(h− xi)
2〉= 〈x2〉−〈(x− xi)

2〉+2〈xi(y+ ε)〉, (A2)

which is unaffected by sample errors of 〈y2〉 and 〈ε2〉. For model comparisons, it is useful to write633

out the variance difference, mentioned above, as634

∆i j = 〈(x− xi)
2〉−〈(x− x j)

2〉+2〈(xi − x j)(y+ ε)〉. (A3)

Different strategies are used to estimate the sample errors associated with the residual vari-635

ance (A1) and residual variance differences (A3). The standard error of the quantity 〈(h −636

xi)
2〉 (A1), denoted σ2

sub, is estimated from Nsub independent subsamples within 10-day windows637

for the Jason/GM (one orbit cycle) or 1-year windows for CryoSat-2. The standard error, σsub638

in Table 3, is the average of the standard deviation estimates, divided by the square root of the639

number of subsamples N
1/2

sub . The error estimate thus accounts for the reduced degrees of freedom640

associated with correlated sea-level variability within each data window (periods less than 10 days641

or 1 year for Jason/GM and CryoSat-2, respectively). It is provided as a reference to understand642

the expected error of residual sea level estimates. Note that this sampling error is primarily caused643

by non-tidal sea level variability; uncorrelated instrument error is effectively averaged out by tak-644

ing global and regional averages of the given 1 Hz altimeter data. Also, note that a different error645

estimate is computed for each of the three models, and model pairs; however, only the values for646

either TPXO9A or TPXO9A-FES2014 are provided in the tables, since these are the values salient647

to distinguishing performances differences between TPXO9A and FES2014.648
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The term 2〈(xi−x j)(y+ε)〉 in the variance difference (A3) is associated with a random compo-649

nent, 2〈(xi − x j)ε〉, and a deterministic component, 2〈(xi − x j)y〉, where xi and x j are given but ε650

and y are unknown. The random component, denoted σ2
r , is estimated by computing ∆i j on inde-651

pendent data windows, as described above. The deterministic component, denoted σ2
d , is harder to652

estimate because it depends on y, which may be correlated among independent data subsamples.653

To make an estimate of σd we compute 2〈(xi − x j)y〉 over the full data record using tidal predic-654

tions for several of the minor tides from the FES14 model in place of y (larger representatives of655

the minor tides are used, S1, J1, ν2, and M4). The root-sum-of-squares of these quantities is then656

taken as σ2
d .657
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TABLE 1. Barotropic tide models considered. The Darwin symbols for the tides indicate the frequencies

which are provided by all the models (in regular font; except for S1 which is not included in TPXO9A); those

provided by TPXO9A and FES2014 in parentheses; and those only provided by FES2014 in small font and

parentheses.

798

799

800

801

Model Tides Resolution References

GOT410 Q1, O1, P1, K1, S1, (1/2)◦ Ray (2013)

N2, M2, S2, K2, M4

TPXO9A Q1, O1, P1, K1, (1/30)◦ Egbert and Erofeeva (2002)

N2, M2, S2, K2, M4

(2N2, MN4, MS4)

FES2014 Q1, O1, P1, K1, S1, (1/16)◦ Lyard et al. (2006)

N2, M2, S2, K2, M4

(2N2, MN4, MS4)

(Sa, Mm, M f , MS f , Mtm, MSqm, J1,

ε2, µ2,ν2, MKS2, λ2, L2, T2, R2,

M3, N4, S4, M6, M8)
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TABLE 2. Satellite missions used for SSH comparisons. Mission phase and orbit cycle definitions follow the

usage in the Radar Altimeter Database System (Naeije et al. 2002).

802

803

Mission/phase Orbit cycles Dates Duration [days]

Jason-1/c 382–425a 2012-05-07 – 2013-06-21 410

Jason-2/c 332–355 2017-07-11 – 2018-07-18 372

Jason-2/d 356–383 2018-07-25 – 2019-10-01 433

CryoSat-2 007–125b 2010-09-25 – 2019-12-02 3428

a Cycles 382–409 were used in Stammer et al. (2014).

b Cycles 1–40 were used in Stammer et al. (2014).
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TABLE 3. Comparison of root-mean-square residual SSH (units of cm) after applying the barotropic tide

correction from the three models, measured in different regions: shallow water refers to depths less than 1000 m,

deep water refers to depths greater than 1000 m, Arctic refers to latitudes northward of 66◦N, and Antarctic

refers to latitudes southward of 66◦S. The row labelled Signal is the SSH standard deviation before the ocean

tide correction is applied. To avoid the influence of differences in prediction software and their treatment of

minor constituents, the correction is computed as the sum of the eight major tidal constituents (M2, S2, N2, K2,

K1, O1, P1, and Q1). To make the results as comparable as possible with Stammer et al. (2014), corrections

for equilibrium long-period tides (from Cartwright and Edden 1973) and the GOT4.10c load tide (used for all

models) are also applied. The standard error estimate of the residual, σsub, is inferred from the variability of the

SSH residual variance over disjoint 100-day sub-records for Jason/GM and 1-year sub-records for CryoSat-2.

804

805

806

807

808

809

810

811

812

813

Shallow Deep CryoSat-2

Model Jason/GM CryoSat-2 Jason/GM CryoSat-2 Arctic Antarctic

GOT410 10.3 12. 10.2 10. 11. 7.7

TPXO9A 10.2 12. 10.2 10. 12. 8.5

FES2014 10.2 12. 10.2 10. 11. 7.7

Signal 54.4 54. 31.4 32. 34. 25.9

Std. error, σsub 0.8 2. 0.4 2. 2. 1.5
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TABLE 4. Comparison of variance differences (units of cm2) among the tide models in different regions (as

in Table 3). The three models are compared pairwise, as indicated in the first column; for example, GOT410

- TPXO9A indicates the residual variance of GOT410 minus the residual variance of TPXO9A (i.e., a positive

value indicates that the second model in the pair has smaller residual). Two estimates of the standard error are

provided. The first estimate, σ2
r , is inferred from the variability averaged over sub-records as in Table 3. Note

that σ2
r ≪ σ2

sub because the residual SSH is correlated between the models. The second estimate of the standard

error, σ2
d , is related to the correlation of the un-resolved tides with the resolved tides over the data records.

Larger values indicate the degree to which the resolved (major) tides cannot be distinguished from unresolved

(minor) tides due to the finite-record lengths, as explained in the Appendix. The uncertainty of the variance

differences is dominated by non-tidal SSH signals rather than the un-resolved tidal signals, i.e., σ2
r > σ2

d .

814

815

816

817

818

819

820

821

822

823

Shallow Deep CryoSat-2

Models compared Jason/GM CryoSat-2 Jason/GM CryoSat-2 Arctic Antarctic

GOT410 - TPXO9A 1.4 9.0 −0.14 −0.17 −14.9 −12.5
GOT410 - FES2014 2.7 15.7 0.03 0.09 0.6 0.3

TPXO9A - FES2014 1.3 6.7 0.17 0.25 15.5 12.8

Std. error, σ2
r 0.1 0.7 0.01 0.05 2.0 1.3

Std. error, σ2
d 0.06 0.03 0.002 0.001 0.1 0.3
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TABLE 5. Comparisons of root-mean-square and median residual speeds (units of cms−1) after applying the

barotropic tide correction to GDP measured currents in shallow water (depth less than 1000 m) and deep water

(depth greater than 1000 m). The row labelled Signal corresponds to the signal before the ocean tide correction

is applied. As in Tables 3 and 4 the tidal current is computed as the sum of the eight major tidal constituents

(M2, S2, N2, K2, K1, O1, P1, and Q1). The standard error estimate, σsub, is inferred from the variability of the

residual variance when the GDP data is divided into 8 approximately-equal-length subrecords.

824

825

826

827

828

829

Shallow Deep

Model RMS median RMS median

GOT410 39.8 25.4 29.6 25.2

TPXO9A 30.3 24.7 29.6 25.2
FES2014 28.4 24.3 29.6 25.2

Signal 30.2 26.0 29.7 25.3

Std. error, σsub 0.5 1.5 0.3 1.3
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TABLE 6. Comparison of differences in residual current statistics (units of cm2s−2) among the tide models in

shallow and deep water, for the same 8 constituents used in Table 5. The column labelled “mean” is the mean

difference in the residual current squared between the models indicated. The column labelled “median” is the

median difference in the residual current squared between the models indicated. As in Table 4, positive values

indicate that the second model in the pair has a smaller residual. The standard error, σ2
r , is inferred from the

variability averaged over 8 approximately-equal-length subrecords of the GDP data.

830

831

832

833

834

835

Shallow Deep

Models compared mean median mean median

GOT410 - TPXO9A 670 0.36 2.5 0.000

GOT410 - FES2014 780 0.56 3.0 0.000

TPXO9A - FES2014 110 0.21 0.5 0.000

Std. error, σ2
r 20 0.05 0.1 0.002
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LIST OF FIGURES836

Fig. 1. The sampling of CryoSat-2 in longitude (x-axis) and time (y-axis) illustrates how the spatial837

binning of CryoSat-2 observations samples tidal variability at different tidal alias periods in838

relation to the M2/S2 synodic period (red). At the initial time Cryosat-2 samples the ocean839

at ∆ longitude=0, and subsequent samples are indicated by the open circles. The number840

next to each open circle is the time increment from the initial sample. Thus, 2 days after the841

initial sample, the CryoSat-2 orbit samples about 0.9◦ to the west; at 13.5 days it samples842

0.3◦ to the east; at 15.5 days it samples 0.6◦ to the west; etc. Associated with each of these843

sample intervals is a set of tidal alias periods and synodic periods, the latter shown here in844

red for the M2/S2 pair. The synodic period is the time needed for one of the frequencies in845

the pair to cycle through one period more than the other frequency in the pair. It is analogous846

to the Rayleigh period in that it is the shortest record length from which the two frequencies847

can be stably resolved using conventional harmonic analysis. The dashed lines terminating848

in the filled circles indicate the synodic period added to the sample interval to indicate the849

nominal length of record needed to distinguish the M2 and S2 waves. . . . . . . . 45850

Fig. 2. Variance reduction statistics as a function of length of record (LOR, τ) and spatial binning851

(black, green, and red lines) using harmonic constants from a coastal tide gauge (La Jolla,852

CA). Variance of the M2 signal (one-half the amplitude squared) is indicated with the aster-853

isk at τ = 21yr; and the variance of the M2 plus S2 signal is indicated with the triangle. (a)854

The variance reduction computed via CryoSat-2 sampling oscillates and converges slowly,855

even when collected within ±1◦ bins. (b) In contrast, the variance reduction computed via856

Jason-1/c sampling is much more stable for records longer than about 3yr, when data are857

collected within longitude bins of 0.5◦ and larger. . . . . . . . . . . . . . 46858

Fig. 3. Jason/GM residual variance maps. (a) Residual variance, FES2014 tide prediction859

vs. GOT410 tide prediction. (b) Residual variance, FES2014 vs. TPXO9A. Green-blue hues860

indicate where the residual variance (variance reduction) of FES2014 is smaller (larger) than861

the model to which it is compared. . . . . . . . . . . . . . . . . . 47862

Fig. 4. CryoSat-2 residual variance maps. As in Figure 3. . . . . . . . . . . . . . 48863

Fig. 5. Tidal kinetic energy spectra sampled along drifter paths. a) Gap-free drifter trajectories864

in deep (> 3000 m) and shallow (< 3000 m) water (GDP buoys #64765560, 2017-09-16865

to 2017-11-27, and #63894840, 2017-10-31 to 2018-01-14, respectively). Tidal velocity866

predictions for the M2, S2, K1, and O1 tides from TPXO9A have been sampled along the867

trajectories to illustrate the character of tidal signals in Lagrangian spectra in (b) and (c).868

The sum of the spectra for the two velocity components has been multiplied by the Fourier869

bandwidth, giving the y-axis units of velocity variance (cm2s−2). The spectrum of the tidal870

velocity (red line) is narrow in (b) deep water, and broad in (c) shallow water. For reference,871

idealized line spectra (thick black lines) show the tide model kinetic energy at the mid-872

point of each trajectory. The spectrum of the M2 velocity is shown for Eulerian sampling873

at this same location (shaded red, centered on M2; barely visible in (b)) and for Lagrangian874

sampling (shaded gray; indistinguishable in (b)). The line broadening in (c) is a consequence875

of spatial variability of the predicted tidal currents along the trajectory. . . . . . . . 49876

Fig. 6. M2 tidal current ellipses computed from harmonic analysis of spatially binned drifter data877

(black lines in panels b-g) are compared with model current ellipses sampled along trajec-878

tories within the bins (gray lines in panels b-g). a) Drifter data were sampled on the shallow879

continental shelf (red, < 200 m depth, N = 2662 samples) and in the deep ocean (white,880

> 4000 m depth, N = 1661). The current ellipses from the barotropic models (in gray;881

plotted from the models’ harmonic constants every 10th-point along the trajectories) for b)882
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FES2014 and c) TPXO9A are similar in magnitude to the observed current ellipse (in black);883

the d) HRET current ellipse is too small to be visible at this scale. In the deep water, the884

e) FES2014 and f) TPXO9A current ellipses are much smaller than the observed, which is885

more similar to the g) HRET ellipse. . . . . . . . . . . . . . . . . 50886

Fig. 7. Velocity variance reduction for the (a) M2 and (b) K1 tidal currents predicted by FES2014,887

averaged within 0.5◦ bins. The variance reduction is computed as the difference between888

the variance of the original GDP currents and the GDP currents after removing the predicted889

barotropic tidal current with FES2014. Baroclinic currents are correlated with barotropic890

currents and cause spatial oscillations in these high-resolution maps. . . . . . . . . 51891

Fig. 8. The spatial density of GDP hourly currents observations, expressed as a number density per892

(50 km)2 spatial bin. Because the observations are generally made with hourly time reso-893

lution, roughly 350 observations are sufficient to discriminate the M2, S2, K1, and O1 tides,894

while 4382 observations are needed to discriminate the M2, S2, N2, K2, K1, O1, P1, and895

Q1 tides. Thus, within red-shaded regions there are enough observations to unambiguously896

identify all 8 major tides within, approximately, (50 km)2 patches. Within the green-brown-897

red shaded regions there are enough observations to identify the 4 major tides in the same898

size patches. . . . . . . . . . . . . . . . . . . . . . . 52899

Fig. 9. Drifter current variance reduction for the (a) M2 and (b) K1 tidal currents predicted by900

FES2014, averaged within 2◦ bins. Note the much smaller range of colorscale used in this901

plot compared with Figure 7. Averaging within larger spatial bins reduces the oscillations902

due to baroclinic tides as well as reducing the sampling error. . . . . . . . . . 53903

Fig. 10. Difference in drifter velocity residual variance, FES2014 minus TPXO9A, for tidal current904

predictions summed over the (M2, S2, N2, K2, K1, O1, P1, Q1) tides for data within a)905

0.5◦ bins and b) 2◦ bins. Note the different colorscales used in the panels. Green-blue906

hues correspond to better FES2014 predictions, while pink-red hues correspond to better907

TPXO9A predictions. . . . . . . . . . . . . . . . . . . . . 54908

Fig. 11. Log-scaled difference in drifter velocity residual variance, FES2014 vs. TPXO9A (enlarged909

and different colorscale from Figure 10a). The logarithm of the absolute value of the910

FES2014 minus TPXO9A residual variance is shown, multiplied by the sign of the differ-911

ence, so that, for example, −2 corresponds to −102 (cm s−1)2 difference of residuals (ab-912

solute values smaller than 1 (cm s−1)2 are truncated to zero). Green-blue hues correspond913

to better FES2014 predictions, while pink-red hues correspond to better TPXO9A predic-914

tions. The log-scaling highlights the sometimes large differences between the FES2014 and915

TPXO9A tidal currents on continental shelves and in shallow seas. Some apparent anoma-916

lies occur near the coastline, for example, near 22◦S–150◦E, which is examined in detail in917

Figure 12. . . . . . . . . . . . . . . . . . . . . . . . 55918

Fig. 12. Drifter trajectories and M2 tides near 22◦S–150◦E. a) Drifter trajectories (light red) are919

sparse in the vicinity of McEwin Islet (indicated) where the observed tidal range exceeds920

8 m. Currents along the highlighted trajectory (bright red) are largely responsible for the red921

pixels near 22◦S–150◦E in Figure 11, where TPXO9A agrees better with GDP-inferred cur-922

rents than FES2014. The M2 tidal ellipse computed from the highlighted drifter trajectory is923
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a)

b)

FIG. 3. Jason/GM residual variance maps. (a) Residual variance, FES2014 tide prediction vs. GOT410 tide

prediction. (b) Residual variance, FES2014 vs. TPXO9A. Green-blue hues indicate where the residual variance

(variance reduction) of FES2014 is smaller (larger) than the model to which it is compared.
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a)

b)

FIG. 4. CryoSat-2 residual variance maps. As in Figure 3.
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a) M2

b) K1

FIG. 7. Velocity variance reduction for the (a) M2 and (b) K1 tidal currents predicted by FES2014, averaged

within 0.5◦ bins. The variance reduction is computed as the difference between the variance of the original GDP

currents and the GDP currents after removing the predicted barotropic tidal current with FES2014. Baroclinic

currents are correlated with barotropic currents and cause spatial oscillations in these high-resolution maps.
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FIG. 8. The spatial density of GDP hourly currents observations, expressed as a number density per (50 km)2

spatial bin. Because the observations are generally made with hourly time resolution, roughly 350 observations

are sufficient to discriminate the M2, S2, K1, and O1 tides, while 4382 observations are needed to discriminate

the M2, S2, N2, K2, K1, O1, P1, and Q1 tides. Thus, within red-shaded regions there are enough observations to

unambiguously identify all 8 major tides within, approximately, (50 km)2 patches. Within the green-brown-red

shaded regions there are enough observations to identify the 4 major tides in the same size patches.

974

975

976

977

978

979

52



a) M2

b) K1

FIG. 9. Drifter current variance reduction for the (a) M2 and (b) K1 tidal currents predicted by FES2014,

averaged within 2◦ bins. Note the much smaller range of colorscale used in this plot compared with Figure 7.

Averaging within larger spatial bins reduces the oscillations due to baroclinic tides as well as reducing the

sampling error.
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a) 8 constit.

b) 8 constit.

FIG. 10. Difference in drifter velocity residual variance, FES2014 minus TPXO9A, for tidal current predic-

tions summed over the (M2, S2, N2, K2, K1, O1, P1, Q1) tides for data within a) 0.5◦ bins and b) 2◦ bins. Note

the different colorscales used in the panels. Green-blue hues correspond to better FES2014 predictions, while

pink-red hues correspond to better TPXO9A predictions.
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FIG. 11. Log-scaled difference in drifter velocity residual variance, FES2014 vs. TPXO9A (enlarged and

different colorscale from Figure 10a). The logarithm of the absolute value of the FES2014 minus TPXO9A

residual variance is shown, multiplied by the sign of the difference, so that, for example, −2 corresponds to

−102 (cms−1)2 difference of residuals (absolute values smaller than 1 (cms−1)2 are truncated to zero). Green-

blue hues correspond to better FES2014 predictions, while pink-red hues correspond to better TPXO9A pre-

dictions. The log-scaling highlights the sometimes large differences between the FES2014 and TPXO9A tidal

currents on continental shelves and in shallow seas. Some apparent anomalies occur near the coastline, for

example, near 22◦S–150◦E, which is examined in detail in Figure 12.
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M4

FIG. 13. FES2014 drifter velocity variance reduction for M4 predictions averaged within 2◦ bins.
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