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Abstract—In the wake of the Web 2.0, crowdsourcing has emerged as a promising approach to maintain a flexible workforce for
human intelligence tasks. To stimulate worker participation, many reverse auction-based incentive mechanisms have been proposed.
Designing auctions that discourage workers from cheating and instead encouraging them to reveal their true cost information has
drawn significant attention. However, the existing efforts have been focusing on tackling individual cheating misbehaviors, while the
scenarios that workers strategically form collusion coalitions and rig their bids together to manipulate auction outcomes have received
little attention. To fill this gap, in this work we develop a (¢, p)-collusion resistant scheme that ensures no coalition of weighted
cardinality t can improve its group utility by coordinating the bids at a probability of p. This paper takes into account the unique features
of crowdsourcing, such as diverse worker types and reputations, in the design. The proposed scheme can suppress a broad spectrum
of collusion strategies. Besides, desirable properties, including p-truthfulness and p-individual rationality, are also achieved. To provide
a comprehensive evaluation, we first analytically prove our scheme’s collusion resistance and then experimentally verify our analytical
conclusion using a real-world dataset. Our experimental results show that the baseline scheme, where none of the critical properties is
guaranteed, costs up to 20.1 times the optimal payment in an ideal case where no collusion exists, while our final scheme is merely 4.9

times the optimal payment.

Index Terms—Crowdsourcing, worker recruitment auctions, collusion resistance.

1 INTRODUCTION

ROWDSOURCING marketplace emerges as a new
C paradigm that makes it easier for individuals and busi-
nesses to outsource their processes and jobs to a large group
of human workers who can perform these tasks virtually.
This could include anything from conducting simple data
validation and research to more subjective tasks like survey
participation, content moderation, and more. Crowdsourc-
ing enables companies to harness the collective intelligence,
skills, and insights from a global workforce to streamline
business processes, augment data collection and analysis,
and accelerate machine learning development. Due to these
promising features, recent years have witnessed the pros-
perity of several commercialized crowdsourcing platforms,
such as Amazon Mechanical Turk [72] and Guru [38].

Crowdsourcing has a wide spectrum of potential ap-
plications. For example, quite a few research propose to
harness the sensing power of distributed mobile devices
for spectrum monitoring/sensing of a large geographic
area [1], [2], [3], [4], [5], [6], [7]. Under the framework
of crowdsourcing, mobile devices are hired to sense the
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spectrum occupancy/vacancy of their present locations. The
aggregated sensing results can produce a real-time fine-
grained spectrum usage map over a large geographic area.
Crowdsourcing has also gained great interest in the field of
wireless signal fingerprinting based indoor/outdoor local-
ization [8], [9], [10], [11], [12], [13]. To reduce the effort of a
manual calibration for the site survey, especially in a multi-
floor building or a large geographic area, various kinds
of crowdsourcing-based indoor localization methodologies
have been successfully applied. In addition, many mobile
crowdsourcing tasks also exist in commercial crowdsourc-
ing platforms. For example, in Clickworker [39] some tasks
hire workers with mobile devices to carry out geolocation-
aware image collection, image tagging, road traffic monitor-
ing, etc. In Taskrabbit [40], the platform publishes spatial
tasks such as cleaning a house or walking a dog. Typically,
these tasks are only accessible by workers nearby.

Participating in crowdsourcing is usually costly for in-
dividual workers, since they spend time and wisdom in
task execution. Therefore, effective incentive mechanisms
are essential to stimulate worker participation. Great efforts
have been devoted to this research area. Reverse auctions [73],
[74], [75] have been extensively adopted, where workers
compete with each other by submitting to the platform their
bids, i.e., the minimum payment they accept for the task.
As proved in these works, such competition can effectively
bring down the platform’s expense in hiring cheaper labor
and thus significantly enhance economic efficiency.

Despite the appealing properties, auction-based markets
are deemed vulnerable to bidder misbehaviors [31]. Strate-
gic bidders, individually or in groups, may seek to game
the system by coordinating their bids to manipulate auction
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outcomes. To make the best use of crowdsourcing systems, a
worker recruitment auction must discourage workers from
cheating and instead encourage them to reveal their true
cost regarding task execution to the platform. In this context,
the existing works [22], [23], [24], [25], [28], [29], [30], [76],
[77], [78] have been focusing on truthfulness; no worker,
individually, can improve its utility by bidding other than
its actual cost.

Truthful auctions in crowdsourcing, however, become
ineffective when workers collude, ie., they strategically
form coalitions and rig their bids together for illegitimate
beneficial gain. Albeit being legally banned, collusions have
widely appeared in past commercial auctions and have
had significant effects, e.g.,, FCC spectrum auctions [32],
[33], [34], [35], treasure auctions [36], [37], eBay online
auctions [41], [42], [43], and auctions in P2P systems [44],
[45], [46]. Empirical analysis on these auctions reveals that
most collusion groups are small, less than 6 members per
group [35], [43], [46]. In the domain of crowdsourcing,
which typically involves a large number of workers, such
small-size collusion groups are thus easy to form among
friends and close relatives. Moreover, since crowdsourcing
auctions are conducted online among anonymous workers,
collusions can be hard to detect. Thus, it renders collusion an
even more challenging issue to tackle in the crowdsourcing
marketplace.

Collusion resistance has rarely been studied in the con-
text of crowdsourcing, except [47] that targets a particular
form of collusion. Instead, we aim to resist a broad set
of collusion attacks. In fact, designing collusion-resistant
mechanisms is a nontrivial task. According to the impos-
sibility results proved in [48], [55], there is no “strong”
collusion-resistant mechanism, which can optimize or even
approximate any nontrivial objective function without any
assumption over auction settings. Only a handful of collu-
sion resistance works exist for general auctions so far [48],
[49], [50], [51]. However, most of them rely on assumptions
such as incomplete information sharing among colluders
[49], [50] and the auctioneer having prior knowledge over
bidder behaviors [51]. Neither of the above assumptions
holds in practical crowdsourcing systems. To avoid these
constraints, a scheme called APM is proposed by Gold-
berg and Hartline [48]. Notice that the above works are
designed for generic auctions, while the worker recruitment
in crowdsourcing is featured with unique characteristics.
For example, crowdsourcing tasks are typically imposed
with quality requirements from their requesters. Besides,
workers are profiled with their reputations and “types”,
such as age, region, education level, etc. All these factors
reform the winner selection process by introducing various
constraints to the worker recruitment formulation. As a
result, existing mechanisms are not readily applicable. Thus,
an effective collusion resistance scheme that is suitable for
crowdsourcing is in dire need.

To resist collusions, we take a proactive prevention ap-
proach, because uncovering collusion coalitions is hard due
to its tacit nature and complex auction structure. Specifically,
we design the rules for winner selection and payment deter-
mination to diminish the utility gain of coalitions, leaving
workers little or no incentive to collude. We resort to a
“soft” approach that suppresses collusions in a probabilistic
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TABLE 1
Notations.

w; the i-th worker T} the j-th type

b; bid of w; T decision indicator

i bi/ki ki reputation of w;

b {bi:i€[1,N]} | Gorg; coalition
bg/cg bid/cost setof G | cyng cost set of W\G
P;(b) payment to w; & {E;:je[l,M]}

a interval of A Ug utility of coalition G

¢ cost of w; T {T;:5 €1, M]}

w {w; 14 €[1,N]} hS(-)  rounded up function
u; (b) utility of w; n; {ni : Vi w; € E;}

t; weighted cardinality of G; in T}

k reputation threshold of w;

l; reputation threshold of T}

E; sorted worker set of T according to 7;

A discrete value set {a, - ,r-a,--- ,R-a}

Irja(ny) subset of n,;; Vi € I'r,.a(n;), 1 <71j-a
Aj; subset of A; Vr; - a € A;, Zitmepr.f&(n:j) ki > 1;
H function set of the form hY(-) with u € [0, 1]

manner. A (¢, p)-collusion resistance scheme is developed.
Particularly, with a probability of p, no coalition of weighted
cardinality ¢ or less can improve its group utility by coordi-
nating the bids. Besides, the proposed scheme also achieves
p-truthfulness and p-individual rationality. Additionally, we
provide a formal analysis of the platform’s extra cost caused
by trading for collusion avoidance.

The main contribution of this paper is summarized as
follows

e We address the critical collusion issue in auction-
based crowdsourcing systems. This issue has rarely
been discussed so far.

o We develop a (t,p)-collusion resistance scheme. It
successfully defends against strategic behaviors from
coalitions with weighted cardinality ¢ at a probability
.

e We conduct comprehensive theoretical analysis over
the critical economic and collusion resistant proper-
ties achieved by our scheme.

e A real-world dataset extracted from the commercial
crowdsourcing platform Guru [38] is used to evalu-
ate the performances of the proposed scheme.

The rest of this paper is organized as follows. Section 2
presents the problem statement. We describe our basic
scheme in Section 3, which serves as the corner stone for our
collusion-resistance scheme in Section 4. The performance
analysis and simulation results are given in Section 5 and
6, respectively, followed by the related works in Section 7.
Section 8 concludes the entire work.

2 SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first introduce the system model. The
framework of auction-based worker recruitment in crowd-
sourcing is introduced. Then we examine the formation
and the impact of worker collusion therein. It shows that
the property of worker recruitment auctions provides a
fertile breeding ground for collusions, causing a significant
revenue loss at the platform.
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2.1 System Model

The crowdsourcing system considered in this work con-
sists of a platform and a large set of workers W
{wy, -+ ,w;, - ,wy}. The platform hosts a set of to-do
tasks, while the workers are intelligent laborers that are
willing to carry out tasks in trade of monetary rewards.
Following many prior works in this field [22], [23], [24], [25],
[28], [29], [30], [78], the platform adopts the framework of
reverse auction to recruit workers. The platform and workers
play the role of the auctioneer and bidders, respectively. In
a generic reverse auction, bidders compete with each other
by offering the bid, i.e., the minimum payment one accepts
for conducting a task. Upon the collection of all bids, the
auctioneer picks the winner(s) who offer the lowest bids
and determines the corresponding payment that should be
paid to a winning bidder. Table 1 lists the notions used in
this work.

Unlike generic auctions, in crowdsourcing worker’s
“reputation” is taken into account for worker recruitment.
Here we use weight, denoted by k; € [0, 1], to represent
worker w;’s reputation. For the rest of the paper, we use
the terms “reputation” and “weight” interchangeably. This
value can be maintained and updated by the platform from
a long-term observation. Typically, highly-rated workers
overweight the bad-mouthed ones. For example, in Amazon
Mechanical Turk [72] and Guru [38], task requesters are
allowed to set the preference to workers with high ratings. A
task typically requires workers of different backgrounds to
work on. For instance, for a task that collects public opinions
on the best picture out of a given set, it is desirable to recruit
workers covering comprehensive demography, as people
of different ages, regions, education levels, etc. may have
distinct perceptions. To reflect this property, following [78],
[79], each worker is exclusively classified into one of the
following types T = {T1,--- ,Tj,--- ,Ta }. We overload the
notation w; € T}, meaning that w; is a type T} worker. Such
information is provided by workers during registration'.
Besides, we assume that the accomplishment of a task needs
diverse workers covering the type set 72.

Denote by ¢; worker w;’s associated cost toward the
task, indicating the minimum payment it accepts. ¢; is
private and known only to w; itself. To compete for task
execution opportunities, w; submits bid b;. Upon receiving
bids b = {by,---,b;,--- ,bn} from all workers, the plat-
form formulates a worker recruitment problem that aims
to minimize the accumulated payment from to each win-
ning worker, denoted as P;(b)°, while taking into account
the task result quality and crucial economic properties in

auctions.
min Z P;(b)x;
w; EW
st Y kmi =1, Vie1,M], 1)
iiw; €T

1. We pertain the discussion over bid collusion in this paper, collusion
of misreporting type information [27] and tasks’ answers [26], [54] have
been studied and the joint collusion over bids, worker types or worker
answers will be considered in our future work.

2. Our design also fits for the case where a task only needs workers
from a subset of types 77 C T with minor modification to the scheme.

3. P;(b) is expressed as the function of the entire bid set b because
the former is dependent on the latter.

3
U on=7 3)
j:wiETj,Va:i:1
x; € {0,1}, Vie[l,N],
IC, IR and Collusion resistance.
z; is a binary decision variable. z; = 1 means that w; is
recruited; z; = 0 otherwise. The above problem aims to

minimize the platform’s overall payment.

To guarantee the task result quality, multiple workers
should be hired for each type. Constraint (1) says that the
weighted cardinality of the hired worker set for each type
cannot be lower than [, a threshold determined by the plat-
form to provide quality-guaranteed services. The operation
of summing up reputations from workers has been adopted
in real-world crowdsourcing applications. One example is
the web application iSpot which exploits crowdsourcing to
identify species accurately in biodiversity science [59], [60].
iSpot calculates the total reputational weight attached to
one label of a given unknown species as the sum of the
reputation of workers who reports this label. If this total
exceeds a pre-set threshold, iSpot marks this label as the
ID of the species. In constraint (2), k£ denotes the minimal
reputation a worker must have for being recruited. By tun-
ing k, the platform effectively filters out the workers that are
disqualified with low reputation. Constraint (3) requires that
all worker types should be covered. Take crowdsourcing-
based spectrum monitoring/sensing as an illustration. Each
mobile device is only able to obtain the spectrum usage at
a specific location given its limited sensing range. To derive
a complete spectrum usage map over a large geographic
area, it is desirable for the service provider to recruit a set of
workers covering all locations. Treating locations as types,
constraint (3) guarantees the hiring of workers of all types,
i.e.,, mobile devices at all locations. Moreover, any solution
to the above problem should also satisfy some inherent eco-
nomic properties, such as truthfulness (also called incentive
compatibility (IC)) and individual rationality (IR). Finally, the
platform calculates payment P;(b) to each winning worker
w;. A loser does not execute any task and receives zero
payment.

To facilitate the scheme design, we formally present a
worker’s utility and a coalition group’s utility in Definition 1
and Definition 2, respectively. Worker w;’s utility is denoted
as u;(b). It is expressed as a function of bid set b as the
former is dependent of the latter.

Definition 1. (A Worker’s Utility.) Given the bid set b, the
utility of a worker w; € W is

Definition 2. (A Coalition’s Group Utility.) Given the bid set b,
the group utility of a coalition G is

ug = ‘Zg u; (b),
1w; €

i.e., the sum of individual utility from all workers in the same
coalition G.
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Fig. 1. Small-size collusions have severe impact on auction-based
crowdsourcing marketplace.

2.2 Problem Statement

Workers are modeled as rational and self-interested; they
may game the system for higher beneficial gain. Thus,
collusions occur in an auction when a group of bidders form
a coalition, rig their bids to manipulate auction outcomes,
and gain higher group utility. In below, we first use a simple
example to illustrate how it impacts the crowdsourcing
marketplace.

Assume that there are four workers (N = 4), all of whom
are of the same type 1" and weight k = 1, and the task only
needs type T" workers to execute. Their associated cost are
settocy = 15, co = 17, ¢c3 = 20 and ¢4 = 60. Let [ = 2.
To achieve minimum payment, truthfulness, and individual
rationality simultaneously, we adopt the widely used second-
price reverse auction [73] here for worker recruitment. Specif-
ically, winners are the ones who bid with the lowest prices,
and their payments are given by the lowest losing bid. When
all workers bid with their true costs (b; = ¢;, Vi), the winners
are w; and ws, each paid at 20. Now assume that wy and w3
collude, i.e., G = {ws, w3} and ws raises its bid to 59. In this
case where b; = ¢;,1 € {1,2,4} and b3 = 59, w; and ws win
while wj still loses. Under the second-price reverse auction,
winner’s payment is the lowest losing bid, i.e., bs. Hence,
ws's payment becomes 59, which is significantly larger than
20 received without collusion. Since ws and ws form a
coalition, ws can transfer some part of its extra income to
ws. As a result, each of them achieves a higher utility.

We then further examine collusion impacts via larger-
scale simulations. Assume that there are 5000 workers
(IN = 5000) that are categorized into 10 types (M = 10). Let
l; =100 (j € [1,10]). As the example above, we consider
small-size coalitions of size 2. There are 1000 such coalitions
in the system. Each of them adopts the similar collusion
strategy introduced above, i.e., one worker honestly submits
its cost, while the other increases the bid. In the simulation,
each worker’s cost and weight are randomly selected from
[1,100] and [0, 1], respectively. In Figure 1(a) we plot the
group utility improvement of each coalition in 100 trials.
It shows that workers have incentives to collude, since
collusions are easy to perform and are highly beneficial.
The red curve and green curve in Figure 1(b) represent the
distribution of the total payment caused to the platform
when only one collusion group and 1000 collusion groups
exist, respectively. Apparently, the impact on payment is
limited when only one collusion group is present, but the
payment increases by five times when 1000 collusion groups
are present. The above illustrations show that small-size
collusions are particularly effective in raising worker group
utility and imposing extra costs on the platform.

So far, we have only considered one kind of collusions,

4

where some workers from a coalition offer bids higher than
their true costs, while the others report genuine values. In
fact, colluders are feasible to adopt a broad spectrum of
strategies, e.g., they can arbitrarily raise or lower bids, as
long as it brings a higher group utility. In this study, we aim
to defend against such general collusions.

Let bg and cg be the bid set and true cost set of all
members from coalition G, respectively. cyy\ g stands for the
true cost set from all the other workers except the ones from
coalition G. Then u;(bg, ey g) is the utility of worker w;, a
member of G, when it and its fellows from G collaborate to
arbitrarily rig their bids. Similarly, u;(cg, cyv\g) is the utility
of worker w;, when it and its fellows from G honestly report
their costs. Then, possible collusion strategies are defined as
follows.

Definition 3. (Collusion strategies.) Workers from a coalition G
arbitrarily raise/decrease their bids to increase coalition’s group
utility ug, i.e.,

> uilbg,emg) > Y uileg, ewng),

w; €G 1w, €G

where bg o cg, denoting some elements of bg and cg satisfy
b; > c¢;, some of them satisfy b, < c;, and the rest are the same.

The symbol bg ¢ cg denotes that some of colluders offer
bids higher than their true cost b; > c¢;, some of them
offer bids lower than their true cost b; < ¢;, and the rest
keep their bids unchanged b; = c;. A collusion is success,
if the accumulated utility from all members of coalition
with collusion is higher than that without collusion, i.e.,
Zi:wieg ui(bg’ Cw\g) > Zi:wieg ui(cg’ CW\g)'

“Utility” is terminology in economics. It stands for the
benefit of consuming or providing a good/service. The
utility of a worker in our paper is the net income of selling
its service. It is equal to the payment received from the
platform minus its cost, as shown in Definition 1. Similarly,
group utility is the net income of a coalition for selling their
offered services, which is equal to the sum of the utility of
all workers in the coalition.

Note that multiple coalitions may coexist in an auc-
tion. Besides, one worker w; can participate in dif-
ferent coalitions, say Gi, G2, ---, the collusion is
deemed success if any of the following inequality
holds, Zi:wi g, Ui (bgl ) CW\Q1) > Ei:wxegl Ui(Cgl 1 CW\Gy )'
Zi:wiEQQ ui(bgz ) CW\Q2) > Zi:wi G, Ui (ng ) CW\QQ)/ . To
prevent worker w; from collusion, our goal is to ensure
none of these inequalities exist under careful mechanism
design. While workers may collude by misreporting other
information in addition to bids, we focus the discussion on
bid collusion in this paper, due to the design complexity.

3 A BASIC SCHEME WITHOUT COLLUSION RESIs-
TANCE

In this section, we first develop a basic worker recruitment
auction scheme without collusion resistance. The discussion
of this basic scheme is critical, as it serves as the cornerstone
for our comprehensive collusion-resistant worker recruit-
ment that will be presented in the next section.
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3.1 Basic Scheme Design

Upon receiving each worker w;’s bid b;, the platform checks
the worker’s type via accessing its profile. It first rules out
workers whose reputations are lower than the threshold k.
The platform then lists all workers of type T; (j € [1, M])
and sorts them in an ascending order according to the per
unit weight bid n; = b;/k;. Denote by E; this sorted worker
set. Let & = {E; : j € [I,M]} and n; = {n; : Vi w; € Ej}.
In order to recruit workers covering all types, winners are
selected in each Ej.

Here we elaborate the design rationality of the above-
mentioned steps. Recall that the worker recruitment opti-
mization problem aims to minimize the platform’s overall
payment with the constraints from task quality and task
type coverage. As this problem is NP-hard, we resort to
the above heuristic steps to approximately solve it. The
intuition of ranking 7; from low to high is that the worker
with a lower 7, is preferred by the platform compared
with the one with a higher 7;, since a lower 7; indicates
a lower bid (and thus potentially lower payment) but a
higher weight/reputation. Then the platform selects win-
ning workers starting from the lowest ;.

The platform maintains a set of discrete values A =
{a,--+,r-a, -+, R-a}, such that

a <min{n;}, R-a>max{n;}. 4)

We present the following definition which is critical for
our scheme design.

Definition 4. Let y be an ascending vector. Denote by T';(y)
the set of elements in y with the value at most .

For each I; € &, the platform first generates a set A; =
{’I"j -a Zi:mel—‘r”u(nj) k; > lj,’l’j S [1,2, R ,R]} from A.
It then identifies the value 77 - a from A; such that (1] - a) -
Zitmel“,,.a«.a(nj) k; is minimized. The winners in Ej, ie., of

type T, are the workers whose per unit weight bid 7 is at
most 7 - a, each receiving the payment at &; - (r; -a). The rest
workers lose. The platform’s total payment for hiring type

T workers is calculated as (7} - a) - Zi:nierr;‘~a("j) k. Note
that 77 - a can be viewed as winner’s per unit weight payment.

It has the following property.
Proposition 1. For 1} - a of any E; € & that satisfies

S k),

1M eFrjAa(le)

min  ((r; -a) -

%
T, = ar
J g’l"j'(lG.A_j

we have

>

©:1; GFr;f a(my)

>

i:nier(r;f—l)-a(nj)

ki > 1, ()

ki < 1. 6)

Proof. First of all, we directly have (5) according to how r} -a

is derived in the basic scheme. We then prove (6) via the

contradiction method. Assume that > ki > 1.
i:"]ier(r;fl)«a(n‘j)

>

’iimel—‘(r;—m.a(nj)

We have

(r*-a)-

j kiv (7)

>

L4 Err;? a(mj)

5

as otherwise (77 —1)-a will become winner’s per unit weight
payment. From Definition 4, we know that

2 2

i:nier‘(r;‘fl)»a(n]’) iini€F7~;.a(m)

ki < k‘i,

and thus

(5= 1) -] ki

2.

i €0 (rx —1).0(m;) Eni €0 x 4 (n;)

which contradicts with (7). It implies that the assumption
Zi:mGF@»;q).a(nj) k; > 1; is invalid. Thus, (6) holds. O

Proposition 1 provides an efficient way to determine
winning workers and their payments. Specifically, once A;
is generated for each worker type Tj, instead of comparing
(rj - a) - Zz‘:mel‘rj.a(nj) ki’s for each element in A; and
identifying the minimum one, the first element of A4; is
exactly the per unit weight payment to each winner. Besides,
any worker with its per unit weight bid no larger than
this value is the winner. It is not difficult to tell that the
computation complexity of the basic scheme is O(MN).

The design rationale of the basic scheme can be in-
terpreted in the following way. Note that once per unit
weight payment is determined, so is the worker’s payment,
as its reputation times per unit weight payment. Hence,
a worker’s payment is independent of its bid, providing
strategic players limited incentives to rig their bids. While
collusion is still viable by manipulating the final payment
of the basic scheme, the effect is largely constrained. This
is because the per unit weight payment (under collusion) is
always in the set {r; - a : r; € [r},ri],r; € Z*}, and thus
a worker’s payment is limited to the set {k; -7, -a : r; €
[r¥,ri'],r; € Z"}. Without introducing A or confining per
unit weight payment to A, the payment under collusion will
be unbounded.

The choice of a needs to balance the platform’s payment
and the scheme robustness. Generally, a larger a causes less
payment at the platform, but at a cost of weaker scheme
robustness; specifically, the probability that the scheme is
robust against collusion is lower. In the simulation, we
provide extensive discussions regarding the choice of a.

3.2 A Walk-through Example

Since this example only aims to show how our scheme
operates, the collusion pattern (i.e., the number of coalition
group, who rise/reduce their bid and how much they co-
ordinate their bids, etc) and the platform parameter (such
as [;) are arbitrarily set. Consider that there are thirteen
workers (N = 13) and one task that looks for two types of
workers (M = 2). Besides, let [; =2 (j € {1,2}) and k = 0.
Assume that w, —ws, wi1, w13 € T1 and wg — w1, wio € Th.
The weight of w; —ws3, ws —we is 0.5 and that of w4, w7 —wi3
is 1. Worker’s bids are listed as

b1 =15,by = 17,b3 = 19,by = 44,05 = 24,bg = 31,b; = 33,
bg = 36, by = 38, b19 = 39, b11 = 40, b12 = 50, b13 = 60.
We derive two sorted worker sets

Ey = {wy, ws, w3, w11, ws, ws, w13},

Es = {w77w8»w97w10>w12aw6}»
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with the corresponding 7, as

n, = {30, 34, 38,40, 44, 48,60},
n, = {33,36, 38,39, 50,62},

Let a = 4, then .A1 ={10-4,11-4,--- ;15 -4} and Ay =
{9-4,10-4,---,16 -4} since 3=, cp ki =25 > 1
and Zz Ty 4(7]2) ki = 2 = l3. According to Proposition 1,
] 40and r3 - a =9 -4 = 36. Thus, winners in
Fy (of type T1) are wy, w2, ws and w;1, with the first three
paid at 20 each and the last one paid at 40. w7 and wg are
recruited in s (of type 13) and paid at 36 each. The rest
workers lose and get 0. Thus, the platform’s total payment
is 172.

4 FINAL COLLUSION-RESISTANT SCHEME

In this section, we develop a collusion-resistant worker
recruitment auction based on the basic scheme.

4.1 Collusion Patterns

Consider a worker set E; € £. Without collusion, the per
unit weight payment to each winner is r; - a according to
our basic scheme. Assume that there is a collusion group G;
in E; with weighted cardinality t; =3, , cg. ki- When k;’s
are all 1’s, t; is directly the cardinality of G;, i.e., the number
of members in this coalition. As described in Definition 3,
colluders may choose to raise or lower bids for group utility
gain. We start from a special case, where they raise their bids
so as to manipulate the payment, like the example shown in
Section 2.2. More precisely, each winner’s per unit weight

. H . .
payment can be increased up to r;’ - a, satisfying

i:m; EFT; -a("?j)

€L |
J

k; — tj =
a("?,‘)

k. )

In another special case, where colluders decrease their bids,
then each winner’s per unit weight payment can be de-
creased down to er - a, satisfying

>

wm el Lo,
J

ki + tj = kz (9)

("Tj)

>

@i €L a(m;)

Although a winner’s per unit weight payment has been de-
creased, it is possible that more colluders become winners.
As a result, their group utility can still potentially be in-
creased. It is not difficult to derive that er ‘a<ria< Tf -a.

The above discussion reveals the mechanism how a
coalition receives group utility gain through manipulating
the winner’s payment. Ideally, if the following assumption
exists

* . . L _H
rioa=rj-a, Vrje[rj,rj]

(10)

i.e.,, winners are paid undifferentiated no matter a coalition
colludes or not, the motivation of collusions will be dimin-
ished. Nonetheless, such a design idea is infeasible unless
certain modifications are made, which will be the focus next.

4.2 Scheme Design

We develop a “soft” collusion-resistance approach: no coali-
tion gain is achievable from colluding with a probability p.
We formally define a (¢, p)-collusion resistant auction.

Definition 5. ((¢, p)-collusion resistant auction.) An auction is
(t, p)-collusion resistant, if, with a probability of p or higher, no
coalition with weighted cardinality t can improve its group utility
by coordinating the bids. This holds even if multiple collusion
groups are present, as long as each group’s weighted cardinality is
t or less.

Meanwhile, we also aim to achieve truthfulness and
individual rationality under the soft collusion-resistant auc-
tion framework. Recall that b; and ¢; are worker w;’s bid
and true cost respectively, while c_; stands for the cost set
from all workers except w;.

Definition 6. (p-Truthfulness.) The worker recruitment auction
is p-truthful, if

Prlu;(b;, c—;) < wui(ci,e—)] > p, Yw; € W

Definition 7. (p-Individual Rationality.) The worker recruitment
auction is p-individual rational, if

Prlu; >0 >p, VYw, €W

In order to defend against collusions, our idea is to care-
fully set winner payment, such that it will not be influenced
by colluders’ strategies. Before we delve into design details,
we first define [«, B]-consensus estimate.

Definition 8. ([«, 3]-consensus estimate.) Given o, § > 0 and
v > 0, we say that a function h(-) is a [, 3]-consensus estimate

of vif

1) for any w such that o < w < 3, we have h(w) = h(v);
2)  h(v) is a nontrivial upper bound on v, ie., 0 < v <
h(v).
h(v) is called the consensus value.
Consider a function
h? (v) = v rounded up to nearest 65+ (11)

where s is a tunable integer and 6 is a carefully chosen pos-
itive real value. The selection of # depends on « and /3. The
definition of hY(-) implies that for any v, v < hf(v) < 6 - v.
Define H as the set of functions of the form hY(-) with u
chosen uniformly on [0, 1].

Definition 8 and the design of function hf(-) are in-
herited from [53], but modified to accommodate our sce-
nario. Specifically, h?(-) is a rounded-up function here, i.e.,
h¢(v) > v given value v, while that in [53] is a rounded-
down function. One reason for such a change is to ensure
non-negative worker utility in the context of crowdsourcing
where the reverse auction framework is adopted. More
importantly, consensus estimate in [53] is to achieve a high
competitive ratio, while we leverage it to develop a soft
collusion resistance approach. Therefore, the purpose and
parameter design rationale of hY(-) in these two works are
different. We can induce the following corollary from [53].

Corollary 1. For h from H and a given value v > 0, h(v)
is distributed identically to 0Yv where U is a random variable
following uniform distribution on [0, 1].
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Proof. Consider a random variable Y = log;, h(v) and let
t = logy, v. Then Pr[Y <t + z] = Pr[U < z] and therefore
Y is uniformly distributed between ¢ and ¢ + 1. Thus, h(v)
is identical to kY v. O

Proposition 2. For h from H and a given value v > 0, the
probability that h(v) is a [o, B]-consensus estimate of v is 1 —

10g9 ar
Proof. According to Definition 8, h is a [« 3]-consensus
estimate of v if h(a) = h(v) = h(B) > f. From Corollary 1,
we have
>4
e
B

}:I—Pr{Uglogaﬂ} =1—logy —
! «

Pr[h(a) > 8] =Pr [HUoz > ,6’] =Pr [HU

=1—Pr {0’135
«

O

We are now ready to introduce our (t,p)-collusion re-
sistant worker recruitment auction. Its pseudo-code is pre-
sented in Algorithm 1. Upon receiving bids from workers,
the platform derives £. For each E; € &, the platform
generates A; and identifies the value 77 - a from A; such

J
that (r} - a) - >, cr, e ) ki is minimized. Accordmg to
Proposition 1, r}

cais simply the first element of A4;. The

platform then selects a suitable function hu (+). The winners
in E; are the workers of per unit weight blds at most

ho (7’;k a). A winner w; is then paid at k; - ho '(ry - a). The

rest workers lose.

Algorithm 1 (¢, p)-collusion resistant worker recruitment
Input: b;, k;, t; and [; (i € [1,N],j € [1, M])
Output: z; and P;(b) (i € [1, N])

1: foreachT; € T do

2:  Platform generates worker set £; and A;;
3: Identlfy the first value in A; and setitasr; - a;
4:  Select hu (-) based on t; and nj;
5:  Winners of T are the ones with n; < o a);
6:  Calculate each winner’s payment as F; (jb =
0.
hi (r5 - a).
7: end for
Aslong as hej( -a)isa (rf-a,r}’-a)-consensus estimate
ofrj-aclrk-a, rf - a], we have

= hﬁf(r;-‘ -a) rj€ [er,rf]

R (r; - a) (12)

with the probability p;. This is because ’I“J a <r*a< r

According to Proposition 2, p; is calculated as
ril . q

pjzl—loggjer a—l—log
L.

rH

% (13)
"

by setting o = 7‘L aand 8 = r - a. It means no collusions
will impact wmner ’s per unit welght payment and thus its
total payment with a probability p;. If p; is high, it fails
the motivation of collusion at a large chance. We can set an
arbitrary value of p; from (0, 1) by tuning ; and a.

Now the remaining issue is to generate a suitable hoi )
to have (12) hold. For this purpose, we first identify rf a

7

and TJL -a via (8) and (9), respectively. Then §; is carefully se-
lected such that (12) holds for v € [} - a, /" - a]. Specifically,
we should expect

Together with (12) and the fact that er <rj< Tf , in order

to have the above equations hold, we must have

H~a§hﬁ7’(r'-a)§r<L~a~9j, Vrje[er,rfI]
H/.L
which requires r] a-0; >rj - a and thus 6; >r; /rj.

Up to now, we have presented how to determine win-
ners and their payments for I;. The same procedure will
be followed to handle the rest sets in £. The scheme is
(t,p)- Collusion resistance, where ¢ = min;¢c; aq{t;} and

D= H j—1 ;- Its formal analysis will be given in Theorem 2.

Theorem 1. The computation complexity of our (¢, p)-collusion
resistant worker recruitment algorithm is upper bounded by
O(MN).

Proof. The computation complexity of Algorithm 1 is domi-
nated by the while-loop, which contains M iterations, where
M is the number of worker types. For each iteration, it
involves a computation of generating the worker set F/; and
the corresponding A4; (line 2), causing N times of look-up
operations and up to R times of comparisons, respectively.
Besides, for the process of selecting hal (+) (line 4), its main
component is to identify rf - a and er - a, which results
in 2R times of comparison at most. For the process of
determining winning workers (line 5), it involves IV times of
comparison at most. Therefore, the computation complexity
of Algorithm 1 is upper bounded by O(M (2N +3R)). Recall
that R is a constant value in the algorithm. The computation
complexity is thus rewritten as O(M N). O

4.3 A Walk-through Example

To better explain our scheme, we still take the example
in Section 3.2 as an illustration. Following the same pro-
cedure as in the basic scheme, the platform first gener-

ates the worker sets Fy = {wy, ws, ws, w11, wy , W5, W13}
and Ey = {wr,ws,wy, wig, Wiz, Ws}, the corresponding
A =1{10-4,---,15-4} and Ap = {94,104, -~ , 16 - 4}

witha =4,andr]-a=10-4=40and r5 -a =9 -4 = 36.

Assume that the platform intends to defend against a
coalition with weighted cardinality up to t = 1.5 in each
worker type. According to (8) and (9), for E; we have
rboa =84 =32 7l .a = 114 = 44. Following
the requirement 6; > ’I’JH / T]l-’, a feasible value of 0; is 3 is
selected. In order to decide winners and their payments for
FE1, let u = 0.4 be an instantiation. Recall that u is a random
value chosen from [0,1]. Then A} ,(r} - a) = h} ,(40) is
calculated as “40 rounded up to the nearest 35794 (with s
as a tunable integer), which gives us 41.9. According to the
scheme, workers with per unit weight bids no larger than
41.9 are winners for F. Thus, w; — w3 and w;; are winners
paid at 21.0, 21.0, 21.0 and 41.9 respectively. ws — ws and
w13 lose.
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Following the similar idea, for Es, w7 — wg are winners,
with each paid at 37.5 (62 = 3,u = 0.3), while others lose.
The platform’s total payment is thus 179.9, which is only
slightly above, around 5%, than that caused in the basic
scheme with no collusion resistance.

4.4 Addressing Inter-type Collusions

So far we have focused on the scenarios where colluders
from the same coalition reside in the same worker set
E; € &, ie, they belong to the same type T; € 7. Such
kind of collusion can be viewed as intra-type collusions.
Nonetheless, it is also possible that colluders from the same
coalition are of different types, which we call inter-type
collusions. For instance, in the example discussed in Section
3.2 and 4.3, the collusion among w», w3 and wg is exactly an
inter-type collusion.

Even though inter-type collusions seem to be more
complex than intra-type collusions, each inter-type collu-
sion can be equivalently divided into multiple independent
intra-type collusions. This is because collusions under each
worker type are dealt one by one in our scheme, including
winner selection and payment determination. Hence, the
winners’ payment for one worker type is irrelevant to that
for the other type. As a result, a colluder’s utility received
in E; does not impact its peers’ utilities received in another
Ej (j # j'). Therefore, for the inter-task collusion coalition
G = {ws, w3, we}, it can be divided into two intra-collusion
coalitions, ie., G; = {wy, w3} and Go = {ws}. To sum
up, if we can effectively discourage the formation of intra-
collusion coalitions, so for the inter-collusion coalitions.

4.5 Restrictions on Our Scheme

Generally, it is difficult to design a scheme that can defend
against an arbitrary number of colluders. This is the same
case for our scheme.

In order to have our scheme work, the condition (8) and
(9) should meet, or equivalently,

Zii”lier,,.‘]L.a(”lj) ki = Zi:"]ierr}‘-a(n_j) ki — tj' (14)
Eiznierrfﬂ(m) hi =Yimer,. omp ki Tt (15)
In order to make sure Zirméf,,f.a(nj) ki and
Zz“n‘er () ki exist in any worker set Ej, then
St H o
ZirmeF,,,JL.a(nj) ki >0, (16)
17)

Zi:mEFT]H_G(nj) kz S Z’i:’UJiGE_]' kl

Substituting (14) and (15) into (16) and (17) respectively, we
derive following restrictions on ;:

t; < Zi:nieFT;.n,(n_j) ki,
t; < Zi;wieEj ki — Zi:nierr;‘-a(n_]’) k.

When coalitions are of small size, then the relation ¢; < [;
typically exists, i.e., the weighted cardinality of a coalition
is smaller than /;. Recall that /; is a threshold selected by
the crowdsourcing platform to ensure service quality during

worker recruitment. Besides, as [; < Zi:merr;-a(n_,») ki,

(18)
(19)

8

then (18) holds. Moreover, there are a large population of
workers in a real crowdsourcing system. Hence, we have
D iiwse E, k; > t; and thus (19) also satisfies.

To sum up, our scheme can effectively defend against
small-scale collusions in a crowdsourcing system where
there are a large set of workers.

5 PROPERTY ANALYSIS

In this section, we provide a formal analysis of various
properties achieved by our scheme.

Recall that £ is denoted as € = {E; : j € [1,M]}. ¢;
is the weighted cardinality of the coalition which resides in
E;. p; is the coalition’s collusion success probability

Lemma 1. For any E; € &, our scheme achieves (tj,p;)-
collusion resistance, with p; defined by (13).

Proof. It is equivalent to show that any coalition of weighted
cardinality ¢; cannot obtain higher group utility by rigging
their bids, with a probability p; or higher. In the following,
we plan to first show the validity of the above statement
for two special cases of collusions, where colluders either
raise or decrease bids. Then the statement for an arbitrary
collusion strategy given in Definition 3 will directly follow.

Denote by 7/ C G; (T; C G;) and u (u;) the set of win-
ning colluders by raising bids in £; and their corresponding
utility when they collude (or not), respectively. As colluders
raise their bids, some of them may lose, thus 7;’ C 7. The
difference between the coalition in F;’s group utility when
they collude or not is calculated as

uj — uj

= Z [k:rh?j(r;ﬁa)fci] - Z [ki~hzj(r;«a)—ci]
iwi €T; Z':w,ETj’

= Z [k; - hls (ry-a)—c] >0
iiwz‘EE\'E/

with a probability p;, where o (7%;-a) stands for the per unit
weight payment when collusions take place. Specifically, as
ria < r§ ca < TJH - a and thus hﬁj(rj ca) = hzj(r;- - a)
holds with a probability p; according to (12). Hence, the
second equation above holds with a probability p;. Besides,
for a colluder w; € 7;\7'7’ , as it wins without collusion,
we have n; = ¢;/k; < hzj (r;k - a) according to Algorithm
1, which directly leads to the last inequality. Besides, p;
associates with t;. Thus, the above expression indicates that
any coalition of weighted cardinality ¢; cannot achieve a
higher group utility by raising bids with a probability p;.

We further denote by 7/ C G; (T; C G;) and u] (u;) the
set of winning colluders by decreasing bids in £; and their
corresponding utility when they collude (or not), respec-
tively. Some workers who lose when bid truthfully may win
when they collude, thus 7; C 7;’ . The difference between
the coalition in E};’s group utility when they collude or not
is calculated as

"
Uy

Z (ki - hYi (r;-a)— il — Z ki - o (r

1w; €T; iw; €T

uj

ca) — ¢
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- Z (ki - hli (ry-a)—c] >0

1w €T\ T;

with a probability p;. Specifically, as er a<ri-a<ri-a
and thus hY (rs - a) Y (r; - @) with a probability p;
according to (12). Hence, the second equation above holds
at p;. Besides, for a colluder w; € 7;-’ "\T;, as it loses without

collusion, we have hzj (r;‘ -a) < ¢;/k; = n; according to
Algorithm 1, which thus leads to the last inequality. The
above expression indicates that any coalition of weighted
cardinality ?; cannot achieve a higher group utility by
decreasing bids with a probability p;.

For a coalition where members adopt arbitrary strategies
given by Definition 3, it can be viewed as the combination of
the above two special cases. Following a similar approach,
the statement can be validated under this scenario. As its
proof is similar to the above, we omit its discussion here. [

Based on Lemma 1, we are ready to give the following
theorem on collusion resistance. Note that the deduction of
0;, rf and er in Theorem 2 is discussed in Section 4.1.

Theorem 2. Our scheme achieves (t, p)-collusion resistance with

M H
p= H (1 — logy, TJL>
j=1 J

and t = minje[l_’M]{tj}.

Proof. For intra-type collusions, a coalition forms within
a single E; € &. And collusions in different E;’s are
independent with each other. According to Lemma 1, when
colluders are of weighted cardinality up to t; in each £},
our scheme is collusion resistance at a probability p;. Since
there are totally M FE;’s, our scheme can defend against any
coalition of weighted cardinality ¢ with probability p, where

t = minjep, a{t;} and p = HJle (1 — logy, rf/er)

For inter-type collusions, consider an arbitrary coalition
G of weighted cardinality ¢’ forming across M E,’s and
t = Zﬁl tj. From the discussion of Section 4.4, G can
be equivalently divided into M intra-type coalitions, each
with the weighted cardinality ¢;. Besides, we have proved
in Lemma 1 that our scheme is collusion resistance to
any coalition of weighted cardinality ¢; in each F; with a
probability p;. Thus, our scheme is capable of defending
against any coalition of weighted cardinality ¢’ with a prob-
ability p for inter-type collusions, where t/ Z]Ail t; and
p= vail (1 — logy, 'rJH/er .

Combining the results for both intra- and inter-type

collusions, we conclude that our scheme is (¢, p)-collusion
resistance. O

Comparing Definition 5 and Definition 6, by setting ¢ =
max;{k;}, a (t,p)-collusion resistance auction is degraded
to a p-truthful auction. Hence, the latter can be viewed as a
special case for the former.

Corollary 2. Our scheme is p-truthful with

M TH
| I J
j=1 J

9
Theorem 3. Our scheme is p-individual rational, i.e.,
Prlui(b) > 0] > p Vi€ [1,N].
Proof. If w,; is a winner, then Pi(b) = k; - Y (rs -

a) > b;. Meanwhile, according to Corollary 2, our
scheme is p-truthful. Thus Pr [b; = ¢;] > p. As a result,
Pr[P;(b) —¢; > 0] > p. On the other hand, if w; loses,
then Pr[u;(b) = 0] = 1. In either case, the above statement
holds. O

According to above proof, we have P;(b) = k; - hY (ry -
a) > b;, i.e., a worker’s payment is always no less than its
bid. For a truthful worker with b; = ¢;, IR is always satisfied
as P;(b) > b; = ¢;. For a colluder, as our scheme is p-truthful
(i.e., Pr[b; = ¢;] > p), IR is satisfied with probability p, i.e.,
Pr[P;(b) > ¢;] > p. Therefore, our scheme always produces
non-negative utility for truthful workers. On the other hand,
it does cause negative utility at a certain probability p
to workers who tend to explore the system for beneficial
gain via untruthful bidding. Besides, the soft guarantee of
economic properties, such as IC, IR, and collusion resistance,
are commonly seen in incentive design. For example, [61]
designs the par-per-click auction that is truthful with an
error probability. [62] also proposes a probabilistic version
of IR. Our design falls into this category.

From the scheme design, we can tell that the collusion re-
sistance property is achieved by recruiting redundant work-
ers and overpaying each winner, i.e., trading the platform’s
extra cost with collusion resistance. Hence, it is critical to
examine the extra cost caused to the platform. We first
evaluate the ratio between the platform’s cost of our final
scheme and that of the basic scheme.

Proposition 3. The platform pays no larger than P, -
SN ki Zj\il 6;/1; in the (t,p)-collusion resistant scheme,
where Py is the platform’s payment under the basic scheme.

Proof. Denote by P; as the platform’s total payment under
the (t, p)-collusion resistant scheme.

M 0;
Zj:l h. (7‘;‘ . a) . Zi:”ierhﬁ(r;ﬂ)(m) k;
M
Zj:l rieas Zi:niel“,,,;f.a(nj) ki

M N
@ijl Ojr5-a- Zi:mel“h? oy (1) ki
< A

B
P,

M
Zj:l riea-l;
M g% . q. . 1 N
<Zj=1 0,15 - a Zi:wieEj ki @ Z 0 -2 ica ki
Yl ca-ls =1 Ly

where (D is derived because h%’ (r7-a) < 0; -7} -a(dueto
the property of h%7) and Y imier,a . (n) ki = 1. @ is due
R r*.a\7;

to the fact that 3=, a;/>; f; < Z; a;/B; when aj, B; > 0.
Hence, P, < P, - Zf\; ki Zj\; 0;/1;. =

We further analyze the frugality of our scheme. It is
defined as the ratio between the payment caused by our
scheme P; and the optimum payment F,,;, by solving the
original worker recruitment optimization problem without
considering collusion resistance, truthfulness, or individual
rationality. Therefore, frugality evaluates the amount of
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extra payment our scheme causes in the trade of its critical
properties.

Theorem 4. The frugality of our scheme P./P,, satisfies
P M0 N ks
Port Szjzl ~ L —

Proof. We define the k-th lowest bid from workers in F; as
b;k). We have

M 0,
Zj:1 h. (r;‘ a) - Zi:nierhz(’r‘;-a)(nj) k;

55 T b
Gjr;f -a- Zi:niGFhZ(r;»a)("j) k;
SEAE
0;r5 - a- Zz’:wi,eEj ki
Zjle lj : b§'1)
075 - a- Ei:wieEj k;
i

Py
<
P opt

M
Zj:l

ING

M
< Z]:l

@YX,

<

M « N
@ Z erj i ki

lj - a j=1

where @ and B are due to same reasons for (D
respectively. @ is derived due to (4).

6 PERFORMANCE EVALUATION

6.1 Dataset

To validate the proposed scheme, we employ a real-world
dataset obtained from the commercial crowdsourcing plat-
form Guru®*. We focus on tasks in the field of Programming
& Development, which involves 894 tasks and 26904 work-
ers. For each task, we record its required worker skills, such
as experience in iOS App development and graphic design,
etc. The required skill set is mapped to 7, the type set of
our scheme. Thus, the cardinality of 7 is used to instantiate
M?. For each worker, we record its offered skill, received
rating (from its historical employers in the platform), and
asked salary (dollars/hour), which are then mapped to the
type T} this worker belongs to, weight k;, and exerted cost
ci, respectively, in the simulation. A total of 50 coalition
groups are randomly formed among the 26904 workers. By
the default setting, one coalition is formed in each type.
Besides, their weighted cardinality is upper bounded by 2.
Within each group, workers arbitrarily raise/decrease their
bids. [; is set to 50. All simulation results are the average
over 100 trials.

4. Except Guru dataset, we are not able to identify other datasets that
also contain bid information of real-world crowdsourcing systems. We
would also like to point out that Guru dataset [38] has been adopted in
prior works on crowdsourcing [63], [64].

5. We specify M = 50 in evaluation.
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Fig. 2. Collusion resistance performance comparison. One coalition
group exists in each type, with each coalition’s weighted cardinality
k=2.
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Fig. 4. Collusion resistance performance comparison. Two coalition
groups exist in each type, with each coalition’s weighted cardinality
k =5.

6.2 Collusion Resistance

To examine the collusion resistance property, we analyze
the utility gain, which is defined as the difference between
a coalition’s group utility achieved with and without the
scheme. Intuitively, if a coalition’s utility gain is 0, i.e., col-
lusion does not produce a higher group utility, it eliminates
the members” motivation for collusion.

In the simulation, Fig. 2 shows the coalition’s utility gain
when the coalition cardinality is 2. We find in Fig. 2(a) that
our scheme, under the setting of both (2,0.8) and (5,0.8),
works well. Utility gain is rarely observed throughout all
coalition groups. This is because the two settings can defend
coalitions with the cardinality of 2 and 5, respectively. Fig.
2(b) depicts the cumulative distribution of instant utility
gain of a randomly selected coalition. It is derived under
the same setting of Fig. 2(a). Instead of average utility gain,
Fig. 2(b) examines the CDF of utility gain. The coalition’s
maximal utility gain is as high as 4 under the basic scheme,
which is significantly larger than that when our scheme is
in place. Besides, the coalition’s maximal utility gain under
(2,0.7) is 1.5, which is smaller than that under (5,0.7),
i.e., 2. It indicates that the platform can better restrict a
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coalition’s instant group utility when setting a smaller ?.
Given a larger t, we are expecting a larger r /rl. Thus,
under the same p, ie., 0.7 here, the larger ¢ produces a
larger 6 according to (13). As a result, the instant payment a
winner gets will be larger, which, as a consequence, brings a
larger instant utility gain. By comparing with the utility gain
achieved under (2,0.7) and (2, 0.8), we find that the latter
can prevent collusion at a higher success rate. However, it
leads to a larger instant utility gain; if a coalition succeeds
in colluding, it receives a higher gain. This phenomenon can
be explained following the similar rationality above.

In Fig. 3, the coalition’s weighted cardinality k is set to 5.
Fig. 3(a) shows that the average utility gain can reach as high
as 25 under the basic scheme (without collusion resistance).
Under (t,p) = (5,0.8), the average utility gain keeps close
to 0 throughout all coalitions. It means that no coalition
can explore positive utility gain on average. Therefore, col-
lusion is effectively prevented. We then set (¢,p) = (2,0.8).
However, it exhibits poor performance when implemented
to resist collusions with weighted cardinality 5. The average
utility of some coalitions decreases to 0, while the remaining
coalitions” average utility is the same as that of the basic
scheme, which denotes (2,0.8) resist parts of collusions
because colluders size is larger than ¢ = 2. The above result
is slightly different from that of Fig. 2(a): our scheme with
(5,0.8) can still effectively resist collusion while the scheme
with (2,0.8) cannot. This is simply because the coalition
with cardinality 5 is beyond the capacity of our defense
scheme with (2,0.8). A result similar to Fig. 2(b) can be
observed in Fig. 3(b).

Fig. 4 shows the performance when two coalition groups
are present in each type. In the setting, as there are 50 types,
the total number of coalition groups is 100. For comparison
purposes, we set the coalition cardinality as 5. According to
the figure, collusion can still be effectively defended with
our scheme under (5, 0.8). This is the same case with Fig. 3,
where only one coalition per type exists. Thus, we conclude
that the number of coalitions does not impact the collusion
resistance performance of our scheme. It complies with our
theoretical result.

Fig. 5 shows the collusion resistance property of our
scheme by evaluating the total payment occurred at the
platform. When no coalition exists, the total payment of the
basic scheme is less than that of the proposed scheme. How-
ever, the payment increases dramatically as more collusion
takes place, while this value keeps almost constant in our
scheme under all three settings. This is because the payment
to each winner remains unchanged with a high probability
as long as the coalition’s weighted cardinality is no larger
than 2, i.e., a default value in our simulations. On the other
hand, as the basic scheme cannot resist collusion, it causes
significantly increased payment as more malicious workers
are present. When there is no collusion, the average total
payment with the basic scheme is 1.1 x 10, while that with
the proposed scheme under three settings (2, 0.7), (2, 0.8)
and (5, 0.7) are 2.2 x 10°,5.2 x 105,6.1 x 10°, resulting in
the corresponding ratio as 2, 4.7, 5.5, respectively. Although
the proposed scheme incurs extract payment than the basic
scheme when no collusion exists, the payment of the basic
scheme increases dramatically as more collusion presents.
In an extreme case where 50 collusion groups misbehave,
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Fig. 5. Total payment comparison under different collusion group num-
bers.

TABLE 2
Upper bound of colluder ratio in real-world FCC auctions [35].

PCS-C Block  Auction 35
48.7% 1.1%

AWS-1
1.5%

700 MHz
0.03%

the total payment reaches 2.0 x 105 under the basic scheme,
while that of the proposed scheme under (2, 0.7) is merely
2.2 x 10® which is about 1/9 of the former.

Table 2 shows the upper-bound of collusion ratio in
Federal Communications Commission (FCC) spectrum auc-
tions. Four real-world FCC spectrum auctions are examined,
PCS-C Block, Auction 35, AWS-1 and, 700 MHz. (Please refer
to [35] for details of these four auctions.) Their collusion
ratio is upper-bounded by 48.7%, 1.1%, 1.5%, and 0.03%,
respectively. Recall that our scheme causes lower total pay-
ment than the basic scheme as long as one collusion group
exists. Thus, our final scheme is more cost-effective than the
basic scheme under all non-zero collusion ratios.

6.3 Payment

As mentioned, the collusion resistance property of our
scheme is achieved by causing extra payment (overpay-
ment) at the platform. Thus, in this part, we evaluate the
overpayment and the effect of parameters, i.e., ¢t and p to
the platform’s payment to winners.

We first check the impact of the threshold /; to a winning
worker’s payment in Fig. 6. The payment demonstrates a
“step” shape as [; increases. This is due to the rounding op-
eration h{(-) involved in the payment calculation. Besides,
we observe that the payment increases as [; grows. From the
scheme design, we can infer that a larger /; leads to a larger

77 - a and thus a larger he (r7 - a). Note that hY(-) is a non-
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Fig. 6. Payment to one randomly selected winner.
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Fig. 7. Distribution of per unit weight bids of two different datasets.

decreasing function. As the winner’s payment is calculated
as k; - hZ(r;‘ - @), it has positive correlation with ;.

Fig. 8 examines the distribution of total payment of our
scheme and P,,;. Recall that F,,; is obtained via optimally
solving the original worker recruitment optimization prob-
lem without considering collusion resistance, truthfulness,
or individual rationality. The results of Fig. 8(a) and 8(b)
are derived from the Guru dataset, with its per unit weight
bid n distribution shown in Fig. 7(a). We find that our
scheme achieves the above-mentioned properties at the cost
of higher total payment. Specifically, as shown in Fig. 8(a),
90-percentile of the total payment is 5.5 x 105, 8.1 x 10°, and
15.8x10°, respectively, under the settings of (2, 0.8), (4,0.8),
and (8, 0.8), while P,,; is merely 1.1 x 10°5. We further eval-
uate in Fig. 8(c) and 8(d) the same metric under a synthetic
worker bid dataset, with each element randomly generated
following a uniform distribution. Its corresponding per unit
weight bid distribution is plotted in Fig. 7(b). Apparently,
the bid distribution impacts the total payment, in terms of
both mean and variance. The average payment under Guru
dataset is higher than that under uniform bid distribution.
This is because our scheme applies a single-price scheme
based on random rounding in each type segment, resulting
in more winners under the Guru dataset. More specifically,
when [ = 50, the corresponding r* - a falls within the
range [5,65] and the per unit weight bids under Guru
dataset mostly reside at the lower end of the distribution.
Besides, the total payments under Guru dataset experience
less variance than that under uniform bid distribution. This
is because the Guru dataset generates a smaller value of
rH /rL and thus a smaller 6 to achieve the same p. Note that
the possible range of payment is reduced as 6 decreases.

Fig. 9 examines the frugality achieved by our scheme
under different thresholds ’s, the threshold determined by
the platform to guarantee service quality. As discussed in
Theorem 4, frugality quantifies the extra payment caused
by our scheme compared with P,,;. We notice that frugal-
ity decreases as | grows. When [ surpasses 400, frugality
drops quickly approximating 1. It indicates that the platform
barely overpays. On the other hand, a larger | indicates
that more workers should be recruited for a given task.
Therefore, the corresponding total payment will be enlarged
too. Besides, when [; € [10,400], the frugality under Guru
dataset is larger than that under uniformly distributed bids
due to the same reason discussed above. Such a difference
becomes negligible as [ increases.

Fig. 10 shows the platform’s average payment of a
randomly selected task under different combinations of ¢
and p. From Fig. 10(a), we observe that the platform’s total
payment increases as ¢t grows. For example, when p = 0.9,
the platform’s payment is 8.0 x 10% at ¢ = 4. This value
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becomes 1.2 x 10* at ¢ = 8. The latter is about 1.5 times
of the former. The similar trend is observed for p = 0.7 and
p = 0.8. It implies that it costs the platform more, in order to
defend coalitions with larger weighted cardinality. We also
notice that, under the same ¢, a larger p costs the platform
more, as shown in Fig. 10(b). For example, when ¢ = 8, the
total payment is 5.9 x 103 with p = 0.7. It becomes 1.2 x 10*
with p = 0.9. The latter is about twice the former. Hence, it
costs the platform more in order to achieve a higher defense
success probability. The reason can be briefly summarized as
follows. For a specific E; € £, in order to achieve a larger p;,
we are expecting a larger ; according to (13). Thus, from the
definition of A%’ () in (11), a winner is very likely to receive
a higher payment o (7 - a) for a given 77 - a. We have a
similar observation in Fig. 10(b).

Fig. 10 provides some insightful observations of our
(t,p)-collusion resistant scheme. First, there is a tradeoff
between ¢t and the platform’s total payment; to defend
against coalitions of larger size, the platform has to pay
more accordingly. A similar relation pertains to p and the
platform’s total payment; to achieve a higher defense suc-
cess rate, the platform has to pay more too.

*

J

6.4 Impact of parameters

In this part, we evaluate the impact of different parameters
on the performance of our scheme. Specifically, we concen-
trate on two of the most critical ones, 8, and a. A feasible
worker set E/; € £ is randomly selected and examined with
the payment range for each winner and p;. The payment
range is simply the possible value range of h (r7 - a)
under different v and s. It provides another way to measure
the average payment at the platform. Generally, a larger
payment range leads to a larger average payment at the
platform.

Fig. 11(a) depicts the impact of ¢;, where we fix t; = 2
and a = 2. We observe that both the payment range and
the probability p; increases as 0; grows. For example, when
6; = 1.2, the payment range to each winner in E; is [50, 55],
while p; is about 0.5. These two values become [50, 62.5]
and 0.9, respectively, when 6; = 2. It implies that in order
to construct a more robust collusion-resistant scheme, i.e.,
a higher p;, a larger 6; is desirable, which, however, will
result in a higher winner payment. On the other hand, a
smaller 6; can cost the platform less, but also renders the
system more vulnerable to collusions. Hence, a suitable
0; should be selected by balancing these two aspects. A
similar tradeoff exists for parameter a in Fig. 11(b), where
we set t; = 2 and 0; = 2. Recall that a should also meet
the requirement (4). When a = 3, the payment range for
each winner and the probability p; is [90,128] and 0.85,
respectively. They are decreased to [90,90] and 0.2 when
a = 45. We notice that a larger a leads to a lower payment
range to each winner and thus a lower total payment at the
platform, but also a lower collusion defense success rate;
oppositely, a smaller a achieves a higher defense success
rate, but a higher cost to the platform as well. The above
results tell that suitable values of §; and a should be selected
by balancing the aspects of the platform’s payment and the
scheme robustness.
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7 RELATED WORK

Collusion resistance in crowdsourcing. Collusion resis-
tance has rarely been investigated in crowdsourcing. An
initial research is conducted by Ji and Chen [47] with
the focus on achieving group strategy-proofness, whereby a
member that benefits from the coalition strategy will not
pay off another member that suffers a loss [52]. Nonethe-
less, the scheme design for collusion resistance should fur-
ther take into account the scenarios that members from
the same coalition can exchange side-payment. Therefore,
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group strategy-proofness aims to prevent a particular form
of collusions. Torshiz et. al [54] studied how to avoid worker
collusions in reporting falsified results without being de-
tected. Alternatively, we defend worker collusions during
their economic interactions with the platform, so as to pro-
tect the platform and other benign workers from economic
loss. Thus, we are working on a totally different problem.

Collusion resistance in spectrum auctions. Since col-
lusions also happen in spectrum auctions [32], [33], collu-
sion resistance is also investigated therein. Ji and Liu [68]
proposed a collusion-resistant dynamic pricing approach to
maximize the users’ utilities while combating their collusive
behaviors using the derived optimal reserve prices. [69], [70]
also fall into the same line of research. However, these works
are lack of formal proofs over their collusion resistance
property. Besides, they only tackle a specific subset of collu-
sions. Zhou et al. [71] then developed a general collusion-
resistant framework for dynamic spectrum auctions.

Collusion resistance in general auctions. Since Robin-
son [31] gave theoretical evidence that auctions are vul-
nerable to collusions, there only have been a handful of
works on collusion-resistant mechanism design [48], [49],
[50], [51]. Che and Kim [49], [50] considered weaker collud-
ers where members from the same coalition only have in-
complete information regarding strategies adopted by each
other. Nonetheless, in crowdsourcing, since all transactions
are made online, it is pretty easy for colluders to share
with their strategies offline without being detected. Penna
and Ventre [51] developed a collusion-resistant mechanism
assuming that the auctioneer has prior knowledge over
bidders” behaviors. The assumption is questionable in real
crowdsourcing systems where a large number of workers
are involved.

Among the existing works, the one that is closest to ours
is APM [48], which also resorts to the consensus estimate
technique to derive a soft defense approach. Specifically,
consensus estimate is applied to the winner number; col-
lusions are discouraged for failing to change (the number
of) winners in an auction. However, APM only works
for generic auctions where bidders are homogeneous and
only differ in bids. Winner selection is straightforward, e.g.
picking the winners that offer top-I bids. In our problem,
workers are heterogeneous for associated with various rep-
utations. Winner selection further takes into account worker
reputation as the quality constraint. By simply applying
consensus estimate to the winner number may violate this
constraint. Besides, APM relies on selecting the optimum set
of winners, which is easy in generic auctions. Since worker
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recruitment is modeled as a binary integer programming
problem, it is computationally intractable to derive its opti-
mum result. Thus, the key ingredient of APM does not exist
here. Alternatively, we novelly employ the consensus esti-
mate over winner payments, which avoids the limitations
of APM.

It is also worth mentioning some other related works
on collusions [56], [57], [58], [65], [66], [67]. Notice that
they focus on theoretical understanding of collusion per-
formances under different auction settings. For example,
[58] studies the impact of bidder collaboration in all-pay
auctions. Instead, we aim to design a collusion-resistant
scheme that prevents coalitions to rig auction outcomes in
crowdsourcing.

Collusion detection in general auctions. As claimed
by [14], [15], collusion might never be detected unless
restrictive assumptions are imposed. The current existing
works on collusion detection share a similar idea: They first
derive important features in auctions without collusion and
then show that one or more of these features are absent
in collusive bids [15]. The fundamental assumption is that
collusion strategies (e.g., who conducts collusion and how)
and auction setting (e.g., bidder numbers, auction type, etc.)
are consistent throughout auctions. Based on this, some
works [16], [17] use various statistical tests to compare the
bidding patterns of collusive and competitive bidders using
bid price data of auctions that had been proven collusive in
the past. Nonetheless, the information of collusive auctions,
called a reference, may not be readily available. Another
category of papers [15], [18] make improvement on these
tests; they are able to identify collusive bidding pattern from
the knowledge of bid prices of historical auctions without
the reference. In addition to bidding price data, winning bid
price [19], bid price-to-reserve price ratio [20], winning bid
price to reserve price ratio with non-price attributes [21],
etc., can also be used to derive important features that serve
as the basis for collusion detection by showing features ab-
sence in collusive bids. Still, all the above works assume that
colluders adopt consistent collusion strategies under a fixed
auction setting. In practice, auctions are highly dynamic;
besides, colluders can arbitrarily form coalitions and rig
their bids without sticking to any pattern. In contrast, this
paper does not impose such assumptions; to be specific, we
have no requirement on the availability of prior knowledge
of collusion or the consistency of collusion strategies. In-
stead of passively detecting collusive behaviors, our defense
scheme proactively prevents collusion via proper incentive
design.

8 CONCLUSION

In this paper, we develop a (t, p)-collusion resistant scheme
for worker recruitment auctions in crowdsourcing. No coali-
tion of weighted cardinality ¢ can improve its group utility
by coordinating the bids at a probability p. In addition, some
desirable economic properties, including p-truthfulness and
p-individual rationality, are also guaranteed via our scheme.
Since the existence of these properties is in the trade of extra
cost at the platform, we also provide formal analysis over
the tradeoff. Simulation results demonstrate the effective-
ness of our scheme.
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