2019 IEEE Conference on Control Technology and Applications (CCTA)

Hong Kong, China, August 19-21, 2019

Implementation of an Open-Loop Turn Circle
Intercept Controller

Addison Schwamb

Department of Electrical and Computer Engineering

Oklahoma Christian University
Edmond, Oklahoma
addison.schwamb @eagles.oc.edu

Pavlos Androulakakis
Department of Electrical Engineering
University of Cincinnati
Cincinnati, Ohio
androups @mail.uc.edu

Abstract—We examine the practical implementation of an
evolutionary algorithm to solve a pursuit evasion problem. In
this problem, an Attacker and a Target move about an infinite
plane with constant speeds. The Target moves in a constant
circle, whereas the Attacker is free to change its direction with
a bounded turn rate. The goal of the Attacker is to capture
the Target in minimum time. We used pursuit evasion robots to
physically model this problem and implement an evolutionary
algorithm to evaluate the controller performance in real-world
systems.

I. INTRODUCTION

Pursuit evasion scenarios have many applications, from
search and surveillance to missile tracking and dogfighting
scenarios. In pursuit evasion scenarios, the pursuer’s goal
state is tied to a mobile agent that evades capture. As a result,
path planning is of vital importance, particularly because
the optimal path must take both goal state and arrival time
into account. Analytic optimal control methods have often
been used to analyze pursuit evasion problems. Perhaps the
simplest example is that of a single turn-constrained agent
pursuing a stationary target. This is known as the Dubins
Vehicle Problem, and was analytically solved by Lester E.
Dubins in 1957 [1]. Further work has been done to solve
more complex scenarios, in which the target evades the
pursuer [2].

While analytic methods can find the exact optimal strategy
for simple pursuit evasion games, more complex real-world
scenarios cannot be solved analytically. Even when analytical
solutions are technically possible, they become exceedingly
complicated as greater numbers of pursuers and targets are
added. In these cases, evolutionary algorithms can be used
to search the space of admissible solutions. Evolutionary
algorithms use the principles of natural selection to create
populations of possible solutions. As they iterate through

The work was supported in part by NSF grant EEC-1659813

978-1-7281-2767-5/19/$31.00 ©2019 IEEE

Samuel Susanto
Department of Electrical Engineering
Wright State University
Dayton, Ohio
susanto.2 @wright.edu

Lynnae Frisco
Department of Manufacturing Engineering
Central State University
Wilberforce, Ohio
lynnaesheree @ gmail.com

Zachariah Fuchs
Department of Electrical Engineering
University of Cincinnati
Cincinnati, Ohio
zachariah.fuchs @uc.edu

many generations, they are capable of searching large so-
lution spaces in a relatively efficient manner. This efficiency
makes them well-suited to solving pursuit evasion scenarios
when an analytical solution is not practical. Evolutionary
algorithms have often been used to create controllers for
trajectory optimization. Kok and Gonzalez use an evolu-
tionary algorithm to develop a path-planning controller for
an unmanned aerial vehicle (UAV) [3]. Navigation of an
environment strewn with obstacles is managed through an
evolutionary algorithm in [4].

In this project, we implement an open-loop controller
produced by an evolutionary algorithm to solve a turn circle
intercept problem, which was previously developed in [5].
The turn circle intercept problem considers two agents, an
Attacker and a Target, moving about a two-dimensional,
obstacle-free, infinite plane. The Target has a constant turn
rate resulting in a circular trajectory about the origin. The
Attacker is free to choose its control but has a bounded turn
rate, which results in a minimum turning radius. The Attacker
strives to capture the Target in minimum time by moving
into a position behind it on the Target’s turn circle. To solve
this problem, an evolutionary algorithm is used to produce
the optimal Attacker control strategy. The resulting optimal
controller was previously analyzed in simulation [5], and in
this paper, we will show that the resulting controllers are also
implementable and effective in physical systems.

Optimal control strategies are only the first step, however.
There are many applications of path planning, and those ap-
plications need practical solutions that work in real physical
systems. A control strategy that creates a path leading to
the Target is not particularly useful if a physical Attacker
cannot use it to catch a physical Target. Our goal, therefore,
was to implement their algorithm with pursuit evasion robots,
and thus determine whether it is practical for use in physical
systems. The problem is defined in Section II. Section III

430

Authorized licensed use limited to: WRIGHT STATE UNIVERSITY. Downloaded on April 30,2021 at 01:44:31 UTC from IEEE Xplore. Restrictions apply.

(xa,y4)

(X7, yr)

\’R

Fig. 1. Global Coordinates

gives a brief description of the evolutionary algorithm in [5]
that was used to generate paths for the pursuit evasion robots.
In Section IV, we discuss our methods of implementing the
algorithm with the robots and the experiments conducted to
test their performance. Results are presented in section V,
and conclusions are drawn in Section VL.

II. PROBLEM DESCRIPTION

Consider two agents on an infinite plane: an Attacker
pursuing and a Target evading. This problem was originally
presented in [5], and a description of the system is included
in this section for completeness. The goal of the Attacker is
to capture the Target in minimum time. This occurs when
the Attacker moves into a position behind the Target on the
Target’s turn circle. The Target and the Attacker both have
constant speed. The Attacker has a variable but bounded turn
rate, and the Target has a constant turn rate w;.

A. System Model

The states of the Attacker and the Target are defined by
their positions, (z4,y4) and (z7,yr), and their heading
angles, 64 and 0p. An illustration of the two agents with
their labeled states is shown in Figure 1. The complete state
of the system is defined by the individual agent states, as
well as a time state, denoted by 7:

x:= (za,ya,04, 27, y7,07,7) (1)

The system dynamics x := f(x,u, ur) are defined by a
system of seven ordinary differential equations:

TA =047 COS(@A) 2
yA =vAa sin(HA) (3)
Oa = 2uy 4)
PA
Zp 1= vy cos(fr) 5)
yT =T SiIl(QT) (6)
éT = U—TuT (7)
PT
=1 ®)

431

The constants v4 > 0 and vy > 0 are the Attacker and
Target’s respective speeds. The constants p4 > 0 and py > 0
are the Attacker and Target’s respective minimum turn radii.
The agents control their headings through u4 € [—1,1] and
ur € [—1,1]. The state at initial time ¢, is defined as x(¢g) =
X0 := (240, Y40, 0 40, TT0, Y10, 010, T0)-

For this problem, the Target is constrained to a constant
turn rate of wp = 1. Using this control strategy and
initial condition, the Target trajectory can be calculated by
integrating the dynamics (5)-(7) with respect to time:

.) v
x7(t;X0) = oo — prsinfrg + prsin (9T0 + th> 9
T

vy
yr(t;X0) = yro + pr cos Oy — pr cos (GTO + pt)
T

(10)
(1)

This results in a circular trajectory with a a radius of pr and
center located

v
Or(t;%0) = Oro + —t
prT

(e, Ye) = (@10 — pr8inbro, yro + pr cosbro). (12)
Unlike the Target, we allow the Attacker to choose its
control u4 € [—1,1] throughout the course of the pursuit.
However, analysis of problems with similar dynamics [6], [7],
[8] have determined that the optimal strategy for the Attacker
typically employs a “bang-zero-bang” strategy, in which the
pursuer will either make a hard right turn (us = —1), a
hard left turn (uy = 1), or go straight (uqa = 0). Using
those results as justification, we restrict the Attacker’s control
variable (u 4) such that it can only take on the discrete values
of ug € {-1,0,1}.

In order to compute the Attacker’s trajectory, we param-
eterize the controller with a sequence of individual time
segments in which the control is held constant as shown in
the following equation.

uw 0<t<ty
U t1 <t <ty
ug bt <t <ts

ua(t;Ca) = (13)
uy ty-1 St<in
0 ty <t
The parameter set Cy =
{{u1,u2y ..., un}, {t1,t2,...,txy}} contains the control,

u; € {-1,0,1}, and switch time, ¢; > 0 for each
segment. Note that this control structure assumes that
0<ti <ty < ... <tin

Substituting the Attacker’s control into the Attacker dy-
namics (2)-(4) and integrating with respect to time yields the
Attacker’s trajectory:

(14)
Ta; — prsinbfa; + pasin(0a; + ;’—i(t —t;)) uip1 =1
i + v;cos(0a;)(t — ;)

Tai +pasinfa; — pasin(@a; —

zA(t;x0,CaA) =

Uiy1 =0

St —t) uigr =—1

Authorized licensed use limited to: WRIGHT STATE UNIVERSITY. Downloaded on April 30,2021 at 01:44:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Desired Separation

(15)
Yai + prcosba; — pacos(Ba; + ;’—;(t —t;)) w1 =1

ya(t;x0,Ca) =

Yai +visin(0a;)(t — t;) Uiy1 =0
Yai — pacosbai + pacos(fai — 7=(t — ;) uipr = —1
Oni+ 3=(t —t;) w1 =1
0a(t;x0,Ca) = { Oa; U0 =0 (16)
Oni — 25(t —t;) wiyr = —1
where the index ¢ satisfies ¢ = argmax;t; < t. The

intermediate state components are computed recursively

as x4, = za(ti;x0,Ca), yai = ya(ti;xo,Ca), and
04; = 04(to;x0,Ca). The initial conditions are defined
as w4(to;x0,Ca) = a0, ya(to;x0,Ca) = a0, and
GA(tO;XO,CA) = QA().

B. Utility

Given an initial condition xq, control parameter set C 4,
and terminal time %7, the final system state x; is computed
using the trajectories defined in (9)-(11) and (14)-(16):

xf(Ca,ty) == (xrp,yrys,0rf, xAf,yar, 0af,ty)
= (27(ts;x0), yr(ty;Xo), 07 (ts; X0), ...
xA(ty;%x0,Ca),yaltsix0,Ca),0a(ts;%0,Ca),ty).

In this problem, terminal time is assumed to be the maximum
time of the final control segment: £y = ty.

The Attacker’s goal is to move into a position behind the
Target which is both on the Target’s turn circle and at a
desired separation distance. The separation distance between
the Attacker and the Target is defined in terms of & as shown
in Figure 2. Using these constraints, the desired terminal
(x,y)-coordinates of the Attacker can be expressed as

% = (vrs — 2.) cos(@) — (yry — y) sin(@) + .
5= (yrs — ye) cos(@) + (wry —) sin(@) + y.

in which z. and y,. are the (x,y)-coordinates of the center of
the Target’s turn circle as defined in (12).

The performance of a given Attacker control strategy is
based on a weighted sum of three functions. The first function

is an error function that computes the distance between
the Attacker’s terminal position (x4f,yas) and the desired
position (Z,7):

I (xg3) o= \J(@ = 2ag)? + (5~ yag)®

The second function is an error function that computes the
difference between Attacker’s terminal heading 645 and the
desired heading 6:

ha(xy) ==

\/(Cos Oap —cos(0py + @))> + (sinfay — sin(0ry + @))?

The third function is a cost function that is equal to the total
amount of time elapsed.

hg(Xf; CA) =tn.

The overall utility function is defined as a weighted sum
of the three utilities:

U(C4) = wihy + wahs + wshs, (17)

where w1, wo, and ws are positive weight coefficients. Ad-
justing the relative magnitudes of the weights prioritizes
satisfying the terminal constraints or minimizing the total
time to capture.

C. Problem Definition

Optimization of the overall utility function (17) is stated
as the minimization over the Attacker’s parameter set

minU(C,) (18)
Ca

This equation is used to find the optimal parameter set C*,,
which will yield the optimal Attacker strategy v’ (t) =
ua(t; C%). Because the optimization problem defined in
(18) contains both integer {u1,usz,...,un} and continuous
{t1,ta,...,t Ny } values, optimization is not possible using gra-
dient methods and we instead use an evolutionary algorithm
to find near optimal open-loop solutions.

III. EVOLUTIONARY ALGORITHM

The evolutionary algorithm (EA) implemented in [S] be-
gins by creating an initial generation Gq of IV parameterized
controllers Gy = {C41,Ca2,...,Can}. Each of these
controllers is randomly initialized with control and time
values. The EA then evaluates each of the controllers in
the current generation from a given initial condition Xg
and assigns them their corresponding utility U as shown
in Equation 17. The next generation is then created with
a population distribution as follows. The controllers with
utility in the top 5% of the population are passed to the next
generation with no change. This process is usually referred
to as elitism and is done to ensure that the best controllers
persist from one generation to the next. The remaining 95%
of the next generation is filled with the children that result
from crossing and mutating of the previous generation.

Crossing is an integral part of most EAs and is performed
in order to mix the genetic information of the current popula-
tion in such a way that the offspring will be able to achieve

432

Authorized licensed use limited to: WRIGHT STATE UNIVERSITY. Downloaded on April 30,2021 at 01:44:31 UTC from IEEE Xplore. Restrictions apply.

12 ty

to to to to

(a) Lead Pursuit (b) Lag Pursuit

Fig. 3. Air Combat Tactics

higher utility. The crossing processes begins by randomly
selecting two parents from the previous generation. Each
of the controllers in the previous generation has an equal
probability of being selected as a parent. Once two parents
are selected, the child’s control values are randomly selected
from the parents as described in the following equation.

puc;) = {

The child’s time values are randomly chosen from a range of
times defined by the parent’s times as shown in the following
equation.

. UA;
. UpB;

Atci S [Atmina Atmax]
otherwise

9

S S
p(Aty;) = { ()AtmrAt,m

The upper and lower bounds (At,, 4, and At,,;,) are defined
as a function of the parent’s segment times

tmin = max (0, .5(Ata; + Atp;) — 11|Ata; — Atpg;l)
tmaz = Min(At, 5(Ata; + Atp;) + 11| Atai — Atpil).

where v is a parameter that can stretch or shrink the selection
region.

After crossing, mutation is performed. The goal of muta-
tion is to add new genetic information into the population.
This helps the EA explore new areas of the solution space.
Each of the control and time segments in each of the children
has a p chance of mutating. When a mutation occurs to a
particular value, a new value is randomly selected to take
its place. If a control segment is mutated, a new control
is chosen randomly from [—1,0,1]. If a time segment is
mutated, a new time length is chosen randomly from a range
of possible times defined At,,; € [te;—0, te;+0] where o is a
mutation severity parameter. For more details on the crossing
and mutation methods and the reasoning behind their design,
see Section III in [5].

IV. METHODS OF IMPLEMENTATION
A. Air Combat Tactics

The objective of this study is to implement the solutions
found by the evolutionary algorithm. The authors of [5]

Camera "
Wireless

e USB

!
frfow
/ =

Fig. 4. Testbed System Diagram

Fig. 5. Mobile Robot

test the evolutionary algorithm from three different initial
conditions. These initial conditions each lend themselves to
the implementation of a different canonical pursuit tactic:
lead pursuit, lag pursuit, and an intercept trajectory. Lead
and lag pursuit are general air combat tactics that are used
to adjust an agent’s position relative to another agent without
changing speed [9]. In lead pursuit, the Attacker cuts inside
the Target’s turn circle and catches up to it by traveling a
shorter distance. In lag pursuit, the Attacker falls behind
the Target by traveling a path outside of the Target’s turn
circle. Figures 3a and 3b show illustrations of these pursuit
techniques wherein the blue trajectory represents the Target
and the red trajectory belongs to the Attacker. For the
intercept trajectory, the Attacker is placed farther away from
the Target and must time its entrance into the Target’s turn
circle. In this paper, similar initial conditions were selected
in order to compare the real-world controller performance
to the EA generated trajectories. The performance of each
controller is evaluated by measuring the final separation
distance between the desired position of intercept and the
actual intercept position using and overhead camera system.

B. Hardware Description

The testbed system used to implement the evolved con-
trollers consists of three main components: a central com-
puter, an overhead camera system, and mobile robots. A basic
system diagram that illustrates the interaction between the
components is shown in Figure 4. The central computer uses

433

Authorized licensed use limited to: WRIGHT STATE UNIVERSITY. Downloaded on April 30,2021 at 01:44:31 UTC from IEEE Xplore. Restrictions apply.

the overhead camera to estimate the position and heading of
the multiple mobile robots. The robots are then controlled
by a wireless link to the central computer. A more detailed
description of the system design and functionality can be
found in [10]. A picture of the custom robots used in this
experiment is shown in Figure 5. Each robot utilizes a unique
identification/localization pattern. The robots are wirelessly
sent wheel speed commands from a central computer. Al-
though the robots possess a differential drive train, we can
emulate the robotic dynamics described in (2)-(8) using the
following wheel speed relationships

vp = 85.117v — u(2.857p)
vy, = 85.117v + u(2.857p)

(19)
(20)

where vp and vy are the right and left wheel speeds
respectively. These conversions assume that the speed is in
m/s and the turn rate is in rad/s. As the experiment is
running, a video from the camera with overlaid calculated
robot trajectories is displayed in real time. Figure 6 show
an example screen capture of the camera feed watching over
the testbed. In this scenario, Robot 2 is chasing a stationary
Robot 1. The yellow trajectory shows the path predicted by
the algorithm that Robot 2 will take to capture Robot 1. The
actual path that Robot 2 takes can vary based on real world
imperfections in the system.

C. Testing Predefined Initial Conditions

To begin testing, we utilized the test conditions previously
evaluated via simulation in [5]:
Lag pursuit:

xo = (1.575,0.653,7/4,0,0,0,0) 21

Lead pursuit:

2o = (—1.575,0.653, —7/4,0,0,0,0) (22)

Intercept trajectory:

20 = (—8.909,0,0,0,0,0,0) (23)

To test these configurations, robots were placed in the
given initial x and y positions with the given initial headings.

D. General Testing

After the robots were positioned in their specific config-
urations, tests were performed in which the testbed camera
determined the robots’ initial positions. This initial position
is then fed into the evolutionary algorithm which runs for
1000 generations to estimate the optimal path of capture and
returns the control matrix needed to implement the given
path. The control matrix created by the algorithm is an n
X 2 matrix. In our case, the control matrices were all 7-
segmented, or 7 x 2. Figure 7 shows an example of one of
these control matrices. Column 1 of the matrix is a vector
filled with control elements v € [—1,0,1]. These values

tell the robot how to maneuver. When u = 1 the robot
will turn left, when u = 0 the robot will go straight, and
when © = —1 the robot will turn right. Column 2 is a time

vector that regulates the amount of time to implement each

Fig. 6. Testbed Camera Image

corresponding control. The central computer converts these
control outputs into wheel speeds and sends the wireless
commands to the robots for the specified amount of time.

V. RESULTS AND ANALYSIS
A. Predefined Initial Conditions

We ran each configuration examined in [5] five times,
and measured the distance between the robots’ predicted
ending positions and the robots’ actual ending positions.
These results are detailed in Table I.

In general, the expected and actual positions were quite
similar with some minor errors from real world imperfec-
tions. However, a significant amount error was caused by
collisions between the robots. The robots would occasionally
collide over the course of the experiment, and the collisions
would cause the robots to either be knocked off course, or
to be locked to each other, unable to move at all. These
collisions resulted in a few ending positions that were sig-
nificantly different from the predicted ones which negatively
influenced the average. Real world problems such as this are
often overlooked when implementing things in simulation.
By testing the evolved solutions with a real world system,
we were able to show that while the solution makes sense
in simulation, it is not always able to be implemented in the
real world. This result can then be used by the authors of [5]
to improve their algorithm by taking the robots physical size
and collisions into account.

B. General Testing

To test the algorithm’s performance in more varied situa-
tions, we ran two experiments: one with randomly generated
initial positions, and one with initial positions well suited
to lead, lag, and intercept pursuit. Guidelines were set to
determine the differences between a capture, non-capture, or
failed run. To be counted as a capture, the Attacker must end

434

Authorized licensed use limited to: WRIGHT STATE UNIVERSITY. Downloaded on April 30,2021 at 01:44:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RESULTS FROM TESTING PREDEFINED INITIAL CONDITIONS

X Average X Y Average Y Average Error
Expected (in) | Measured (in) | Expected (in) | Measured (in) Distance (in)
L A -15.64 -16.09 27.37 28.87 2.77
ag T 17.60 16,40 19.55 22.40 3.65
Lead A 7.82 4.47 33.24 31.34 3.97
T 1.96 3.46 35.19 33.94 2.27
Intercept A -17.60 -16.15 19.55 10.55 7.74
P T -15.64 -18.89 11.73 11.98 543
TABLE 1T to its expected position marking. In the second experiment,
RESULTS FROM GENERAL TESTS we measured the x and y distances from the center of the
Capture | Average Error Standard Target to the center of the Attacker, and compared these
Rate Distance (in) | Deviation (in) distances to the expected difference in position generated by
Random Positions 60% 72 3.12 the evolutionary algorithm. Using these measurements, we
Lag Trajectories 90% 2.76 814 f d th dard deviati d th Th
Tead Trajectorics 50% 35 5753 ound the stan.ar . eviation and the percent error. These
Intercept Trajectories 30% 7.87 4.05 results are detailed in Table II.
As Table II shows, the percent error of the robots’ positions
is higher when the Attacker has a lower capture percentage.
, ° To test this correlation, we found the average error distance
_ and standard deviation for captures and non-captures in the
g o random and intercept trajectory tests. As the table shows,
8 non-captures are correlated to greater differences between
-1 , , . . . the expected and measured position and a higher percent
0 2 4 6 8 10 errors. This is expected because the Attacker must be inside

Fig. 7. Example Control Summary and Control Matrix

behind the Target within the predicted capture distance. If
the robots were separated by more than the predicted capture
distance of & (set to 7/8 for our experiments), the run was
considered a non-capture. When a collision occurred, it was
counted as a failed run.

In the first experiment, Target and Attacker robots were
placed in random positions on the testbed. Testing the robots
in random positions allowed the algorithm to create paths
that have not been analyzed in [5]. We ran the algorithm and
the robots 25 times, placing them in different positions each
time. In this experiment, the Attacker caught the Target 60%
of the time.

In the second experiment, we placed the robots in positions
well suited to lead, lag, and intercept trajectories, to see if
the robots worked better when they could employ typical air
maneuvering tactics. Each configuration was run 10 times.
Figure 8 shows examples of the predicted paths and the paths
the robots actually traveled for each trajectory tested. In this
experiment, the lead and lag configuration had a 90% capture
rate, while the intercept trajectories only had a 30% capture
rate, clearly indicating that the robots did indeed perform
better when using lead and lag strategies.

For both experiments, we measured how far off of the
expected ending position the Attacker was, taking hand
measurements with a ruler. In the first experiment, we marked
the expected final positions of both robots on the testbed, and
measured the x and y distances from the center of each robot

the separation angle & in order to successfully capture the
Target. If the Attacker is outside @, it is likely further from
the predicted ending point.

We believe that the higher capture rate in the lead and lag
pursuit tests is correlated to the simplicity of the paths the
robots took. In both strategies, the Attacker has a relatively
straightforward control matrix: in some cases, it effectively
makes a single turn. In intercept trajectories, the Attacker’s
control matrix is more complicated, involving more turns
and changes in direction. This added complication intro-
duces more potential for errors to build up from hardware
inaccuracies. In addition, intercept trajectories often involve
the Attacker traveling a greater distance to reach the Target
than in lead and lag pursuit. If the algorithm is slightly
off for a small distance, it may not matter. Small errors
compounded by a large distance and multiple turns, however,
could result in a non-capture. This can be seen in Figure
8. While the lead and lag trajectories ended close to the
predicted endpoints, the intercept trajectory followed a path
similar to the predicted one, and yet ended fairly far away
from the predicted endpoint.

VI. CONCLUSION

The implementation of the control strategies produced by
the evolutionary algorithm was able to effectively control
the Attacker to capture the Target in most cases. However,
collisions and the build up of small errors over longer
distances led to some significant sources of error. Therefore,
we conclude that the algorithm is practical for use in physical
systems, but could be improved by giving the agents a
nonzero size and adding the corresponding physical restric-

435

Authorized licensed use limited to: WRIGHT STATE UNIVERSITY. Downloaded on April 30,2021 at 01:44:31 UTC from IEEE Xplore. Restrictions apply.

(a) Predicted Lag Trajectory

(b) Predicted Lead Trajectory

(c) Predicted Intercept Trajectory

55
5
5
45
2 2
35 5
Y 3
25 2
Y
2 1
15
0
1
05 1
03 2 1 o 1 2 3 2

(d) Actual Lag Trajectory

(e) Actual Lead Trajectory

(f) Actual Intercept Trajectory

Fig. 8. Examples of predicted paths and paths the robots implemented.

tions. Based on the experimental results, it can be concluded
that the algorithm works best when the relative positions of
the robots are well-suited to a lead or lag pursuit strategy.
The algorithm performance is worse when the Attacker must
time its interception of the Target’s path from a far away
distance. In this case the capture rate is not as high because
of the complexity of the paths coupled with the low precision
of the hardware.

One limitation of the evolutionary algorithm is that it
considers an infinite plane when predicting a path for capture.
Our testbed is only 9°4” x 8’117, and these boundaries some-
times prevented the path predicted from being completed. In
the future, work can be done to set parameters to prevent the
algorithm from generating paths that cannot be completed in
the testbed or in any environment in which the algorithm is
being tested. This can be extended to the general case by
adding support for obstacles.

REFERENCES

[1] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497-516, Jul. 1957.

[2] D. W. Casbeer, E. Garcia, Z. E. Fuchs, and M. Pachter, “Coopera-
tive target defense differential game with a constrained-maneuverable
defender,” in 2015 54th IEEE Conference on Decision and Control
(CDC), Dec. 2015, pp. 1713-1718.

[3] N. K. J. Kok, L. F. Gonzalez, “Fpga implementation of an evolutionary
algorithm for autonomous unmanned aerial vehicle on-board path
planning,” Transactions on Evolutionary Computation, vol. 17, pp. 272-
281, April 2013.

[4] C. Hocaoglu and A. C. Sanderson, “Planning multiple paths with evo-
lutionary speciation,” IEEE Transactions of Evolutionary Computation,
vol. 5, no. 3, pp. 169-191, June 2001.

[5] P. Androulakakis, Z. E. Fuchs, and J. Shroyer, “Evolutionary design
of an open-loop turn circle intercept controller,” in IEEE Congress on
Evolutionary Computation, July 2018, pp.

[6] P. Androulakakis and Z. E. Fuchs, “Evolutionary design of engagement
strategies for turn-constrained agents,” in IEEE Congress of Evolution-
ary Computation, May 2017, pp. 2354-2363.

[71 Z. E. Fuchs, D. W. Casbeer, and E. Garcia, “Singular analysis of a
multi-agent, turn-constrained, defensive game,” in American Control
Conference (ACC), 2016, July 2016.

[8]1 A. Merz, “The homicidal chauffeur,” ATAA Journal, vol. 12, no. 3, pp.
259-260, 1974.

[9] Multi-Command Handbook 11 F-16. United States Air Force, 1996.

[10] E. Nees, “Design and Demonstration of a Physical, Multi-Agent,
Autonomous Controller Testbed”, Master’s Thesis, Wright State Uni-
versity, 2017.

436

Authorized licensed use limited to: WRIGHT STATE UNIVERSITY. Downloaded on April 30,2021 at 01:44:31 UTC from IEEE Xplore. Restrictions apply.

