
Implementation of an Open-Loop Turn Circle

Intercept Controller

Addison Schwamb

Department of Electrical and Computer Engineering

Oklahoma Christian University

Edmond, Oklahoma

addison.schwamb@eagles.oc.edu

Lynnae Frisco

Department of Manufacturing Engineering

Central State University

Wilberforce, Ohio

lynnaesheree@gmail.com

Pavlos Androulakakis

Department of Electrical Engineering

University of Cincinnati

Cincinnati, Ohio

androups@mail.uc.edu

Samuel Susanto

Department of Electrical Engineering

Wright State University

Dayton, Ohio

susanto.2@wright.edu

Zachariah Fuchs

Department of Electrical Engineering

University of Cincinnati

Cincinnati, Ohio

zachariah.fuchs@uc.edu

Abstract—We examine the practical implementation of an
evolutionary algorithm to solve a pursuit evasion problem. In
this problem, an Attacker and a Target move about an infinite
plane with constant speeds. The Target moves in a constant
circle, whereas the Attacker is free to change its direction with
a bounded turn rate. The goal of the Attacker is to capture
the Target in minimum time. We used pursuit evasion robots to
physically model this problem and implement an evolutionary
algorithm to evaluate the controller performance in real-world
systems.

I. INTRODUCTION

Pursuit evasion scenarios have many applications, from

search and surveillance to missile tracking and dogfighting

scenarios. In pursuit evasion scenarios, the pursuer’s goal

state is tied to a mobile agent that evades capture. As a result,

path planning is of vital importance, particularly because

the optimal path must take both goal state and arrival time

into account. Analytic optimal control methods have often

been used to analyze pursuit evasion problems. Perhaps the

simplest example is that of a single turn-constrained agent

pursuing a stationary target. This is known as the Dubins

Vehicle Problem, and was analytically solved by Lester E.

Dubins in 1957 [1]. Further work has been done to solve

more complex scenarios, in which the target evades the

pursuer [2].

While analytic methods can find the exact optimal strategy

for simple pursuit evasion games, more complex real-world

scenarios cannot be solved analytically. Even when analytical

solutions are technically possible, they become exceedingly

complicated as greater numbers of pursuers and targets are

added. In these cases, evolutionary algorithms can be used

to search the space of admissible solutions. Evolutionary

algorithms use the principles of natural selection to create

populations of possible solutions. As they iterate through

The work was supported in part by NSF grant EEC-1659813

many generations, they are capable of searching large so-

lution spaces in a relatively efficient manner. This efficiency

makes them well-suited to solving pursuit evasion scenarios

when an analytical solution is not practical. Evolutionary

algorithms have often been used to create controllers for

trajectory optimization. Kok and Gonzalez use an evolu-

tionary algorithm to develop a path-planning controller for

an unmanned aerial vehicle (UAV) [3]. Navigation of an

environment strewn with obstacles is managed through an

evolutionary algorithm in [4].

In this project, we implement an open-loop controller

produced by an evolutionary algorithm to solve a turn circle

intercept problem, which was previously developed in [5].

The turn circle intercept problem considers two agents, an

Attacker and a Target, moving about a two-dimensional,

obstacle-free, infinite plane. The Target has a constant turn

rate resulting in a circular trajectory about the origin. The

Attacker is free to choose its control but has a bounded turn

rate, which results in a minimum turning radius. The Attacker

strives to capture the Target in minimum time by moving

into a position behind it on the Target’s turn circle. To solve

this problem, an evolutionary algorithm is used to produce

the optimal Attacker control strategy. The resulting optimal

controller was previously analyzed in simulation [5], and in

this paper, we will show that the resulting controllers are also

implementable and effective in physical systems.

Optimal control strategies are only the first step, however.

There are many applications of path planning, and those ap-

plications need practical solutions that work in real physical

systems. A control strategy that creates a path leading to

the Target is not particularly useful if a physical Attacker

cannot use it to catch a physical Target. Our goal, therefore,

was to implement their algorithm with pursuit evasion robots,

and thus determine whether it is practical for use in physical

systems. The problem is defined in Section II. Section III

2019 IEEE Conference on Control Technology and Applications (CCTA)
Hong Kong, China, August 19-21, 2019

978-1-7281-2767-5/19/$31.00 ©2019 IEEE 430

Authorized licensed use limited to: WRIGHT STATE UNIVERSITY. Downloaded on April 30,2021 at 01:44:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Global Coordinates

gives a brief description of the evolutionary algorithm in [5]

that was used to generate paths for the pursuit evasion robots.

In Section IV, we discuss our methods of implementing the

algorithm with the robots and the experiments conducted to

test their performance. Results are presented in section V,

and conclusions are drawn in Section VI.

II. PROBLEM DESCRIPTION

Consider two agents on an infinite plane: an Attacker

pursuing and a Target evading. This problem was originally

presented in [5], and a description of the system is included

in this section for completeness. The goal of the Attacker is

to capture the Target in minimum time. This occurs when

the Attacker moves into a position behind the Target on the

Target’s turn circle. The Target and the Attacker both have

constant speed. The Attacker has a variable but bounded turn

rate, and the Target has a constant turn rate ωT .

A. System Model

The states of the Attacker and the Target are defined by

their positions, (xA, yA) and (xT , yT), and their heading

angles, θA and θT . An illustration of the two agents with

their labeled states is shown in Figure 1. The complete state

of the system is defined by the individual agent states, as

well as a time state, denoted by τ :

x := (xA, yA, θA, xT , yT , θT , τ) (1)

The system dynamics ẋ := f(x, uA, uT) are defined by a

system of seven ordinary differential equations:

ẋA := vA cos(θA) (2)

ẏA := vA sin(θA) (3)

θ̇A :=
vA

ρA
uA (4)

ẋT := vT cos(θT) (5)

ẏT := vT sin(θT) (6)

θ̇T :=
vT

ρT
uT (7)

τ̇ := 1 (8)

The constants vA > 0 and vT > 0 are the Attacker and

Target’s respective speeds. The constants ρA > 0 and ρT > 0
are the Attacker and Target’s respective minimum turn radii.

The agents control their headings through uA ∈ [−1, 1] and

uT ∈ [−1, 1]. The state at initial time t0 is defined as x(t0) =
x0 := (xA0, yA0, θA0, xT0, yT0, θT0, τ0).

For this problem, the Target is constrained to a constant

turn rate of uT = 1. Using this control strategy and

initial condition, the Target trajectory can be calculated by

integrating the dynamics (5)-(7) with respect to time:

xT (t;x0) = xT0 − ρT sin θT0 + ρT sin

(

θT0 +
vT

ρT
t

)

(9)

yT (t;x0) = yT0 + ρT cos θT0 − ρT cos

(

θT0 +
vT

ρT
t

)

(10)

θT (t;x0) = θT0 +
vT

ρT
t (11)

This results in a circular trajectory with a a radius of ρT and

center located

(xc, yc) := (xT0 − ρT sin θT0, yT0 + ρT cos θT0). (12)

Unlike the Target, we allow the Attacker to choose its

control uA ∈ [−1, 1] throughout the course of the pursuit.

However, analysis of problems with similar dynamics [6], [7],

[8] have determined that the optimal strategy for the Attacker

typically employs a “bang-zero-bang” strategy, in which the

pursuer will either make a hard right turn (uA = −1), a

hard left turn (uA = 1), or go straight (uA = 0). Using

those results as justification, we restrict the Attacker’s control

variable (uA) such that it can only take on the discrete values

of uA ∈ {−1, 0, 1}.

In order to compute the Attacker’s trajectory, we param-

eterize the controller with a sequence of individual time

segments in which the control is held constant as shown in

the following equation.

uA(t;CA) =











































u1 0 ≤ t < t1

u2 t1 ≤ t < t2

u3 t2 ≤ t < t3
...

uN tN−1 ≤ t < tN

0 tN ≤ t

(13)

The parameter set CA :=
{{u1, u2, ..., uN}, {t1, t2, ..., tN}} contains the control,

ui ∈ {−1, 0, 1}, and switch time, ti ≥ 0 for each

segment. Note that this control structure assumes that

0 ≤ t1 ≤ t2 ≤ ... ≤ tN
Substituting the Attacker’s control into the Attacker dy-

namics (2)-(4) and integrating with respect to time yields the

Attacker’s trajectory:

xA(t;x0,CA) = (14)










xAi − ρT sin θAi + ρA sin(θAi +
vi
ρA

(t− ti)) ui+1 = 1

xAi + vi cos(θAi)(t− ti) ui+1 = 0

xAi + ρA sin θAi − ρA sin(θAi −
vi
ρA

(t− ti)) ui+1 = −1

431

Authorized licensed use limited to: WRIGHT STATE UNIVERSITY. Downloaded on April 30,2021 at 01:44:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Desired Separation

yA(t;x0,CA) = (15)










yAi + ρT cos θAi − ρA cos(θAi +
vi

ρA
(t− ti)) ui+1 = 1

yAi + vi sin(θAi)(t− ti) ui+1 = 0

yAi − ρA cos θAi + ρA cos(θAi −
vi
ρA

(t− ti)) ui+1 = −1

θA(t;x0,CA) =











θAi +
vi

ρA
(t− ti) ui+1 = 1

θAi ui+0 = 0

θAi −
vi

ρA
(t− ti) ui+1 = −1

(16)

where the index i satisfies i = argmaxi ti < t. The

intermediate state components are computed recursively

as xAi = xA(ti;x0,CA), yAi = yA(ti;x0,CA), and

θAi = θA(t0;x0,CA). The initial conditions are defined

as xA(t0;x0,CA) = xA0, yA(t0;x0,CA) = yA0, and

θA(t0;x0,CA) = θA0.

B. Utility

Given an initial condition x0, control parameter set CA,

and terminal time tf , the final system state xf is computed

using the trajectories defined in (9)-(11) and (14)-(16):

xf (CA, tf) := (xTf , yTf , θTf , xAf , yAf , θAf , tf)

= (xT (tf ;x0), yT (tf ;x0), θT (tf ;x0), ...

xA(tf ;x0,CA), yA(tf ;x0,CA), θA(tf ;x0,CA), tf).

In this problem, terminal time is assumed to be the maximum

time of the final control segment: tf = tN .

The Attacker’s goal is to move into a position behind the

Target which is both on the Target’s turn circle and at a

desired separation distance. The separation distance between

the Attacker and the Target is defined in terms of ᾱ as shown

in Figure 2. Using these constraints, the desired terminal

(x,y)-coordinates of the Attacker can be expressed as

x̄ = (xTf − xc) cos(ᾱ)− (yTf − yc) sin(ᾱ) + xc

ȳ = (yTf − yc) cos(ᾱ) + (xTf − xc) sin(ᾱ) + yc

in which xc and yc are the (x,y)-coordinates of the center of

the Target’s turn circle as defined in (12).

The performance of a given Attacker control strategy is

based on a weighted sum of three functions. The first function

is an error function that computes the distance between

the Attacker’s terminal position (xAf , yAf) and the desired

position (x̄, ȳ):

h1(xf ; ᾱ) :=
√

(x̄− xAf)2 + (ȳ − yAf)2.

The second function is an error function that computes the

difference between Attacker’s terminal heading θAf and the

desired heading θ̄:

h2(xf) :=
√

(cos θAf − cos(θTf + ᾱ))2 + (sin θAf − sin(θTf + ᾱ))2

The third function is a cost function that is equal to the total

amount of time elapsed.

h3(xf ;CA) = tN .

The overall utility function is defined as a weighted sum

of the three utilities:

U(CA) = w1h1 + w2h2 + w3h3, (17)

where w1, w2, and w3 are positive weight coefficients. Ad-

justing the relative magnitudes of the weights prioritizes

satisfying the terminal constraints or minimizing the total

time to capture.

C. Problem Definition

Optimization of the overall utility function (17) is stated

as the minimization over the Attacker’s parameter set

min
CA

U(CA) (18)

This equation is used to find the optimal parameter set C∗

A,

which will yield the optimal Attacker strategy u∗

A(t) =
uA(t;C

∗

A). Because the optimization problem defined in

(18) contains both integer {u1, u2, ..., uN} and continuous

{t1, t2, ..., tN} values, optimization is not possible using gra-

dient methods and we instead use an evolutionary algorithm

to find near optimal open-loop solutions.

III. EVOLUTIONARY ALGORITHM

The evolutionary algorithm (EA) implemented in [5] be-

gins by creating an initial generation G0 of N parameterized

controllers G0 = {CA1,CA2, . . . ,CAN}. Each of these

controllers is randomly initialized with control and time

values. The EA then evaluates each of the controllers in

the current generation from a given initial condition x0

and assigns them their corresponding utility U as shown

in Equation 17. The next generation is then created with

a population distribution as follows. The controllers with

utility in the top 5% of the population are passed to the next

generation with no change. This process is usually referred

to as elitism and is done to ensure that the best controllers

persist from one generation to the next. The remaining 95%

of the next generation is filled with the children that result

from crossing and mutating of the previous generation.

Crossing is an integral part of most EAs and is performed

in order to mix the genetic information of the current popula-

tion in such a way that the offspring will be able to achieve

432

Authorized licensed use limited to: WRIGHT STATE UNIVERSITY. Downloaded on April 30,2021 at 01:44:31 UTC from IEEE Xplore. Restrictions apply.

