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Abstract—Enabling robots to learn tasks and follow instruc-
tions as easily as humans is important for many real-world robot
applications. Previous approaches have applied machine learning
to teach the mapping from language to low dimensional symbolic
representations constructed by hand, using demonstration trajec-
tories paired with accompanying instructions. These symbolic
methods lead to data efficient learning. Other methods map
language directly to high-dimensional control behavior, which
requires less design effort but is data-intensive. We propose to
first learning symbolic abstractions from demonstration data
and then mapping language to those learned abstractions. These
symbolic abstractions can be learned with significantly less data
than end-to-end approaches, and support partial behavior spec-
ification via natural language since they permit planning using
traditional planners. During training, our approach requires
only a small number of demonstration trajectories paired with
natural language—without the use of a simulator—and results in
a representation capable of planning to fulfill natural language
instructions specifying a goal or partial plan. We apply our
approach to two domains, including a mobile manipulator, where
a small number of demonstrations enable the robot to follow
navigation commands like “Take left at the end of the hallway,”
in environments it has not encountered before.

I. INTRODUCTION

Humans can easily learn novel tasks given paired demon-
strations and verbal instructions; children can learn novel
concepts and ground novel words to describe known or unseen
objects very quickly, sometimes with only one sample [1]. It
would be useful for robots to have the same ability to learn
reusable knowledge from just a few demonstrations, enabling
them to learn continuously and to use that learned knowledge
to follow natural language instructions given by human users.

Previous work to map instructions to policies can be split in
two categories. Firstly, end-to-end approaches [2], [3] directly
map language to actions, and have been shown to be effective
(but data intensive) in simulations. For example, Blukis et
al. [4] use an end-to-end approach to map natural language
to policies on a real robot via a simulator. However, the agent
requires thousands of demonstrations in simulation, along with
hundreds of real robot trajectories, to learn these policies. The
second category of methods map language to handcrafted state
abstractions, where states of importance are pre-specified [5],
[6], [7], [8]. These methods are limited because we need to
handcraft state abstractions, yet these same abstractions do not
generalize well to novel environments.

We propose first learning transferable abstractions from
demonstration trajectories, and then mapping the accompa-
nying language to sequences of these learned abstractions.
Such an approach allows the agent to learn abstractions useful
for planning, and then ground these abstractions to novel
maps of the environment. Our approach learns two types
of abstractions from demonstrations: first, motor skills, which
abstract low level robot control into high level actions, such
as going straight until a wall or turning 90° left; second,
perceptual symbols representing the set of states where these
skills cease execution, that is, sub-goals, which are sufficient
for planning using the motor skills [9].

For example, a trajectory of a robot to “left at the end of
the hallway” can be segmented into three skill segments: the
robot moving straight, the robot turning left, and the robot
going straight again. The terminating states of these skill
segments can be clustered to create termination conditions for
generalizable skills. These skill termination conditions are the
symbolic abstractions used to ground language to plans. From
the example above the termination condition for skills that
allow the robot to travel straight, and turn left can be learned
from the states where the skills finish executing. Images of
such a trajectory along with their associated sub-goals and
LIDAR data is shown in Fig. 1.

Further, the resulting skills and symbols are learned in the
agent’s frame of reference, which supports transfer to new en-
vironments [10], [11]. Critically, at training time only language
paired with trajectories in the robot’s low-level sensory-action
space are required, rather than needing to provide an abstract
space of symbols. We then map the language instructions
collected with the demonstrations to this symbolic abstraction.

At runtime, the learned mapping can be used to map
language to symbols that partially specify the desired behavior
by specifying the sub-goals needed to achieve the desired
behavior. These symbolic sub-goals might not be immediately
reachable, but the robot can use an off-the-shelf planner and
generate a plan to reach the termination conditions of each of
these symbols sequentially. When a new language command
of, for example, “go left at the next intersection” is provided to
the robot in a previously unseen location it maps the command
to a sequence of sub-goals (learned previously), and then plans
to reach the intersection, turn left and move forward.

We implement our approach in two domains: a driving



Fig. 1: A robot following the natural language instruction “left at the end of the hallway” using our pipeline. Our translation
model converts the natural language input into the sequence of symbols which the robot uses as sub-goals to plan over. The
first two symbols being: 0, 2000. (a) Translation of the sentence “left at the end of the hallway” into the symbol sequence “0
2000.” Panels (b) and (c) show the median of the LIDAR data used to create the symbol classifiers 0 and 2000 respectively.
Panels (d), (e) and (f) show the robot executing the command, with the lower row panels (g), (h) and (i), in order, showing
the LIDAR data at the corresponding points during the execution. (d) (with the corresponding LIDAR data in (g)) The robot
at the start of execution. The robot plans to reach to the first symbol, 0, in the translated symbol sequence. (e) (with the
corresponding LIDAR data in (h)) The robot reaches the LIDAR data matching symbol 0 by moving forward, where it
terminates the corresponding skill. The robot then plans for the skill attached to the next symbol, that is 2000, which causes
it to execute a skill that turns left. (f) (with the corresponding LIDAR data in (i)) The robot’s LIDAR data matches the
2000 symbol terminating the plan execution successfully. The robot plans to satisfy a partial plan specification defined by the

termination symbols which in turn are specified by natural language.

domain using a high dimensional LIDAR dataset collected on a
car [12], and a mobile robot scenario. We present the accuracy
results of grounding natural language to our learned symbols
in the first domain. We then demonstrate our complete system
in the second domain, with language grounding accuracy
results and planning on a real robot. Only 75 trajectory
demonstrations paired with natural language commands are
required to allow generalization and planning in novel maps.
This is the first work—to the best of our knowledge—that
learns symbolic abstractions and their mappings to language
from demonstrations. Our approach allows learning from a
small number of demonstrations, shows generalization to novel
environments, and does not require a simulator.

II. SKILLS AND SYMBOLS BACKGROUND

We translate natural language instructions into a sequence
of learned symbols. We model motor skills using the option
framework [13], as follows:

Definition 1. Skill — A skill is a triple: (Z, o, ) where,

1) Z:S8 — [0,1] is the initiation condition that defines
the set of states in S where a skill can start executing.

2) 0 : § — [0,1], is the termination condition defining
the set of states where the option terminates.

3) m:S — Pr(A) is the skill’s stochastic policy, defining
probability of actions over states.

We can learn the policy for these skills or use a planner
to plan for the policy given the initiation and termination
conditions. The termination and initiation sets themselves can
be modelled as classifiers indicating the states where the option
can execute and terminate [9]. Following Konidaris et al. [9],
we formally define a symbol as a set of skill termination states,
o, represented by a classifier. In our paper we assume all skills
can be initialized at every location.

III. MAPPING LANGUAGE TO PLANS VIA LEARNED
SYMBOLIC ABSTRACTIONS

Our method for learning to follow instructions is split in
two stages: training and runtime. During training the robot
is given multiple egocentric trajectories ({7} ) paired with
natural language instructions for each trajectory {I} . Each
trajectory is a sequence of observed states and actions in the
demonstrations, that is, 7 = {(sg,a0), (51,01)....(sT,ar)}.
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Fig. 2: Our symbol learning methodology. We drive the robot
around and collect trajectories associated with a natural lan-
guage command. Here the natural language command is “turn
right at the intersection and go straight.” These trajectories are
processed with a change point detection algorithm to obtain
skill segments 1, 2, and 3. The HDP-HMM skill segmentation
algorithm automatically assigns skill segments 1 and 3 to the
same skill. We then collect the terminal states of the resulting
skills—illustrated here as the egocentric LIDAR readings of
the robot when facing a wall, at the termination of skill
segment 1, and when facing the corridor at the termination of
skill segment 2. Termination states for instances of the same
skill policy are clustered to learn all possible skill terminations
sets for the skill policy, and used to create classifiers from each
cluster to represent a symbol.

Moreover, every trajectory is paired with an instruction I,,, a
command sentence given by a human user in natural language.
Training results in a set of symbols ¢; € X that can be used
for planning, and a learned mapping from natural language to
(sequences of) these symbols.

At runtime, the robot is placed in a novel environment and
given a natural language instruction. The agent first uses its
trained model to map from the language to a sequence of
symbols. This sequence of symbols provides a partial plan in
the form of sub-goals, but the agent must still plan to reach
these sub-goals. Planning is required as writing a controller
to satisfy sub-goals in novel maps is non trivial. Off the shelf
planners or the learned skill policies can be used to satisfy
every sub-goal in the symbol sequence in order. The state
space in this work is LIDAR data that the robot observes in
the world and the actions are continuous robot joint torque
values. However, our methods are generic enough to allow for
other state representations like images and point cloud data
for states.

A. Learning Skills and Symbols from Demonstration

During learning our approach requires robot trajectories (in
the form of actions and observations in egocentric frame)
paired with natural language commands. We learn an abstrac-

tion of the world in the form of a collection of skills extracted
from the demonstrations, and the symbols representing their
termination conditions. We first extract the skills latent to the
demonstration trajectories using changepoint detection, and
then learn their termination conditions using clustering and
classification. This process is illustrated in Fig. 2. At this point
each trajectory demonstration is abstracted to a sequence of
symbolic sub-goals. We next learn a function to map natural
language to these abstracted sequences of symbols. Finally, to
achieve instruction following, at runtime we translate natural
language to a sequence of these learned symbols. We then use
planning to reach every symbol or sub-goal in the sequence,
in sequential order, to satisfy the given instruction. The entire
pipeline is illustrated in Fig. 3; we now describe each part in
more detail.

1) Symbols: Our goal in symbol learning is to identify
the termination conditions of reusable skills obtained via
segmentation, which are used as grounding classifiers for our
symbolic representation. Our key insight is showing that the
equivalence of option termination conditions and symbols—
first pointed out by Konidaris et al. [9]—can enable a robot to
learn to map natural language to goal-based planning with only
trajectories as supervision. The skill policy can be learned from
the segmented demonstration using a framework like Dynamic
Movement Primitives (DMPs) [14], or we can plan to skill
terminations if the transition model of the world is known.

2) Egocentric Representation: A key goal of our approach
is to learn symbols that generalize to new environments. To
achieve this goal, we use an egocentric state space represen-
tation, which is known to be sufficient for transfer [15]. The
classifier of each symbol is trained with states observed in
egocentric space. These egocentric symbols can be grounded
in the global frame of reference by checking if the egocentric
observations of a location in the map or pose of the robot is
similar to the egocentric observations of the symbol during
learning. A more complete treatment of learning symbols in
the egocentric state and transferring them to a global map is
provided by James et al. [11].

The egocentric representation in our case has observations
in the form of Light Detection and Ranging (LIDAR) data, and
the actions in the form of torque input to the agent. For other
platforms the state could be an egocentric camera input. The
egocentric representation, is non-Markov in nature as multiple
states might look the same to the agent.

There is a separate global frame of reference [15], which
is the state of the external world under the given instruction,
and is sufficient for planning. We learn the abstract symbols
in local egocentric frame, and plan in a global Markov state
space, which in this case is a map of the world and the robot’s
location in it. We ground symbols learned in the egocentric
state space onto the physical map of the world and then plan
over them. For this work we assume the transition dynamics
of the world to be known, allowing point-to-point navigation
on the map.

3) Skill Segmentation: Our input consists of natural lan-
guage paired with a robot trajectory. Our trajectory demonstra-
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Fig. 3: Our methodology for learning a symbolic representation and grounding language to it for instruction following. a)
Demonstration trajectories are segmented using change point detection to generate skills. The observations that occur at skill
termination are clustered to generate our learned symbols. These symbols are used as input to to learn to mapping from the
given natural language commands to sequence of learned latent sub-goal symbols present in the corresponding trajectory. b)
At run time, natural language is input to our translation model, which outputs a sequence of symbols. These symbols are used

as sub-goals for a planner, which generates robot actions.

tions are unstructured, but we assume that they have underly-
ing latent skills that are present in multiple demonstrations.
We need to find underlying skills and symbols that create
the trajectory so as to learn a plannable abstraction. We
use a hierarchical Bayesian changepoint detection approach
to detect repeated instances of the same latent skill. Such
approaches are more data efficient than similar deep neural
network approaches, which require orders of magnitude more
data.

We used the Hierarchical Dirichlet Process Hidden Markov
Model (HDP-HMM) [16] to model our trajectories. This
formulation recognizes the change points and the underlying
latent skills generating the trajectory segments, allowing us
to recognize when the same skill is being repeated across
multiple demonstrations. Such an approach has been used
previously elsewhere for similar purposes [17], [18], [19], [20].

The data for skill segmentation in our case consists of
the observed actions y = [yo,¥1,....yT—1, Y] generated by
the demonstrator, where the data is d dimensional. We posit
underlying latent skills which come from k € {1,2,...}
possible labels. Under the HDP-HMM process latent skills are
assumed to be generated from a first order Markov process
represented by z = {zo,21,...2r}. The latent first order
Markov process is parameterized with initial state probabilities
(o) and transition probabilities ({7x}5> ;) from one latent
skill to another. There is an additional parameter of ({0 }7> ;)
to govern the observation noise when observing the output
trajectory, which is parameterzied by the hyperparameter .
The mathematical formulation for a HDP-HMM as described
by Fox et al. [21] is given by:

ytlzt =k NN($t|Ak$t7172k)§
Zt+1|{ﬂ'k}io:172t ~ Tzys

Tkl k, B~ DP(a+ &, (af + ki) /(o + K));
Bly ~ GEM(7),

where DP is a Dirichlet process and (5 is a random probability
measure setting the transition probabilities between skills.
GEM is the Griffiths, Engen and McCloskey distribution,
which is used to generate S using a stick breaking model

parameterized by ~. Parameter [ in turn parameterizes the
transition probabilities 7 along with the hyperparameters
of a and k. The goal of such a model is to estimate
Pr(B,m,0,{z}_|[{x}]_,), which is generally performed us-
ing variational inference. The Viterbi algorithm [22] is used
to label each time step with a latent skill using the joint
probability distribution. The observed sequence y here is
treated as an auto-regressive process. We used the BNPY
toolbox by Hughes et al. [23] for performing this HDP-HMM
change point detection; for a more complete mathematical
treatment of HDP-HMM please refer to Fox et al. [21] and
Hughes et al. [24]. HDP-HMM labels the trajectory segments
with the underlying latent skills. These trajectory segments
can be used to learn a skill policy using DMPs [14].

In this work we are only segmenting the action trajectory of
the agent, and not the state-action trajectory. This is different
from previous methods [17], [18], where state and action
information is used for segmentation. This is because our state
data is not just the robot’s joint space, but the actual high
dimensional state of the environment visible to the agent. It is
computationally intractable to segment trajectories with such
high dimensions with the current state of the art Bayesian
changepoint detection methods.

4) Clustering: Each of the latent skills learned with change-
point detection could potentially have multiple termination
conditions. For example, the going forward skill might ter-
minate when the agent reaches a wall, or when the agent
reaches the next room. The termination sets for both of these
skills must be modelled separately. The number of effect
sets associated with a skill policy are not known in advance.
We use clustering as an unsupervised method to identify the
possible termination sets of each learned skill. We use the
DBSCAN [25] exclusively as the clustering method as it is
a non-parametric method that does not need a pre-specified
number of clusters or the diameters of possible clusters. We
only specify a distance metric between clusters, Euclidean in
our case; the minimum number of support points for a cluster
s0 a cluster is not just a made of one or two points; and a noise
parameter e that allows the algorithm to identify outliers. We



choose the same noise and support parameters for all skills in
a domain, that we pick such that we do not have any cluster
of termination states made of relatively few support points.

5) Classification: A propositional symbol refers to a classi-
fier that determines the states in which the symbol is true, and
those in which it is false [9]. We therefore next convert each
cluster of states into such a classifier For example, to detect
the end of a corridor, the LIDAR state data directly ahead of
the robot would show an obstacle at close range for a cluster
skill termination states. This set of states is not enough to
recognize a novel point on the map as the end of the corridor.
We must learn a classifier with the clustered states as positive
labels for states that represent the end of a corridor. We used
Single Class SVMs [26] as they are efficient and robust to
noise, which is prevalent in LIDAR data. Single Class SVMs
were developed as an outlier detection method, and in our
case, outlier states are those that do not satisfy the statistics
of our termination states. We use a Sigmoid kernel as features
for classification, as it helps distinguish LIDAR distance data
well. The hyperparameters for the classifiers are chosen based
on the number of dimensions of the data and the variance of
the data as suggested by Scholkopf et al. [26]. After we train
classifiers associated with each cluster, we merge classifiers
that have similar output responses for each skill. To compare
the output responses of the classifiers we test the points used
to train one classifier using the other classifier, and vice-versa.
If both classifiers label more than 85% of the points belonging
to the other cluster as inliers, we then merge the cluster, as
their inlier responses are similar, and the clusters have a large
overlap, hence they might as well be the same symbol.

B. Mapping Language to Symbols

We next learn a mapping from natural language instructions,
defined as a sequence of strings i = [ig,%1,...,%—1,%], t0 a
sequence of symbols representing skill termination conditions,
[0, .., 0. This is a machine translation problem, which is
posed generically as mapping an input sequence to an output
sequence.

The output target sentence is the order in which the symbols
appear in the demonstration trajectory. We then train a deep
Seq2Seq recurrent neural network [27] to take the sequences
and output the paired sequence of skills using the negative log
likelihood loss. The embedding vector size is 50 dimensional,
and the hidden vector size is 256. Seq2Seq utilizes two
recurrent neural networks, one which acts as an encoder F
and the other as a decoder D. The encoder is trained to take
the input sequence and map it to a vector of fixed dimension,
and the decoder is trained to take the output and decode to
the translated sequence. Our Seq2Seq model has Badhanau
attention [28] to provide soft alignment between input and
output symbol sequences. We also use GloVe [29] pre-trained
embeddings as they improve Seq2Seq performance in low data
scenarios.

C. Planning Over Symbol Sequences

At runtime we plan over the sequence of output symbols
predicted by the Seq2Seq model in order, that is, we plan
for the first symbol in the sequence, and then the next and
so on until the terminal symbol is reached. The result is a
sequence of skills, the policy for each of which could be a
DMP or an out of the box planner motion planner. Our pipeline
allows us to translate natural language to a sequence of learned
transferable symbols that can be grounded on a novel map for
planning, allowing a mapping from natural language to plans
with generalizability that can be executed on a physical robot
in different locations.

IV. EXPERIMENTS

We evaluated our algorithm on two robot datasets: a real-
world car LIDAR dataset collected by the Naval Postgraduate
School (NPS) [12], and a robotics dataset we collected our-
selves with a Kinova Movo mobile manipulator in an office
building. For the NPS LIDAR dataset we report translation
accuracy to the learned output symbol sequence. We compare
our translation accuracy against a random baseline, which is
the random chance of creating the right sequence, that is,
permutation with repetition = %n, where L is max length of
an output sequence and 7 is total number of available tokens.
Vanilla sequence-to-sequence methods that map language to
actions directly would fail as the length of these output
trajectories is greater than 1500 time steps and it is infeasible
to use reinforcement learning for instruction following on a
robot directly as the number of available samples is very small.
For the mobile manipulator domain we do the same, and also
demonstrate the complete pipeline where a robot is instructed
via natural language to plan with the learned symbols in a
novel environment.

A. NPS Car Dataset

We first wanted to test if our approach can be used on a
high-dimensional domain, with continuous states and actions,
to produce a much smaller set of symbols for instruction
following. The NPS car dataset [12] consists of a car with
32-Laser Velodyne HDL-32e LIDAR and three Logitech c920
HD RGB cameras driving around a real neighborhood. The
Velodyne runs at 10Hz and is collected from a full 360 degree
view with a minimum distance of 0.9 meters and a maximum
range of 130 meters. The RGB cameras function at 30Hz,
and have a full-HD resolution of 1920 x 1080. We used this
dataset because it had a lot of urban driving with plenty of
turns, instead of highway driving. However, the data set does
not contain sufficient information to test planning because no
map information or world model was available.

Moreover, no action or IMU data was recorded in this
dataset, and hence we used the LOAM velodyne [30] Robot
Operating System (ROS) [31] package to localize the car
from the Velodyne data. We then used the difference between
sequential poses to compute the magnitudes and directions at
each time step, which we treated as a 2 dimensional action
vector.
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Fig. 4: Clustering results for the skill to go straight in the Movo robot navigation domain. There are two termination clusters
learned in this domain. The center plot, Fig. 4b visualizes the 270 dimensional LIDAR data along its first 2 principal components
along with their cluster label. (The distances between points in the center plot are not accurate representations of actual physical
distances between these points.) Clustering was performed with the parameters ¢ = 88 and minimum support = 5. The 2 clusters,
shown in yellow and purple, show distinctly different types of termination states. States in the purple cluster (on the left) are
states where the robot ends its trajectory in front of an obstacle. The states in the yellow cluster are those where the robot
stops in the middle of a long corridor without an obstacle directly ahead. We show the median LIDAR data from each of
the two clusters on next to their respective LIDAR states: Fig. 4a, shows the median LIDAR data for termination states with
obstacles ahead and Fig. 4c shows the median LIDAR data for termination states where the trajectory ends in the middle of a

corridor.

We selected a total of 10 trajectories with urban driving,
uploaded the frontward facing RGB video of these trajectories
to Amazon Mechanical Turk (AMT), and requested users
to write down one sentence they would use to command
the car to perform the observed behavior. From this, we
collected 300 language annotations for 3 different behaviors
that the car demonstrated: going straight and turning left at the
intersection, going straight and turning right at the intersection,
and going straight until the intersection. We cleaned the
language dataset to 270 examples, with 163 novel words and
a maximum sentence length of 148. The other 30 sentences
were not related to the task as the annotators did not follow
the instructions correctly. We segmented the behavior into
the underlying skills of travelling straight, turning left and
turning right, and used the sequence of these skills as our
target language for translation. We converted the Velodyne
data into a 360 dimensional vector that we use as our input
states for skill segmentation and symbol learning. We then
took the terminating laser scans from each skill segment and
clustered them using DBSCAN [25] (¢ = 20 and minimum
support = 10). This produced 3 symbols for the terminations
of: turning left, turning right, and going straight.

We used the crowd-sourced language instructions as our
source language for translation, and the output sequence of
symbols from the trajectory segmented as our target language.
We trained our network 5 times, and ran 5-fold cross validation
for testing each time. We observed an average cross-validating

Fig. 5: Our two domains. (a) The NPS Neighborhood
dataset [12], and (b) the Movo mobile manipulator. We
collected language and trajectory data for each dataset. We
segmented trajectories of the high-dimensional LIDAR tra-
jectories skills and their corresponding symbols, and mapped
language to a sequence of these symbols.

exact match accuracy result of 96.51 £ 0.46. The random
baseline for this test is 12.5% because there are 3 output
symbols and a maximum sequence length of 2.

Our behaviors were short in length, which made learning
a mapping from language easy. We would have preferred to
learn longer horizon behaviors, but our mapping and state-
estimation package accumulated state-estimation errors over
longer periods of time, limiting our train and test behaviors
to be relatively short compared to our other experiment; this
would not have been an issue if we had access to high-quality
IMU or action data.



B. Mobile Robot Navigation

We next implemented our framework on a Kinova Movo
robot with a built-in LIDAR sensor and forward-facing RGB
camera. The LIDAR sensor operates at 15Hz, and actions were
sent to the robot over ROS [31] with Twist messages at 45
Hz. The action data was 2-dimensional, encoding the linear x
velocity and the angular z velocity.

For training, we went to 5 different locations in the same
building and collected a total of 75 trajectories. For lan-
guage collection, we uploaded the robot frontward facing
RGB camera videos to AMT, and requested users to write
down one sentence they would say to instruct the robot to
perform the observed behavior. This resulted in 913 language
annotations for 5 different behaviors of going straight and
taking left, going straight and taking right, in-place holonomic
left, in-place holonomic right, and going to the intersection.
There were 347 novel words in this corpus with a maximum
sentence length of 165. In the context of segmentation, the
trajectories are noisy because the algorithm labels even small
left and right movements as left and right turning skills. Hence
we remove any latent skill shorter than half a second, as
these movements might just involve course correction while
providing demonstrations. The algorithm produced 3 different
latent skills of turning left, turning right and going straight.
The output now is a sequence of skills per demonstration
trajectory.

For symbol learning, we filtered the LIDAR to only use the
frontward facing 90 degree data, as the corridors were narrow
and the LIDAR returned a lot of noise from its side sensors, as
the walls of the corridors were under the minimum range of the
LIDAR. We then took the terminal LIDAR states from each
of the 3 segmented skills, and input them into DBSCAN [25]
(¢ = 88 and minimum support = 5), which produced 5
different clusters. We learned one-class SVMs using states in
each of these clusters representing end of corridor, intersection,
right terminal corridor, and two left terminal corridor symbols.
Example images of our learned symbols can be seen in Fig. 4a
and 4c.

Using the resulting symbol sequences and language dataset,
we trained our language translation model on 5000 epochs,
with 50-dimensional pre-trained GloVe embedding on the
encoder side, and with hidden state dimension being 256.
The average exact match accuracy with cross validation was
75.71 + 0.37%. A baseline random policy has translation
accuracy 0.41% with a maximum sequence length of 3 and
5 output tokens. We then brought the robot to an unseen
environment, and tested three different language commands:
“go to the end of the corridor and take a right,” “left at the
end of the hallway,” and “go to the end of the corridor.”
In all three cases, our translation model produced valid and
sufficient sequences of symbols for the given map, helping
execute the instruction. We classified each point along the
map sequentially to check for the termination condition of
the symbols. We then planned to the points that satisfied
the symbols along the map. Images of the robot performing

planning for the “left at the end of the hallway” behavior along
with the LIDAR states at skill terminations are in Fig. 1. These
behaviors were all tested in a map unseen by the robot in
training. This new corridor is of a different width than all
the other corridors tested by at least 10cm. To demonstrate
the stability of our learned symbols we demonstrate a longer
trajectory planned and executed by the agent for the command
“Drive straight until you reach a wall with an art print on it,
turn left and proceed down a long hallway until you reach
another wall turn left and proceed straight until you arrive at
a water fountain.” The videos of all these behaviors in the test
environment and our data collection procedure can be found
in our supplemental video.! The code for our methodology is
also available publicly.?

The translation accuracy is not as high as we would like it to
be as there are multiple symbols that recognize the termination
for the skill of the robot has turning left. This is because
we collected only 10 trajectories of the robot turning left. In
half the instances the robot landed in an open corridor and in
other it was in a short corridor with a wall ahead. Due to the
large disparity in the depth data of the terminal states for the
turn left skill, our clustering method identified two different
skill terminations: one where the after turning there is wall at
the end of the corridor, and another where the corridor’s end
cannot be seen. We believe this discrepancy caused our model
to under-perform.

This creates two symbols for left that cannot be merged
as the robot should see these corridors differently in the
world. We were able to merge our symbols for turning right
as the agent had over 20 trajectories to learn the meaning
of right, and by sampling different corridors the agent was
able to generalize the symbol termination across different
depths. A much better method for translating from natural
language to a set of learned symbols might be by conditioning
the translations on the map of the world that the robot is
encounters. In such cases it would be easy for the agent to
establish that the current map has groundings only for certain
set of symbols, allowing the left symbol’s grounding to be
straightforward in a given map.

V. RELATED WORK

Instruction following is a supervised learning problem
where the agent must predict a trajectory that would satisfy an
input natural language command. The agent is trained using
instructions paired with valid trajectories for those instructions.
Semantic parsing was initially used to solve instruction follow-
ing problems [32], [33]. This requires goal conditions and sub-
goal conditions to be pre-specified. For example, if an agent
was asked to “go to the chair,” the agent would need a pre-
specified goal condition that returns true when the agent is next
to the chair. These hand-specified goal conditions are labor
intensive to design, especially on real robots. Our work, in
contrast, learns symbols directly from high dimensional sensor

Uhttps://vimeo.com/388650000
Zhttps://github.com/nakulgopalan/change_point_detection.git
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data. Moreover, these symbols are abstract representations of
the sub-goals that the agent needs to achieve while planning to
its goal. We learn both the underlying symbols in a trajectory
demonstration and their mappings from language to allow
planning in novel environments.

Some progress was made in learning symbols from data for
instruction following by collecting the data for the symbols
separately from the trajectories [7], [8]. MacGlashan et al. [34]
learned mapping from language to a reward function learned
via Inverse Reinforcement learning. However the abstractions
such as objects and rooms were pre-specified in their domains,
and not learned from scratch, and the reward function itself
considered the permutation of these objects in the world. Ma-
tuszek et al. [35] learned mappings from sentences to attributes
learned from sensor data directly. This work is the closest
in spirit to what we are trying to achieve. However instead
of learning object attributes we are learning abstractions for
planning from scratch and grounding language to these learned
abstractions.

Some works have tried to use neural approaches for
sequence-to-sequence mapping from language directly to tra-
jectories [2], [3]. Blukis et al. [36] map language to learned
locations on a simulated map using an end-to-end approach
using thousands of demonstration pairs. Blukis et al. [4] extend
this approach using simulation to real techniques to an image
feature space that does not distinguish between real world and
the simulator to learn control policies in real world. However,
their methods still require thousands of demonstrations in the
simulator and hundreds of demonstrations in the real world as
they learn the policy and the feature space end-to-end. Our
approach requires fewer demonstrations and can generalize
without the need of a simulator. Designing simulators can be
hard for every possible task that a user might want to teach a
robot.

Other end-to-end learning methods have used reinforcement
leaning [37], [38], but require millions of episodes to learn
simple behaviors. There are also approaches that map language
to pre-specified symbols using neural networks [5]. Mapping
to symbols in these approaches allows robots to plan more ro-
bustly to sensor noise and environment stochasticity. However,
the space of available symbols must be pre-defined with expert
knowledge. These mappings translate natural language to the
pre-specified symbol space using neural translation approaches
like Seq2Seq [27]. Instead, we learn the symbols or abstraction
from the trajectories and then map language to these learned
symbols.

There have been many approaches to learn skills from
trajectories [18], [17]. Konidaris et al. [9] learns symbols from
these skills. These skills have been seen as a way to help agents
learn in a reinforcement learning setting [15] or allow the robot
to follow a demonstration with multiple learned skills [18]. We
follow a supervised learning approach to learning skills with
demonstrations similar to previously established methods [18],
[17]. Our methods to convert skills to symbols and plan over
them are similar to those described by Konidaris et al. [9].
We differ from the previous approaches by integrating natural

language translation to allow a human to specify, using natural
language, the ordering of symbolic sub-goals for planning.

VI. CONCLUSION

Our approach has successfully demonstrated the learning
of abstract symbols from example trajectories, mapping of
language to these abstract symbol sequences, and transfer of
these symbols to novel environments for planning. Our ap-
proach is based on learning portable symbolic representations
from demonstration trajectories, and using this representation
to ground language instructions via machine translation. Our
method requires very few demonstrations to learn behaviors,
which is crucial in robot applications that have large state
spaces, and results in learned symbols that are generalizable to
unseen environments. Our experiments across the two different
datasets show that our method enables real robot platforms to
follow language commands with little data.
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