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Abstract: Oncolytic viruses have become a novel therapeutic tool for various cancer treatments. Several naturally occurring
oncolytic viruses and engineered oncolytic viruses are developed for oncolytic virotherapies. Although we have a good
understanding on molecular mechanisms of viral replication and virus-induced cell lysis at the cellular level, it is unclear how
oncolytic viruses and cancer cells interact as a population. Several mathematical models of oncolytic virotherapy have been
developed to advance the understanding of dynamic interaction between oncolytic viruses and cancer cells. Many authors
investigated the effect of the virus replication on dynamics of cancer cell population and proposed that the bursting rate of viruses
is an important factor for successful oncolytic virotherapy. In this study, we investigate the effect of infection rate of oncolytic
viruses on an oncolytic virotherapy model. Particularly, we focused on studying the relationship between two control parameters,
bursting rate and infection rate of the virus, to generate the patterns from equilibrium steady state to periodic solutions. Based on
the model, the interaction between cancer cells and oncolytic viruses shows an intriguing two-dimensional bifurcation, showing
three parameter regions (equilibrium steady state, damped oscillations and oscillations). Our result suggests that both infection
rate and bursting rate are crucial properties of oncolytic viruses to design a successful oncolytic virotherapy.
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specificity. For instance, an adenovirus H101 was the first
engineered virus that have been approved by a government
regulatory agency [6].

Many mathematical models of OV have been developed
to understand complex and dynamic interactions between
tumor cells and viruses. In addition, mathematical models
can give an insight to design treatment regimens for a
cancer intervention with minimal adverse effects. Many
studies have focused on examining how variation in viral
and host parameters influence the outcomes of treatments
[7-14]. Wodarz et al. proposed a mathematical model to
investigate the effect of virus-specific lytic cytotoxic T
lymphocytes on the dynamics of OV [8]. The ordinary
differential equations (ODEs) were used to describe the
interactions between two types of cancer cells populations
(uninfected cancer cells and infected cancer cells)
according to predator-prey model including virus

1. Introduction

Oncolytic virotherapy (OV) is a novel treatment by which
oncolytic replication competent viruses are either inoculated
to a cancer patient or directly injected into the tumor to kill
cancer cells without causing harm to healthy normal cells.
Upon introduction, viruses selectively infect cancer cells by
binding to a specific receptor protein present in cancer cells.
The antitumor activity of OVs can be achieved either by direct
lysis of cancer cells or by triggering a host immune response
[1-3]. Upon the lysis of infected cancer cell, new virus
particles burst out and infect adjacent cancer cells. Recent
studies have shown that measles, adenovirus,
Newcastle-disease virus (NDV), reovirus, herpes simplex
virus 1 (HSV-1), and coxsackievirus are relatively non-toxic
and tumor specific [4, 5]. In addition to naturally occurring
viruses, viruses have been engineered to increase the
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population. There are also mathematical models using
partial differential equations (PDEs) [12-14].

It has been suggested that the ability of the wviral
replication, represented as a bursting rate, is a key factor for
successful OV. In addition, the oscillations of cancer cell
and virus populations are an intrinsic property of OV [11].
Compared to the ability of virus replication, little attentions
have been given to the effect of infectivity, represented as
an infection rate, of the virus. Furthermore, it will be crucial
to understand the relationship between bursting rate and
infection rate of viruses for the development of optimal
OVs. In this paper, we investigated how the variable -
infection rates impact- on the cancer cell population using
dynamical system (phase space analysis) and bifurcation
approaches. We also analyzed the population dynamics of
oncolytic viruses and cancer cells while considering (or
applying) both bursting rate and infection rate in a simple
OV model. Our results suggest that 1) the infection rate
coefficient is a bifurcation parameter; existence of two
threshold values, 2) these threshold values of infection rate
are dependent on the bursting rate values and 3) there are a
set of values or parameter region in choosing the bursting
rate and infection rate to the therapeutic way to succeed or
fail.

2. Materials & Methods
2.1. Model

The OV model is a three dimensional [11]

dx x+y
d
= kyxz — 61y (1)
dz

E = k3y - kaZ - 522
Where x(t), y(t) and z(t) represent populations of
uninfected cancer cells, infected cancer cells and free viruses,
respectively. The k; is the growth rate of cancer cell and K

being the carrying capacity of a tumor. The term k;x (1 -

%) describes the logistic growth rate of an uninfected

cancer cell population x(t) . The constant value k,
represents the infection rate of the virus in the infected
cancer cells so that the term k,xz describes the rate of
infected cancer cells by free viruses z(t). §; represents the
death rate of infected cancer cells. The k3 is the bursting
rate of free virus particles. The term 8,z is the rate of
elimination of free virus particles by various causes
including nonspecific binding, generation of defective
interfering particles, and host immune system.

For non-dimensionalization, we set T = 6;t, x = KX,
y = Ky, z = KZ. Then

Equation (1) become

dx  ky a 9 kK .
pei 61x xX-y 5, Xz
4y _ koK oo o
w5 MY 2
dZ ks k,K . 6,
dr 8,7 &8, 2757
We have the following model by setting the parameters;
—kop kK ks _%
a—al,b— 61,0—61 andd—a1
dx — ) —b
Pk xX—=y Xz
ay _ _
e bxz —y 3)
dz b i
3 =y —bxz—dz

All parameters are described in Table 1.

Table 1. Non-dimensionalized model parameters. All parameters are assumed
to be non-negative.

Parameter Description Component
k
a Growth rate of cancer cell a= 5_1
1
. L k,K
b Infection rate of virus into cancer cell b= >
1
. . ks
G Bursting rate of virus =5
1
. . 8,
d Death rate of free virus particles d= 5
1

2.2. Analysis and Stability of Equilibrium

There are three fixed points (equilibrium points); two
equilibrium solutions E;(0,0,0) and E,(1,0,0) in the
positive invariant domain D and the other one E;(x*,y*, z")
in either the negative or the positive domain depending on the
parameter values.

E3(X*,y*,Z*)
d ad(bc — b — d) a(bc —b —d)
b(c —1)"b(c — 1)(bc — b + ad)’ b(bc — b + ad)

= (

The Jacobian matrix J of the Equation (3) is given by
a—2ax—ay—bz —ax —bx

I= [ bz -1 bx ]

—bz c —bx-—-d

The Jacobian matrix at E;(0,0,0) is

a O 0
0o -1 0
0 ¢ —-d

The eigenvalues are a, -1, and -d. Here all parameters are
positive values, so that the fixed point E;(0,0,0) is a saddle
point (unstable) with a stable manifold space on y-z plane, and
the unstable manifold space on the x-axis.
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The Jacobian matrix at E,(1,0,0) is
—-a -a b
0 -1 b
0 ¢ -b-d

The eigenvalues are and

—(b+d+1)+/(b+d—1)2+4bc
A3 =
, 2

in eigenvalue since (b + d — 1)? + 4bc is positive. However,
E,(1,0,0) becomes stable if \/(b +d—-1)2+4bc< b+
d+1ie,a< :—1. Otherwise, E,(1,0,0) is a saddle point

(unstable).
The Jacobian matrix at E;(x*,y*, z") is

. There is no complex number

[ _L B ad 3 d]
I b(c—1) b(c—-1) c—1|
| abc—b-d) . d_|
bc—b+ad c—1
a(bc —b —d) cd
" bc—b+ad ¢ -1

The characteristic equation is given by
P= 2 +pA* +pA+p; 4)
where

_bc+ad+bcd—b

b1 = b(c—1) )
_ad(cd+c—1) ad(bc — b —d)(a—d)
P2 =" —D2 " blc—Dbc—b +ad)’
_ad(bc—b—d)
Ps= " —1)

It is hard to find the roots of Equation (4) explicitly. We will
discuss the stability of E;(x*,y*,z*) with our numerical
results.

Theorem Fj is stable if and only if p; > 0, i=/, 2, 3 and
P1°P2 > D3

Proof: Let us consider that the cubic characteristic
equation (Equation 4) can be factored completely in the
complex plane such as (A — )4 — nn)(A —13) =0
where 1,1, and r; are complex roots of Equation (4).
Then

1”1+ T‘2+ r3=_p1
T3+ T3 =D, %)
113 = —P3

(—) If E; is stable, there are two possibilities: (a) There are
three real roots, 1; < 0, i=1, 2, 3. According to Equation (5),
v, >0,p, >0,p3 >0 and p; - p, > p3. (b) There is one
real root r; <0 and two complex conjugate pair roots
r, =p+qir3s =p—qi,p > 0. According to Equation (5), it
is easy to verify p; > 0,p, > 0,p; > 0 and p; - p, > p3

(«) If p > 0,p, > 0,p3 > 0 and p, - p, > p;. Consider
the eigen function f(4) = A3 + p; A% + p, A + p5. There is no
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change of signs between all coefficients. According to
Descartes’ Rule of signs, f(4) has zero number of positive
roots. Therefore, there are two possibilities: (a) If there are
three negative real roots, E3 is stable. (b) If there are on
negative real root —r (r > 0) and two complex conjugate
pair roots —p + qi and —p — qi,

fD=@A+r@A +p+q)@A +p—qi)
= B+ T +2p)2%+ P? +q%+2rp)d +r(P? +q?)

Therefore, p; - p, > ps, 2p((r +p)? +q* > 0, which
implies p > 0. Thus, the complex roots have negative real
parts, which means Ej; is stable.

2.3. Numerical Simulation

We used the Runge-Kutta 2nd order method [15] to
compute the numerical solutions in MATLAB (The
Mathworks, Natick, MA). The small-time step At = 0.05
was used to check the accuracy of the numerical method. For
numerical simulations, we set the parameters a = 0.31 (growth
rate of cancer cell from the experimental data [16]) and d =
0.44 with initial conditions x(0) = 0.5, y(0) =0, and z(0) = 1.5.
Both the infection rate (b) and the bursting rate of virus (c) are
considered as variables.

3. Results

3.1. Infection Rate Coefficient Is a Control Parameter in
Changing the Structure of Cancer Cell Population

We investigated the effect of the infection rate of the virus
on the cancer cell population. We set the busting rate (¢ = 5;
different values of ¢ will be discussed later) and increased
the infection rate constant from 0 to 1 with step size 0.01.
Our numerical result shows that the increased infection rate
(b) results in the altered the pattern of cancer cell population
over time. The cancer cell population exhibits three patterns
over the relative time depending on the infection rate
coefficient (Figure 1A). For the infection rate » = 0.1, the
cancer cell population approaches to the free virus
equilibrium E,(1,0,0) in phase portrait (Figure 1B) or
maximal capacity (green curve in Figure 1a). For b = 0.4, it
shows fluctuations over short time period and then converges
to the relative population less than the maximal capacity
(damped oscillation, Figure 1C). For 5=0.64, the cancer cell
population converges to the minimum population 0.172 (data
not shown). For » = 0.7, the population starts to oscillate over
time (red curve in Figure la) and the trajectory of
populations circulates around a stable limit cycle in a
dynamical system (Figure 1D). As the infection rate
increases, the amplitude of oscillation of the cancer cell
population also increases. This result indicates that the
infection rate coefficient should be considered as a control
parameter that can change the dynamic structure of the
relative cancer cell population over time as it changes.

3.2. Transcritical and Hopf Bifurcations

Qualitative changes in the stability of fixed points
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depending on a parameter are called bifurcation in the
dynamics'’. The control parameter values where
bifurcations occurred are called bifurcation points. A
bifurcation diagram of cancer cell population can be
obtained by changing the parameter of virus infection rate.
We computed the relative cancer cell population density
with different values of b over the relative time. The
bifurcation diagram for the cancer cell population over the
infection rate is shown in Figure 2. There are two
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bifurcations at b = b; and b, where the shape of the graph
changes. In our numerical result, we calculated two values
b;=0.12 and b, = 0.64 (Figure 2A). We also calculated the
Lyapunov exponent to determine whether cancer cell
population for b > b, shows periodic solutions or
non-periodic solutions (Figure 2B). The cancer cell
population density in this parameter interval shows periodic
patterns since the Lyapunov exponent is less than 0 for » >
b,.
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Figure 1. The effect of the infection rate on cancer cell population. Three patterns of cancer cell population (steady state, damped oscillation and oscillation). A.
Cancer cell population over time for the infection rate coefficient b = 0.1, 0.4 and 0.7. Three-dimensional phase portraits for the cancer cell population are
shown in B-D, b = 0.1, 0.4 and 0.7, respectively. Parameters used were a = 0.31, ¢ = 5 and d = 0.44.

For 0 < b < 0.12, the cancer cell population reaches its
maximum population (capacity). This indicates that the viral
population diminished due to low strength of infectivity of
the virus so that the cancer cell population approaches to the
maximum. In this case, it can be concluded that the
virotherapy fails in that parameter regions. For 0.12 < b <
0.64, the cancer cell population shows oscillations for a short
time period and then approaches to the values less than 1.
Particularly, the population decreases to the relative
population of 0.172 at b=0.64, which means that the
virotherapy is partially successful in the interval and the
cancer cell population can be reduced to minimum

population of 0.172. For b > 0.64, the population start to
show oscillations over the relative time. Populations of the
infected cancer cells and viruses also oscillate (data not
shown). Oscillations of cancer cells and viruses suggests that
the interaction between cancer cells and viruses are the same
dynamics as the prey-predator system (coexistence in
dynamical system).

A brief bifurcation diagram in terms of fixed points,
discussed in section 2.2, is shown in Figure 2C. A horizontal
line is used to describe the fixed points of E;(0,0,0) and
E,(1,0,0) and a curve is used to describe the parameter
dependent fixed point E5(x*,y*, z"). Here, solid and dotted
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lines represent stable and unstable, respectively. For 0 < b <
b,, E, is a stable fixed point and both E; and E; are saddle
(unstable), so that their populations approach to the free virus
equilibrium value E, in dynamical system. Particularly, E;
is in the negative invariant domain that is outside of our
interest region. However, E5; is in the positive invariant
domain D and it is in the same position as E, at the
bifurcation point b = b;. In other words, E; moves closely to
E, from the negative invariant domain to the positive
invariant domain D as the b value increases from 0 and then
E; is in the position of E, at b=b,. For b > by, the stability of
E,and E3 changed from stable to unstable and from unstable

(A)

Relative cancer cell

0 01 02 03 04 05 06 07 08 09 1
Infection rate

©)

unstable
stable
( oscillation Es(x",y",2°) sy, 2%)
E»(1,0,0) E,(1,0,0)
E;(1,0,0) E;(1,0,0)

b= b
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to stable, respectively. This indicates a transcriticial
bifurcation occurs at b=b,. For b; < b < b,, both E; and E,
become unstable fixed (saddle) points but E; becomes a
stable spiral fixed point, so that the trajectories circulate about
E; and then gradually converge to E5. For b > b,, all fixed
points are unstable fixed points and the eigenvalues of
Jacobian matrix at E; has a family of complex numbers with
positive real part. The trajectories rotate around a stable limit
cycle near the fixed point E; and the populations show
oscillations, which implies that there is a Hopf bifurcation
occurs at b=b,.
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Figure 2. Bifurcation diagram and stability of fixed points. A. Bifurcation diagram of cancer cell population density with respect to the infection rate coefficient.
B. Lyapunov exponent of cancer cell population with respect to infection rate. b; and b, are two bifurcation values. C. The stability of three fixed points;
E(0,0,0), E;(1,0,0) and E;(x*,y*,z"*). The system undergoes two bifurcations; transcritical at b=b, Hopf bifurcation at b=b,. The dotted blue line
represents the fixed point is unstable and the solid red line represents the fixed point is stable. For 0 < b < by, E, is stable and the others, Eyand E5 are
unstable (saddle points). For by < b < b,, E; becomes a stable fixed point but both E, and E, are unstable fixed points. For b > b,, there exist periodic
solutions. The bifurcation values of b; = 0.12 and b, = 0.64 are computed in MATLAB with parameters a = 0.31, ¢ = 5 and d = 0.44.

3.3. Bursting Rate-dependent Bifurcation Values

We investigated the effect of the correlation between the

bursting rate and the infection rate of the virus on the cancer
cell population. We simulated the bifurcation diagrams for
the infection rate coefficient with various fixed bursting rate
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coefficients to examine how the bifurcations points (b; and
b,) change (Figure 3). For the fixed value of ¢=4, the cancer
cell population undergoes the first (transcritical) bifurcation
at by =0.146 and the second (hopf) bifurcation at b, =0.82
(Figure 3A). The other values are given by (c, by, by) = (7,
0.073, 0.45), (15, 0.031, 0.205), and (30, 0.015, 0.102)
(Figure 3B-3D). These results provide increasing the
bursting rate of the virus results in decreasing the bifurcation

(A)

Relative cancer cell

0 0.1 0.2 03 0.4 05 06 07 08 0.9 1
Infection rate

Relative cancer cell

0 0.1 02 03 04 05 06 07 08 09 1
Infection rate

points (b; and b,). Those bifurcation values are dependent on
the bursting rate values, which implies that different values
of bursting rate induce different bifurcation points in the
infection rate. These results leave questions about how the
correlation between the bursting rate of the virus and the
infection rate of the virus affects the success or failure of the
oncolytic virotherapy.

Relative cancer cell
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Infection rate
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Infection rate

Figure 3. Bifurcation values depend on the bursting rate. (4)-(D) are bifurcation diagrams for relative cancer cell population density with respect to the infection
rate with bursting rate values ¢ = 4, 7, 15 and 30, respectively. Increasing the bursting values result in decreasing values of two bifurcation values b; and b,.

Parameters used were a = 0.31 and d = 0.44.

3.4. Parameter Regions from Equilibrium Steady State to
Periodic Solutions

The oncolytic model undergoes two bifurcations with
respect to two parameters; the bursting rate and the
infection rate of the virus. The transcritical bifurcation
occurs at (b, ¢) = (b;, c;) where the equation form of the
bifurcation point clearly can be formulated from the

stability of the fixed point E,(1,0,0) and is given by
d

bl = — In other words, the set of bifurcation points (b,

. b+d .
cy) are the set of points on the graph of ¢ = % in the b-c¢

plane. Therefore, the set of parameters (b, c¢), which
. . . b+d .
satisfies the inequality ¢ < %, represents the region

where the cancer cell population converges to the
maximum carrying capacity and the virotherapy is a failure.
Otherwise, the therapy is partially successful, or all
populations coexist showing oscillations over the relative
time. Figure 4A shows the two-dimensional bifurcation
diagram. The diagram shows three different colored regions
which represent the following; 1) The blue region is the set
of parameters (b, ¢) at which the relative cancer cell
population converges to the maximal capacity, 2) the
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yellow one is the region where the population exhibits
damped oscillations and converges to the population less
than the maximal capacity and 3) the red one is the region
where the population shows oscillations over the time. Our
numerical result provides the critical set of values of
bifurcation points (b, ¢;) and (b,, c;) which are located on
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the border between two different colored regions. For
example, the transcritical bifurcation occurs at the border
between blue and yellow color and the Hopf bifurcation
occurs on the border between yellow and red colored
regions.
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Figure 4. Two-dimensional bifurcation diagram for the cancer cell population density; infection rate on the x-axis, bursting rate on the y-axis. A. Three colored
regions represent the set of two parameters at which three different patterns of cancer cell population over time are observed; the steady-state equilibrium (blue),
damped oscillations (vellow) and oscillations (red). Two- bifurcations occurs at the borders between two colors; (1) Transcritical bifurcation on the border
between blue and yellow, (2) Hopf bifurcation on the border between (yellow and red). The examples of cancer cell population over time in each colored region
are shown in B-C-D, blue-yellow-red, respectively. Parameters used were a = 0.31 and d = 0.44.

4. Discussion

OVs are promising new therapeutics for various types of
cancers. There have been multiple clinical trials using
oncolytic viruses [18]. For the OV, replication competent
viruses are used such as reoviruses [19]. The infection
oncolytic viruses can kill cancer cells by triggering a
cytotoxicity directly in the infected cancer cells or antitumoral
immune responses or both [18, 20]. For an effective and safe
treatment with oncolytic viruses, it is important to understand
the behaviors of cancer cells and viruses. Mathematical
modelling is a useful method to study the dynamic interactions

between cancer cells and viruses. Although it is a simplified
model excluding many other variations that can happen in
clinical settings, our model supports the idea that not only the
bursting rate of viruses but also infection rate of viruses must
be considered for OV. One of barriers in OV is finding the
optimal number of viruses to exterminate cancer cells without
adverse effects such as immune hypersensitivity or
spontaneous infection of normal cells [21]. Our model can be
useful to determine the optimal number of viruses to be used
for OV based on the bursting rate and infection rate that can be
expressed as a plaque-forming unit (pfu). Both the bursting
rate and pfu of a specific virus can be determined by in vitro
experiments.
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In clinical setting, there can be many other factors to affect
the interaction between cancer cells and viruses. One of
factors have not been considered in our model is host immune
response. The host immune system either can facilitate OVs
by triggering cytotoxic response to kill infected cancer cells or

Relative cancer cell

0 02 04 06 08 1 1.2 14 16 18 2
Death rate of virus

can interfere OVs by eliminating viruses. Intrinsic properties
of virus can also determine the lifespan or death rate of free
virion. Based on figure 5, it will be important to develop
advanced models to consider the death rate of viruses when
assessing cancer cell-virus infections.
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Death rate of virus

Figure 5. Bifurcation diagram of cancer cell population density with respect to the death rate of virus d with infection rate b=0.1 (4) and b=0.3 (B). Parameters

used were a = 0.31 and ¢ = 5.

5. Conclusions

In this paper, we studied the effect of the infection rate of
the virus on the cancer cell population using the bifurcation
diagrams of the cancer cell population density and the
dynamical system (phase-space analysis). Our results show
that there are two bifurcation threshold values of infection rate,
which are the bursting rate dependent. The first bifurcation
threshold value () can be obtained from the stability of the

fixed point at E,(1,0,0) and be expressed as bl = ﬁ,
which has an inverse relationship with the bursting rate of the
virus and is proportional to the death rate of free virus particles.
However, it is difficult to compute the second threshold value
explicitly and express it using parameter values. For this issue,
we provided the two-dimensional bifurcation diagram to show
the set of parameters where three different patterns are
generated. Our result gives an insight into understanding the
relationship between two control parameters at which the
cancer cell population exhibits the patterns from equilibrium
steady-state solution to periodic solutions. It provides the
second threshold value (b,) has the same functional inverse
relationship with ¢,. The two-dimensional bifurcation diagram
provides a promising result in determining optimal parameters
for the successful virotherapy.
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